1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipsec.h"
36 #include "opt_kern_tls.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/arb.h>
41 #include <sys/callout.h>
42 #include <sys/eventhandler.h>
43 #ifdef TCP_HHOOK
44 #include <sys/hhook.h>
45 #endif
46 #include <sys/kernel.h>
47 #ifdef TCP_HHOOK
48 #include <sys/khelp.h>
49 #endif
50 #ifdef KERN_TLS
51 #include <sys/ktls.h>
52 #endif
53 #include <sys/qmath.h>
54 #include <sys/stats.h>
55 #include <sys/sysctl.h>
56 #include <sys/jail.h>
57 #include <sys/malloc.h>
58 #include <sys/refcount.h>
59 #include <sys/mbuf.h>
60 #include <sys/priv.h>
61 #include <sys/sdt.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/protosw.h>
65 #include <sys/random.h>
66
67 #include <vm/uma.h>
68
69 #include <net/route.h>
70 #include <net/route/nhop.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_private.h>
74 #include <net/vnet.h>
75
76 #include <netinet/in.h>
77 #include <netinet/in_fib.h>
78 #include <netinet/in_kdtrace.h>
79 #include <netinet/in_pcb.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h>
84 #include <netinet/ip_var.h>
85 #include <netinet/icmp_var.h>
86 #ifdef INET6
87 #include <netinet/icmp6.h>
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_fib.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/scope6_var.h>
93 #include <netinet6/nd6.h>
94 #endif
95
96 #include <netinet/tcp.h>
97 #ifdef INVARIANTS
98 #define TCPSTATES
99 #endif
100 #include <netinet/tcp_fsm.h>
101 #include <netinet/tcp_seq.h>
102 #include <netinet/tcp_timer.h>
103 #include <netinet/tcp_var.h>
104 #include <netinet/tcp_ecn.h>
105 #include <netinet/tcp_log_buf.h>
106 #include <netinet/tcp_syncache.h>
107 #include <netinet/tcp_hpts.h>
108 #include <netinet/tcp_lro.h>
109 #include <netinet/cc/cc.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/tcp_fastopen.h>
112 #include <netinet/tcp_accounting.h>
113 #ifdef TCP_OFFLOAD
114 #include <netinet/tcp_offload.h>
115 #endif
116 #include <netinet/udp.h>
117 #include <netinet/udp_var.h>
118 #ifdef INET6
119 #include <netinet6/tcp6_var.h>
120 #endif
121
122 #include <netipsec/ipsec_support.h>
123
124 #include <machine/in_cksum.h>
125 #include <crypto/siphash/siphash.h>
126
127 #include <security/mac/mac_framework.h>
128
129 #ifdef INET6
130 static ip6proto_ctlinput_t tcp6_ctlinput;
131 static udp_tun_icmp_t tcp6_ctlinput_viaudp;
132 #endif
133
134 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
135 #ifdef INET6
136 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
137 #endif
138
139 VNET_DEFINE(uint32_t, tcp_ack_war_time_window) = 1000;
140 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow,
141 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_ack_war_time_window), 0,
142 "Time interval in ms used to limit the number (ack_war_cnt) of challenge ACKs sent per TCP connection");
143 VNET_DEFINE(uint32_t, tcp_ack_war_cnt) = 5;
144 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, CTLFLAG_VNET | CTLFLAG_RW,
145 &VNET_NAME(tcp_ack_war_cnt), 0,
146 "Maximum number of challenge ACKs sent per TCP connection during the time interval (ack_war_timewindow)");
147
148 struct rwlock tcp_function_lock;
149
150 static int
sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)151 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
152 {
153 int error, new;
154
155 new = V_tcp_mssdflt;
156 error = sysctl_handle_int(oidp, &new, 0, req);
157 if (error == 0 && req->newptr) {
158 if (new < TCP_MINMSS)
159 error = EINVAL;
160 else
161 V_tcp_mssdflt = new;
162 }
163 return (error);
164 }
165
166 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
167 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
168 &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I",
169 "Default TCP Maximum Segment Size");
170
171 #ifdef INET6
172 static int
sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)173 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
174 {
175 int error, new;
176
177 new = V_tcp_v6mssdflt;
178 error = sysctl_handle_int(oidp, &new, 0, req);
179 if (error == 0 && req->newptr) {
180 if (new < TCP_MINMSS)
181 error = EINVAL;
182 else
183 V_tcp_v6mssdflt = new;
184 }
185 return (error);
186 }
187
188 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
189 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
190 &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I",
191 "Default TCP Maximum Segment Size for IPv6");
192 #endif /* INET6 */
193
194 /*
195 * Minimum MSS we accept and use. This prevents DoS attacks where
196 * we are forced to a ridiculous low MSS like 20 and send hundreds
197 * of packets instead of one. The effect scales with the available
198 * bandwidth and quickly saturates the CPU and network interface
199 * with packet generation and sending. Set to zero to disable MINMSS
200 * checking. This setting prevents us from sending too small packets.
201 */
202 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
204 &VNET_NAME(tcp_minmss), 0,
205 "Minimum TCP Maximum Segment Size");
206
207 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
208 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
209 &VNET_NAME(tcp_do_rfc1323), 0,
210 "Enable rfc1323 (high performance TCP) extensions");
211
212 /*
213 * As of June 2021, several TCP stacks violate RFC 7323 from September 2014.
214 * Some stacks negotiate TS, but never send them after connection setup. Some
215 * stacks negotiate TS, but don't send them when sending keep-alive segments.
216 * These include modern widely deployed TCP stacks.
217 * Therefore tolerating violations for now...
218 */
219 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW,
221 &VNET_NAME(tcp_tolerate_missing_ts), 0,
222 "Tolerate missing TCP timestamps");
223
224 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW,
226 &VNET_NAME(tcp_ts_offset_per_conn), 0,
227 "Initialize TCP timestamps per connection instead of per host pair");
228
229 /* How many connections are pacing */
230 static volatile uint32_t number_of_tcp_connections_pacing = 0;
231 static uint32_t shadow_num_connections = 0;
232 static counter_u64_t tcp_pacing_failures;
233 static counter_u64_t tcp_dgp_failures;
234 static uint32_t shadow_tcp_pacing_dgp = 0;
235 static volatile uint32_t number_of_dgp_connections = 0;
236
237 static int tcp_pacing_limit = 10000;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW,
239 &tcp_pacing_limit, 1000,
240 "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)");
241
242 static int tcp_dgp_limit = -1;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dgp_limit, CTLFLAG_RW,
244 &tcp_dgp_limit, -1,
245 "If the TCP stack does DGP, is there a limit (-1 = no, 0 = no dgp N = number of connections)");
246
247 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD,
248 &shadow_num_connections, 0, "Number of TCP connections being paced");
249
250 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD,
251 &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit");
252
253 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, dgp_failures, CTLFLAG_RD,
254 &tcp_dgp_failures, "Number of times we failed to enable dgp to avoid exceeding the limit");
255
256 static int tcp_log_debug = 0;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
258 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
259
260 /*
261 * Target size of TCP PCB hash tables. Must be a power of two.
262 *
263 * Note that this can be overridden by the kernel environment
264 * variable net.inet.tcp.tcbhashsize
265 */
266 #ifndef TCBHASHSIZE
267 #define TCBHASHSIZE 0
268 #endif
269 static int tcp_tcbhashsize = TCBHASHSIZE;
270 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
271 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
272
273 static int do_tcpdrain = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
275 "Enable tcp_drain routine for extra help when low on mbufs");
276
277 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
278 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
279
280 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1;
281 #define V_icmp_may_rst VNET(icmp_may_rst)
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
283 &VNET_NAME(icmp_may_rst), 0,
284 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
285
286 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0;
287 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval)
288 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
289 &VNET_NAME(tcp_isn_reseed_interval), 0,
290 "Seconds between reseeding of ISN secret");
291
292 static int tcp_soreceive_stream;
293 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
294 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
295
296 VNET_DEFINE(uma_zone_t, sack_hole_zone);
297 #define V_sack_hole_zone VNET(sack_hole_zone)
298 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0; /* unlimited */
299 static int
sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)300 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS)
301 {
302 int error;
303 uint32_t new;
304
305 new = V_tcp_map_entries_limit;
306 error = sysctl_handle_int(oidp, &new, 0, req);
307 if (error == 0 && req->newptr) {
308 /* only allow "0" and value > minimum */
309 if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT)
310 error = EINVAL;
311 else
312 V_tcp_map_entries_limit = new;
313 }
314 return (error);
315 }
316 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit,
317 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
318 &VNET_NAME(tcp_map_entries_limit), 0,
319 &sysctl_net_inet_tcp_map_limit_check, "IU",
320 "Total sendmap entries limit");
321
322 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0; /* unlimited */
323 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW,
324 &VNET_NAME(tcp_map_split_limit), 0,
325 "Total sendmap split entries limit");
326
327 #ifdef TCP_HHOOK
328 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
329 #endif
330
331 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH
332 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]);
333 #define V_ts_offset_secret VNET(ts_offset_secret)
334
335 static int tcp_default_fb_init(struct tcpcb *tp, void **ptr);
336 static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged);
337 static int tcp_default_handoff_ok(struct tcpcb *tp);
338 static struct inpcb *tcp_notify(struct inpcb *, int);
339 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
340 static struct inpcb *tcp_mtudisc(struct inpcb *, int);
341 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int);
342 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
343 const void *ip4hdr, const void *ip6hdr);
344 static void tcp_default_switch_failed(struct tcpcb *tp);
345 static ipproto_ctlinput_t tcp_ctlinput;
346 static udp_tun_icmp_t tcp_ctlinput_viaudp;
347
348 static struct tcp_function_block tcp_def_funcblk = {
349 .tfb_tcp_block_name = "freebsd",
350 .tfb_tcp_output = tcp_default_output,
351 .tfb_tcp_do_segment = tcp_do_segment,
352 .tfb_tcp_ctloutput = tcp_default_ctloutput,
353 .tfb_tcp_handoff_ok = tcp_default_handoff_ok,
354 .tfb_tcp_fb_init = tcp_default_fb_init,
355 .tfb_tcp_fb_fini = tcp_default_fb_fini,
356 .tfb_switch_failed = tcp_default_switch_failed,
357 .tfb_flags = TCP_FUNC_DEFAULT_OK,
358 };
359
360 static int tcp_fb_cnt = 0;
361 struct tcp_funchead t_functions;
362 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk;
363 #define V_tcp_func_set_ptr VNET(tcp_func_set_ptr)
364
365 void
tcp_record_dsack(struct tcpcb * tp,tcp_seq start,tcp_seq end,int tlp)366 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp)
367 {
368 TCPSTAT_INC(tcps_dsack_count);
369 tp->t_dsack_pack++;
370 if (tlp == 0) {
371 if (SEQ_GT(end, start)) {
372 tp->t_dsack_bytes += (end - start);
373 TCPSTAT_ADD(tcps_dsack_bytes, (end - start));
374 } else {
375 tp->t_dsack_tlp_bytes += (start - end);
376 TCPSTAT_ADD(tcps_dsack_bytes, (start - end));
377 }
378 } else {
379 if (SEQ_GT(end, start)) {
380 tp->t_dsack_bytes += (end - start);
381 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start));
382 } else {
383 tp->t_dsack_tlp_bytes += (start - end);
384 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end));
385 }
386 }
387 }
388
389 static struct tcp_function_block *
find_tcp_functions_locked(struct tcp_function_set * fs)390 find_tcp_functions_locked(struct tcp_function_set *fs)
391 {
392 struct tcp_function *f;
393 struct tcp_function_block *blk = NULL;
394
395 rw_assert(&tcp_function_lock, RA_LOCKED);
396 TAILQ_FOREACH(f, &t_functions, tf_next) {
397 if (strcmp(f->tf_name, fs->function_set_name) == 0) {
398 blk = f->tf_fb;
399 break;
400 }
401 }
402 return (blk);
403 }
404
405 static struct tcp_function_block *
find_tcp_fb_locked(struct tcp_function_block * blk,struct tcp_function ** s)406 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
407 {
408 struct tcp_function_block *rblk = NULL;
409 struct tcp_function *f;
410
411 rw_assert(&tcp_function_lock, RA_LOCKED);
412 TAILQ_FOREACH(f, &t_functions, tf_next) {
413 if (f->tf_fb == blk) {
414 rblk = blk;
415 if (s) {
416 *s = f;
417 }
418 break;
419 }
420 }
421 return (rblk);
422 }
423
424 struct tcp_function_block *
find_and_ref_tcp_functions(struct tcp_function_set * fs)425 find_and_ref_tcp_functions(struct tcp_function_set *fs)
426 {
427 struct tcp_function_block *blk;
428
429 rw_rlock(&tcp_function_lock);
430 blk = find_tcp_functions_locked(fs);
431 if (blk)
432 refcount_acquire(&blk->tfb_refcnt);
433 rw_runlock(&tcp_function_lock);
434 return (blk);
435 }
436
437 struct tcp_function_block *
find_and_ref_tcp_fb(struct tcp_function_block * blk)438 find_and_ref_tcp_fb(struct tcp_function_block *blk)
439 {
440 struct tcp_function_block *rblk;
441
442 rw_rlock(&tcp_function_lock);
443 rblk = find_tcp_fb_locked(blk, NULL);
444 if (rblk)
445 refcount_acquire(&rblk->tfb_refcnt);
446 rw_runlock(&tcp_function_lock);
447 return (rblk);
448 }
449
450 /* Find a matching alias for the given tcp_function_block. */
451 int
find_tcp_function_alias(struct tcp_function_block * blk,struct tcp_function_set * fs)452 find_tcp_function_alias(struct tcp_function_block *blk,
453 struct tcp_function_set *fs)
454 {
455 struct tcp_function *f;
456 int found;
457
458 found = 0;
459 rw_rlock(&tcp_function_lock);
460 TAILQ_FOREACH(f, &t_functions, tf_next) {
461 if ((f->tf_fb == blk) &&
462 (strncmp(f->tf_name, blk->tfb_tcp_block_name,
463 TCP_FUNCTION_NAME_LEN_MAX) != 0)) {
464 /* Matching function block with different name. */
465 strncpy(fs->function_set_name, f->tf_name,
466 TCP_FUNCTION_NAME_LEN_MAX);
467 found = 1;
468 break;
469 }
470 }
471 /* Null terminate the string appropriately. */
472 if (found) {
473 fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0';
474 } else {
475 fs->function_set_name[0] = '\0';
476 }
477 rw_runlock(&tcp_function_lock);
478 return (found);
479 }
480
481 static struct tcp_function_block *
find_and_ref_tcp_default_fb(void)482 find_and_ref_tcp_default_fb(void)
483 {
484 struct tcp_function_block *rblk;
485
486 rw_rlock(&tcp_function_lock);
487 rblk = V_tcp_func_set_ptr;
488 refcount_acquire(&rblk->tfb_refcnt);
489 rw_runlock(&tcp_function_lock);
490 return (rblk);
491 }
492
493 void
tcp_switch_back_to_default(struct tcpcb * tp)494 tcp_switch_back_to_default(struct tcpcb *tp)
495 {
496 struct tcp_function_block *tfb;
497 void *ptr = NULL;
498
499 KASSERT(tp->t_fb != &tcp_def_funcblk,
500 ("%s: called by the built-in default stack", __func__));
501
502 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
503 tp->t_fb->tfb_tcp_timer_stop_all(tp);
504
505 /*
506 * Now, we'll find a new function block to use.
507 * Start by trying the current user-selected
508 * default, unless this stack is the user-selected
509 * default.
510 */
511 tfb = find_and_ref_tcp_default_fb();
512 if (tfb == tp->t_fb) {
513 refcount_release(&tfb->tfb_refcnt);
514 tfb = NULL;
515 }
516 /* Does the stack accept this connection? */
517 if (tfb != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) {
518 refcount_release(&tfb->tfb_refcnt);
519 tfb = NULL;
520 }
521 /* Try to use that stack. */
522 if (tfb != NULL) {
523 /* Initialize the new stack. If it succeeds, we are done. */
524 if (tfb->tfb_tcp_fb_init == NULL ||
525 (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) {
526 /* Release the old stack */
527 if (tp->t_fb->tfb_tcp_fb_fini != NULL)
528 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
529 refcount_release(&tp->t_fb->tfb_refcnt);
530 /* Now set in all the pointers */
531 tp->t_fb = tfb;
532 tp->t_fb_ptr = ptr;
533 return;
534 }
535 /*
536 * Initialization failed. Release the reference count on
537 * the looked up default stack.
538 */
539 refcount_release(&tfb->tfb_refcnt);
540 }
541
542 /*
543 * If that wasn't feasible, use the built-in default
544 * stack which is not allowed to reject anyone.
545 */
546 tfb = find_and_ref_tcp_fb(&tcp_def_funcblk);
547 if (tfb == NULL) {
548 /* there always should be a default */
549 panic("Can't refer to tcp_def_funcblk");
550 }
551 if ((*tfb->tfb_tcp_handoff_ok)(tp)) {
552 /* The default stack cannot say no */
553 panic("Default stack rejects a new session?");
554 }
555 if (tfb->tfb_tcp_fb_init != NULL &&
556 (*tfb->tfb_tcp_fb_init)(tp, &ptr)) {
557 /* The default stack cannot fail */
558 panic("Default stack initialization failed");
559 }
560 /* Now release the old stack */
561 if (tp->t_fb->tfb_tcp_fb_fini != NULL)
562 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
563 refcount_release(&tp->t_fb->tfb_refcnt);
564 /* And set in the pointers to the new */
565 tp->t_fb = tfb;
566 tp->t_fb_ptr = ptr;
567 }
568
569 static bool
tcp_recv_udp_tunneled_packet(struct mbuf * m,int off,struct inpcb * inp,const struct sockaddr * sa,void * ctx)570 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp,
571 const struct sockaddr *sa, void *ctx)
572 {
573 struct ip *iph;
574 #ifdef INET6
575 struct ip6_hdr *ip6;
576 #endif
577 struct udphdr *uh;
578 struct tcphdr *th;
579 int thlen;
580 uint16_t port;
581
582 TCPSTAT_INC(tcps_tunneled_pkts);
583 if ((m->m_flags & M_PKTHDR) == 0) {
584 /* Can't handle one that is not a pkt hdr */
585 TCPSTAT_INC(tcps_tunneled_errs);
586 goto out;
587 }
588 thlen = sizeof(struct tcphdr);
589 if (m->m_len < off + sizeof(struct udphdr) + thlen &&
590 (m = m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) {
591 TCPSTAT_INC(tcps_tunneled_errs);
592 goto out;
593 }
594 iph = mtod(m, struct ip *);
595 uh = (struct udphdr *)((caddr_t)iph + off);
596 th = (struct tcphdr *)(uh + 1);
597 thlen = th->th_off << 2;
598 if (m->m_len < off + sizeof(struct udphdr) + thlen) {
599 m = m_pullup(m, off + sizeof(struct udphdr) + thlen);
600 if (m == NULL) {
601 TCPSTAT_INC(tcps_tunneled_errs);
602 goto out;
603 } else {
604 iph = mtod(m, struct ip *);
605 uh = (struct udphdr *)((caddr_t)iph + off);
606 th = (struct tcphdr *)(uh + 1);
607 }
608 }
609 m->m_pkthdr.tcp_tun_port = port = uh->uh_sport;
610 bcopy(th, uh, m->m_len - off);
611 m->m_len -= sizeof(struct udphdr);
612 m->m_pkthdr.len -= sizeof(struct udphdr);
613 /*
614 * We use the same algorithm for
615 * both UDP and TCP for c-sum. So
616 * the code in tcp_input will skip
617 * the checksum. So we do nothing
618 * with the flag (m->m_pkthdr.csum_flags).
619 */
620 switch (iph->ip_v) {
621 #ifdef INET
622 case IPVERSION:
623 iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr));
624 tcp_input_with_port(&m, &off, IPPROTO_TCP, port);
625 break;
626 #endif
627 #ifdef INET6
628 case IPV6_VERSION >> 4:
629 ip6 = mtod(m, struct ip6_hdr *);
630 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr));
631 tcp6_input_with_port(&m, &off, IPPROTO_TCP, port);
632 break;
633 #endif
634 default:
635 goto out;
636 break;
637 }
638 return (true);
639 out:
640 m_freem(m);
641
642 return (true);
643 }
644
645 static int
sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)646 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
647 {
648 struct tcp_function_set fs;
649 struct tcp_function_block *blk;
650 int error;
651
652 memset(&fs, 0, sizeof(struct tcp_function_set));
653 rw_rlock(&tcp_function_lock);
654 blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL);
655 if (blk != NULL) {
656 /* Found him */
657 strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
658 fs.pcbcnt = blk->tfb_refcnt;
659 }
660 rw_runlock(&tcp_function_lock);
661 error = sysctl_handle_string(oidp, fs.function_set_name,
662 sizeof(fs.function_set_name), req);
663
664 /* Check for error or no change */
665 if (error != 0 || req->newptr == NULL)
666 return (error);
667
668 rw_wlock(&tcp_function_lock);
669 blk = find_tcp_functions_locked(&fs);
670 if ((blk == NULL) ||
671 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
672 error = ENOENT;
673 goto done;
674 }
675 if ((blk->tfb_flags & TCP_FUNC_DEFAULT_OK) == 0) {
676 error = EINVAL;
677 goto done;
678 }
679 V_tcp_func_set_ptr = blk;
680 done:
681 rw_wunlock(&tcp_function_lock);
682 return (error);
683 }
684
685 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
686 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
687 NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
688 "Set/get the default TCP functions");
689
690 static int
sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)691 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
692 {
693 int error, cnt, linesz;
694 struct tcp_function *f;
695 char *buffer, *cp;
696 size_t bufsz, outsz;
697 bool alias;
698
699 cnt = 0;
700 rw_rlock(&tcp_function_lock);
701 TAILQ_FOREACH(f, &t_functions, tf_next) {
702 cnt++;
703 }
704 rw_runlock(&tcp_function_lock);
705
706 bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1;
707 buffer = malloc(bufsz, M_TEMP, M_WAITOK);
708
709 error = 0;
710 cp = buffer;
711
712 linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D',
713 "Alias", "PCB count");
714 cp += linesz;
715 bufsz -= linesz;
716 outsz = linesz;
717
718 rw_rlock(&tcp_function_lock);
719 TAILQ_FOREACH(f, &t_functions, tf_next) {
720 alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name);
721 linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n",
722 f->tf_fb->tfb_tcp_block_name,
723 (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ',
724 alias ? f->tf_name : "-",
725 f->tf_fb->tfb_refcnt);
726 if (linesz >= bufsz) {
727 error = EOVERFLOW;
728 break;
729 }
730 cp += linesz;
731 bufsz -= linesz;
732 outsz += linesz;
733 }
734 rw_runlock(&tcp_function_lock);
735 if (error == 0)
736 error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
737 free(buffer, M_TEMP);
738 return (error);
739 }
740
741 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
742 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
743 NULL, 0, sysctl_net_inet_list_available, "A",
744 "list available TCP Function sets");
745
746 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT;
747
748 #ifdef INET
749 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL;
750 #define V_udp4_tun_socket VNET(udp4_tun_socket)
751 #endif
752 #ifdef INET6
753 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL;
754 #define V_udp6_tun_socket VNET(udp6_tun_socket)
755 #endif
756
757 static struct sx tcpoudp_lock;
758
759 static void
tcp_over_udp_stop(void)760 tcp_over_udp_stop(void)
761 {
762
763 sx_assert(&tcpoudp_lock, SA_XLOCKED);
764
765 #ifdef INET
766 if (V_udp4_tun_socket != NULL) {
767 soclose(V_udp4_tun_socket);
768 V_udp4_tun_socket = NULL;
769 }
770 #endif
771 #ifdef INET6
772 if (V_udp6_tun_socket != NULL) {
773 soclose(V_udp6_tun_socket);
774 V_udp6_tun_socket = NULL;
775 }
776 #endif
777 }
778
779 static int
tcp_over_udp_start(void)780 tcp_over_udp_start(void)
781 {
782 uint16_t port;
783 int ret;
784 #ifdef INET
785 struct sockaddr_in sin;
786 #endif
787 #ifdef INET6
788 struct sockaddr_in6 sin6;
789 #endif
790
791 sx_assert(&tcpoudp_lock, SA_XLOCKED);
792
793 port = V_tcp_udp_tunneling_port;
794 if (ntohs(port) == 0) {
795 /* Must have a port set */
796 return (EINVAL);
797 }
798 #ifdef INET
799 if (V_udp4_tun_socket != NULL) {
800 /* Already running -- must stop first */
801 return (EALREADY);
802 }
803 #endif
804 #ifdef INET6
805 if (V_udp6_tun_socket != NULL) {
806 /* Already running -- must stop first */
807 return (EALREADY);
808 }
809 #endif
810 #ifdef INET
811 if ((ret = socreate(PF_INET, &V_udp4_tun_socket,
812 SOCK_DGRAM, IPPROTO_UDP,
813 curthread->td_ucred, curthread))) {
814 tcp_over_udp_stop();
815 return (ret);
816 }
817 /* Call the special UDP hook. */
818 if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket,
819 tcp_recv_udp_tunneled_packet,
820 tcp_ctlinput_viaudp,
821 NULL))) {
822 tcp_over_udp_stop();
823 return (ret);
824 }
825 /* Ok, we have a socket, bind it to the port. */
826 memset(&sin, 0, sizeof(struct sockaddr_in));
827 sin.sin_len = sizeof(struct sockaddr_in);
828 sin.sin_family = AF_INET;
829 sin.sin_port = htons(port);
830 if ((ret = sobind(V_udp4_tun_socket,
831 (struct sockaddr *)&sin, curthread))) {
832 tcp_over_udp_stop();
833 return (ret);
834 }
835 #endif
836 #ifdef INET6
837 if ((ret = socreate(PF_INET6, &V_udp6_tun_socket,
838 SOCK_DGRAM, IPPROTO_UDP,
839 curthread->td_ucred, curthread))) {
840 tcp_over_udp_stop();
841 return (ret);
842 }
843 /* Call the special UDP hook. */
844 if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket,
845 tcp_recv_udp_tunneled_packet,
846 tcp6_ctlinput_viaudp,
847 NULL))) {
848 tcp_over_udp_stop();
849 return (ret);
850 }
851 /* Ok, we have a socket, bind it to the port. */
852 memset(&sin6, 0, sizeof(struct sockaddr_in6));
853 sin6.sin6_len = sizeof(struct sockaddr_in6);
854 sin6.sin6_family = AF_INET6;
855 sin6.sin6_port = htons(port);
856 if ((ret = sobind(V_udp6_tun_socket,
857 (struct sockaddr *)&sin6, curthread))) {
858 tcp_over_udp_stop();
859 return (ret);
860 }
861 #endif
862 return (0);
863 }
864
865 static int
sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)866 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS)
867 {
868 int error;
869 uint32_t old, new;
870
871 old = V_tcp_udp_tunneling_port;
872 new = old;
873 error = sysctl_handle_int(oidp, &new, 0, req);
874 if ((error == 0) &&
875 (req->newptr != NULL)) {
876 if ((new < TCP_TUNNELING_PORT_MIN) ||
877 (new > TCP_TUNNELING_PORT_MAX)) {
878 error = EINVAL;
879 } else {
880 sx_xlock(&tcpoudp_lock);
881 V_tcp_udp_tunneling_port = new;
882 if (old != 0) {
883 tcp_over_udp_stop();
884 }
885 if (new != 0) {
886 error = tcp_over_udp_start();
887 if (error != 0) {
888 V_tcp_udp_tunneling_port = 0;
889 }
890 }
891 sx_xunlock(&tcpoudp_lock);
892 }
893 }
894 return (error);
895 }
896
897 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port,
898 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
899 &VNET_NAME(tcp_udp_tunneling_port),
900 0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU",
901 "Tunneling port for tcp over udp");
902
903 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT;
904
905 static int
sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)906 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS)
907 {
908 int error, new;
909
910 new = V_tcp_udp_tunneling_overhead;
911 error = sysctl_handle_int(oidp, &new, 0, req);
912 if (error == 0 && req->newptr) {
913 if ((new < TCP_TUNNELING_OVERHEAD_MIN) ||
914 (new > TCP_TUNNELING_OVERHEAD_MAX))
915 error = EINVAL;
916 else
917 V_tcp_udp_tunneling_overhead = new;
918 }
919 return (error);
920 }
921
922 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead,
923 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
924 &VNET_NAME(tcp_udp_tunneling_overhead),
925 0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU",
926 "MSS reduction when using tcp over udp");
927
928 /*
929 * Exports one (struct tcp_function_info) for each alias/name.
930 */
931 static int
sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)932 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS)
933 {
934 int cnt, error;
935 struct tcp_function *f;
936 struct tcp_function_info tfi;
937
938 /*
939 * We don't allow writes.
940 */
941 if (req->newptr != NULL)
942 return (EINVAL);
943
944 /*
945 * Wire the old buffer so we can directly copy the functions to
946 * user space without dropping the lock.
947 */
948 if (req->oldptr != NULL) {
949 error = sysctl_wire_old_buffer(req, 0);
950 if (error)
951 return (error);
952 }
953
954 /*
955 * Walk the list and copy out matching entries. If INVARIANTS
956 * is compiled in, also walk the list to verify the length of
957 * the list matches what we have recorded.
958 */
959 rw_rlock(&tcp_function_lock);
960
961 cnt = 0;
962 #ifndef INVARIANTS
963 if (req->oldptr == NULL) {
964 cnt = tcp_fb_cnt;
965 goto skip_loop;
966 }
967 #endif
968 TAILQ_FOREACH(f, &t_functions, tf_next) {
969 #ifdef INVARIANTS
970 cnt++;
971 #endif
972 if (req->oldptr != NULL) {
973 bzero(&tfi, sizeof(tfi));
974 tfi.tfi_refcnt = f->tf_fb->tfb_refcnt;
975 tfi.tfi_id = f->tf_fb->tfb_id;
976 (void)strlcpy(tfi.tfi_alias, f->tf_name,
977 sizeof(tfi.tfi_alias));
978 (void)strlcpy(tfi.tfi_name,
979 f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name));
980 error = SYSCTL_OUT(req, &tfi, sizeof(tfi));
981 /*
982 * Don't stop on error, as that is the
983 * mechanism we use to accumulate length
984 * information if the buffer was too short.
985 */
986 }
987 }
988 KASSERT(cnt == tcp_fb_cnt,
989 ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt));
990 #ifndef INVARIANTS
991 skip_loop:
992 #endif
993 rw_runlock(&tcp_function_lock);
994 if (req->oldptr == NULL)
995 error = SYSCTL_OUT(req, NULL,
996 (cnt + 1) * sizeof(struct tcp_function_info));
997
998 return (error);
999 }
1000
1001 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info,
1002 CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE,
1003 NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info",
1004 "List TCP function block name-to-ID mappings");
1005
1006 /*
1007 * tfb_tcp_handoff_ok() function for the default stack.
1008 * Note that we'll basically try to take all comers.
1009 */
1010 static int
tcp_default_handoff_ok(struct tcpcb * tp)1011 tcp_default_handoff_ok(struct tcpcb *tp)
1012 {
1013
1014 return (0);
1015 }
1016
1017 /*
1018 * tfb_tcp_fb_init() function for the default stack.
1019 *
1020 * This handles making sure we have appropriate timers set if you are
1021 * transitioning a socket that has some amount of setup done.
1022 *
1023 * The init() fuction from the default can *never* return non-zero i.e.
1024 * it is required to always succeed since it is the stack of last resort!
1025 */
1026 static int
tcp_default_fb_init(struct tcpcb * tp,void ** ptr)1027 tcp_default_fb_init(struct tcpcb *tp, void **ptr)
1028 {
1029 struct socket *so = tptosocket(tp);
1030 int rexmt;
1031
1032 INP_WLOCK_ASSERT(tptoinpcb(tp));
1033 /* We don't use the pointer */
1034 *ptr = NULL;
1035
1036 /* Make sure we get no interesting mbuf queuing behavior */
1037 /* All mbuf queue/ack compress flags should be off */
1038 tcp_lro_features_off(tp);
1039
1040 /* Cancel the GP measurement in progress */
1041 tp->t_flags &= ~TF_GPUTINPROG;
1042 /* Validate the timers are not in usec, if they are convert */
1043 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
1044 if ((tp->t_state == TCPS_SYN_SENT) ||
1045 (tp->t_state == TCPS_SYN_RECEIVED))
1046 rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift];
1047 else
1048 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
1049 if (tp->t_rxtshift == 0)
1050 tp->t_rxtcur = rexmt;
1051 else
1052 TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin,
1053 tcp_rexmit_max);
1054
1055 /*
1056 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't
1057 * know what to do for unexpected states (which includes TIME_WAIT).
1058 */
1059 if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT)
1060 return (0);
1061
1062 /*
1063 * Make sure some kind of transmission timer is set if there is
1064 * outstanding data.
1065 */
1066 if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) ||
1067 tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) ||
1068 tcp_timer_active(tp, TT_PERSIST))) {
1069 /*
1070 * If the session has established and it looks like it should
1071 * be in the persist state, set the persist timer. Otherwise,
1072 * set the retransmit timer.
1073 */
1074 if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 &&
1075 (int32_t)(tp->snd_nxt - tp->snd_una) <
1076 (int32_t)sbavail(&so->so_snd))
1077 tcp_setpersist(tp);
1078 else
1079 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
1080 }
1081
1082 /* All non-embryonic sessions get a keepalive timer. */
1083 if (!tcp_timer_active(tp, TT_KEEP))
1084 tcp_timer_activate(tp, TT_KEEP,
1085 TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) :
1086 TP_KEEPINIT(tp));
1087
1088 /*
1089 * Make sure critical variables are initialized
1090 * if transitioning while in Recovery.
1091 */
1092 if IN_FASTRECOVERY(tp->t_flags) {
1093 if (tp->sackhint.recover_fs == 0)
1094 tp->sackhint.recover_fs = max(1,
1095 tp->snd_nxt - tp->snd_una);
1096 }
1097
1098 return (0);
1099 }
1100
1101 /*
1102 * tfb_tcp_fb_fini() function for the default stack.
1103 *
1104 * This changes state as necessary (or prudent) to prepare for another stack
1105 * to assume responsibility for the connection.
1106 */
1107 static void
tcp_default_fb_fini(struct tcpcb * tp,int tcb_is_purged)1108 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged)
1109 {
1110
1111 INP_WLOCK_ASSERT(tptoinpcb(tp));
1112
1113 #ifdef TCP_BLACKBOX
1114 tcp_log_flowend(tp);
1115 #endif
1116 tp->t_acktime = 0;
1117 return;
1118 }
1119
1120 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
1121 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
1122
1123 static struct mtx isn_mtx;
1124
1125 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
1126 #define ISN_LOCK() mtx_lock(&isn_mtx)
1127 #define ISN_UNLOCK() mtx_unlock(&isn_mtx)
1128
1129 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash");
1130
1131 /*
1132 * Take a value and get the next power of 2 that doesn't overflow.
1133 * Used to size the tcp_inpcb hash buckets.
1134 */
1135 static int
maketcp_hashsize(int size)1136 maketcp_hashsize(int size)
1137 {
1138 int hashsize;
1139
1140 /*
1141 * auto tune.
1142 * get the next power of 2 higher than maxsockets.
1143 */
1144 hashsize = 1 << fls(size);
1145 /* catch overflow, and just go one power of 2 smaller */
1146 if (hashsize < size) {
1147 hashsize = 1 << (fls(size) - 1);
1148 }
1149 return (hashsize);
1150 }
1151
1152 static volatile int next_tcp_stack_id = 1;
1153
1154 /*
1155 * Register a TCP function block with the name provided in the names
1156 * array. (Note that this function does NOT automatically register
1157 * blk->tfb_tcp_block_name as a stack name. Therefore, you should
1158 * explicitly include blk->tfb_tcp_block_name in the list of names if
1159 * you wish to register the stack with that name.)
1160 *
1161 * Either all name registrations will succeed or all will fail. If
1162 * a name registration fails, the function will update the num_names
1163 * argument to point to the array index of the name that encountered
1164 * the failure.
1165 *
1166 * Returns 0 on success, or an error code on failure.
1167 */
1168 int
register_tcp_functions_as_names(struct tcp_function_block * blk,int wait,const char * names[],int * num_names)1169 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait,
1170 const char *names[], int *num_names)
1171 {
1172 struct tcp_function *f[TCP_FUNCTION_NAME_NUM_MAX];
1173 struct tcp_function_set fs;
1174 int error, i, num_registered;
1175
1176 KASSERT(names != NULL, ("%s: Called with NULL name list", __func__));
1177 KASSERT(*num_names > 0,
1178 ("%s: Called with non-positive length of name list", __func__));
1179 KASSERT(rw_initialized(&tcp_function_lock),
1180 ("%s: called too early", __func__));
1181
1182 if (*num_names > TCP_FUNCTION_NAME_NUM_MAX) {
1183 /* Too many names. */
1184 *num_names = 0;
1185 return (E2BIG);
1186 }
1187 if ((blk->tfb_tcp_output == NULL) ||
1188 (blk->tfb_tcp_do_segment == NULL) ||
1189 (blk->tfb_tcp_ctloutput == NULL) ||
1190 (blk->tfb_tcp_handoff_ok == NULL) ||
1191 (strlen(blk->tfb_tcp_block_name) == 0)) {
1192 /* These functions are required and a name is needed. */
1193 *num_names = 0;
1194 return (EINVAL);
1195 }
1196
1197 for (i = 0; i < *num_names; i++) {
1198 f[i] = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
1199 if (f[i] == NULL) {
1200 while (--i >= 0)
1201 free(f[i], M_TCPFUNCTIONS);
1202 *num_names = 0;
1203 return (ENOMEM);
1204 }
1205 }
1206
1207 num_registered = 0;
1208 rw_wlock(&tcp_function_lock);
1209 if (find_tcp_fb_locked(blk, NULL) != NULL) {
1210 /* A TCP function block can only be registered once. */
1211 error = EALREADY;
1212 goto cleanup;
1213 }
1214 if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) {
1215 error = EINVAL;
1216 goto cleanup;
1217 }
1218 refcount_init(&blk->tfb_refcnt, 0);
1219 blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1);
1220 for (i = 0; i < *num_names; i++) {
1221 (void)strlcpy(fs.function_set_name, names[i],
1222 sizeof(fs.function_set_name));
1223 if (find_tcp_functions_locked(&fs) != NULL) {
1224 /* Duplicate name space not allowed */
1225 error = EALREADY;
1226 goto cleanup;
1227 }
1228 f[i]->tf_fb = blk;
1229 (void)strlcpy(f[i]->tf_name, names[i], sizeof(f[i]->tf_name));
1230 TAILQ_INSERT_TAIL(&t_functions, f[i], tf_next);
1231 tcp_fb_cnt++;
1232 num_registered++;
1233 }
1234 rw_wunlock(&tcp_function_lock);
1235 return (0);
1236
1237 cleanup:
1238 /* Remove the entries just added. */
1239 for (i = 0; i < *num_names; i++) {
1240 if (i < num_registered) {
1241 TAILQ_REMOVE(&t_functions, f[i], tf_next);
1242 tcp_fb_cnt--;
1243 }
1244 f[i]->tf_fb = NULL;
1245 free(f[i], M_TCPFUNCTIONS);
1246 }
1247 rw_wunlock(&tcp_function_lock);
1248 *num_names = num_registered;
1249 return (error);
1250 }
1251
1252 /*
1253 * Register a TCP function block using the name provided in the name
1254 * argument.
1255 *
1256 * Returns 0 on success, or an error code on failure.
1257 */
1258 int
register_tcp_functions_as_name(struct tcp_function_block * blk,const char * name,int wait)1259 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name,
1260 int wait)
1261 {
1262 const char *name_list[1];
1263 int num_names, rv;
1264
1265 num_names = 1;
1266 if (name != NULL)
1267 name_list[0] = name;
1268 else
1269 name_list[0] = blk->tfb_tcp_block_name;
1270 rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names);
1271 return (rv);
1272 }
1273
1274 /*
1275 * Register a TCP function block using the name defined in
1276 * blk->tfb_tcp_block_name.
1277 *
1278 * Returns 0 on success, or an error code on failure.
1279 */
1280 int
register_tcp_functions(struct tcp_function_block * blk,int wait)1281 register_tcp_functions(struct tcp_function_block *blk, int wait)
1282 {
1283
1284 return (register_tcp_functions_as_name(blk, NULL, wait));
1285 }
1286
1287 /*
1288 * Deregister all names associated with a function block. This
1289 * functionally removes the function block from use within the system.
1290 *
1291 * When called with a true quiesce argument, mark the function block
1292 * as being removed so no more stacks will use it and determine
1293 * whether the removal would succeed.
1294 *
1295 * When called with a false quiesce argument, actually attempt the
1296 * removal.
1297 *
1298 * When called with a force argument, attempt to switch all TCBs to
1299 * use the default stack instead of returning EBUSY.
1300 *
1301 * Returns 0 on success (or if the removal would succeed), or an error
1302 * code on failure.
1303 */
1304 int
deregister_tcp_functions(struct tcp_function_block * blk,bool quiesce,bool force)1305 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce,
1306 bool force)
1307 {
1308 struct tcp_function *f;
1309 VNET_ITERATOR_DECL(vnet_iter);
1310
1311 if (blk == &tcp_def_funcblk) {
1312 /* You can't un-register the default */
1313 return (EPERM);
1314 }
1315 rw_wlock(&tcp_function_lock);
1316 VNET_LIST_RLOCK_NOSLEEP();
1317 VNET_FOREACH(vnet_iter) {
1318 CURVNET_SET(vnet_iter);
1319 if (blk == V_tcp_func_set_ptr) {
1320 /* You can't free the current default in some vnet. */
1321 CURVNET_RESTORE();
1322 VNET_LIST_RUNLOCK_NOSLEEP();
1323 rw_wunlock(&tcp_function_lock);
1324 return (EBUSY);
1325 }
1326 CURVNET_RESTORE();
1327 }
1328 VNET_LIST_RUNLOCK_NOSLEEP();
1329 /* Mark the block so no more stacks can use it. */
1330 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
1331 /*
1332 * If TCBs are still attached to the stack, attempt to switch them
1333 * to the default stack.
1334 */
1335 if (force && blk->tfb_refcnt) {
1336 struct inpcb *inp;
1337 struct tcpcb *tp;
1338 VNET_ITERATOR_DECL(vnet_iter);
1339
1340 rw_wunlock(&tcp_function_lock);
1341
1342 VNET_LIST_RLOCK();
1343 VNET_FOREACH(vnet_iter) {
1344 CURVNET_SET(vnet_iter);
1345 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
1346 INPLOOKUP_WLOCKPCB);
1347
1348 while ((inp = inp_next(&inpi)) != NULL) {
1349 tp = intotcpcb(inp);
1350 if (tp == NULL || tp->t_fb != blk)
1351 continue;
1352 tcp_switch_back_to_default(tp);
1353 }
1354 CURVNET_RESTORE();
1355 }
1356 VNET_LIST_RUNLOCK();
1357
1358 rw_wlock(&tcp_function_lock);
1359 }
1360 if (blk->tfb_refcnt) {
1361 /* TCBs still attached. */
1362 rw_wunlock(&tcp_function_lock);
1363 return (EBUSY);
1364 }
1365 if (quiesce) {
1366 /* Skip removal. */
1367 rw_wunlock(&tcp_function_lock);
1368 return (0);
1369 }
1370 /* Remove any function names that map to this function block. */
1371 while (find_tcp_fb_locked(blk, &f) != NULL) {
1372 TAILQ_REMOVE(&t_functions, f, tf_next);
1373 tcp_fb_cnt--;
1374 f->tf_fb = NULL;
1375 free(f, M_TCPFUNCTIONS);
1376 }
1377 rw_wunlock(&tcp_function_lock);
1378 return (0);
1379 }
1380
1381 static void
tcp_drain(void * ctx __unused,int flags __unused)1382 tcp_drain(void *ctx __unused, int flags __unused)
1383 {
1384 struct epoch_tracker et;
1385 VNET_ITERATOR_DECL(vnet_iter);
1386
1387 if (!do_tcpdrain)
1388 return;
1389
1390 NET_EPOCH_ENTER(et);
1391 VNET_LIST_RLOCK_NOSLEEP();
1392 VNET_FOREACH(vnet_iter) {
1393 CURVNET_SET(vnet_iter);
1394 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
1395 INPLOOKUP_WLOCKPCB);
1396 struct inpcb *inpb;
1397 struct tcpcb *tcpb;
1398
1399 /*
1400 * Walk the tcpbs, if existing, and flush the reassembly queue,
1401 * if there is one...
1402 * XXX: The "Net/3" implementation doesn't imply that the TCP
1403 * reassembly queue should be flushed, but in a situation
1404 * where we're really low on mbufs, this is potentially
1405 * useful.
1406 */
1407 while ((inpb = inp_next(&inpi)) != NULL) {
1408 if ((tcpb = intotcpcb(inpb)) != NULL) {
1409 tcp_reass_flush(tcpb);
1410 tcp_clean_sackreport(tcpb);
1411 #ifdef TCP_BLACKBOX
1412 tcp_log_drain(tcpb);
1413 #endif
1414 }
1415 }
1416 CURVNET_RESTORE();
1417 }
1418 VNET_LIST_RUNLOCK_NOSLEEP();
1419 NET_EPOCH_EXIT(et);
1420 }
1421
1422 static void
tcp_vnet_init(void * arg __unused)1423 tcp_vnet_init(void *arg __unused)
1424 {
1425
1426 #ifdef TCP_HHOOK
1427 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
1428 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1429 printf("%s: WARNING: unable to register helper hook\n", __func__);
1430 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
1431 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
1432 printf("%s: WARNING: unable to register helper hook\n", __func__);
1433 #endif
1434 #ifdef STATS
1435 if (tcp_stats_init())
1436 printf("%s: WARNING: unable to initialise TCP stats\n",
1437 __func__);
1438 #endif
1439 in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize,
1440 tcp_tcbhashsize);
1441
1442 syncache_init();
1443 tcp_hc_init();
1444
1445 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
1446 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
1447 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1448
1449 tcp_fastopen_init();
1450
1451 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
1452 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
1453
1454 V_tcp_msl = TCPTV_MSL;
1455 V_tcp_msl_local = TCPTV_MSL_LOCAL;
1456 arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0);
1457 }
1458 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH,
1459 tcp_vnet_init, NULL);
1460
1461 static void
tcp_init(void * arg __unused)1462 tcp_init(void *arg __unused)
1463 {
1464 int hashsize;
1465
1466 tcp_reass_global_init();
1467
1468 /* XXX virtualize those below? */
1469 tcp_delacktime = TCPTV_DELACK;
1470 tcp_keepinit = TCPTV_KEEP_INIT;
1471 tcp_keepidle = TCPTV_KEEP_IDLE;
1472 tcp_keepintvl = TCPTV_KEEPINTVL;
1473 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
1474 tcp_rexmit_initial = TCPTV_RTOBASE;
1475 tcp_rexmit_min = TCPTV_MIN;
1476 tcp_rexmit_max = TCPTV_REXMTMAX;
1477 tcp_persmin = TCPTV_PERSMIN;
1478 tcp_persmax = TCPTV_PERSMAX;
1479 tcp_rexmit_slop = TCPTV_CPU_VAR;
1480 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
1481
1482 /* Setup the tcp function block list */
1483 TAILQ_INIT(&t_functions);
1484 rw_init(&tcp_function_lock, "tcp_func_lock");
1485 register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
1486 sx_init(&tcpoudp_lock, "TCP over UDP configuration");
1487 #ifdef TCP_BLACKBOX
1488 /* Initialize the TCP logging data. */
1489 tcp_log_init();
1490 #endif
1491
1492 if (tcp_soreceive_stream) {
1493 #ifdef INET
1494 tcp_protosw.pr_soreceive = soreceive_stream;
1495 #endif
1496 #ifdef INET6
1497 tcp6_protosw.pr_soreceive = soreceive_stream;
1498 #endif /* INET6 */
1499 }
1500
1501 #ifdef INET6
1502 max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1503 #else /* INET6 */
1504 max_protohdr_grow(sizeof(struct tcpiphdr));
1505 #endif /* INET6 */
1506
1507 ISN_LOCK_INIT();
1508 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
1509 SHUTDOWN_PRI_DEFAULT);
1510 EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
1511 EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT);
1512
1513 tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK);
1514 tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK);
1515 tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK);
1516 tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK);
1517 tcp_extra_mbuf = counter_u64_alloc(M_WAITOK);
1518 tcp_would_have_but = counter_u64_alloc(M_WAITOK);
1519 tcp_comp_total = counter_u64_alloc(M_WAITOK);
1520 tcp_uncomp_total = counter_u64_alloc(M_WAITOK);
1521 tcp_bad_csums = counter_u64_alloc(M_WAITOK);
1522 tcp_pacing_failures = counter_u64_alloc(M_WAITOK);
1523 tcp_dgp_failures = counter_u64_alloc(M_WAITOK);
1524
1525 hashsize = tcp_tcbhashsize;
1526 if (hashsize == 0) {
1527 /*
1528 * Auto tune the hash size based on maxsockets.
1529 * A perfect hash would have a 1:1 mapping
1530 * (hashsize = maxsockets) however it's been
1531 * suggested that O(2) average is better.
1532 */
1533 hashsize = maketcp_hashsize(maxsockets / 4);
1534 /*
1535 * Our historical default is 512,
1536 * do not autotune lower than this.
1537 */
1538 if (hashsize < 512)
1539 hashsize = 512;
1540 if (bootverbose)
1541 printf("%s: %s auto tuned to %d\n", __func__,
1542 "net.inet.tcp.tcbhashsize", hashsize);
1543 }
1544 /*
1545 * We require a hashsize to be a power of two.
1546 * Previously if it was not a power of two we would just reset it
1547 * back to 512, which could be a nasty surprise if you did not notice
1548 * the error message.
1549 * Instead what we do is clip it to the closest power of two lower
1550 * than the specified hash value.
1551 */
1552 if (!powerof2(hashsize)) {
1553 int oldhashsize = hashsize;
1554
1555 hashsize = maketcp_hashsize(hashsize);
1556 /* prevent absurdly low value */
1557 if (hashsize < 16)
1558 hashsize = 16;
1559 printf("%s: WARNING: TCB hash size not a power of 2, "
1560 "clipped from %d to %d.\n", __func__, oldhashsize,
1561 hashsize);
1562 }
1563 tcp_tcbhashsize = hashsize;
1564
1565 #ifdef INET
1566 IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput);
1567 #endif
1568 #ifdef INET6
1569 IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput);
1570 #endif
1571 }
1572 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL);
1573
1574 #ifdef VIMAGE
1575 static void
tcp_destroy(void * unused __unused)1576 tcp_destroy(void *unused __unused)
1577 {
1578 #ifdef TCP_HHOOK
1579 int error;
1580 #endif
1581
1582 tcp_hc_destroy();
1583 syncache_destroy();
1584 in_pcbinfo_destroy(&V_tcbinfo);
1585 /* tcp_discardcb() clears the sack_holes up. */
1586 uma_zdestroy(V_sack_hole_zone);
1587
1588 /*
1589 * Cannot free the zone until all tcpcbs are released as we attach
1590 * the allocations to them.
1591 */
1592 tcp_fastopen_destroy();
1593
1594 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
1595 VNET_PCPUSTAT_FREE(tcpstat);
1596
1597 #ifdef TCP_HHOOK
1598 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
1599 if (error != 0) {
1600 printf("%s: WARNING: unable to deregister helper hook "
1601 "type=%d, id=%d: error %d returned\n", __func__,
1602 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
1603 }
1604 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
1605 if (error != 0) {
1606 printf("%s: WARNING: unable to deregister helper hook "
1607 "type=%d, id=%d: error %d returned\n", __func__,
1608 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
1609 }
1610 #endif
1611 }
1612 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
1613 #endif
1614
1615 void
tcp_fini(void * xtp)1616 tcp_fini(void *xtp)
1617 {
1618
1619 }
1620
1621 /*
1622 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
1623 * tcp_template used to store this data in mbufs, but we now recopy it out
1624 * of the tcpcb each time to conserve mbufs.
1625 */
1626 void
tcpip_fillheaders(struct inpcb * inp,uint16_t port,void * ip_ptr,void * tcp_ptr)1627 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr)
1628 {
1629 struct tcphdr *th = (struct tcphdr *)tcp_ptr;
1630
1631 INP_WLOCK_ASSERT(inp);
1632
1633 #ifdef INET6
1634 if ((inp->inp_vflag & INP_IPV6) != 0) {
1635 struct ip6_hdr *ip6;
1636
1637 ip6 = (struct ip6_hdr *)ip_ptr;
1638 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
1639 (inp->inp_flow & IPV6_FLOWINFO_MASK);
1640 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
1641 (IPV6_VERSION & IPV6_VERSION_MASK);
1642 if (port == 0)
1643 ip6->ip6_nxt = IPPROTO_TCP;
1644 else
1645 ip6->ip6_nxt = IPPROTO_UDP;
1646 ip6->ip6_plen = htons(sizeof(struct tcphdr));
1647 ip6->ip6_src = inp->in6p_laddr;
1648 ip6->ip6_dst = inp->in6p_faddr;
1649 }
1650 #endif /* INET6 */
1651 #if defined(INET6) && defined(INET)
1652 else
1653 #endif
1654 #ifdef INET
1655 {
1656 struct ip *ip;
1657
1658 ip = (struct ip *)ip_ptr;
1659 ip->ip_v = IPVERSION;
1660 ip->ip_hl = 5;
1661 ip->ip_tos = inp->inp_ip_tos;
1662 ip->ip_len = 0;
1663 ip->ip_id = 0;
1664 ip->ip_off = 0;
1665 ip->ip_ttl = inp->inp_ip_ttl;
1666 ip->ip_sum = 0;
1667 if (port == 0)
1668 ip->ip_p = IPPROTO_TCP;
1669 else
1670 ip->ip_p = IPPROTO_UDP;
1671 ip->ip_src = inp->inp_laddr;
1672 ip->ip_dst = inp->inp_faddr;
1673 }
1674 #endif /* INET */
1675 th->th_sport = inp->inp_lport;
1676 th->th_dport = inp->inp_fport;
1677 th->th_seq = 0;
1678 th->th_ack = 0;
1679 th->th_off = 5;
1680 tcp_set_flags(th, 0);
1681 th->th_win = 0;
1682 th->th_urp = 0;
1683 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */
1684 }
1685
1686 /*
1687 * Create template to be used to send tcp packets on a connection.
1688 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
1689 * use for this function is in keepalives, which use tcp_respond.
1690 */
1691 struct tcptemp *
tcpip_maketemplate(struct inpcb * inp)1692 tcpip_maketemplate(struct inpcb *inp)
1693 {
1694 struct tcptemp *t;
1695
1696 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
1697 if (t == NULL)
1698 return (NULL);
1699 tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t);
1700 return (t);
1701 }
1702
1703 /*
1704 * Send a single message to the TCP at address specified by
1705 * the given TCP/IP header. If m == NULL, then we make a copy
1706 * of the tcpiphdr at th and send directly to the addressed host.
1707 * This is used to force keep alive messages out using the TCP
1708 * template for a connection. If flags are given then we send
1709 * a message back to the TCP which originated the segment th,
1710 * and discard the mbuf containing it and any other attached mbufs.
1711 *
1712 * In any case the ack and sequence number of the transmitted
1713 * segment are as specified by the parameters.
1714 *
1715 * NOTE: If m != NULL, then th must point to *inside* the mbuf.
1716 */
1717
1718 void
tcp_respond(struct tcpcb * tp,void * ipgen,struct tcphdr * th,struct mbuf * m,tcp_seq ack,tcp_seq seq,uint16_t flags)1719 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
1720 tcp_seq ack, tcp_seq seq, uint16_t flags)
1721 {
1722 struct tcpopt to;
1723 struct inpcb *inp;
1724 struct ip *ip;
1725 struct mbuf *optm;
1726 struct udphdr *uh = NULL;
1727 struct tcphdr *nth;
1728 struct tcp_log_buffer *lgb;
1729 u_char *optp;
1730 #ifdef INET6
1731 struct ip6_hdr *ip6;
1732 int isipv6;
1733 #endif /* INET6 */
1734 int optlen, tlen, win, ulen;
1735 int ect = 0;
1736 bool incl_opts;
1737 uint16_t port;
1738 int output_ret;
1739 #ifdef INVARIANTS
1740 int thflags = tcp_get_flags(th);
1741 #endif
1742
1743 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
1744 NET_EPOCH_ASSERT();
1745
1746 #ifdef INET6
1747 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
1748 ip6 = ipgen;
1749 #endif /* INET6 */
1750 ip = ipgen;
1751
1752 if (tp != NULL) {
1753 inp = tptoinpcb(tp);
1754 INP_LOCK_ASSERT(inp);
1755 } else
1756 inp = NULL;
1757
1758 if (m != NULL) {
1759 #ifdef INET6
1760 if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP))
1761 port = m->m_pkthdr.tcp_tun_port;
1762 else
1763 #endif
1764 if (ip && (ip->ip_p == IPPROTO_UDP))
1765 port = m->m_pkthdr.tcp_tun_port;
1766 else
1767 port = 0;
1768 } else
1769 port = tp->t_port;
1770
1771 incl_opts = false;
1772 win = 0;
1773 if (tp != NULL) {
1774 if (!(flags & TH_RST)) {
1775 win = sbspace(&inp->inp_socket->so_rcv);
1776 if (win > TCP_MAXWIN << tp->rcv_scale)
1777 win = TCP_MAXWIN << tp->rcv_scale;
1778 }
1779 if ((tp->t_flags & TF_NOOPT) == 0)
1780 incl_opts = true;
1781 }
1782 if (m == NULL) {
1783 m = m_gethdr(M_NOWAIT, MT_DATA);
1784 if (m == NULL)
1785 return;
1786 m->m_data += max_linkhdr;
1787 #ifdef INET6
1788 if (isipv6) {
1789 bcopy((caddr_t)ip6, mtod(m, caddr_t),
1790 sizeof(struct ip6_hdr));
1791 ip6 = mtod(m, struct ip6_hdr *);
1792 nth = (struct tcphdr *)(ip6 + 1);
1793 if (port) {
1794 /* Insert a UDP header */
1795 uh = (struct udphdr *)nth;
1796 uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1797 uh->uh_dport = port;
1798 nth = (struct tcphdr *)(uh + 1);
1799 }
1800 } else
1801 #endif /* INET6 */
1802 {
1803 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1804 ip = mtod(m, struct ip *);
1805 nth = (struct tcphdr *)(ip + 1);
1806 if (port) {
1807 /* Insert a UDP header */
1808 uh = (struct udphdr *)nth;
1809 uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1810 uh->uh_dport = port;
1811 nth = (struct tcphdr *)(uh + 1);
1812 }
1813 }
1814 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1815 flags = TH_ACK;
1816 } else if ((!M_WRITABLE(m)) || (port != 0)) {
1817 struct mbuf *n;
1818
1819 /* Can't reuse 'm', allocate a new mbuf. */
1820 n = m_gethdr(M_NOWAIT, MT_DATA);
1821 if (n == NULL) {
1822 m_freem(m);
1823 return;
1824 }
1825
1826 if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
1827 m_freem(m);
1828 m_freem(n);
1829 return;
1830 }
1831
1832 n->m_data += max_linkhdr;
1833 /* m_len is set later */
1834 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
1835 #ifdef INET6
1836 if (isipv6) {
1837 bcopy((caddr_t)ip6, mtod(n, caddr_t),
1838 sizeof(struct ip6_hdr));
1839 ip6 = mtod(n, struct ip6_hdr *);
1840 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1841 nth = (struct tcphdr *)(ip6 + 1);
1842 if (port) {
1843 /* Insert a UDP header */
1844 uh = (struct udphdr *)nth;
1845 uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1846 uh->uh_dport = port;
1847 nth = (struct tcphdr *)(uh + 1);
1848 }
1849 } else
1850 #endif /* INET6 */
1851 {
1852 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
1853 ip = mtod(n, struct ip *);
1854 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1855 nth = (struct tcphdr *)(ip + 1);
1856 if (port) {
1857 /* Insert a UDP header */
1858 uh = (struct udphdr *)nth;
1859 uh->uh_sport = htons(V_tcp_udp_tunneling_port);
1860 uh->uh_dport = port;
1861 nth = (struct tcphdr *)(uh + 1);
1862 }
1863 }
1864 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
1865 xchg(nth->th_dport, nth->th_sport, uint16_t);
1866 th = nth;
1867 m_freem(m);
1868 m = n;
1869 } else {
1870 /*
1871 * reuse the mbuf.
1872 * XXX MRT We inherit the FIB, which is lucky.
1873 */
1874 m_freem(m->m_next);
1875 m->m_next = NULL;
1876 m->m_data = (caddr_t)ipgen;
1877 /* clear any receive flags for proper bpf timestamping */
1878 m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO);
1879 /* m_len is set later */
1880 #ifdef INET6
1881 if (isipv6) {
1882 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
1883 nth = (struct tcphdr *)(ip6 + 1);
1884 } else
1885 #endif /* INET6 */
1886 {
1887 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
1888 nth = (struct tcphdr *)(ip + 1);
1889 }
1890 if (th != nth) {
1891 /*
1892 * this is usually a case when an extension header
1893 * exists between the IPv6 header and the
1894 * TCP header.
1895 */
1896 nth->th_sport = th->th_sport;
1897 nth->th_dport = th->th_dport;
1898 }
1899 xchg(nth->th_dport, nth->th_sport, uint16_t);
1900 #undef xchg
1901 }
1902 tlen = 0;
1903 #ifdef INET6
1904 if (isipv6)
1905 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1906 #endif
1907 #if defined(INET) && defined(INET6)
1908 else
1909 #endif
1910 #ifdef INET
1911 tlen = sizeof (struct tcpiphdr);
1912 #endif
1913 if (port)
1914 tlen += sizeof (struct udphdr);
1915 #ifdef INVARIANTS
1916 m->m_len = 0;
1917 KASSERT(M_TRAILINGSPACE(m) >= tlen,
1918 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1919 m, tlen, (long)M_TRAILINGSPACE(m)));
1920 #endif
1921 m->m_len = tlen;
1922 to.to_flags = 0;
1923 if (incl_opts) {
1924 ect = tcp_ecn_output_established(tp, &flags, 0, false);
1925 /* Make sure we have room. */
1926 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1927 m->m_next = m_get(M_NOWAIT, MT_DATA);
1928 if (m->m_next) {
1929 optp = mtod(m->m_next, u_char *);
1930 optm = m->m_next;
1931 } else
1932 incl_opts = false;
1933 } else {
1934 optp = (u_char *) (nth + 1);
1935 optm = m;
1936 }
1937 }
1938 if (incl_opts) {
1939 /* Timestamps. */
1940 if (tp->t_flags & TF_RCVD_TSTMP) {
1941 to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1942 to.to_tsecr = tp->ts_recent;
1943 to.to_flags |= TOF_TS;
1944 }
1945 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1946 /* TCP-MD5 (RFC2385). */
1947 if (tp->t_flags & TF_SIGNATURE)
1948 to.to_flags |= TOF_SIGNATURE;
1949 #endif
1950 /* Add the options. */
1951 tlen += optlen = tcp_addoptions(&to, optp);
1952
1953 /* Update m_len in the correct mbuf. */
1954 optm->m_len += optlen;
1955 } else
1956 optlen = 0;
1957 #ifdef INET6
1958 if (isipv6) {
1959 if (uh) {
1960 ulen = tlen - sizeof(struct ip6_hdr);
1961 uh->uh_ulen = htons(ulen);
1962 }
1963 ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN);
1964 ip6->ip6_vfc = IPV6_VERSION;
1965 if (port)
1966 ip6->ip6_nxt = IPPROTO_UDP;
1967 else
1968 ip6->ip6_nxt = IPPROTO_TCP;
1969 ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1970 }
1971 #endif
1972 #if defined(INET) && defined(INET6)
1973 else
1974 #endif
1975 #ifdef INET
1976 {
1977 if (uh) {
1978 ulen = tlen - sizeof(struct ip);
1979 uh->uh_ulen = htons(ulen);
1980 }
1981 ip->ip_len = htons(tlen);
1982 if (inp != NULL) {
1983 ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK;
1984 ip->ip_ttl = inp->inp_ip_ttl;
1985 } else {
1986 ip->ip_tos = 0;
1987 ip->ip_ttl = V_ip_defttl;
1988 }
1989 ip->ip_tos |= ect;
1990 if (port) {
1991 ip->ip_p = IPPROTO_UDP;
1992 } else {
1993 ip->ip_p = IPPROTO_TCP;
1994 }
1995 if (V_path_mtu_discovery)
1996 ip->ip_off |= htons(IP_DF);
1997 }
1998 #endif
1999 m->m_pkthdr.len = tlen;
2000 m->m_pkthdr.rcvif = NULL;
2001 #ifdef MAC
2002 if (inp != NULL) {
2003 /*
2004 * Packet is associated with a socket, so allow the
2005 * label of the response to reflect the socket label.
2006 */
2007 INP_LOCK_ASSERT(inp);
2008 mac_inpcb_create_mbuf(inp, m);
2009 } else {
2010 /*
2011 * Packet is not associated with a socket, so possibly
2012 * update the label in place.
2013 */
2014 mac_netinet_tcp_reply(m);
2015 }
2016 #endif
2017 nth->th_seq = htonl(seq);
2018 nth->th_ack = htonl(ack);
2019 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
2020 tcp_set_flags(nth, flags);
2021 if (tp && (flags & TH_RST)) {
2022 /* Log the reset */
2023 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2024 }
2025 if (tp != NULL)
2026 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
2027 else
2028 nth->th_win = htons((u_short)win);
2029 nth->th_urp = 0;
2030
2031 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
2032 if (to.to_flags & TOF_SIGNATURE) {
2033 if (!TCPMD5_ENABLED() ||
2034 TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) {
2035 m_freem(m);
2036 return;
2037 }
2038 }
2039 #endif
2040
2041 #ifdef INET6
2042 if (isipv6) {
2043 if (port) {
2044 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2045 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2046 uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
2047 nth->th_sum = 0;
2048 } else {
2049 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2050 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2051 nth->th_sum = in6_cksum_pseudo(ip6,
2052 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
2053 }
2054 ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2055 }
2056 #endif /* INET6 */
2057 #if defined(INET6) && defined(INET)
2058 else
2059 #endif
2060 #ifdef INET
2061 {
2062 if (port) {
2063 uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2064 htons(ulen + IPPROTO_UDP));
2065 m->m_pkthdr.csum_flags = CSUM_UDP;
2066 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2067 nth->th_sum = 0;
2068 } else {
2069 m->m_pkthdr.csum_flags = CSUM_TCP;
2070 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2071 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2072 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
2073 }
2074 }
2075 #endif /* INET */
2076 TCP_PROBE3(debug__output, tp, th, m);
2077 if (flags & TH_RST)
2078 TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth);
2079 lgb = NULL;
2080 if ((tp != NULL) && tcp_bblogging_on(tp)) {
2081 if (INP_WLOCKED(inp)) {
2082 union tcp_log_stackspecific log;
2083 struct timeval tv;
2084
2085 memset(&log, 0, sizeof(log));
2086 log.u_bbr.inhpts = tcp_in_hpts(tp);
2087 log.u_bbr.flex8 = 4;
2088 log.u_bbr.pkts_out = tp->t_maxseg;
2089 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2090 log.u_bbr.delivered = 0;
2091 lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT,
2092 ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv);
2093 } else {
2094 /*
2095 * We can not log the packet, since we only own the
2096 * read lock, but a write lock is needed. The read lock
2097 * is not upgraded to a write lock, since only getting
2098 * the read lock was done intentionally to improve the
2099 * handling of SYN flooding attacks.
2100 * This happens only for pure SYN segments received in
2101 * the initial CLOSED state, or received in a more
2102 * advanced state than listen and the UDP encapsulation
2103 * port is unexpected.
2104 * The incoming SYN segments do not really belong to
2105 * the TCP connection and the handling does not change
2106 * the state of the TCP connection. Therefore, the
2107 * sending of the RST segments is not logged. Please
2108 * note that also the incoming SYN segments are not
2109 * logged.
2110 *
2111 * The following code ensures that the above description
2112 * is and stays correct.
2113 */
2114 KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN &&
2115 (tp->t_state == TCPS_CLOSED ||
2116 (tp->t_state > TCPS_LISTEN && tp->t_port != port)),
2117 ("%s: Logging of TCP segment with flags 0x%b and "
2118 "UDP encapsulation port %u skipped in state %s",
2119 __func__, thflags, PRINT_TH_FLAGS,
2120 ntohs(port), tcpstates[tp->t_state]));
2121 }
2122 }
2123
2124 if (flags & TH_ACK)
2125 TCPSTAT_INC(tcps_sndacks);
2126 else if (flags & (TH_SYN|TH_FIN|TH_RST))
2127 TCPSTAT_INC(tcps_sndctrl);
2128 TCPSTAT_INC(tcps_sndtotal);
2129
2130 #ifdef INET6
2131 if (isipv6) {
2132 TCP_PROBE5(send, NULL, tp, ip6, tp, nth);
2133 output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL,
2134 NULL, 0, NULL, NULL, inp);
2135 }
2136 #endif /* INET6 */
2137 #if defined(INET) && defined(INET6)
2138 else
2139 #endif
2140 #ifdef INET
2141 {
2142 TCP_PROBE5(send, NULL, tp, ip, tp, nth);
2143 output_ret = ip_output(m, NULL, NULL, 0, NULL, inp);
2144 }
2145 #endif
2146 if (lgb != NULL)
2147 lgb->tlb_errno = output_ret;
2148 }
2149
2150 /*
2151 * Check that no more than V_tcp_ack_war_cnt per V_tcp_ack_war_time_window
2152 * are sent. *epoch_end is the end of the current epoch and is updated, if the
2153 * current epoch ended in the past. *ack_cnt is the counter used during the
2154 * current epoch. It might be reset and incremented.
2155 * The function returns true if a challenge ACK should be sent.
2156 */
2157 bool
tcp_challenge_ack_check(sbintime_t * epoch_end,uint32_t * ack_cnt)2158 tcp_challenge_ack_check(sbintime_t *epoch_end, uint32_t *ack_cnt)
2159 {
2160 sbintime_t now;
2161
2162 /*
2163 * The sending of a challenge ACK could be triggered by a blind attacker
2164 * to detect an existing TCP connection. To mitigate that, increment
2165 * also the global counter which would be incremented if the attacker
2166 * would have guessed wrongly.
2167 */
2168 (void)badport_bandlim(BANDLIM_TCP_RST);
2169
2170 if (V_tcp_ack_war_time_window == 0 || V_tcp_ack_war_cnt == 0) {
2171 /* ACK war protection is disabled. */
2172 return (true);
2173 } else {
2174 /* Start new epoch, if the previous one is already over. */
2175 now = getsbinuptime();
2176 if (*epoch_end < now) {
2177 *ack_cnt = 0;
2178 *epoch_end = now + V_tcp_ack_war_time_window * SBT_1MS;
2179 }
2180 /*
2181 * Send a challenge ACK, if less than tcp_ack_war_cnt have been
2182 * sent in the current epoch.
2183 */
2184 if (*ack_cnt < V_tcp_ack_war_cnt) {
2185 (*ack_cnt)++;
2186 return (true);
2187 } else {
2188 return (false);
2189 }
2190 }
2191 }
2192
2193 /*
2194 * Send a challenge ack (no data, no SACK option), but not more than
2195 * V_tcp_ack_war_cnt per V_tcp_ack_war_time_window (per TCP connection).
2196 */
2197 void
tcp_send_challenge_ack(struct tcpcb * tp,struct tcphdr * th,struct mbuf * m)2198 tcp_send_challenge_ack(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m)
2199 {
2200 if (tcp_challenge_ack_check(&tp->t_challenge_ack_end,
2201 &tp->t_challenge_ack_cnt)) {
2202 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2203 tp->snd_nxt, TH_ACK);
2204 tp->last_ack_sent = tp->rcv_nxt;
2205 }
2206 }
2207
2208 /*
2209 * Create a new TCP control block, making an empty reassembly queue and hooking
2210 * it to the argument protocol control block. The `inp' parameter must have
2211 * come from the zone allocator set up by tcpcbstor declaration.
2212 * The caller can provide a pointer to a tcpcb of the listener to inherit the
2213 * TCP function block from the listener.
2214 */
2215 struct tcpcb *
tcp_newtcpcb(struct inpcb * inp,struct tcpcb * listening_tcb)2216 tcp_newtcpcb(struct inpcb *inp, struct tcpcb *listening_tcb)
2217 {
2218 struct tcpcb *tp = intotcpcb(inp);
2219 #ifdef INET6
2220 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2221 #endif /* INET6 */
2222
2223 /*
2224 * Historically allocation was done with M_ZERO. There is a lot of
2225 * code that rely on that. For now take safe approach and zero whole
2226 * tcpcb. This definitely can be optimized.
2227 */
2228 bzero(&tp->t_start_zero, t_zero_size);
2229
2230 /* Initialise cc_var struct for this tcpcb. */
2231 tp->t_ccv.tp = tp;
2232 rw_rlock(&tcp_function_lock);
2233 if (listening_tcb != NULL) {
2234 INP_LOCK_ASSERT(tptoinpcb(listening_tcb));
2235 KASSERT(listening_tcb->t_fb != NULL,
2236 ("tcp_newtcpcb: listening_tcb->t_fb is NULL"));
2237 if (listening_tcb->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) {
2238 rw_runlock(&tcp_function_lock);
2239 return (NULL);
2240 }
2241 tp->t_fb = listening_tcb->t_fb;
2242 } else {
2243 tp->t_fb = V_tcp_func_set_ptr;
2244 }
2245 refcount_acquire(&tp->t_fb->tfb_refcnt);
2246 KASSERT((tp->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) == 0,
2247 ("tcp_newtcpcb: using TFB being removed"));
2248 rw_runlock(&tcp_function_lock);
2249 CC_LIST_RLOCK();
2250 if (listening_tcb != NULL) {
2251 if (CC_ALGO(listening_tcb)->flags & CC_MODULE_BEING_REMOVED) {
2252 CC_LIST_RUNLOCK();
2253 if (tp->t_fb->tfb_tcp_fb_fini)
2254 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2255 refcount_release(&tp->t_fb->tfb_refcnt);
2256 return (NULL);
2257 }
2258 CC_ALGO(tp) = CC_ALGO(listening_tcb);
2259 } else
2260 CC_ALGO(tp) = CC_DEFAULT_ALGO();
2261 cc_refer(CC_ALGO(tp));
2262 CC_LIST_RUNLOCK();
2263 if (CC_ALGO(tp)->cb_init != NULL)
2264 if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) {
2265 cc_detach(tp);
2266 if (tp->t_fb->tfb_tcp_fb_fini)
2267 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2268 refcount_release(&tp->t_fb->tfb_refcnt);
2269 return (NULL);
2270 }
2271
2272 #ifdef TCP_HHOOK
2273 if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) {
2274 if (CC_ALGO(tp)->cb_destroy != NULL)
2275 CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2276 CC_DATA(tp) = NULL;
2277 cc_detach(tp);
2278 if (tp->t_fb->tfb_tcp_fb_fini)
2279 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2280 refcount_release(&tp->t_fb->tfb_refcnt);
2281 return (NULL);
2282 }
2283 #endif
2284
2285 TAILQ_INIT(&tp->t_segq);
2286 STAILQ_INIT(&tp->t_inqueue);
2287 tp->t_maxseg =
2288 #ifdef INET6
2289 isipv6 ? V_tcp_v6mssdflt :
2290 #endif /* INET6 */
2291 V_tcp_mssdflt;
2292
2293 /* All mbuf queue/ack compress flags should be off */
2294 tcp_lro_features_off(tp);
2295
2296 tp->t_hpts_cpu = HPTS_CPU_NONE;
2297 tp->t_lro_cpu = HPTS_CPU_NONE;
2298
2299 callout_init_rw(&tp->t_callout, &inp->inp_lock,
2300 CALLOUT_TRYLOCK | CALLOUT_RETURNUNLOCKED);
2301 for (int i = 0; i < TT_N; i++)
2302 tp->t_timers[i] = SBT_MAX;
2303
2304 switch (V_tcp_do_rfc1323) {
2305 case 0:
2306 break;
2307 default:
2308 case 1:
2309 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
2310 break;
2311 case 2:
2312 tp->t_flags = TF_REQ_SCALE;
2313 break;
2314 case 3:
2315 tp->t_flags = TF_REQ_TSTMP;
2316 break;
2317 }
2318 if (V_tcp_do_sack)
2319 tp->t_flags |= TF_SACK_PERMIT;
2320 TAILQ_INIT(&tp->snd_holes);
2321
2322 /*
2323 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
2324 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
2325 * reasonable initial retransmit time.
2326 */
2327 tp->t_srtt = TCPTV_SRTTBASE;
2328 tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
2329 tp->t_rttmin = tcp_rexmit_min;
2330 tp->t_rxtcur = tcp_rexmit_initial;
2331 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2332 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2333 tp->t_rcvtime = ticks;
2334 /* We always start with ticks granularity */
2335 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
2336 /*
2337 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
2338 * because the socket may be bound to an IPv6 wildcard address,
2339 * which may match an IPv4-mapped IPv6 address.
2340 */
2341 inp->inp_ip_ttl = V_ip_defttl;
2342 #ifdef TCP_BLACKBOX
2343 /* Initialize the per-TCPCB log data. */
2344 tcp_log_tcpcbinit(tp);
2345 #endif
2346 tp->t_pacing_rate = -1;
2347 if (tp->t_fb->tfb_tcp_fb_init) {
2348 if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) {
2349 if (CC_ALGO(tp)->cb_destroy != NULL)
2350 CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2351 CC_DATA(tp) = NULL;
2352 cc_detach(tp);
2353 #ifdef TCP_HHOOK
2354 khelp_destroy_osd(&tp->t_osd);
2355 #endif
2356 refcount_release(&tp->t_fb->tfb_refcnt);
2357 return (NULL);
2358 }
2359 }
2360 #ifdef STATS
2361 if (V_tcp_perconn_stats_enable == 1)
2362 tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0);
2363 #endif
2364 if (V_tcp_do_lrd)
2365 tp->t_flags |= TF_LRD;
2366
2367 return (tp);
2368 }
2369
2370 /*
2371 * Drop a TCP connection, reporting
2372 * the specified error. If connection is synchronized,
2373 * then send a RST to peer.
2374 */
2375 struct tcpcb *
tcp_drop(struct tcpcb * tp,int errno)2376 tcp_drop(struct tcpcb *tp, int errno)
2377 {
2378 struct socket *so = tptosocket(tp);
2379
2380 NET_EPOCH_ASSERT();
2381 INP_WLOCK_ASSERT(tptoinpcb(tp));
2382
2383 if (TCPS_HAVERCVDSYN(tp->t_state)) {
2384 tcp_state_change(tp, TCPS_CLOSED);
2385 /* Don't use tcp_output() here due to possible recursion. */
2386 (void)tcp_output_nodrop(tp);
2387 TCPSTAT_INC(tcps_drops);
2388 } else
2389 TCPSTAT_INC(tcps_conndrops);
2390 if (errno == ETIMEDOUT && tp->t_softerror)
2391 errno = tp->t_softerror;
2392 so->so_error = errno;
2393 return (tcp_close(tp));
2394 }
2395
2396 void
tcp_discardcb(struct tcpcb * tp)2397 tcp_discardcb(struct tcpcb *tp)
2398 {
2399 struct inpcb *inp = tptoinpcb(tp);
2400 struct socket *so = tptosocket(tp);
2401 struct mbuf *m;
2402 #ifdef INET6
2403 bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2404 #endif
2405
2406 INP_WLOCK_ASSERT(inp);
2407 MPASS(!callout_active(&tp->t_callout));
2408 MPASS(TAILQ_EMPTY(&tp->snd_holes));
2409
2410 /* free the reassembly queue, if any */
2411 tcp_reass_flush(tp);
2412
2413 #ifdef TCP_OFFLOAD
2414 /* Disconnect offload device, if any. */
2415 if (tp->t_flags & TF_TOE)
2416 tcp_offload_detach(tp);
2417 #endif
2418
2419 /* Allow the CC algorithm to clean up after itself. */
2420 if (CC_ALGO(tp)->cb_destroy != NULL)
2421 CC_ALGO(tp)->cb_destroy(&tp->t_ccv);
2422 CC_DATA(tp) = NULL;
2423 /* Detach from the CC algorithm */
2424 cc_detach(tp);
2425
2426 #ifdef TCP_HHOOK
2427 khelp_destroy_osd(&tp->t_osd);
2428 #endif
2429 #ifdef STATS
2430 stats_blob_destroy(tp->t_stats);
2431 #endif
2432
2433 CC_ALGO(tp) = NULL;
2434 if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) {
2435 struct mbuf *prev;
2436
2437 STAILQ_INIT(&tp->t_inqueue);
2438 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev)
2439 m_freem(m);
2440 }
2441 TCPSTATES_DEC(tp->t_state);
2442
2443 if (tp->t_fb->tfb_tcp_fb_fini)
2444 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1);
2445 MPASS(!tcp_in_hpts(tp));
2446 #ifdef TCP_BLACKBOX
2447 tcp_log_tcpcbfini(tp);
2448 #endif
2449
2450 /*
2451 * If we got enough samples through the srtt filter,
2452 * save the rtt and rttvar in the routing entry.
2453 * 'Enough' is arbitrarily defined as 4 rtt samples.
2454 * 4 samples is enough for the srtt filter to converge
2455 * to within enough % of the correct value; fewer samples
2456 * and we could save a bogus rtt. The danger is not high
2457 * as tcp quickly recovers from everything.
2458 * XXX: Works very well but needs some more statistics!
2459 *
2460 * XXXRRS: Updating must be after the stack fini() since
2461 * that may be converting some internal representation of
2462 * say srtt etc into the general one used by other stacks.
2463 */
2464 if (tp->t_rttupdated >= 4) {
2465 struct hc_metrics_lite metrics;
2466 uint32_t ssthresh;
2467
2468 bzero(&metrics, sizeof(metrics));
2469 /*
2470 * Update the ssthresh always when the conditions below
2471 * are satisfied. This gives us better new start value
2472 * for the congestion avoidance for new connections.
2473 * ssthresh is only set if packet loss occurred on a session.
2474 */
2475 ssthresh = tp->snd_ssthresh;
2476 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
2477 /*
2478 * convert the limit from user data bytes to
2479 * packets then to packet data bytes.
2480 */
2481 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
2482 if (ssthresh < 2)
2483 ssthresh = 2;
2484 ssthresh *= (tp->t_maxseg +
2485 #ifdef INET6
2486 (isipv6 ? sizeof (struct ip6_hdr) +
2487 sizeof (struct tcphdr) :
2488 #endif
2489 sizeof (struct tcpiphdr)
2490 #ifdef INET6
2491 )
2492 #endif
2493 );
2494 } else
2495 ssthresh = 0;
2496 metrics.hc_ssthresh = ssthresh;
2497
2498 metrics.hc_rtt = tp->t_srtt;
2499 metrics.hc_rttvar = tp->t_rttvar;
2500 metrics.hc_cwnd = tp->snd_cwnd;
2501 metrics.hc_sendpipe = 0;
2502 metrics.hc_recvpipe = 0;
2503
2504 tcp_hc_update(&inp->inp_inc, &metrics);
2505 }
2506
2507 refcount_release(&tp->t_fb->tfb_refcnt);
2508 }
2509
2510 /*
2511 * Attempt to close a TCP control block, marking it as dropped, and freeing
2512 * the socket if we hold the only reference.
2513 */
2514 struct tcpcb *
tcp_close(struct tcpcb * tp)2515 tcp_close(struct tcpcb *tp)
2516 {
2517 struct inpcb *inp = tptoinpcb(tp);
2518 struct socket *so = tptosocket(tp);
2519
2520 INP_WLOCK_ASSERT(inp);
2521
2522 #ifdef TCP_OFFLOAD
2523 if (tp->t_state == TCPS_LISTEN)
2524 tcp_offload_listen_stop(tp);
2525 #endif
2526 /*
2527 * This releases the TFO pending counter resource for TFO listen
2528 * sockets as well as passively-created TFO sockets that transition
2529 * from SYN_RECEIVED to CLOSED.
2530 */
2531 if (tp->t_tfo_pending) {
2532 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2533 tp->t_tfo_pending = NULL;
2534 }
2535 tcp_timer_stop(tp);
2536 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL)
2537 tp->t_fb->tfb_tcp_timer_stop_all(tp);
2538 in_pcbdrop(inp);
2539 TCPSTAT_INC(tcps_closed);
2540 if (tp->t_state != TCPS_CLOSED)
2541 tcp_state_change(tp, TCPS_CLOSED);
2542 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
2543 tcp_free_sackholes(tp);
2544 soisdisconnected(so);
2545 if (inp->inp_flags & INP_SOCKREF) {
2546 inp->inp_flags &= ~INP_SOCKREF;
2547 INP_WUNLOCK(inp);
2548 sorele(so);
2549 return (NULL);
2550 }
2551 return (tp);
2552 }
2553
2554 /*
2555 * Notify a tcp user of an asynchronous error;
2556 * store error as soft error, but wake up user
2557 * (for now, won't do anything until can select for soft error).
2558 *
2559 * Do not wake up user since there currently is no mechanism for
2560 * reporting soft errors (yet - a kqueue filter may be added).
2561 */
2562 static struct inpcb *
tcp_notify(struct inpcb * inp,int error)2563 tcp_notify(struct inpcb *inp, int error)
2564 {
2565 struct tcpcb *tp;
2566
2567 INP_WLOCK_ASSERT(inp);
2568
2569 tp = intotcpcb(inp);
2570 KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
2571
2572 /*
2573 * Ignore some errors if we are hooked up.
2574 * If connection hasn't completed, has retransmitted several times,
2575 * and receives a second error, give up now. This is better
2576 * than waiting a long time to establish a connection that
2577 * can never complete.
2578 */
2579 if (tp->t_state == TCPS_ESTABLISHED &&
2580 (error == EHOSTUNREACH || error == ENETUNREACH ||
2581 error == EHOSTDOWN)) {
2582 if (inp->inp_route.ro_nh) {
2583 NH_FREE(inp->inp_route.ro_nh);
2584 inp->inp_route.ro_nh = (struct nhop_object *)NULL;
2585 }
2586 return (inp);
2587 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
2588 tp->t_softerror) {
2589 tp = tcp_drop(tp, error);
2590 if (tp != NULL)
2591 return (inp);
2592 else
2593 return (NULL);
2594 } else {
2595 tp->t_softerror = error;
2596 return (inp);
2597 }
2598 #if 0
2599 wakeup( &so->so_timeo);
2600 sorwakeup(so);
2601 sowwakeup(so);
2602 #endif
2603 }
2604
2605 static int
tcp_pcblist(SYSCTL_HANDLER_ARGS)2606 tcp_pcblist(SYSCTL_HANDLER_ARGS)
2607 {
2608 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2609 INPLOOKUP_RLOCKPCB);
2610 struct xinpgen xig;
2611 struct inpcb *inp;
2612 int error;
2613
2614 if (req->newptr != NULL)
2615 return (EPERM);
2616
2617 if (req->oldptr == NULL) {
2618 int n;
2619
2620 n = V_tcbinfo.ipi_count +
2621 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2622 n += imax(n / 8, 10);
2623 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
2624 return (0);
2625 }
2626
2627 if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2628 return (error);
2629
2630 bzero(&xig, sizeof(xig));
2631 xig.xig_len = sizeof xig;
2632 xig.xig_count = V_tcbinfo.ipi_count +
2633 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2634 xig.xig_gen = V_tcbinfo.ipi_gencnt;
2635 xig.xig_sogen = so_gencnt;
2636 error = SYSCTL_OUT(req, &xig, sizeof xig);
2637 if (error)
2638 return (error);
2639
2640 error = syncache_pcblist(req);
2641 if (error)
2642 return (error);
2643
2644 while ((inp = inp_next(&inpi)) != NULL) {
2645 if (inp->inp_gencnt <= xig.xig_gen &&
2646 cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
2647 struct xtcpcb xt;
2648
2649 tcp_inptoxtp(inp, &xt);
2650 error = SYSCTL_OUT(req, &xt, sizeof xt);
2651 if (error) {
2652 INP_RUNLOCK(inp);
2653 break;
2654 } else
2655 continue;
2656 }
2657 }
2658
2659 if (!error) {
2660 /*
2661 * Give the user an updated idea of our state.
2662 * If the generation differs from what we told
2663 * her before, she knows that something happened
2664 * while we were processing this request, and it
2665 * might be necessary to retry.
2666 */
2667 xig.xig_gen = V_tcbinfo.ipi_gencnt;
2668 xig.xig_sogen = so_gencnt;
2669 xig.xig_count = V_tcbinfo.ipi_count +
2670 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
2671 error = SYSCTL_OUT(req, &xig, sizeof xig);
2672 }
2673
2674 return (error);
2675 }
2676
2677 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
2678 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2679 NULL, 0, tcp_pcblist, "S,xtcpcb",
2680 "List of active TCP connections");
2681
2682 #define SND_TAG_STATUS_MAXLEN 128
2683
2684 #ifdef KERN_TLS
2685
2686 static struct sx ktlslist_lock;
2687 SX_SYSINIT(ktlslistlock, &ktlslist_lock, "ktlslist");
2688 static uint64_t ktls_glob_gen = 1;
2689
2690 static int
tcp_ktlslist_locked(SYSCTL_HANDLER_ARGS,bool export_keys)2691 tcp_ktlslist_locked(SYSCTL_HANDLER_ARGS, bool export_keys)
2692 {
2693 struct xinpgen xig;
2694 struct inpcb *inp;
2695 struct socket *so;
2696 struct ktls_session *ksr, *kss;
2697 char *buf;
2698 struct xktls_session *xktls;
2699 uint64_t ipi_gencnt;
2700 size_t buflen, len, sz;
2701 u_int cnt;
2702 int error;
2703 bool ek, p;
2704
2705 sx_assert(&ktlslist_lock, SA_XLOCKED);
2706 if (req->newptr != NULL)
2707 return (EPERM);
2708
2709 len = 0;
2710 cnt = 0;
2711 ipi_gencnt = V_tcbinfo.ipi_gencnt;
2712 bzero(&xig, sizeof(xig));
2713 xig.xig_len = sizeof(xig);
2714 xig.xig_gen = ktls_glob_gen++;
2715 xig.xig_sogen = so_gencnt;
2716
2717 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2718 INPLOOKUP_RLOCKPCB);
2719 while ((inp = inp_next(&inpi)) != NULL) {
2720 if (inp->inp_gencnt > ipi_gencnt ||
2721 cr_canseeinpcb(req->td->td_ucred, inp) != 0)
2722 continue;
2723
2724 so = inp->inp_socket;
2725 if (so != NULL && so->so_gencnt <= xig.xig_sogen) {
2726 p = false;
2727 ek = export_keys && cr_canexport_ktlskeys(
2728 req->td, inp);
2729 ksr = so->so_rcv.sb_tls_info;
2730 if (ksr != NULL) {
2731 ksr->gen = xig.xig_gen;
2732 p = true;
2733 if (ek) {
2734 sz = SIZE_T_MAX;
2735 ktls_session_copy_keys(ksr,
2736 NULL, &sz);
2737 len += sz;
2738 }
2739 if (ksr->snd_tag != NULL &&
2740 ksr->snd_tag->sw->snd_tag_status_str !=
2741 NULL) {
2742 sz = SND_TAG_STATUS_MAXLEN;
2743 in_pcbref(inp);
2744 INP_RUNLOCK(inp);
2745 error = ksr->snd_tag->sw->
2746 snd_tag_status_str(
2747 ksr->snd_tag, NULL, &sz);
2748 if (in_pcbrele_rlock(inp))
2749 return (EDEADLK);
2750 if (error == 0)
2751 len += sz;
2752 }
2753 }
2754 kss = so->so_snd.sb_tls_info;
2755 if (kss != NULL) {
2756 kss->gen = xig.xig_gen;
2757 p = true;
2758 if (ek) {
2759 sz = SIZE_T_MAX;
2760 ktls_session_copy_keys(kss,
2761 NULL, &sz);
2762 len += sz;
2763 }
2764 if (kss->snd_tag != NULL &&
2765 kss->snd_tag->sw->snd_tag_status_str !=
2766 NULL) {
2767 sz = SND_TAG_STATUS_MAXLEN;
2768 in_pcbref(inp);
2769 INP_RUNLOCK(inp);
2770 error = kss->snd_tag->sw->
2771 snd_tag_status_str(
2772 kss->snd_tag, NULL, &sz);
2773 if (in_pcbrele_rlock(inp))
2774 return (EDEADLK);
2775 if (error == 0)
2776 len += sz;
2777 }
2778 }
2779 if (p) {
2780 len += sizeof(*xktls);
2781 len = roundup2(len, __alignof(struct
2782 xktls_session));
2783 }
2784 }
2785 }
2786 if (req->oldptr == NULL) {
2787 len += 2 * sizeof(xig);
2788 len += 3 * len / 4;
2789 req->oldidx = len;
2790 return (0);
2791 }
2792
2793 if ((error = sysctl_wire_old_buffer(req, 0)) != 0)
2794 return (error);
2795
2796 error = SYSCTL_OUT(req, &xig, sizeof xig);
2797 if (error != 0)
2798 return (error);
2799
2800 buflen = roundup2(sizeof(*xktls) + 2 * TLS_MAX_PARAM_SIZE +
2801 2 * SND_TAG_STATUS_MAXLEN, __alignof(struct xktls_session));
2802 buf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
2803 struct inpcb_iterator inpi1 = INP_ALL_ITERATOR(&V_tcbinfo,
2804 INPLOOKUP_RLOCKPCB);
2805 while ((inp = inp_next(&inpi1)) != NULL) {
2806 if (inp->inp_gencnt > ipi_gencnt ||
2807 cr_canseeinpcb(req->td->td_ucred, inp) != 0)
2808 continue;
2809
2810 so = inp->inp_socket;
2811 if (so == NULL)
2812 continue;
2813
2814 p = false;
2815 ek = export_keys && cr_canexport_ktlskeys(req->td, inp);
2816 ksr = so->so_rcv.sb_tls_info;
2817 kss = so->so_snd.sb_tls_info;
2818 xktls = (struct xktls_session *)buf;
2819 if (ksr != NULL && ksr->gen == xig.xig_gen) {
2820 p = true;
2821 ktls_session_to_xktls_onedir(ksr, ek, &xktls->rcv);
2822 }
2823 if (kss != NULL && kss->gen == xig.xig_gen) {
2824 p = true;
2825 ktls_session_to_xktls_onedir(kss, ek, &xktls->snd);
2826 }
2827 if (!p)
2828 continue;
2829
2830 xktls->inp_gencnt = inp->inp_gencnt;
2831 xktls->so_pcb = (kvaddr_t)inp;
2832 memcpy(&xktls->coninf, &inp->inp_inc, sizeof(xktls->coninf));
2833 len = sizeof(*xktls);
2834 if (ksr != NULL && ksr->gen == xig.xig_gen) {
2835 if (ek) {
2836 sz = buflen - len;
2837 ktls_session_copy_keys(ksr, buf + len, &sz);
2838 len += sz;
2839 } else {
2840 xktls->rcv.cipher_key_len = 0;
2841 xktls->rcv.auth_key_len = 0;
2842 }
2843 if (ksr->snd_tag != NULL &&
2844 ksr->snd_tag->sw->snd_tag_status_str != NULL) {
2845 sz = SND_TAG_STATUS_MAXLEN;
2846 in_pcbref(inp);
2847 INP_RUNLOCK(inp);
2848 error = ksr->snd_tag->sw->snd_tag_status_str(
2849 ksr->snd_tag, buf + len, &sz);
2850 if (in_pcbrele_rlock(inp))
2851 return (EDEADLK);
2852 if (error == 0) {
2853 xktls->rcv.drv_st_len = sz;
2854 len += sz;
2855 }
2856 }
2857 }
2858 if (kss != NULL && kss->gen == xig.xig_gen) {
2859 if (ek) {
2860 sz = buflen - len;
2861 ktls_session_copy_keys(kss, buf + len, &sz);
2862 len += sz;
2863 } else {
2864 xktls->snd.cipher_key_len = 0;
2865 xktls->snd.auth_key_len = 0;
2866 }
2867 if (kss->snd_tag != NULL &&
2868 kss->snd_tag->sw->snd_tag_status_str != NULL) {
2869 sz = SND_TAG_STATUS_MAXLEN;
2870 in_pcbref(inp);
2871 INP_RUNLOCK(inp);
2872 error = kss->snd_tag->sw->snd_tag_status_str(
2873 kss->snd_tag, buf + len, &sz);
2874 if (in_pcbrele_rlock(inp))
2875 return (EDEADLK);
2876 if (error == 0) {
2877 xktls->snd.drv_st_len = sz;
2878 len += sz;
2879 }
2880 }
2881 }
2882 len = roundup2(len, __alignof(*xktls));
2883 xktls->tsz = len;
2884 xktls->fsz = sizeof(*xktls);
2885
2886 error = SYSCTL_OUT(req, xktls, len);
2887 if (error != 0) {
2888 INP_RUNLOCK(inp);
2889 break;
2890 }
2891 cnt++;
2892 }
2893
2894 if (error == 0) {
2895 xig.xig_sogen = so_gencnt;
2896 xig.xig_count = cnt;
2897 error = SYSCTL_OUT(req, &xig, sizeof(xig));
2898 }
2899
2900 zfree(buf, M_TEMP);
2901 return (error);
2902 }
2903
2904 static int
tcp_ktlslist1(SYSCTL_HANDLER_ARGS,bool export_keys)2905 tcp_ktlslist1(SYSCTL_HANDLER_ARGS, bool export_keys)
2906 {
2907 int repeats, error;
2908
2909 for (repeats = 0; repeats < 100; repeats++) {
2910 if (sx_xlock_sig(&ktlslist_lock))
2911 return (EINTR);
2912 error = tcp_ktlslist_locked(oidp, arg1, arg2, req,
2913 export_keys);
2914 sx_xunlock(&ktlslist_lock);
2915 if (error != EDEADLK)
2916 break;
2917 if (sig_intr() != 0) {
2918 error = EINTR;
2919 break;
2920 }
2921 req->oldidx = 0;
2922 }
2923 return (error);
2924 }
2925
2926 static int
tcp_ktlslist_nokeys(SYSCTL_HANDLER_ARGS)2927 tcp_ktlslist_nokeys(SYSCTL_HANDLER_ARGS)
2928 {
2929 return (tcp_ktlslist1(oidp, arg1, arg2, req, false));
2930 }
2931
2932 static int
tcp_ktlslist_wkeys(SYSCTL_HANDLER_ARGS)2933 tcp_ktlslist_wkeys(SYSCTL_HANDLER_ARGS)
2934 {
2935 return (tcp_ktlslist1(oidp, arg1, arg2, req, true));
2936 }
2937
2938 SYSCTL_PROC(_net_inet_tcp, TCPCTL_KTLSLIST, ktlslist,
2939 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2940 NULL, 0, tcp_ktlslist_nokeys, "S,xktls_session",
2941 "List of active kTLS sessions for TCP connections");
2942 SYSCTL_PROC(_net_inet_tcp, TCPCTL_KTLSLIST_WKEYS, ktlslist_wkeys,
2943 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2944 NULL, 0, tcp_ktlslist_wkeys, "S,xktls_session",
2945 "List of active kTLS sessions for TCP connections with keys");
2946 #endif /* KERN_TLS */
2947
2948 #ifdef INET
2949 static int
tcp_getcred(SYSCTL_HANDLER_ARGS)2950 tcp_getcred(SYSCTL_HANDLER_ARGS)
2951 {
2952 struct xucred xuc;
2953 struct sockaddr_in addrs[2];
2954 struct epoch_tracker et;
2955 struct inpcb *inp;
2956 int error;
2957
2958 if (req->newptr == NULL)
2959 return (EINVAL);
2960 error = priv_check(req->td, PRIV_NETINET_GETCRED);
2961 if (error)
2962 return (error);
2963 error = SYSCTL_IN(req, addrs, sizeof(addrs));
2964 if (error)
2965 return (error);
2966 NET_EPOCH_ENTER(et);
2967 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
2968 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
2969 NET_EPOCH_EXIT(et);
2970 if (inp != NULL) {
2971 if (error == 0)
2972 error = cr_canseeinpcb(req->td->td_ucred, inp);
2973 if (error == 0)
2974 cru2x(inp->inp_cred, &xuc);
2975 INP_RUNLOCK(inp);
2976 } else
2977 error = ENOENT;
2978 if (error == 0)
2979 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
2980 return (error);
2981 }
2982
2983 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
2984 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
2985 0, 0, tcp_getcred, "S,xucred",
2986 "Get the xucred of a TCP connection");
2987 #endif /* INET */
2988
2989 #ifdef INET6
2990 static int
tcp6_getcred(SYSCTL_HANDLER_ARGS)2991 tcp6_getcred(SYSCTL_HANDLER_ARGS)
2992 {
2993 struct epoch_tracker et;
2994 struct xucred xuc;
2995 struct sockaddr_in6 addrs[2];
2996 struct inpcb *inp;
2997 int error;
2998 #ifdef INET
2999 int mapped = 0;
3000 #endif
3001
3002 if (req->newptr == NULL)
3003 return (EINVAL);
3004 error = priv_check(req->td, PRIV_NETINET_GETCRED);
3005 if (error)
3006 return (error);
3007 error = SYSCTL_IN(req, addrs, sizeof(addrs));
3008 if (error)
3009 return (error);
3010 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
3011 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
3012 return (error);
3013 }
3014 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
3015 #ifdef INET
3016 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
3017 mapped = 1;
3018 else
3019 #endif
3020 return (EINVAL);
3021 }
3022
3023 NET_EPOCH_ENTER(et);
3024 #ifdef INET
3025 if (mapped == 1)
3026 inp = in_pcblookup(&V_tcbinfo,
3027 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
3028 addrs[1].sin6_port,
3029 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
3030 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
3031 else
3032 #endif
3033 inp = in6_pcblookup(&V_tcbinfo,
3034 &addrs[1].sin6_addr, addrs[1].sin6_port,
3035 &addrs[0].sin6_addr, addrs[0].sin6_port,
3036 INPLOOKUP_RLOCKPCB, NULL);
3037 NET_EPOCH_EXIT(et);
3038 if (inp != NULL) {
3039 if (error == 0)
3040 error = cr_canseeinpcb(req->td->td_ucred, inp);
3041 if (error == 0)
3042 cru2x(inp->inp_cred, &xuc);
3043 INP_RUNLOCK(inp);
3044 } else
3045 error = ENOENT;
3046 if (error == 0)
3047 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
3048 return (error);
3049 }
3050
3051 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
3052 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT,
3053 0, 0, tcp6_getcred, "S,xucred",
3054 "Get the xucred of a TCP6 connection");
3055 #endif /* INET6 */
3056
3057 #ifdef INET
3058 /* Path MTU to try next when a fragmentation-needed message is received. */
3059 static inline int
tcp_next_pmtu(const struct icmp * icp,const struct ip * ip)3060 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip)
3061 {
3062 int mtu = ntohs(icp->icmp_nextmtu);
3063
3064 /* If no alternative MTU was proposed, try the next smaller one. */
3065 if (!mtu)
3066 mtu = ip_next_mtu(ntohs(ip->ip_len), 1);
3067 if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr))
3068 mtu = V_tcp_minmss + sizeof(struct tcpiphdr);
3069
3070 return (mtu);
3071 }
3072
3073 static void
tcp_ctlinput_with_port(struct icmp * icp,uint16_t port)3074 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port)
3075 {
3076 struct ip *ip;
3077 struct tcphdr *th;
3078 struct inpcb *inp;
3079 struct tcpcb *tp;
3080 struct inpcb *(*notify)(struct inpcb *, int);
3081 struct in_conninfo inc;
3082 tcp_seq icmp_tcp_seq;
3083 int errno, mtu;
3084
3085 errno = icmp_errmap(icp);
3086 switch (errno) {
3087 case 0:
3088 return;
3089 case EMSGSIZE:
3090 notify = tcp_mtudisc_notify;
3091 break;
3092 case ECONNREFUSED:
3093 if (V_icmp_may_rst)
3094 notify = tcp_drop_syn_sent;
3095 else
3096 notify = tcp_notify;
3097 break;
3098 case EHOSTUNREACH:
3099 if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED)
3100 notify = tcp_drop_syn_sent;
3101 else
3102 notify = tcp_notify;
3103 break;
3104 default:
3105 notify = tcp_notify;
3106 }
3107
3108 ip = &icp->icmp_ip;
3109 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3110 icmp_tcp_seq = th->th_seq;
3111 inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src,
3112 th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
3113 if (inp != NULL) {
3114 tp = intotcpcb(inp);
3115 #ifdef TCP_OFFLOAD
3116 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
3117 /*
3118 * MTU discovery for offloaded connections. Let
3119 * the TOE driver verify seq# and process it.
3120 */
3121 mtu = tcp_next_pmtu(icp, ip);
3122 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
3123 goto out;
3124 }
3125 #endif
3126 if (tp->t_port != port)
3127 goto out;
3128 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
3129 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
3130 if (errno == EMSGSIZE) {
3131 /*
3132 * MTU discovery: we got a needfrag and
3133 * will potentially try a lower MTU.
3134 */
3135 mtu = tcp_next_pmtu(icp, ip);
3136
3137 /*
3138 * Only process the offered MTU if it
3139 * is smaller than the current one.
3140 */
3141 if (mtu < tp->t_maxseg +
3142 sizeof(struct tcpiphdr)) {
3143 bzero(&inc, sizeof(inc));
3144 inc.inc_faddr = ip->ip_dst;
3145 inc.inc_fibnum =
3146 inp->inp_inc.inc_fibnum;
3147 tcp_hc_updatemtu(&inc, mtu);
3148 inp = tcp_mtudisc(inp, mtu);
3149 }
3150 } else
3151 inp = (*notify)(inp, errno);
3152 }
3153 } else {
3154 bzero(&inc, sizeof(inc));
3155 inc.inc_fport = th->th_dport;
3156 inc.inc_lport = th->th_sport;
3157 inc.inc_faddr = ip->ip_dst;
3158 inc.inc_laddr = ip->ip_src;
3159 syncache_unreach(&inc, icmp_tcp_seq, port);
3160 }
3161 out:
3162 if (inp != NULL)
3163 INP_WUNLOCK(inp);
3164 }
3165
3166 static void
tcp_ctlinput(struct icmp * icmp)3167 tcp_ctlinput(struct icmp *icmp)
3168 {
3169 tcp_ctlinput_with_port(icmp, htons(0));
3170 }
3171
3172 static void
tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)3173 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param)
3174 {
3175 /* Its a tunneled TCP over UDP icmp */
3176 struct icmp *icmp = param.icmp;
3177 struct ip *outer_ip, *inner_ip;
3178 struct udphdr *udp;
3179 struct tcphdr *th, ttemp;
3180 int i_hlen, o_len;
3181 uint16_t port;
3182
3183 outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip));
3184 inner_ip = &icmp->icmp_ip;
3185 i_hlen = inner_ip->ip_hl << 2;
3186 o_len = ntohs(outer_ip->ip_len);
3187 if (o_len <
3188 (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) {
3189 /* Not enough data present */
3190 return;
3191 }
3192 /* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */
3193 udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen);
3194 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
3195 return;
3196 }
3197 port = udp->uh_dport;
3198 th = (struct tcphdr *)(udp + 1);
3199 memcpy(&ttemp, th, sizeof(struct tcphdr));
3200 memcpy(udp, &ttemp, sizeof(struct tcphdr));
3201 /* Now adjust down the size of the outer IP header */
3202 o_len -= sizeof(struct udphdr);
3203 outer_ip->ip_len = htons(o_len);
3204 /* Now call in to the normal handling code */
3205 tcp_ctlinput_with_port(icmp, port);
3206 }
3207 #endif /* INET */
3208
3209 #ifdef INET6
3210 static inline int
tcp6_next_pmtu(const struct icmp6_hdr * icmp6)3211 tcp6_next_pmtu(const struct icmp6_hdr *icmp6)
3212 {
3213 int mtu = ntohl(icmp6->icmp6_mtu);
3214
3215 /*
3216 * If no alternative MTU was proposed, or the proposed MTU was too
3217 * small, set to the min.
3218 */
3219 if (mtu < IPV6_MMTU)
3220 mtu = IPV6_MMTU;
3221 return (mtu);
3222 }
3223
3224 static void
tcp6_ctlinput_with_port(struct ip6ctlparam * ip6cp,uint16_t port)3225 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port)
3226 {
3227 struct in6_addr *dst;
3228 struct inpcb *(*notify)(struct inpcb *, int);
3229 struct ip6_hdr *ip6;
3230 struct mbuf *m;
3231 struct inpcb *inp;
3232 struct tcpcb *tp;
3233 struct icmp6_hdr *icmp6;
3234 struct in_conninfo inc;
3235 struct tcp_ports {
3236 uint16_t th_sport;
3237 uint16_t th_dport;
3238 } t_ports;
3239 tcp_seq icmp_tcp_seq;
3240 unsigned int mtu;
3241 unsigned int off;
3242 int errno;
3243
3244 icmp6 = ip6cp->ip6c_icmp6;
3245 m = ip6cp->ip6c_m;
3246 ip6 = ip6cp->ip6c_ip6;
3247 off = ip6cp->ip6c_off;
3248 dst = &ip6cp->ip6c_finaldst->sin6_addr;
3249
3250 errno = icmp6_errmap(icmp6);
3251 switch (errno) {
3252 case 0:
3253 return;
3254 case EMSGSIZE:
3255 notify = tcp_mtudisc_notify;
3256 break;
3257 case ECONNREFUSED:
3258 if (V_icmp_may_rst)
3259 notify = tcp_drop_syn_sent;
3260 else
3261 notify = tcp_notify;
3262 break;
3263 case EHOSTUNREACH:
3264 /*
3265 * There are only four ICMPs that may reset connection:
3266 * - administratively prohibited
3267 * - port unreachable
3268 * - time exceeded in transit
3269 * - unknown next header
3270 */
3271 if (V_icmp_may_rst &&
3272 ((icmp6->icmp6_type == ICMP6_DST_UNREACH &&
3273 (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN ||
3274 icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) ||
3275 (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED &&
3276 icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) ||
3277 (icmp6->icmp6_type == ICMP6_PARAM_PROB &&
3278 icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER)))
3279 notify = tcp_drop_syn_sent;
3280 else
3281 notify = tcp_notify;
3282 break;
3283 default:
3284 notify = tcp_notify;
3285 }
3286
3287 /* Check if we can safely get the ports from the tcp hdr */
3288 if (m == NULL ||
3289 (m->m_pkthdr.len <
3290 (int32_t) (off + sizeof(struct tcp_ports)))) {
3291 return;
3292 }
3293 bzero(&t_ports, sizeof(struct tcp_ports));
3294 m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports);
3295 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport,
3296 &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL);
3297 off += sizeof(struct tcp_ports);
3298 if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) {
3299 goto out;
3300 }
3301 m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq);
3302 if (inp != NULL) {
3303 tp = intotcpcb(inp);
3304 #ifdef TCP_OFFLOAD
3305 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) {
3306 /* MTU discovery for offloaded connections. */
3307 mtu = tcp6_next_pmtu(icmp6);
3308 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu);
3309 goto out;
3310 }
3311 #endif
3312 if (tp->t_port != port)
3313 goto out;
3314 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) &&
3315 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) {
3316 if (errno == EMSGSIZE) {
3317 /*
3318 * MTU discovery:
3319 * If we got a needfrag set the MTU
3320 * in the route to the suggested new
3321 * value (if given) and then notify.
3322 */
3323 mtu = tcp6_next_pmtu(icmp6);
3324
3325 bzero(&inc, sizeof(inc));
3326 inc.inc_fibnum = M_GETFIB(m);
3327 inc.inc_flags |= INC_ISIPV6;
3328 inc.inc6_faddr = *dst;
3329 if (in6_setscope(&inc.inc6_faddr,
3330 m->m_pkthdr.rcvif, NULL))
3331 goto out;
3332 /*
3333 * Only process the offered MTU if it
3334 * is smaller than the current one.
3335 */
3336 if (mtu < tp->t_maxseg +
3337 sizeof (struct tcphdr) +
3338 sizeof (struct ip6_hdr)) {
3339 tcp_hc_updatemtu(&inc, mtu);
3340 tcp_mtudisc(inp, mtu);
3341 ICMP6STAT_INC(icp6s_pmtuchg);
3342 }
3343 } else
3344 inp = (*notify)(inp, errno);
3345 }
3346 } else {
3347 bzero(&inc, sizeof(inc));
3348 inc.inc_fibnum = M_GETFIB(m);
3349 inc.inc_flags |= INC_ISIPV6;
3350 inc.inc_fport = t_ports.th_dport;
3351 inc.inc_lport = t_ports.th_sport;
3352 inc.inc6_faddr = *dst;
3353 inc.inc6_laddr = ip6->ip6_src;
3354 syncache_unreach(&inc, icmp_tcp_seq, port);
3355 }
3356 out:
3357 if (inp != NULL)
3358 INP_WUNLOCK(inp);
3359 }
3360
3361 static void
tcp6_ctlinput(struct ip6ctlparam * ctl)3362 tcp6_ctlinput(struct ip6ctlparam *ctl)
3363 {
3364 tcp6_ctlinput_with_port(ctl, htons(0));
3365 }
3366
3367 static void
tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)3368 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param)
3369 {
3370 struct ip6ctlparam *ip6cp = param.ip6cp;
3371 struct mbuf *m;
3372 struct udphdr *udp;
3373 uint16_t port;
3374
3375 m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL);
3376 if (m == NULL) {
3377 return;
3378 }
3379 udp = mtod(m, struct udphdr *);
3380 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) {
3381 return;
3382 }
3383 port = udp->uh_dport;
3384 m_adj(m, sizeof(struct udphdr));
3385 if ((m->m_flags & M_PKTHDR) == 0) {
3386 ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr);
3387 }
3388 /* Now call in to the normal handling code */
3389 tcp6_ctlinput_with_port(ip6cp, port);
3390 }
3391
3392 #endif /* INET6 */
3393
3394 static uint32_t
tcp_keyed_hash(struct in_conninfo * inc,u_char * key,u_int len)3395 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len)
3396 {
3397 SIPHASH_CTX ctx;
3398 uint32_t hash[2];
3399
3400 KASSERT(len >= SIPHASH_KEY_LENGTH,
3401 ("%s: keylen %u too short ", __func__, len));
3402 SipHash24_Init(&ctx);
3403 SipHash_SetKey(&ctx, (uint8_t *)key);
3404 SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t));
3405 SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t));
3406 switch (inc->inc_flags & INC_ISIPV6) {
3407 #ifdef INET
3408 case 0:
3409 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr));
3410 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr));
3411 break;
3412 #endif
3413 #ifdef INET6
3414 case INC_ISIPV6:
3415 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr));
3416 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr));
3417 break;
3418 #endif
3419 }
3420 SipHash_Final((uint8_t *)hash, &ctx);
3421
3422 return (hash[0] ^ hash[1]);
3423 }
3424
3425 uint32_t
tcp_new_ts_offset(struct in_conninfo * inc)3426 tcp_new_ts_offset(struct in_conninfo *inc)
3427 {
3428 struct in_conninfo inc_store, *local_inc;
3429
3430 if (!V_tcp_ts_offset_per_conn) {
3431 memcpy(&inc_store, inc, sizeof(struct in_conninfo));
3432 inc_store.inc_lport = 0;
3433 inc_store.inc_fport = 0;
3434 local_inc = &inc_store;
3435 } else {
3436 local_inc = inc;
3437 }
3438 return (tcp_keyed_hash(local_inc, V_ts_offset_secret,
3439 sizeof(V_ts_offset_secret)));
3440 }
3441
3442 /*
3443 * Following is where TCP initial sequence number generation occurs.
3444 *
3445 * There are two places where we must use initial sequence numbers:
3446 * 1. In SYN-ACK packets.
3447 * 2. In SYN packets.
3448 *
3449 * All ISNs for SYN-ACK packets are generated by the syncache. See
3450 * tcp_syncache.c for details.
3451 *
3452 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
3453 * depends on this property. In addition, these ISNs should be
3454 * unguessable so as to prevent connection hijacking. To satisfy
3455 * the requirements of this situation, the algorithm outlined in
3456 * RFC 1948 is used, with only small modifications.
3457 *
3458 * Implementation details:
3459 *
3460 * Time is based off the system timer, and is corrected so that it
3461 * increases by one megabyte per second. This allows for proper
3462 * recycling on high speed LANs while still leaving over an hour
3463 * before rollover.
3464 *
3465 * As reading the *exact* system time is too expensive to be done
3466 * whenever setting up a TCP connection, we increment the time
3467 * offset in two ways. First, a small random positive increment
3468 * is added to isn_offset for each connection that is set up.
3469 * Second, the function tcp_isn_tick fires once per clock tick
3470 * and increments isn_offset as necessary so that sequence numbers
3471 * are incremented at approximately ISN_BYTES_PER_SECOND. The
3472 * random positive increments serve only to ensure that the same
3473 * exact sequence number is never sent out twice (as could otherwise
3474 * happen when a port is recycled in less than the system tick
3475 * interval.)
3476 *
3477 * net.inet.tcp.isn_reseed_interval controls the number of seconds
3478 * between seeding of isn_secret. This is normally set to zero,
3479 * as reseeding should not be necessary.
3480 *
3481 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
3482 * isn_offset_old, and isn_ctx is performed using the ISN lock. In
3483 * general, this means holding an exclusive (write) lock.
3484 */
3485
3486 #define ISN_BYTES_PER_SECOND 1048576
3487 #define ISN_STATIC_INCREMENT 4096
3488 #define ISN_RANDOM_INCREMENT (4096 - 1)
3489 #define ISN_SECRET_LENGTH SIPHASH_KEY_LENGTH
3490
3491 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]);
3492 VNET_DEFINE_STATIC(int, isn_last);
3493 VNET_DEFINE_STATIC(int, isn_last_reseed);
3494 VNET_DEFINE_STATIC(u_int32_t, isn_offset);
3495 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old);
3496
3497 #define V_isn_secret VNET(isn_secret)
3498 #define V_isn_last VNET(isn_last)
3499 #define V_isn_last_reseed VNET(isn_last_reseed)
3500 #define V_isn_offset VNET(isn_offset)
3501 #define V_isn_offset_old VNET(isn_offset_old)
3502
3503 tcp_seq
tcp_new_isn(struct in_conninfo * inc)3504 tcp_new_isn(struct in_conninfo *inc)
3505 {
3506 tcp_seq new_isn;
3507 u_int32_t projected_offset;
3508
3509 ISN_LOCK();
3510 /* Seed if this is the first use, reseed if requested. */
3511 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
3512 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
3513 < (u_int)ticks))) {
3514 arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0);
3515 V_isn_last_reseed = ticks;
3516 }
3517
3518 /* Compute the hash and return the ISN. */
3519 new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret,
3520 sizeof(V_isn_secret));
3521 V_isn_offset += ISN_STATIC_INCREMENT +
3522 (arc4random() & ISN_RANDOM_INCREMENT);
3523 if (ticks != V_isn_last) {
3524 projected_offset = V_isn_offset_old +
3525 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
3526 if (SEQ_GT(projected_offset, V_isn_offset))
3527 V_isn_offset = projected_offset;
3528 V_isn_offset_old = V_isn_offset;
3529 V_isn_last = ticks;
3530 }
3531 new_isn += V_isn_offset;
3532 ISN_UNLOCK();
3533 return (new_isn);
3534 }
3535
3536 /*
3537 * When a specific ICMP unreachable message is received and the
3538 * connection state is SYN-SENT, drop the connection. This behavior
3539 * is controlled by the icmp_may_rst sysctl.
3540 */
3541 static struct inpcb *
tcp_drop_syn_sent(struct inpcb * inp,int errno)3542 tcp_drop_syn_sent(struct inpcb *inp, int errno)
3543 {
3544 struct tcpcb *tp;
3545
3546 NET_EPOCH_ASSERT();
3547 INP_WLOCK_ASSERT(inp);
3548
3549 tp = intotcpcb(inp);
3550 if (tp->t_state != TCPS_SYN_SENT)
3551 return (inp);
3552
3553 if (tp->t_flags & TF_FASTOPEN)
3554 tcp_fastopen_disable_path(tp);
3555
3556 tp = tcp_drop(tp, errno);
3557 if (tp != NULL)
3558 return (inp);
3559 else
3560 return (NULL);
3561 }
3562
3563 /*
3564 * When `need fragmentation' ICMP is received, update our idea of the MSS
3565 * based on the new value. Also nudge TCP to send something, since we
3566 * know the packet we just sent was dropped.
3567 * This duplicates some code in the tcp_mss() function in tcp_input.c.
3568 */
3569 static struct inpcb *
tcp_mtudisc_notify(struct inpcb * inp,int error)3570 tcp_mtudisc_notify(struct inpcb *inp, int error)
3571 {
3572
3573 return (tcp_mtudisc(inp, -1));
3574 }
3575
3576 static struct inpcb *
tcp_mtudisc(struct inpcb * inp,int mtuoffer)3577 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
3578 {
3579 struct tcpcb *tp;
3580 struct socket *so;
3581
3582 INP_WLOCK_ASSERT(inp);
3583
3584 tp = intotcpcb(inp);
3585 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
3586
3587 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
3588
3589 so = inp->inp_socket;
3590 SOCK_SENDBUF_LOCK(so);
3591 /* If the mss is larger than the socket buffer, decrease the mss. */
3592 if (so->so_snd.sb_hiwat < tp->t_maxseg) {
3593 tp->t_maxseg = so->so_snd.sb_hiwat;
3594 if (tp->t_maxseg < V_tcp_mssdflt) {
3595 /*
3596 * The MSS is so small we should not process incoming
3597 * SACK's since we are subject to attack in such a
3598 * case.
3599 */
3600 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3601 } else {
3602 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3603 }
3604 }
3605 SOCK_SENDBUF_UNLOCK(so);
3606
3607 TCPSTAT_INC(tcps_mturesent);
3608 tp->t_rtttime = 0;
3609 tp->snd_nxt = tp->snd_una;
3610 tcp_free_sackholes(tp);
3611 tp->snd_recover = tp->snd_max;
3612 if (tp->t_flags & TF_SACK_PERMIT)
3613 EXIT_FASTRECOVERY(tp->t_flags);
3614 if (tp->t_fb->tfb_tcp_mtu_chg != NULL) {
3615 /*
3616 * Conceptually the snd_nxt setting
3617 * and freeing sack holes should
3618 * be done by the default stacks
3619 * own tfb_tcp_mtu_chg().
3620 */
3621 tp->t_fb->tfb_tcp_mtu_chg(tp);
3622 }
3623 if (tcp_output(tp) < 0)
3624 return (NULL);
3625 else
3626 return (inp);
3627 }
3628
3629 #ifdef INET
3630 /*
3631 * Look-up the routing entry to the peer of this inpcb. If no route
3632 * is found and it cannot be allocated, then return 0. This routine
3633 * is called by TCP routines that access the rmx structure and by
3634 * tcp_mss_update to get the peer/interface MTU.
3635 */
3636 uint32_t
tcp_maxmtu(struct in_conninfo * inc,struct tcp_ifcap * cap)3637 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
3638 {
3639 struct nhop_object *nh;
3640 struct ifnet *ifp;
3641 uint32_t maxmtu = 0;
3642
3643 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
3644
3645 if (inc->inc_faddr.s_addr != INADDR_ANY) {
3646 nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0);
3647 if (nh == NULL)
3648 return (0);
3649
3650 ifp = nh->nh_ifp;
3651 maxmtu = nh->nh_mtu;
3652
3653 /* Report additional interface capabilities. */
3654 if (cap != NULL) {
3655 if (ifp->if_capenable & IFCAP_TSO4 &&
3656 ifp->if_hwassist & CSUM_TSO) {
3657 cap->ifcap |= CSUM_TSO;
3658 cap->tsomax = ifp->if_hw_tsomax;
3659 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
3660 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
3661 /* XXXKIB IFCAP2_IPSEC_OFFLOAD_TSO */
3662 cap->ipsec_tso = (ifp->if_capenable2 &
3663 IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD)) != 0;
3664 }
3665 }
3666 }
3667 return (maxmtu);
3668 }
3669 #endif /* INET */
3670
3671 #ifdef INET6
3672 uint32_t
tcp_maxmtu6(struct in_conninfo * inc,struct tcp_ifcap * cap)3673 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
3674 {
3675 struct nhop_object *nh;
3676 struct in6_addr dst6;
3677 uint32_t scopeid;
3678 struct ifnet *ifp;
3679 uint32_t maxmtu = 0;
3680
3681 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
3682
3683 if (inc->inc_flags & INC_IPV6MINMTU)
3684 return (IPV6_MMTU);
3685
3686 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
3687 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
3688 nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0);
3689 if (nh == NULL)
3690 return (0);
3691
3692 ifp = nh->nh_ifp;
3693 maxmtu = nh->nh_mtu;
3694
3695 /* Report additional interface capabilities. */
3696 if (cap != NULL) {
3697 if (ifp->if_capenable & IFCAP_TSO6 &&
3698 ifp->if_hwassist & CSUM_TSO) {
3699 cap->ifcap |= CSUM_TSO;
3700 cap->tsomax = ifp->if_hw_tsomax;
3701 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
3702 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
3703 cap->ipsec_tso = false; /* XXXKIB */
3704 }
3705 }
3706 }
3707
3708 return (maxmtu);
3709 }
3710
3711 /*
3712 * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack.
3713 *
3714 * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag.
3715 * The right place to do that is ip6_setpktopt() that has just been
3716 * executed. By the way it just filled ip6po_minmtu for us.
3717 */
3718 void
tcp6_use_min_mtu(struct tcpcb * tp)3719 tcp6_use_min_mtu(struct tcpcb *tp)
3720 {
3721 struct inpcb *inp = tptoinpcb(tp);
3722
3723 INP_WLOCK_ASSERT(inp);
3724 /*
3725 * In case of the IPV6_USE_MIN_MTU socket
3726 * option, the INC_IPV6MINMTU flag to announce
3727 * a corresponding MSS during the initial
3728 * handshake. If the TCP connection is not in
3729 * the front states, just reduce the MSS being
3730 * used. This avoids the sending of TCP
3731 * segments which will be fragmented at the
3732 * IPv6 layer.
3733 */
3734 inp->inp_inc.inc_flags |= INC_IPV6MINMTU;
3735 if ((tp->t_state >= TCPS_SYN_SENT) &&
3736 (inp->inp_inc.inc_flags & INC_ISIPV6)) {
3737 struct ip6_pktopts *opt;
3738
3739 opt = inp->in6p_outputopts;
3740 if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL &&
3741 tp->t_maxseg > TCP6_MSS) {
3742 tp->t_maxseg = TCP6_MSS;
3743 if (tp->t_maxseg < V_tcp_mssdflt) {
3744 /*
3745 * The MSS is so small we should not process incoming
3746 * SACK's since we are subject to attack in such a
3747 * case.
3748 */
3749 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3750 } else {
3751 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3752 }
3753 }
3754 }
3755 }
3756 #endif /* INET6 */
3757
3758 /*
3759 * Calculate effective SMSS per RFC5681 definition for a given TCP
3760 * connection at its current state, taking into account SACK and etc.
3761 */
3762 u_int
tcp_maxseg(const struct tcpcb * tp)3763 tcp_maxseg(const struct tcpcb *tp)
3764 {
3765 u_int optlen;
3766
3767 if (tp->t_flags & TF_NOOPT)
3768 return (tp->t_maxseg);
3769
3770 /*
3771 * Here we have a simplified code from tcp_addoptions(),
3772 * without a proper loop, and having most of paddings hardcoded.
3773 * We might make mistakes with padding here in some edge cases,
3774 * but this is harmless, since result of tcp_maxseg() is used
3775 * only in cwnd and ssthresh estimations.
3776 */
3777 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3778 if (tp->t_flags & TF_RCVD_TSTMP)
3779 optlen = TCPOLEN_TSTAMP_APPA;
3780 else
3781 optlen = 0;
3782 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3783 if (tp->t_flags & TF_SIGNATURE)
3784 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3785 #endif
3786 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
3787 optlen += TCPOLEN_SACKHDR;
3788 optlen += tp->rcv_numsacks * TCPOLEN_SACK;
3789 optlen = PADTCPOLEN(optlen);
3790 }
3791 } else {
3792 if (tp->t_flags & TF_REQ_TSTMP)
3793 optlen = TCPOLEN_TSTAMP_APPA;
3794 else
3795 optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
3796 if (tp->t_flags & TF_REQ_SCALE)
3797 optlen += PADTCPOLEN(TCPOLEN_WINDOW);
3798 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3799 if (tp->t_flags & TF_SIGNATURE)
3800 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3801 #endif
3802 if (tp->t_flags & TF_SACK_PERMIT)
3803 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
3804 }
3805 optlen = min(optlen, TCP_MAXOLEN);
3806 return (tp->t_maxseg - optlen);
3807 }
3808
3809
3810 u_int
tcp_fixed_maxseg(const struct tcpcb * tp)3811 tcp_fixed_maxseg(const struct tcpcb *tp)
3812 {
3813 int optlen;
3814
3815 if (tp->t_flags & TF_NOOPT)
3816 return (tp->t_maxseg);
3817
3818 /*
3819 * Here we have a simplified code from tcp_addoptions(),
3820 * without a proper loop, and having most of paddings hardcoded.
3821 * We only consider fixed options that we would send every
3822 * time I.e. SACK is not considered. This is important
3823 * for cc modules to figure out what the modulo of the
3824 * cwnd should be.
3825 */
3826 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3827 if (tp->t_flags & TF_RCVD_TSTMP)
3828 optlen = TCPOLEN_TSTAMP_APPA;
3829 else
3830 optlen = 0;
3831 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3832 if (tp->t_flags & TF_SIGNATURE)
3833 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3834 #endif
3835 } else {
3836 if (tp->t_flags & TF_REQ_TSTMP)
3837 optlen = TCPOLEN_TSTAMP_APPA;
3838 else
3839 optlen = PADTCPOLEN(TCPOLEN_MAXSEG);
3840 if (tp->t_flags & TF_REQ_SCALE)
3841 optlen += PADTCPOLEN(TCPOLEN_WINDOW);
3842 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
3843 if (tp->t_flags & TF_SIGNATURE)
3844 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE);
3845 #endif
3846 if (tp->t_flags & TF_SACK_PERMIT)
3847 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED);
3848 }
3849 optlen = min(optlen, TCP_MAXOLEN);
3850 return (tp->t_maxseg - optlen);
3851 }
3852
3853
3854
3855 static int
sysctl_drop(SYSCTL_HANDLER_ARGS)3856 sysctl_drop(SYSCTL_HANDLER_ARGS)
3857 {
3858 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
3859 struct sockaddr_storage addrs[2];
3860 struct inpcb *inp;
3861 struct tcpcb *tp;
3862 #ifdef INET
3863 struct sockaddr_in *fin = NULL, *lin = NULL;
3864 #endif
3865 struct epoch_tracker et;
3866 #ifdef INET6
3867 struct sockaddr_in6 *fin6, *lin6;
3868 #endif
3869 int error;
3870
3871 inp = NULL;
3872 #ifdef INET6
3873 fin6 = lin6 = NULL;
3874 #endif
3875 error = 0;
3876
3877 if (req->oldptr != NULL || req->oldlen != 0)
3878 return (EINVAL);
3879 if (req->newptr == NULL)
3880 return (EPERM);
3881 if (req->newlen < sizeof(addrs))
3882 return (ENOMEM);
3883 error = SYSCTL_IN(req, &addrs, sizeof(addrs));
3884 if (error)
3885 return (error);
3886
3887 switch (addrs[0].ss_family) {
3888 #ifdef INET6
3889 case AF_INET6:
3890 fin6 = (struct sockaddr_in6 *)&addrs[0];
3891 lin6 = (struct sockaddr_in6 *)&addrs[1];
3892 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
3893 lin6->sin6_len != sizeof(struct sockaddr_in6))
3894 return (EINVAL);
3895 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
3896 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
3897 return (EINVAL);
3898 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
3899 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
3900 #ifdef INET
3901 fin = (struct sockaddr_in *)&addrs[0];
3902 lin = (struct sockaddr_in *)&addrs[1];
3903 #endif
3904 break;
3905 }
3906 error = sa6_embedscope(fin6, V_ip6_use_defzone);
3907 if (error)
3908 return (error);
3909 error = sa6_embedscope(lin6, V_ip6_use_defzone);
3910 if (error)
3911 return (error);
3912 break;
3913 #endif
3914 #ifdef INET
3915 case AF_INET:
3916 fin = (struct sockaddr_in *)&addrs[0];
3917 lin = (struct sockaddr_in *)&addrs[1];
3918 if (fin->sin_len != sizeof(struct sockaddr_in) ||
3919 lin->sin_len != sizeof(struct sockaddr_in))
3920 return (EINVAL);
3921 break;
3922 #endif
3923 default:
3924 return (EINVAL);
3925 }
3926 NET_EPOCH_ENTER(et);
3927 switch (addrs[0].ss_family) {
3928 #ifdef INET6
3929 case AF_INET6:
3930 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
3931 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
3932 INPLOOKUP_WLOCKPCB, NULL);
3933 break;
3934 #endif
3935 #ifdef INET
3936 case AF_INET:
3937 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
3938 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
3939 break;
3940 #endif
3941 }
3942 if (inp != NULL) {
3943 if (!SOLISTENING(inp->inp_socket)) {
3944 tp = intotcpcb(inp);
3945 tp = tcp_drop(tp, ECONNABORTED);
3946 if (tp != NULL)
3947 INP_WUNLOCK(inp);
3948 } else
3949 INP_WUNLOCK(inp);
3950 } else
3951 error = ESRCH;
3952 NET_EPOCH_EXIT(et);
3953 return (error);
3954 }
3955
3956 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
3957 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3958 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "",
3959 "Drop TCP connection");
3960
3961 static int
tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)3962 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS)
3963 {
3964 return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo,
3965 &tcp_ctloutput_set));
3966 }
3967
3968 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt,
3969 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
3970 CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "",
3971 "Set socket option for TCP endpoint");
3972
3973 #ifdef KERN_TLS
3974 static int
sysctl_switch_tls(SYSCTL_HANDLER_ARGS)3975 sysctl_switch_tls(SYSCTL_HANDLER_ARGS)
3976 {
3977 /* addrs[0] is a foreign socket, addrs[1] is a local one. */
3978 struct sockaddr_storage addrs[2];
3979 struct inpcb *inp;
3980 #ifdef INET
3981 struct sockaddr_in *fin = NULL, *lin = NULL;
3982 #endif
3983 struct epoch_tracker et;
3984 #ifdef INET6
3985 struct sockaddr_in6 *fin6, *lin6;
3986 #endif
3987 int error;
3988
3989 inp = NULL;
3990 #ifdef INET6
3991 fin6 = lin6 = NULL;
3992 #endif
3993 error = 0;
3994
3995 if (req->oldptr != NULL || req->oldlen != 0)
3996 return (EINVAL);
3997 if (req->newptr == NULL)
3998 return (EPERM);
3999 if (req->newlen < sizeof(addrs))
4000 return (ENOMEM);
4001 error = SYSCTL_IN(req, &addrs, sizeof(addrs));
4002 if (error)
4003 return (error);
4004
4005 switch (addrs[0].ss_family) {
4006 #ifdef INET6
4007 case AF_INET6:
4008 fin6 = (struct sockaddr_in6 *)&addrs[0];
4009 lin6 = (struct sockaddr_in6 *)&addrs[1];
4010 if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
4011 lin6->sin6_len != sizeof(struct sockaddr_in6))
4012 return (EINVAL);
4013 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
4014 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
4015 return (EINVAL);
4016 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
4017 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
4018 #ifdef INET
4019 fin = (struct sockaddr_in *)&addrs[0];
4020 lin = (struct sockaddr_in *)&addrs[1];
4021 #endif
4022 break;
4023 }
4024 error = sa6_embedscope(fin6, V_ip6_use_defzone);
4025 if (error)
4026 return (error);
4027 error = sa6_embedscope(lin6, V_ip6_use_defzone);
4028 if (error)
4029 return (error);
4030 break;
4031 #endif
4032 #ifdef INET
4033 case AF_INET:
4034 fin = (struct sockaddr_in *)&addrs[0];
4035 lin = (struct sockaddr_in *)&addrs[1];
4036 if (fin->sin_len != sizeof(struct sockaddr_in) ||
4037 lin->sin_len != sizeof(struct sockaddr_in))
4038 return (EINVAL);
4039 break;
4040 #endif
4041 default:
4042 return (EINVAL);
4043 }
4044 NET_EPOCH_ENTER(et);
4045 switch (addrs[0].ss_family) {
4046 #ifdef INET6
4047 case AF_INET6:
4048 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
4049 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
4050 INPLOOKUP_WLOCKPCB, NULL);
4051 break;
4052 #endif
4053 #ifdef INET
4054 case AF_INET:
4055 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
4056 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
4057 break;
4058 #endif
4059 }
4060 NET_EPOCH_EXIT(et);
4061 if (inp != NULL) {
4062 struct socket *so;
4063
4064 so = inp->inp_socket;
4065 soref(so);
4066 error = ktls_set_tx_mode(so,
4067 arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET);
4068 INP_WUNLOCK(inp);
4069 sorele(so);
4070 } else
4071 error = ESRCH;
4072 return (error);
4073 }
4074
4075 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls,
4076 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
4077 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "",
4078 "Switch TCP connection to SW TLS");
4079 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls,
4080 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP |
4081 CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "",
4082 "Switch TCP connection to ifnet TLS");
4083 #endif
4084
4085 /*
4086 * Generate a standardized TCP log line for use throughout the
4087 * tcp subsystem. Memory allocation is done with M_NOWAIT to
4088 * allow use in the interrupt context.
4089 *
4090 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
4091 * NB: The function may return NULL if memory allocation failed.
4092 *
4093 * Due to header inclusion and ordering limitations the struct ip
4094 * and ip6_hdr pointers have to be passed as void pointers.
4095 */
4096 char *
tcp_log_vain(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4097 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4098 const void *ip6hdr)
4099 {
4100
4101 /* Is logging enabled? */
4102 if (V_tcp_log_in_vain == 0)
4103 return (NULL);
4104
4105 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
4106 }
4107
4108 char *
tcp_log_addrs(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4109 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4110 const void *ip6hdr)
4111 {
4112
4113 /* Is logging enabled? */
4114 if (tcp_log_debug == 0)
4115 return (NULL);
4116
4117 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
4118 }
4119
4120 static char *
tcp_log_addr(struct in_conninfo * inc,struct tcphdr * th,const void * ip4hdr,const void * ip6hdr)4121 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr,
4122 const void *ip6hdr)
4123 {
4124 char *s, *sp;
4125 size_t size;
4126 #ifdef INET
4127 const struct ip *ip = (const struct ip *)ip4hdr;
4128 #endif
4129 #ifdef INET6
4130 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr;
4131 #endif /* INET6 */
4132
4133 /*
4134 * The log line looks like this:
4135 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
4136 */
4137 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
4138 sizeof(PRINT_TH_FLAGS) + 1 +
4139 #ifdef INET6
4140 2 * INET6_ADDRSTRLEN;
4141 #else
4142 2 * INET_ADDRSTRLEN;
4143 #endif /* INET6 */
4144
4145 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
4146 if (s == NULL)
4147 return (NULL);
4148
4149 strcat(s, "TCP: [");
4150 sp = s + strlen(s);
4151
4152 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
4153 inet_ntoa_r(inc->inc_faddr, sp);
4154 sp = s + strlen(s);
4155 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
4156 sp = s + strlen(s);
4157 inet_ntoa_r(inc->inc_laddr, sp);
4158 sp = s + strlen(s);
4159 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
4160 #ifdef INET6
4161 } else if (inc) {
4162 ip6_sprintf(sp, &inc->inc6_faddr);
4163 sp = s + strlen(s);
4164 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
4165 sp = s + strlen(s);
4166 ip6_sprintf(sp, &inc->inc6_laddr);
4167 sp = s + strlen(s);
4168 sprintf(sp, "]:%i", ntohs(inc->inc_lport));
4169 } else if (ip6 && th) {
4170 ip6_sprintf(sp, &ip6->ip6_src);
4171 sp = s + strlen(s);
4172 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
4173 sp = s + strlen(s);
4174 ip6_sprintf(sp, &ip6->ip6_dst);
4175 sp = s + strlen(s);
4176 sprintf(sp, "]:%i", ntohs(th->th_dport));
4177 #endif /* INET6 */
4178 #ifdef INET
4179 } else if (ip && th) {
4180 inet_ntoa_r(ip->ip_src, sp);
4181 sp = s + strlen(s);
4182 sprintf(sp, "]:%i to [", ntohs(th->th_sport));
4183 sp = s + strlen(s);
4184 inet_ntoa_r(ip->ip_dst, sp);
4185 sp = s + strlen(s);
4186 sprintf(sp, "]:%i", ntohs(th->th_dport));
4187 #endif /* INET */
4188 } else {
4189 free(s, M_TCPLOG);
4190 return (NULL);
4191 }
4192 sp = s + strlen(s);
4193 if (th)
4194 sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS);
4195 if (*(s + size - 1) != '\0')
4196 panic("%s: string too long", __func__);
4197 return (s);
4198 }
4199
4200 /*
4201 * A subroutine which makes it easy to track TCP state changes with DTrace.
4202 * This function shouldn't be called for t_state initializations that don't
4203 * correspond to actual TCP state transitions.
4204 */
4205 void
tcp_state_change(struct tcpcb * tp,int newstate)4206 tcp_state_change(struct tcpcb *tp, int newstate)
4207 {
4208 #if defined(KDTRACE_HOOKS)
4209 int pstate = tp->t_state;
4210 #endif
4211
4212 TCPSTATES_DEC(tp->t_state);
4213 TCPSTATES_INC(newstate);
4214 tp->t_state = newstate;
4215 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
4216 }
4217
4218 /*
4219 * Create an external-format (``xtcpcb'') structure using the information in
4220 * the kernel-format tcpcb structure pointed to by tp. This is done to
4221 * reduce the spew of irrelevant information over this interface, to isolate
4222 * user code from changes in the kernel structure, and potentially to provide
4223 * information-hiding if we decide that some of this information should be
4224 * hidden from users.
4225 */
4226 void
tcp_inptoxtp(const struct inpcb * inp,struct xtcpcb * xt)4227 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt)
4228 {
4229 struct tcpcb *tp = intotcpcb(inp);
4230 sbintime_t now;
4231
4232 bzero(xt, sizeof(*xt));
4233 xt->t_state = tp->t_state;
4234 xt->t_logstate = tcp_get_bblog_state(tp);
4235 xt->t_flags = tp->t_flags;
4236 xt->t_sndzerowin = tp->t_sndzerowin;
4237 xt->t_sndrexmitpack = tp->t_sndrexmitpack;
4238 xt->t_rcvoopack = tp->t_rcvoopack;
4239 xt->t_rcv_wnd = tp->rcv_wnd;
4240 xt->t_snd_wnd = tp->snd_wnd;
4241 xt->t_snd_cwnd = tp->snd_cwnd;
4242 xt->t_snd_ssthresh = tp->snd_ssthresh;
4243 xt->t_dsack_bytes = tp->t_dsack_bytes;
4244 xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes;
4245 xt->t_dsack_pack = tp->t_dsack_pack;
4246 xt->t_maxseg = tp->t_maxseg;
4247 xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 +
4248 (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0;
4249
4250 now = getsbinuptime();
4251 #define COPYTIMER(which,where) do { \
4252 if (tp->t_timers[which] != SBT_MAX) \
4253 xt->where = (tp->t_timers[which] - now) / SBT_1MS; \
4254 else \
4255 xt->where = 0; \
4256 } while (0)
4257 COPYTIMER(TT_DELACK, tt_delack);
4258 COPYTIMER(TT_REXMT, tt_rexmt);
4259 COPYTIMER(TT_PERSIST, tt_persist);
4260 COPYTIMER(TT_KEEP, tt_keep);
4261 COPYTIMER(TT_2MSL, tt_2msl);
4262 #undef COPYTIMER
4263 xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz;
4264
4265 xt->xt_encaps_port = tp->t_port;
4266 bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack,
4267 TCP_FUNCTION_NAME_LEN_MAX);
4268 bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX);
4269 #ifdef TCP_BLACKBOX
4270 (void)tcp_log_get_id(tp, xt->xt_logid);
4271 #endif
4272
4273 xt->xt_len = sizeof(struct xtcpcb);
4274 in_pcbtoxinpcb(inp, &xt->xt_inp);
4275 }
4276
4277 void
tcp_log_end_status(struct tcpcb * tp,uint8_t status)4278 tcp_log_end_status(struct tcpcb *tp, uint8_t status)
4279 {
4280 uint32_t bit, i;
4281
4282 if ((tp == NULL) ||
4283 (status > TCP_EI_STATUS_MAX_VALUE) ||
4284 (status == 0)) {
4285 /* Invalid */
4286 return;
4287 }
4288 if (status > (sizeof(uint32_t) * 8)) {
4289 /* Should this be a KASSERT? */
4290 return;
4291 }
4292 bit = 1U << (status - 1);
4293 if (bit & tp->t_end_info_status) {
4294 /* already logged */
4295 return;
4296 }
4297 for (i = 0; i < TCP_END_BYTE_INFO; i++) {
4298 if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) {
4299 tp->t_end_info_bytes[i] = status;
4300 tp->t_end_info_status |= bit;
4301 break;
4302 }
4303 }
4304 }
4305
4306 int
tcp_can_enable_pacing(void)4307 tcp_can_enable_pacing(void)
4308 {
4309
4310 if ((tcp_pacing_limit == -1) ||
4311 (tcp_pacing_limit > number_of_tcp_connections_pacing)) {
4312 atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1);
4313 shadow_num_connections = number_of_tcp_connections_pacing;
4314 return (1);
4315 } else {
4316 counter_u64_add(tcp_pacing_failures, 1);
4317 return (0);
4318 }
4319 }
4320
4321 int
tcp_incr_dgp_pacing_cnt(void)4322 tcp_incr_dgp_pacing_cnt(void)
4323 {
4324 if ((tcp_dgp_limit == -1) ||
4325 (tcp_dgp_limit > number_of_dgp_connections)) {
4326 atomic_fetchadd_int(&number_of_dgp_connections, 1);
4327 shadow_tcp_pacing_dgp = number_of_dgp_connections;
4328 return (1);
4329 } else {
4330 counter_u64_add(tcp_dgp_failures, 1);
4331 return (0);
4332 }
4333 }
4334
4335 static uint8_t tcp_dgp_warning = 0;
4336
4337 void
tcp_dec_dgp_pacing_cnt(void)4338 tcp_dec_dgp_pacing_cnt(void)
4339 {
4340 uint32_t ret;
4341
4342 ret = atomic_fetchadd_int(&number_of_dgp_connections, -1);
4343 shadow_tcp_pacing_dgp = number_of_dgp_connections;
4344 KASSERT(ret != 0, ("number_of_dgp_connections -1 would cause wrap?"));
4345 if (ret == 0) {
4346 if (tcp_dgp_limit != -1) {
4347 printf("Warning all DGP is now disabled, count decrements invalidly!\n");
4348 tcp_dgp_limit = 0;
4349 tcp_dgp_warning = 1;
4350 } else if (tcp_dgp_warning == 0) {
4351 printf("Warning DGP pacing is invalid, invalid decrement\n");
4352 tcp_dgp_warning = 1;
4353 }
4354 }
4355
4356 }
4357
4358 static uint8_t tcp_pacing_warning = 0;
4359
4360 void
tcp_decrement_paced_conn(void)4361 tcp_decrement_paced_conn(void)
4362 {
4363 uint32_t ret;
4364
4365 ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1);
4366 shadow_num_connections = number_of_tcp_connections_pacing;
4367 KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?"));
4368 if (ret == 0) {
4369 if (tcp_pacing_limit != -1) {
4370 printf("Warning all pacing is now disabled, count decrements invalidly!\n");
4371 tcp_pacing_limit = 0;
4372 } else if (tcp_pacing_warning == 0) {
4373 printf("Warning pacing count is invalid, invalid decrement\n");
4374 tcp_pacing_warning = 1;
4375 }
4376 }
4377 }
4378
4379 static void
tcp_default_switch_failed(struct tcpcb * tp)4380 tcp_default_switch_failed(struct tcpcb *tp)
4381 {
4382 /*
4383 * If a switch fails we only need to
4384 * care about two things:
4385 * a) The t_flags2
4386 * and
4387 * b) The timer granularity.
4388 * Timeouts, at least for now, don't use the
4389 * old callout system in the other stacks so
4390 * those are hopefully safe.
4391 */
4392 tcp_lro_features_off(tp);
4393 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS);
4394 }
4395
4396 #ifdef TCP_ACCOUNTING
4397 int
tcp_do_ack_accounting(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,uint32_t tiwin,int mss)4398 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss)
4399 {
4400 if (SEQ_LT(th->th_ack, tp->snd_una)) {
4401 /* Do we have a SACK? */
4402 if (to->to_flags & TOF_SACK) {
4403 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4404 tp->tcp_cnt_counters[ACK_SACK]++;
4405 }
4406 return (ACK_SACK);
4407 } else {
4408 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4409 tp->tcp_cnt_counters[ACK_BEHIND]++;
4410 }
4411 return (ACK_BEHIND);
4412 }
4413 } else if (th->th_ack == tp->snd_una) {
4414 /* Do we have a SACK? */
4415 if (to->to_flags & TOF_SACK) {
4416 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4417 tp->tcp_cnt_counters[ACK_SACK]++;
4418 }
4419 return (ACK_SACK);
4420 } else if (tiwin != tp->snd_wnd) {
4421 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4422 tp->tcp_cnt_counters[ACK_RWND]++;
4423 }
4424 return (ACK_RWND);
4425 } else {
4426 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4427 tp->tcp_cnt_counters[ACK_DUPACK]++;
4428 }
4429 return (ACK_DUPACK);
4430 }
4431 } else {
4432 if (!SEQ_GT(th->th_ack, tp->snd_max)) {
4433 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4434 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss);
4435 }
4436 }
4437 if (to->to_flags & TOF_SACK) {
4438 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4439 tp->tcp_cnt_counters[ACK_CUMACK_SACK]++;
4440 }
4441 return (ACK_CUMACK_SACK);
4442 } else {
4443 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
4444 tp->tcp_cnt_counters[ACK_CUMACK]++;
4445 }
4446 return (ACK_CUMACK);
4447 }
4448 }
4449 }
4450 #endif
4451
4452 void
tcp_change_time_units(struct tcpcb * tp,int granularity)4453 tcp_change_time_units(struct tcpcb *tp, int granularity)
4454 {
4455 if (tp->t_tmr_granularity == granularity) {
4456 /* We are there */
4457 return;
4458 }
4459 if (granularity == TCP_TMR_GRANULARITY_USEC) {
4460 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS),
4461 ("Granularity is not TICKS its %u in tp:%p",
4462 tp->t_tmr_granularity, tp));
4463 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
4464 if (tp->t_srtt > 1) {
4465 uint32_t val, frac;
4466
4467 val = tp->t_srtt >> TCP_RTT_SHIFT;
4468 frac = tp->t_srtt & 0x1f;
4469 tp->t_srtt = TICKS_2_USEC(val);
4470 /*
4471 * frac is the fractional part of the srtt (if any)
4472 * but its in ticks and every bit represents
4473 * 1/32nd of a hz.
4474 */
4475 if (frac) {
4476 if (hz == 1000) {
4477 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
4478 } else {
4479 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
4480 }
4481 tp->t_srtt += frac;
4482 }
4483 }
4484 if (tp->t_rttvar) {
4485 uint32_t val, frac;
4486
4487 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
4488 frac = tp->t_rttvar & 0x1f;
4489 tp->t_rttvar = TICKS_2_USEC(val);
4490 /*
4491 * frac is the fractional part of the srtt (if any)
4492 * but its in ticks and every bit represents
4493 * 1/32nd of a hz.
4494 */
4495 if (frac) {
4496 if (hz == 1000) {
4497 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
4498 } else {
4499 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
4500 }
4501 tp->t_rttvar += frac;
4502 }
4503 }
4504 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC;
4505 } else if (granularity == TCP_TMR_GRANULARITY_TICKS) {
4506 /* Convert back to ticks, with */
4507 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC),
4508 ("Granularity is not USEC its %u in tp:%p",
4509 tp->t_tmr_granularity, tp));
4510 if (tp->t_srtt > 1) {
4511 uint32_t val, frac;
4512
4513 val = USEC_2_TICKS(tp->t_srtt);
4514 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
4515 tp->t_srtt = val << TCP_RTT_SHIFT;
4516 /*
4517 * frac is the fractional part here is left
4518 * over from converting to hz and shifting.
4519 * We need to convert this to the 5 bit
4520 * remainder.
4521 */
4522 if (frac) {
4523 if (hz == 1000) {
4524 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
4525 } else {
4526 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
4527 }
4528 tp->t_srtt += frac;
4529 }
4530 }
4531 if (tp->t_rttvar) {
4532 uint32_t val, frac;
4533
4534 val = USEC_2_TICKS(tp->t_rttvar);
4535 frac = tp->t_rttvar % (HPTS_USEC_IN_SEC / hz);
4536 tp->t_rttvar = val << TCP_RTTVAR_SHIFT;
4537 /*
4538 * frac is the fractional part here is left
4539 * over from converting to hz and shifting.
4540 * We need to convert this to the 4 bit
4541 * remainder.
4542 */
4543 if (frac) {
4544 if (hz == 1000) {
4545 frac = (((uint64_t)frac * (uint64_t)TCP_RTTVAR_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
4546 } else {
4547 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTTVAR_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
4548 }
4549 tp->t_rttvar += frac;
4550 }
4551 }
4552 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
4553 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS;
4554 }
4555 #ifdef INVARIANTS
4556 else {
4557 panic("Unknown granularity:%d tp:%p",
4558 granularity, tp);
4559 }
4560 #endif
4561 }
4562
4563 void
tcp_handle_orphaned_packets(struct tcpcb * tp)4564 tcp_handle_orphaned_packets(struct tcpcb *tp)
4565 {
4566 struct mbuf *save, *m, *prev;
4567 /*
4568 * Called when a stack switch is occuring from the fini()
4569 * of the old stack. We assue the init() as already been
4570 * run of the new stack and it has set the t_flags2 to
4571 * what it supports. This function will then deal with any
4572 * differences i.e. cleanup packets that maybe queued that
4573 * the newstack does not support.
4574 */
4575
4576 if (tp->t_flags2 & TF2_MBUF_L_ACKS)
4577 return;
4578 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 &&
4579 !STAILQ_EMPTY(&tp->t_inqueue)) {
4580 /*
4581 * It is unsafe to process the packets since a
4582 * reset may be lurking in them (its rare but it
4583 * can occur). If we were to find a RST, then we
4584 * would end up dropping the connection and the
4585 * INP lock, so when we return the caller (tcp_usrreq)
4586 * will blow up when it trys to unlock the inp.
4587 * This new stack does not do any fancy LRO features
4588 * so all we can do is toss the packets.
4589 */
4590 m = STAILQ_FIRST(&tp->t_inqueue);
4591 STAILQ_INIT(&tp->t_inqueue);
4592 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save)
4593 m_freem(m);
4594 } else {
4595 /*
4596 * Here we have a stack that does mbuf queuing but
4597 * does not support compressed ack's. We must
4598 * walk all the mbufs and discard any compressed acks.
4599 */
4600 STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) {
4601 if (m->m_flags & M_ACKCMP) {
4602 if (m == STAILQ_FIRST(&tp->t_inqueue))
4603 STAILQ_REMOVE_HEAD(&tp->t_inqueue,
4604 m_stailqpkt);
4605 else
4606 STAILQ_REMOVE_AFTER(&tp->t_inqueue,
4607 prev, m_stailqpkt);
4608 m_freem(m);
4609 } else
4610 prev = m;
4611 }
4612 }
4613 }
4614
4615 #ifdef TCP_REQUEST_TRK
4616 uint32_t
tcp_estimate_tls_overhead(struct socket * so,uint64_t tls_usr_bytes)4617 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes)
4618 {
4619 #ifdef KERN_TLS
4620 struct ktls_session *tls;
4621 uint32_t rec_oh, records;
4622
4623 tls = so->so_snd.sb_tls_info;
4624 if (tls == NULL)
4625 return (0);
4626
4627 rec_oh = tls->params.tls_hlen + tls->params.tls_tlen;
4628 records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len);
4629 return (records * rec_oh);
4630 #else
4631 return (0);
4632 #endif
4633 }
4634
4635 extern uint32_t tcp_stale_entry_time;
4636 uint32_t tcp_stale_entry_time = 250000;
4637 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW,
4638 &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out");
4639
4640 void
tcp_req_log_req_info(struct tcpcb * tp,struct tcp_sendfile_track * req,uint16_t slot,uint8_t val,uint64_t offset,uint64_t nbytes)4641 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req,
4642 uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes)
4643 {
4644 if (tcp_bblogging_on(tp)) {
4645 union tcp_log_stackspecific log;
4646 struct timeval tv;
4647
4648 memset(&log, 0, sizeof(log));
4649 log.u_bbr.inhpts = tcp_in_hpts(tp);
4650 log.u_bbr.flex8 = val;
4651 log.u_bbr.rttProp = req->timestamp;
4652 log.u_bbr.delRate = req->start;
4653 log.u_bbr.cur_del_rate = req->end;
4654 log.u_bbr.flex1 = req->start_seq;
4655 log.u_bbr.flex2 = req->end_seq;
4656 log.u_bbr.flex3 = req->flags;
4657 log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff);
4658 log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff);
4659 log.u_bbr.flex7 = slot;
4660 log.u_bbr.bw_inuse = offset;
4661 /* nbytes = flex6 | epoch */
4662 log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff);
4663 log.u_bbr.epoch = (nbytes & 0x00000000ffffffff);
4664 /* cspr = lt_epoch | pkts_out */
4665 log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff);
4666 log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff);
4667 log.u_bbr.applimited = tp->t_tcpreq_closed;
4668 log.u_bbr.applimited <<= 8;
4669 log.u_bbr.applimited |= tp->t_tcpreq_open;
4670 log.u_bbr.applimited <<= 8;
4671 log.u_bbr.applimited |= tp->t_tcpreq_req;
4672 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4673 TCP_LOG_EVENTP(tp, NULL,
4674 &tptosocket(tp)->so_rcv,
4675 &tptosocket(tp)->so_snd,
4676 TCP_LOG_REQ_T, 0,
4677 0, &log, false, &tv);
4678 }
4679 }
4680
4681 void
tcp_req_free_a_slot(struct tcpcb * tp,struct tcp_sendfile_track * ent)4682 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent)
4683 {
4684 if (tp->t_tcpreq_req > 0)
4685 tp->t_tcpreq_req--;
4686 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
4687 if (tp->t_tcpreq_open > 0)
4688 tp->t_tcpreq_open--;
4689 } else {
4690 if (tp->t_tcpreq_closed > 0)
4691 tp->t_tcpreq_closed--;
4692 }
4693 ent->flags = TCP_TRK_TRACK_FLG_EMPTY;
4694 }
4695
4696 static void
tcp_req_check_for_stale_entries(struct tcpcb * tp,uint64_t ts,int rm_oldest)4697 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest)
4698 {
4699 struct tcp_sendfile_track *ent;
4700 uint64_t time_delta, oldest_delta;
4701 int i, oldest, oldest_set = 0, cnt_rm = 0;
4702
4703 for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4704 ent = &tp->t_tcpreq_info[i];
4705 if (ent->flags != TCP_TRK_TRACK_FLG_USED) {
4706 /*
4707 * We only care about closed end ranges
4708 * that are allocated and have no sendfile
4709 * ever touching them. They would be in
4710 * state USED.
4711 */
4712 continue;
4713 }
4714 if (ts >= ent->localtime)
4715 time_delta = ts - ent->localtime;
4716 else
4717 time_delta = 0;
4718 if (time_delta &&
4719 ((oldest_delta < time_delta) || (oldest_set == 0))) {
4720 oldest_set = 1;
4721 oldest = i;
4722 oldest_delta = time_delta;
4723 }
4724 if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) {
4725 /*
4726 * No sendfile in a our time-limit
4727 * time to purge it.
4728 */
4729 cnt_rm++;
4730 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
4731 time_delta, 0);
4732 tcp_req_free_a_slot(tp, ent);
4733 }
4734 }
4735 if ((cnt_rm == 0) && rm_oldest && oldest_set) {
4736 ent = &tp->t_tcpreq_info[oldest];
4737 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE,
4738 oldest_delta, 1);
4739 tcp_req_free_a_slot(tp, ent);
4740 }
4741 }
4742
4743 int
tcp_req_check_for_comp(struct tcpcb * tp,tcp_seq ack_point)4744 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point)
4745 {
4746 int i, ret = 0;
4747 struct tcp_sendfile_track *ent;
4748
4749 /* Clean up any old closed end requests that are now completed */
4750 if (tp->t_tcpreq_req == 0)
4751 return (0);
4752 if (tp->t_tcpreq_closed == 0)
4753 return (0);
4754 for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4755 ent = &tp->t_tcpreq_info[i];
4756 /* Skip empty ones */
4757 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4758 continue;
4759 /* Skip open ones */
4760 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN)
4761 continue;
4762 if (SEQ_GEQ(ack_point, ent->end_seq)) {
4763 /* We are past it -- free it */
4764 tcp_req_log_req_info(tp, ent,
4765 i, TCP_TRK_REQ_LOG_FREED, 0, 0);
4766 tcp_req_free_a_slot(tp, ent);
4767 ret++;
4768 }
4769 }
4770 return (ret);
4771 }
4772
4773 int
tcp_req_is_entry_comp(struct tcpcb * tp,struct tcp_sendfile_track * ent,tcp_seq ack_point)4774 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point)
4775 {
4776 if (tp->t_tcpreq_req == 0)
4777 return (-1);
4778 if (tp->t_tcpreq_closed == 0)
4779 return (-1);
4780 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4781 return (-1);
4782 if (SEQ_GEQ(ack_point, ent->end_seq)) {
4783 return (1);
4784 }
4785 return (0);
4786 }
4787
4788 struct tcp_sendfile_track *
tcp_req_find_a_req_that_is_completed_by(struct tcpcb * tp,tcp_seq th_ack,int * ip)4789 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip)
4790 {
4791 /*
4792 * Given an ack point (th_ack) walk through our entries and
4793 * return the first one found that th_ack goes past the
4794 * end_seq.
4795 */
4796 struct tcp_sendfile_track *ent;
4797 int i;
4798
4799 if (tp->t_tcpreq_req == 0) {
4800 /* none open */
4801 return (NULL);
4802 }
4803 for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4804 ent = &tp->t_tcpreq_info[i];
4805 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY)
4806 continue;
4807 if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) {
4808 if (SEQ_GEQ(th_ack, ent->end_seq)) {
4809 *ip = i;
4810 return (ent);
4811 }
4812 }
4813 }
4814 return (NULL);
4815 }
4816
4817 struct tcp_sendfile_track *
tcp_req_find_req_for_seq(struct tcpcb * tp,tcp_seq seq)4818 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq)
4819 {
4820 struct tcp_sendfile_track *ent;
4821 int i;
4822
4823 if (tp->t_tcpreq_req == 0) {
4824 /* none open */
4825 return (NULL);
4826 }
4827 for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4828 ent = &tp->t_tcpreq_info[i];
4829 tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH,
4830 (uint64_t)seq, 0);
4831 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) {
4832 continue;
4833 }
4834 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) {
4835 /*
4836 * An open end request only needs to
4837 * match the beginning seq or be
4838 * all we have (once we keep going on
4839 * a open end request we may have a seq
4840 * wrap).
4841 */
4842 if ((SEQ_GEQ(seq, ent->start_seq)) ||
4843 (tp->t_tcpreq_closed == 0))
4844 return (ent);
4845 } else {
4846 /*
4847 * For this one we need to
4848 * be a bit more careful if its
4849 * completed at least.
4850 */
4851 if ((SEQ_GEQ(seq, ent->start_seq)) &&
4852 (SEQ_LT(seq, ent->end_seq))) {
4853 return (ent);
4854 }
4855 }
4856 }
4857 return (NULL);
4858 }
4859
4860 /* Should this be in its own file tcp_req.c ? */
4861 struct tcp_sendfile_track *
tcp_req_alloc_req_full(struct tcpcb * tp,struct tcp_snd_req * req,uint64_t ts,int rec_dups)4862 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups)
4863 {
4864 struct tcp_sendfile_track *fil;
4865 int i, allocated;
4866
4867 /* In case the stack does not check for completions do so now */
4868 tcp_req_check_for_comp(tp, tp->snd_una);
4869 /* Check for stale entries */
4870 if (tp->t_tcpreq_req)
4871 tcp_req_check_for_stale_entries(tp, ts,
4872 (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ));
4873 /* Check to see if this is a duplicate of one not started */
4874 if (tp->t_tcpreq_req) {
4875 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
4876 fil = &tp->t_tcpreq_info[i];
4877 if ((fil->flags & TCP_TRK_TRACK_FLG_USED) == 0)
4878 continue;
4879 if ((fil->timestamp == req->timestamp) &&
4880 (fil->start == req->start) &&
4881 ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) ||
4882 (fil->end == req->end))) {
4883 /*
4884 * We already have this request
4885 * and it has not been started with sendfile.
4886 * This probably means the user was returned
4887 * a 4xx of some sort and its going to age
4888 * out, lets not duplicate it.
4889 */
4890 return (fil);
4891 }
4892 }
4893 }
4894 /* Ok if there is no room at the inn we are in trouble */
4895 if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) {
4896 tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL);
4897 for (i = 0; i < MAX_TCP_TRK_REQ; i++) {
4898 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i],
4899 i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0);
4900 }
4901 return (NULL);
4902 }
4903 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) {
4904 fil = &tp->t_tcpreq_info[i];
4905 if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) {
4906 allocated = 1;
4907 fil->flags = TCP_TRK_TRACK_FLG_USED;
4908 fil->timestamp = req->timestamp;
4909 fil->playout_ms = req->playout_ms;
4910 fil->localtime = ts;
4911 fil->start = req->start;
4912 if (req->flags & TCP_LOG_HTTPD_RANGE_END) {
4913 fil->end = req->end;
4914 } else {
4915 fil->end = 0;
4916 fil->flags |= TCP_TRK_TRACK_FLG_OPEN;
4917 }
4918 /*
4919 * We can set the min boundaries to the TCP Sequence space,
4920 * but it might be found to be further up when sendfile
4921 * actually runs on this range (if it ever does).
4922 */
4923 fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc;
4924 fil->start_seq = tp->snd_una +
4925 tptosocket(tp)->so_snd.sb_ccc;
4926 if (req->flags & TCP_LOG_HTTPD_RANGE_END)
4927 fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start)));
4928 else
4929 fil->end_seq = 0;
4930 if (tptosocket(tp)->so_snd.sb_tls_info) {
4931 /*
4932 * This session is doing TLS. Take a swag guess
4933 * at the overhead.
4934 */
4935 fil->end_seq += tcp_estimate_tls_overhead(
4936 tptosocket(tp), (fil->end - fil->start));
4937 }
4938 tp->t_tcpreq_req++;
4939 if (fil->flags & TCP_TRK_TRACK_FLG_OPEN)
4940 tp->t_tcpreq_open++;
4941 else
4942 tp->t_tcpreq_closed++;
4943 tcp_req_log_req_info(tp, fil, i,
4944 TCP_TRK_REQ_LOG_NEW, 0, 0);
4945 break;
4946 } else
4947 fil = NULL;
4948 }
4949 return (fil);
4950 }
4951
4952 void
tcp_req_alloc_req(struct tcpcb * tp,union tcp_log_userdata * user,uint64_t ts)4953 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts)
4954 {
4955 (void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1);
4956 }
4957 #endif
4958
4959 void
tcp_log_socket_option(struct tcpcb * tp,uint32_t option_num,uint32_t option_val,int err)4960 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err)
4961 {
4962 if (tcp_bblogging_on(tp)) {
4963 struct tcp_log_buffer *l;
4964
4965 l = tcp_log_event(tp, NULL,
4966 &tptosocket(tp)->so_rcv,
4967 &tptosocket(tp)->so_snd,
4968 TCP_LOG_SOCKET_OPT,
4969 err, 0, NULL, 1,
4970 NULL, NULL, 0, NULL);
4971 if (l) {
4972 l->tlb_flex1 = option_num;
4973 l->tlb_flex2 = option_val;
4974 }
4975 }
4976 }
4977
4978 uint32_t
tcp_get_srtt(struct tcpcb * tp,int granularity)4979 tcp_get_srtt(struct tcpcb *tp, int granularity)
4980 {
4981 uint32_t srtt;
4982
4983 KASSERT(granularity == TCP_TMR_GRANULARITY_USEC ||
4984 granularity == TCP_TMR_GRANULARITY_TICKS,
4985 ("%s: called with unexpected granularity %d", __func__,
4986 granularity));
4987
4988 srtt = tp->t_srtt;
4989
4990 /*
4991 * We only support two granularities. If the stored granularity
4992 * does not match the granularity requested by the caller,
4993 * convert the stored value to the requested unit of granularity.
4994 */
4995 if (tp->t_tmr_granularity != granularity) {
4996 if (granularity == TCP_TMR_GRANULARITY_USEC)
4997 srtt = TICKS_2_USEC(srtt);
4998 else
4999 srtt = USEC_2_TICKS(srtt);
5000 }
5001
5002 /*
5003 * If the srtt is stored with ticks granularity, we need to
5004 * unshift to get the actual value. We do this after the
5005 * conversion above (if one was necessary) in order to maximize
5006 * precision.
5007 */
5008 if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS)
5009 srtt = srtt >> TCP_RTT_SHIFT;
5010
5011 return (srtt);
5012 }
5013
5014 void
tcp_account_for_send(struct tcpcb * tp,uint32_t len,uint8_t is_rxt,uint8_t is_tlp,bool hw_tls)5015 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt,
5016 uint8_t is_tlp, bool hw_tls)
5017 {
5018
5019 if (is_tlp) {
5020 tp->t_sndtlppack++;
5021 tp->t_sndtlpbyte += len;
5022 }
5023 /* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */
5024 if (is_rxt)
5025 tp->t_snd_rxt_bytes += len;
5026 else
5027 tp->t_sndbytes += len;
5028
5029 #ifdef KERN_TLS
5030 if (hw_tls && is_rxt && len != 0) {
5031 uint64_t rexmit_percent;
5032
5033 rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) /
5034 (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes));
5035 if (rexmit_percent > ktls_ifnet_max_rexmit_pct)
5036 ktls_disable_ifnet(tp);
5037 }
5038 #endif
5039 }
5040