1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2017 by Delphix. All rights reserved.
29 * Copyright 2018, Joyent, Inc.
30 * Copyright 2023-2024 RackTop Systems, Inc.
31 */
32
33 /*
34 * Kernel task queues: general-purpose asynchronous task scheduling.
35 *
36 * A common problem in kernel programming is the need to schedule tasks
37 * to be performed later, by another thread. There are several reasons
38 * you may want or need to do this:
39 *
40 * (1) The task isn't time-critical, but your current code path is.
41 *
42 * (2) The task may require grabbing locks that you already hold.
43 *
44 * (3) The task may need to block (e.g. to wait for memory), but you
45 * cannot block in your current context.
46 *
47 * (4) Your code path can't complete because of some condition, but you can't
48 * sleep or fail, so you queue the task for later execution when condition
49 * disappears.
50 *
51 * (5) You just want a simple way to launch multiple tasks in parallel.
52 *
53 * Task queues provide such a facility. In its simplest form (used when
54 * performance is not a critical consideration) a task queue consists of a
55 * single list of tasks, together with one or more threads to service the
56 * list. There are some cases when this simple queue is not sufficient:
57 *
58 * (1) The task queues are very hot and there is a need to avoid data and lock
59 * contention over global resources.
60 *
61 * (2) Some tasks may depend on other tasks to complete, so they can't be put in
62 * the same list managed by the same thread.
63 *
64 * (3) Some tasks may block for a long time, and this should not block other
65 * tasks in the queue.
66 *
67 * To provide useful service in such cases we define a "dynamic task queue"
68 * which has an individual thread for each of the tasks. These threads are
69 * dynamically created as they are needed and destroyed when they are not in
70 * use. The API for managing task pools is the same as for managing task queues
71 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
72 * dynamic task pool behavior is desired.
73 *
74 * Dynamic task queues may also place tasks in a "backlog" when a taskq is
75 * resource constrained. Users of task queues may prevent tasks from being
76 * enqueued in the backlog by passing TQ_NOQUEUE in the dispatch call.
77 *
78 * See "Dynamic Task Queues" below for more details.
79 *
80 * INTERFACES ==================================================================
81 *
82 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
83 *
84 * Create a taskq with specified properties.
85 * Possible 'flags':
86 *
87 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is
88 * specified, 'nthreads' specifies the maximum number of threads in
89 * the task queue. Task execution order for dynamic task queues is
90 * not predictable.
91 *
92 * If this flag is not specified (default case) a
93 * single-list task queue is created with 'nthreads' threads
94 * servicing it. Entries in this queue are managed by
95 * taskq_ent_alloc() and taskq_ent_free() which try to keep the
96 * task population between 'minalloc' and 'maxalloc', but the
97 * latter limit is only advisory for TQ_SLEEP dispatches and the
98 * former limit is only advisory for TQ_NOALLOC dispatches. If
99 * TASKQ_PREPOPULATE is set in 'flags', the taskq will be
100 * prepopulated with 'minalloc' task structures.
101 *
102 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
103 * executed in the order they are scheduled if nthreads == 1.
104 * If nthreads > 1, task execution order is not predictable.
105 *
106 * TASKQ_PREPOPULATE: Prepopulate task queue with threads.
107 * Also prepopulate the task queue with 'minalloc' task structures.
108 *
109 * TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
110 * interpreted as a percentage of the # of online CPUs on the
111 * system. The taskq subsystem will automatically adjust the
112 * number of threads in the taskq in response to CPU online
113 * and offline events, to keep the ratio. nthreads must be in
114 * the range [0,100].
115 *
116 * The calculation used is:
117 *
118 * MAX((ncpus_online * percentage)/100, 1)
119 *
120 * This flag is not supported for DYNAMIC task queues.
121 * This flag is not compatible with TASKQ_CPR_SAFE.
122 *
123 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
124 * use their own protocol for handling CPR issues. This flag is not
125 * supported for DYNAMIC task queues. This flag is not compatible
126 * with TASKQ_THREADS_CPU_PCT.
127 *
128 * The 'pri' field specifies the default priority for the threads that
129 * service all scheduled tasks.
130 *
131 * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
132 * maxalloc, flags);
133 *
134 * Like taskq_create(), but takes an instance number (or -1 to indicate
135 * no instance).
136 *
137 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
138 * flags);
139 *
140 * Like taskq_create(), but creates the taskq threads in the specified
141 * system process. If proc != &p0, this must be called from a thread
142 * in that process.
143 *
144 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
145 * dc, flags);
146 *
147 * Like taskq_create_proc(), but the taskq threads will use the
148 * System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
149 *
150 * void taskq_destroy(tap):
151 *
152 * Waits for any scheduled tasks to complete, then destroys the taskq.
153 * Caller should guarantee that no new tasks are scheduled in the closing
154 * taskq.
155 *
156 * taskqid_t taskq_dispatch(tq, func, arg, flags):
157 *
158 * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
159 * the caller is willing to block for memory. The function returns an
160 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP
161 * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
162 * and returns TASKQID_INVALID.
163 *
164 * ASSUMES: func != NULL.
165 *
166 * Possible flags:
167 * TQ_NOSLEEP: Do not wait for resources; may fail.
168 *
169 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with
170 * non-dynamic task queues.
171 *
172 * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
173 * lack of available resources and fail. If this flag is not
174 * set, and the task pool is exhausted, the task may be scheduled
175 * in the backing queue. This flag may ONLY be used with dynamic
176 * task queues.
177 *
178 * NOTE: This flag should always be used when a task queue is used
179 * for tasks that may depend on each other for completion.
180 * Enqueueing dependent tasks may create deadlocks.
181 *
182 * TQ_SLEEP: May block waiting for resources. May still fail for
183 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise
184 * always succeed.
185 *
186 * TQ_FRONT: Puts the new task at the front of the queue. Be careful.
187 *
188 * NOTE: Dynamic task queues are much more likely to fail in
189 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
190 * is important to have backup strategies handling such failures.
191 *
192 * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
193 *
194 * This is a light-weight form of taskq_dispatch(), that uses a
195 * preallocated taskq_ent_t structure for scheduling. As a
196 * result, it does not perform allocations and cannot ever fail.
197 * Note especially that it cannot be used with TASKQ_DYNAMIC
198 * taskqs. The memory for the tqent must not be modified or used
199 * until the function (func) is called. (However, func itself
200 * may safely modify or free this memory, once it is called.)
201 * Note that the taskq framework will NOT free this memory.
202 *
203 * boolean_t taskq_empty(tq)
204 *
205 * Queries if there are tasks pending on the queue.
206 *
207 * void taskq_wait(tq):
208 *
209 * Waits for all previously scheduled tasks to complete.
210 *
211 * NOTE: It does not stop any new task dispatches.
212 * Do NOT call taskq_wait() from a task: it will cause deadlock.
213 *
214 * void taskq_suspend(tq)
215 *
216 * Suspend all task execution. Tasks already scheduled for a dynamic task
217 * queue will still be executed, but all new scheduled tasks will be
218 * suspended until taskq_resume() is called.
219 *
220 * int taskq_suspended(tq)
221 *
222 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to
223 * ASSERT that the task queue is suspended.
224 *
225 * void taskq_resume(tq)
226 *
227 * Resume task queue execution.
228 *
229 * int taskq_member(tq, thread)
230 *
231 * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
232 * intended use is to ASSERT that a given function is called in taskq
233 * context only.
234 *
235 * system_taskq
236 *
237 * Global system-wide dynamic task queue for common uses. It may be used by
238 * any subsystem that needs to schedule tasks and does not need to manage
239 * its own task queues. It is initialized quite early during system boot.
240 *
241 * IMPLEMENTATION ==============================================================
242 *
243 * This is schematic representation of the task queue structures.
244 *
245 * taskq:
246 * +-------------+
247 * | tq_lock | +---< taskq_ent_free()
248 * +-------------+ |
249 * |... | | tqent: tqent:
250 * +-------------+ | +------------+ +------------+
251 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
252 * +-------------+ +------------+ +------------+
253 * |... | | ... | | ... |
254 * +-------------+ +------------+ +------------+
255 * | tq_task | |
256 * | | +-------------->taskq_ent_alloc()
257 * +--------------------------------------------------------------------------+
258 * | | | tqent tqent |
259 * | +---------------------+ +--> +------------+ +--> +------------+ |
260 * | | ... | | | func, arg | | | func, arg | |
261 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ |
262 * | tq_task.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+
263 * +---------------------+ | +------------+ ^ | +------------+
264 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^
265 * | +---------------------+ +------------+ | +------------+ |
266 * | |... | | ... | | | ... | |
267 * | +---------------------+ +------------+ | +------------+ |
268 * | ^ | |
269 * | | | |
270 * +--------------------------------------+--------------+ TQ_APPEND() -+
271 * | | |
272 * |... | taskq_thread()-----+
273 * +-------------+
274 * | tq_buckets |--+-------> [ NULL ] (for regular task queues)
275 * +-------------+ |
276 * | DYNAMIC TASK QUEUES:
277 * |
278 * +-> taskq_idlebucket taskq_idlebucket_dispatch()
279 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch()
280 * +-------------------+ ^
281 * +--->| tqbucket_lock | |
282 * | +-------------------+ +--------+ +--------+
283 * | | tqbucket_freelist |-->| tqent |-->...| tqent |
284 * | +-------------------+<--+--------+<--...+--------+
285 * | | | | thread | | thread |
286 * | | ... | +--------+ +--------+
287 * | | |
288 * | +-------------------+ +--------+ +--------+
289 * | | tqbucket_backlog |-->| tqent |-->...| tqent |
290 * | +-------------------+<--+--------+<--...+--------+
291 * | | ... | (no thread)
292 * | +-------------------+
293 * |
294 * | +-------------------+
295 * taskq_dispatch()--+--->| tqbucket_lock |
296 * TQ_HASH() | +-------------------+ +--------+ +--------+
297 * | | tqbucket_freelist |-->| tqent |-->...| tqent |
298 * | +-------------------+<--+--------+<--...+--------+
299 * | | | | thread | | thread |
300 * | | ... | +--------+ +--------+
301 * | | |
302 * | +-------------------+ +--------+ +--------+
303 * | | tqbucket_backlog |-->| tqent |-->...| tqent |
304 * | +-------------------+<--+--------+<--...+--------+
305 * | | ... | (no thread)
306 * | +-------------------+
307 * |
308 * +---> ...
309 *
310 *
311 * Task queues use tq_task field to link new entry in the queue. The queue is a
312 * circular doubly-linked list. Entries are put in the end of the list with
313 * TQ_APPEND() and processed from the front of the list by taskq_thread() in
314 * FIFO order. Task queue entries are cached in the free list managed by
315 * taskq_ent_alloc() and taskq_ent_free() functions.
316 *
317 * All threads used by task queues mark t_taskq field of the thread to
318 * point to the task queue.
319 *
320 * Taskq Thread Management -----------------------------------------------------
321 *
322 * Taskq's non-dynamic threads are managed with several variables and flags:
323 *
324 * * tq_nthreads - The number of threads in taskq_thread() for the
325 * taskq.
326 *
327 * * tq_active - The number of threads not waiting on a CV in
328 * taskq_thread(); includes newly created threads
329 * not yet counted in tq_nthreads.
330 *
331 * * tq_nthreads_target
332 * - The number of threads desired for the taskq.
333 *
334 * * tq_flags & TASKQ_CHANGING
335 * - Indicates that tq_nthreads != tq_nthreads_target.
336 *
337 * * tq_flags & TASKQ_THREAD_CREATED
338 * - Indicates that a thread is being created in the taskq.
339 *
340 * During creation, tq_nthreads and tq_active are set to 0, and
341 * tq_nthreads_target is set to the number of threads desired. The
342 * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
343 * create the first thread. taskq_thread_create() increments tq_active,
344 * sets TASKQ_THREAD_CREATED, and creates the new thread.
345 *
346 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
347 * flag, and increments tq_nthreads. It stores the new value of
348 * tq_nthreads as its "thread_id", and stores its thread pointer in the
349 * tq_threadlist at the (thread_id - 1). We keep the thread_id space
350 * densely packed by requiring that only the largest thread_id can exit during
351 * normal adjustment. The exception is during the destruction of the
352 * taskq; once tq_nthreads_target is set to zero, no new threads will be created
353 * for the taskq queue, so every thread can exit without any ordering being
354 * necessary.
355 *
356 * Threads will only process work if their thread id is <= tq_nthreads_target.
357 *
358 * When TASKQ_CHANGING is set, threads will check the current thread target
359 * whenever they wake up, and do whatever they can to apply its effects.
360 *
361 * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
362 *
363 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
364 * percentage in tq_threads_ncpus_pct, start them off with the correct thread
365 * target, and add them to the taskq_cpupct_list for later adjustment.
366 *
367 * We register taskq_cpu_setup() to be called whenever a CPU changes state. It
368 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthreads_target
369 * if need be, and wakes up all of the threads to process the change.
370 *
371 * Dynamic Task Queues Implementation ------------------------------------------
372 *
373 * For a dynamic task queue, the set of worker threads expands and contracts
374 * based on the workload presented via taskq_dispatch calls. The work of a
375 * dynamic task queue is distributed across an array of "buckets" to reduce
376 * lock contention, with distribution determined via a hash (See TQ_HASH).
377 * The array of buckets is sized based on the number of CPUs in the system.
378 * The tunable 'taskq_maxbuckets' limits the maximum number of buckets.
379 * One additional bucket is used as the "idle bucket" (details below).
380 *
381 * Each bucket also has a "backlog" list, used to store pending jobs,
382 * which are taskq_ent_t objects with no associated thread. The total of
383 * backlogged work is distributed through the array of buckets, so that as
384 * threads become available in each bucket, they begin work on the backlog
385 * in parallel. In order to ensure progress on the backlog, some care is
386 * taken to avoid buckets with a backlog with no threads.
387 *
388 * Each bucket usually has some worker threads ready to accept new work,
389 * represented by a taskq_ent_t on the tqbucket_freelist. In addition to
390 * that array of buckets there is one more bucket called the "idle bucket",
391 * used as a place to put idle threads that might be moved to a regular
392 * bucket when that bucket needs another worker thread. When a dispatch
393 * call (one willing to sleep) finds no free thread in either the hashed
394 * bucket free list nor in the idle bucket, it will attempt to create a
395 * new thread in the hashed bucket (see taskq_bucket_extend).
396 *
397 * Dispatch first tries a bucket chosen by hash, then the idle bucket.
398 * If the dispatch call allows sleeping, it then attempts to extend the
399 * bucket chosen by hash, and makes a dispatch attempt on that bucket.
400 * If that all fails, and if the dispatch call allows a queued task,
401 * an entry is placed on a per-bucket backlog queue. The backlog is
402 * serviced as soon as other bucket threads become available.
403 *
404 * Worker threads wait a "short" time (taskq_thread_bucket_wait) on the
405 * free list for the bucket in which they were dispatched, and if no new
406 * work takes them off the free list before the expiration of the "short"
407 * wait, the thread takes itself off that bucket free list and moves to
408 * the "idle bucket", where waits longer (taskq_thread_timeout), before
409 * giving up waiting for work and exiting.
410 *
411 * New threads normally start life in one of the buckets (chosen by hash)
412 * and stay there while there's work for that bucket. After a thread
413 * waits in a bucket for a short time (taskq_d_svc_tmo) without having
414 * any task assigned, it migrates to the idle bucket. An exception
415 * is made for TASKQ_PREPOPULATE, in which case threads start out in
416 * the idle bucket.
417 *
418 * Running taskq_ent_t entries are not on any list. The dispatch function
419 * sets their "func" and "arg" fields and signals the corresponding thread to
420 * execute the task. Once the thread executes the task it clears the "func"
421 * field and places an entry on the per-bucket "tqbucket_freelist" which is
422 * used as a short-term cache of threads available for that bucket. All
423 * entries on the free list should have the "func" field equal to NULL.
424 * The free list is a circular doubly-linked list identical in structure to
425 * the tq_task list above, but entries are taken from it in LIFO order so
426 * that threads seeing no work for a while can move to the idle bucket.
427 *
428 * The taskq_bucket_dispatch() function gets the most recently used entry
429 * from the free list, sets its "func" and "arg" fields and signals a worker
430 * thread. Dispatch first tries a bucket selected via hash, then the idle
431 * bucket. If both of those fail (and depending on options) an attempt to
432 * add threads to the bucket is made.
433 *
434 * After executing each task a per-entry thread taskq_d_thread() places its
435 * entry on the bucket free list and goes to a (short) timed sleep. If it
436 * wakes up without getting a new task it, it removes the entry from the
437 * free list and "migrates" to the "idle bucket" for a longer wait.
438 * If that longer wait expires without work arriving, the thread exits.
439 * The thread sleep time is controlled by a tunable `taskq_thread_timeout'.
440 * A thread may be dispatched work from the idle bucket (eg. when dispatch
441 * fails to find a free entry in the hashed buckets). When a thread is
442 * dispatched from the idle bucket, it moves to the bucket that the hash
443 * initially selected.
444 *
445 * Dynamic task queues make limited use of the "backing queue", which is
446 * the same taskq->tq_task list used by orginary (non-dynamic) task queues.
447 * The only taskq entries places on this list are for taskq_bucket_overflow
448 * calls, used to request thread creation for some bucket after a dispatch
449 * call fails to find a ready thread in some bucket. There is only one
450 * thread servicing this backing queue, so these jobs should only sleep
451 * for memory allocation, and shoud not run jobs that block indefinitely.
452 *
453 * There are various statistics kept in the bucket which allows for later
454 * analysis of taskq usage patterns. Also, a global copy of taskq creation and
455 * death statistics is kept in the global taskq data structure. Since thread
456 * creation and death happen rarely, updating such global data does not present
457 * a performance problem.
458 *
459 * NOTE: Threads are not bound to any CPU and there is absolutely no association
460 * between the bucket and actual thread CPU, so buckets are used only to
461 * split resources and reduce resource contention. Having threads attached
462 * to the CPU denoted by a bucket may reduce number of times the job
463 * switches between CPUs.
464 *
465 * Current algorithm creates a thread whenever a bucket has no free
466 * entries. It would be nice to know how many threads are in the running
467 * state and don't create threads if all CPUs are busy with existing
468 * tasks, but it is unclear how such strategy can be implemented.
469 *
470 * Currently buckets are created statically as an array attached to task
471 * queue. On some system with nCPUs < max_ncpus it may waste system
472 * memory. One solution may be allocation of buckets when they are first
473 * touched, but it is not clear how useful it is.
474 *
475 * SUSPEND/RESUME implementation -----------------------------------------------
476 *
477 * Before executing a task taskq_thread() (executing non-dynamic task
478 * queues) obtains taskq's thread lock as a reader. The taskq_suspend()
479 * function gets the same lock as a writer blocking all non-dynamic task
480 * execution. The taskq_resume() function releases the lock allowing
481 * taskq_thread to continue execution.
482 *
483 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
484 * taskq_suspend() function. After that taskq_bucket_dispatch() always
485 * fails, so that taskq_dispatch() will either enqueue tasks for a
486 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
487 * flags.
488 *
489 * NOTE: taskq_suspend() does not immediately block any tasks already
490 * scheduled for dynamic task queues. It only suspends new tasks
491 * scheduled after taskq_suspend() was called.
492 *
493 * taskq_member() function works by comparing a thread t_taskq pointer with
494 * the passed thread pointer.
495 *
496 * LOCKS and LOCK Order -------------------------------------------------------
497 *
498 * There are four locks used in task queues:
499 *
500 * 1a) The idle bucket lock for bucket management.
501 * 1b) The hashed bucket locks for bucket management.
502 *
503 * 2) The global taskq_cpupct_lock, which protects the list of
504 * TASKQ_THREADS_CPU_PCT taskqs.
505 *
506 * 3) The taskq_t's tq_lock, protecting global task queue state.
507 *
508 * There are a few cases where two of these are entered, and when that
509 * happens the lock entries are in the order they are listed here.
510 *
511 * DEBUG FACILITIES ------------------------------------------------------------
512 *
513 * For DEBUG kernels it is possible to induce random failures to
514 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
515 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
516 * failures for dynamic and static task queues respectively.
517 *
518 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
519 *
520 * TUNABLES --------------------------------------------------------------------
521 *
522 * system_taskq_size - Size of the global system_taskq.
523 * This value is multiplied by nCPUs to determine
524 * actual size.
525 * Default value: 64
526 *
527 * taskq_minimum_nthreads_max
528 * - Minimum size of the thread list for a taskq.
529 * Useful for testing different thread pool
530 * sizes by overwriting tq_nthreads_target.
531 *
532 * taskq_thread_timeout - Maximum idle time for taskq_d_thread()
533 * Default value: 5 minutes
534 *
535 * taskq_maxbuckets - Maximum number of buckets in any task queue
536 * Default value: 128
537 *
538 * taskq_dmtbf - Mean time between induced dispatch failures
539 * for dynamic task queues.
540 * Default value: UINT_MAX (no induced failures)
541 *
542 * taskq_smtbf - Mean time between induced dispatch failures
543 * for static task queues.
544 * Default value: UINT_MAX (no induced failures)
545 *
546 * CONDITIONAL compilation -----------------------------------------------------
547 *
548 * TASKQ_STATISTIC - If set will enable bucket statistic (default).
549 *
550 */
551
552 #include <sys/taskq_impl.h>
553 #include <sys/thread.h>
554 #include <sys/proc.h>
555 #include <sys/kmem.h>
556 #include <sys/vmem.h>
557 #include <sys/callb.h>
558 #include <sys/class.h>
559 #include <sys/systm.h>
560 #include <sys/cmn_err.h>
561 #include <sys/debug.h>
562 #include <sys/vmsystm.h> /* For throttlefree */
563 #include <sys/sysmacros.h>
564 #include <sys/cpuvar.h>
565 #include <sys/cpupart.h>
566 #include <sys/sdt.h>
567 #include <sys/sysdc.h>
568 #include <sys/note.h>
569
570 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
571
572 /*
573 * Pseudo instance numbers for taskqs without explicitly provided instance.
574 */
575 static vmem_t *taskq_id_arena;
576
577 /* Global system task queue for common use */
578 taskq_t *system_taskq;
579
580 /*
581 * Maximum number of entries in global system taskq is
582 * system_taskq_size * max_ncpus
583 */
584 #define SYSTEM_TASKQ_SIZE 64
585 int system_taskq_size = SYSTEM_TASKQ_SIZE;
586
587 /*
588 * Minimum size for tq_nthreads_max; useful for those who want to play around
589 * with increasing a taskq's tq_nthreads_target.
590 */
591 int taskq_minimum_nthreads_max = 1;
592
593 /*
594 * We want to ensure that when taskq_create() returns, there is at least
595 * one thread ready to handle requests. To guarantee this, we have to wait
596 * for the second thread, since the first one cannot process requests until
597 * the second thread has been created.
598 */
599 #define TASKQ_CREATE_ACTIVE_THREADS 2
600
601 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
602 #define TASKQ_CPUPCT_MAX_PERCENT 1000
603 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;
604
605 /*
606 * Dynamic task queue threads that don't get any work within
607 * taskq_thread_timeout destroy themselves
608 */
609 #define TASKQ_THREAD_TIMEOUT (60 * 5)
610 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
611
612 /*
613 * Dynamic taskq queue threads stay in an empty bucket for only a
614 * relatively short time before moving to the "idle bucket".
615 */
616 int taskq_thread_bucket_wait = 500; /* mSec. */
617
618 /*
619 * A counter for debug and testing. See the increment site below.
620 */
621 uint64_t taskq_disptcreates_lost = 0;
622
623 /*
624 * Upper and lower limits on number of buckets for dyanmic taskq.
625 * Must be a power of two. Dynamic should have more than one bucket.
626 * The floor of four is chosen somewhat arbitrarily, based on the
627 * smallest number of CPUs found in modern systems.
628 */
629 #define TASKQ_MINBUCKETS 4
630 int taskq_minbuckets = TASKQ_MINBUCKETS;
631 #define TASKQ_MAXBUCKETS 128
632 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
633
634 /*
635 * Hashing function: mix various bits of x and CPUHINT
636 *
637 * This hash is applied to the "arg" address supplied to taskq_dispatch.
638 * The distribution of objects in memory for that address are generally
639 * whatever the memory allocation system provides. We know only that they
640 * will be aligned to whatever minimum alignment is provided, and that the
641 * sizes of these objects will vary. Due to the known aligment, this hash
642 * function puts the CPU index in the lowest signigicant bits. Other bits
643 * are simply combined via XOR using a (low-cost) byte-access-compatible
644 * set of shifts. Emperical results show that this hash produces fairly
645 * even distribution for the consumers in this system.
646 */
647 #define TQ_HASH(x, c) ((c) ^ (x) ^ ((x) >> 8) ^ ((x) >> 16) ^ ((x) >> 24))
648
649 /*
650 * Get an index for the current CPU, used in the hash to spread
651 * work among buckets based on what CPU is running this.
652 */
653 #define CPUHINT() ((uintptr_t)(CPU->cpu_seqid))
654
655 /*
656 * We do not create any new threads when the system is low on memory and start
657 * throttling memory allocations. The following macro tries to estimate such
658 * condition.
659 */
660 #define ENOUGH_MEMORY() (freemem > throttlefree)
661
662 /*
663 * Static functions.
664 */
665 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int,
666 int, proc_t *, uint_t, uint_t);
667 static void taskq_thread(void *);
668 static void taskq_d_thread(taskq_ent_t *);
669 static void taskq_d_migrate(void *);
670 static void taskq_d_redirect(void *);
671 static void taskq_bucket_overflow(void *);
672 static taskq_ent_t *taskq_bucket_extend(taskq_bucket_t *);
673 static void taskq_bucket_redist(taskq_bucket_t *);
674 static int taskq_constructor(void *, void *, int);
675 static void taskq_destructor(void *, void *);
676 static int taskq_ent_constructor(void *, void *, int);
677 static void taskq_ent_destructor(void *, void *);
678 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
679 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
680 static int taskq_ent_exists(taskq_t *, task_func_t, void *);
681 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
682 void *);
683 static void taskq_backlog_enqueue(taskq_bucket_t *,
684 taskq_ent_t *tqe, int flags);
685
686 /*
687 * Task queues kstats.
688 */
689 struct taskq_kstat {
690 kstat_named_t tq_pid;
691 kstat_named_t tq_tasks;
692 kstat_named_t tq_executed;
693 kstat_named_t tq_maxtasks;
694 kstat_named_t tq_totaltime;
695 kstat_named_t tq_nalloc;
696 kstat_named_t tq_nactive;
697 kstat_named_t tq_pri;
698 kstat_named_t tq_nthreads;
699 kstat_named_t tq_nomem;
700 } taskq_kstat = {
701 { "pid", KSTAT_DATA_UINT64 },
702 { "tasks", KSTAT_DATA_UINT64 },
703 { "executed", KSTAT_DATA_UINT64 },
704 { "maxtasks", KSTAT_DATA_UINT64 },
705 { "totaltime", KSTAT_DATA_UINT64 },
706 { "nalloc", KSTAT_DATA_UINT64 },
707 { "nactive", KSTAT_DATA_UINT64 },
708 { "priority", KSTAT_DATA_UINT64 },
709 { "threads", KSTAT_DATA_UINT64 },
710 { "nomem", KSTAT_DATA_UINT64 },
711 };
712
713 struct taskq_d_kstat {
714 kstat_named_t tqd_pri;
715 kstat_named_t tqd_hits;
716 kstat_named_t tqd_misses;
717 kstat_named_t tqd_ihits; /* idle bucket hits */
718 kstat_named_t tqd_imisses; /* idle bucket misses */
719 kstat_named_t tqd_overflows;
720 kstat_named_t tqd_tcreates;
721 kstat_named_t tqd_tdeaths;
722 kstat_named_t tqd_maxthreads;
723 kstat_named_t tqd_nomem;
724 kstat_named_t tqd_disptcreates;
725 kstat_named_t tqd_totaltime;
726 kstat_named_t tqd_nalloc;
727 kstat_named_t tqd_nfree;
728 kstat_named_t tqd_nbacklog;
729 kstat_named_t tqd_maxbacklog;
730 } taskq_d_kstat = {
731 { "priority", KSTAT_DATA_UINT64 },
732 { "hits", KSTAT_DATA_UINT64 },
733 { "misses", KSTAT_DATA_UINT64 },
734 { "ihits", KSTAT_DATA_UINT64 },
735 { "imisses", KSTAT_DATA_UINT64 },
736 { "overflows", KSTAT_DATA_UINT64 },
737 { "tcreates", KSTAT_DATA_UINT64 },
738 { "tdeaths", KSTAT_DATA_UINT64 },
739 { "maxthreads", KSTAT_DATA_UINT64 },
740 { "nomem", KSTAT_DATA_UINT64 },
741 { "disptcreates", KSTAT_DATA_UINT64 },
742 { "totaltime", KSTAT_DATA_UINT64 },
743 { "nalloc", KSTAT_DATA_UINT64 },
744 { "nfree", KSTAT_DATA_UINT64 },
745 { "nbacklog", KSTAT_DATA_UINT64 },
746 { "maxbacklog", KSTAT_DATA_UINT64 },
747 };
748
749 static kmutex_t taskq_kstat_lock;
750 static kmutex_t taskq_d_kstat_lock;
751 static int taskq_kstat_update(kstat_t *, int);
752 static int taskq_d_kstat_update(kstat_t *, int);
753
754 /*
755 * List of all TASKQ_THREADS_CPU_PCT taskqs.
756 */
757 static list_t taskq_cpupct_list; /* protected by cpu_lock */
758
759 /*
760 * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
761 */
762 #define TASKQ_STATISTIC 1
763
764 #if TASKQ_STATISTIC
765 #define TQ_STAT(b, x) b->tqbucket_stat.x++
766 #else
767 #define TQ_STAT(b, x)
768 #endif
769
770 /*
771 * Random fault injection.
772 */
773 uint_t taskq_random;
774 uint_t taskq_dmtbf = UINT_MAX; /* mean time between injected failures */
775 uint_t taskq_smtbf = UINT_MAX; /* mean time between injected failures */
776
777 /*
778 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
779 *
780 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
781 * they could prepopulate the cache and make sure that they do not use more
782 * then minalloc entries. So, fault injection in this case insures that
783 * either TASKQ_PREPOPULATE is not set or there are more entries allocated
784 * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed
785 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
786 * dispatches.
787 */
788 #ifdef DEBUG
789 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \
790 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
791 if ((flag & TQ_NOSLEEP) && \
792 taskq_random < 1771875 / taskq_dmtbf) { \
793 return (TASKQID_INVALID); \
794 }
795
796 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \
797 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
798 if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \
799 (!(tq->tq_flags & TASKQ_PREPOPULATE) || \
800 (tq->tq_nalloc > tq->tq_minalloc)) && \
801 (taskq_random < (1771875 / taskq_smtbf))) { \
802 mutex_exit(&tq->tq_lock); \
803 return (TASKQID_INVALID); \
804 }
805 #else
806 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
807 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
808 #endif
809
810 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \
811 ((l).tqent_prev == &(l)))
812
813 /*
814 * Initialize 'tqe' list head
815 */
816 #define TQ_LIST_INIT(l) { \
817 l.tqent_next = &l; \
818 l.tqent_prev = &l; \
819 }
820 /*
821 * Append `tqe' in the end of the doubly-linked list denoted by l.
822 */
823 #define TQ_APPEND(l, tqe) { \
824 tqe->tqent_next = &l; \
825 tqe->tqent_prev = l.tqent_prev; \
826 tqe->tqent_next->tqent_prev = tqe; \
827 tqe->tqent_prev->tqent_next = tqe; \
828 }
829 /*
830 * Prepend 'tqe' to the beginning of l
831 */
832 #define TQ_PREPEND(l, tqe) { \
833 tqe->tqent_next = l.tqent_next; \
834 tqe->tqent_prev = &l; \
835 tqe->tqent_next->tqent_prev = tqe; \
836 tqe->tqent_prev->tqent_next = tqe; \
837 }
838 /*
839 * Remove 'tqe' from some list
840 */
841 #define TQ_REMOVE(tqe) { \
842 tqe->tqent_prev->tqent_next = tqe->tqent_next; \
843 tqe->tqent_next->tqent_prev = tqe->tqent_prev; \
844 tqe->tqent_next = NULL; \
845 tqe->tqent_prev = NULL; \
846 }
847
848 /*
849 * Schedule a task specified by func and arg into the task queue entry tqe.
850 */
851 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) { \
852 ASSERT(MUTEX_HELD(&tq->tq_lock)); \
853 _NOTE(CONSTCOND) \
854 if (front) { \
855 TQ_PREPEND(tq->tq_task, tqe); \
856 } else { \
857 TQ_APPEND(tq->tq_task, tqe); \
858 } \
859 tqe->tqent_func = (func); \
860 tqe->tqent_arg = (arg); \
861 tq->tq_tasks++; \
862 if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \
863 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \
864 cv_signal(&tq->tq_dispatch_cv); \
865 DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
866 }
867
868 #define TQ_ENQUEUE(tq, tqe, func, arg) \
869 TQ_DO_ENQUEUE(tq, tqe, func, arg, 0)
870
871 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg) \
872 TQ_DO_ENQUEUE(tq, tqe, func, arg, 1)
873
874 /*
875 * Do-nothing task which may be used to prepopulate thread caches.
876 */
877 /*ARGSUSED*/
878 void
nulltask(void * unused)879 nulltask(void *unused)
880 {
881 }
882
883 /*ARGSUSED*/
884 static int
taskq_constructor(void * buf,void * cdrarg,int kmflags)885 taskq_constructor(void *buf, void *cdrarg, int kmflags)
886 {
887 taskq_t *tq = buf;
888
889 bzero(tq, sizeof (taskq_t));
890
891 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
892 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
893 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
894 cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
895 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
896 cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
897
898 tq->tq_task.tqent_next = &tq->tq_task;
899 tq->tq_task.tqent_prev = &tq->tq_task;
900
901 return (0);
902 }
903
904 /*ARGSUSED*/
905 static void
taskq_destructor(void * buf,void * cdrarg)906 taskq_destructor(void *buf, void *cdrarg)
907 {
908 taskq_t *tq = buf;
909
910 ASSERT(tq->tq_nthreads == 0);
911 ASSERT(tq->tq_buckets == NULL);
912 ASSERT(tq->tq_dnthreads == 0);
913
914 mutex_destroy(&tq->tq_lock);
915 rw_destroy(&tq->tq_threadlock);
916 cv_destroy(&tq->tq_dispatch_cv);
917 cv_destroy(&tq->tq_exit_cv);
918 cv_destroy(&tq->tq_wait_cv);
919 cv_destroy(&tq->tq_maxalloc_cv);
920 }
921
922 /*ARGSUSED*/
923 static int
taskq_ent_constructor(void * buf,void * cdrarg,int kmflags)924 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
925 {
926 taskq_ent_t *tqe = buf;
927
928 tqe->tqent_thread = NULL;
929 cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
930
931 return (0);
932 }
933
934 /*ARGSUSED*/
935 static void
taskq_ent_destructor(void * buf,void * cdrarg)936 taskq_ent_destructor(void *buf, void *cdrarg)
937 {
938 taskq_ent_t *tqe = buf;
939
940 ASSERT(tqe->tqent_thread == NULL);
941 cv_destroy(&tqe->tqent_cv);
942 }
943
944 void
taskq_init(void)945 taskq_init(void)
946 {
947 taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
948 sizeof (taskq_ent_t), 0, taskq_ent_constructor,
949 taskq_ent_destructor, NULL, NULL, NULL, 0);
950 taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
951 0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
952 taskq_id_arena = vmem_create("taskq_id_arena",
953 (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
954 VM_SLEEP | VMC_IDENTIFIER);
955
956 list_create(&taskq_cpupct_list, sizeof (taskq_t),
957 offsetof(taskq_t, tq_cpupct_link));
958 }
959
960 static void
taskq_update_nthreads(taskq_t * tq,uint_t ncpus)961 taskq_update_nthreads(taskq_t *tq, uint_t ncpus)
962 {
963 uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct);
964
965 ASSERT(MUTEX_HELD(&cpu_lock));
966 ASSERT(MUTEX_HELD(&tq->tq_lock));
967
968 /* We must be going from non-zero to non-zero; no exiting. */
969 ASSERT3U(tq->tq_nthreads_target, !=, 0);
970 ASSERT3U(newtarget, !=, 0);
971
972 ASSERT3U(newtarget, <=, tq->tq_nthreads_max);
973 if (newtarget != tq->tq_nthreads_target) {
974 tq->tq_flags |= TASKQ_CHANGING;
975 tq->tq_nthreads_target = newtarget;
976 cv_broadcast(&tq->tq_dispatch_cv);
977 cv_broadcast(&tq->tq_exit_cv);
978 }
979 }
980
981 /* called during task queue creation */
982 static void
taskq_cpupct_install(taskq_t * tq,cpupart_t * cpup)983 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup)
984 {
985 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
986
987 mutex_enter(&cpu_lock);
988 mutex_enter(&tq->tq_lock);
989 tq->tq_cpupart = cpup->cp_id;
990 taskq_update_nthreads(tq, cpup->cp_ncpus);
991 mutex_exit(&tq->tq_lock);
992
993 list_insert_tail(&taskq_cpupct_list, tq);
994 mutex_exit(&cpu_lock);
995 }
996
997 static void
taskq_cpupct_remove(taskq_t * tq)998 taskq_cpupct_remove(taskq_t *tq)
999 {
1000 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
1001
1002 mutex_enter(&cpu_lock);
1003 list_remove(&taskq_cpupct_list, tq);
1004 mutex_exit(&cpu_lock);
1005 }
1006
1007 /*ARGSUSED*/
1008 static int
taskq_cpu_setup(cpu_setup_t what,int id,void * arg)1009 taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
1010 {
1011 taskq_t *tq;
1012 cpupart_t *cp = cpu[id]->cpu_part;
1013 uint_t ncpus = cp->cp_ncpus;
1014
1015 ASSERT(MUTEX_HELD(&cpu_lock));
1016 ASSERT(ncpus > 0);
1017
1018 switch (what) {
1019 case CPU_OFF:
1020 case CPU_CPUPART_OUT:
1021 /* offlines are called *before* the cpu is offlined. */
1022 if (ncpus > 1)
1023 ncpus--;
1024 break;
1025
1026 case CPU_ON:
1027 case CPU_CPUPART_IN:
1028 break;
1029
1030 default:
1031 return (0); /* doesn't affect cpu count */
1032 }
1033
1034 for (tq = list_head(&taskq_cpupct_list); tq != NULL;
1035 tq = list_next(&taskq_cpupct_list, tq)) {
1036
1037 mutex_enter(&tq->tq_lock);
1038 /*
1039 * If the taskq is part of the cpuset which is changing,
1040 * update its nthreads_target.
1041 */
1042 if (tq->tq_cpupart == cp->cp_id) {
1043 taskq_update_nthreads(tq, ncpus);
1044 }
1045 mutex_exit(&tq->tq_lock);
1046 }
1047 return (0);
1048 }
1049
1050 void
taskq_mp_init(void)1051 taskq_mp_init(void)
1052 {
1053 mutex_enter(&cpu_lock);
1054 register_cpu_setup_func(taskq_cpu_setup, NULL);
1055 /*
1056 * Make sure we're up to date. At this point in boot, there is only
1057 * one processor set, so we only have to update the current CPU.
1058 */
1059 (void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL);
1060 mutex_exit(&cpu_lock);
1061 }
1062
1063 /*
1064 * Create global system dynamic task queue.
1065 */
1066 void
system_taskq_init(void)1067 system_taskq_init(void)
1068 {
1069 system_taskq = taskq_create_common("system_taskq", 0,
1070 system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0,
1071 TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
1072 }
1073
1074 /*
1075 * taskq_ent_alloc()
1076 *
1077 * Allocates a new taskq_ent_t structure either from the free list or from the
1078 * cache. Returns NULL if it can't be allocated.
1079 *
1080 * Assumes: tq->tq_lock is held.
1081 */
1082 static taskq_ent_t *
taskq_ent_alloc(taskq_t * tq,int flags)1083 taskq_ent_alloc(taskq_t *tq, int flags)
1084 {
1085 int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1086 taskq_ent_t *tqe;
1087 clock_t wait_time;
1088 clock_t wait_rv;
1089
1090 ASSERT(MUTEX_HELD(&tq->tq_lock));
1091
1092 /*
1093 * TQ_NOALLOC allocations are allowed to use the freelist, even if
1094 * we are below tq_minalloc.
1095 */
1096 again: if ((tqe = tq->tq_freelist) != NULL &&
1097 ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
1098 tq->tq_freelist = tqe->tqent_next;
1099 } else {
1100 if (flags & TQ_NOALLOC)
1101 return (NULL);
1102
1103 if (tq->tq_nalloc >= tq->tq_maxalloc) {
1104 if (kmflags & KM_NOSLEEP)
1105 return (NULL);
1106
1107 /*
1108 * We don't want to exceed tq_maxalloc, but we can't
1109 * wait for other tasks to complete (and thus free up
1110 * task structures) without risking deadlock with
1111 * the caller. So, we just delay for one second
1112 * to throttle the allocation rate. If we have tasks
1113 * complete before one second timeout expires then
1114 * taskq_ent_free will signal us and we will
1115 * immediately retry the allocation (reap free).
1116 */
1117 wait_time = ddi_get_lbolt() + hz;
1118 while (tq->tq_freelist == NULL) {
1119 tq->tq_maxalloc_wait++;
1120 wait_rv = cv_timedwait(&tq->tq_maxalloc_cv,
1121 &tq->tq_lock, wait_time);
1122 tq->tq_maxalloc_wait--;
1123 if (wait_rv == -1)
1124 break;
1125 }
1126 if (tq->tq_freelist)
1127 goto again; /* reap freelist */
1128
1129 }
1130 mutex_exit(&tq->tq_lock);
1131
1132 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
1133
1134 mutex_enter(&tq->tq_lock);
1135 if (tqe != NULL)
1136 tq->tq_nalloc++;
1137 }
1138 return (tqe);
1139 }
1140
1141 /*
1142 * taskq_ent_free()
1143 *
1144 * Free taskq_ent_t structure by either putting it on the free list or freeing
1145 * it to the cache.
1146 *
1147 * Assumes: tq->tq_lock is held.
1148 */
1149 static void
taskq_ent_free(taskq_t * tq,taskq_ent_t * tqe)1150 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
1151 {
1152 ASSERT(MUTEX_HELD(&tq->tq_lock));
1153
1154 if (tq->tq_nalloc <= tq->tq_minalloc) {
1155 tqe->tqent_next = tq->tq_freelist;
1156 tq->tq_freelist = tqe;
1157 } else {
1158 tq->tq_nalloc--;
1159 mutex_exit(&tq->tq_lock);
1160 kmem_cache_free(taskq_ent_cache, tqe);
1161 mutex_enter(&tq->tq_lock);
1162 }
1163
1164 if (tq->tq_maxalloc_wait)
1165 cv_signal(&tq->tq_maxalloc_cv);
1166 }
1167
1168 /*
1169 * taskq_ent_exists()
1170 *
1171 * Return 1 if taskq already has entry for calling 'func(arg)'.
1172 *
1173 * Assumes: tq->tq_lock is held.
1174 */
1175 static int
taskq_ent_exists(taskq_t * tq,task_func_t func,void * arg)1176 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg)
1177 {
1178 taskq_ent_t *tqe;
1179
1180 ASSERT(MUTEX_HELD(&tq->tq_lock));
1181
1182 for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task;
1183 tqe = tqe->tqent_next)
1184 if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg))
1185 return (1);
1186 return (0);
1187 }
1188
1189 /*
1190 * Dispatch a task "func(arg)" to a free entry of bucket b.
1191 *
1192 * Assumes: no bucket locks is held.
1193 *
1194 * Returns: a pointer to an entry if dispatch was successful.
1195 * NULL if there are no free entries or if the bucket is suspended.
1196 */
1197 static taskq_ent_t *
taskq_bucket_dispatch(taskq_bucket_t * b,task_func_t func,void * arg)1198 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
1199 {
1200 taskq_ent_t *tqe;
1201 taskq_t *tq = b->tqbucket_taskq;
1202 taskq_bucket_t *idleb = &tq->tq_buckets[tq->tq_nbuckets];
1203
1204 ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
1205 ASSERT(func != NULL);
1206 VERIFY(b >= tq->tq_buckets && b < idleb);
1207
1208 mutex_enter(&b->tqbucket_lock);
1209
1210 ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
1211 ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
1212
1213 /*
1214 * Get en entry from the freelist if there is one.
1215 * Schedule task into the entry.
1216 */
1217 if ((b->tqbucket_nfree != 0) &&
1218 !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
1219 tqe = b->tqbucket_freelist.tqent_prev;
1220
1221 ASSERT(tqe != &b->tqbucket_freelist);
1222 ASSERT(tqe->tqent_thread != NULL);
1223
1224 TQ_REMOVE(tqe);
1225 b->tqbucket_nfree--;
1226 tqe->tqent_func = func;
1227 tqe->tqent_arg = arg;
1228 b->tqbucket_nalloc++;
1229 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
1230 taskq_ent_t *, tqe);
1231 cv_signal(&tqe->tqent_cv);
1232 TQ_STAT(b, tqs_hits);
1233 } else {
1234 tqe = NULL;
1235 TQ_STAT(b, tqs_misses);
1236 }
1237 mutex_exit(&b->tqbucket_lock);
1238 return (tqe);
1239 }
1240
1241 /*
1242 * Dispatch a task "func(arg)" using a free entry from the "idle" bucket.
1243 * If we succeed finding a free entry, migrate that thread from the "idle"
1244 * bucket to the bucket passed (b).
1245 *
1246 * Assumes: no bucket locks is held.
1247 *
1248 * Returns: a pointer to an entry if dispatch was successful.
1249 * NULL if there are no free entries or if the bucket is suspended.
1250 */
1251 static taskq_ent_t *
taskq_idlebucket_dispatch(taskq_bucket_t * b,task_func_t func,void * arg)1252 taskq_idlebucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
1253 {
1254 taskq_ent_t *tqe;
1255 taskq_t *tq = b->tqbucket_taskq;
1256 taskq_bucket_t *idleb = &tq->tq_buckets[tq->tq_nbuckets];
1257
1258 ASSERT(func != NULL);
1259 ASSERT(b != idleb);
1260 ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
1261 ASSERT(MUTEX_NOT_HELD(&idleb->tqbucket_lock));
1262
1263 /*
1264 * Get out quickly (without locks) if unlikely to succeed.
1265 */
1266 if (idleb->tqbucket_nfree == 0) {
1267 TQ_STAT(idleb, tqs_misses);
1268 return (NULL);
1269 }
1270
1271 /*
1272 * Need the mutex on both the idle bucket (idleb) and bucket (b)
1273 * entered below. See Locks and Lock Order in the top comments.
1274 */
1275 mutex_enter(&idleb->tqbucket_lock);
1276
1277 IMPLY(idleb->tqbucket_nfree == 0, IS_EMPTY(idleb->tqbucket_freelist));
1278 IMPLY(idleb->tqbucket_nfree != 0, !IS_EMPTY(idleb->tqbucket_freelist));
1279
1280 /*
1281 * Get an entry from the idle bucket freelist if there is one.
1282 * Schedule task into the entry.
1283 */
1284 if ((idleb->tqbucket_nfree != 0) &&
1285 !(idleb->tqbucket_flags & TQBUCKET_SUSPEND)) {
1286 tqe = idleb->tqbucket_freelist.tqent_prev;
1287
1288 ASSERT(tqe != &idleb->tqbucket_freelist);
1289 ASSERT(tqe->tqent_thread != NULL);
1290
1291 TQ_REMOVE(tqe);
1292 idleb->tqbucket_nfree--;
1293
1294 tqe->tqent_func = func;
1295 tqe->tqent_arg = arg;
1296
1297 /*
1298 * Note move TQE to new bucket here!
1299 * See reaction in taskq_d_thread
1300 */
1301 tqe->tqent_un.tqent_bucket = b;
1302
1303 /*
1304 * Track the "alloc" on the bucket moved to,
1305 * as if this tqe were dispatched from there.
1306 */
1307 mutex_enter(&b->tqbucket_lock);
1308 b->tqbucket_nalloc++;
1309 mutex_exit(&b->tqbucket_lock);
1310
1311 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
1312 taskq_ent_t *, tqe);
1313
1314 /* Let the tqe thread run. */
1315 cv_signal(&tqe->tqent_cv);
1316
1317 /* Count this as a "hit" on the idle bucket. */
1318 TQ_STAT(idleb, tqs_hits);
1319 } else {
1320 tqe = NULL;
1321 TQ_STAT(idleb, tqs_misses);
1322 }
1323
1324 mutex_exit(&idleb->tqbucket_lock);
1325
1326 return (tqe);
1327 }
1328
1329 /*
1330 * Enqueue a taskq job on the per-bucket backlog.
1331 */
1332 static taskq_ent_t *
taskq_backlog_dispatch(taskq_bucket_t * bucket,task_func_t func,void * arg,int flags)1333 taskq_backlog_dispatch(taskq_bucket_t *bucket, task_func_t func, void *arg,
1334 int flags)
1335 {
1336 taskq_ent_t *tqe;
1337 int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1338
1339 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
1340 if (tqe == NULL)
1341 return (tqe);
1342
1343 tqe->tqent_func = func;
1344 tqe->tqent_arg = arg;
1345
1346 mutex_enter(&bucket->tqbucket_lock);
1347 taskq_backlog_enqueue(bucket, tqe, flags);
1348 mutex_exit(&bucket->tqbucket_lock);
1349
1350 return (tqe);
1351 }
1352
1353 static void
taskq_backlog_enqueue(taskq_bucket_t * bucket,taskq_ent_t * tqe,int flags)1354 taskq_backlog_enqueue(taskq_bucket_t *bucket, taskq_ent_t *tqe, int flags)
1355 {
1356
1357 ASSERT(MUTEX_HELD(&bucket->tqbucket_lock));
1358
1359 tqe->tqent_un.tqent_bucket = bucket;
1360 if ((flags & TQ_FRONT) != 0) {
1361 TQ_PREPEND(bucket->tqbucket_backlog, tqe);
1362 } else {
1363 TQ_APPEND(bucket->tqbucket_backlog, tqe);
1364 }
1365 bucket->tqbucket_nbacklog++;
1366 /* See membar_consumer in taskq_d_thread(). */
1367 membar_producer();
1368 DTRACE_PROBE2(taskq__d__enqueue,
1369 taskq_bucket_t *, bucket,
1370 taskq_ent_t *, tqe);
1371 TQ_STAT(bucket, tqs_overflow);
1372 #if TASKQ_STATISTIC
1373 if (bucket->tqbucket_stat.tqs_maxbacklog <
1374 bucket->tqbucket_nbacklog) {
1375 bucket->tqbucket_stat.tqs_maxbacklog =
1376 bucket->tqbucket_nbacklog;
1377 }
1378 #endif
1379 /*
1380 * Before this function is called, the caller has tried
1381 * taskq_bucket_dispatch, taskq_idlebucket_dispatch, and
1382 * not found any idle TQE. The bucket lock is dropped
1383 * between those calls and this, so it's possible that a
1384 * TQE worker became idle before we entered the mutex.
1385 * Check for that here and wake an idle thread so it
1386 * will re-check the backlog.
1387 */
1388 if (bucket->tqbucket_nfree != 0) {
1389 taskq_ent_t *itqe;
1390 itqe = bucket->tqbucket_freelist.tqent_prev;
1391 cv_signal(&itqe->tqent_cv);
1392 }
1393 }
1394
1395 /*
1396 * Dispatch a task.
1397 *
1398 * Assumes: func != NULL
1399 *
1400 * Returns: NULL if dispatch failed.
1401 * non-NULL if task dispatched successfully.
1402 * Actual return value is the pointer to taskq entry that was used to
1403 * dispatch a task. This is useful for debugging.
1404 */
1405 taskqid_t
taskq_dispatch(taskq_t * tq,task_func_t func,void * arg,uint_t flags)1406 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
1407 {
1408 taskq_bucket_t *bucket = NULL; /* Which bucket needs extension */
1409 taskq_ent_t *tqe = NULL;
1410 uint_t bsize;
1411
1412 ASSERT(tq != NULL);
1413 ASSERT(func != NULL);
1414
1415 if ((tq->tq_flags & TASKQ_DYNAMIC) == 0) {
1416 /*
1417 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
1418 */
1419 ASSERT(!(flags & TQ_NOQUEUE));
1420 /*
1421 * Enqueue the task to the underlying queue.
1422 */
1423 mutex_enter(&tq->tq_lock);
1424
1425 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
1426
1427 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
1428 tq->tq_nomem++;
1429 mutex_exit(&tq->tq_lock);
1430 return ((taskqid_t)tqe);
1431 }
1432 /* Make sure we start without any flags */
1433 tqe->tqent_un.tqent_flags = 0;
1434
1435 if (flags & TQ_FRONT) {
1436 TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1437 } else {
1438 TQ_ENQUEUE(tq, tqe, func, arg);
1439 }
1440 mutex_exit(&tq->tq_lock);
1441 return ((taskqid_t)tqe);
1442 }
1443
1444 /*
1445 * Dynamic taskq dispatching.
1446 */
1447 ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT)));
1448 TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
1449
1450 ASSERT(func != taskq_d_migrate);
1451 ASSERT(func != taskq_d_redirect);
1452
1453 bsize = tq->tq_nbuckets;
1454
1455 if (bsize == 1) {
1456 /*
1457 * In a single-CPU case there is only one bucket, so get
1458 * entry directly from there.
1459 */
1460 tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg);
1461 if (tqe != NULL)
1462 return ((taskqid_t)tqe); /* Fastpath */
1463 bucket = tq->tq_buckets;
1464 } else {
1465 uintptr_t h = TQ_HASH((uintptr_t)arg, CPUHINT());
1466
1467 bucket = &tq->tq_buckets[h & (bsize - 1)];
1468 ASSERT(bucket->tqbucket_taskq == tq); /* Sanity check */
1469
1470 /*
1471 * Do a quick check before grabbing the lock. If the bucket does
1472 * not have free entries now, chances are very small that it
1473 * will after we take the lock, so we just skip it.
1474 */
1475 if (bucket->tqbucket_nfree != 0) {
1476 tqe = taskq_bucket_dispatch(bucket, func, arg);
1477 if (tqe != NULL)
1478 return ((taskqid_t)tqe); /* Fastpath */
1479 } else {
1480 TQ_STAT(bucket, tqs_misses);
1481 }
1482 }
1483
1484 /*
1485 * Try the "idle" bucket, which if successful, will
1486 * migrate an idle thread into this bucket.
1487 */
1488 tqe = taskq_idlebucket_dispatch(bucket, func, arg);
1489 if (tqe != NULL)
1490 return ((taskqid_t)tqe);
1491
1492 /*
1493 * At this point we have failed to dispatch (tqe == NULL).
1494 * Try more expensive measures, if appropriate.
1495 */
1496 ASSERT(tqe == NULL);
1497
1498 /*
1499 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1500 *
1501 * taskq_bucket_extend() may fail to do anything, but this is
1502 * fine - we deal with it later. If the bucket was successfully
1503 * extended, there is a good chance that taskq_bucket_dispatch()
1504 * will get this new entry, unless another dispatch is racing with
1505 * this one and steals the new entry from under us. In that (rare)
1506 * case, repeat the taskq_bucket_extend() call. Keep a count of
1507 * the "lost the race" events just for debug and testing.
1508 */
1509 if ((flags & TQ_NOSLEEP) == 0) {
1510 while (taskq_bucket_extend(bucket) != NULL) {
1511 TQ_STAT(bucket, tqs_disptcreates);
1512 tqe = taskq_bucket_dispatch(bucket, func, arg);
1513 if (tqe != NULL) {
1514 return ((taskqid_t)tqe);
1515 }
1516 taskq_disptcreates_lost++;
1517 }
1518 }
1519
1520 /*
1521 * Dispatch failed and we can't find an entry to schedule a task.
1522 * Use the per-bucket backlog queue unless TQ_NOQUEUE was asked.
1523 * Whether or not this succeeds, we'll schedule an asynchornous
1524 * task to try to extend (add a thread to) this bucket.
1525 */
1526 if ((flags & TQ_NOQUEUE) == 0) {
1527 tqe = taskq_backlog_dispatch(bucket, func, arg, flags);
1528 }
1529
1530 /*
1531 * Since there are not enough free entries in the bucket, add a
1532 * taskq entry to the backing queue to extend it in the background
1533 * (unless we already have a taskq entry to perform that work).
1534 *
1535 * Note that this is the ONLY case where dynamic taskq's use the
1536 * (single threaded) tq->tq_tasks dispatch mechanism.
1537 */
1538 mutex_enter(&tq->tq_lock);
1539 if (!taskq_ent_exists(tq, taskq_bucket_overflow, bucket)) {
1540 taskq_ent_t *tqe1;
1541 if ((tqe1 = taskq_ent_alloc(tq, flags)) != NULL) {
1542 TQ_ENQUEUE(tq, tqe1, taskq_bucket_overflow, bucket);
1543 } else {
1544 tq->tq_nomem++;
1545 }
1546 }
1547 mutex_exit(&tq->tq_lock);
1548
1549 return ((taskqid_t)tqe);
1550 }
1551
1552 void
taskq_dispatch_ent(taskq_t * tq,task_func_t func,void * arg,uint_t flags,taskq_ent_t * tqe)1553 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
1554 taskq_ent_t *tqe)
1555 {
1556 ASSERT(func != NULL);
1557 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1558
1559 /*
1560 * Mark it as a prealloc'd task. This is important
1561 * to ensure that we don't free it later.
1562 */
1563 tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC;
1564 /*
1565 * Enqueue the task to the underlying queue.
1566 */
1567 mutex_enter(&tq->tq_lock);
1568
1569 if (flags & TQ_FRONT) {
1570 TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1571 } else {
1572 TQ_ENQUEUE(tq, tqe, func, arg);
1573 }
1574 mutex_exit(&tq->tq_lock);
1575 }
1576
1577 /*
1578 * Allow our caller to ask if there are tasks pending on the queue.
1579 */
1580 boolean_t
taskq_empty(taskq_t * tq)1581 taskq_empty(taskq_t *tq)
1582 {
1583 boolean_t rv;
1584
1585 ASSERT3P(tq, !=, curthread->t_taskq);
1586 mutex_enter(&tq->tq_lock);
1587 rv = (tq->tq_task.tqent_next == &tq->tq_task) && (tq->tq_active == 0);
1588 mutex_exit(&tq->tq_lock);
1589
1590 return (rv);
1591 }
1592
1593 /*
1594 * Wait for all pending tasks to complete.
1595 * Calling taskq_wait from a task will cause deadlock.
1596 */
1597 void
taskq_wait(taskq_t * tq)1598 taskq_wait(taskq_t *tq)
1599 {
1600 ASSERT(tq != curthread->t_taskq);
1601
1602 mutex_enter(&tq->tq_lock);
1603 while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
1604 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1605 mutex_exit(&tq->tq_lock);
1606
1607 if (tq->tq_flags & TASKQ_DYNAMIC) {
1608 taskq_bucket_t *b = tq->tq_buckets;
1609 int bid = 0;
1610 for (; (b != NULL) && (bid <= tq->tq_nbuckets); b++, bid++) {
1611 mutex_enter(&b->tqbucket_lock);
1612 while (b->tqbucket_nalloc > 0 ||
1613 b->tqbucket_nbacklog > 0)
1614 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1615 mutex_exit(&b->tqbucket_lock);
1616 }
1617 }
1618 }
1619
1620 void
taskq_wait_id(taskq_t * tq,taskqid_t id __unused)1621 taskq_wait_id(taskq_t *tq, taskqid_t id __unused)
1622 {
1623 taskq_wait(tq);
1624 }
1625
1626 /*
1627 * Suspend execution of tasks.
1628 *
1629 * Tasks in the queue part will be suspended immediately upon return from this
1630 * function. Pending tasks in the dynamic part will continue to execute, but all
1631 * new tasks will be suspended.
1632 */
1633 void
taskq_suspend(taskq_t * tq)1634 taskq_suspend(taskq_t *tq)
1635 {
1636 rw_enter(&tq->tq_threadlock, RW_WRITER);
1637
1638 if (tq->tq_flags & TASKQ_DYNAMIC) {
1639 taskq_bucket_t *b = tq->tq_buckets;
1640 int bid = 0;
1641 for (; (b != NULL) && (bid <= tq->tq_nbuckets); b++, bid++) {
1642 mutex_enter(&b->tqbucket_lock);
1643 b->tqbucket_flags |= TQBUCKET_SUSPEND;
1644 mutex_exit(&b->tqbucket_lock);
1645 }
1646 }
1647 /*
1648 * Mark task queue as being suspended. Needed for taskq_suspended().
1649 */
1650 mutex_enter(&tq->tq_lock);
1651 ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1652 tq->tq_flags |= TASKQ_SUSPENDED;
1653 mutex_exit(&tq->tq_lock);
1654 }
1655
1656 /*
1657 * returns: 1 if tq is suspended, 0 otherwise.
1658 */
1659 int
taskq_suspended(taskq_t * tq)1660 taskq_suspended(taskq_t *tq)
1661 {
1662 return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1663 }
1664
1665 /*
1666 * Resume taskq execution.
1667 */
1668 void
taskq_resume(taskq_t * tq)1669 taskq_resume(taskq_t *tq)
1670 {
1671 ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1672
1673 if (tq->tq_flags & TASKQ_DYNAMIC) {
1674 taskq_bucket_t *b = tq->tq_buckets;
1675 int bid = 0;
1676 for (; (b != NULL) && (bid <= tq->tq_nbuckets); b++, bid++) {
1677 mutex_enter(&b->tqbucket_lock);
1678 b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1679 mutex_exit(&b->tqbucket_lock);
1680 }
1681 }
1682 mutex_enter(&tq->tq_lock);
1683 ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1684 tq->tq_flags &= ~TASKQ_SUSPENDED;
1685 mutex_exit(&tq->tq_lock);
1686
1687 rw_exit(&tq->tq_threadlock);
1688 }
1689
1690 int
taskq_member(taskq_t * tq,kthread_t * thread)1691 taskq_member(taskq_t *tq, kthread_t *thread)
1692 {
1693 return (thread->t_taskq == tq);
1694 }
1695
1696 /*
1697 * Creates a thread in the taskq. We only allow one outstanding create at
1698 * a time. We drop and reacquire the tq_lock in order to avoid blocking other
1699 * taskq activity while thread_create() or lwp_kernel_create() run.
1700 *
1701 * The first time we're called, we do some additional setup, and do not
1702 * return until there are enough threads to start servicing requests.
1703 */
1704 static void
taskq_thread_create(taskq_t * tq)1705 taskq_thread_create(taskq_t *tq)
1706 {
1707 kthread_t *t;
1708 const boolean_t first = (tq->tq_nthreads == 0);
1709
1710 ASSERT(MUTEX_HELD(&tq->tq_lock));
1711 ASSERT(tq->tq_flags & TASKQ_CHANGING);
1712 ASSERT(tq->tq_nthreads < tq->tq_nthreads_target);
1713 ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));
1714
1715
1716 tq->tq_flags |= TASKQ_THREAD_CREATED;
1717 tq->tq_active++;
1718 mutex_exit(&tq->tq_lock);
1719
1720 /*
1721 * With TASKQ_DUTY_CYCLE the new thread must have an LWP
1722 * as explained in ../disp/sysdc.c (for the msacct data).
1723 * Normally simple kthreads are preferred, unless the
1724 * caller has asked for LWPs for other reasons.
1725 */
1726 if ((tq->tq_flags & (TASKQ_DUTY_CYCLE | TASKQ_THREADS_LWP)) != 0) {
1727 /* Enforced in taskq_create_common */
1728 ASSERT3P(tq->tq_proc, !=, &p0);
1729 t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN,
1730 tq->tq_pri);
1731 } else {
1732 t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc,
1733 TS_RUN, tq->tq_pri);
1734 }
1735
1736 if (!first) {
1737 mutex_enter(&tq->tq_lock);
1738 return;
1739 }
1740
1741 /*
1742 * We know the thread cannot go away, since tq cannot be
1743 * destroyed until creation has completed. We can therefore
1744 * safely dereference t.
1745 */
1746 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
1747 taskq_cpupct_install(tq, t->t_cpupart);
1748 }
1749 mutex_enter(&tq->tq_lock);
1750
1751 /* Wait until we can service requests. */
1752 while (tq->tq_nthreads != tq->tq_nthreads_target &&
1753 tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) {
1754 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1755 }
1756 }
1757
1758 /*
1759 * Common "sleep taskq thread" function, which handles CPR stuff, as well
1760 * as giving a nice common point for debuggers to find inactive threads.
1761 */
1762 static clock_t
taskq_thread_wait(taskq_t * tq,kmutex_t * mx,kcondvar_t * cv,callb_cpr_t * cprinfo,clock_t timeout)1763 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
1764 callb_cpr_t *cprinfo, clock_t timeout)
1765 {
1766 clock_t ret = 0;
1767
1768 ASSERT(MUTEX_HELD(mx));
1769 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1770 CALLB_CPR_SAFE_BEGIN(cprinfo);
1771 }
1772 if (timeout < 0)
1773 cv_wait(cv, mx);
1774 else
1775 ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK);
1776
1777 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1778 CALLB_CPR_SAFE_END(cprinfo, mx);
1779 }
1780
1781 return (ret);
1782 }
1783
1784 /*
1785 * Worker thread for processing task queue.
1786 */
1787 static void
taskq_thread(void * arg)1788 taskq_thread(void *arg)
1789 {
1790 int thread_id;
1791
1792 taskq_t *tq = arg;
1793 taskq_ent_t *tqe;
1794 callb_cpr_t cprinfo;
1795 hrtime_t start, end;
1796 boolean_t freeit;
1797
1798 curthread->t_taskq = tq; /* mark ourselves for taskq_member() */
1799
1800 if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) {
1801 sysdc_thread_enter(curthread, tq->tq_DC,
1802 (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0);
1803 }
1804
1805 if (tq->tq_flags & TASKQ_CPR_SAFE) {
1806 CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1807 } else {
1808 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1809 tq->tq_name);
1810 }
1811 mutex_enter(&tq->tq_lock);
1812 thread_id = ++tq->tq_nthreads;
1813 ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
1814 ASSERT(tq->tq_flags & TASKQ_CHANGING);
1815 tq->tq_flags &= ~TASKQ_THREAD_CREATED;
1816
1817 VERIFY3S(thread_id, <=, tq->tq_nthreads_max);
1818
1819 if (tq->tq_nthreads_max == 1)
1820 tq->tq_thread = curthread;
1821 else
1822 tq->tq_threadlist[thread_id - 1] = curthread;
1823
1824 /* Allow taskq_create_common()'s taskq_thread_create() to return. */
1825 if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS)
1826 cv_broadcast(&tq->tq_wait_cv);
1827
1828 for (;;) {
1829 if (tq->tq_flags & TASKQ_CHANGING) {
1830 /* See if we're no longer needed */
1831 if (thread_id > tq->tq_nthreads_target) {
1832 /*
1833 * To preserve the one-to-one mapping between
1834 * thread_id and thread, we must exit from
1835 * highest thread ID to least.
1836 *
1837 * However, if everyone is exiting, the order
1838 * doesn't matter, so just exit immediately.
1839 * (this is safe, since you must wait for
1840 * nthreads to reach 0 after setting
1841 * tq_nthreads_target to 0)
1842 */
1843 if (thread_id == tq->tq_nthreads ||
1844 tq->tq_nthreads_target == 0)
1845 break;
1846
1847 /* Wait for higher thread_ids to exit */
1848 (void) taskq_thread_wait(tq, &tq->tq_lock,
1849 &tq->tq_exit_cv, &cprinfo, -1);
1850 continue;
1851 }
1852
1853 /*
1854 * If no thread is starting taskq_thread(), we can
1855 * do some bookkeeping.
1856 */
1857 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) {
1858 /* Check if we've reached our target */
1859 if (tq->tq_nthreads == tq->tq_nthreads_target) {
1860 tq->tq_flags &= ~TASKQ_CHANGING;
1861 cv_broadcast(&tq->tq_wait_cv);
1862 }
1863 /* Check if we need to create a thread */
1864 if (tq->tq_nthreads < tq->tq_nthreads_target) {
1865 taskq_thread_create(tq);
1866 continue; /* tq_lock was dropped */
1867 }
1868 }
1869 }
1870 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1871 if (--tq->tq_active == 0)
1872 cv_broadcast(&tq->tq_wait_cv);
1873 (void) taskq_thread_wait(tq, &tq->tq_lock,
1874 &tq->tq_dispatch_cv, &cprinfo, -1);
1875 tq->tq_active++;
1876 continue;
1877 }
1878
1879 TQ_REMOVE(tqe);
1880 mutex_exit(&tq->tq_lock);
1881
1882 /*
1883 * For prealloc'd tasks, we don't free anything. We
1884 * have to check this now, because once we call the
1885 * function for a prealloc'd taskq, we can't touch the
1886 * tqent any longer (calling the function returns the
1887 * ownershp of the tqent back to caller of
1888 * taskq_dispatch.)
1889 */
1890 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) &&
1891 (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) {
1892 /* clear pointers to assist assertion checks */
1893 tqe->tqent_next = tqe->tqent_prev = NULL;
1894 freeit = B_FALSE;
1895 } else {
1896 freeit = B_TRUE;
1897 }
1898
1899 rw_enter(&tq->tq_threadlock, RW_READER);
1900 start = gethrtime();
1901 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1902 taskq_ent_t *, tqe);
1903 tqe->tqent_func(tqe->tqent_arg);
1904 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1905 taskq_ent_t *, tqe);
1906 end = gethrtime();
1907 rw_exit(&tq->tq_threadlock);
1908
1909 mutex_enter(&tq->tq_lock);
1910 tq->tq_totaltime += end - start;
1911 tq->tq_executed++;
1912
1913 if (freeit)
1914 taskq_ent_free(tq, tqe);
1915 }
1916
1917 if (tq->tq_nthreads_max == 1)
1918 tq->tq_thread = NULL;
1919 else
1920 tq->tq_threadlist[thread_id - 1] = NULL;
1921
1922 /* We're exiting, and therefore no longer active */
1923 ASSERT(tq->tq_active > 0);
1924 tq->tq_active--;
1925
1926 ASSERT(tq->tq_nthreads > 0);
1927 tq->tq_nthreads--;
1928
1929 /* Wake up anyone waiting for us to exit */
1930 cv_broadcast(&tq->tq_exit_cv);
1931 if (tq->tq_nthreads == tq->tq_nthreads_target) {
1932 if (!(tq->tq_flags & TASKQ_THREAD_CREATED))
1933 tq->tq_flags &= ~TASKQ_CHANGING;
1934
1935 cv_broadcast(&tq->tq_wait_cv);
1936 }
1937
1938 ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1939 CALLB_CPR_EXIT(&cprinfo); /* drops tq->tq_lock */
1940 if (curthread->t_lwp != NULL) {
1941 mutex_enter(&curproc->p_lock);
1942 lwp_exit();
1943 } else {
1944 thread_exit();
1945 }
1946 }
1947
1948 /*
1949 * Sentinel function to help with thread migration.
1950 * We never actualy run this function.
1951 *
1952 * When a thread becomes idle in one bucket and goes in search of another
1953 * bucket to service, it's not on any free list. For consistency with the
1954 * various assertions, we want the tqent_func to be non-NULL, so in such
1955 * cases it points to this function.
1956 */
1957 static void
taskq_d_migrate(void * arg __unused)1958 taskq_d_migrate(void *arg __unused)
1959 {
1960 ASSERT(0);
1961 }
1962
1963 /*
1964 * Sentinel function to help with thread redistribution (forced migration).
1965 * We never actualy run this function.
1966 *
1967 * When taskq_bucket_redist needs to direct a thread from one bucket
1968 * to another, this function is dispatched into the bucket that will
1969 * donate the thread, with the arg pointing to the bucket that will
1970 * receive the thread. See checks for this sentinel in the functions
1971 * taskq_d_svc_bucket, taskq_d_thread.
1972 */
1973 static void
taskq_d_redirect(void * arg __unused)1974 taskq_d_redirect(void *arg __unused)
1975 {
1976 ASSERT(0);
1977 }
1978
1979 /*
1980 * Helper for taskq_d_thread() -- service a bucket
1981 */
1982 static void
taskq_d_svc_bucket(taskq_ent_t * tqe,taskq_bucket_t * bucket,taskq_t * tq)1983 taskq_d_svc_bucket(taskq_ent_t *tqe,
1984 taskq_bucket_t *bucket, taskq_t *tq)
1985 {
1986 kmutex_t *lock = &bucket->tqbucket_lock;
1987 clock_t w = 0;
1988 clock_t tmo = MSEC_TO_TICK(taskq_thread_bucket_wait);
1989
1990 mutex_enter(lock);
1991
1992 /*
1993 * After this thread is started by taskq_bucket_extend(),
1994 * we may be on the free list (func == NULL) or we may have
1995 * been given a task to run. If we have a task, start at
1996 * the top of the for loop, otherwise start in "the middle",
1997 * where we would be after finishing some task.
1998 */
1999 if (tqe->tqent_func == NULL) {
2000 /* We started on the bucket free list. */
2001 ASSERT(tqe->tqent_prev != NULL);
2002 ASSERT(bucket->tqbucket_nfree > 0);
2003
2004 /*
2005 * If we have a backlog, take off free list and
2006 * start working on the backlog.
2007 */
2008 if (bucket->tqbucket_nbacklog > 0) {
2009 TQ_REMOVE(tqe);
2010 bucket->tqbucket_nfree--;
2011 tqe->tqent_func = taskq_d_migrate;
2012 bucket->tqbucket_nalloc++;
2013 goto entry_backlog;
2014 }
2015 /*
2016 * We're already on the free list, so start where
2017 * we'd wait just after going onto the free list.
2018 */
2019 goto entry_freelist;
2020 }
2021
2022 /*
2023 * After a forced migration, clear the REDIRECT flag,
2024 * then continue as if voluntary migration.
2025 */
2026 if (tqe->tqent_func == taskq_d_redirect) {
2027 bucket->tqbucket_flags &= ~TQBUCKET_REDIRECT;
2028 tqe->tqent_func = taskq_d_migrate;
2029 }
2030
2031 /*
2032 * Migration to a new bucket (forced or voluntary).
2033 * We're not on any free list. Enter middle of loop,
2034 * but first adjust nalloc as if we were dispatched.
2035 * Adjustment of nfree-- happened during return from
2036 * this function after servicing another bucket.
2037 */
2038 if (tqe->tqent_func == taskq_d_migrate) {
2039 bucket->tqbucket_nalloc++;
2040 goto entry_backlog;
2041 }
2042
2043 for (;;) {
2044 /*
2045 * If a task is scheduled (func != NULL), execute it.
2046 */
2047 if (tqe->tqent_func != NULL) {
2048 hrtime_t start;
2049 hrtime_t end;
2050
2051 /* Should not be on free list. */
2052 ASSERT(tqe->tqent_prev == NULL);
2053 ASSERT(bucket->tqbucket_nalloc > 0);
2054
2055 /*
2056 * Check for redirect (forced migration)
2057 * Skip going on free list. Just return.
2058 */
2059 if (tqe->tqent_func == taskq_d_redirect) {
2060 bucket->tqbucket_nalloc--;
2061 goto unlock_out;
2062 }
2063
2064 /*
2065 * Run the job.
2066 */
2067 mutex_exit(lock);
2068 start = gethrtime();
2069 DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
2070 taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
2071 tqe->tqent_func(tqe->tqent_arg);
2072 DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
2073 taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
2074 end = gethrtime();
2075 mutex_enter(lock);
2076 bucket->tqbucket_totaltime += end - start;
2077 }
2078
2079 entry_backlog:
2080 /*
2081 * If there's a backlog, consume the head of the
2082 * backlog like taskq_bucket_dispatch, then let the
2083 * normal execution code path run it.
2084 */
2085 if (bucket->tqbucket_nbacklog > 0) {
2086 taskq_ent_t *bltqe;
2087
2088 /*
2089 * Should not be on free list.
2090 * May enter here from the top.
2091 */
2092 ASSERT(tqe->tqent_prev == NULL);
2093 ASSERT(bucket->tqbucket_nalloc > 0);
2094
2095 ASSERT(!IS_EMPTY(bucket->tqbucket_backlog));
2096 bltqe = bucket->tqbucket_backlog.tqent_next;
2097 TQ_REMOVE(bltqe);
2098 bucket->tqbucket_nbacklog--;
2099
2100 DTRACE_PROBE2(taskq__x__backlog,
2101 taskq_bucket_t *, bucket,
2102 taskq_ent_t *, bltqe);
2103
2104 /*
2105 * Copy the backlog entry to the tqe
2106 * and free the backlog entry.
2107 */
2108 tqe->tqent_func = bltqe->tqent_func;
2109 tqe->tqent_arg = bltqe->tqent_arg;
2110 kmem_cache_free(taskq_ent_cache, bltqe);
2111
2112 /* Run as usual. */
2113 continue;
2114 }
2115
2116 DTRACE_PROBE2(taskq__d__wait1,
2117 taskq_t *, tq, taskq_ent_t *, tqe);
2118
2119 /*
2120 * We've run out of work in this bucket.
2121 * Put our TQE on the free list and wait.
2122 */
2123 ASSERT(tqe->tqent_prev == NULL);
2124 ASSERT(bucket->tqbucket_nalloc > 0);
2125 bucket->tqbucket_nalloc--;
2126 tqe->tqent_func = NULL;
2127 TQ_APPEND(bucket->tqbucket_freelist, tqe);
2128 bucket->tqbucket_nfree++;
2129
2130 /*
2131 * taskq_wait() waits for nalloc to drop to zero on
2132 * tqbucket_cv.
2133 */
2134 cv_signal(&bucket->tqbucket_cv);
2135
2136 entry_freelist:
2137 /*
2138 * Note: may enter here from the top.
2139 * We're on the free list. Wait for work.
2140 */
2141 ASSERT(tqe->tqent_func == NULL);
2142 ASSERT(tqe->tqent_prev != NULL);
2143 ASSERT(MUTEX_HELD(lock));
2144
2145 /*
2146 * If we're closing, finish.
2147 */
2148 if ((bucket->tqbucket_flags & TQBUCKET_CLOSE) != 0)
2149 break;
2150
2151 /*
2152 * Go to sleep waiting for work to arrive.
2153 * Sleep only briefly here on the bucket.
2154 * If no work lands in the bucket, return and
2155 * the caller will put this TQE on the common
2156 * list of idle threads and do the long wait.
2157 */
2158 w = cv_reltimedwait(&tqe->tqent_cv, lock, tmo, TR_CLOCK_TICK);
2159
2160 /*
2161 * At this point we may be in two different states:
2162 *
2163 * (1) tqent_func is set which means that a new task is
2164 * dispatched and we need to execute it.
2165 * The dispatch took us off the free list.
2166 *
2167 * (2) Thread is sleeping for too long, or closing.
2168 * We're done servicing this bucket.
2169 *
2170 * Some consistency checks:
2171 * func == NULL implies on free list
2172 * func != NULL implies not on free list
2173 */
2174 if (tqe->tqent_func == NULL) {
2175 /* Should be on the free list. */
2176 ASSERT(tqe->tqent_prev != NULL);
2177 ASSERT(bucket->tqbucket_nfree > 0);
2178 if (w < 0) {
2179 /* slept too long */
2180 break;
2181 }
2182
2183 /*
2184 * We may have been signaled if we finished a job
2185 * and got on the free list just before a call to
2186 * taskq_backlog_dispatch took the lock. In that
2187 * case resume working on the backlog.
2188 */
2189 if (bucket->tqbucket_nbacklog > 0) {
2190 TQ_REMOVE(tqe);
2191 bucket->tqbucket_nfree--;
2192 tqe->tqent_func = taskq_d_migrate;
2193 bucket->tqbucket_nalloc++;
2194 goto entry_backlog;
2195 }
2196
2197 /*
2198 * Woken for some other reason.
2199 * Still on the free list, lock held.
2200 * Just wait again.
2201 */
2202 goto entry_freelist;
2203 }
2204
2205 /*
2206 * taskq_bucket_dispatch has set tqent_func
2207 * and taken us off the free list.
2208 */
2209 ASSERT(tqe->tqent_func != NULL);
2210 ASSERT(tqe->tqent_prev == NULL);
2211 /* Back to the top (continue) */
2212 }
2213
2214 /*
2215 * Remove the entry from the free list.
2216 * Will migrate to another bucket.
2217 * See taskq_d_migrate above.
2218 *
2219 * Note: nalloc++ happens after we return to taskq_d_thread
2220 * and enter the mutex for the next bucket we serve.
2221 */
2222 TQ_REMOVE(tqe);
2223 tqe->tqent_func = taskq_d_migrate;
2224 ASSERT(bucket->tqbucket_nfree > 0);
2225 bucket->tqbucket_nfree--;
2226 cv_signal(&bucket->tqbucket_cv);
2227
2228 unlock_out:
2229 mutex_exit(lock);
2230 }
2231
2232 /*
2233 * Worker thread for dynamic taskq's
2234 */
2235 static void
taskq_d_thread(taskq_ent_t * tqe)2236 taskq_d_thread(taskq_ent_t *tqe)
2237 {
2238 callb_cpr_t cprinfo;
2239 taskq_bucket_t *b;
2240 taskq_bucket_t *bucket = tqe->tqent_un.tqent_bucket;
2241 taskq_t *tq = bucket->tqbucket_taskq;
2242 taskq_bucket_t *idle_bucket = &tq->tq_buckets[tq->tq_nbuckets];
2243 kmutex_t *idle_lock = &idle_bucket->tqbucket_lock;
2244 clock_t tmo, w = 0;
2245
2246 CALLB_CPR_INIT(&cprinfo, idle_lock, callb_generic_cpr, tq->tq_name);
2247
2248 /*
2249 * Note that taskq_idlebucket_dispatch can change
2250 * tqent_bucket when we're on the free list. Hold
2251 * idle_lock to synchronize with those changes.
2252 */
2253 mutex_enter(idle_lock);
2254 bucket = tqe->tqent_un.tqent_bucket;
2255
2256 /*
2257 * If we were started for TASKQ_PREPOPULATE,
2258 * we'll be on the idle bucket free list.
2259 * In that case start in the middle.
2260 */
2261 if (bucket == idle_bucket) {
2262 ASSERT(tqe->tqent_func == NULL);
2263 ASSERT(tqe->tqent_prev != NULL);
2264 goto entry_freelist;
2265 }
2266
2267 /* Not on the idle_bucket free list. */
2268 mutex_exit(idle_lock);
2269
2270 for (;;) {
2271 continue_2:
2272
2273 /*
2274 * Service the bucket pointed to by the TQE.
2275 * We are NOT on the idle_bucket free list.
2276 * We may or may not be on the bucket free list.
2277 */
2278 ASSERT(MUTEX_NOT_HELD(idle_lock));
2279 bucket = tqe->tqent_un.tqent_bucket;
2280 VERIFY3P(bucket, >=, tq->tq_buckets);
2281 VERIFY3P(bucket, <, idle_bucket);
2282
2283 /* Enters/exits bucket->tqbucket_lock */
2284 taskq_d_svc_bucket(tqe, bucket, tq);
2285
2286 /*
2287 * Finished servicing a bucket where we became idle.
2288 * Not on any free list. Migrate to another bucket.
2289 * With "redirect" (forced migration) we move to the
2290 * bucket indicated by the arg.
2291 */
2292 ASSERT(tqe->tqent_prev == NULL);
2293 if (tqe->tqent_func == taskq_d_redirect) {
2294 /*
2295 * Migrate to this bucket.
2296 * See: taskq_d_redirect()
2297 */
2298 tqe->tqent_un.tqent_bucket = tqe->tqent_arg;
2299 DTRACE_PROBE2(taskq__d__redirect,
2300 taskq_t *, tq, taskq_ent_t *, tqe);
2301 continue;
2302 }
2303
2304 /*
2305 * Look for buckets with backlog and if found, migrate
2306 * to that bucket. Search starting at the next bucket
2307 * after the current one so the search starting points
2308 * will be distributed.
2309 *
2310 * Unlocked access is OK here. A bucket may be missed
2311 * due to a stale (cached) nbacklog value, but another
2312 * idle thread will see the updated value soon. If we
2313 * visit a bucket needlessly, the visit will be short.
2314 * There's a membar_producer after tqbucket_nbacklog is
2315 * updated, which should ensure visibility of updates
2316 * soon enough so buckets needing attention will get a
2317 * visit by threads passing through here.
2318 */
2319 check_backlog:
2320 ASSERT(tqe->tqent_func == taskq_d_migrate);
2321 VERIFY3P(bucket, >=, tq->tq_buckets);
2322 VERIFY3P(bucket, <, idle_bucket);
2323 membar_consumer();
2324 b = bucket;
2325 do {
2326 /* Next bucket */
2327 if (++b == idle_bucket)
2328 b = tq->tq_buckets;
2329
2330 if (b->tqbucket_nbacklog > 0) {
2331 /*
2332 * Migrate to this bucket.
2333 * See: taskq_d_migrate()
2334 */
2335 tqe->tqent_un.tqent_bucket = b;
2336 DTRACE_PROBE2(taskq__d__migration,
2337 taskq_t *, tq, taskq_ent_t *, tqe);
2338 goto continue_2;
2339 }
2340 } while (b != bucket);
2341
2342 DTRACE_PROBE2(taskq__d__wait2,
2343 taskq_t *, tq, taskq_ent_t *, tqe);
2344
2345 /*
2346 * Migrate to the idle bucket, put this TQE on
2347 * the free list for that bucket, then wait.
2348 */
2349 ASSERT(tqe->tqent_prev == NULL);
2350 tqe->tqent_un.tqent_bucket = idle_bucket;
2351 mutex_enter(idle_lock);
2352 tqe->tqent_func = NULL;
2353 TQ_APPEND(idle_bucket->tqbucket_freelist, tqe);
2354 idle_bucket->tqbucket_nfree++;
2355
2356 entry_freelist:
2357 /*
2358 * Note: may enter here from the top.
2359 * We're on the free list. Wait for work.
2360 */
2361 ASSERT(tqe->tqent_func == NULL);
2362 ASSERT(tqe->tqent_prev != NULL);
2363 ASSERT(idle_bucket->tqbucket_nfree > 0);
2364 ASSERT(MUTEX_HELD(idle_lock));
2365 ASSERT3P(tqe->tqent_un.tqent_bucket, ==, idle_bucket);
2366
2367 /*
2368 * If we're closing, finish.
2369 */
2370 if ((idle_bucket->tqbucket_flags & TQBUCKET_CLOSE) != 0)
2371 break;
2372
2373 /*
2374 * Go to sleep waiting for work to arrive.
2375 * If a thread is sleeping too long, it dies.
2376 * If this is the last thread, no timeout.
2377 */
2378 if (idle_bucket->tqbucket_nfree == 1) {
2379 tmo = -1;
2380 } else {
2381 tmo = SEC_TO_TICK(taskq_thread_timeout);
2382 }
2383 w = taskq_thread_wait(tq, idle_lock,
2384 &tqe->tqent_cv, &cprinfo, tmo);
2385
2386 /*
2387 * At this point we may be in two different states:
2388 *
2389 * (1) tqent_func is set which means that a new task is
2390 * dispatched and we need to execute it.
2391 * The dispatch took us off the free list.
2392 * Migrate to the new bucket.
2393 *
2394 * (2) Thread is sleeping for too long -- return
2395 *
2396 * Some consistency checks:
2397 * func == NULL implies on free list
2398 * func != NULL implies not on free list
2399 */
2400 if (tqe->tqent_func == NULL) {
2401 /* Should be on the free list. */
2402 ASSERT(tqe->tqent_prev != NULL);
2403 if (w < 0 && idle_bucket->tqbucket_nfree > 1) {
2404 /*
2405 * taskq_thread_wait timed out.
2406 * If not last thread, exit.
2407 */
2408 break;
2409 }
2410
2411 /*
2412 * Woken for some other reason, one of:
2413 * Last thread - stick around longer
2414 * Destroying, out via CLOSE above
2415 * taskq_bucket_redist signaled
2416 *
2417 * Still on the free list, lock held. Continue
2418 * back at the re-check for backlog work,
2419 * which means coming off the free list.
2420 *
2421 * Note that tqent_bucket is the idle bucket
2422 * at this point, which is not valid above,
2423 * so pretend we just finished servicing the
2424 * first bucket. This happens rarely.
2425 */
2426 bucket = tq->tq_buckets;
2427 TQ_REMOVE(tqe);
2428 idle_bucket->tqbucket_nfree--;
2429 tqe->tqent_func = taskq_d_migrate;
2430 tqe->tqent_un.tqent_bucket = bucket;
2431 mutex_exit(idle_lock);
2432 goto check_backlog;
2433 }
2434
2435 /*
2436 * taskq_idlebucket_dispatch will have moved this
2437 * taskq_ent_t from the idle bucket (idleb) to a
2438 * new bucket (newb). In detail, it has:
2439 * Removed this TQE from idlb->tqbucket_freelist
2440 * deccremented idleb->tqbucket_nfree
2441 * Set tqent_bucket = new_bucket
2442 * Set tqent_func, tqent_argarg
2443 * incremented newb->tqbucket_nalloc
2444 */
2445 ASSERT(tqe->tqent_func != NULL);
2446 ASSERT(tqe->tqent_prev == NULL);
2447 ASSERT(tqe->tqent_un.tqent_bucket != idle_bucket);
2448 DTRACE_PROBE2(taskq__d__idledisp,
2449 taskq_t *, tq, taskq_ent_t *, tqe);
2450 mutex_exit(idle_lock);
2451 /* Back to the top (continue) */
2452 }
2453 ASSERT(MUTEX_HELD(idle_lock));
2454 ASSERT(tqe->tqent_prev != NULL);
2455
2456 /*
2457 * Thread creation/destruction happens rarely,
2458 * so grabbing the lock is not a big performance issue.
2459 * The bucket lock is dropped by CALLB_CPR_EXIT().
2460 */
2461
2462 /* Remove the entry from the free list. */
2463 TQ_REMOVE(tqe);
2464 ASSERT(idle_bucket->tqbucket_nfree > 0);
2465 idle_bucket->tqbucket_nfree--;
2466
2467 /* Note: Creates and deaths are on the idle bucket. */
2468 TQ_STAT(idle_bucket, tqs_tdeaths);
2469 cv_signal(&idle_bucket->tqbucket_cv);
2470
2471 /*
2472 * When destroying, wake the next thread, if any.
2473 * See thundering herd comment in taskq_destroy.
2474 */
2475 if ((idle_bucket->tqbucket_flags & TQBUCKET_CLOSE) != 0 &&
2476 (idle_bucket->tqbucket_nfree > 0)) {
2477 taskq_ent_t *ntqe;
2478 ASSERT(!IS_EMPTY(idle_bucket->tqbucket_freelist));
2479 ntqe = idle_bucket->tqbucket_freelist.tqent_next;
2480 cv_signal(&ntqe->tqent_cv);
2481 }
2482
2483 tqe->tqent_thread = NULL;
2484 mutex_enter(&tq->tq_lock);
2485 tq->tq_dnthreads--;
2486 cv_broadcast(&tq->tq_exit_cv);
2487 mutex_exit(&tq->tq_lock);
2488
2489 CALLB_CPR_EXIT(&cprinfo); /* mutex_exit(idle_lock) */
2490
2491 kmem_cache_free(taskq_ent_cache, tqe);
2492
2493 if (curthread->t_lwp != NULL) {
2494 mutex_enter(&curproc->p_lock);
2495 lwp_exit(); /* noreturn. drops p_lock */
2496 } else {
2497 thread_exit();
2498 }
2499 }
2500
2501
2502 /*
2503 * Taskq creation. May sleep for memory.
2504 * Always use automatically generated instances to avoid kstat name space
2505 * collisions.
2506 */
2507
2508 taskq_t *
taskq_create(const char * name,int nthreads,pri_t pri,int minalloc,int maxalloc,uint_t flags)2509 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
2510 int maxalloc, uint_t flags)
2511 {
2512 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
2513
2514 return (taskq_create_common(name, 0, nthreads, pri, minalloc,
2515 maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE));
2516 }
2517
2518 /*
2519 * Create an instance of task queue. It is legal to create task queues with the
2520 * same name and different instances.
2521 *
2522 * taskq_create_instance is used by ddi_taskq_create() where it gets the
2523 * instance from ddi_get_instance(). In some cases the instance is not
2524 * initialized and is set to -1. This case is handled as if no instance was
2525 * passed at all.
2526 */
2527 taskq_t *
taskq_create_instance(const char * name,int instance,int nthreads,pri_t pri,int minalloc,int maxalloc,uint_t flags)2528 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
2529 int minalloc, int maxalloc, uint_t flags)
2530 {
2531 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
2532 ASSERT((instance >= 0) || (instance == -1));
2533
2534 if (instance < 0) {
2535 flags |= TASKQ_NOINSTANCE;
2536 }
2537
2538 return (taskq_create_common(name, instance, nthreads,
2539 pri, minalloc, maxalloc, &p0, 0, flags));
2540 }
2541
2542 taskq_t *
taskq_create_proc(const char * name,int nthreads,pri_t pri,int minalloc,int maxalloc,proc_t * proc,uint_t flags)2543 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc,
2544 int maxalloc, proc_t *proc, uint_t flags)
2545 {
2546 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
2547 ASSERT(proc->p_flag & SSYS);
2548
2549 return (taskq_create_common(name, 0, nthreads, pri, minalloc,
2550 maxalloc, proc, 0, flags | TASKQ_NOINSTANCE));
2551 }
2552
2553 taskq_t *
taskq_create_sysdc(const char * name,int nthreads,int minalloc,int maxalloc,proc_t * proc,uint_t dc,uint_t flags)2554 taskq_create_sysdc(const char *name, int nthreads, int minalloc,
2555 int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
2556 {
2557 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
2558 ASSERT(proc->p_flag & SSYS);
2559
2560 return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc,
2561 maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE));
2562 }
2563
2564 static taskq_t *
taskq_create_common(const char * name,int instance,int nthreads,pri_t pri,int minalloc,int maxalloc,proc_t * proc,uint_t dc,uint_t flags)2565 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
2566 int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
2567 {
2568 taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
2569 uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
2570 uint_t bsize; /* # of buckets - always power of 2 */
2571 int max_nthreads;
2572
2573 /*
2574 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all
2575 * mutually incompatible.
2576 */
2577 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE));
2578 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT));
2579 IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT));
2580
2581 /* Cannot have DYNAMIC with DUTY_CYCLE */
2582 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE));
2583
2584 /* Cannot have DUTY_CYCLE with a p0 kernel process */
2585 IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0);
2586
2587 /* Cannot have THREADS_LWP with a p0 kernel process */
2588 IMPLY((flags & TASKQ_THREADS_LWP), proc != &p0);
2589
2590 /* Cannot have DC_BATCH without DUTY_CYCLE */
2591 ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH);
2592
2593 ASSERT(proc != NULL);
2594
2595 bsize = 1 << (highbit(ncpus) - 1);
2596 ASSERT(bsize >= 1);
2597 bsize = MAX(bsize, taskq_minbuckets);
2598 bsize = MIN(bsize, taskq_maxbuckets);
2599
2600 if (flags & TASKQ_DYNAMIC) {
2601 ASSERT3S(nthreads, >=, 1);
2602 /* Need at least (bsize + 1) threads */
2603 tq->tq_maxsize = MAX(nthreads, bsize + 1);
2604 /* See taskq_bucket_redist(). */
2605 tq->tq_atpb = tq->tq_maxsize / bsize;
2606 ASSERT(tq->tq_atpb != 0);
2607
2608 /* For dynamic task queues use just one backing thread */
2609 nthreads = max_nthreads = 1;
2610
2611 } else if (flags & TASKQ_THREADS_CPU_PCT) {
2612 uint_t pct;
2613 ASSERT3S(nthreads, >=, 0);
2614 pct = nthreads;
2615
2616 if (pct > taskq_cpupct_max_percent)
2617 pct = taskq_cpupct_max_percent;
2618
2619 /*
2620 * If you're using THREADS_CPU_PCT, the process for the
2621 * taskq threads must be curproc. This allows any pset
2622 * binding to be inherited correctly. If proc is &p0,
2623 * we won't be creating LWPs, so new threads will be assigned
2624 * to the default processor set.
2625 */
2626 ASSERT(curproc == proc || proc == &p0);
2627 tq->tq_threads_ncpus_pct = pct;
2628 nthreads = 1; /* corrected in taskq_thread_create() */
2629 max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
2630
2631 } else {
2632 ASSERT3S(nthreads, >=, 1);
2633 max_nthreads = nthreads;
2634 }
2635
2636 if (max_nthreads < taskq_minimum_nthreads_max)
2637 max_nthreads = taskq_minimum_nthreads_max;
2638
2639 /*
2640 * Make sure the name is 0-terminated, and conforms to the rules for
2641 * C indentifiers
2642 */
2643 (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
2644 strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);
2645
2646 tq->tq_flags = flags | TASKQ_CHANGING;
2647 tq->tq_active = 0;
2648 tq->tq_instance = instance;
2649 tq->tq_nthreads_target = nthreads;
2650 tq->tq_nthreads_max = max_nthreads;
2651 tq->tq_minalloc = minalloc;
2652 tq->tq_maxalloc = maxalloc;
2653 tq->tq_nbuckets = bsize;
2654 tq->tq_proc = proc;
2655 tq->tq_pri = pri;
2656 tq->tq_DC = dc;
2657 list_link_init(&tq->tq_cpupct_link);
2658
2659 if (max_nthreads > 1)
2660 tq->tq_threadlist = kmem_alloc(
2661 sizeof (kthread_t *) * max_nthreads, KM_SLEEP);
2662
2663 mutex_enter(&tq->tq_lock);
2664 if (flags & TASKQ_PREPOPULATE) {
2665 while (minalloc-- > 0)
2666 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
2667 }
2668
2669 /*
2670 * Before we start creating threads for this taskq, take a
2671 * zone hold so the zone can't go away before taskq_destroy
2672 * makes sure all the taskq threads are gone. This hold is
2673 * similar in purpose to those taken by zthread_create().
2674 */
2675 zone_hold(tq->tq_proc->p_zone);
2676
2677 /*
2678 * Create the first thread, which will create any other threads
2679 * necessary. taskq_thread_create will not return until we have
2680 * enough threads to be able to process requests.
2681 */
2682 taskq_thread_create(tq);
2683 mutex_exit(&tq->tq_lock);
2684
2685 /*
2686 * For dynamic taskq, create the array of buckets, PLUS ONE
2687 * for the bucket used as the "idle bucket".
2688 */
2689 if (flags & TASKQ_DYNAMIC) {
2690 taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
2691 (bsize + 1), KM_SLEEP);
2692 taskq_bucket_t *idle_bucket = &bucket[bsize];
2693 int b_id;
2694
2695 tq->tq_buckets = bucket;
2696
2697 /* Initialize each bucket */
2698 for (b_id = 0; b_id < (bsize + 1); b_id++, bucket++) {
2699 mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
2700 NULL);
2701 cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
2702 bucket->tqbucket_taskq = tq;
2703 TQ_LIST_INIT(bucket->tqbucket_freelist);
2704 TQ_LIST_INIT(bucket->tqbucket_backlog);
2705 }
2706 /*
2707 * Always create at least one idle bucket thread.
2708 * That can't fail because we're at nthreads=0.
2709 * If pre-populating, create more (nbuckets) threads.
2710 * That can fail, in which case we'll just try later.
2711 */
2712 (void) taskq_bucket_extend(idle_bucket);
2713 if (flags & TASKQ_PREPOPULATE) {
2714 int i;
2715 for (i = 1; i < bsize; i++) {
2716 (void) taskq_bucket_extend(idle_bucket);
2717 }
2718 }
2719 }
2720
2721 /*
2722 * Install kstats.
2723 * We have two cases:
2724 * 1) Instance is provided to taskq_create_instance(). In this case it
2725 * should be >= 0 and we use it.
2726 *
2727 * 2) Instance is not provided and is automatically generated
2728 */
2729 if (flags & TASKQ_NOINSTANCE) {
2730 instance = tq->tq_instance =
2731 (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
2732 }
2733
2734 if (flags & TASKQ_DYNAMIC) {
2735 if ((tq->tq_kstat = kstat_create("unix", instance,
2736 tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
2737 sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
2738 KSTAT_FLAG_VIRTUAL)) != NULL) {
2739 tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
2740 tq->tq_kstat->ks_data = &taskq_d_kstat;
2741 tq->tq_kstat->ks_update = taskq_d_kstat_update;
2742 tq->tq_kstat->ks_private = tq;
2743 kstat_install(tq->tq_kstat);
2744 }
2745 } else {
2746 if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
2747 "taskq", KSTAT_TYPE_NAMED,
2748 sizeof (taskq_kstat) / sizeof (kstat_named_t),
2749 KSTAT_FLAG_VIRTUAL)) != NULL) {
2750 tq->tq_kstat->ks_lock = &taskq_kstat_lock;
2751 tq->tq_kstat->ks_data = &taskq_kstat;
2752 tq->tq_kstat->ks_update = taskq_kstat_update;
2753 tq->tq_kstat->ks_private = tq;
2754 kstat_install(tq->tq_kstat);
2755 }
2756 }
2757
2758 return (tq);
2759 }
2760
2761 /*
2762 * taskq_destroy().
2763 *
2764 * Assumes: by the time taskq_destroy is called no one will use this task queue
2765 * in any way and no one will try to dispatch entries in it.
2766 */
2767 void
taskq_destroy(taskq_t * tq)2768 taskq_destroy(taskq_t *tq)
2769 {
2770
2771 ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
2772
2773 /*
2774 * Destroy kstats.
2775 */
2776 if (tq->tq_kstat != NULL) {
2777 kstat_delete(tq->tq_kstat);
2778 tq->tq_kstat = NULL;
2779 }
2780
2781 /*
2782 * Destroy instance if needed.
2783 */
2784 if (tq->tq_flags & TASKQ_NOINSTANCE) {
2785 vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
2786 1);
2787 tq->tq_instance = 0;
2788 }
2789
2790 /*
2791 * Unregister from the cpupct list.
2792 */
2793 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
2794 taskq_cpupct_remove(tq);
2795 }
2796
2797 /*
2798 * Wait for any pending entries to complete.
2799 */
2800 taskq_wait(tq);
2801
2802 mutex_enter(&tq->tq_lock);
2803 ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
2804 (tq->tq_active == 0));
2805
2806 /* notify all the threads that they need to exit */
2807 tq->tq_nthreads_target = 0;
2808
2809 tq->tq_flags |= TASKQ_CHANGING;
2810 cv_broadcast(&tq->tq_dispatch_cv);
2811 cv_broadcast(&tq->tq_exit_cv);
2812
2813 while (tq->tq_nthreads != 0)
2814 cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
2815
2816 if (tq->tq_nthreads_max != 1)
2817 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
2818 tq->tq_nthreads_max);
2819
2820 tq->tq_minalloc = 0;
2821 while (tq->tq_nalloc != 0)
2822 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
2823
2824 mutex_exit(&tq->tq_lock);
2825
2826 /*
2827 * For dynamic taskq:
2828 * Mark each bucket as closing and wakeup all sleeping threads.
2829 * Two passes: 1st mark & wake all; 2nd wait for thread exits.
2830 * Include the idle bucket here.
2831 */
2832 if (tq->tq_buckets != NULL) {
2833 taskq_bucket_t *b;
2834 uint_t bid = 0;
2835
2836 ASSERT((tq->tq_flags & TASKQ_DYNAMIC) != 0);
2837
2838 for (bid = 0, b = tq->tq_buckets;
2839 bid <= tq->tq_nbuckets;
2840 b++, bid++) {
2841
2842 taskq_ent_t *tqe;
2843
2844 mutex_enter(&b->tqbucket_lock);
2845
2846 /* We called taskq_wait() above. */
2847 ASSERT(b->tqbucket_nalloc == 0);
2848
2849 /*
2850 * Wakeup all sleeping threads.
2851 *
2852 * The idle bucket may have many threads.
2853 * Avoid a "thundering herd" of calls into
2854 * taskq_thread_wait() / cv_reltimedwait()
2855 * thrashing mutexes in callout teardown,
2856 * and just wake the first idle thread,
2857 * letting it wake the next.
2858 * See cv_signal near end of taskq_d_thread
2859 * In other buckets, wake all threads.
2860 */
2861 b->tqbucket_flags |= TQBUCKET_CLOSE;
2862 for (tqe = b->tqbucket_freelist.tqent_next;
2863 tqe != &b->tqbucket_freelist;
2864 tqe = tqe->tqent_next) {
2865
2866 cv_signal(&tqe->tqent_cv);
2867
2868 if (bid == tq->tq_nbuckets) {
2869 /* idle bucket; just wake one. */
2870 break;
2871 }
2872 }
2873 mutex_exit(&b->tqbucket_lock);
2874 }
2875
2876 for (bid = 0, b = tq->tq_buckets;
2877 bid <= tq->tq_nbuckets;
2878 b++, bid++) {
2879 /*
2880 * Wait for tqbucket_freelist threads to exit.
2881 */
2882 mutex_enter(&b->tqbucket_lock);
2883 while (b->tqbucket_nfree > 0)
2884 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
2885 mutex_exit(&b->tqbucket_lock);
2886 }
2887
2888 /*
2889 * Threads that are migrating between buckets could be
2890 * missed by the waits on tqbucket_nfree, so also wait
2891 * for the total thread count to go to zero.
2892 */
2893 mutex_enter(&tq->tq_lock);
2894 while (tq->tq_dnthreads > 0) {
2895 cv_wait(&tq->tq_exit_cv, &tq->tq_lock);
2896 }
2897 mutex_exit(&tq->tq_lock);
2898
2899 /*
2900 * Destroy all buckets
2901 */
2902 for (bid = 0, b = tq->tq_buckets;
2903 bid <= tq->tq_nbuckets;
2904 b++, bid++) {
2905 mutex_destroy(&b->tqbucket_lock);
2906 cv_destroy(&b->tqbucket_cv);
2907 }
2908
2909 kmem_free(tq->tq_buckets,
2910 sizeof (taskq_bucket_t) * (tq->tq_nbuckets + 1));
2911
2912 /* Cleanup fields before returning tq to the cache */
2913 tq->tq_buckets = NULL;
2914 tq->tq_dnthreads = 0;
2915 } else {
2916 ASSERT((tq->tq_flags & TASKQ_DYNAMIC) == 0);
2917 }
2918
2919 /*
2920 * Now that all the taskq threads are gone, we can
2921 * drop the zone hold taken in taskq_create_common
2922 */
2923 zone_rele(tq->tq_proc->p_zone);
2924
2925 tq->tq_threads_ncpus_pct = 0;
2926 tq->tq_totaltime = 0;
2927 tq->tq_tasks = 0;
2928 tq->tq_maxtasks = 0;
2929 tq->tq_executed = 0;
2930 kmem_cache_free(taskq_cache, tq);
2931 }
2932
2933 /*
2934 * This is called asynchronously after taskq_dispatch has failed to
2935 * find a free thread. Try to create a thread (taskq_bucket_extend)
2936 * and if that fails, make sure the bucket has at least one thread,
2937 * redirecting a thread from another bucket if necessary.
2938 */
2939 static void
taskq_bucket_overflow(void * arg)2940 taskq_bucket_overflow(void *arg)
2941 {
2942 taskq_bucket_t *b = arg;
2943
2944 if (taskq_bucket_extend(b) == NULL) {
2945 taskq_bucket_redist(b);
2946 }
2947 }
2948
2949 /*
2950 * Extend a bucket with a new entry on the free list and attach a worker
2951 * thread to it. This is called from a context where sleep is allowed.
2952 * This function may quietly fail. Callers deal with the possibility
2953 * that this might not have created a thread for some reason, eg.
2954 * lack of resources or limits on the number of threads.
2955 *
2956 * Argument: pointer to the bucket.
2957 * Return: pointer to new taskq_ent_t if we created a thread, else NULL
2958 */
2959 static taskq_ent_t *
taskq_bucket_extend(taskq_bucket_t * b)2960 taskq_bucket_extend(taskq_bucket_t *b)
2961 {
2962 taskq_ent_t *tqe;
2963 taskq_t *tq = b->tqbucket_taskq;
2964 taskq_bucket_t *idleb = &tq->tq_buckets[tq->tq_nbuckets];
2965 kthread_t *t;
2966 int nthreads;
2967
2968 /* How many threads currently in this bucket? */
2969 mutex_enter(&b->tqbucket_lock);
2970 nthreads = b->tqbucket_nalloc + b->tqbucket_nfree;
2971 mutex_exit(&b->tqbucket_lock);
2972
2973 mutex_enter(&tq->tq_lock);
2974
2975 /*
2976 * When there are no threads in this bucket, this call should
2977 * "try harder", so continue even if short on memory.
2978 */
2979 if (! ENOUGH_MEMORY() && (nthreads > 0)) {
2980 tq->tq_nomem++;
2981 mutex_exit(&tq->tq_lock);
2982 return (NULL);
2983 }
2984
2985 /*
2986 * Observe global taskq limits on the number of threads.
2987 */
2988 if ((tq->tq_dnthreads + 1) > tq->tq_maxsize) {
2989 mutex_exit(&tq->tq_lock);
2990 return (NULL);
2991 }
2992 tq->tq_dnthreads++;
2993 mutex_exit(&tq->tq_lock);
2994
2995 tqe = kmem_cache_alloc(taskq_ent_cache, KM_SLEEP);
2996
2997 ASSERT(tqe->tqent_thread == NULL);
2998
2999 tqe->tqent_un.tqent_bucket = b;
3000
3001 /*
3002 * Create a thread in a TS_STOPPED state first. If it is successfully
3003 * created, place the entry on the free list and start the thread.
3004 */
3005 if ((tq->tq_flags & TASKQ_THREADS_LWP) != 0) {
3006 /* Enforced in taskq_create_common */
3007 ASSERT3P(tq->tq_proc, !=, &p0);
3008 t = lwp_kernel_create(tq->tq_proc, taskq_d_thread,
3009 tqe, TS_STOPPED, tq->tq_pri);
3010 } else {
3011 t = thread_create(NULL, 0, taskq_d_thread, tqe,
3012 0, tq->tq_proc, TS_STOPPED, tq->tq_pri);
3013 }
3014 tqe->tqent_thread = t;
3015 t->t_taskq = tq; /* mark thread as a taskq_member() */
3016
3017 /*
3018 * Once the entry is ready, link it to the the bucket free list.
3019 */
3020 mutex_enter(&b->tqbucket_lock);
3021 tqe->tqent_func = NULL;
3022 TQ_APPEND(b->tqbucket_freelist, tqe);
3023 b->tqbucket_nfree++;
3024 mutex_exit(&b->tqbucket_lock);
3025
3026 /*
3027 * Account for creates in the idle bucket, because
3028 * the deaths will be accounted there.
3029 */
3030 mutex_enter(&idleb->tqbucket_lock);
3031 TQ_STAT(idleb, tqs_tcreates);
3032 #if TASKQ_STATISTIC
3033 nthreads = idleb->tqbucket_stat.tqs_tcreates -
3034 idleb->tqbucket_stat.tqs_tdeaths;
3035 idleb->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
3036 idleb->tqbucket_stat.tqs_maxthreads);
3037 #endif
3038 mutex_exit(&idleb->tqbucket_lock);
3039
3040 /*
3041 * Start the stopped thread.
3042 */
3043 if (t->t_lwp != NULL) {
3044 proc_t *p = tq->tq_proc;
3045 mutex_enter(&p->p_lock);
3046 t->t_proc_flag &= ~TP_HOLDLWP;
3047 lwp_create_done(t); /* Sets TS_ALLSTART etc. */
3048 mutex_exit(&p->p_lock);
3049 } else {
3050 thread_lock(t);
3051 t->t_schedflag |= TS_ALLSTART;
3052 setrun_locked(t);
3053 thread_unlock(t);
3054 }
3055
3056 return (tqe);
3057 }
3058
3059 /*
3060 * This is called after taskq_dispatch failed to find a free thread and
3061 * also failed to create a new thread. This usually means the taskq has
3062 * as many threads are we're allowed to create, but can also happen when
3063 * dispatch has TQ_NOQUEUE, or (rarely) we created a thread but lost the
3064 * new thread to another racing dispatch call. If this bucket has a
3065 * backlog and no threads, then redistribute threads by moving one
3066 * from another bucket (the donor bucket) into this one. A thread in
3067 * the donor bucket is redirected by dispatching the special function
3068 * taskq_d_redirect in the donor bucket. As soon as some thread in the
3069 * donor bucket completes, it will find taskq_d_redirect in the backlog
3070 * and move to the recipient bucket (the bucket arg here).
3071 */
3072 static void
taskq_bucket_redist(taskq_bucket_t * bucket)3073 taskq_bucket_redist(taskq_bucket_t *bucket)
3074 {
3075 taskq_t *tq = bucket->tqbucket_taskq;
3076 taskq_bucket_t *idle_bucket = &tq->tq_buckets[tq->tq_nbuckets];
3077 taskq_bucket_t *db; /* donor bucket candidate */
3078 taskq_ent_t *tqe = NULL;
3079 uint_t nthreads;
3080
3081 VERIFY3P(bucket, >=, tq->tq_buckets);
3082 VERIFY3P(bucket, <, idle_bucket);
3083
3084 /*
3085 * This makes no sense with a single bucket.
3086 * Someone patched taskq_minbuckets?
3087 */
3088 if (tq->tq_nbuckets == 1)
3089 goto out;
3090
3091 /*
3092 * Only redirect when there's a backlog and no threads,
3093 * and we have not already redirected a thread.
3094 */
3095 mutex_enter(&bucket->tqbucket_lock);
3096 nthreads = bucket->tqbucket_nalloc + bucket->tqbucket_nfree;
3097 if (nthreads > 0 || bucket->tqbucket_nbacklog == 0 ||
3098 (bucket->tqbucket_flags & TQBUCKET_REDIRECT) != 0) {
3099 mutex_exit(&bucket->tqbucket_lock);
3100 goto out;
3101 }
3102 /* Clear this later if we fail to redirect a thread. */
3103 bucket->tqbucket_flags |= TQBUCKET_REDIRECT;
3104 mutex_exit(&bucket->tqbucket_lock);
3105
3106 /*
3107 * Need a tqe for taskq_backlog_enqueue
3108 */
3109 tqe = kmem_cache_alloc(taskq_ent_cache, KM_SLEEP);
3110 ASSERT(tqe->tqent_thread == NULL);
3111 tqe->tqent_func = taskq_d_redirect;
3112 tqe->tqent_arg = bucket; /* redirected to */
3113
3114 /*
3115 * Find a "donor bucket" (db) that can afford to lose a thread.
3116 * Search starting at the next bucket after the passed in one.
3117 * There should be some buckets with more threads than average
3118 * because the recipient bucket has no threads.
3119 */
3120 db = bucket;
3121 for (;;) {
3122 /* Next bucket */
3123 if (++db == idle_bucket)
3124 db = tq->tq_buckets;
3125 if (db == bucket)
3126 break;
3127
3128 mutex_enter(&db->tqbucket_lock);
3129 nthreads = db->tqbucket_nalloc + db->tqbucket_nfree;
3130 if (nthreads > tq->tq_atpb) {
3131 taskq_backlog_enqueue(db, tqe, TQ_FRONT);
3132 mutex_exit(&db->tqbucket_lock);
3133 goto out;
3134 }
3135 mutex_exit(&db->tqbucket_lock);
3136 }
3137 /*
3138 * No bucket with more than an average number of threads.
3139 * Free the tqe; undo the redirect flag.
3140 */
3141 DTRACE_PROBE2(taskq__redist__fails, taskq_t *, tq,
3142 taskq_bucket_t *, bucket);
3143 kmem_cache_free(taskq_ent_cache, tqe);
3144 tqe = NULL;
3145 mutex_enter(&bucket->tqbucket_lock);
3146 bucket->tqbucket_flags &= ~TQBUCKET_REDIRECT;
3147 mutex_exit(&bucket->tqbucket_lock);
3148
3149 out:
3150 /*
3151 * We're usually here because some backlog work exists.
3152 * In case a thread became idle just before a backlog
3153 * was added to some bucket, wake an idle thread.
3154 */
3155 mutex_enter(&idle_bucket->tqbucket_lock);
3156 if (idle_bucket->tqbucket_nfree != 0) {
3157 taskq_ent_t *itqe;
3158 itqe = bucket->tqbucket_freelist.tqent_prev;
3159 cv_signal(&itqe->tqent_cv);
3160 }
3161 mutex_exit(&idle_bucket->tqbucket_lock);
3162
3163 DTRACE_PROBE3(taskq__bucket__redist__ret, taskq_t *, tq,
3164 taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
3165 }
3166
3167 static int
taskq_kstat_update(kstat_t * ksp,int rw)3168 taskq_kstat_update(kstat_t *ksp, int rw)
3169 {
3170 struct taskq_kstat *tqsp = &taskq_kstat;
3171 taskq_t *tq = ksp->ks_private;
3172
3173 if (rw == KSTAT_WRITE)
3174 return (EACCES);
3175
3176 tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid;
3177 tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
3178 tqsp->tq_executed.value.ui64 = tq->tq_executed;
3179 tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
3180 tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
3181 tqsp->tq_nactive.value.ui64 = tq->tq_active;
3182 tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
3183 tqsp->tq_pri.value.ui64 = tq->tq_pri;
3184 tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
3185 tqsp->tq_nomem.value.ui64 = tq->tq_nomem;
3186 return (0);
3187 }
3188
3189 static int
taskq_d_kstat_update(kstat_t * ksp,int rw)3190 taskq_d_kstat_update(kstat_t *ksp, int rw)
3191 {
3192 struct taskq_d_kstat *tqsp = &taskq_d_kstat;
3193 taskq_t *tq = ksp->ks_private;
3194 taskq_bucket_t *b;
3195 int bid;
3196
3197 if (rw == KSTAT_WRITE)
3198 return (EACCES);
3199
3200 ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
3201
3202 tqsp->tqd_pri.value.ui64 = tq->tq_pri;
3203 tqsp->tqd_nomem.value.ui64 = tq->tq_nomem;
3204
3205 /*
3206 * Accumulate tqbucket_nalloc etc, tqbucket_stats
3207 */
3208 tqsp->tqd_nalloc.value.ui64 = 0;
3209 tqsp->tqd_nbacklog.value.ui64 = 0;
3210 tqsp->tqd_nfree.value.ui64 = 0;
3211 tqsp->tqd_totaltime.value.ui64 = 0;
3212
3213 tqsp->tqd_hits.value.ui64 = 0;
3214 tqsp->tqd_misses.value.ui64 = 0;
3215 tqsp->tqd_ihits.value.ui64 = 0;
3216 tqsp->tqd_imisses.value.ui64 = 0;
3217 tqsp->tqd_overflows.value.ui64 = 0;
3218 tqsp->tqd_maxbacklog.value.ui64 = 0;
3219 tqsp->tqd_tcreates.value.ui64 = 0;
3220 tqsp->tqd_tdeaths.value.ui64 = 0;
3221 tqsp->tqd_maxthreads.value.ui64 = 0;
3222 tqsp->tqd_disptcreates.value.ui64 = 0;
3223
3224 /* Apparently this can be called when... */
3225 if ((b = tq->tq_buckets) == NULL)
3226 return (0);
3227
3228 for (bid = 0; bid <= tq->tq_nbuckets; b++, bid++) {
3229
3230 tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
3231 tqsp->tqd_nbacklog.value.ui64 += b->tqbucket_nbacklog;
3232 tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
3233 tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
3234
3235 /*
3236 * For regular buckets, update hits, misses.
3237 * For the idle bucket, update ihits, imisses
3238 */
3239 if (bid < tq->tq_nbuckets) {
3240 tqsp->tqd_hits.value.ui64 +=
3241 b->tqbucket_stat.tqs_hits;
3242 tqsp->tqd_misses.value.ui64 +=
3243 b->tqbucket_stat.tqs_misses;
3244 } else {
3245 tqsp->tqd_ihits.value.ui64 +=
3246 b->tqbucket_stat.tqs_hits;
3247 tqsp->tqd_imisses.value.ui64 +=
3248 b->tqbucket_stat.tqs_misses;
3249 }
3250
3251 tqsp->tqd_overflows.value.ui64 +=
3252 b->tqbucket_stat.tqs_overflow;
3253 tqsp->tqd_maxbacklog.value.ui64 +=
3254 b->tqbucket_stat.tqs_maxbacklog;
3255 tqsp->tqd_tcreates.value.ui64 +=
3256 b->tqbucket_stat.tqs_tcreates;
3257 tqsp->tqd_tdeaths.value.ui64 +=
3258 b->tqbucket_stat.tqs_tdeaths;
3259 tqsp->tqd_maxthreads.value.ui64 +=
3260 b->tqbucket_stat.tqs_maxthreads;
3261 tqsp->tqd_disptcreates.value.ui64 +=
3262 b->tqbucket_stat.tqs_disptcreates;
3263 }
3264
3265 return (0);
3266 }
3267