1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011, 2025 Chelsio Communications.
5 * Written by: Navdeep Parhar <np@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36
37 #include <sys/param.h>
38 #include <sys/conf.h>
39 #include <sys/priv.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/eventhandler.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #include <net/rss_config.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 #ifdef KERN_TLS
64 #include <netinet/tcp_seq.h>
65 #endif
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #include <machine/cputypes.h>
69 #include <vm/vm.h>
70 #include <vm/pmap.h>
71 #endif
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #include <ddb/db_lex.h>
75 #endif
76
77 #include "common/common.h"
78 #include "common/t4_msg.h"
79 #include "common/t4_regs.h"
80 #include "common/t4_regs_values.h"
81 #include "cudbg/cudbg.h"
82 #include "t4_clip.h"
83 #include "t4_ioctl.h"
84 #include "t4_l2t.h"
85 #include "t4_mp_ring.h"
86 #include "t4_if.h"
87 #include "t4_smt.h"
88
89 /* T4 bus driver interface */
90 static int t4_probe(device_t);
91 static int t4_attach(device_t);
92 static int t4_detach(device_t);
93 static int t4_child_location(device_t, device_t, struct sbuf *);
94 static int t4_ready(device_t);
95 static int t4_read_port_device(device_t, int, device_t *);
96 static int t4_suspend(device_t);
97 static int t4_resume(device_t);
98 static int t4_reset_prepare(device_t, device_t);
99 static int t4_reset_post(device_t, device_t);
100 static device_method_t t4_methods[] = {
101 DEVMETHOD(device_probe, t4_probe),
102 DEVMETHOD(device_attach, t4_attach),
103 DEVMETHOD(device_detach, t4_detach),
104 DEVMETHOD(device_suspend, t4_suspend),
105 DEVMETHOD(device_resume, t4_resume),
106
107 DEVMETHOD(bus_child_location, t4_child_location),
108 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
109 DEVMETHOD(bus_reset_post, t4_reset_post),
110
111 DEVMETHOD(t4_is_main_ready, t4_ready),
112 DEVMETHOD(t4_read_port_device, t4_read_port_device),
113
114 DEVMETHOD_END
115 };
116 static driver_t t4_driver = {
117 "t4nex",
118 t4_methods,
119 sizeof(struct adapter)
120 };
121
122
123 /* T4 port (cxgbe) interface */
124 static int cxgbe_probe(device_t);
125 static int cxgbe_attach(device_t);
126 static int cxgbe_detach(device_t);
127 device_method_t cxgbe_methods[] = {
128 DEVMETHOD(device_probe, cxgbe_probe),
129 DEVMETHOD(device_attach, cxgbe_attach),
130 DEVMETHOD(device_detach, cxgbe_detach),
131 { 0, 0 }
132 };
133 static driver_t cxgbe_driver = {
134 "cxgbe",
135 cxgbe_methods,
136 sizeof(struct port_info)
137 };
138
139 /* T4 VI (vcxgbe) interface */
140 static int vcxgbe_probe(device_t);
141 static int vcxgbe_attach(device_t);
142 static int vcxgbe_detach(device_t);
143 static device_method_t vcxgbe_methods[] = {
144 DEVMETHOD(device_probe, vcxgbe_probe),
145 DEVMETHOD(device_attach, vcxgbe_attach),
146 DEVMETHOD(device_detach, vcxgbe_detach),
147 { 0, 0 }
148 };
149 static driver_t vcxgbe_driver = {
150 "vcxgbe",
151 vcxgbe_methods,
152 sizeof(struct vi_info)
153 };
154
155 static d_ioctl_t t4_ioctl;
156
157 static struct cdevsw t4_cdevsw = {
158 .d_version = D_VERSION,
159 .d_ioctl = t4_ioctl,
160 .d_name = "t4nex",
161 };
162
163 /* T5 bus driver interface */
164 static int t5_probe(device_t);
165 static device_method_t t5_methods[] = {
166 DEVMETHOD(device_probe, t5_probe),
167 DEVMETHOD(device_attach, t4_attach),
168 DEVMETHOD(device_detach, t4_detach),
169 DEVMETHOD(device_suspend, t4_suspend),
170 DEVMETHOD(device_resume, t4_resume),
171
172 DEVMETHOD(bus_child_location, t4_child_location),
173 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
174 DEVMETHOD(bus_reset_post, t4_reset_post),
175
176 DEVMETHOD(t4_is_main_ready, t4_ready),
177 DEVMETHOD(t4_read_port_device, t4_read_port_device),
178
179 DEVMETHOD_END
180 };
181 static driver_t t5_driver = {
182 "t5nex",
183 t5_methods,
184 sizeof(struct adapter)
185 };
186
187
188 /* T5 port (cxl) interface */
189 static driver_t cxl_driver = {
190 "cxl",
191 cxgbe_methods,
192 sizeof(struct port_info)
193 };
194
195 /* T5 VI (vcxl) interface */
196 static driver_t vcxl_driver = {
197 "vcxl",
198 vcxgbe_methods,
199 sizeof(struct vi_info)
200 };
201
202 /* T6 bus driver interface */
203 static int t6_probe(device_t);
204 static device_method_t t6_methods[] = {
205 DEVMETHOD(device_probe, t6_probe),
206 DEVMETHOD(device_attach, t4_attach),
207 DEVMETHOD(device_detach, t4_detach),
208 DEVMETHOD(device_suspend, t4_suspend),
209 DEVMETHOD(device_resume, t4_resume),
210
211 DEVMETHOD(bus_child_location, t4_child_location),
212 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
213 DEVMETHOD(bus_reset_post, t4_reset_post),
214
215 DEVMETHOD(t4_is_main_ready, t4_ready),
216 DEVMETHOD(t4_read_port_device, t4_read_port_device),
217
218 DEVMETHOD_END
219 };
220 static driver_t t6_driver = {
221 "t6nex",
222 t6_methods,
223 sizeof(struct adapter)
224 };
225
226
227 /* T6 port (cc) interface */
228 static driver_t cc_driver = {
229 "cc",
230 cxgbe_methods,
231 sizeof(struct port_info)
232 };
233
234 /* T6 VI (vcc) interface */
235 static driver_t vcc_driver = {
236 "vcc",
237 vcxgbe_methods,
238 sizeof(struct vi_info)
239 };
240
241 /* T7+ bus driver interface */
242 static int ch_probe(device_t);
243 static device_method_t ch_methods[] = {
244 DEVMETHOD(device_probe, ch_probe),
245 DEVMETHOD(device_attach, t4_attach),
246 DEVMETHOD(device_detach, t4_detach),
247 DEVMETHOD(device_suspend, t4_suspend),
248 DEVMETHOD(device_resume, t4_resume),
249
250 DEVMETHOD(bus_child_location, t4_child_location),
251 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
252 DEVMETHOD(bus_reset_post, t4_reset_post),
253
254 DEVMETHOD(t4_is_main_ready, t4_ready),
255 DEVMETHOD(t4_read_port_device, t4_read_port_device),
256
257 DEVMETHOD_END
258 };
259 static driver_t ch_driver = {
260 "chnex",
261 ch_methods,
262 sizeof(struct adapter)
263 };
264
265
266 /* T7+ port (che) interface */
267 static driver_t che_driver = {
268 "che",
269 cxgbe_methods,
270 sizeof(struct port_info)
271 };
272
273 /* T7+ VI (vche) interface */
274 static driver_t vche_driver = {
275 "vche",
276 vcxgbe_methods,
277 sizeof(struct vi_info)
278 };
279
280 /* ifnet interface */
281 static void cxgbe_init(void *);
282 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
283 static int cxgbe_transmit(if_t, struct mbuf *);
284 static void cxgbe_qflush(if_t);
285 #if defined(KERN_TLS) || defined(RATELIMIT)
286 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
287 struct m_snd_tag **);
288 #endif
289
290 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
291
292 /*
293 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
294 * then ADAPTER_LOCK, then t4_uld_list_lock.
295 */
296 static struct sx t4_list_lock;
297 SLIST_HEAD(, adapter) t4_list;
298 #ifdef TCP_OFFLOAD
299 static struct sx t4_uld_list_lock;
300 struct uld_info *t4_uld_list[ULD_MAX + 1];
301 #endif
302
303 /*
304 * Tunables. See tweak_tunables() too.
305 *
306 * Each tunable is set to a default value here if it's known at compile-time.
307 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
308 * provide a reasonable default (upto n) when the driver is loaded.
309 *
310 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
311 * T5 are under hw.cxl.
312 */
313 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
314 "cxgbe(4) parameters");
315 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
316 "cxgbe(4) T5+ parameters");
317 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
318 "cxgbe(4) TOE parameters");
319
320 /*
321 * Number of queues for tx and rx, NIC and offload.
322 */
323 #define NTXQ 16
324 int t4_ntxq = -NTXQ;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
326 "Number of TX queues per port");
327 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
328
329 #define NRXQ 8
330 int t4_nrxq = -NRXQ;
331 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
332 "Number of RX queues per port");
333 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
334
335 #define NTXQ_VI 1
336 static int t4_ntxq_vi = -NTXQ_VI;
337 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
338 "Number of TX queues per VI");
339
340 #define NRXQ_VI 1
341 static int t4_nrxq_vi = -NRXQ_VI;
342 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
343 "Number of RX queues per VI");
344
345 static int t4_rsrv_noflowq = 0;
346 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
347 0, "Reserve TX queue 0 of each VI for non-flowid packets");
348
349 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
350 #define NOFLDTXQ 8
351 static int t4_nofldtxq = -NOFLDTXQ;
352 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
353 "Number of offload TX queues per port");
354
355 #define NOFLDTXQ_VI 1
356 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
357 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
358 "Number of offload TX queues per VI");
359 #endif
360
361 #if defined(TCP_OFFLOAD)
362 #define NOFLDRXQ 2
363 static int t4_nofldrxq = -NOFLDRXQ;
364 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
365 "Number of offload RX queues per port");
366
367 #define NOFLDRXQ_VI 1
368 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
369 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
370 "Number of offload RX queues per VI");
371
372 #define TMR_IDX_OFLD 1
373 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
374 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
375 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
376
377 #define PKTC_IDX_OFLD (-1)
378 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
379 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
380 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
381
382 /* 0 means chip/fw default, non-zero number is value in microseconds */
383 static u_long t4_toe_keepalive_idle = 0;
384 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
385 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
386
387 /* 0 means chip/fw default, non-zero number is value in microseconds */
388 static u_long t4_toe_keepalive_interval = 0;
389 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
390 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
391
392 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
393 static int t4_toe_keepalive_count = 0;
394 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
395 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
396
397 /* 0 means chip/fw default, non-zero number is value in microseconds */
398 static u_long t4_toe_rexmt_min = 0;
399 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
401
402 /* 0 means chip/fw default, non-zero number is value in microseconds */
403 static u_long t4_toe_rexmt_max = 0;
404 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
405 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
406
407 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
408 static int t4_toe_rexmt_count = 0;
409 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
411
412 /* -1 means chip/fw default, other values are raw backoff values to use */
413 static int t4_toe_rexmt_backoff[16] = {
414 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
415 };
416 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
417 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
418 "cxgbe(4) TOE retransmit backoff values");
419 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
420 &t4_toe_rexmt_backoff[0], 0, "");
421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
422 &t4_toe_rexmt_backoff[1], 0, "");
423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
424 &t4_toe_rexmt_backoff[2], 0, "");
425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
426 &t4_toe_rexmt_backoff[3], 0, "");
427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
428 &t4_toe_rexmt_backoff[4], 0, "");
429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
430 &t4_toe_rexmt_backoff[5], 0, "");
431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
432 &t4_toe_rexmt_backoff[6], 0, "");
433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
434 &t4_toe_rexmt_backoff[7], 0, "");
435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
436 &t4_toe_rexmt_backoff[8], 0, "");
437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
438 &t4_toe_rexmt_backoff[9], 0, "");
439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
440 &t4_toe_rexmt_backoff[10], 0, "");
441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
442 &t4_toe_rexmt_backoff[11], 0, "");
443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
444 &t4_toe_rexmt_backoff[12], 0, "");
445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
446 &t4_toe_rexmt_backoff[13], 0, "");
447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
448 &t4_toe_rexmt_backoff[14], 0, "");
449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
450 &t4_toe_rexmt_backoff[15], 0, "");
451
452 int t4_ddp_rcvbuf_len = 256 * 1024;
453 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
454 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
455
456 unsigned int t4_ddp_rcvbuf_cache = 4;
457 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
458 &t4_ddp_rcvbuf_cache, 0,
459 "maximum number of free DDP RX buffers to cache per connection");
460 #endif
461
462 #ifdef DEV_NETMAP
463 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
464 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
465 static int t4_native_netmap = NN_EXTRA_VI;
466 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
467 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
468
469 #define NNMTXQ 8
470 static int t4_nnmtxq = -NNMTXQ;
471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
472 "Number of netmap TX queues");
473
474 #define NNMRXQ 8
475 static int t4_nnmrxq = -NNMRXQ;
476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
477 "Number of netmap RX queues");
478
479 #define NNMTXQ_VI 2
480 static int t4_nnmtxq_vi = -NNMTXQ_VI;
481 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
482 "Number of netmap TX queues per VI");
483
484 #define NNMRXQ_VI 2
485 static int t4_nnmrxq_vi = -NNMRXQ_VI;
486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
487 "Number of netmap RX queues per VI");
488 #endif
489
490 /*
491 * Holdoff parameters for ports.
492 */
493 #define TMR_IDX 1
494 int t4_tmr_idx = TMR_IDX;
495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
496 0, "Holdoff timer index");
497 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
498
499 #define PKTC_IDX (-1)
500 int t4_pktc_idx = PKTC_IDX;
501 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
502 0, "Holdoff packet counter index");
503 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
504
505 /*
506 * Size (# of entries) of each tx and rx queue.
507 */
508 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
510 "Number of descriptors in each TX queue");
511
512 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
513 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
514 "Number of descriptors in each RX queue");
515
516 /*
517 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
518 */
519 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
520 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
521 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
522
523 /*
524 * Configuration file. All the _CF names here are special.
525 */
526 #define DEFAULT_CF "default"
527 #define BUILTIN_CF "built-in"
528 #define FLASH_CF "flash"
529 #define UWIRE_CF "uwire"
530 #define FPGA_CF "fpga"
531 static char t4_cfg_file[32] = DEFAULT_CF;
532 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
533 sizeof(t4_cfg_file), "Firmware configuration file");
534
535 /*
536 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
537 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
538 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
539 * mark or when signalled to do so, 0 to never emit PAUSE.
540 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
541 * negotiated settings will override rx_pause/tx_pause.
542 * Otherwise rx_pause/tx_pause are applied forcibly.
543 */
544 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
545 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
546 &t4_pause_settings, 0,
547 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
548
549 /*
550 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
551 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
552 * 0 to disable FEC.
553 */
554 static int t4_fec = -1;
555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
556 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
557
558 static const char *
559 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module";
560
561 /*
562 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
563 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
564 * driver runs as if this is set to 0.
565 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
566 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
567 * transceiver. Multiple FEC bits may not be okay but will be passed on to
568 * the firmware anyway (may result in l1cfg errors with old firmwares).
569 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
570 * means set all FEC bits that are valid for the speed.
571 */
572 static int t4_force_fec = -1;
573 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
574 "Controls the use of FORCE_FEC bit in L1 configuration.");
575
576 /*
577 * Link autonegotiation.
578 * -1 to run with the firmware default.
579 * 0 to disable.
580 * 1 to enable.
581 */
582 static int t4_autoneg = -1;
583 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
584 "Link autonegotiation");
585
586 /*
587 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
588 * encouraged respectively). '-n' is the same as 'n' except the firmware
589 * version used in the checks is read from the firmware bundled with the driver.
590 */
591 static int t4_fw_install = 1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
593 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
594
595 /*
596 * ASIC features that will be used. Disable the ones you don't want so that the
597 * chip resources aren't wasted on features that will not be used.
598 */
599 static int t4_nbmcaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
601 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
602
603 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
604 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
605 &t4_linkcaps_allowed, 0, "Default link capabilities");
606
607 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
608 FW_CAPS_CONFIG_SWITCH_EGRESS;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
610 &t4_switchcaps_allowed, 0, "Default switch capabilities");
611
612 static int t4_nvmecaps_allowed = -1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN,
614 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities");
615
616 #ifdef RATELIMIT
617 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
618 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
619 #else
620 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
621 FW_CAPS_CONFIG_NIC_HASHFILTER;
622 #endif
623 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
624 &t4_niccaps_allowed, 0, "Default NIC capabilities");
625
626 static int t4_toecaps_allowed = -1;
627 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
628 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
629
630 static int t4_rdmacaps_allowed = -1;
631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
632 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
633
634 static int t4_cryptocaps_allowed = -1;
635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
636 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
637
638 static int t4_iscsicaps_allowed = -1;
639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
640 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
641
642 static int t4_fcoecaps_allowed = 0;
643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
644 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
645
646 static int t5_write_combine = 0;
647 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
648 0, "Use WC instead of UC for BAR2");
649
650 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
651 static int t4_doorbells_allowed = 0xf;
652 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
653 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
654
655 static int t4_num_vis = 1;
656 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
657 "Number of VIs per port");
658
659 /*
660 * PCIe Relaxed Ordering.
661 * -1: driver should figure out a good value.
662 * 0: disable RO.
663 * 1: enable RO.
664 * 2: leave RO alone.
665 */
666 static int pcie_relaxed_ordering = -1;
667 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
668 &pcie_relaxed_ordering, 0,
669 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
670
671 static int t4_panic_on_fatal_err = 0;
672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
673 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
674
675 static int t4_reset_on_fatal_err = 0;
676 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
677 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
678
679 static int t4_reset_method = 1;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
681 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
682
683 static int t4_clock_gate_on_suspend = 0;
684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
685 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
686
687 static int t4_tx_vm_wr = 0;
688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
689 "Use VM work requests to transmit packets.");
690
691 /*
692 * Set to non-zero to enable the attack filter. A packet that matches any of
693 * these conditions will get dropped on ingress:
694 * 1) IP && source address == destination address.
695 * 2) TCP/IP && source address is not a unicast address.
696 * 3) TCP/IP && destination address is not a unicast address.
697 * 4) IP && source address is loopback (127.x.y.z).
698 * 5) IP && destination address is loopback (127.x.y.z).
699 * 6) IPv6 && source address == destination address.
700 * 7) IPv6 && source address is not a unicast address.
701 * 8) IPv6 && source address is loopback (::1/128).
702 * 9) IPv6 && destination address is loopback (::1/128).
703 * 10) IPv6 && source address is unspecified (::/128).
704 * 11) IPv6 && destination address is unspecified (::/128).
705 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
706 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
707 */
708 static int t4_attack_filter = 0;
709 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
710 &t4_attack_filter, 0, "Drop suspicious traffic");
711
712 static int t4_drop_ip_fragments = 0;
713 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
714 &t4_drop_ip_fragments, 0, "Drop IP fragments");
715
716 static int t4_drop_pkts_with_l2_errors = 1;
717 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
718 &t4_drop_pkts_with_l2_errors, 0,
719 "Drop all frames with Layer 2 length or checksum errors");
720
721 static int t4_drop_pkts_with_l3_errors = 0;
722 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
723 &t4_drop_pkts_with_l3_errors, 0,
724 "Drop all frames with IP version, length, or checksum errors");
725
726 static int t4_drop_pkts_with_l4_errors = 0;
727 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
728 &t4_drop_pkts_with_l4_errors, 0,
729 "Drop all frames with Layer 4 length, checksum, or other errors");
730
731 #ifdef TCP_OFFLOAD
732 /*
733 * TOE tunables.
734 */
735 static int t4_cop_managed_offloading = 0;
736 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
737 &t4_cop_managed_offloading, 0,
738 "COP (Connection Offload Policy) controls all TOE offload");
739 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
740 #endif
741
742 #ifdef KERN_TLS
743 /*
744 * This enables KERN_TLS for all adapters if set.
745 */
746 static int t4_kern_tls = 0;
747 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
748 "Enable KERN_TLS mode for T6 adapters");
749
750 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
751 "cxgbe(4) KERN_TLS parameters");
752
753 static int t4_tls_inline_keys = 0;
754 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
755 &t4_tls_inline_keys, 0,
756 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
757 "in card memory.");
758
759 static int t4_tls_combo_wrs = 0;
760 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
761 0, "Attempt to combine TCB field updates with TLS record work requests.");
762
763 static int t4_tls_short_records = 1;
764 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN,
765 &t4_tls_short_records, 0, "Use cipher-only mode for short records.");
766
767 static int t4_tls_partial_ghash = 1;
768 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN,
769 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records.");
770 #endif
771
772 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
773 static int vi_mac_funcs[] = {
774 FW_VI_FUNC_ETH,
775 FW_VI_FUNC_OFLD,
776 FW_VI_FUNC_IWARP,
777 FW_VI_FUNC_OPENISCSI,
778 FW_VI_FUNC_OPENFCOE,
779 FW_VI_FUNC_FOISCSI,
780 FW_VI_FUNC_FOFCOE,
781 };
782
783 struct intrs_and_queues {
784 uint16_t intr_type; /* INTx, MSI, or MSI-X */
785 uint16_t num_vis; /* number of VIs for each port */
786 uint16_t nirq; /* Total # of vectors */
787 uint16_t ntxq; /* # of NIC txq's for each port */
788 uint16_t nrxq; /* # of NIC rxq's for each port */
789 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
790 uint16_t nofldrxq; /* # of TOE rxq's for each port */
791 uint16_t nnmtxq; /* # of netmap txq's */
792 uint16_t nnmrxq; /* # of netmap rxq's */
793
794 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
795 uint16_t ntxq_vi; /* # of NIC txq's */
796 uint16_t nrxq_vi; /* # of NIC rxq's */
797 uint16_t nofldtxq_vi; /* # of TOE txq's */
798 uint16_t nofldrxq_vi; /* # of TOE rxq's */
799 uint16_t nnmtxq_vi; /* # of netmap txq's */
800 uint16_t nnmrxq_vi; /* # of netmap rxq's */
801 };
802
803 static void setup_memwin(struct adapter *);
804 static void position_memwin(struct adapter *, int, uint32_t);
805 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
806 static int fwmtype_to_hwmtype(int);
807 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
808 uint32_t *);
809 static int fixup_devlog_params(struct adapter *);
810 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
811 static int contact_firmware(struct adapter *);
812 static int partition_resources(struct adapter *);
813 static int get_params__pre_init(struct adapter *);
814 static int set_params__pre_init(struct adapter *);
815 static int get_params__post_init(struct adapter *);
816 static int set_params__post_init(struct adapter *);
817 static void t4_set_desc(struct adapter *);
818 static bool fixed_ifmedia(struct port_info *);
819 static void build_medialist(struct port_info *);
820 static void init_link_config(struct port_info *);
821 static int fixup_link_config(struct port_info *);
822 static int apply_link_config(struct port_info *);
823 static int cxgbe_init_synchronized(struct vi_info *);
824 static int cxgbe_uninit_synchronized(struct vi_info *);
825 static int adapter_full_init(struct adapter *);
826 static void adapter_full_uninit(struct adapter *);
827 static int vi_full_init(struct vi_info *);
828 static void vi_full_uninit(struct vi_info *);
829 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
830 static void quiesce_txq(struct sge_txq *);
831 static void quiesce_wrq(struct sge_wrq *);
832 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
833 static void quiesce_vi(struct vi_info *);
834 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
835 driver_intr_t *, void *, char *);
836 static int t4_free_irq(struct adapter *, struct irq *);
837 static void t4_init_atid_table(struct adapter *);
838 static void t4_free_atid_table(struct adapter *);
839 static void stop_atid_allocator(struct adapter *);
840 static void restart_atid_allocator(struct adapter *);
841 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
842 static void vi_refresh_stats(struct vi_info *);
843 static void cxgbe_refresh_stats(struct vi_info *);
844 static void cxgbe_tick(void *);
845 static void vi_tick(void *);
846 static void cxgbe_sysctls(struct port_info *);
847 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
848 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
849 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
850 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
851 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
853 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
854 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
855 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
856 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
857 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
858 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
859 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
860 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
861 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
862 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
863 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS);
864 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
865 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
866 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
867 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
868 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
869 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
870 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS);
871 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS);
872 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
873 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
874 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
875 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
876 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS);
877 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
878 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
879 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
880 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
881 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
882 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
883 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
884 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
885 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
886 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
887 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
888 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS);
889 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
890 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
891 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
892 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
893 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
894 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
895 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
896 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
897 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
898 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
899 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
900 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
901 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
902 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
903 #ifdef TCP_OFFLOAD
904 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
905 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
906 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
907 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
908 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
909 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
910 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
911 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
912 #endif
913 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *);
914 static int load_fw(struct adapter *, struct t4_data *);
915 static int load_cfg(struct adapter *, struct t4_data *);
916 static int load_boot(struct adapter *, struct t4_bootrom *);
917 static int load_bootcfg(struct adapter *, struct t4_data *);
918 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
919 static void free_offload_policy(struct t4_offload_policy *);
920 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
921 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
922 static int read_i2c(struct adapter *, struct t4_i2c_data *);
923 static int clear_stats(struct adapter *, u_int);
924 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
925 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
926 static inline int stop_adapter(struct adapter *);
927 static inline void set_adapter_hwstatus(struct adapter *, const bool);
928 static int stop_lld(struct adapter *);
929 static inline int restart_adapter(struct adapter *);
930 static int restart_lld(struct adapter *);
931 #ifdef TCP_OFFLOAD
932 static int deactivate_all_uld(struct adapter *);
933 static void stop_all_uld(struct adapter *);
934 static void restart_all_uld(struct adapter *);
935 #endif
936 #ifdef KERN_TLS
937 static int ktls_capability(struct adapter *, bool);
938 #endif
939 static int mod_event(module_t, int, void *);
940 static int notify_siblings(device_t, int);
941 static uint64_t vi_get_counter(if_t, ift_counter);
942 static uint64_t cxgbe_get_counter(if_t, ift_counter);
943 static void enable_vxlan_rx(struct adapter *);
944 static void reset_adapter_task(void *, int);
945 static void fatal_error_task(void *, int);
946 static void dump_devlog(struct adapter *);
947 static void dump_cim_regs(struct adapter *);
948 static void dump_cimla(struct adapter *);
949
950 struct {
951 uint16_t device;
952 char *desc;
953 } t4_pciids[] = {
954 {0xa000, "Chelsio Terminator 4 FPGA"},
955 {0x4400, "Chelsio T440-dbg"},
956 {0x4401, "Chelsio T420-CR"},
957 {0x4402, "Chelsio T422-CR"},
958 {0x4403, "Chelsio T440-CR"},
959 {0x4404, "Chelsio T420-BCH"},
960 {0x4405, "Chelsio T440-BCH"},
961 {0x4406, "Chelsio T440-CH"},
962 {0x4407, "Chelsio T420-SO"},
963 {0x4408, "Chelsio T420-CX"},
964 {0x4409, "Chelsio T420-BT"},
965 {0x440a, "Chelsio T404-BT"},
966 {0x440e, "Chelsio T440-LP-CR"},
967 }, t5_pciids[] = {
968 {0xb000, "Chelsio Terminator 5 FPGA"},
969 {0x5400, "Chelsio T580-dbg"},
970 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
971 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
972 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
973 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
974 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
975 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
976 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
977 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
978 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
979 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
980 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
981 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
982 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
983 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
984 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
985 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
986 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
987
988 /* Custom */
989 {0x5483, "Custom T540-CR"},
990 {0x5484, "Custom T540-BT"},
991 }, t6_pciids[] = {
992 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
993 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
994 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
995 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
996 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
997 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
998 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
999 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
1000 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
1001 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
1002 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
1003 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
1004 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
1005 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
1006 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
1007 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
1008
1009 /* Custom */
1010 {0x6480, "Custom T6225-CR"},
1011 {0x6481, "Custom T62100-CR"},
1012 {0x6482, "Custom T6225-CR"},
1013 {0x6483, "Custom T62100-CR"},
1014 {0x6484, "Custom T64100-CR"},
1015 {0x6485, "Custom T6240-SO"},
1016 {0x6486, "Custom T6225-SO-CR"},
1017 {0x6487, "Custom T6225-CR"},
1018 }, t7_pciids[] = {
1019 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */
1020 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */
1021 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */
1022 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */
1023 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */
1024 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */
1025 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */
1026 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */
1027 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */
1028 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */
1029 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */
1030 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */
1031 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */
1032 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */
1033 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */
1034 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */
1035 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */
1036 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */
1037 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */
1038
1039 /* Custom */
1040 {0x7480, "Custom T7"},
1041 };
1042
1043 #ifdef TCP_OFFLOAD
1044 /*
1045 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
1046 * be exactly the same for both rxq and ofld_rxq.
1047 */
1048 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
1049 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
1050 #endif
1051 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
1052
1053 static int
t4_probe(device_t dev)1054 t4_probe(device_t dev)
1055 {
1056 int i;
1057 uint16_t v = pci_get_vendor(dev);
1058 uint16_t d = pci_get_device(dev);
1059 uint8_t f = pci_get_function(dev);
1060
1061 if (v != PCI_VENDOR_ID_CHELSIO)
1062 return (ENXIO);
1063
1064 /* Attach only to PF0 of the FPGA */
1065 if (d == 0xa000 && f != 0)
1066 return (ENXIO);
1067
1068 for (i = 0; i < nitems(t4_pciids); i++) {
1069 if (d == t4_pciids[i].device) {
1070 device_set_desc(dev, t4_pciids[i].desc);
1071 return (BUS_PROBE_DEFAULT);
1072 }
1073 }
1074
1075 return (ENXIO);
1076 }
1077
1078 static int
t5_probe(device_t dev)1079 t5_probe(device_t dev)
1080 {
1081 int i;
1082 uint16_t v = pci_get_vendor(dev);
1083 uint16_t d = pci_get_device(dev);
1084 uint8_t f = pci_get_function(dev);
1085
1086 if (v != PCI_VENDOR_ID_CHELSIO)
1087 return (ENXIO);
1088
1089 /* Attach only to PF0 of the FPGA */
1090 if (d == 0xb000 && f != 0)
1091 return (ENXIO);
1092
1093 for (i = 0; i < nitems(t5_pciids); i++) {
1094 if (d == t5_pciids[i].device) {
1095 device_set_desc(dev, t5_pciids[i].desc);
1096 return (BUS_PROBE_DEFAULT);
1097 }
1098 }
1099
1100 return (ENXIO);
1101 }
1102
1103 static int
t6_probe(device_t dev)1104 t6_probe(device_t dev)
1105 {
1106 int i;
1107 uint16_t v = pci_get_vendor(dev);
1108 uint16_t d = pci_get_device(dev);
1109
1110 if (v != PCI_VENDOR_ID_CHELSIO)
1111 return (ENXIO);
1112
1113 for (i = 0; i < nitems(t6_pciids); i++) {
1114 if (d == t6_pciids[i].device) {
1115 device_set_desc(dev, t6_pciids[i].desc);
1116 return (BUS_PROBE_DEFAULT);
1117 }
1118 }
1119
1120 return (ENXIO);
1121 }
1122
1123 static int
ch_probe(device_t dev)1124 ch_probe(device_t dev)
1125 {
1126 int i;
1127 uint16_t v = pci_get_vendor(dev);
1128 uint16_t d = pci_get_device(dev);
1129 uint8_t f = pci_get_function(dev);
1130
1131 if (v != PCI_VENDOR_ID_CHELSIO)
1132 return (ENXIO);
1133
1134 /* Attach only to PF0 of the FPGA */
1135 if (d == 0xd000 && f != 0)
1136 return (ENXIO);
1137
1138 for (i = 0; i < nitems(t7_pciids); i++) {
1139 if (d == t7_pciids[i].device) {
1140 device_set_desc(dev, t7_pciids[i].desc);
1141 return (BUS_PROBE_DEFAULT);
1142 }
1143 }
1144
1145 return (ENXIO);
1146 }
1147
1148 static void
t5_attribute_workaround(device_t dev)1149 t5_attribute_workaround(device_t dev)
1150 {
1151 device_t root_port;
1152 uint32_t v;
1153
1154 /*
1155 * The T5 chips do not properly echo the No Snoop and Relaxed
1156 * Ordering attributes when replying to a TLP from a Root
1157 * Port. As a workaround, find the parent Root Port and
1158 * disable No Snoop and Relaxed Ordering. Note that this
1159 * affects all devices under this root port.
1160 */
1161 root_port = pci_find_pcie_root_port(dev);
1162 if (root_port == NULL) {
1163 device_printf(dev, "Unable to find parent root port\n");
1164 return;
1165 }
1166
1167 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1168 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1169 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1170 0)
1171 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1172 device_get_nameunit(root_port));
1173 }
1174
1175 static const struct devnames devnames[] = {
1176 {
1177 .nexus_name = "t4nex",
1178 .ifnet_name = "cxgbe",
1179 .vi_ifnet_name = "vcxgbe",
1180 .pf03_drv_name = "t4iov",
1181 .vf_nexus_name = "t4vf",
1182 .vf_ifnet_name = "cxgbev"
1183 }, {
1184 .nexus_name = "t5nex",
1185 .ifnet_name = "cxl",
1186 .vi_ifnet_name = "vcxl",
1187 .pf03_drv_name = "t5iov",
1188 .vf_nexus_name = "t5vf",
1189 .vf_ifnet_name = "cxlv"
1190 }, {
1191 .nexus_name = "t6nex",
1192 .ifnet_name = "cc",
1193 .vi_ifnet_name = "vcc",
1194 .pf03_drv_name = "t6iov",
1195 .vf_nexus_name = "t6vf",
1196 .vf_ifnet_name = "ccv"
1197 }, {
1198 .nexus_name = "chnex",
1199 .ifnet_name = "che",
1200 .vi_ifnet_name = "vche",
1201 .pf03_drv_name = "chiov",
1202 .vf_nexus_name = "chvf",
1203 .vf_ifnet_name = "chev"
1204 }
1205 };
1206
1207 void
t4_init_devnames(struct adapter * sc)1208 t4_init_devnames(struct adapter *sc)
1209 {
1210 int id;
1211
1212 id = chip_id(sc);
1213 if (id < CHELSIO_T4) {
1214 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1215 sc->names = NULL;
1216 } else if (id - CHELSIO_T4 < nitems(devnames))
1217 sc->names = &devnames[id - CHELSIO_T4];
1218 else
1219 sc->names = &devnames[nitems(devnames) - 1];
1220 }
1221
1222 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1223 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1224 {
1225 const char *parent, *name;
1226 long value;
1227 int line, unit;
1228
1229 line = 0;
1230 parent = device_get_nameunit(sc->dev);
1231 name = sc->names->ifnet_name;
1232 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1233 if (resource_long_value(name, unit, "port", &value) == 0 &&
1234 value == pi->port_id)
1235 return (unit);
1236 }
1237 return (-1);
1238 }
1239
1240 static void
t4_calibration(void * arg)1241 t4_calibration(void *arg)
1242 {
1243 struct adapter *sc;
1244 struct clock_sync *cur, *nex;
1245 uint64_t hw;
1246 sbintime_t sbt;
1247 int next_up;
1248
1249 sc = (struct adapter *)arg;
1250
1251 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1252 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1253 sbt = sbinuptime();
1254
1255 cur = &sc->cal_info[sc->cal_current];
1256 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1257 nex = &sc->cal_info[next_up];
1258 if (__predict_false(sc->cal_count == 0)) {
1259 /* First time in, just get the values in */
1260 cur->hw_cur = hw;
1261 cur->sbt_cur = sbt;
1262 sc->cal_count++;
1263 goto done;
1264 }
1265
1266 if (cur->hw_cur == hw) {
1267 /* The clock is not advancing? */
1268 sc->cal_count = 0;
1269 atomic_store_rel_int(&cur->gen, 0);
1270 goto done;
1271 }
1272
1273 seqc_write_begin(&nex->gen);
1274 nex->hw_prev = cur->hw_cur;
1275 nex->sbt_prev = cur->sbt_cur;
1276 nex->hw_cur = hw;
1277 nex->sbt_cur = sbt;
1278 seqc_write_end(&nex->gen);
1279 sc->cal_current = next_up;
1280 done:
1281 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1282 sc, C_DIRECT_EXEC);
1283 }
1284
1285 static void
t4_calibration_start(struct adapter * sc)1286 t4_calibration_start(struct adapter *sc)
1287 {
1288 /*
1289 * Here if we have not done a calibration
1290 * then do so otherwise start the appropriate
1291 * timer.
1292 */
1293 int i;
1294
1295 for (i = 0; i < CNT_CAL_INFO; i++) {
1296 sc->cal_info[i].gen = 0;
1297 }
1298 sc->cal_current = 0;
1299 sc->cal_count = 0;
1300 sc->cal_gen = 0;
1301 t4_calibration(sc);
1302 }
1303
1304 static int
t4_attach(device_t dev)1305 t4_attach(device_t dev)
1306 {
1307 struct adapter *sc;
1308 int rc = 0, i, j, rqidx, tqidx, nports;
1309 struct make_dev_args mda;
1310 struct intrs_and_queues iaq;
1311 struct sge *s;
1312 uint32_t *buf;
1313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1314 int ofld_tqidx;
1315 #endif
1316 #ifdef TCP_OFFLOAD
1317 int ofld_rqidx;
1318 #endif
1319 #ifdef DEV_NETMAP
1320 int nm_rqidx, nm_tqidx;
1321 #endif
1322 int num_vis;
1323
1324 sc = device_get_softc(dev);
1325 sc->dev = dev;
1326 sysctl_ctx_init(&sc->ctx);
1327 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1328 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0)
1329 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED;
1330
1331 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1332 t5_attribute_workaround(dev);
1333 pci_enable_busmaster(dev);
1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1335 uint32_t v;
1336
1337 pci_set_max_read_req(dev, 4096);
1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1340 if (pcie_relaxed_ordering == 0 &&
1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1344 } else if (pcie_relaxed_ordering == 1 &&
1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1348 }
1349 }
1350
1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1353 sc->traceq = -1;
1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1356 device_get_nameunit(dev));
1357
1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1359 device_get_nameunit(dev));
1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1361 t4_add_adapter(sc);
1362
1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1364 TAILQ_INIT(&sc->sfl);
1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1366
1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1368
1369 sc->policy = NULL;
1370 rw_init(&sc->policy_lock, "connection offload policy");
1371
1372 callout_init(&sc->ktls_tick, 1);
1373
1374 callout_init(&sc->cal_callout, 1);
1375
1376 refcount_init(&sc->vxlan_refcount, 0);
1377
1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1380
1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1387
1388 rc = t4_map_bars_0_and_4(sc);
1389 if (rc != 0)
1390 goto done; /* error message displayed already */
1391
1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1393 memset(sc->port_map, 0xff, sizeof(sc->port_map));
1394
1395 /* Prepare the adapter for operation. */
1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1397 rc = -t4_prep_adapter(sc, buf);
1398 free(buf, M_CXGBE);
1399 if (rc != 0) {
1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1401 goto done;
1402 }
1403
1404 /*
1405 * This is the real PF# to which we're attaching. Works from within PCI
1406 * passthrough environments too, where pci_get_function() could return a
1407 * different PF# depending on the passthrough configuration. We need to
1408 * use the real PF# in all our communication with the firmware.
1409 */
1410 j = t4_read_reg(sc, A_PL_WHOAMI);
1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1412 sc->mbox = sc->pf;
1413
1414 t4_init_devnames(sc);
1415 if (sc->names == NULL) {
1416 rc = ENOTSUP;
1417 goto done; /* error message displayed already */
1418 }
1419
1420 /*
1421 * Do this really early, with the memory windows set up even before the
1422 * character device. The userland tool's register i/o and mem read
1423 * will work even in "recovery mode".
1424 */
1425 setup_memwin(sc);
1426 if (t4_init_devlog_ncores_params(sc, 0) == 0)
1427 fixup_devlog_params(sc);
1428 make_dev_args_init(&mda);
1429 mda.mda_devsw = &t4_cdevsw;
1430 mda.mda_uid = UID_ROOT;
1431 mda.mda_gid = GID_WHEEL;
1432 mda.mda_mode = 0600;
1433 mda.mda_si_drv1 = sc;
1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1435 if (rc != 0)
1436 device_printf(dev, "failed to create nexus char device: %d.\n",
1437 rc);
1438
1439 /* Go no further if recovery mode has been requested. */
1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1441 device_printf(dev, "recovery mode.\n");
1442 goto done;
1443 }
1444
1445 #if defined(__i386__)
1446 if ((cpu_feature & CPUID_CX8) == 0) {
1447 device_printf(dev, "64 bit atomics not available.\n");
1448 rc = ENOTSUP;
1449 goto done;
1450 }
1451 #endif
1452
1453 /* Contact the firmware and try to become the master driver. */
1454 rc = contact_firmware(sc);
1455 if (rc != 0)
1456 goto done; /* error message displayed already */
1457 MPASS(sc->flags & FW_OK);
1458
1459 rc = get_params__pre_init(sc);
1460 if (rc != 0)
1461 goto done; /* error message displayed already */
1462
1463 if (sc->flags & MASTER_PF) {
1464 rc = partition_resources(sc);
1465 if (rc != 0)
1466 goto done; /* error message displayed already */
1467 }
1468
1469 rc = get_params__post_init(sc);
1470 if (rc != 0)
1471 goto done; /* error message displayed already */
1472
1473 rc = set_params__post_init(sc);
1474 if (rc != 0)
1475 goto done; /* error message displayed already */
1476
1477 rc = t4_map_bar_2(sc);
1478 if (rc != 0)
1479 goto done; /* error message displayed already */
1480
1481 rc = t4_adj_doorbells(sc);
1482 if (rc != 0)
1483 goto done; /* error message displayed already */
1484
1485 rc = t4_create_dma_tag(sc);
1486 if (rc != 0)
1487 goto done; /* error message displayed already */
1488
1489 /*
1490 * First pass over all the ports - allocate VIs and initialize some
1491 * basic parameters like mac address, port type, etc.
1492 */
1493 for_each_port(sc, i) {
1494 struct port_info *pi;
1495
1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1497 sc->port[i] = pi;
1498
1499 /* These must be set before t4_port_init */
1500 pi->adapter = sc;
1501 pi->port_id = i;
1502 /*
1503 * XXX: vi[0] is special so we can't delay this allocation until
1504 * pi->nvi's final value is known.
1505 */
1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1507 M_ZERO | M_WAITOK);
1508
1509 /*
1510 * Allocate the "main" VI and initialize parameters
1511 * like mac addr.
1512 */
1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1514 if (rc != 0) {
1515 device_printf(dev, "unable to initialize port %d: %d\n",
1516 i, rc);
1517 free(pi->vi, M_CXGBE);
1518 free(pi, M_CXGBE);
1519 sc->port[i] = NULL;
1520 goto done;
1521 }
1522
1523 if (is_bt(pi->port_type))
1524 setbit(&sc->bt_map, pi->hw_port);
1525 else
1526 MPASS(!isset(&sc->bt_map, pi->hw_port));
1527
1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1529 device_get_nameunit(dev), i);
1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1531 for (j = 0; j < sc->params.tp.lb_nchan; j++)
1532 sc->chan_map[pi->tx_chan + j] = i;
1533 sc->port_map[pi->hw_port] = i;
1534
1535 /*
1536 * The MPS counter for FCS errors doesn't work correctly on the
1537 * T6 so we use the MAC counter here. Which MAC is in use
1538 * depends on the link settings which will be known when the
1539 * link comes up.
1540 */
1541 if (is_t6(sc))
1542 pi->fcs_reg = -1;
1543 else
1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L;
1545 pi->fcs_base = 0;
1546
1547 /* All VIs on this port share this media. */
1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1549 cxgbe_media_status);
1550
1551 PORT_LOCK(pi);
1552 init_link_config(pi);
1553 fixup_link_config(pi);
1554 build_medialist(pi);
1555 if (fixed_ifmedia(pi))
1556 pi->flags |= FIXED_IFMEDIA;
1557 PORT_UNLOCK(pi);
1558
1559 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1560 t4_ifnet_unit(sc, pi));
1561 if (pi->dev == NULL) {
1562 device_printf(dev,
1563 "failed to add device for port %d.\n", i);
1564 rc = ENXIO;
1565 goto done;
1566 }
1567 pi->vi[0].dev = pi->dev;
1568 device_set_softc(pi->dev, pi);
1569 }
1570
1571 /*
1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1573 */
1574 nports = sc->params.nports;
1575 rc = cfg_itype_and_nqueues(sc, &iaq);
1576 if (rc != 0)
1577 goto done; /* error message displayed already */
1578
1579 num_vis = iaq.num_vis;
1580 sc->intr_type = iaq.intr_type;
1581 sc->intr_count = iaq.nirq;
1582
1583 s = &sc->sge;
1584 s->nctrlq = max(sc->params.nports, sc->params.ncores);
1585 s->nrxq = nports * iaq.nrxq;
1586 s->ntxq = nports * iaq.ntxq;
1587 if (num_vis > 1) {
1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1590 }
1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1592 s->neq += nports; /* ctrl queues: 1 per port */
1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 if (is_offload(sc) || is_ethoffload(sc)) {
1596 s->nofldtxq = nports * iaq.nofldtxq;
1597 if (num_vis > 1)
1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1599 s->neq += s->nofldtxq;
1600
1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1602 M_CXGBE, M_ZERO | M_WAITOK);
1603 }
1604 #endif
1605 #ifdef TCP_OFFLOAD
1606 if (is_offload(sc)) {
1607 s->nofldrxq = nports * iaq.nofldrxq;
1608 if (num_vis > 1)
1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1610 s->neq += s->nofldrxq; /* free list */
1611 s->niq += s->nofldrxq;
1612
1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1614 M_CXGBE, M_ZERO | M_WAITOK);
1615 }
1616 #endif
1617 #ifdef DEV_NETMAP
1618 s->nnmrxq = 0;
1619 s->nnmtxq = 0;
1620 if (t4_native_netmap & NN_MAIN_VI) {
1621 s->nnmrxq += nports * iaq.nnmrxq;
1622 s->nnmtxq += nports * iaq.nnmtxq;
1623 }
1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1627 }
1628 s->neq += s->nnmtxq + s->nnmrxq;
1629 s->niq += s->nnmrxq;
1630
1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1632 M_CXGBE, M_ZERO | M_WAITOK);
1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1634 M_CXGBE, M_ZERO | M_WAITOK);
1635 #endif
1636 MPASS(s->niq <= s->iqmap_sz);
1637 MPASS(s->neq <= s->eqmap_sz);
1638
1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE,
1640 M_ZERO | M_WAITOK);
1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1642 M_ZERO | M_WAITOK);
1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1644 M_ZERO | M_WAITOK);
1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1646 M_ZERO | M_WAITOK);
1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1648 M_ZERO | M_WAITOK);
1649
1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1651 M_ZERO | M_WAITOK);
1652
1653 t4_init_l2t(sc, M_WAITOK);
1654 t4_init_smt(sc, M_WAITOK);
1655 t4_init_tx_sched(sc);
1656 t4_init_atid_table(sc);
1657 #ifdef RATELIMIT
1658 t4_init_etid_table(sc);
1659 #endif
1660 #ifdef INET6
1661 t4_init_clip_table(sc);
1662 #endif
1663 if (sc->vres.key.size != 0)
1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1666 t4_init_tpt(sc);
1667
1668 /*
1669 * Second pass over the ports. This time we know the number of rx and
1670 * tx queues that each port should get.
1671 */
1672 rqidx = tqidx = 0;
1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1674 ofld_tqidx = 0;
1675 #endif
1676 #ifdef TCP_OFFLOAD
1677 ofld_rqidx = 0;
1678 #endif
1679 #ifdef DEV_NETMAP
1680 nm_rqidx = nm_tqidx = 0;
1681 #endif
1682 for_each_port(sc, i) {
1683 struct port_info *pi = sc->port[i];
1684 struct vi_info *vi;
1685
1686 if (pi == NULL)
1687 continue;
1688
1689 pi->nvi = num_vis;
1690 for_each_vi(pi, j, vi) {
1691 vi->pi = pi;
1692 vi->adapter = sc;
1693 vi->first_intr = -1;
1694 vi->qsize_rxq = t4_qsize_rxq;
1695 vi->qsize_txq = t4_qsize_txq;
1696
1697 vi->first_rxq = rqidx;
1698 vi->first_txq = tqidx;
1699 vi->tmr_idx = t4_tmr_idx;
1700 vi->pktc_idx = t4_pktc_idx;
1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1703
1704 rqidx += vi->nrxq;
1705 tqidx += vi->ntxq;
1706
1707 if (j == 0 && vi->ntxq > 1)
1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1709 else
1710 vi->rsrv_noflowq = 0;
1711
1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1713 vi->first_ofld_txq = ofld_tqidx;
1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1715 ofld_tqidx += vi->nofldtxq;
1716 #endif
1717 #ifdef TCP_OFFLOAD
1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1720 vi->first_ofld_rxq = ofld_rqidx;
1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1722
1723 ofld_rqidx += vi->nofldrxq;
1724 #endif
1725 #ifdef DEV_NETMAP
1726 vi->first_nm_rxq = nm_rqidx;
1727 vi->first_nm_txq = nm_tqidx;
1728 if (j == 0) {
1729 vi->nnmrxq = iaq.nnmrxq;
1730 vi->nnmtxq = iaq.nnmtxq;
1731 } else {
1732 vi->nnmrxq = iaq.nnmrxq_vi;
1733 vi->nnmtxq = iaq.nnmtxq_vi;
1734 }
1735 nm_rqidx += vi->nnmrxq;
1736 nm_tqidx += vi->nnmtxq;
1737 #endif
1738 }
1739 }
1740
1741 rc = t4_setup_intr_handlers(sc);
1742 if (rc != 0) {
1743 device_printf(dev,
1744 "failed to setup interrupt handlers: %d\n", rc);
1745 goto done;
1746 }
1747
1748 bus_identify_children(dev);
1749
1750 /*
1751 * Ensure thread-safe mailbox access (in debug builds).
1752 *
1753 * So far this was the only thread accessing the mailbox but various
1754 * ifnets and sysctls are about to be created and their handlers/ioctls
1755 * will access the mailbox from different threads.
1756 */
1757 sc->flags |= CHK_MBOX_ACCESS;
1758
1759 bus_attach_children(dev);
1760 t4_calibration_start(sc);
1761
1762 device_printf(dev,
1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1768
1769 t4_set_desc(sc);
1770
1771 notify_siblings(dev, 0);
1772
1773 done:
1774 if (rc != 0 && sc->cdev) {
1775 /* cdev was created and so cxgbetool works; recover that way. */
1776 device_printf(dev,
1777 "error during attach, adapter is now in recovery mode.\n");
1778 rc = 0;
1779 }
1780
1781 if (rc != 0)
1782 t4_detach_common(dev);
1783 else
1784 t4_sysctls(sc);
1785
1786 return (rc);
1787 }
1788
1789 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1791 {
1792 struct adapter *sc;
1793 struct port_info *pi;
1794 int i;
1795
1796 sc = device_get_softc(bus);
1797 for_each_port(sc, i) {
1798 pi = sc->port[i];
1799 if (pi != NULL && pi->dev == dev) {
1800 sbuf_printf(sb, "port=%d", pi->port_id);
1801 break;
1802 }
1803 }
1804 return (0);
1805 }
1806
1807 static int
t4_ready(device_t dev)1808 t4_ready(device_t dev)
1809 {
1810 struct adapter *sc;
1811
1812 sc = device_get_softc(dev);
1813 if (sc->flags & FW_OK)
1814 return (0);
1815 return (ENXIO);
1816 }
1817
1818 static int
t4_read_port_device(device_t dev,int port,device_t * child)1819 t4_read_port_device(device_t dev, int port, device_t *child)
1820 {
1821 struct adapter *sc;
1822 struct port_info *pi;
1823
1824 sc = device_get_softc(dev);
1825 if (port < 0 || port >= MAX_NPORTS)
1826 return (EINVAL);
1827 pi = sc->port[port];
1828 if (pi == NULL || pi->dev == NULL)
1829 return (ENXIO);
1830 *child = pi->dev;
1831 return (0);
1832 }
1833
1834 static int
notify_siblings(device_t dev,int detaching)1835 notify_siblings(device_t dev, int detaching)
1836 {
1837 device_t sibling;
1838 int error, i;
1839
1840 error = 0;
1841 for (i = 0; i < PCI_FUNCMAX; i++) {
1842 if (i == pci_get_function(dev))
1843 continue;
1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1845 pci_get_slot(dev), i);
1846 if (sibling == NULL || !device_is_attached(sibling))
1847 continue;
1848 if (detaching)
1849 error = T4_DETACH_CHILD(sibling);
1850 else
1851 (void)T4_ATTACH_CHILD(sibling);
1852 if (error)
1853 break;
1854 }
1855 return (error);
1856 }
1857
1858 /*
1859 * Idempotent
1860 */
1861 static int
t4_detach(device_t dev)1862 t4_detach(device_t dev)
1863 {
1864 int rc;
1865
1866 rc = notify_siblings(dev, 1);
1867 if (rc) {
1868 device_printf(dev,
1869 "failed to detach sibling devices: %d\n", rc);
1870 return (rc);
1871 }
1872
1873 return (t4_detach_common(dev));
1874 }
1875
1876 int
t4_detach_common(device_t dev)1877 t4_detach_common(device_t dev)
1878 {
1879 struct adapter *sc;
1880 struct port_info *pi;
1881 int i, rc;
1882
1883 sc = device_get_softc(dev);
1884
1885 #ifdef TCP_OFFLOAD
1886 rc = deactivate_all_uld(sc);
1887 if (rc) {
1888 device_printf(dev,
1889 "failed to detach upper layer drivers: %d\n", rc);
1890 return (rc);
1891 }
1892 #endif
1893
1894 if (sc->cdev) {
1895 destroy_dev(sc->cdev);
1896 sc->cdev = NULL;
1897 }
1898
1899 sx_xlock(&t4_list_lock);
1900 SLIST_REMOVE(&t4_list, sc, adapter, link);
1901 sx_xunlock(&t4_list_lock);
1902
1903 sc->flags &= ~CHK_MBOX_ACCESS;
1904 if (sc->flags & FULL_INIT_DONE) {
1905 if (!(sc->flags & IS_VF))
1906 t4_intr_disable(sc);
1907 }
1908
1909 if (device_is_attached(dev)) {
1910 rc = bus_detach_children(dev);
1911 if (rc) {
1912 device_printf(dev,
1913 "failed to detach child devices: %d\n", rc);
1914 return (rc);
1915 }
1916 }
1917
1918 for (i = 0; i < sc->intr_count; i++)
1919 t4_free_irq(sc, &sc->irq[i]);
1920
1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1922 t4_free_tx_sched(sc);
1923
1924 for (i = 0; i < MAX_NPORTS; i++) {
1925 pi = sc->port[i];
1926 if (pi) {
1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1928
1929 mtx_destroy(&pi->pi_lock);
1930 free(pi->vi, M_CXGBE);
1931 free(pi, M_CXGBE);
1932 }
1933 }
1934 callout_stop(&sc->cal_callout);
1935 callout_drain(&sc->cal_callout);
1936 device_delete_children(dev);
1937 sysctl_ctx_free(&sc->ctx);
1938 adapter_full_uninit(sc);
1939
1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1941 t4_fw_bye(sc, sc->mbox);
1942
1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1944 pci_release_msi(dev);
1945
1946 if (sc->regs_res)
1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1948 sc->regs_res);
1949
1950 if (sc->udbs_res)
1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1952 sc->udbs_res);
1953
1954 if (sc->msix_res)
1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1956 sc->msix_res);
1957
1958 if (sc->l2t)
1959 t4_free_l2t(sc);
1960 if (sc->smt)
1961 t4_free_smt(sc->smt);
1962 t4_free_atid_table(sc);
1963 #ifdef RATELIMIT
1964 t4_free_etid_table(sc);
1965 #endif
1966 if (sc->key_map)
1967 vmem_destroy(sc->key_map);
1968 t4_free_tpt(sc);
1969 #ifdef INET6
1970 t4_destroy_clip_table(sc);
1971 #endif
1972
1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1974 free(sc->sge.ofld_txq, M_CXGBE);
1975 #endif
1976 #ifdef TCP_OFFLOAD
1977 free(sc->sge.ofld_rxq, M_CXGBE);
1978 #endif
1979 #ifdef DEV_NETMAP
1980 free(sc->sge.nm_rxq, M_CXGBE);
1981 free(sc->sge.nm_txq, M_CXGBE);
1982 #endif
1983 free(sc->irq, M_CXGBE);
1984 free(sc->sge.rxq, M_CXGBE);
1985 free(sc->sge.txq, M_CXGBE);
1986 free(sc->sge.ctrlq, M_CXGBE);
1987 free(sc->sge.iqmap, M_CXGBE);
1988 free(sc->sge.eqmap, M_CXGBE);
1989 free(sc->tids.ftid_tab, M_CXGBE);
1990 free(sc->tids.hpftid_tab, M_CXGBE);
1991 free_hftid_hash(&sc->tids);
1992 free(sc->tids.tid_tab, M_CXGBE);
1993 t4_destroy_dma_tag(sc);
1994
1995 callout_drain(&sc->ktls_tick);
1996 callout_drain(&sc->sfl_callout);
1997 if (mtx_initialized(&sc->tids.ftid_lock)) {
1998 mtx_destroy(&sc->tids.ftid_lock);
1999 cv_destroy(&sc->tids.ftid_cv);
2000 }
2001 if (mtx_initialized(&sc->tids.atid_lock))
2002 mtx_destroy(&sc->tids.atid_lock);
2003 if (mtx_initialized(&sc->ifp_lock))
2004 mtx_destroy(&sc->ifp_lock);
2005
2006 if (rw_initialized(&sc->policy_lock)) {
2007 rw_destroy(&sc->policy_lock);
2008 #ifdef TCP_OFFLOAD
2009 if (sc->policy != NULL)
2010 free_offload_policy(sc->policy);
2011 #endif
2012 }
2013
2014 for (i = 0; i < NUM_MEMWIN; i++) {
2015 struct memwin *mw = &sc->memwin[i];
2016
2017 if (rw_initialized(&mw->mw_lock))
2018 rw_destroy(&mw->mw_lock);
2019 }
2020
2021 mtx_destroy(&sc->sfl_lock);
2022 mtx_destroy(&sc->reg_lock);
2023 mtx_destroy(&sc->sc_lock);
2024
2025 bzero(sc, sizeof(*sc));
2026
2027 return (0);
2028 }
2029
2030 static inline int
stop_adapter(struct adapter * sc)2031 stop_adapter(struct adapter *sc)
2032 {
2033 struct port_info *pi;
2034 int i;
2035
2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2038 __func__, curthread, sc->flags, sc->error_flags);
2039 return (EALREADY);
2040 }
2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2042 sc->flags, sc->error_flags);
2043 t4_shutdown_adapter(sc);
2044 for_each_port(sc, i) {
2045 pi = sc->port[i];
2046 if (pi == NULL)
2047 continue;
2048 PORT_LOCK(pi);
2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
2050 /*
2051 * t4_shutdown_adapter has already shut down all the
2052 * PHYs but it also disables interrupts and DMA so there
2053 * won't be a link interrupt. Update the state manually
2054 * if the link was up previously and inform the kernel.
2055 */
2056 pi->link_cfg.link_ok = false;
2057 t4_os_link_changed(pi);
2058 }
2059 PORT_UNLOCK(pi);
2060 }
2061
2062 return (0);
2063 }
2064
2065 static inline int
restart_adapter(struct adapter * sc)2066 restart_adapter(struct adapter *sc)
2067 {
2068 uint32_t val;
2069
2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2072 __func__, curthread, sc->flags, sc->error_flags);
2073 return (EALREADY);
2074 }
2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2076 sc->flags, sc->error_flags);
2077
2078 MPASS(hw_off_limits(sc));
2079 MPASS((sc->flags & FW_OK) == 0);
2080 MPASS((sc->flags & MASTER_PF) == 0);
2081 MPASS(sc->reset_thread == NULL);
2082
2083 /*
2084 * The adapter is supposed to be back on PCIE with its config space and
2085 * BARs restored to their state before reset. Register access via
2086 * t4_read_reg BAR0 should just work.
2087 */
2088 sc->reset_thread = curthread;
2089 val = t4_read_reg(sc, A_PL_WHOAMI);
2090 if (val == 0xffffffff || val == 0xeeeeeeee) {
2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
2092 sc->reset_thread = NULL;
2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
2094 return (ENXIO);
2095 }
2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
2097 atomic_add_int(&sc->incarnation, 1);
2098 atomic_add_int(&sc->num_resets, 1);
2099
2100 return (0);
2101 }
2102
2103 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)2104 set_adapter_hwstatus(struct adapter *sc, const bool usable)
2105 {
2106 if (usable) {
2107 /* Must be marked reusable by the designated thread. */
2108 ASSERT_SYNCHRONIZED_OP(sc);
2109 MPASS(sc->reset_thread == curthread);
2110 mtx_lock(&sc->reg_lock);
2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2112 mtx_unlock(&sc->reg_lock);
2113 } else {
2114 /* Mark the adapter totally off limits. */
2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2116 mtx_lock(&sc->reg_lock);
2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2118 mtx_unlock(&sc->reg_lock);
2119 sc->flags &= ~(FW_OK | MASTER_PF);
2120 sc->reset_thread = NULL;
2121 end_synchronized_op(sc, 0);
2122 }
2123 }
2124
2125 static int
stop_lld(struct adapter * sc)2126 stop_lld(struct adapter *sc)
2127 {
2128 struct port_info *pi;
2129 struct vi_info *vi;
2130 if_t ifp;
2131 struct sge_rxq *rxq;
2132 struct sge_txq *txq;
2133 struct sge_wrq *wrq;
2134 #ifdef TCP_OFFLOAD
2135 struct sge_ofld_rxq *ofld_rxq;
2136 #endif
2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2138 struct sge_ofld_txq *ofld_txq;
2139 #endif
2140 int rc, i, j, k;
2141
2142 /*
2143 * XXX: Can there be a synch_op in progress that will hang because
2144 * hardware has been stopped? We'll hang too and the solution will be
2145 * to use a version of begin_synch_op that wakes up existing synch_op
2146 * with errors. Maybe stop_adapter should do this wakeup?
2147 *
2148 * I don't think any synch_op could get stranded waiting for DMA or
2149 * interrupt so I think we're okay here. Remove this comment block
2150 * after testing.
2151 */
2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2153 if (rc != 0)
2154 return (ENXIO);
2155
2156 /* Quiesce all activity. */
2157 for_each_port(sc, i) {
2158 pi = sc->port[i];
2159 if (pi == NULL)
2160 continue;
2161 pi->vxlan_tcam_entry = false;
2162 for_each_vi(pi, j, vi) {
2163 vi->xact_addr_filt = -1;
2164 mtx_lock(&vi->tick_mtx);
2165 vi->flags |= VI_SKIP_STATS;
2166 mtx_unlock(&vi->tick_mtx);
2167 if (!(vi->flags & VI_INIT_DONE))
2168 continue;
2169
2170 ifp = vi->ifp;
2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2172 mtx_lock(&vi->tick_mtx);
2173 callout_stop(&vi->tick);
2174 mtx_unlock(&vi->tick_mtx);
2175 callout_drain(&vi->tick);
2176 }
2177
2178 /*
2179 * Note that the HW is not available.
2180 */
2181 for_each_txq(vi, k, txq) {
2182 TXQ_LOCK(txq);
2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2184 TXQ_UNLOCK(txq);
2185 }
2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2187 for_each_ofld_txq(vi, k, ofld_txq) {
2188 TXQ_LOCK(&ofld_txq->wrq);
2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2190 TXQ_UNLOCK(&ofld_txq->wrq);
2191 }
2192 #endif
2193 for_each_rxq(vi, k, rxq) {
2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2195 }
2196 #if defined(TCP_OFFLOAD)
2197 for_each_ofld_rxq(vi, k, ofld_rxq) {
2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2199 }
2200 #endif
2201
2202 quiesce_vi(vi);
2203 }
2204
2205 if (sc->flags & FULL_INIT_DONE) {
2206 /* Control queue */
2207 wrq = &sc->sge.ctrlq[i];
2208 TXQ_LOCK(wrq);
2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2210 TXQ_UNLOCK(wrq);
2211 quiesce_wrq(wrq);
2212 }
2213
2214 if (pi->flags & HAS_TRACEQ) {
2215 pi->flags &= ~HAS_TRACEQ;
2216 sc->traceq = -1;
2217 sc->tracer_valid = 0;
2218 sc->tracer_enabled = 0;
2219 }
2220 }
2221 if (sc->flags & FULL_INIT_DONE) {
2222 /* Firmware event queue */
2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2225 }
2226
2227 /* Stop calibration */
2228 callout_stop(&sc->cal_callout);
2229 callout_drain(&sc->cal_callout);
2230
2231 if (t4_clock_gate_on_suspend) {
2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2235 }
2236
2237 end_synchronized_op(sc, 0);
2238
2239 stop_atid_allocator(sc);
2240 t4_stop_l2t(sc);
2241
2242 return (rc);
2243 }
2244
2245 int
suspend_adapter(struct adapter * sc)2246 suspend_adapter(struct adapter *sc)
2247 {
2248 stop_adapter(sc);
2249 stop_lld(sc);
2250 #ifdef TCP_OFFLOAD
2251 stop_all_uld(sc);
2252 #endif
2253 set_adapter_hwstatus(sc, false);
2254
2255 return (0);
2256 }
2257
2258 static int
t4_suspend(device_t dev)2259 t4_suspend(device_t dev)
2260 {
2261 struct adapter *sc = device_get_softc(dev);
2262 int rc;
2263
2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2265 rc = suspend_adapter(sc);
2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2267
2268 return (rc);
2269 }
2270
2271 struct adapter_pre_reset_state {
2272 u_int flags;
2273 uint16_t nbmcaps;
2274 uint16_t linkcaps;
2275 uint16_t switchcaps;
2276 uint16_t nvmecaps;
2277 uint16_t niccaps;
2278 uint16_t toecaps;
2279 uint16_t rdmacaps;
2280 uint16_t cryptocaps;
2281 uint16_t iscsicaps;
2282 uint16_t fcoecaps;
2283
2284 u_int cfcsum;
2285 char cfg_file[32];
2286
2287 struct adapter_params params;
2288 struct t4_virt_res vres;
2289 struct tid_info tids;
2290 struct sge sge;
2291
2292 int rawf_base;
2293 int nrawf;
2294
2295 };
2296
2297 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2299 {
2300
2301 ASSERT_SYNCHRONIZED_OP(sc);
2302
2303 o->flags = sc->flags;
2304
2305 o->nbmcaps = sc->nbmcaps;
2306 o->linkcaps = sc->linkcaps;
2307 o->switchcaps = sc->switchcaps;
2308 o->nvmecaps = sc->nvmecaps;
2309 o->niccaps = sc->niccaps;
2310 o->toecaps = sc->toecaps;
2311 o->rdmacaps = sc->rdmacaps;
2312 o->cryptocaps = sc->cryptocaps;
2313 o->iscsicaps = sc->iscsicaps;
2314 o->fcoecaps = sc->fcoecaps;
2315
2316 o->cfcsum = sc->cfcsum;
2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2319
2320 o->params = sc->params;
2321 o->vres = sc->vres;
2322 o->tids = sc->tids;
2323 o->sge = sc->sge;
2324
2325 o->rawf_base = sc->rawf_base;
2326 o->nrawf = sc->nrawf;
2327 }
2328
2329 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2331 {
2332 int rc = 0;
2333
2334 ASSERT_SYNCHRONIZED_OP(sc);
2335
2336 /* Capabilities */
2337 #define COMPARE_CAPS(c) do { \
2338 if (o->c##caps != sc->c##caps) { \
2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2340 sc->c##caps); \
2341 rc = EINVAL; \
2342 } \
2343 } while (0)
2344 COMPARE_CAPS(nbm);
2345 COMPARE_CAPS(link);
2346 COMPARE_CAPS(switch);
2347 COMPARE_CAPS(nvme);
2348 COMPARE_CAPS(nic);
2349 COMPARE_CAPS(toe);
2350 COMPARE_CAPS(rdma);
2351 COMPARE_CAPS(crypto);
2352 COMPARE_CAPS(iscsi);
2353 COMPARE_CAPS(fcoe);
2354 #undef COMPARE_CAPS
2355
2356 /* Firmware config file */
2357 if (o->cfcsum != sc->cfcsum) {
2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2359 o->cfcsum, sc->cfg_file, sc->cfcsum);
2360 rc = EINVAL;
2361 }
2362
2363 #define COMPARE_PARAM(p, name) do { \
2364 if (o->p != sc->p) { \
2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2366 rc = EINVAL; \
2367 } \
2368 } while (0)
2369 COMPARE_PARAM(sge.iq_start, iq_start);
2370 COMPARE_PARAM(sge.eq_start, eq_start);
2371 COMPARE_PARAM(tids.ftid_base, ftid_base);
2372 COMPARE_PARAM(tids.ftid_end, ftid_end);
2373 COMPARE_PARAM(tids.nftids, nftids);
2374 COMPARE_PARAM(vres.l2t.start, l2t_start);
2375 COMPARE_PARAM(vres.l2t.size, l2t_size);
2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2378 COMPARE_PARAM(tids.tid_base, tid_base);
2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2381 COMPARE_PARAM(tids.nhpftids, nhpftids);
2382 COMPARE_PARAM(rawf_base, rawf_base);
2383 COMPARE_PARAM(nrawf, nrawf);
2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2389 COMPARE_PARAM(tids.ntids, ntids);
2390 COMPARE_PARAM(tids.etid_base, etid_base);
2391 COMPARE_PARAM(tids.etid_end, etid_end);
2392 COMPARE_PARAM(tids.netids, netids);
2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2394 COMPARE_PARAM(params.ethoffload, ethoffload);
2395 COMPARE_PARAM(tids.natids, natids);
2396 COMPARE_PARAM(tids.stid_base, stid_base);
2397 COMPARE_PARAM(vres.ddp.start, ddp_start);
2398 COMPARE_PARAM(vres.ddp.size, ddp_size);
2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2400 COMPARE_PARAM(vres.stag.start, stag_start);
2401 COMPARE_PARAM(vres.stag.size, stag_size);
2402 COMPARE_PARAM(vres.rq.start, rq_start);
2403 COMPARE_PARAM(vres.rq.size, rq_size);
2404 COMPARE_PARAM(vres.pbl.start, pbl_start);
2405 COMPARE_PARAM(vres.pbl.size, pbl_size);
2406 COMPARE_PARAM(vres.qp.start, qp_start);
2407 COMPARE_PARAM(vres.qp.size, qp_size);
2408 COMPARE_PARAM(vres.cq.start, cq_start);
2409 COMPARE_PARAM(vres.cq.size, cq_size);
2410 COMPARE_PARAM(vres.ocq.start, ocq_start);
2411 COMPARE_PARAM(vres.ocq.size, ocq_size);
2412 COMPARE_PARAM(vres.srq.start, srq_start);
2413 COMPARE_PARAM(vres.srq.size, srq_size);
2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2418 COMPARE_PARAM(vres.key.start, key_start);
2419 COMPARE_PARAM(vres.key.size, key_size);
2420 #undef COMPARE_PARAM
2421
2422 return (rc);
2423 }
2424
2425 static int
restart_lld(struct adapter * sc)2426 restart_lld(struct adapter *sc)
2427 {
2428 struct adapter_pre_reset_state *old_state = NULL;
2429 struct port_info *pi;
2430 struct vi_info *vi;
2431 if_t ifp;
2432 struct sge_txq *txq;
2433 int rc, i, j, k;
2434
2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2436 if (rc != 0)
2437 return (ENXIO);
2438
2439 /* Restore memory window. */
2440 setup_memwin(sc);
2441
2442 /* Go no further if recovery mode has been requested. */
2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2445 rc = 0;
2446 set_adapter_hwstatus(sc, true);
2447 goto done;
2448 }
2449
2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2451 save_caps_and_params(sc, old_state);
2452
2453 /* Reestablish contact with firmware and become the primary PF. */
2454 rc = contact_firmware(sc);
2455 if (rc != 0)
2456 goto done; /* error message displayed already */
2457 MPASS(sc->flags & FW_OK);
2458
2459 if (sc->flags & MASTER_PF) {
2460 rc = partition_resources(sc);
2461 if (rc != 0)
2462 goto done; /* error message displayed already */
2463 }
2464
2465 rc = get_params__post_init(sc);
2466 if (rc != 0)
2467 goto done; /* error message displayed already */
2468
2469 rc = set_params__post_init(sc);
2470 if (rc != 0)
2471 goto done; /* error message displayed already */
2472
2473 rc = compare_caps_and_params(sc, old_state);
2474 if (rc != 0)
2475 goto done; /* error message displayed already */
2476
2477 for_each_port(sc, i) {
2478 pi = sc->port[i];
2479 MPASS(pi != NULL);
2480 MPASS(pi->vi != NULL);
2481 MPASS(pi->vi[0].dev == pi->dev);
2482
2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2484 if (rc != 0) {
2485 CH_ERR(sc,
2486 "failed to re-initialize port %d: %d\n", i, rc);
2487 goto done;
2488 }
2489 MPASS(sc->chan_map[pi->tx_chan] == i);
2490
2491 PORT_LOCK(pi);
2492 fixup_link_config(pi);
2493 build_medialist(pi);
2494 PORT_UNLOCK(pi);
2495 for_each_vi(pi, j, vi) {
2496 if (IS_MAIN_VI(vi))
2497 continue;
2498 rc = alloc_extra_vi(sc, pi, vi);
2499 if (rc != 0) {
2500 CH_ERR(vi,
2501 "failed to re-allocate extra VI: %d\n", rc);
2502 goto done;
2503 }
2504 }
2505 }
2506
2507 /*
2508 * Interrupts and queues are about to be enabled and other threads will
2509 * want to access the hardware too. It is safe to do so. Note that
2510 * this thread is still in the middle of a synchronized_op.
2511 */
2512 set_adapter_hwstatus(sc, true);
2513
2514 if (sc->flags & FULL_INIT_DONE) {
2515 rc = adapter_full_init(sc);
2516 if (rc != 0) {
2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2518 goto done;
2519 }
2520
2521 if (sc->vxlan_refcount > 0)
2522 enable_vxlan_rx(sc);
2523
2524 for_each_port(sc, i) {
2525 pi = sc->port[i];
2526 for_each_vi(pi, j, vi) {
2527 mtx_lock(&vi->tick_mtx);
2528 vi->flags &= ~VI_SKIP_STATS;
2529 mtx_unlock(&vi->tick_mtx);
2530 if (!(vi->flags & VI_INIT_DONE))
2531 continue;
2532 rc = vi_full_init(vi);
2533 if (rc != 0) {
2534 CH_ERR(vi, "failed to re-initialize "
2535 "interface: %d\n", rc);
2536 goto done;
2537 }
2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
2541 pi->flags |= HAS_TRACEQ;
2542 }
2543
2544 ifp = vi->ifp;
2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2546 continue;
2547 /*
2548 * Note that we do not setup multicast addresses
2549 * in the first pass. This ensures that the
2550 * unicast DMACs for all VIs on all ports get an
2551 * MPS TCAM entry.
2552 */
2553 rc = update_mac_settings(ifp, XGMAC_ALL &
2554 ~XGMAC_MCADDRS);
2555 if (rc != 0) {
2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2557 goto done;
2558 }
2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2560 true);
2561 if (rc != 0) {
2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2563 goto done;
2564 }
2565 for_each_txq(vi, k, txq) {
2566 TXQ_LOCK(txq);
2567 txq->eq.flags |= EQ_ENABLED;
2568 TXQ_UNLOCK(txq);
2569 }
2570 mtx_lock(&vi->tick_mtx);
2571 callout_schedule(&vi->tick, hz);
2572 mtx_unlock(&vi->tick_mtx);
2573 }
2574 PORT_LOCK(pi);
2575 if (pi->up_vis > 0) {
2576 t4_update_port_info(pi);
2577 fixup_link_config(pi);
2578 build_medialist(pi);
2579 apply_link_config(pi);
2580 if (pi->link_cfg.link_ok)
2581 t4_os_link_changed(pi);
2582 }
2583 PORT_UNLOCK(pi);
2584 }
2585
2586 /* Now reprogram the L2 multicast addresses. */
2587 for_each_port(sc, i) {
2588 pi = sc->port[i];
2589 for_each_vi(pi, j, vi) {
2590 if (!(vi->flags & VI_INIT_DONE))
2591 continue;
2592 ifp = vi->ifp;
2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2594 continue;
2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2596 if (rc != 0) {
2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2598 rc = 0; /* carry on */
2599 }
2600 }
2601 }
2602 }
2603
2604 /* Reset all calibration */
2605 t4_calibration_start(sc);
2606 done:
2607 end_synchronized_op(sc, 0);
2608 free(old_state, M_CXGBE);
2609
2610 restart_atid_allocator(sc);
2611 t4_restart_l2t(sc);
2612
2613 return (rc);
2614 }
2615
2616 int
resume_adapter(struct adapter * sc)2617 resume_adapter(struct adapter *sc)
2618 {
2619 restart_adapter(sc);
2620 restart_lld(sc);
2621 #ifdef TCP_OFFLOAD
2622 restart_all_uld(sc);
2623 #endif
2624 return (0);
2625 }
2626
2627 static int
t4_resume(device_t dev)2628 t4_resume(device_t dev)
2629 {
2630 struct adapter *sc = device_get_softc(dev);
2631 int rc;
2632
2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2634 rc = resume_adapter(sc);
2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2636
2637 return (rc);
2638 }
2639
2640 static int
t4_reset_prepare(device_t dev,device_t child)2641 t4_reset_prepare(device_t dev, device_t child)
2642 {
2643 struct adapter *sc = device_get_softc(dev);
2644
2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2646 return (0);
2647 }
2648
2649 static int
t4_reset_post(device_t dev,device_t child)2650 t4_reset_post(device_t dev, device_t child)
2651 {
2652 struct adapter *sc = device_get_softc(dev);
2653
2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2655 return (0);
2656 }
2657
2658 static int
reset_adapter_with_pl_rst(struct adapter * sc)2659 reset_adapter_with_pl_rst(struct adapter *sc)
2660 {
2661 /* This is a t4_write_reg without the hw_off_limits check. */
2662 MPASS(sc->error_flags & HW_OFF_LIMITS);
2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2666 return (0);
2667 }
2668
2669 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2670 reset_adapter_with_pcie_sbr(struct adapter *sc)
2671 {
2672 device_t pdev = device_get_parent(sc->dev);
2673 device_t gpdev = device_get_parent(pdev);
2674 device_t *children;
2675 int rc, i, lcap, lsta, nchildren;
2676 uint32_t v;
2677
2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2679 if (rc != 0) {
2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2681 device_get_nameunit(gpdev), rc);
2682 return (ENOTSUP);
2683 }
2684 lcap = v + PCIER_LINK_CAP;
2685 lsta = v + PCIER_LINK_STA;
2686
2687 nchildren = 0;
2688 device_get_children(pdev, &children, &nchildren);
2689 for (i = 0; i < nchildren; i++)
2690 pci_save_state(children[i]);
2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2693 pause("pcie_sbr1", hz / 10); /* 100ms */
2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2696 v = pci_read_config(gpdev, lsta, 2);
2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2700 rc = ETIMEDOUT;
2701 else
2702 rc = 0;
2703 if (rc != 0)
2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2705 __func__, v);
2706 else {
2707 for (i = 0; i < nchildren; i++)
2708 pci_restore_state(children[i]);
2709 }
2710 free(children, M_TEMP);
2711
2712 return (rc);
2713 }
2714
2715 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2717 {
2718 device_t pdev = device_get_parent(sc->dev);
2719 device_t gpdev = device_get_parent(pdev);
2720 device_t *children;
2721 int rc, i, lcap, lctl, lsta, nchildren;
2722 uint32_t v;
2723
2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2725 if (rc != 0) {
2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2727 device_get_nameunit(gpdev), rc);
2728 return (ENOTSUP);
2729 }
2730 lcap = v + PCIER_LINK_CAP;
2731 lctl = v + PCIER_LINK_CTL;
2732 lsta = v + PCIER_LINK_STA;
2733
2734 nchildren = 0;
2735 device_get_children(pdev, &children, &nchildren);
2736 for (i = 0; i < nchildren; i++)
2737 pci_save_state(children[i]);
2738 v = pci_read_config(gpdev, lctl, 2);
2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2743 v = pci_read_config(gpdev, lsta, 2);
2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2747 rc = ETIMEDOUT;
2748 else
2749 rc = 0;
2750 if (rc != 0)
2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2752 __func__, v);
2753 else {
2754 for (i = 0; i < nchildren; i++)
2755 pci_restore_state(children[i]);
2756 }
2757 free(children, M_TEMP);
2758
2759 return (rc);
2760 }
2761
2762 static inline int
reset_adapter(struct adapter * sc)2763 reset_adapter(struct adapter *sc)
2764 {
2765 int rc;
2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2767
2768 rc = suspend_adapter(sc);
2769 if (rc != 0)
2770 return (rc);
2771
2772 switch (reset_method) {
2773 case 1:
2774 rc = reset_adapter_with_pcie_sbr(sc);
2775 break;
2776 case 2:
2777 rc = reset_adapter_with_pcie_link_bounce(sc);
2778 break;
2779 case 0:
2780 default:
2781 rc = reset_adapter_with_pl_rst(sc);
2782 break;
2783 }
2784 if (rc == 0)
2785 rc = resume_adapter(sc);
2786 return (rc);
2787 }
2788
2789 static void
reset_adapter_task(void * arg,int pending)2790 reset_adapter_task(void *arg, int pending)
2791 {
2792 struct adapter *sc = arg;
2793 const int flags = sc->flags;
2794 const int eflags = sc->error_flags;
2795 int rc;
2796
2797 if (pending > 1)
2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2799 rc = reset_adapter(sc);
2800 if (rc != 0) {
2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2803 rc, flags, sc->flags, eflags, sc->error_flags);
2804 }
2805 }
2806
2807 static int
cxgbe_probe(device_t dev)2808 cxgbe_probe(device_t dev)
2809 {
2810 struct port_info *pi = device_get_softc(dev);
2811
2812 device_set_descf(dev, "port %d", pi->port_id);
2813
2814 return (BUS_PROBE_DEFAULT);
2815 }
2816
2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2821 #define T4_CAP_ENABLE (T4_CAP)
2822
2823 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2825 {
2826 if_t ifp;
2827 struct sbuf *sb;
2828 struct sysctl_ctx_list *ctx = &vi->ctx;
2829 struct sysctl_oid_list *children;
2830 struct pfil_head_args pa;
2831 struct adapter *sc = vi->adapter;
2832
2833 sysctl_ctx_init(ctx);
2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2839 #ifdef DEV_NETMAP
2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2844 #endif
2845 #ifdef TCP_OFFLOAD
2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2848 #endif
2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2852 #endif
2853
2854 vi->xact_addr_filt = -1;
2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2858 vi->flags |= TX_USES_VM_WR;
2859
2860 /* Allocate an ifnet and set it up */
2861 ifp = if_alloc_dev(IFT_ETHER, dev);
2862 vi->ifp = ifp;
2863 if_setsoftc(ifp, vi);
2864
2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2867
2868 if_setinitfn(ifp, cxgbe_init);
2869 if_setioctlfn(ifp, cxgbe_ioctl);
2870 if_settransmitfn(ifp, cxgbe_transmit);
2871 if_setqflushfn(ifp, cxgbe_qflush);
2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2873 if_setgetcounterfn(ifp, vi_get_counter);
2874 else
2875 if_setgetcounterfn(ifp, cxgbe_get_counter);
2876 #if defined(KERN_TLS) || defined(RATELIMIT)
2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2878 #endif
2879 #ifdef RATELIMIT
2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2881 #endif
2882
2883 if_setcapabilities(ifp, T4_CAP);
2884 if_setcapenable(ifp, T4_CAP_ENABLE);
2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2887 if (chip_id(sc) >= CHELSIO_T6) {
2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2893 }
2894
2895 #ifdef TCP_OFFLOAD
2896 if (vi->nofldrxq != 0)
2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2898 #endif
2899 #ifdef RATELIMIT
2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2903 }
2904 #endif
2905
2906 if_sethwtsomax(ifp, IP_MAXPACKET);
2907 if (vi->flags & TX_USES_VM_WR)
2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2909 else
2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2911 #ifdef RATELIMIT
2912 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2914 #endif
2915 if_sethwtsomaxsegsize(ifp, 65536);
2916 #ifdef KERN_TLS
2917 if (is_ktls(sc)) {
2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2921 }
2922 #endif
2923
2924 ether_ifattach(ifp, vi->hw_addr);
2925 #ifdef DEV_NETMAP
2926 if (vi->nnmrxq != 0)
2927 cxgbe_nm_attach(vi);
2928 #endif
2929 sb = sbuf_new_auto();
2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2933 case IFCAP_TOE:
2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2935 break;
2936 case IFCAP_TOE | IFCAP_TXRTLMT:
2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2938 break;
2939 case IFCAP_TXRTLMT:
2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2941 break;
2942 }
2943 #endif
2944 #ifdef TCP_OFFLOAD
2945 if (if_getcapabilities(ifp) & IFCAP_TOE)
2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2947 #endif
2948 #ifdef DEV_NETMAP
2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2951 vi->nnmtxq, vi->nnmrxq);
2952 #endif
2953 sbuf_finish(sb);
2954 device_printf(dev, "%s\n", sbuf_data(sb));
2955 sbuf_delete(sb);
2956
2957 vi_sysctls(vi);
2958
2959 pa.pa_version = PFIL_VERSION;
2960 pa.pa_flags = PFIL_IN;
2961 pa.pa_type = PFIL_TYPE_ETHERNET;
2962 pa.pa_headname = if_name(ifp);
2963 vi->pfil = pfil_head_register(&pa);
2964 }
2965
2966 static int
cxgbe_attach(device_t dev)2967 cxgbe_attach(device_t dev)
2968 {
2969 struct port_info *pi = device_get_softc(dev);
2970 struct adapter *sc = pi->adapter;
2971 struct vi_info *vi;
2972 int i;
2973
2974 sysctl_ctx_init(&pi->ctx);
2975
2976 cxgbe_vi_attach(dev, &pi->vi[0]);
2977
2978 for_each_vi(pi, i, vi) {
2979 if (i == 0)
2980 continue;
2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2982 if (vi->dev == NULL) {
2983 device_printf(dev, "failed to add VI %d\n", i);
2984 continue;
2985 }
2986 device_set_softc(vi->dev, vi);
2987 }
2988
2989 cxgbe_sysctls(pi);
2990
2991 bus_attach_children(dev);
2992
2993 return (0);
2994 }
2995
2996 static void
cxgbe_vi_detach(struct vi_info * vi)2997 cxgbe_vi_detach(struct vi_info *vi)
2998 {
2999 if_t ifp = vi->ifp;
3000
3001 if (vi->pfil != NULL) {
3002 pfil_head_unregister(vi->pfil);
3003 vi->pfil = NULL;
3004 }
3005
3006 ether_ifdetach(ifp);
3007
3008 /* Let detach proceed even if these fail. */
3009 #ifdef DEV_NETMAP
3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
3011 cxgbe_nm_detach(vi);
3012 #endif
3013 cxgbe_uninit_synchronized(vi);
3014 callout_drain(&vi->tick);
3015 mtx_destroy(&vi->tick_mtx);
3016 sysctl_ctx_free(&vi->ctx);
3017 vi_full_uninit(vi);
3018
3019 if_free(vi->ifp);
3020 vi->ifp = NULL;
3021 }
3022
3023 static int
cxgbe_detach(device_t dev)3024 cxgbe_detach(device_t dev)
3025 {
3026 struct port_info *pi = device_get_softc(dev);
3027 struct adapter *sc = pi->adapter;
3028 int rc;
3029
3030 /* Detach the extra VIs first. */
3031 rc = bus_generic_detach(dev);
3032 if (rc)
3033 return (rc);
3034
3035 sysctl_ctx_free(&pi->ctx);
3036 begin_vi_detach(sc, &pi->vi[0]);
3037 if (pi->flags & HAS_TRACEQ) {
3038 sc->traceq = -1; /* cloner should not create ifnet */
3039 t4_tracer_port_detach(sc);
3040 }
3041 cxgbe_vi_detach(&pi->vi[0]);
3042 ifmedia_removeall(&pi->media);
3043 end_vi_detach(sc, &pi->vi[0]);
3044
3045 return (0);
3046 }
3047
3048 static void
cxgbe_init(void * arg)3049 cxgbe_init(void *arg)
3050 {
3051 struct vi_info *vi = arg;
3052 struct adapter *sc = vi->adapter;
3053
3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
3055 return;
3056 cxgbe_init_synchronized(vi);
3057 end_synchronized_op(sc, 0);
3058 }
3059
3060 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
3062 {
3063 int rc = 0, mtu, flags;
3064 struct vi_info *vi = if_getsoftc(ifp);
3065 struct port_info *pi = vi->pi;
3066 struct adapter *sc = pi->adapter;
3067 struct ifreq *ifr = (struct ifreq *)data;
3068 uint32_t mask;
3069
3070 switch (cmd) {
3071 case SIOCSIFMTU:
3072 mtu = ifr->ifr_mtu;
3073 if (mtu < ETHERMIN || mtu > MAX_MTU)
3074 return (EINVAL);
3075
3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
3077 if (rc)
3078 return (rc);
3079 if_setmtu(ifp, mtu);
3080 if (vi->flags & VI_INIT_DONE) {
3081 t4_update_fl_bufsize(ifp);
3082 if (hw_all_ok(sc) &&
3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3084 rc = update_mac_settings(ifp, XGMAC_MTU);
3085 }
3086 end_synchronized_op(sc, 0);
3087 break;
3088
3089 case SIOCSIFFLAGS:
3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
3091 if (rc)
3092 return (rc);
3093
3094 if (!hw_all_ok(sc)) {
3095 rc = ENXIO;
3096 goto fail;
3097 }
3098
3099 if (if_getflags(ifp) & IFF_UP) {
3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3101 flags = vi->if_flags;
3102 if ((if_getflags(ifp) ^ flags) &
3103 (IFF_PROMISC | IFF_ALLMULTI)) {
3104 rc = update_mac_settings(ifp,
3105 XGMAC_PROMISC | XGMAC_ALLMULTI);
3106 }
3107 } else {
3108 rc = cxgbe_init_synchronized(vi);
3109 }
3110 vi->if_flags = if_getflags(ifp);
3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3112 rc = cxgbe_uninit_synchronized(vi);
3113 }
3114 end_synchronized_op(sc, 0);
3115 break;
3116
3117 case SIOCADDMULTI:
3118 case SIOCDELMULTI:
3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3120 if (rc)
3121 return (rc);
3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3124 end_synchronized_op(sc, 0);
3125 break;
3126
3127 case SIOCSIFCAP:
3128 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3129 if (rc)
3130 return (rc);
3131
3132 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3133 if (mask & IFCAP_TXCSUM) {
3134 if_togglecapenable(ifp, IFCAP_TXCSUM);
3135 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3136
3137 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3138 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3139 mask &= ~IFCAP_TSO4;
3140 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3141 if_printf(ifp,
3142 "tso4 disabled due to -txcsum.\n");
3143 }
3144 }
3145 if (mask & IFCAP_TXCSUM_IPV6) {
3146 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3147 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3148
3149 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3150 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3151 mask &= ~IFCAP_TSO6;
3152 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3153 if_printf(ifp,
3154 "tso6 disabled due to -txcsum6.\n");
3155 }
3156 }
3157 if (mask & IFCAP_RXCSUM)
3158 if_togglecapenable(ifp, IFCAP_RXCSUM);
3159 if (mask & IFCAP_RXCSUM_IPV6)
3160 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3161
3162 /*
3163 * Note that we leave CSUM_TSO alone (it is always set). The
3164 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3165 * sending a TSO request our way, so it's sufficient to toggle
3166 * IFCAP_TSOx only.
3167 */
3168 if (mask & IFCAP_TSO4) {
3169 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3170 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3171 if_printf(ifp, "enable txcsum first.\n");
3172 rc = EAGAIN;
3173 goto fail;
3174 }
3175 if_togglecapenable(ifp, IFCAP_TSO4);
3176 }
3177 if (mask & IFCAP_TSO6) {
3178 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3179 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3180 if_printf(ifp, "enable txcsum6 first.\n");
3181 rc = EAGAIN;
3182 goto fail;
3183 }
3184 if_togglecapenable(ifp, IFCAP_TSO6);
3185 }
3186 if (mask & IFCAP_LRO) {
3187 #if defined(INET) || defined(INET6)
3188 int i;
3189 struct sge_rxq *rxq;
3190
3191 if_togglecapenable(ifp, IFCAP_LRO);
3192 for_each_rxq(vi, i, rxq) {
3193 if (if_getcapenable(ifp) & IFCAP_LRO)
3194 rxq->iq.flags |= IQ_LRO_ENABLED;
3195 else
3196 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3197 }
3198 #endif
3199 }
3200 #ifdef TCP_OFFLOAD
3201 if (mask & IFCAP_TOE) {
3202 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3203
3204 rc = toe_capability(vi, enable);
3205 if (rc != 0)
3206 goto fail;
3207
3208 if_togglecapenable(ifp, mask);
3209 }
3210 #endif
3211 if (mask & IFCAP_VLAN_HWTAGGING) {
3212 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3213 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3214 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3215 }
3216 if (mask & IFCAP_VLAN_MTU) {
3217 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3218
3219 /* Need to find out how to disable auto-mtu-inflation */
3220 }
3221 if (mask & IFCAP_VLAN_HWTSO)
3222 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3223 if (mask & IFCAP_VLAN_HWCSUM)
3224 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3225 #ifdef RATELIMIT
3226 if (mask & IFCAP_TXRTLMT)
3227 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3228 #endif
3229 if (mask & IFCAP_HWRXTSTMP) {
3230 int i;
3231 struct sge_rxq *rxq;
3232
3233 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3234 for_each_rxq(vi, i, rxq) {
3235 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3236 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3237 else
3238 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3239 }
3240 }
3241 if (mask & IFCAP_MEXTPG)
3242 if_togglecapenable(ifp, IFCAP_MEXTPG);
3243
3244 #ifdef KERN_TLS
3245 if (mask & IFCAP_TXTLS) {
3246 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3247
3248 rc = ktls_capability(sc, enable);
3249 if (rc != 0)
3250 goto fail;
3251
3252 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3253 }
3254 #endif
3255 if (mask & IFCAP_VXLAN_HWCSUM) {
3256 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3257 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3258 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3259 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3260 }
3261 if (mask & IFCAP_VXLAN_HWTSO) {
3262 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3263 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3264 CSUM_INNER_IP_TSO);
3265 }
3266
3267 #ifdef VLAN_CAPABILITIES
3268 VLAN_CAPABILITIES(ifp);
3269 #endif
3270 fail:
3271 end_synchronized_op(sc, 0);
3272 break;
3273
3274 case SIOCSIFMEDIA:
3275 case SIOCGIFMEDIA:
3276 case SIOCGIFXMEDIA:
3277 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3278 break;
3279
3280 case SIOCGI2C: {
3281 struct ifi2creq i2c;
3282
3283 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3284 if (rc != 0)
3285 break;
3286 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3287 rc = EPERM;
3288 break;
3289 }
3290 if (i2c.len > sizeof(i2c.data)) {
3291 rc = EINVAL;
3292 break;
3293 }
3294 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3295 if (rc)
3296 return (rc);
3297 if (!hw_all_ok(sc))
3298 rc = ENXIO;
3299 else
3300 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3301 i2c.offset, i2c.len, &i2c.data[0]);
3302 end_synchronized_op(sc, 0);
3303 if (rc == 0)
3304 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3305 break;
3306 }
3307
3308 default:
3309 rc = ether_ioctl(ifp, cmd, data);
3310 }
3311
3312 return (rc);
3313 }
3314
3315 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3316 cxgbe_transmit(if_t ifp, struct mbuf *m)
3317 {
3318 struct vi_info *vi = if_getsoftc(ifp);
3319 struct port_info *pi = vi->pi;
3320 struct adapter *sc;
3321 struct sge_txq *txq;
3322 void *items[1];
3323 int rc;
3324
3325 M_ASSERTPKTHDR(m);
3326 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3327 #if defined(KERN_TLS) || defined(RATELIMIT)
3328 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3329 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3330 #endif
3331
3332 if (__predict_false(pi->link_cfg.link_ok == false)) {
3333 m_freem(m);
3334 return (ENETDOWN);
3335 }
3336
3337 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3338 if (__predict_false(rc != 0)) {
3339 if (__predict_true(rc == EINPROGRESS)) {
3340 /* queued by parse_pkt */
3341 MPASS(m != NULL);
3342 return (0);
3343 }
3344
3345 MPASS(m == NULL); /* was freed already */
3346 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3347 return (rc);
3348 }
3349
3350 /* Select a txq. */
3351 sc = vi->adapter;
3352 txq = &sc->sge.txq[vi->first_txq];
3353 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3354 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3355 vi->rsrv_noflowq);
3356
3357 items[0] = m;
3358 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3359 if (__predict_false(rc != 0))
3360 m_freem(m);
3361
3362 return (rc);
3363 }
3364
3365 static void
cxgbe_qflush(if_t ifp)3366 cxgbe_qflush(if_t ifp)
3367 {
3368 struct vi_info *vi = if_getsoftc(ifp);
3369 struct sge_txq *txq;
3370 int i;
3371
3372 /* queues do not exist if !VI_INIT_DONE. */
3373 if (vi->flags & VI_INIT_DONE) {
3374 for_each_txq(vi, i, txq) {
3375 TXQ_LOCK(txq);
3376 txq->eq.flags |= EQ_QFLUSH;
3377 TXQ_UNLOCK(txq);
3378 while (!mp_ring_is_idle(txq->r)) {
3379 mp_ring_check_drainage(txq->r, 4096);
3380 pause("qflush", 1);
3381 }
3382 TXQ_LOCK(txq);
3383 txq->eq.flags &= ~EQ_QFLUSH;
3384 TXQ_UNLOCK(txq);
3385 }
3386 }
3387 if_qflush(ifp);
3388 }
3389
3390 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3391 vi_get_counter(if_t ifp, ift_counter c)
3392 {
3393 struct vi_info *vi = if_getsoftc(ifp);
3394 struct fw_vi_stats_vf *s = &vi->stats;
3395
3396 mtx_lock(&vi->tick_mtx);
3397 vi_refresh_stats(vi);
3398 mtx_unlock(&vi->tick_mtx);
3399
3400 switch (c) {
3401 case IFCOUNTER_IPACKETS:
3402 return (s->rx_bcast_frames + s->rx_mcast_frames +
3403 s->rx_ucast_frames);
3404 case IFCOUNTER_IERRORS:
3405 return (s->rx_err_frames);
3406 case IFCOUNTER_OPACKETS:
3407 return (s->tx_bcast_frames + s->tx_mcast_frames +
3408 s->tx_ucast_frames + s->tx_offload_frames);
3409 case IFCOUNTER_OERRORS:
3410 return (s->tx_drop_frames);
3411 case IFCOUNTER_IBYTES:
3412 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3413 s->rx_ucast_bytes);
3414 case IFCOUNTER_OBYTES:
3415 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3416 s->tx_ucast_bytes + s->tx_offload_bytes);
3417 case IFCOUNTER_IMCASTS:
3418 return (s->rx_mcast_frames);
3419 case IFCOUNTER_OMCASTS:
3420 return (s->tx_mcast_frames);
3421 case IFCOUNTER_OQDROPS: {
3422 uint64_t drops;
3423
3424 drops = 0;
3425 if (vi->flags & VI_INIT_DONE) {
3426 int i;
3427 struct sge_txq *txq;
3428
3429 for_each_txq(vi, i, txq)
3430 drops += counter_u64_fetch(txq->r->dropped);
3431 }
3432
3433 return (drops);
3434
3435 }
3436
3437 default:
3438 return (if_get_counter_default(ifp, c));
3439 }
3440 }
3441
3442 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3443 cxgbe_get_counter(if_t ifp, ift_counter c)
3444 {
3445 struct vi_info *vi = if_getsoftc(ifp);
3446 struct port_info *pi = vi->pi;
3447 struct port_stats *s = &pi->stats;
3448
3449 mtx_lock(&vi->tick_mtx);
3450 cxgbe_refresh_stats(vi);
3451 mtx_unlock(&vi->tick_mtx);
3452
3453 switch (c) {
3454 case IFCOUNTER_IPACKETS:
3455 return (s->rx_frames);
3456
3457 case IFCOUNTER_IERRORS:
3458 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3459 s->rx_fcs_err + s->rx_len_err);
3460
3461 case IFCOUNTER_OPACKETS:
3462 return (s->tx_frames);
3463
3464 case IFCOUNTER_OERRORS:
3465 return (s->tx_error_frames);
3466
3467 case IFCOUNTER_IBYTES:
3468 return (s->rx_octets);
3469
3470 case IFCOUNTER_OBYTES:
3471 return (s->tx_octets);
3472
3473 case IFCOUNTER_IMCASTS:
3474 return (s->rx_mcast_frames);
3475
3476 case IFCOUNTER_OMCASTS:
3477 return (s->tx_mcast_frames);
3478
3479 case IFCOUNTER_IQDROPS:
3480 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3481 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3482 s->rx_trunc3 + pi->tnl_cong_drops);
3483
3484 case IFCOUNTER_OQDROPS: {
3485 uint64_t drops;
3486
3487 drops = s->tx_drop;
3488 if (vi->flags & VI_INIT_DONE) {
3489 int i;
3490 struct sge_txq *txq;
3491
3492 for_each_txq(vi, i, txq)
3493 drops += counter_u64_fetch(txq->r->dropped);
3494 }
3495
3496 return (drops);
3497
3498 }
3499
3500 default:
3501 return (if_get_counter_default(ifp, c));
3502 }
3503 }
3504
3505 #if defined(KERN_TLS) || defined(RATELIMIT)
3506 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3507 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3508 struct m_snd_tag **pt)
3509 {
3510 int error;
3511
3512 switch (params->hdr.type) {
3513 #ifdef RATELIMIT
3514 case IF_SND_TAG_TYPE_RATE_LIMIT:
3515 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3516 break;
3517 #endif
3518 #ifdef KERN_TLS
3519 case IF_SND_TAG_TYPE_TLS:
3520 {
3521 struct vi_info *vi = if_getsoftc(ifp);
3522
3523 if (is_t6(vi->pi->adapter))
3524 error = t6_tls_tag_alloc(ifp, params, pt);
3525 else
3526 error = t7_tls_tag_alloc(ifp, params, pt);
3527 break;
3528 }
3529 #endif
3530 default:
3531 error = EOPNOTSUPP;
3532 }
3533 return (error);
3534 }
3535 #endif
3536
3537 /*
3538 * The kernel picks a media from the list we had provided but we still validate
3539 * the requeste.
3540 */
3541 int
cxgbe_media_change(if_t ifp)3542 cxgbe_media_change(if_t ifp)
3543 {
3544 struct vi_info *vi = if_getsoftc(ifp);
3545 struct port_info *pi = vi->pi;
3546 struct ifmedia *ifm = &pi->media;
3547 struct link_config *lc = &pi->link_cfg;
3548 struct adapter *sc = pi->adapter;
3549 int rc;
3550
3551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3552 if (rc != 0)
3553 return (rc);
3554 PORT_LOCK(pi);
3555 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3556 /* ifconfig .. media autoselect */
3557 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3558 rc = ENOTSUP; /* AN not supported by transceiver */
3559 goto done;
3560 }
3561 lc->requested_aneg = AUTONEG_ENABLE;
3562 lc->requested_speed = 0;
3563 lc->requested_fc |= PAUSE_AUTONEG;
3564 } else {
3565 lc->requested_aneg = AUTONEG_DISABLE;
3566 lc->requested_speed =
3567 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3568 lc->requested_fc = 0;
3569 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3570 lc->requested_fc |= PAUSE_RX;
3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3572 lc->requested_fc |= PAUSE_TX;
3573 }
3574 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3575 fixup_link_config(pi);
3576 rc = apply_link_config(pi);
3577 }
3578 done:
3579 PORT_UNLOCK(pi);
3580 end_synchronized_op(sc, 0);
3581 return (rc);
3582 }
3583
3584 /*
3585 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3586 * given speed.
3587 */
3588 static int
port_mword(struct port_info * pi,uint32_t speed)3589 port_mword(struct port_info *pi, uint32_t speed)
3590 {
3591
3592 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3593 MPASS(powerof2(speed));
3594
3595 switch(pi->port_type) {
3596 case FW_PORT_TYPE_BT_SGMII:
3597 case FW_PORT_TYPE_BT_XFI:
3598 case FW_PORT_TYPE_BT_XAUI:
3599 /* BaseT */
3600 switch (speed) {
3601 case FW_PORT_CAP32_SPEED_100M:
3602 return (IFM_100_T);
3603 case FW_PORT_CAP32_SPEED_1G:
3604 return (IFM_1000_T);
3605 case FW_PORT_CAP32_SPEED_10G:
3606 return (IFM_10G_T);
3607 }
3608 break;
3609 case FW_PORT_TYPE_KX4:
3610 if (speed == FW_PORT_CAP32_SPEED_10G)
3611 return (IFM_10G_KX4);
3612 break;
3613 case FW_PORT_TYPE_CX4:
3614 if (speed == FW_PORT_CAP32_SPEED_10G)
3615 return (IFM_10G_CX4);
3616 break;
3617 case FW_PORT_TYPE_KX:
3618 if (speed == FW_PORT_CAP32_SPEED_1G)
3619 return (IFM_1000_KX);
3620 break;
3621 case FW_PORT_TYPE_KR:
3622 case FW_PORT_TYPE_BP_AP:
3623 case FW_PORT_TYPE_BP4_AP:
3624 case FW_PORT_TYPE_BP40_BA:
3625 case FW_PORT_TYPE_KR4_100G:
3626 case FW_PORT_TYPE_KR_SFP28:
3627 case FW_PORT_TYPE_KR_XLAUI:
3628 switch (speed) {
3629 case FW_PORT_CAP32_SPEED_1G:
3630 return (IFM_1000_KX);
3631 case FW_PORT_CAP32_SPEED_10G:
3632 return (IFM_10G_KR);
3633 case FW_PORT_CAP32_SPEED_25G:
3634 return (IFM_25G_KR);
3635 case FW_PORT_CAP32_SPEED_40G:
3636 return (IFM_40G_KR4);
3637 case FW_PORT_CAP32_SPEED_50G:
3638 return (IFM_50G_KR2);
3639 case FW_PORT_CAP32_SPEED_100G:
3640 return (IFM_100G_KR4);
3641 }
3642 break;
3643 case FW_PORT_TYPE_FIBER_XFI:
3644 case FW_PORT_TYPE_FIBER_XAUI:
3645 case FW_PORT_TYPE_SFP:
3646 case FW_PORT_TYPE_QSFP_10G:
3647 case FW_PORT_TYPE_QSA:
3648 case FW_PORT_TYPE_QSFP:
3649 case FW_PORT_TYPE_CR4_QSFP:
3650 case FW_PORT_TYPE_CR_QSFP:
3651 case FW_PORT_TYPE_CR2_QSFP:
3652 case FW_PORT_TYPE_SFP28:
3653 case FW_PORT_TYPE_SFP56:
3654 case FW_PORT_TYPE_QSFP56:
3655 case FW_PORT_TYPE_QSFPDD:
3656 /* Pluggable transceiver */
3657 switch (pi->mod_type) {
3658 case FW_PORT_MOD_TYPE_LR:
3659 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3660 switch (speed) {
3661 case FW_PORT_CAP32_SPEED_1G:
3662 return (IFM_1000_LX);
3663 case FW_PORT_CAP32_SPEED_10G:
3664 return (IFM_10G_LR);
3665 case FW_PORT_CAP32_SPEED_25G:
3666 return (IFM_25G_LR);
3667 case FW_PORT_CAP32_SPEED_40G:
3668 return (IFM_40G_LR4);
3669 case FW_PORT_CAP32_SPEED_50G:
3670 return (IFM_50G_LR2);
3671 case FW_PORT_CAP32_SPEED_100G:
3672 return (IFM_100G_LR4);
3673 case FW_PORT_CAP32_SPEED_200G:
3674 return (IFM_200G_LR4);
3675 case FW_PORT_CAP32_SPEED_400G:
3676 return (IFM_400G_LR8);
3677 }
3678 break;
3679 case FW_PORT_MOD_TYPE_SR:
3680 switch (speed) {
3681 case FW_PORT_CAP32_SPEED_1G:
3682 return (IFM_1000_SX);
3683 case FW_PORT_CAP32_SPEED_10G:
3684 return (IFM_10G_SR);
3685 case FW_PORT_CAP32_SPEED_25G:
3686 return (IFM_25G_SR);
3687 case FW_PORT_CAP32_SPEED_40G:
3688 return (IFM_40G_SR4);
3689 case FW_PORT_CAP32_SPEED_50G:
3690 return (IFM_50G_SR2);
3691 case FW_PORT_CAP32_SPEED_100G:
3692 return (IFM_100G_SR4);
3693 case FW_PORT_CAP32_SPEED_200G:
3694 return (IFM_200G_SR4);
3695 case FW_PORT_CAP32_SPEED_400G:
3696 return (IFM_400G_SR8);
3697 }
3698 break;
3699 case FW_PORT_MOD_TYPE_ER:
3700 if (speed == FW_PORT_CAP32_SPEED_10G)
3701 return (IFM_10G_ER);
3702 break;
3703 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3704 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3705 switch (speed) {
3706 case FW_PORT_CAP32_SPEED_1G:
3707 return (IFM_1000_CX);
3708 case FW_PORT_CAP32_SPEED_10G:
3709 return (IFM_10G_TWINAX);
3710 case FW_PORT_CAP32_SPEED_25G:
3711 return (IFM_25G_CR);
3712 case FW_PORT_CAP32_SPEED_40G:
3713 return (IFM_40G_CR4);
3714 case FW_PORT_CAP32_SPEED_50G:
3715 return (IFM_50G_CR2);
3716 case FW_PORT_CAP32_SPEED_100G:
3717 return (IFM_100G_CR4);
3718 case FW_PORT_CAP32_SPEED_200G:
3719 return (IFM_200G_CR4_PAM4);
3720 case FW_PORT_CAP32_SPEED_400G:
3721 return (IFM_400G_CR8);
3722 }
3723 break;
3724 case FW_PORT_MOD_TYPE_LRM:
3725 if (speed == FW_PORT_CAP32_SPEED_10G)
3726 return (IFM_10G_LRM);
3727 break;
3728 case FW_PORT_MOD_TYPE_DR:
3729 if (speed == FW_PORT_CAP32_SPEED_100G)
3730 return (IFM_100G_DR);
3731 if (speed == FW_PORT_CAP32_SPEED_200G)
3732 return (IFM_200G_DR4);
3733 if (speed == FW_PORT_CAP32_SPEED_400G)
3734 return (IFM_400G_DR4);
3735 break;
3736 case FW_PORT_MOD_TYPE_NA:
3737 MPASS(0); /* Not pluggable? */
3738 /* fall through */
3739 case FW_PORT_MOD_TYPE_ERROR:
3740 case FW_PORT_MOD_TYPE_UNKNOWN:
3741 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3742 break;
3743 case FW_PORT_MOD_TYPE_NONE:
3744 return (IFM_NONE);
3745 }
3746 break;
3747 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */
3748 if (chip_id(pi->adapter) >= CHELSIO_T7)
3749 return (IFM_UNKNOWN);
3750 /* fall through */
3751 case FW_PORT_TYPE_NONE:
3752 return (IFM_NONE);
3753 }
3754
3755 return (IFM_UNKNOWN);
3756 }
3757
3758 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3759 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3760 {
3761 struct vi_info *vi = if_getsoftc(ifp);
3762 struct port_info *pi = vi->pi;
3763 struct adapter *sc = pi->adapter;
3764 struct link_config *lc = &pi->link_cfg;
3765
3766 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3767 return;
3768 PORT_LOCK(pi);
3769
3770 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3771 /*
3772 * If all the interfaces are administratively down the firmware
3773 * does not report transceiver changes. Refresh port info here
3774 * so that ifconfig displays accurate ifmedia at all times.
3775 * This is the only reason we have a synchronized op in this
3776 * function. Just PORT_LOCK would have been enough otherwise.
3777 */
3778 t4_update_port_info(pi);
3779 build_medialist(pi);
3780 }
3781
3782 /* ifm_status */
3783 ifmr->ifm_status = IFM_AVALID;
3784 if (lc->link_ok == false)
3785 goto done;
3786 ifmr->ifm_status |= IFM_ACTIVE;
3787
3788 /* ifm_active */
3789 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3790 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3791 if (lc->fc & PAUSE_RX)
3792 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3793 if (lc->fc & PAUSE_TX)
3794 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3795 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3796 done:
3797 PORT_UNLOCK(pi);
3798 end_synchronized_op(sc, 0);
3799 }
3800
3801 static int
vcxgbe_probe(device_t dev)3802 vcxgbe_probe(device_t dev)
3803 {
3804 struct vi_info *vi = device_get_softc(dev);
3805
3806 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3807 vi - vi->pi->vi);
3808
3809 return (BUS_PROBE_DEFAULT);
3810 }
3811
3812 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3813 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3814 {
3815 int func, index, rc;
3816 uint32_t param, val;
3817
3818 ASSERT_SYNCHRONIZED_OP(sc);
3819
3820 index = vi - pi->vi;
3821 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3822 KASSERT(index < nitems(vi_mac_funcs),
3823 ("%s: VI %s doesn't have a MAC func", __func__,
3824 device_get_nameunit(vi->dev)));
3825 func = vi_mac_funcs[index];
3826 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1,
3827 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3828 if (rc < 0) {
3829 CH_ERR(vi, "failed to allocate virtual interface %d"
3830 "for port %d: %d\n", index, pi->port_id, -rc);
3831 return (-rc);
3832 }
3833 vi->viid = rc;
3834
3835 if (vi->rss_size == 1) {
3836 /*
3837 * This VI didn't get a slice of the RSS table. Reduce the
3838 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3839 * configuration file (nvi, rssnvi for this PF) if this is a
3840 * problem.
3841 */
3842 device_printf(vi->dev, "RSS table not available.\n");
3843 vi->rss_base = 0xffff;
3844
3845 return (0);
3846 }
3847
3848 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3849 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3850 V_FW_PARAMS_PARAM_YZ(vi->viid);
3851 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3852 if (rc)
3853 vi->rss_base = 0xffff;
3854 else {
3855 MPASS((val >> 16) == vi->rss_size);
3856 vi->rss_base = val & 0xffff;
3857 }
3858
3859 return (0);
3860 }
3861
3862 static int
vcxgbe_attach(device_t dev)3863 vcxgbe_attach(device_t dev)
3864 {
3865 struct vi_info *vi;
3866 struct port_info *pi;
3867 struct adapter *sc;
3868 int rc;
3869
3870 vi = device_get_softc(dev);
3871 pi = vi->pi;
3872 sc = pi->adapter;
3873
3874 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3875 if (rc)
3876 return (rc);
3877 rc = alloc_extra_vi(sc, pi, vi);
3878 end_synchronized_op(sc, 0);
3879 if (rc)
3880 return (rc);
3881
3882 cxgbe_vi_attach(dev, vi);
3883
3884 return (0);
3885 }
3886
3887 static int
vcxgbe_detach(device_t dev)3888 vcxgbe_detach(device_t dev)
3889 {
3890 struct vi_info *vi;
3891 struct adapter *sc;
3892
3893 vi = device_get_softc(dev);
3894 sc = vi->adapter;
3895
3896 begin_vi_detach(sc, vi);
3897 cxgbe_vi_detach(vi);
3898 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3899 end_vi_detach(sc, vi);
3900
3901 return (0);
3902 }
3903
3904 static struct callout fatal_callout;
3905 static struct taskqueue *reset_tq;
3906
3907 static void
delayed_panic(void * arg)3908 delayed_panic(void *arg)
3909 {
3910 struct adapter *sc = arg;
3911
3912 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3913 }
3914
3915 static void
fatal_error_task(void * arg,int pending)3916 fatal_error_task(void *arg, int pending)
3917 {
3918 struct adapter *sc = arg;
3919 int rc;
3920
3921 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3922 dump_cim_regs(sc);
3923 dump_cimla(sc);
3924 dump_devlog(sc);
3925 }
3926
3927 if (t4_reset_on_fatal_err) {
3928 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3929 rc = reset_adapter(sc);
3930 if (rc == 0 && t4_panic_on_fatal_err) {
3931 CH_ALERT(sc, "reset was successful, "
3932 "system will NOT panic.\n");
3933 return;
3934 }
3935 }
3936
3937 if (t4_panic_on_fatal_err) {
3938 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3939 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3940 }
3941 }
3942
3943 void
t4_fatal_err(struct adapter * sc,bool fw_error)3944 t4_fatal_err(struct adapter *sc, bool fw_error)
3945 {
3946 stop_adapter(sc);
3947 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3948 return;
3949 if (fw_error) {
3950 /*
3951 * We are here because of a firmware error/timeout and not
3952 * because of a hardware interrupt. It is possible (although
3953 * not very likely) that an error interrupt was also raised but
3954 * this thread ran first and inhibited t4_intr_err. We walk the
3955 * main INT_CAUSE registers here to make sure we haven't missed
3956 * anything interesting.
3957 */
3958 t4_slow_intr_handler(sc, sc->intr_flags);
3959 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3960 }
3961 t4_report_fw_error(sc);
3962 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3963 device_get_nameunit(sc->dev), fw_error);
3964 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3965 }
3966
3967 void
t4_add_adapter(struct adapter * sc)3968 t4_add_adapter(struct adapter *sc)
3969 {
3970 sx_xlock(&t4_list_lock);
3971 SLIST_INSERT_HEAD(&t4_list, sc, link);
3972 sx_xunlock(&t4_list_lock);
3973 }
3974
3975 int
t4_map_bars_0_and_4(struct adapter * sc)3976 t4_map_bars_0_and_4(struct adapter *sc)
3977 {
3978 sc->regs_rid = PCIR_BAR(0);
3979 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3980 &sc->regs_rid, RF_ACTIVE);
3981 if (sc->regs_res == NULL) {
3982 device_printf(sc->dev, "cannot map registers.\n");
3983 return (ENXIO);
3984 }
3985 sc->bt = rman_get_bustag(sc->regs_res);
3986 sc->bh = rman_get_bushandle(sc->regs_res);
3987 sc->mmio_len = rman_get_size(sc->regs_res);
3988 setbit(&sc->doorbells, DOORBELL_KDB);
3989
3990 sc->msix_rid = PCIR_BAR(4);
3991 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3992 &sc->msix_rid, RF_ACTIVE);
3993 if (sc->msix_res == NULL) {
3994 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3995 return (ENXIO);
3996 }
3997
3998 return (0);
3999 }
4000
4001 int
t4_map_bar_2(struct adapter * sc)4002 t4_map_bar_2(struct adapter *sc)
4003 {
4004
4005 /*
4006 * T4: only iWARP driver uses the userspace doorbells. There is no need
4007 * to map it if RDMA is disabled.
4008 */
4009 if (is_t4(sc) && sc->rdmacaps == 0)
4010 return (0);
4011
4012 sc->udbs_rid = PCIR_BAR(2);
4013 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4014 &sc->udbs_rid, RF_ACTIVE);
4015 if (sc->udbs_res == NULL) {
4016 device_printf(sc->dev, "cannot map doorbell BAR.\n");
4017 return (ENXIO);
4018 }
4019 sc->udbs_base = rman_get_virtual(sc->udbs_res);
4020
4021 if (chip_id(sc) >= CHELSIO_T5) {
4022 setbit(&sc->doorbells, DOORBELL_UDB);
4023 #if defined(__i386__) || defined(__amd64__)
4024 if (t5_write_combine) {
4025 int rc, mode;
4026
4027 /*
4028 * Enable write combining on BAR2. This is the
4029 * userspace doorbell BAR and is split into 128B
4030 * (UDBS_SEG_SIZE) doorbell regions, each associated
4031 * with an egress queue. The first 64B has the doorbell
4032 * and the second 64B can be used to submit a tx work
4033 * request with an implicit doorbell.
4034 */
4035
4036 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
4037 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
4038 if (rc == 0) {
4039 clrbit(&sc->doorbells, DOORBELL_UDB);
4040 setbit(&sc->doorbells, DOORBELL_WCWR);
4041 setbit(&sc->doorbells, DOORBELL_UDBWC);
4042 } else {
4043 device_printf(sc->dev,
4044 "couldn't enable write combining: %d\n",
4045 rc);
4046 }
4047
4048 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
4049 t4_write_reg(sc, A_SGE_STAT_CFG,
4050 V_STATSOURCE_T5(7) | mode);
4051 }
4052 #endif
4053 }
4054 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
4055
4056 return (0);
4057 }
4058
4059 int
t4_adj_doorbells(struct adapter * sc)4060 t4_adj_doorbells(struct adapter *sc)
4061 {
4062 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
4063 sc->doorbells &= t4_doorbells_allowed;
4064 return (0);
4065 }
4066 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
4067 sc->doorbells, t4_doorbells_allowed);
4068 return (EINVAL);
4069 }
4070
4071 struct memwin_init {
4072 uint32_t base;
4073 uint32_t aperture;
4074 };
4075
4076 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
4077 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4078 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4079 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
4080 };
4081
4082 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
4083 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4084 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4085 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
4086 };
4087
4088 static void
setup_memwin(struct adapter * sc)4089 setup_memwin(struct adapter *sc)
4090 {
4091 const struct memwin_init *mw_init;
4092 struct memwin *mw;
4093 int i;
4094 uint32_t bar0, reg;
4095
4096 if (is_t4(sc)) {
4097 /*
4098 * Read low 32b of bar0 indirectly via the hardware backdoor
4099 * mechanism. Works from within PCI passthrough environments
4100 * too, where rman_get_start() can return a different value. We
4101 * need to program the T4 memory window decoders with the actual
4102 * addresses that will be coming across the PCIe link.
4103 */
4104 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
4105 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
4106
4107 mw_init = &t4_memwin[0];
4108 } else {
4109 /* T5+ use the relative offset inside the PCIe BAR */
4110 bar0 = 0;
4111
4112 mw_init = &t5_memwin[0];
4113 }
4114
4115 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
4116 if (!rw_initialized(&mw->mw_lock)) {
4117 rw_init(&mw->mw_lock, "memory window access");
4118 mw->mw_base = mw_init->base;
4119 mw->mw_aperture = mw_init->aperture;
4120 mw->mw_curpos = 0;
4121 }
4122 reg = chip_id(sc) > CHELSIO_T6 ?
4123 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) :
4124 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i);
4125 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) |
4126 V_WINDOW(ilog2(mw->mw_aperture) - 10));
4127 rw_wlock(&mw->mw_lock);
4128 position_memwin(sc, i, mw->mw_curpos);
4129 rw_wunlock(&mw->mw_lock);
4130 }
4131
4132 /* flush */
4133 t4_read_reg(sc, reg);
4134 }
4135
4136 /*
4137 * Positions the memory window at the given address in the card's address space.
4138 * There are some alignment requirements and the actual position may be at an
4139 * address prior to the requested address. mw->mw_curpos always has the actual
4140 * position of the window.
4141 */
4142 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4143 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4144 {
4145 struct memwin *mw;
4146 uint32_t pf, reg, val;
4147
4148 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4149 mw = &sc->memwin[idx];
4150 rw_assert(&mw->mw_lock, RA_WLOCKED);
4151
4152 if (is_t4(sc)) {
4153 pf = 0;
4154 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4155 } else {
4156 pf = V_PFNUM(sc->pf);
4157 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4158 }
4159 if (chip_id(sc) > CHELSIO_T6) {
4160 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx);
4161 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf;
4162 } else {
4163 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4164 val = mw->mw_curpos | pf;
4165 }
4166 t4_write_reg(sc, reg, val);
4167 t4_read_reg(sc, reg); /* flush */
4168 }
4169
4170 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4171 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4172 int len, int rw)
4173 {
4174 struct memwin *mw;
4175 uint32_t mw_end, v;
4176
4177 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4178
4179 /* Memory can only be accessed in naturally aligned 4 byte units */
4180 if (addr & 3 || len & 3 || len <= 0)
4181 return (EINVAL);
4182
4183 mw = &sc->memwin[idx];
4184 while (len > 0) {
4185 rw_rlock(&mw->mw_lock);
4186 mw_end = mw->mw_curpos + mw->mw_aperture;
4187 if (addr >= mw_end || addr < mw->mw_curpos) {
4188 /* Will need to reposition the window */
4189 if (!rw_try_upgrade(&mw->mw_lock)) {
4190 rw_runlock(&mw->mw_lock);
4191 rw_wlock(&mw->mw_lock);
4192 }
4193 rw_assert(&mw->mw_lock, RA_WLOCKED);
4194 position_memwin(sc, idx, addr);
4195 rw_downgrade(&mw->mw_lock);
4196 mw_end = mw->mw_curpos + mw->mw_aperture;
4197 }
4198 rw_assert(&mw->mw_lock, RA_RLOCKED);
4199 while (addr < mw_end && len > 0) {
4200 if (rw == 0) {
4201 v = t4_read_reg(sc, mw->mw_base + addr -
4202 mw->mw_curpos);
4203 *val++ = le32toh(v);
4204 } else {
4205 v = *val++;
4206 t4_write_reg(sc, mw->mw_base + addr -
4207 mw->mw_curpos, htole32(v));
4208 }
4209 addr += 4;
4210 len -= 4;
4211 }
4212 rw_runlock(&mw->mw_lock);
4213 }
4214
4215 return (0);
4216 }
4217
4218 CTASSERT(M_TID_COOKIE == M_COOKIE);
4219 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4220
4221 static void
t4_init_atid_table(struct adapter * sc)4222 t4_init_atid_table(struct adapter *sc)
4223 {
4224 struct tid_info *t;
4225 int i;
4226
4227 t = &sc->tids;
4228 if (t->natids == 0)
4229 return;
4230
4231 MPASS(t->atid_tab == NULL);
4232
4233 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4234 M_ZERO | M_WAITOK);
4235 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4236 t->afree = t->atid_tab;
4237 t->atids_in_use = 0;
4238 t->atid_alloc_stopped = false;
4239 for (i = 1; i < t->natids; i++)
4240 t->atid_tab[i - 1].next = &t->atid_tab[i];
4241 t->atid_tab[t->natids - 1].next = NULL;
4242 }
4243
4244 static void
t4_free_atid_table(struct adapter * sc)4245 t4_free_atid_table(struct adapter *sc)
4246 {
4247 struct tid_info *t;
4248
4249 t = &sc->tids;
4250
4251 KASSERT(t->atids_in_use == 0,
4252 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4253
4254 if (mtx_initialized(&t->atid_lock))
4255 mtx_destroy(&t->atid_lock);
4256 free(t->atid_tab, M_CXGBE);
4257 t->atid_tab = NULL;
4258 }
4259
4260 static void
stop_atid_allocator(struct adapter * sc)4261 stop_atid_allocator(struct adapter *sc)
4262 {
4263 struct tid_info *t = &sc->tids;
4264
4265 if (t->natids == 0)
4266 return;
4267 mtx_lock(&t->atid_lock);
4268 t->atid_alloc_stopped = true;
4269 mtx_unlock(&t->atid_lock);
4270 }
4271
4272 static void
restart_atid_allocator(struct adapter * sc)4273 restart_atid_allocator(struct adapter *sc)
4274 {
4275 struct tid_info *t = &sc->tids;
4276
4277 if (t->natids == 0)
4278 return;
4279 mtx_lock(&t->atid_lock);
4280 KASSERT(t->atids_in_use == 0,
4281 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4282 t->atid_alloc_stopped = false;
4283 mtx_unlock(&t->atid_lock);
4284 }
4285
4286 int
alloc_atid(struct adapter * sc,void * ctx)4287 alloc_atid(struct adapter *sc, void *ctx)
4288 {
4289 struct tid_info *t = &sc->tids;
4290 int atid = -1;
4291
4292 mtx_lock(&t->atid_lock);
4293 if (t->afree && !t->atid_alloc_stopped) {
4294 union aopen_entry *p = t->afree;
4295
4296 atid = p - t->atid_tab;
4297 MPASS(atid <= M_TID_TID);
4298 t->afree = p->next;
4299 p->data = ctx;
4300 t->atids_in_use++;
4301 }
4302 mtx_unlock(&t->atid_lock);
4303 return (atid);
4304 }
4305
4306 void *
lookup_atid(struct adapter * sc,int atid)4307 lookup_atid(struct adapter *sc, int atid)
4308 {
4309 struct tid_info *t = &sc->tids;
4310
4311 return (t->atid_tab[atid].data);
4312 }
4313
4314 void
free_atid(struct adapter * sc,int atid)4315 free_atid(struct adapter *sc, int atid)
4316 {
4317 struct tid_info *t = &sc->tids;
4318 union aopen_entry *p = &t->atid_tab[atid];
4319
4320 mtx_lock(&t->atid_lock);
4321 p->next = t->afree;
4322 t->afree = p;
4323 t->atids_in_use--;
4324 mtx_unlock(&t->atid_lock);
4325 }
4326
4327 static void
queue_tid_release(struct adapter * sc,int tid)4328 queue_tid_release(struct adapter *sc, int tid)
4329 {
4330
4331 CXGBE_UNIMPLEMENTED("deferred tid release");
4332 }
4333
4334 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4335 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4336 {
4337 struct wrqe *wr;
4338 struct cpl_tid_release *req;
4339
4340 wr = alloc_wrqe(sizeof(*req), ctrlq);
4341 if (wr == NULL) {
4342 queue_tid_release(sc, tid); /* defer */
4343 return;
4344 }
4345 req = wrtod(wr);
4346
4347 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4348
4349 t4_wrq_tx(sc, wr);
4350 }
4351
4352 static int
t4_range_cmp(const void * a,const void * b)4353 t4_range_cmp(const void *a, const void *b)
4354 {
4355 return ((const struct t4_range *)a)->start -
4356 ((const struct t4_range *)b)->start;
4357 }
4358
4359 /*
4360 * Verify that the memory range specified by the addr/len pair is valid within
4361 * the card's address space.
4362 */
4363 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4364 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4365 {
4366 struct t4_range mem_ranges[4], *r, *next;
4367 uint32_t em, addr_len;
4368 int i, n, remaining;
4369
4370 /* Memory can only be accessed in naturally aligned 4 byte units */
4371 if (addr & 3 || len & 3 || len == 0)
4372 return (EINVAL);
4373
4374 /* Enabled memories */
4375 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4376
4377 r = &mem_ranges[0];
4378 n = 0;
4379 bzero(r, sizeof(mem_ranges));
4380 if (em & F_EDRAM0_ENABLE) {
4381 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4382 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4383 if (r->size > 0) {
4384 r->start = G_EDRAM0_BASE(addr_len) << 20;
4385 if (addr >= r->start &&
4386 addr + len <= r->start + r->size)
4387 return (0);
4388 r++;
4389 n++;
4390 }
4391 }
4392 if (em & F_EDRAM1_ENABLE) {
4393 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4394 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4395 if (r->size > 0) {
4396 r->start = G_EDRAM1_BASE(addr_len) << 20;
4397 if (addr >= r->start &&
4398 addr + len <= r->start + r->size)
4399 return (0);
4400 r++;
4401 n++;
4402 }
4403 }
4404 if (em & F_EXT_MEM_ENABLE) {
4405 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4406 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4407 if (r->size > 0) {
4408 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4409 if (addr >= r->start &&
4410 addr + len <= r->start + r->size)
4411 return (0);
4412 r++;
4413 n++;
4414 }
4415 }
4416 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4417 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4418 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4419 if (r->size > 0) {
4420 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4421 if (addr >= r->start &&
4422 addr + len <= r->start + r->size)
4423 return (0);
4424 r++;
4425 n++;
4426 }
4427 }
4428 MPASS(n <= nitems(mem_ranges));
4429
4430 if (n > 1) {
4431 /* Sort and merge the ranges. */
4432 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4433
4434 /* Start from index 0 and examine the next n - 1 entries. */
4435 r = &mem_ranges[0];
4436 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4437
4438 MPASS(r->size > 0); /* r is a valid entry. */
4439 next = r + 1;
4440 MPASS(next->size > 0); /* and so is the next one. */
4441
4442 while (r->start + r->size >= next->start) {
4443 /* Merge the next one into the current entry. */
4444 r->size = max(r->start + r->size,
4445 next->start + next->size) - r->start;
4446 n--; /* One fewer entry in total. */
4447 if (--remaining == 0)
4448 goto done; /* short circuit */
4449 next++;
4450 }
4451 if (next != r + 1) {
4452 /*
4453 * Some entries were merged into r and next
4454 * points to the first valid entry that couldn't
4455 * be merged.
4456 */
4457 MPASS(next->size > 0); /* must be valid */
4458 memcpy(r + 1, next, remaining * sizeof(*r));
4459 #ifdef INVARIANTS
4460 /*
4461 * This so that the foo->size assertion in the
4462 * next iteration of the loop do the right
4463 * thing for entries that were pulled up and are
4464 * no longer valid.
4465 */
4466 MPASS(n < nitems(mem_ranges));
4467 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4468 sizeof(struct t4_range));
4469 #endif
4470 }
4471 }
4472 done:
4473 /* Done merging the ranges. */
4474 MPASS(n > 0);
4475 r = &mem_ranges[0];
4476 for (i = 0; i < n; i++, r++) {
4477 if (addr >= r->start &&
4478 addr + len <= r->start + r->size)
4479 return (0);
4480 }
4481 }
4482
4483 return (EFAULT);
4484 }
4485
4486 static int
fwmtype_to_hwmtype(int mtype)4487 fwmtype_to_hwmtype(int mtype)
4488 {
4489
4490 switch (mtype) {
4491 case FW_MEMTYPE_EDC0:
4492 return (MEM_EDC0);
4493 case FW_MEMTYPE_EDC1:
4494 return (MEM_EDC1);
4495 case FW_MEMTYPE_EXTMEM:
4496 return (MEM_MC0);
4497 case FW_MEMTYPE_EXTMEM1:
4498 return (MEM_MC1);
4499 default:
4500 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4501 }
4502 }
4503
4504 /*
4505 * Verify that the memory range specified by the memtype/offset/len pair is
4506 * valid and lies entirely within the memtype specified. The global address of
4507 * the start of the range is returned in addr.
4508 */
4509 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4510 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4511 uint32_t *addr)
4512 {
4513 uint32_t em, addr_len, maddr;
4514
4515 /* Memory can only be accessed in naturally aligned 4 byte units */
4516 if (off & 3 || len & 3 || len == 0)
4517 return (EINVAL);
4518
4519 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4520 switch (fwmtype_to_hwmtype(mtype)) {
4521 case MEM_EDC0:
4522 if (!(em & F_EDRAM0_ENABLE))
4523 return (EINVAL);
4524 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4525 maddr = G_EDRAM0_BASE(addr_len) << 20;
4526 break;
4527 case MEM_EDC1:
4528 if (!(em & F_EDRAM1_ENABLE))
4529 return (EINVAL);
4530 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4531 maddr = G_EDRAM1_BASE(addr_len) << 20;
4532 break;
4533 case MEM_MC:
4534 if (!(em & F_EXT_MEM_ENABLE))
4535 return (EINVAL);
4536 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4537 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4538 break;
4539 case MEM_MC1:
4540 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4541 return (EINVAL);
4542 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4543 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4544 break;
4545 default:
4546 return (EINVAL);
4547 }
4548
4549 *addr = maddr + off; /* global address */
4550 return (validate_mem_range(sc, *addr, len));
4551 }
4552
4553 static int
fixup_devlog_params(struct adapter * sc)4554 fixup_devlog_params(struct adapter *sc)
4555 {
4556 struct devlog_params *dparams = &sc->params.devlog;
4557 int rc;
4558
4559 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4560 dparams->size, &dparams->addr);
4561
4562 return (rc);
4563 }
4564
4565 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4566 update_nirq(struct intrs_and_queues *iaq, int nports)
4567 {
4568
4569 iaq->nirq = T4_EXTRA_INTR;
4570 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4571 iaq->nirq += nports * iaq->nofldrxq;
4572 iaq->nirq += nports * (iaq->num_vis - 1) *
4573 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4574 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4575 }
4576
4577 /*
4578 * Adjust requirements to fit the number of interrupts available.
4579 */
4580 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4581 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4582 int navail)
4583 {
4584 int old_nirq;
4585 const int nports = sc->params.nports;
4586
4587 MPASS(nports > 0);
4588 MPASS(navail > 0);
4589
4590 bzero(iaq, sizeof(*iaq));
4591 iaq->intr_type = itype;
4592 iaq->num_vis = t4_num_vis;
4593 iaq->ntxq = t4_ntxq;
4594 iaq->ntxq_vi = t4_ntxq_vi;
4595 iaq->nrxq = t4_nrxq;
4596 iaq->nrxq_vi = t4_nrxq_vi;
4597 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4598 if (is_offload(sc) || is_ethoffload(sc)) {
4599 if (sc->params.tid_qid_sel_mask == 0) {
4600 iaq->nofldtxq = t4_nofldtxq;
4601 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4602 } else {
4603 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores);
4604 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi,
4605 sc->params.ncores);
4606 if (iaq->nofldtxq != t4_nofldtxq)
4607 device_printf(sc->dev,
4608 "nofldtxq updated (%d -> %d) for correct"
4609 " operation with %d firmware cores.\n",
4610 t4_nofldtxq, iaq->nofldtxq,
4611 sc->params.ncores);
4612 if (iaq->num_vis > 1 &&
4613 iaq->nofldtxq_vi != t4_nofldtxq_vi)
4614 device_printf(sc->dev,
4615 "nofldtxq_vi updated (%d -> %d) for correct"
4616 " operation with %d firmware cores.\n",
4617 t4_nofldtxq_vi, iaq->nofldtxq_vi,
4618 sc->params.ncores);
4619 }
4620 }
4621 #endif
4622 #ifdef TCP_OFFLOAD
4623 if (is_offload(sc)) {
4624 iaq->nofldrxq = t4_nofldrxq;
4625 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4626 }
4627 #endif
4628 #ifdef DEV_NETMAP
4629 if (t4_native_netmap & NN_MAIN_VI) {
4630 iaq->nnmtxq = t4_nnmtxq;
4631 iaq->nnmrxq = t4_nnmrxq;
4632 }
4633 if (t4_native_netmap & NN_EXTRA_VI) {
4634 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4635 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4636 }
4637 #endif
4638
4639 update_nirq(iaq, nports);
4640 if (iaq->nirq <= navail &&
4641 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4642 /*
4643 * This is the normal case -- there are enough interrupts for
4644 * everything.
4645 */
4646 goto done;
4647 }
4648
4649 /*
4650 * If extra VIs have been configured try reducing their count and see if
4651 * that works.
4652 */
4653 while (iaq->num_vis > 1) {
4654 iaq->num_vis--;
4655 update_nirq(iaq, nports);
4656 if (iaq->nirq <= navail &&
4657 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4658 device_printf(sc->dev, "virtual interfaces per port "
4659 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4660 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4661 "itype %d, navail %u, nirq %d.\n",
4662 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4663 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4664 itype, navail, iaq->nirq);
4665 goto done;
4666 }
4667 }
4668
4669 /*
4670 * Extra VIs will not be created. Log a message if they were requested.
4671 */
4672 MPASS(iaq->num_vis == 1);
4673 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4674 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4675 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4676 if (iaq->num_vis != t4_num_vis) {
4677 device_printf(sc->dev, "extra virtual interfaces disabled. "
4678 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4679 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4680 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4681 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4682 }
4683
4684 /*
4685 * Keep reducing the number of NIC rx queues to the next lower power of
4686 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4687 * if that works.
4688 */
4689 do {
4690 if (iaq->nrxq > 1) {
4691 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4692 if (iaq->nnmrxq > iaq->nrxq)
4693 iaq->nnmrxq = iaq->nrxq;
4694 }
4695 if (iaq->nofldrxq > 1)
4696 iaq->nofldrxq >>= 1;
4697
4698 old_nirq = iaq->nirq;
4699 update_nirq(iaq, nports);
4700 if (iaq->nirq <= navail &&
4701 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4702 device_printf(sc->dev, "running with reduced number of "
4703 "rx queues because of shortage of interrupts. "
4704 "nrxq=%u, nofldrxq=%u. "
4705 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4706 iaq->nofldrxq, itype, navail, iaq->nirq);
4707 goto done;
4708 }
4709 } while (old_nirq != iaq->nirq);
4710
4711 /* One interrupt for everything. Ugh. */
4712 device_printf(sc->dev, "running with minimal number of queues. "
4713 "itype %d, navail %u.\n", itype, navail);
4714 iaq->nirq = 1;
4715 iaq->nrxq = 1;
4716 iaq->ntxq = 1;
4717 if (iaq->nofldrxq > 0) {
4718 iaq->nofldrxq = 1;
4719 iaq->nofldtxq = 1;
4720 if (sc->params.tid_qid_sel_mask == 0)
4721 iaq->nofldtxq = 1;
4722 else
4723 iaq->nofldtxq = sc->params.ncores;
4724 }
4725 iaq->nnmtxq = 0;
4726 iaq->nnmrxq = 0;
4727 done:
4728 MPASS(iaq->num_vis > 0);
4729 if (iaq->num_vis > 1) {
4730 MPASS(iaq->nrxq_vi > 0);
4731 MPASS(iaq->ntxq_vi > 0);
4732 }
4733 MPASS(iaq->nirq > 0);
4734 MPASS(iaq->nrxq > 0);
4735 MPASS(iaq->ntxq > 0);
4736 if (itype == INTR_MSI)
4737 MPASS(powerof2(iaq->nirq));
4738 if (sc->params.tid_qid_sel_mask != 0)
4739 MPASS(iaq->nofldtxq % sc->params.ncores == 0);
4740 }
4741
4742 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4743 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4744 {
4745 int rc, itype, navail, nalloc;
4746
4747 for (itype = INTR_MSIX; itype; itype >>= 1) {
4748
4749 if ((itype & t4_intr_types) == 0)
4750 continue; /* not allowed */
4751
4752 if (itype == INTR_MSIX)
4753 navail = pci_msix_count(sc->dev);
4754 else if (itype == INTR_MSI)
4755 navail = pci_msi_count(sc->dev);
4756 else
4757 navail = 1;
4758 restart:
4759 if (navail == 0)
4760 continue;
4761
4762 calculate_iaq(sc, iaq, itype, navail);
4763 nalloc = iaq->nirq;
4764 rc = 0;
4765 if (itype == INTR_MSIX)
4766 rc = pci_alloc_msix(sc->dev, &nalloc);
4767 else if (itype == INTR_MSI)
4768 rc = pci_alloc_msi(sc->dev, &nalloc);
4769
4770 if (rc == 0 && nalloc > 0) {
4771 if (nalloc == iaq->nirq)
4772 return (0);
4773
4774 /*
4775 * Didn't get the number requested. Use whatever number
4776 * the kernel is willing to allocate.
4777 */
4778 device_printf(sc->dev, "fewer vectors than requested, "
4779 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4780 itype, iaq->nirq, nalloc);
4781 pci_release_msi(sc->dev);
4782 navail = nalloc;
4783 goto restart;
4784 }
4785
4786 device_printf(sc->dev,
4787 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4788 itype, rc, iaq->nirq, nalloc);
4789 }
4790
4791 device_printf(sc->dev,
4792 "failed to find a usable interrupt type. "
4793 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4794 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4795
4796 return (ENXIO);
4797 }
4798
4799 #define FW_VERSION(chip) ( \
4800 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4801 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4802 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4803 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4804 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4805
4806 /* Just enough of fw_hdr to cover all version info. */
4807 struct fw_h {
4808 __u8 ver;
4809 __u8 chip;
4810 __be16 len512;
4811 __be32 fw_ver;
4812 __be32 tp_microcode_ver;
4813 __u8 intfver_nic;
4814 __u8 intfver_vnic;
4815 __u8 intfver_ofld;
4816 __u8 intfver_ri;
4817 __u8 intfver_iscsipdu;
4818 __u8 intfver_iscsi;
4819 __u8 intfver_fcoepdu;
4820 __u8 intfver_fcoe;
4821 };
4822 /* Spot check a couple of fields. */
4823 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4824 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4825 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4826
4827 struct fw_info {
4828 uint8_t chip;
4829 char *kld_name;
4830 char *fw_mod_name;
4831 struct fw_h fw_h;
4832 } fw_info[] = {
4833 {
4834 .chip = CHELSIO_T4,
4835 .kld_name = "t4fw_cfg",
4836 .fw_mod_name = "t4fw",
4837 .fw_h = {
4838 .chip = FW_HDR_CHIP_T4,
4839 .fw_ver = htobe32(FW_VERSION(T4)),
4840 .intfver_nic = FW_INTFVER(T4, NIC),
4841 .intfver_vnic = FW_INTFVER(T4, VNIC),
4842 .intfver_ofld = FW_INTFVER(T4, OFLD),
4843 .intfver_ri = FW_INTFVER(T4, RI),
4844 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4845 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4846 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4847 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4848 },
4849 }, {
4850 .chip = CHELSIO_T5,
4851 .kld_name = "t5fw_cfg",
4852 .fw_mod_name = "t5fw",
4853 .fw_h = {
4854 .chip = FW_HDR_CHIP_T5,
4855 .fw_ver = htobe32(FW_VERSION(T5)),
4856 .intfver_nic = FW_INTFVER(T5, NIC),
4857 .intfver_vnic = FW_INTFVER(T5, VNIC),
4858 .intfver_ofld = FW_INTFVER(T5, OFLD),
4859 .intfver_ri = FW_INTFVER(T5, RI),
4860 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4861 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4862 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4863 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4864 },
4865 }, {
4866 .chip = CHELSIO_T6,
4867 .kld_name = "t6fw_cfg",
4868 .fw_mod_name = "t6fw",
4869 .fw_h = {
4870 .chip = FW_HDR_CHIP_T6,
4871 .fw_ver = htobe32(FW_VERSION(T6)),
4872 .intfver_nic = FW_INTFVER(T6, NIC),
4873 .intfver_vnic = FW_INTFVER(T6, VNIC),
4874 .intfver_ofld = FW_INTFVER(T6, OFLD),
4875 .intfver_ri = FW_INTFVER(T6, RI),
4876 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4877 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4878 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4879 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4880 },
4881 }, {
4882 .chip = CHELSIO_T7,
4883 .kld_name = "t7fw_cfg",
4884 .fw_mod_name = "t7fw",
4885 .fw_h = {
4886 .chip = FW_HDR_CHIP_T7,
4887 .fw_ver = htobe32(FW_VERSION(T7)),
4888 .intfver_nic = FW_INTFVER(T7, NIC),
4889 .intfver_vnic = FW_INTFVER(T7, VNIC),
4890 .intfver_ofld = FW_INTFVER(T7, OFLD),
4891 .intfver_ri = FW_INTFVER(T7, RI),
4892 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU),
4893 .intfver_iscsi = FW_INTFVER(T7, ISCSI),
4894 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU),
4895 .intfver_fcoe = FW_INTFVER(T7, FCOE),
4896 },
4897 }
4898 };
4899
4900 static struct fw_info *
find_fw_info(int chip)4901 find_fw_info(int chip)
4902 {
4903 int i;
4904
4905 for (i = 0; i < nitems(fw_info); i++) {
4906 if (fw_info[i].chip == chip)
4907 return (&fw_info[i]);
4908 }
4909 return (NULL);
4910 }
4911
4912 /*
4913 * Is the given firmware API compatible with the one the driver was compiled
4914 * with?
4915 */
4916 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4917 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4918 {
4919
4920 /* short circuit if it's the exact same firmware version */
4921 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4922 return (1);
4923
4924 /*
4925 * XXX: Is this too conservative? Perhaps I should limit this to the
4926 * features that are supported in the driver.
4927 */
4928 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4929 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4930 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4931 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4932 return (1);
4933 #undef SAME_INTF
4934
4935 return (0);
4936 }
4937
4938 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4939 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4940 const struct firmware **fw)
4941 {
4942 struct fw_info *fw_info;
4943
4944 *dcfg = NULL;
4945 if (fw != NULL)
4946 *fw = NULL;
4947
4948 fw_info = find_fw_info(chip_id(sc));
4949 if (fw_info == NULL) {
4950 device_printf(sc->dev,
4951 "unable to look up firmware information for chip %d.\n",
4952 chip_id(sc));
4953 return (EINVAL);
4954 }
4955
4956 *dcfg = firmware_get(fw_info->kld_name);
4957 if (*dcfg != NULL) {
4958 if (fw != NULL)
4959 *fw = firmware_get(fw_info->fw_mod_name);
4960 return (0);
4961 }
4962
4963 return (ENOENT);
4964 }
4965
4966 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4967 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4968 const struct firmware *fw)
4969 {
4970
4971 if (fw != NULL)
4972 firmware_put(fw, FIRMWARE_UNLOAD);
4973 if (dcfg != NULL)
4974 firmware_put(dcfg, FIRMWARE_UNLOAD);
4975 }
4976
4977 /*
4978 * Return values:
4979 * 0 means no firmware install attempted.
4980 * ERESTART means a firmware install was attempted and was successful.
4981 * +ve errno means a firmware install was attempted but failed.
4982 */
4983 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4984 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4985 const struct fw_h *drv_fw, const char *reason, int *already)
4986 {
4987 const struct firmware *cfg, *fw;
4988 const uint32_t c = be32toh(card_fw->fw_ver);
4989 uint32_t d, k;
4990 int rc, fw_install;
4991 struct fw_h bundled_fw;
4992 bool load_attempted;
4993
4994 cfg = fw = NULL;
4995 load_attempted = false;
4996 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4997
4998 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4999 if (t4_fw_install < 0) {
5000 rc = load_fw_module(sc, &cfg, &fw);
5001 if (rc != 0 || fw == NULL) {
5002 device_printf(sc->dev,
5003 "failed to load firmware module: %d. cfg %p, fw %p;"
5004 " will use compiled-in firmware version for"
5005 "hw.cxgbe.fw_install checks.\n",
5006 rc, cfg, fw);
5007 } else {
5008 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
5009 }
5010 load_attempted = true;
5011 }
5012 d = be32toh(bundled_fw.fw_ver);
5013
5014 if (reason != NULL)
5015 goto install;
5016
5017 if ((sc->flags & FW_OK) == 0) {
5018
5019 if (c == 0xffffffff) {
5020 reason = "missing";
5021 goto install;
5022 }
5023
5024 rc = 0;
5025 goto done;
5026 }
5027
5028 if (!fw_compatible(card_fw, &bundled_fw)) {
5029 reason = "incompatible or unusable";
5030 goto install;
5031 }
5032
5033 if (d > c) {
5034 reason = "older than the version bundled with this driver";
5035 goto install;
5036 }
5037
5038 if (fw_install == 2 && d != c) {
5039 reason = "different than the version bundled with this driver";
5040 goto install;
5041 }
5042
5043 /* No reason to do anything to the firmware already on the card. */
5044 rc = 0;
5045 goto done;
5046
5047 install:
5048 rc = 0;
5049 if ((*already)++)
5050 goto done;
5051
5052 if (fw_install == 0) {
5053 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5054 "but the driver is prohibited from installing a firmware "
5055 "on the card.\n",
5056 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5057 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5058
5059 goto done;
5060 }
5061
5062 /*
5063 * We'll attempt to install a firmware. Load the module first (if it
5064 * hasn't been loaded already).
5065 */
5066 if (!load_attempted) {
5067 rc = load_fw_module(sc, &cfg, &fw);
5068 if (rc != 0 || fw == NULL) {
5069 device_printf(sc->dev,
5070 "failed to load firmware module: %d. cfg %p, fw %p\n",
5071 rc, cfg, fw);
5072 /* carry on */
5073 }
5074 }
5075 if (fw == NULL) {
5076 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5077 "but the driver cannot take corrective action because it "
5078 "is unable to load the firmware module.\n",
5079 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5080 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5081 rc = sc->flags & FW_OK ? 0 : ENOENT;
5082 goto done;
5083 }
5084 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
5085 if (k != d) {
5086 MPASS(t4_fw_install > 0);
5087 device_printf(sc->dev,
5088 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
5089 "expecting (%u.%u.%u.%u) and will not be used.\n",
5090 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
5091 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
5092 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5093 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5094 rc = sc->flags & FW_OK ? 0 : EINVAL;
5095 goto done;
5096 }
5097
5098 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5099 "installing firmware %u.%u.%u.%u on card.\n",
5100 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5101 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
5102 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5103 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5104
5105 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
5106 if (rc != 0) {
5107 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
5108 } else {
5109 /* Installed successfully, update the cached header too. */
5110 rc = ERESTART;
5111 memcpy(card_fw, fw->data, sizeof(*card_fw));
5112 }
5113 done:
5114 unload_fw_module(sc, cfg, fw);
5115
5116 return (rc);
5117 }
5118
5119 /*
5120 * Establish contact with the firmware and attempt to become the master driver.
5121 *
5122 * A firmware will be installed to the card if needed (if the driver is allowed
5123 * to do so).
5124 */
5125 static int
contact_firmware(struct adapter * sc)5126 contact_firmware(struct adapter *sc)
5127 {
5128 int rc, already = 0;
5129 enum dev_state state;
5130 struct fw_info *fw_info;
5131 struct fw_hdr *card_fw; /* fw on the card */
5132 const struct fw_h *drv_fw;
5133
5134 fw_info = find_fw_info(chip_id(sc));
5135 if (fw_info == NULL) {
5136 device_printf(sc->dev,
5137 "unable to look up firmware information for chip %d.\n",
5138 chip_id(sc));
5139 return (EINVAL);
5140 }
5141 drv_fw = &fw_info->fw_h;
5142
5143 /* Read the header of the firmware on the card */
5144 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
5145 restart:
5146 rc = -t4_get_fw_hdr(sc, card_fw);
5147 if (rc != 0) {
5148 device_printf(sc->dev,
5149 "unable to read firmware header from card's flash: %d\n",
5150 rc);
5151 goto done;
5152 }
5153
5154 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
5155 &already);
5156 if (rc == ERESTART)
5157 goto restart;
5158 if (rc != 0)
5159 goto done;
5160
5161 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
5162 if (rc < 0 || state == DEV_STATE_ERR) {
5163 rc = -rc;
5164 device_printf(sc->dev,
5165 "failed to connect to the firmware: %d, %d. "
5166 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5167 #if 0
5168 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5169 "not responding properly to HELLO", &already) == ERESTART)
5170 goto restart;
5171 #endif
5172 goto done;
5173 }
5174 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
5175 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
5176
5177 if (rc == sc->pf) {
5178 sc->flags |= MASTER_PF;
5179 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5180 NULL, &already);
5181 if (rc == ERESTART)
5182 rc = 0;
5183 else if (rc != 0)
5184 goto done;
5185 } else if (state == DEV_STATE_UNINIT) {
5186 /*
5187 * We didn't get to be the master so we definitely won't be
5188 * configuring the chip. It's a bug if someone else hasn't
5189 * configured it already.
5190 */
5191 device_printf(sc->dev, "couldn't be master(%d), "
5192 "device not already initialized either(%d). "
5193 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5194 rc = EPROTO;
5195 goto done;
5196 } else {
5197 /*
5198 * Some other PF is the master and has configured the chip.
5199 * This is allowed but untested.
5200 */
5201 device_printf(sc->dev, "PF%d is master, device state %d. "
5202 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5203 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5204 sc->cfcsum = 0;
5205 rc = 0;
5206 }
5207 done:
5208 if (rc != 0 && sc->flags & FW_OK) {
5209 t4_fw_bye(sc, sc->mbox);
5210 sc->flags &= ~FW_OK;
5211 }
5212 free(card_fw, M_CXGBE);
5213 return (rc);
5214 }
5215
5216 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff,u_int maxlen)5217 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5218 uint32_t mtype, uint32_t moff, u_int maxlen)
5219 {
5220 struct fw_info *fw_info;
5221 const struct firmware *dcfg, *rcfg = NULL;
5222 const uint32_t *cfdata;
5223 uint32_t cflen, addr;
5224 int rc;
5225
5226 load_fw_module(sc, &dcfg, NULL);
5227
5228 /* Card specific interpretation of "default". */
5229 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5230 if (pci_get_device(sc->dev) == 0x440a)
5231 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5232 if (is_fpga(sc))
5233 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5234 }
5235
5236 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5237 if (dcfg == NULL) {
5238 device_printf(sc->dev,
5239 "KLD with default config is not available.\n");
5240 rc = ENOENT;
5241 goto done;
5242 }
5243 cfdata = dcfg->data;
5244 cflen = dcfg->datasize & ~3;
5245 } else {
5246 char s[32];
5247
5248 fw_info = find_fw_info(chip_id(sc));
5249 if (fw_info == NULL) {
5250 device_printf(sc->dev,
5251 "unable to look up firmware information for chip %d.\n",
5252 chip_id(sc));
5253 rc = EINVAL;
5254 goto done;
5255 }
5256 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5257
5258 rcfg = firmware_get(s);
5259 if (rcfg == NULL) {
5260 device_printf(sc->dev,
5261 "unable to load module \"%s\" for configuration "
5262 "profile \"%s\".\n", s, cfg_file);
5263 rc = ENOENT;
5264 goto done;
5265 }
5266 cfdata = rcfg->data;
5267 cflen = rcfg->datasize & ~3;
5268 }
5269
5270 if (cflen > maxlen) {
5271 device_printf(sc->dev,
5272 "config file too long (%d, max allowed is %d).\n",
5273 cflen, maxlen);
5274 rc = EINVAL;
5275 goto done;
5276 }
5277
5278 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5279 if (rc != 0) {
5280 device_printf(sc->dev,
5281 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5282 __func__, mtype, moff, cflen, rc);
5283 rc = EINVAL;
5284 goto done;
5285 }
5286 write_via_memwin(sc, 2, addr, cfdata, cflen);
5287 done:
5288 if (rcfg != NULL)
5289 firmware_put(rcfg, FIRMWARE_UNLOAD);
5290 unload_fw_module(sc, dcfg, NULL);
5291 return (rc);
5292 }
5293
5294 struct caps_allowed {
5295 uint16_t nbmcaps;
5296 uint16_t linkcaps;
5297 uint16_t switchcaps;
5298 uint16_t nvmecaps;
5299 uint16_t niccaps;
5300 uint16_t toecaps;
5301 uint16_t rdmacaps;
5302 uint16_t cryptocaps;
5303 uint16_t iscsicaps;
5304 uint16_t fcoecaps;
5305 };
5306
5307 #define FW_PARAM_DEV(param) \
5308 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5309 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5310 #define FW_PARAM_PFVF(param) \
5311 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5312 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5313
5314 /*
5315 * Provide a configuration profile to the firmware and have it initialize the
5316 * chip accordingly. This may involve uploading a configuration file to the
5317 * card.
5318 */
5319 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5320 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5321 const struct caps_allowed *caps_allowed)
5322 {
5323 int rc;
5324 struct fw_caps_config_cmd caps;
5325 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5326 unsigned int maxlen = 0;
5327 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen);
5328
5329 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5330 if (rc != 0) {
5331 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5332 return (rc);
5333 }
5334
5335 bzero(&caps, sizeof(caps));
5336 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5337 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5338 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5339 mtype = 0;
5340 moff = 0;
5341 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5342 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5343 mtype = FW_MEMTYPE_FLASH;
5344 moff = cfg_addr;
5345 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5346 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5347 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5348 FW_LEN16(caps));
5349 } else {
5350 /*
5351 * Ask the firmware where it wants us to upload the config file.
5352 */
5353 param = FW_PARAM_DEV(CF);
5354 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5355 if (rc != 0) {
5356 /* No support for config file? Shouldn't happen. */
5357 device_printf(sc->dev,
5358 "failed to query config file location: %d.\n", rc);
5359 goto done;
5360 }
5361 mtype = G_FW_PARAMS_PARAM_Y(val);
5362 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5363 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5364 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5365 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5366 FW_LEN16(caps));
5367
5368 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen);
5369 if (rc != 0) {
5370 device_printf(sc->dev,
5371 "failed to upload config file to card: %d.\n", rc);
5372 goto done;
5373 }
5374 }
5375 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5376 if (rc != 0) {
5377 device_printf(sc->dev, "failed to pre-process config file: %d "
5378 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5379 goto done;
5380 }
5381
5382 finicsum = be32toh(caps.finicsum);
5383 cfcsum = be32toh(caps.cfcsum); /* actual */
5384 if (finicsum != cfcsum) {
5385 device_printf(sc->dev,
5386 "WARNING: config file checksum mismatch: %08x %08x\n",
5387 finicsum, cfcsum);
5388 }
5389 sc->cfcsum = cfcsum;
5390 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5391
5392 /*
5393 * Let the firmware know what features will (not) be used so it can tune
5394 * things accordingly.
5395 */
5396 #define LIMIT_CAPS(x) do { \
5397 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5398 } while (0)
5399 LIMIT_CAPS(nbm);
5400 LIMIT_CAPS(link);
5401 LIMIT_CAPS(switch);
5402 LIMIT_CAPS(nvme);
5403 LIMIT_CAPS(nic);
5404 LIMIT_CAPS(toe);
5405 LIMIT_CAPS(rdma);
5406 LIMIT_CAPS(crypto);
5407 LIMIT_CAPS(iscsi);
5408 LIMIT_CAPS(fcoe);
5409 #undef LIMIT_CAPS
5410 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5411 /*
5412 * TOE and hashfilters are mutually exclusive. It is a config
5413 * file or firmware bug if both are reported as available. Try
5414 * to cope with the situation in non-debug builds by disabling
5415 * TOE.
5416 */
5417 MPASS(caps.toecaps == 0);
5418
5419 caps.toecaps = 0;
5420 caps.rdmacaps = 0;
5421 caps.iscsicaps = 0;
5422 caps.nvmecaps = 0;
5423 }
5424
5425 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5426 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5427 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5428 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5429 if (rc != 0) {
5430 device_printf(sc->dev,
5431 "failed to process config file: %d.\n", rc);
5432 goto done;
5433 }
5434
5435 t4_tweak_chip_settings(sc);
5436 set_params__pre_init(sc);
5437
5438 /* get basic stuff going */
5439 rc = -t4_fw_initialize(sc, sc->mbox);
5440 if (rc != 0) {
5441 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5442 goto done;
5443 }
5444 done:
5445 return (rc);
5446 }
5447
5448 /*
5449 * Partition chip resources for use between various PFs, VFs, etc.
5450 */
5451 static int
partition_resources(struct adapter * sc)5452 partition_resources(struct adapter *sc)
5453 {
5454 char cfg_file[sizeof(t4_cfg_file)];
5455 struct caps_allowed caps_allowed;
5456 int rc;
5457 bool fallback;
5458
5459 /* Only the master driver gets to configure the chip resources. */
5460 MPASS(sc->flags & MASTER_PF);
5461
5462 #define COPY_CAPS(x) do { \
5463 caps_allowed.x##caps = t4_##x##caps_allowed; \
5464 } while (0)
5465 bzero(&caps_allowed, sizeof(caps_allowed));
5466 COPY_CAPS(nbm);
5467 COPY_CAPS(link);
5468 COPY_CAPS(switch);
5469 COPY_CAPS(nvme);
5470 COPY_CAPS(nic);
5471 COPY_CAPS(toe);
5472 COPY_CAPS(rdma);
5473 COPY_CAPS(crypto);
5474 COPY_CAPS(iscsi);
5475 COPY_CAPS(fcoe);
5476 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5477 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5478 retry:
5479 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5480 if (rc != 0 && fallback) {
5481 dump_devlog(sc);
5482 device_printf(sc->dev,
5483 "failed (%d) to configure card with \"%s\" profile, "
5484 "will fall back to a basic configuration and retry.\n",
5485 rc, cfg_file);
5486 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5487 bzero(&caps_allowed, sizeof(caps_allowed));
5488 COPY_CAPS(switch);
5489 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5490 fallback = false;
5491 goto retry;
5492 }
5493 #undef COPY_CAPS
5494 return (rc);
5495 }
5496
5497 /*
5498 * Retrieve parameters that are needed (or nice to have) very early.
5499 */
5500 static int
get_params__pre_init(struct adapter * sc)5501 get_params__pre_init(struct adapter *sc)
5502 {
5503 int rc;
5504 uint32_t param[2], val[2];
5505
5506 t4_get_version_info(sc);
5507
5508 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5509 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5510 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5511 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5512 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5513
5514 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5515 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5516 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5517 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5518 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5519
5520 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5521 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5522 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5523 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5524 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5525
5526 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5527 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5528 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5529 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5530 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5531
5532 param[0] = FW_PARAM_DEV(PORTVEC);
5533 param[1] = FW_PARAM_DEV(CCLK);
5534 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5535 if (rc != 0) {
5536 device_printf(sc->dev,
5537 "failed to query parameters (pre_init): %d.\n", rc);
5538 return (rc);
5539 }
5540
5541 sc->params.portvec = val[0];
5542 sc->params.nports = bitcount32(val[0]);
5543 sc->params.vpd.cclk = val[1];
5544
5545 /* Read device log parameters. */
5546 rc = -t4_init_devlog_ncores_params(sc, 1);
5547 if (rc == 0)
5548 fixup_devlog_params(sc);
5549 else {
5550 device_printf(sc->dev,
5551 "failed to get devlog parameters: %d.\n", rc);
5552 rc = 0; /* devlog isn't critical for device operation */
5553 }
5554
5555 return (rc);
5556 }
5557
5558 /*
5559 * Any params that need to be set before FW_INITIALIZE.
5560 */
5561 static int
set_params__pre_init(struct adapter * sc)5562 set_params__pre_init(struct adapter *sc)
5563 {
5564 int rc = 0;
5565 uint32_t param, val;
5566
5567 if (chip_id(sc) >= CHELSIO_T6) {
5568 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5569 val = 1;
5570 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5571 /* firmwares < 1.20.1.0 do not have this param. */
5572 if (rc == FW_EINVAL &&
5573 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5574 rc = 0;
5575 }
5576 if (rc != 0) {
5577 device_printf(sc->dev,
5578 "failed to enable high priority filters :%d.\n",
5579 rc);
5580 }
5581
5582 param = FW_PARAM_DEV(PPOD_EDRAM);
5583 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5584 if (rc == 0 && val == 1) {
5585 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5586 &val);
5587 if (rc != 0) {
5588 device_printf(sc->dev,
5589 "failed to set PPOD_EDRAM: %d.\n", rc);
5590 }
5591 }
5592 }
5593
5594 /* Enable opaque VIIDs with firmwares that support it. */
5595 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5596 val = 1;
5597 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5598 if (rc == 0 && val == 1)
5599 sc->params.viid_smt_extn_support = true;
5600 else
5601 sc->params.viid_smt_extn_support = false;
5602
5603 return (rc);
5604 }
5605
5606 /*
5607 * Retrieve various parameters that are of interest to the driver. The device
5608 * has been initialized by the firmware at this point.
5609 */
5610 static int
get_params__post_init(struct adapter * sc)5611 get_params__post_init(struct adapter *sc)
5612 {
5613 int rc;
5614 uint32_t param[7], val[7];
5615 struct fw_caps_config_cmd caps;
5616
5617 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5618 param[1] = FW_PARAM_PFVF(EQ_START);
5619 param[2] = FW_PARAM_PFVF(FILTER_START);
5620 param[3] = FW_PARAM_PFVF(FILTER_END);
5621 param[4] = FW_PARAM_PFVF(L2T_START);
5622 param[5] = FW_PARAM_PFVF(L2T_END);
5623 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5624 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5625 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5626 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5627 if (rc != 0) {
5628 device_printf(sc->dev,
5629 "failed to query parameters (post_init): %d.\n", rc);
5630 return (rc);
5631 }
5632
5633 sc->sge.iq_start = val[0];
5634 sc->sge.eq_start = val[1];
5635 if ((int)val[3] > (int)val[2]) {
5636 sc->tids.ftid_base = val[2];
5637 sc->tids.ftid_end = val[3];
5638 sc->tids.nftids = val[3] - val[2] + 1;
5639 }
5640 sc->vres.l2t.start = val[4];
5641 sc->vres.l2t.size = val[5] - val[4] + 1;
5642 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5643 if (sc->vres.l2t.size > 0)
5644 MPASS(fls(val[5]) <= S_SYNC_WR);
5645 sc->params.core_vdd = val[6];
5646
5647 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5648 param[1] = FW_PARAM_PFVF(EQ_END);
5649 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5650 if (rc != 0) {
5651 device_printf(sc->dev,
5652 "failed to query parameters (post_init2): %d.\n", rc);
5653 return (rc);
5654 }
5655 MPASS((int)val[0] >= sc->sge.iq_start);
5656 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5657 MPASS((int)val[1] >= sc->sge.eq_start);
5658 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5659
5660 if (chip_id(sc) >= CHELSIO_T6) {
5661
5662 sc->tids.tid_base = t4_read_reg(sc,
5663 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5664
5665 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5666 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5667 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5668 if (rc != 0) {
5669 device_printf(sc->dev,
5670 "failed to query hpfilter parameters: %d.\n", rc);
5671 return (rc);
5672 }
5673 if ((int)val[1] > (int)val[0]) {
5674 sc->tids.hpftid_base = val[0];
5675 sc->tids.hpftid_end = val[1];
5676 sc->tids.nhpftids = val[1] - val[0] + 1;
5677
5678 /*
5679 * These should go off if the layout changes and the
5680 * driver needs to catch up.
5681 */
5682 MPASS(sc->tids.hpftid_base == 0);
5683 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5684 }
5685
5686 param[0] = FW_PARAM_PFVF(RAWF_START);
5687 param[1] = FW_PARAM_PFVF(RAWF_END);
5688 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5689 if (rc != 0) {
5690 device_printf(sc->dev,
5691 "failed to query rawf parameters: %d.\n", rc);
5692 return (rc);
5693 }
5694 if ((int)val[1] > (int)val[0]) {
5695 sc->rawf_base = val[0];
5696 sc->nrawf = val[1] - val[0] + 1;
5697 }
5698 }
5699
5700 if (sc->params.ncores > 1) {
5701 MPASS(chip_id(sc) >= CHELSIO_T7);
5702
5703 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK);
5704 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5705 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0;
5706 }
5707
5708 /*
5709 * The parameters that follow may not be available on all firmwares. We
5710 * query them individually rather than in a compound query because old
5711 * firmwares fail the entire query if an unknown parameter is queried.
5712 */
5713
5714 /*
5715 * MPS buffer group configuration.
5716 */
5717 param[0] = FW_PARAM_DEV(MPSBGMAP);
5718 val[0] = 0;
5719 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5720 if (rc == 0)
5721 sc->params.mps_bg_map = val[0];
5722 else
5723 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5724
5725 param[0] = FW_PARAM_DEV(TPCHMAP);
5726 val[0] = 0;
5727 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5728 if (rc == 0)
5729 sc->params.tp_ch_map = val[0];
5730 else
5731 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5732
5733 param[0] = FW_PARAM_DEV(TX_TPCHMAP);
5734 val[0] = 0;
5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5736 if (rc == 0)
5737 sc->params.tx_tp_ch_map = val[0];
5738 else
5739 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */
5740
5741 /*
5742 * Determine whether the firmware supports the filter2 work request.
5743 */
5744 param[0] = FW_PARAM_DEV(FILTER2_WR);
5745 val[0] = 0;
5746 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5747 if (rc == 0)
5748 sc->params.filter2_wr_support = val[0] != 0;
5749 else
5750 sc->params.filter2_wr_support = 0;
5751
5752 /*
5753 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5754 */
5755 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5756 val[0] = 0;
5757 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5758 if (rc == 0)
5759 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5760 else
5761 sc->params.ulptx_memwrite_dsgl = false;
5762
5763 /* FW_RI_FR_NSMR_TPTE_WR support */
5764 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5765 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5766 if (rc == 0)
5767 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5768 else
5769 sc->params.fr_nsmr_tpte_wr_support = false;
5770
5771 /* Support for 512 SGL entries per FR MR. */
5772 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5773 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5774 if (rc == 0)
5775 sc->params.dev_512sgl_mr = val[0] != 0;
5776 else
5777 sc->params.dev_512sgl_mr = false;
5778
5779 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5780 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5781 if (rc == 0)
5782 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5783 else
5784 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5785
5786 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5787 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5788 if (rc == 0) {
5789 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5790 sc->params.nsched_cls = val[0];
5791 } else
5792 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5793
5794 /* get capabilites */
5795 bzero(&caps, sizeof(caps));
5796 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5797 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5798 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5799 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5800 if (rc != 0) {
5801 device_printf(sc->dev,
5802 "failed to get card capabilities: %d.\n", rc);
5803 return (rc);
5804 }
5805
5806 #define READ_CAPS(x) do { \
5807 sc->x = htobe16(caps.x); \
5808 } while (0)
5809 READ_CAPS(nbmcaps);
5810 READ_CAPS(linkcaps);
5811 READ_CAPS(switchcaps);
5812 READ_CAPS(nvmecaps);
5813 READ_CAPS(niccaps);
5814 READ_CAPS(toecaps);
5815 READ_CAPS(rdmacaps);
5816 READ_CAPS(cryptocaps);
5817 READ_CAPS(iscsicaps);
5818 READ_CAPS(fcoecaps);
5819
5820 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5821 MPASS(chip_id(sc) > CHELSIO_T4);
5822 MPASS(sc->toecaps == 0);
5823 sc->toecaps = 0;
5824
5825 param[0] = FW_PARAM_DEV(NTID);
5826 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5827 if (rc != 0) {
5828 device_printf(sc->dev,
5829 "failed to query HASHFILTER parameters: %d.\n", rc);
5830 return (rc);
5831 }
5832 sc->tids.ntids = val[0];
5833 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5834 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5835 sc->tids.ntids -= sc->tids.nhpftids;
5836 }
5837 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5838 sc->params.hash_filter = 1;
5839 }
5840 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5841 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5842 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5843 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5844 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5845 if (rc != 0) {
5846 device_printf(sc->dev,
5847 "failed to query NIC parameters: %d.\n", rc);
5848 return (rc);
5849 }
5850 if ((int)val[1] > (int)val[0]) {
5851 sc->tids.etid_base = val[0];
5852 sc->tids.etid_end = val[1];
5853 sc->tids.netids = val[1] - val[0] + 1;
5854 sc->params.eo_wr_cred = val[2];
5855 sc->params.ethoffload = 1;
5856 }
5857 }
5858 if (sc->toecaps) {
5859 /* query offload-related parameters */
5860 param[0] = FW_PARAM_DEV(NTID);
5861 param[1] = FW_PARAM_PFVF(SERVER_START);
5862 param[2] = FW_PARAM_PFVF(SERVER_END);
5863 param[3] = FW_PARAM_PFVF(TDDP_START);
5864 param[4] = FW_PARAM_PFVF(TDDP_END);
5865 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5866 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5867 if (rc != 0) {
5868 device_printf(sc->dev,
5869 "failed to query TOE parameters: %d.\n", rc);
5870 return (rc);
5871 }
5872 sc->tids.ntids = val[0];
5873 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5874 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5875 sc->tids.ntids -= sc->tids.nhpftids;
5876 }
5877 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5878 if ((int)val[2] > (int)val[1]) {
5879 sc->tids.stid_base = val[1];
5880 sc->tids.nstids = val[2] - val[1] + 1;
5881 }
5882 sc->vres.ddp.start = val[3];
5883 sc->vres.ddp.size = val[4] - val[3] + 1;
5884 sc->params.ofldq_wr_cred = val[5];
5885 sc->params.offload = 1;
5886 } else {
5887 /*
5888 * The firmware attempts memfree TOE configuration for -SO cards
5889 * and will report toecaps=0 if it runs out of resources (this
5890 * depends on the config file). It may not report 0 for other
5891 * capabilities dependent on the TOE in this case. Set them to
5892 * 0 here so that the driver doesn't bother tracking resources
5893 * that will never be used.
5894 */
5895 sc->iscsicaps = 0;
5896 sc->nvmecaps = 0;
5897 sc->rdmacaps = 0;
5898 }
5899 if (sc->nvmecaps || sc->rdmacaps) {
5900 param[0] = FW_PARAM_PFVF(STAG_START);
5901 param[1] = FW_PARAM_PFVF(STAG_END);
5902 param[2] = FW_PARAM_PFVF(PBL_START);
5903 param[3] = FW_PARAM_PFVF(PBL_END);
5904 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5905 if (rc != 0) {
5906 device_printf(sc->dev,
5907 "failed to query NVMe/RDMA parameters: %d.\n", rc);
5908 return (rc);
5909 }
5910 sc->vres.stag.start = val[0];
5911 sc->vres.stag.size = val[1] - val[0] + 1;
5912 sc->vres.pbl.start = val[2];
5913 sc->vres.pbl.size = val[3] - val[2] + 1;
5914 }
5915 if (sc->rdmacaps) {
5916 param[0] = FW_PARAM_PFVF(RQ_START);
5917 param[1] = FW_PARAM_PFVF(RQ_END);
5918 param[2] = FW_PARAM_PFVF(SQRQ_START);
5919 param[3] = FW_PARAM_PFVF(SQRQ_END);
5920 param[4] = FW_PARAM_PFVF(CQ_START);
5921 param[5] = FW_PARAM_PFVF(CQ_END);
5922 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5923 if (rc != 0) {
5924 device_printf(sc->dev,
5925 "failed to query RDMA parameters(1): %d.\n", rc);
5926 return (rc);
5927 }
5928 sc->vres.rq.start = val[0];
5929 sc->vres.rq.size = val[1] - val[0] + 1;
5930 sc->vres.qp.start = val[2];
5931 sc->vres.qp.size = val[3] - val[2] + 1;
5932 sc->vres.cq.start = val[4];
5933 sc->vres.cq.size = val[5] - val[4] + 1;
5934
5935 param[0] = FW_PARAM_PFVF(OCQ_START);
5936 param[1] = FW_PARAM_PFVF(OCQ_END);
5937 param[2] = FW_PARAM_PFVF(SRQ_START);
5938 param[3] = FW_PARAM_PFVF(SRQ_END);
5939 param[4] = FW_PARAM_DEV(MAXORDIRD_QP);
5940 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5941 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5942 if (rc != 0) {
5943 device_printf(sc->dev,
5944 "failed to query RDMA parameters(2): %d.\n", rc);
5945 return (rc);
5946 }
5947 sc->vres.ocq.start = val[0];
5948 sc->vres.ocq.size = val[1] - val[0] + 1;
5949 sc->vres.srq.start = val[2];
5950 sc->vres.srq.size = val[3] - val[2] + 1;
5951 sc->params.max_ordird_qp = val[4];
5952 sc->params.max_ird_adapter = val[5];
5953 }
5954 if (sc->iscsicaps) {
5955 param[0] = FW_PARAM_PFVF(ISCSI_START);
5956 param[1] = FW_PARAM_PFVF(ISCSI_END);
5957 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5958 if (rc != 0) {
5959 device_printf(sc->dev,
5960 "failed to query iSCSI parameters: %d.\n", rc);
5961 return (rc);
5962 }
5963 sc->vres.iscsi.start = val[0];
5964 sc->vres.iscsi.size = val[1] - val[0] + 1;
5965 }
5966 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5967 param[0] = FW_PARAM_PFVF(TLS_START);
5968 param[1] = FW_PARAM_PFVF(TLS_END);
5969 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5970 if (rc != 0) {
5971 device_printf(sc->dev,
5972 "failed to query TLS parameters: %d.\n", rc);
5973 return (rc);
5974 }
5975 sc->vres.key.start = val[0];
5976 sc->vres.key.size = val[1] - val[0] + 1;
5977 }
5978
5979 /*
5980 * We've got the params we wanted to query directly from the firmware.
5981 * Grab some others via other means.
5982 */
5983 t4_init_sge_params(sc);
5984 t4_init_tp_params(sc);
5985 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5986 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5987
5988 rc = t4_verify_chip_settings(sc);
5989 if (rc != 0)
5990 return (rc);
5991 t4_init_rx_buf_info(sc);
5992
5993 return (rc);
5994 }
5995
5996 #ifdef KERN_TLS
5997 static void
ktls_tick(void * arg)5998 ktls_tick(void *arg)
5999 {
6000 struct adapter *sc;
6001 uint32_t tstamp;
6002
6003 sc = arg;
6004 tstamp = tcp_ts_getticks();
6005 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
6006 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
6007 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
6008 }
6009
6010 static int
t6_config_kern_tls(struct adapter * sc,bool enable)6011 t6_config_kern_tls(struct adapter *sc, bool enable)
6012 {
6013 int rc;
6014 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6015 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
6016 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
6017 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
6018
6019 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
6020 if (rc != 0) {
6021 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
6022 enable ? "enable" : "disable", rc);
6023 return (rc);
6024 }
6025
6026 if (enable) {
6027 sc->flags |= KERN_TLS_ON;
6028 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
6029 C_HARDCLOCK);
6030 } else {
6031 sc->flags &= ~KERN_TLS_ON;
6032 callout_stop(&sc->ktls_tick);
6033 }
6034
6035 return (rc);
6036 }
6037 #endif
6038
6039 static int
set_params__post_init(struct adapter * sc)6040 set_params__post_init(struct adapter *sc)
6041 {
6042 uint32_t mask, param, val;
6043 #ifdef TCP_OFFLOAD
6044 int i, v, shift;
6045 #endif
6046
6047 /* ask for encapsulated CPLs */
6048 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
6049 val = 1;
6050 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
6051
6052 /* Enable 32b port caps if the firmware supports it. */
6053 param = FW_PARAM_PFVF(PORT_CAPS32);
6054 val = 1;
6055 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
6056 sc->params.port_caps32 = 1;
6057
6058 /* Let filter + maskhash steer to a part of the VI's RSS region. */
6059 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
6060 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
6061 V_MASKFILTER(val - 1));
6062
6063 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
6064 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
6065 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6066 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
6067 val = 0;
6068 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
6069 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
6070 F_ATTACKFILTERENABLE);
6071 val |= F_DROPERRORATTACK;
6072 }
6073 if (t4_drop_ip_fragments != 0) {
6074 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
6075 F_FRAGMENTDROP);
6076 val |= F_DROPERRORFRAG;
6077 }
6078 if (t4_drop_pkts_with_l2_errors != 0)
6079 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
6080 if (t4_drop_pkts_with_l3_errors != 0) {
6081 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
6082 F_DROPERRORCSUMIP;
6083 }
6084 if (t4_drop_pkts_with_l4_errors != 0) {
6085 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6086 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
6087 }
6088 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
6089
6090 #ifdef TCP_OFFLOAD
6091 /*
6092 * Override the TOE timers with user provided tunables. This is not the
6093 * recommended way to change the timers (the firmware config file is) so
6094 * these tunables are not documented.
6095 *
6096 * All the timer tunables are in microseconds.
6097 */
6098 if (t4_toe_keepalive_idle != 0) {
6099 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
6100 v &= M_KEEPALIVEIDLE;
6101 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
6102 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
6103 }
6104 if (t4_toe_keepalive_interval != 0) {
6105 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
6106 v &= M_KEEPALIVEINTVL;
6107 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
6108 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
6109 }
6110 if (t4_toe_keepalive_count != 0) {
6111 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
6112 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6113 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
6114 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
6115 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
6116 }
6117 if (t4_toe_rexmt_min != 0) {
6118 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
6119 v &= M_RXTMIN;
6120 t4_set_reg_field(sc, A_TP_RXT_MIN,
6121 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
6122 }
6123 if (t4_toe_rexmt_max != 0) {
6124 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
6125 v &= M_RXTMAX;
6126 t4_set_reg_field(sc, A_TP_RXT_MAX,
6127 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
6128 }
6129 if (t4_toe_rexmt_count != 0) {
6130 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
6131 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6132 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
6133 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
6134 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
6135 }
6136 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
6137 if (t4_toe_rexmt_backoff[i] != -1) {
6138 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
6139 shift = (i & 3) << 3;
6140 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
6141 M_TIMERBACKOFFINDEX0 << shift, v << shift);
6142 }
6143 }
6144 #endif
6145
6146 /*
6147 * Limit TOE connections to 2 reassembly "islands". This is
6148 * required to permit migrating TOE connections to either
6149 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
6150 */
6151 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
6152 V_PASSMODE(2));
6153
6154 #ifdef KERN_TLS
6155 if (is_ktls(sc)) {
6156 sc->tlst.inline_keys = t4_tls_inline_keys;
6157 if (t4_kern_tls != 0 && is_t6(sc)) {
6158 sc->tlst.combo_wrs = t4_tls_combo_wrs;
6159 t6_config_kern_tls(sc, true);
6160 } else {
6161 sc->tlst.short_records = t4_tls_short_records;
6162 sc->tlst.partial_ghash = t4_tls_partial_ghash;
6163 }
6164 }
6165 #endif
6166 return (0);
6167 }
6168
6169 #undef FW_PARAM_PFVF
6170 #undef FW_PARAM_DEV
6171
6172 static void
t4_set_desc(struct adapter * sc)6173 t4_set_desc(struct adapter *sc)
6174 {
6175 struct adapter_params *p = &sc->params;
6176
6177 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
6178 }
6179
6180 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)6181 ifmedia_add4(struct ifmedia *ifm, int m)
6182 {
6183
6184 ifmedia_add(ifm, m, 0, NULL);
6185 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
6186 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
6188 }
6189
6190 /*
6191 * This is the selected media, which is not quite the same as the active media.
6192 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
6193 * and active are not the same, and "media: Ethernet selected" otherwise.
6194 */
6195 static void
set_current_media(struct port_info * pi)6196 set_current_media(struct port_info *pi)
6197 {
6198 struct link_config *lc;
6199 struct ifmedia *ifm;
6200 int mword;
6201 u_int speed;
6202
6203 PORT_LOCK_ASSERT_OWNED(pi);
6204
6205 /* Leave current media alone if it's already set to IFM_NONE. */
6206 ifm = &pi->media;
6207 if (ifm->ifm_cur != NULL &&
6208 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
6209 return;
6210
6211 lc = &pi->link_cfg;
6212 if (lc->requested_aneg != AUTONEG_DISABLE &&
6213 lc->pcaps & FW_PORT_CAP32_ANEG) {
6214 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6215 return;
6216 }
6217 mword = IFM_ETHER | IFM_FDX;
6218 if (lc->requested_fc & PAUSE_TX)
6219 mword |= IFM_ETH_TXPAUSE;
6220 if (lc->requested_fc & PAUSE_RX)
6221 mword |= IFM_ETH_RXPAUSE;
6222 if (lc->requested_speed == 0)
6223 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6224 else
6225 speed = lc->requested_speed;
6226 mword |= port_mword(pi, speed_to_fwcap(speed));
6227 ifmedia_set(ifm, mword);
6228 }
6229
6230 /*
6231 * Returns true if the ifmedia list for the port cannot change.
6232 */
6233 static bool
fixed_ifmedia(struct port_info * pi)6234 fixed_ifmedia(struct port_info *pi)
6235 {
6236
6237 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6238 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6239 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6240 pi->port_type == FW_PORT_TYPE_KX4 ||
6241 pi->port_type == FW_PORT_TYPE_KX ||
6242 pi->port_type == FW_PORT_TYPE_KR ||
6243 pi->port_type == FW_PORT_TYPE_BP_AP ||
6244 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6245 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6246 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6247 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6248 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6249 }
6250
6251 static void
build_medialist(struct port_info * pi)6252 build_medialist(struct port_info *pi)
6253 {
6254 uint32_t ss, speed;
6255 int unknown, mword, bit;
6256 struct link_config *lc;
6257 struct ifmedia *ifm;
6258
6259 PORT_LOCK_ASSERT_OWNED(pi);
6260
6261 if (pi->flags & FIXED_IFMEDIA)
6262 return;
6263
6264 /*
6265 * Rebuild the ifmedia list.
6266 */
6267 ifm = &pi->media;
6268 ifmedia_removeall(ifm);
6269 lc = &pi->link_cfg;
6270 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6271 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6272 MPASS(ss != 0);
6273 no_media:
6274 MPASS(LIST_EMPTY(&ifm->ifm_list));
6275 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6276 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6277 return;
6278 }
6279
6280 unknown = 0;
6281 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6282 speed = 1 << bit;
6283 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6284 if (ss & speed) {
6285 mword = port_mword(pi, speed);
6286 if (mword == IFM_NONE) {
6287 goto no_media;
6288 } else if (mword == IFM_UNKNOWN)
6289 unknown++;
6290 else
6291 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6292 }
6293 }
6294 if (unknown > 0) /* Add one unknown for all unknown media types. */
6295 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6296 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6297 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6298
6299 set_current_media(pi);
6300 }
6301
6302 /*
6303 * Initialize the requested fields in the link config based on driver tunables.
6304 */
6305 static void
init_link_config(struct port_info * pi)6306 init_link_config(struct port_info *pi)
6307 {
6308 struct link_config *lc = &pi->link_cfg;
6309
6310 PORT_LOCK_ASSERT_OWNED(pi);
6311
6312 lc->requested_caps = 0;
6313 lc->requested_speed = 0;
6314
6315 if (t4_autoneg == 0)
6316 lc->requested_aneg = AUTONEG_DISABLE;
6317 else if (t4_autoneg == 1)
6318 lc->requested_aneg = AUTONEG_ENABLE;
6319 else
6320 lc->requested_aneg = AUTONEG_AUTO;
6321
6322 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6323 PAUSE_AUTONEG);
6324
6325 if (t4_fec & FEC_AUTO)
6326 lc->requested_fec = FEC_AUTO;
6327 else if (t4_fec == 0)
6328 lc->requested_fec = FEC_NONE;
6329 else {
6330 /* -1 is handled by the FEC_AUTO block above and not here. */
6331 lc->requested_fec = t4_fec &
6332 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6333 if (lc->requested_fec == 0)
6334 lc->requested_fec = FEC_AUTO;
6335 }
6336 if (t4_force_fec < 0)
6337 lc->force_fec = -1;
6338 else if (t4_force_fec > 0)
6339 lc->force_fec = 1;
6340 else
6341 lc->force_fec = 0;
6342 }
6343
6344 /*
6345 * Makes sure that all requested settings comply with what's supported by the
6346 * port. Returns the number of settings that were invalid and had to be fixed.
6347 */
6348 static int
fixup_link_config(struct port_info * pi)6349 fixup_link_config(struct port_info *pi)
6350 {
6351 int n = 0;
6352 struct link_config *lc = &pi->link_cfg;
6353 uint32_t fwspeed;
6354
6355 PORT_LOCK_ASSERT_OWNED(pi);
6356
6357 /* Speed (when not autonegotiating) */
6358 if (lc->requested_speed != 0) {
6359 fwspeed = speed_to_fwcap(lc->requested_speed);
6360 if ((fwspeed & lc->pcaps) == 0) {
6361 n++;
6362 lc->requested_speed = 0;
6363 }
6364 }
6365
6366 /* Link autonegotiation */
6367 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6368 lc->requested_aneg == AUTONEG_DISABLE ||
6369 lc->requested_aneg == AUTONEG_AUTO);
6370 if (lc->requested_aneg == AUTONEG_ENABLE &&
6371 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6372 n++;
6373 lc->requested_aneg = AUTONEG_AUTO;
6374 }
6375
6376 /* Flow control */
6377 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6378 if (lc->requested_fc & PAUSE_TX &&
6379 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6380 n++;
6381 lc->requested_fc &= ~PAUSE_TX;
6382 }
6383 if (lc->requested_fc & PAUSE_RX &&
6384 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6385 n++;
6386 lc->requested_fc &= ~PAUSE_RX;
6387 }
6388 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6389 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6390 n++;
6391 lc->requested_fc |= PAUSE_AUTONEG;
6392 }
6393
6394 /* FEC */
6395 if ((lc->requested_fec & FEC_RS &&
6396 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6397 (lc->requested_fec & FEC_BASER_RS &&
6398 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6399 n++;
6400 lc->requested_fec = FEC_AUTO;
6401 }
6402
6403 return (n);
6404 }
6405
6406 /*
6407 * Apply the requested L1 settings, which are expected to be valid, to the
6408 * hardware.
6409 */
6410 static int
apply_link_config(struct port_info * pi)6411 apply_link_config(struct port_info *pi)
6412 {
6413 struct adapter *sc = pi->adapter;
6414 struct link_config *lc = &pi->link_cfg;
6415 int rc;
6416
6417 #ifdef INVARIANTS
6418 ASSERT_SYNCHRONIZED_OP(sc);
6419 PORT_LOCK_ASSERT_OWNED(pi);
6420
6421 if (lc->requested_aneg == AUTONEG_ENABLE)
6422 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6423 if (!(lc->requested_fc & PAUSE_AUTONEG))
6424 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6425 if (lc->requested_fc & PAUSE_TX)
6426 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6427 if (lc->requested_fc & PAUSE_RX)
6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6429 if (lc->requested_fec & FEC_RS)
6430 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6431 if (lc->requested_fec & FEC_BASER_RS)
6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6433 #endif
6434 if (!(sc->flags & IS_VF)) {
6435 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc);
6436 if (rc != 0) {
6437 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6438 return (rc);
6439 }
6440 }
6441
6442 /*
6443 * An L1_CFG will almost always result in a link-change event if the
6444 * link is up, and the driver will refresh the actual fec/fc/etc. when
6445 * the notification is processed. If the link is down then the actual
6446 * settings are meaningless.
6447 *
6448 * This takes care of the case where a change in the L1 settings may not
6449 * result in a notification.
6450 */
6451 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6452 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6453
6454 return (0);
6455 }
6456
6457 #define FW_MAC_EXACT_CHUNK 7
6458 struct mcaddr_ctx {
6459 if_t ifp;
6460 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6461 uint64_t hash;
6462 int i;
6463 int del;
6464 int rc;
6465 };
6466
6467 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6468 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6469 {
6470 struct mcaddr_ctx *ctx = arg;
6471 struct vi_info *vi = if_getsoftc(ctx->ifp);
6472 struct port_info *pi = vi->pi;
6473 struct adapter *sc = pi->adapter;
6474
6475 if (ctx->rc < 0)
6476 return (0);
6477
6478 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6479 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6480 ctx->i++;
6481
6482 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6483 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6484 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6485 if (ctx->rc < 0) {
6486 int j;
6487
6488 for (j = 0; j < ctx->i; j++) {
6489 if_printf(ctx->ifp,
6490 "failed to add mc address"
6491 " %02x:%02x:%02x:"
6492 "%02x:%02x:%02x rc=%d\n",
6493 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6494 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6495 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6496 -ctx->rc);
6497 }
6498 return (0);
6499 }
6500 ctx->del = 0;
6501 ctx->i = 0;
6502 }
6503
6504 return (1);
6505 }
6506
6507 /*
6508 * Program the port's XGMAC based on parameters in ifnet. The caller also
6509 * indicates which parameters should be programmed (the rest are left alone).
6510 */
6511 int
update_mac_settings(if_t ifp,int flags)6512 update_mac_settings(if_t ifp, int flags)
6513 {
6514 int rc = 0;
6515 struct vi_info *vi = if_getsoftc(ifp);
6516 struct port_info *pi = vi->pi;
6517 struct adapter *sc = pi->adapter;
6518 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6519 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6520
6521 ASSERT_SYNCHRONIZED_OP(sc);
6522 KASSERT(flags, ("%s: not told what to update.", __func__));
6523
6524 if (flags & XGMAC_MTU)
6525 mtu = if_getmtu(ifp);
6526
6527 if (flags & XGMAC_PROMISC)
6528 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6529
6530 if (flags & XGMAC_ALLMULTI)
6531 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6532
6533 if (flags & XGMAC_VLANEX)
6534 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6535
6536 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6537 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6538 allmulti, 1, vlanex, false);
6539 if (rc) {
6540 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6541 rc);
6542 return (rc);
6543 }
6544 }
6545
6546 if (flags & XGMAC_UCADDR) {
6547 uint8_t ucaddr[ETHER_ADDR_LEN];
6548
6549 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6550 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6551 ucaddr, true, &vi->smt_idx);
6552 if (rc < 0) {
6553 rc = -rc;
6554 if_printf(ifp, "change_mac failed: %d\n", rc);
6555 return (rc);
6556 } else {
6557 vi->xact_addr_filt = rc;
6558 rc = 0;
6559 }
6560 }
6561
6562 if (flags & XGMAC_MCADDRS) {
6563 struct epoch_tracker et;
6564 struct mcaddr_ctx ctx;
6565 int j;
6566
6567 ctx.ifp = ifp;
6568 ctx.hash = 0;
6569 ctx.i = 0;
6570 ctx.del = 1;
6571 ctx.rc = 0;
6572 /*
6573 * Unlike other drivers, we accumulate list of pointers into
6574 * interface address lists and we need to keep it safe even
6575 * after if_foreach_llmaddr() returns, thus we must enter the
6576 * network epoch.
6577 */
6578 NET_EPOCH_ENTER(et);
6579 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6580 if (ctx.rc < 0) {
6581 NET_EPOCH_EXIT(et);
6582 rc = -ctx.rc;
6583 return (rc);
6584 }
6585 if (ctx.i > 0) {
6586 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6587 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6588 NET_EPOCH_EXIT(et);
6589 if (rc < 0) {
6590 rc = -rc;
6591 for (j = 0; j < ctx.i; j++) {
6592 if_printf(ifp,
6593 "failed to add mcast address"
6594 " %02x:%02x:%02x:"
6595 "%02x:%02x:%02x rc=%d\n",
6596 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6597 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6598 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6599 rc);
6600 }
6601 return (rc);
6602 }
6603 ctx.del = 0;
6604 } else
6605 NET_EPOCH_EXIT(et);
6606
6607 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6608 if (rc != 0)
6609 if_printf(ifp, "failed to set mcast address hash: %d\n",
6610 rc);
6611 if (ctx.del == 0) {
6612 /* We clobbered the VXLAN entry if there was one. */
6613 pi->vxlan_tcam_entry = false;
6614 }
6615 }
6616
6617 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6618 pi->vxlan_tcam_entry == false) {
6619 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6620 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6621 true);
6622 if (rc < 0) {
6623 rc = -rc;
6624 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6625 rc);
6626 } else {
6627 MPASS(rc == sc->rawf_base + pi->port_id);
6628 rc = 0;
6629 pi->vxlan_tcam_entry = true;
6630 }
6631 }
6632
6633 return (rc);
6634 }
6635
6636 /*
6637 * {begin|end}_synchronized_op must be called from the same thread.
6638 */
6639 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6640 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6641 char *wmesg)
6642 {
6643 int rc;
6644
6645 #ifdef WITNESS
6646 /* the caller thinks it's ok to sleep, but is it really? */
6647 if (flags & SLEEP_OK)
6648 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6649 #endif
6650 ADAPTER_LOCK(sc);
6651 for (;;) {
6652
6653 if (vi && IS_DETACHING(vi)) {
6654 rc = ENXIO;
6655 goto done;
6656 }
6657
6658 if (!IS_BUSY(sc)) {
6659 rc = 0;
6660 break;
6661 }
6662
6663 if (!(flags & SLEEP_OK)) {
6664 rc = EBUSY;
6665 goto done;
6666 }
6667
6668 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6669 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6670 rc = EINTR;
6671 goto done;
6672 }
6673 }
6674
6675 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6676 SET_BUSY(sc);
6677 #ifdef INVARIANTS
6678 sc->last_op = wmesg;
6679 sc->last_op_thr = curthread;
6680 sc->last_op_flags = flags;
6681 #endif
6682
6683 done:
6684 if (!(flags & HOLD_LOCK) || rc)
6685 ADAPTER_UNLOCK(sc);
6686
6687 return (rc);
6688 }
6689
6690 /*
6691 * Tell if_ioctl and if_init that the VI is going away. This is
6692 * special variant of begin_synchronized_op and must be paired with a
6693 * call to end_vi_detach.
6694 */
6695 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6696 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6697 {
6698 ADAPTER_LOCK(sc);
6699 SET_DETACHING(vi);
6700 wakeup(&sc->flags);
6701 while (IS_BUSY(sc))
6702 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6703 SET_BUSY(sc);
6704 #ifdef INVARIANTS
6705 sc->last_op = "t4detach";
6706 sc->last_op_thr = curthread;
6707 sc->last_op_flags = 0;
6708 #endif
6709 ADAPTER_UNLOCK(sc);
6710 }
6711
6712 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6713 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6714 {
6715 ADAPTER_LOCK(sc);
6716 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6717 CLR_BUSY(sc);
6718 CLR_DETACHING(vi);
6719 wakeup(&sc->flags);
6720 ADAPTER_UNLOCK(sc);
6721 }
6722
6723 /*
6724 * {begin|end}_synchronized_op must be called from the same thread.
6725 */
6726 void
end_synchronized_op(struct adapter * sc,int flags)6727 end_synchronized_op(struct adapter *sc, int flags)
6728 {
6729
6730 if (flags & LOCK_HELD)
6731 ADAPTER_LOCK_ASSERT_OWNED(sc);
6732 else
6733 ADAPTER_LOCK(sc);
6734
6735 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6736 CLR_BUSY(sc);
6737 wakeup(&sc->flags);
6738 ADAPTER_UNLOCK(sc);
6739 }
6740
6741 static int
cxgbe_init_synchronized(struct vi_info * vi)6742 cxgbe_init_synchronized(struct vi_info *vi)
6743 {
6744 struct port_info *pi = vi->pi;
6745 struct adapter *sc = pi->adapter;
6746 if_t ifp = vi->ifp;
6747 int rc = 0, i;
6748 struct sge_txq *txq;
6749
6750 ASSERT_SYNCHRONIZED_OP(sc);
6751
6752 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6753 return (0); /* already running */
6754
6755 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6756 return (rc); /* error message displayed already */
6757
6758 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6759 return (rc); /* error message displayed already */
6760
6761 rc = update_mac_settings(ifp, XGMAC_ALL);
6762 if (rc)
6763 goto done; /* error message displayed already */
6764
6765 PORT_LOCK(pi);
6766 if (pi->up_vis == 0) {
6767 t4_update_port_info(pi);
6768 fixup_link_config(pi);
6769 build_medialist(pi);
6770 apply_link_config(pi);
6771 }
6772
6773 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6774 if (rc != 0) {
6775 if_printf(ifp, "enable_vi failed: %d\n", rc);
6776 PORT_UNLOCK(pi);
6777 goto done;
6778 }
6779
6780 /*
6781 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6782 * if this changes.
6783 */
6784
6785 for_each_txq(vi, i, txq) {
6786 TXQ_LOCK(txq);
6787 txq->eq.flags |= EQ_ENABLED;
6788 TXQ_UNLOCK(txq);
6789 }
6790
6791 /*
6792 * The first iq of the first port to come up is used for tracing.
6793 */
6794 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6795 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6796 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
6797 pi->flags |= HAS_TRACEQ;
6798 }
6799
6800 /* all ok */
6801 pi->up_vis++;
6802 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6803 if (pi->link_cfg.link_ok)
6804 t4_os_link_changed(pi);
6805 PORT_UNLOCK(pi);
6806
6807 mtx_lock(&vi->tick_mtx);
6808 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6809 callout_reset(&vi->tick, hz, vi_tick, vi);
6810 else
6811 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6812 mtx_unlock(&vi->tick_mtx);
6813 done:
6814 if (rc != 0)
6815 cxgbe_uninit_synchronized(vi);
6816
6817 return (rc);
6818 }
6819
6820 /*
6821 * Idempotent.
6822 */
6823 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6824 cxgbe_uninit_synchronized(struct vi_info *vi)
6825 {
6826 struct port_info *pi = vi->pi;
6827 struct adapter *sc = pi->adapter;
6828 if_t ifp = vi->ifp;
6829 int rc, i;
6830 struct sge_txq *txq;
6831
6832 ASSERT_SYNCHRONIZED_OP(sc);
6833
6834 if (!(vi->flags & VI_INIT_DONE)) {
6835 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6836 KASSERT(0, ("uninited VI is running"));
6837 if_printf(ifp, "uninited VI with running ifnet. "
6838 "vi->flags 0x%016lx, if_flags 0x%08x, "
6839 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6840 if_getdrvflags(ifp));
6841 }
6842 return (0);
6843 }
6844
6845 /*
6846 * Disable the VI so that all its data in either direction is discarded
6847 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6848 * tick) intact as the TP can deliver negative advice or data that it's
6849 * holding in its RAM (for an offloaded connection) even after the VI is
6850 * disabled.
6851 */
6852 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6853 if (rc) {
6854 if_printf(ifp, "disable_vi failed: %d\n", rc);
6855 return (rc);
6856 }
6857
6858 for_each_txq(vi, i, txq) {
6859 TXQ_LOCK(txq);
6860 txq->eq.flags &= ~EQ_ENABLED;
6861 TXQ_UNLOCK(txq);
6862 }
6863
6864 mtx_lock(&vi->tick_mtx);
6865 callout_stop(&vi->tick);
6866 mtx_unlock(&vi->tick_mtx);
6867
6868 PORT_LOCK(pi);
6869 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6870 PORT_UNLOCK(pi);
6871 return (0);
6872 }
6873 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6874 pi->up_vis--;
6875 if (pi->up_vis > 0) {
6876 PORT_UNLOCK(pi);
6877 return (0);
6878 }
6879
6880 pi->link_cfg.link_ok = false;
6881 pi->link_cfg.speed = 0;
6882 pi->link_cfg.link_down_rc = 255;
6883 t4_os_link_changed(pi);
6884 PORT_UNLOCK(pi);
6885
6886 return (0);
6887 }
6888
6889 /*
6890 * It is ok for this function to fail midway and return right away. t4_detach
6891 * will walk the entire sc->irq list and clean up whatever is valid.
6892 */
6893 int
t4_setup_intr_handlers(struct adapter * sc)6894 t4_setup_intr_handlers(struct adapter *sc)
6895 {
6896 int rc, rid, p, q, v;
6897 char s[8];
6898 struct irq *irq;
6899 struct port_info *pi;
6900 struct vi_info *vi;
6901 struct sge *sge = &sc->sge;
6902 struct sge_rxq *rxq;
6903 #ifdef TCP_OFFLOAD
6904 struct sge_ofld_rxq *ofld_rxq;
6905 #endif
6906 #ifdef DEV_NETMAP
6907 struct sge_nm_rxq *nm_rxq;
6908 #endif
6909 #ifdef RSS
6910 int nbuckets = rss_getnumbuckets();
6911 #endif
6912
6913 /*
6914 * Setup interrupts.
6915 */
6916 irq = &sc->irq[0];
6917 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6918 if (forwarding_intr_to_fwq(sc))
6919 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6920
6921 /* Multiple interrupts. */
6922 if (sc->flags & IS_VF)
6923 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6924 ("%s: too few intr.", __func__));
6925 else
6926 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6927 ("%s: too few intr.", __func__));
6928
6929 /* The first one is always error intr on PFs */
6930 if (!(sc->flags & IS_VF)) {
6931 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6932 if (rc != 0)
6933 return (rc);
6934 irq++;
6935 rid++;
6936 }
6937
6938 /* The second one is always the firmware event queue (first on VFs) */
6939 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6940 if (rc != 0)
6941 return (rc);
6942 irq++;
6943 rid++;
6944
6945 for_each_port(sc, p) {
6946 pi = sc->port[p];
6947 for_each_vi(pi, v, vi) {
6948 vi->first_intr = rid - 1;
6949
6950 if (vi->nnmrxq > 0) {
6951 int n = max(vi->nrxq, vi->nnmrxq);
6952
6953 rxq = &sge->rxq[vi->first_rxq];
6954 #ifdef DEV_NETMAP
6955 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6956 #endif
6957 for (q = 0; q < n; q++) {
6958 snprintf(s, sizeof(s), "%x%c%x", p,
6959 'a' + v, q);
6960 if (q < vi->nrxq)
6961 irq->rxq = rxq++;
6962 #ifdef DEV_NETMAP
6963 if (q < vi->nnmrxq)
6964 irq->nm_rxq = nm_rxq++;
6965
6966 if (irq->nm_rxq != NULL &&
6967 irq->rxq == NULL) {
6968 /* Netmap rx only */
6969 rc = t4_alloc_irq(sc, irq, rid,
6970 t4_nm_intr, irq->nm_rxq, s);
6971 }
6972 if (irq->nm_rxq != NULL &&
6973 irq->rxq != NULL) {
6974 /* NIC and Netmap rx */
6975 rc = t4_alloc_irq(sc, irq, rid,
6976 t4_vi_intr, irq, s);
6977 }
6978 #endif
6979 if (irq->rxq != NULL &&
6980 irq->nm_rxq == NULL) {
6981 /* NIC rx only */
6982 rc = t4_alloc_irq(sc, irq, rid,
6983 t4_intr, irq->rxq, s);
6984 }
6985 if (rc != 0)
6986 return (rc);
6987 #ifdef RSS
6988 if (q < vi->nrxq) {
6989 bus_bind_intr(sc->dev, irq->res,
6990 rss_getcpu(q % nbuckets));
6991 }
6992 #endif
6993 irq++;
6994 rid++;
6995 vi->nintr++;
6996 }
6997 } else {
6998 for_each_rxq(vi, q, rxq) {
6999 snprintf(s, sizeof(s), "%x%c%x", p,
7000 'a' + v, q);
7001 rc = t4_alloc_irq(sc, irq, rid,
7002 t4_intr, rxq, s);
7003 if (rc != 0)
7004 return (rc);
7005 #ifdef RSS
7006 bus_bind_intr(sc->dev, irq->res,
7007 rss_getcpu(q % nbuckets));
7008 #endif
7009 irq++;
7010 rid++;
7011 vi->nintr++;
7012 }
7013 }
7014 #ifdef TCP_OFFLOAD
7015 for_each_ofld_rxq(vi, q, ofld_rxq) {
7016 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
7017 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
7018 ofld_rxq, s);
7019 if (rc != 0)
7020 return (rc);
7021 irq++;
7022 rid++;
7023 vi->nintr++;
7024 }
7025 #endif
7026 }
7027 }
7028 MPASS(irq == &sc->irq[sc->intr_count]);
7029
7030 return (0);
7031 }
7032
7033 static void
write_global_rss_key(struct adapter * sc)7034 write_global_rss_key(struct adapter *sc)
7035 {
7036 int i;
7037 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7038 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7039
7040 CTASSERT(RSS_KEYSIZE == 40);
7041
7042 rss_getkey((void *)&raw_rss_key[0]);
7043 for (i = 0; i < nitems(rss_key); i++) {
7044 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
7045 }
7046 t4_write_rss_key(sc, &rss_key[0], -1, 1);
7047 }
7048
7049 /*
7050 * Idempotent.
7051 */
7052 static int
adapter_full_init(struct adapter * sc)7053 adapter_full_init(struct adapter *sc)
7054 {
7055 int rc, i;
7056
7057 ASSERT_SYNCHRONIZED_OP(sc);
7058
7059 /*
7060 * queues that belong to the adapter (not any particular port).
7061 */
7062 rc = t4_setup_adapter_queues(sc);
7063 if (rc != 0)
7064 return (rc);
7065
7066 MPASS(sc->params.nports <= nitems(sc->tq));
7067 for (i = 0; i < sc->params.nports; i++) {
7068 if (sc->tq[i] != NULL)
7069 continue;
7070 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
7071 taskqueue_thread_enqueue, &sc->tq[i]);
7072 if (sc->tq[i] == NULL) {
7073 CH_ERR(sc, "failed to allocate task queue %d\n", i);
7074 return (ENOMEM);
7075 }
7076 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
7077 device_get_nameunit(sc->dev), i);
7078 }
7079
7080 if (!(sc->flags & IS_VF)) {
7081 write_global_rss_key(sc);
7082 t4_intr_enable(sc);
7083 }
7084 return (0);
7085 }
7086
7087 int
adapter_init(struct adapter * sc)7088 adapter_init(struct adapter *sc)
7089 {
7090 int rc;
7091
7092 ASSERT_SYNCHRONIZED_OP(sc);
7093 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
7094 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
7095 ("%s: FULL_INIT_DONE already", __func__));
7096
7097 rc = adapter_full_init(sc);
7098 if (rc != 0)
7099 adapter_full_uninit(sc);
7100 else
7101 sc->flags |= FULL_INIT_DONE;
7102
7103 return (rc);
7104 }
7105
7106 /*
7107 * Idempotent.
7108 */
7109 static void
adapter_full_uninit(struct adapter * sc)7110 adapter_full_uninit(struct adapter *sc)
7111 {
7112 int i;
7113
7114 t4_teardown_adapter_queues(sc);
7115
7116 for (i = 0; i < nitems(sc->tq); i++) {
7117 if (sc->tq[i] == NULL)
7118 continue;
7119 taskqueue_free(sc->tq[i]);
7120 sc->tq[i] = NULL;
7121 }
7122
7123 sc->flags &= ~FULL_INIT_DONE;
7124 }
7125
7126 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
7127 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
7128 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
7129 RSS_HASHTYPE_RSS_UDP_IPV6)
7130
7131 /* Translates kernel hash types to hardware. */
7132 static int
hashconfig_to_hashen(int hashconfig)7133 hashconfig_to_hashen(int hashconfig)
7134 {
7135 int hashen = 0;
7136
7137 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
7138 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
7139 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
7140 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
7141 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
7142 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7143 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7144 }
7145 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
7146 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7147 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7148 }
7149 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
7150 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7151 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
7152 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7153
7154 return (hashen);
7155 }
7156
7157 /* Translates hardware hash types to kernel. */
7158 static int
hashen_to_hashconfig(int hashen)7159 hashen_to_hashconfig(int hashen)
7160 {
7161 int hashconfig = 0;
7162
7163 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
7164 /*
7165 * If UDP hashing was enabled it must have been enabled for
7166 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
7167 * enabling any 4-tuple hash is nonsense configuration.
7168 */
7169 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7170 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
7171
7172 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7173 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
7174 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7175 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
7176 }
7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7178 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7180 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
7181 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
7182 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
7183 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
7184 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
7185
7186 return (hashconfig);
7187 }
7188
7189 /*
7190 * Idempotent.
7191 */
7192 static int
vi_full_init(struct vi_info * vi)7193 vi_full_init(struct vi_info *vi)
7194 {
7195 struct adapter *sc = vi->adapter;
7196 struct sge_rxq *rxq;
7197 int rc, i, j;
7198 int hashconfig = rss_gethashconfig();
7199 #ifdef RSS
7200 int nbuckets = rss_getnumbuckets();
7201 int extra;
7202 #endif
7203
7204 ASSERT_SYNCHRONIZED_OP(sc);
7205
7206 /*
7207 * Allocate tx/rx/fl queues for this VI.
7208 */
7209 rc = t4_setup_vi_queues(vi);
7210 if (rc != 0)
7211 return (rc);
7212
7213 /*
7214 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7215 */
7216 if (vi->nrxq > vi->rss_size) {
7217 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7218 "some queues will never receive traffic.\n", vi->nrxq,
7219 vi->rss_size);
7220 } else if (vi->rss_size % vi->nrxq) {
7221 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7222 "expect uneven traffic distribution.\n", vi->nrxq,
7223 vi->rss_size);
7224 }
7225 #ifdef RSS
7226 if (vi->nrxq != nbuckets) {
7227 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7228 "performance will be impacted.\n", vi->nrxq, nbuckets);
7229 }
7230 #endif
7231 if (vi->rss == NULL)
7232 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7233 M_ZERO | M_WAITOK);
7234 for (i = 0; i < vi->rss_size;) {
7235 #ifdef RSS
7236 j = rss_get_indirection_to_bucket(i);
7237 j %= vi->nrxq;
7238 rxq = &sc->sge.rxq[vi->first_rxq + j];
7239 vi->rss[i++] = rxq->iq.abs_id;
7240 #else
7241 for_each_rxq(vi, j, rxq) {
7242 vi->rss[i++] = rxq->iq.abs_id;
7243 if (i == vi->rss_size)
7244 break;
7245 }
7246 #endif
7247 }
7248
7249 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7250 vi->rss, vi->rss_size);
7251 if (rc != 0) {
7252 CH_ERR(vi, "rss_config failed: %d\n", rc);
7253 return (rc);
7254 }
7255
7256 vi->hashen = hashconfig_to_hashen(hashconfig);
7257
7258 #ifdef RSS
7259 /*
7260 * We may have had to enable some hashes even though the global config
7261 * wants them disabled. This is a potential problem that must be
7262 * reported to the user.
7263 */
7264 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7265
7266 /*
7267 * If we consider only the supported hash types, then the enabled hashes
7268 * are a superset of the requested hashes. In other words, there cannot
7269 * be any supported hash that was requested but not enabled, but there
7270 * can be hashes that were not requested but had to be enabled.
7271 */
7272 extra &= SUPPORTED_RSS_HASHTYPES;
7273 MPASS((extra & hashconfig) == 0);
7274
7275 if (extra) {
7276 CH_ALERT(vi,
7277 "global RSS config (0x%x) cannot be accommodated.\n",
7278 hashconfig);
7279 }
7280 if (extra & RSS_HASHTYPE_RSS_IPV4)
7281 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7282 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7283 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7284 if (extra & RSS_HASHTYPE_RSS_IPV6)
7285 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7286 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7287 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7288 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7289 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7290 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7291 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7292 #endif
7293 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7294 0, 0);
7295 if (rc != 0) {
7296 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7297 return (rc);
7298 }
7299
7300 return (0);
7301 }
7302
7303 int
vi_init(struct vi_info * vi)7304 vi_init(struct vi_info *vi)
7305 {
7306 int rc;
7307
7308 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7309 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7310 ("%s: VI_INIT_DONE already", __func__));
7311
7312 rc = vi_full_init(vi);
7313 if (rc != 0)
7314 vi_full_uninit(vi);
7315 else
7316 vi->flags |= VI_INIT_DONE;
7317
7318 return (rc);
7319 }
7320
7321 /*
7322 * Idempotent.
7323 */
7324 static void
vi_full_uninit(struct vi_info * vi)7325 vi_full_uninit(struct vi_info *vi)
7326 {
7327
7328 if (vi->flags & VI_INIT_DONE) {
7329 quiesce_vi(vi);
7330 free(vi->rss, M_CXGBE);
7331 free(vi->nm_rss, M_CXGBE);
7332 }
7333
7334 t4_teardown_vi_queues(vi);
7335 vi->flags &= ~VI_INIT_DONE;
7336 }
7337
7338 static void
quiesce_txq(struct sge_txq * txq)7339 quiesce_txq(struct sge_txq *txq)
7340 {
7341 struct sge_eq *eq = &txq->eq;
7342 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7343
7344 MPASS(eq->flags & EQ_SW_ALLOCATED);
7345 MPASS(!(eq->flags & EQ_ENABLED));
7346
7347 /* Wait for the mp_ring to empty. */
7348 while (!mp_ring_is_idle(txq->r)) {
7349 mp_ring_check_drainage(txq->r, 4096);
7350 pause("rquiesce", 1);
7351 }
7352 MPASS(txq->txp.npkt == 0);
7353
7354 if (eq->flags & EQ_HW_ALLOCATED) {
7355 /*
7356 * Hardware is alive and working normally. Wait for it to
7357 * finish and then wait for the driver to catch up and reclaim
7358 * all descriptors.
7359 */
7360 while (spg->cidx != htobe16(eq->pidx))
7361 pause("equiesce", 1);
7362 while (eq->cidx != eq->pidx)
7363 pause("dquiesce", 1);
7364 } else {
7365 /*
7366 * Hardware is unavailable. Discard all pending tx and reclaim
7367 * descriptors directly.
7368 */
7369 TXQ_LOCK(txq);
7370 while (eq->cidx != eq->pidx) {
7371 struct mbuf *m, *nextpkt;
7372 struct tx_sdesc *txsd;
7373
7374 txsd = &txq->sdesc[eq->cidx];
7375 for (m = txsd->m; m != NULL; m = nextpkt) {
7376 nextpkt = m->m_nextpkt;
7377 m->m_nextpkt = NULL;
7378 m_freem(m);
7379 }
7380 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7381 }
7382 spg->pidx = spg->cidx = htobe16(eq->cidx);
7383 TXQ_UNLOCK(txq);
7384 }
7385 }
7386
7387 static void
quiesce_wrq(struct sge_wrq * wrq)7388 quiesce_wrq(struct sge_wrq *wrq)
7389 {
7390 struct wrqe *wr;
7391
7392 TXQ_LOCK(wrq);
7393 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7394 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7395 #ifdef INVARIANTS
7396 wrq->nwr_pending--;
7397 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7398 #endif
7399 free(wr, M_CXGBE);
7400 }
7401 MPASS(wrq->nwr_pending == 0);
7402 MPASS(wrq->ndesc_needed == 0);
7403 wrq->nwr_pending = 0;
7404 wrq->ndesc_needed = 0;
7405 TXQ_UNLOCK(wrq);
7406 }
7407
7408 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7409 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7410 {
7411 /* Synchronize with the interrupt handler */
7412 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7413 pause("iqfree", 1);
7414
7415 if (fl != NULL) {
7416 MPASS(iq->flags & IQ_HAS_FL);
7417
7418 mtx_lock(&sc->sfl_lock);
7419 FL_LOCK(fl);
7420 fl->flags |= FL_DOOMED;
7421 FL_UNLOCK(fl);
7422 callout_stop(&sc->sfl_callout);
7423 mtx_unlock(&sc->sfl_lock);
7424
7425 KASSERT((fl->flags & FL_STARVING) == 0,
7426 ("%s: still starving", __func__));
7427
7428 /* Release all buffers if hardware is no longer available. */
7429 if (!(iq->flags & IQ_HW_ALLOCATED))
7430 free_fl_buffers(sc, fl);
7431 }
7432 }
7433
7434 /*
7435 * Wait for all activity on all the queues of the VI to complete. It is assumed
7436 * that no new work is being enqueued by the hardware or the driver. That part
7437 * should be arranged before calling this function.
7438 */
7439 static void
quiesce_vi(struct vi_info * vi)7440 quiesce_vi(struct vi_info *vi)
7441 {
7442 int i;
7443 struct adapter *sc = vi->adapter;
7444 struct sge_rxq *rxq;
7445 struct sge_txq *txq;
7446 #ifdef TCP_OFFLOAD
7447 struct sge_ofld_rxq *ofld_rxq;
7448 #endif
7449 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7450 struct sge_ofld_txq *ofld_txq;
7451 #endif
7452
7453 if (!(vi->flags & VI_INIT_DONE))
7454 return;
7455
7456 for_each_txq(vi, i, txq) {
7457 quiesce_txq(txq);
7458 }
7459
7460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7461 for_each_ofld_txq(vi, i, ofld_txq) {
7462 quiesce_wrq(&ofld_txq->wrq);
7463 }
7464 #endif
7465
7466 for_each_rxq(vi, i, rxq) {
7467 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7468 }
7469
7470 #ifdef TCP_OFFLOAD
7471 for_each_ofld_rxq(vi, i, ofld_rxq) {
7472 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7473 }
7474 #endif
7475 }
7476
7477 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7478 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7479 driver_intr_t *handler, void *arg, char *name)
7480 {
7481 int rc;
7482
7483 irq->rid = rid;
7484 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7485 RF_SHAREABLE | RF_ACTIVE);
7486 if (irq->res == NULL) {
7487 device_printf(sc->dev,
7488 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7489 return (ENOMEM);
7490 }
7491
7492 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7493 NULL, handler, arg, &irq->tag);
7494 if (rc != 0) {
7495 device_printf(sc->dev,
7496 "failed to setup interrupt for rid %d, name %s: %d\n",
7497 rid, name, rc);
7498 } else if (name)
7499 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7500
7501 return (rc);
7502 }
7503
7504 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7505 t4_free_irq(struct adapter *sc, struct irq *irq)
7506 {
7507 if (irq->tag)
7508 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7509 if (irq->res)
7510 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7511
7512 bzero(irq, sizeof(*irq));
7513
7514 return (0);
7515 }
7516
7517 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7518 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7519 {
7520
7521 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7522 t4_get_regs(sc, buf, regs->len);
7523 }
7524
7525 #define A_PL_INDIR_CMD 0x1f8
7526
7527 #define S_PL_AUTOINC 31
7528 #define M_PL_AUTOINC 0x1U
7529 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7530 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7531
7532 #define S_PL_VFID 20
7533 #define M_PL_VFID 0xffU
7534 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7535 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7536
7537 #define S_PL_ADDR 0
7538 #define M_PL_ADDR 0xfffffU
7539 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7540 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7541
7542 #define A_PL_INDIR_DATA 0x1fc
7543
7544 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7545 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7546 {
7547 u32 stats[2];
7548
7549 if (sc->flags & IS_VF) {
7550 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7551 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7552 } else {
7553 mtx_assert(&sc->reg_lock, MA_OWNED);
7554 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7555 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7556 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7557 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7558 }
7559 return (((uint64_t)stats[1]) << 32 | stats[0]);
7560 }
7561
7562 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7563 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7564 {
7565
7566 #define GET_STAT(name) \
7567 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7568
7569 if (!(sc->flags & IS_VF))
7570 mtx_lock(&sc->reg_lock);
7571 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7572 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7573 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7574 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7575 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7576 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7577 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7578 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7579 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7580 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7581 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7582 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7583 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7584 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7585 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7586 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7587 if (!(sc->flags & IS_VF))
7588 mtx_unlock(&sc->reg_lock);
7589
7590 #undef GET_STAT
7591 }
7592
7593 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7594 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7595 {
7596 int reg;
7597
7598 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7599 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7600 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7601 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7602 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7603 }
7604
7605 static void
vi_refresh_stats(struct vi_info * vi)7606 vi_refresh_stats(struct vi_info *vi)
7607 {
7608 struct timeval tv;
7609 const struct timeval interval = {0, 250000}; /* 250ms */
7610
7611 mtx_assert(&vi->tick_mtx, MA_OWNED);
7612
7613 if (vi->flags & VI_SKIP_STATS)
7614 return;
7615
7616 getmicrotime(&tv);
7617 timevalsub(&tv, &interval);
7618 if (timevalcmp(&tv, &vi->last_refreshed, <))
7619 return;
7620
7621 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7622 getmicrotime(&vi->last_refreshed);
7623 }
7624
7625 static void
cxgbe_refresh_stats(struct vi_info * vi)7626 cxgbe_refresh_stats(struct vi_info *vi)
7627 {
7628 u_int i, v, tnl_cong_drops, chan_map;
7629 struct timeval tv;
7630 const struct timeval interval = {0, 250000}; /* 250ms */
7631 struct port_info *pi;
7632 struct adapter *sc;
7633
7634 mtx_assert(&vi->tick_mtx, MA_OWNED);
7635
7636 if (vi->flags & VI_SKIP_STATS)
7637 return;
7638
7639 getmicrotime(&tv);
7640 timevalsub(&tv, &interval);
7641 if (timevalcmp(&tv, &vi->last_refreshed, <))
7642 return;
7643
7644 pi = vi->pi;
7645 sc = vi->adapter;
7646 tnl_cong_drops = 0;
7647 t4_get_port_stats(sc, pi->hw_port, &pi->stats);
7648 chan_map = pi->rx_e_chan_map;
7649 while (chan_map) {
7650 i = ffs(chan_map) - 1;
7651 mtx_lock(&sc->reg_lock);
7652 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7653 A_TP_MIB_TNL_CNG_DROP_0 + i);
7654 mtx_unlock(&sc->reg_lock);
7655 tnl_cong_drops += v;
7656 chan_map &= ~(1 << i);
7657 }
7658 pi->tnl_cong_drops = tnl_cong_drops;
7659 getmicrotime(&vi->last_refreshed);
7660 }
7661
7662 static void
cxgbe_tick(void * arg)7663 cxgbe_tick(void *arg)
7664 {
7665 struct vi_info *vi = arg;
7666
7667 MPASS(IS_MAIN_VI(vi));
7668 mtx_assert(&vi->tick_mtx, MA_OWNED);
7669
7670 cxgbe_refresh_stats(vi);
7671 callout_schedule(&vi->tick, hz);
7672 }
7673
7674 static void
vi_tick(void * arg)7675 vi_tick(void *arg)
7676 {
7677 struct vi_info *vi = arg;
7678
7679 mtx_assert(&vi->tick_mtx, MA_OWNED);
7680
7681 vi_refresh_stats(vi);
7682 callout_schedule(&vi->tick, hz);
7683 }
7684
7685 /* CIM inbound queues */
7686 static const char *t4_ibq[CIM_NUM_IBQ] = {
7687 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi"
7688 };
7689 static const char *t7_ibq[CIM_NUM_IBQ_T7] = {
7690 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7691 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3",
7692 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7"
7693 };
7694 static const char *t7_ibq_sec[] = {
7695 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7696 NULL, NULL, NULL, "ibq_ipc0"
7697 };
7698
7699 /* CIM outbound queues */
7700 static const char *t4_obq[CIM_NUM_OBQ_T5] = {
7701 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7702 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */
7703 };
7704 static const char *t7_obq[CIM_NUM_OBQ_T7] = {
7705 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7706 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3",
7707 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7"
7708 };
7709 static const char *t7_obq_sec[] = {
7710 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL,
7711 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0"
7712 };
7713
7714 static void
cim_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * c0)7715 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
7716 struct sysctl_oid_list *c0)
7717 {
7718 struct sysctl_oid *oid;
7719 struct sysctl_oid_list *children1;
7720 int i, j, qcount;
7721 char s[16];
7722 const char **qname;
7723
7724 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim",
7725 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block");
7726 c0 = SYSCTL_CHILDREN(oid);
7727
7728 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL,
7729 sc->params.ncores, "# of active CIM cores");
7730
7731 for (i = 0; i < sc->params.ncores; i++) {
7732 snprintf(s, sizeof(s), "%u", i);
7733 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s,
7734 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core");
7735 children1 = SYSCTL_CHILDREN(oid);
7736
7737 /*
7738 * CTLFLAG_SKIP because the misc.devlog sysctl already displays
7739 * the log for all cores. Use this sysctl to get the log for a
7740 * particular core only.
7741 */
7742 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog",
7743 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7744 sc, i, sysctl_devlog, "A", "firmware's device log");
7745
7746 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg",
7747 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7748 sysctl_loadavg, "A",
7749 "microprocessor load averages (select firmwares only)");
7750
7751 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg",
7752 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7753 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg,
7754 "A", "Queue configuration");
7755
7756 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la",
7757 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7758 sysctl_cim_la, "A", "Logic analyzer");
7759
7760 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la",
7761 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7762 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7763
7764 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la",
7765 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7766 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7767
7768 /* IBQs */
7769 switch (chip_id(sc)) {
7770 case CHELSIO_T4:
7771 case CHELSIO_T5:
7772 case CHELSIO_T6:
7773 qname = &t4_ibq[0];
7774 qcount = nitems(t4_ibq);
7775 break;
7776 case CHELSIO_T7:
7777 default:
7778 if (i == 0) {
7779 qname = &t7_ibq[0];
7780 qcount = nitems(t7_ibq);
7781 } else {
7782 qname = &t7_ibq_sec[0];
7783 qcount = nitems(t7_ibq_sec);
7784 }
7785 break;
7786 }
7787 MPASS(qcount <= sc->chip_params->cim_num_ibq);
7788 for (j = 0; j < qcount; j++) {
7789 if (qname[j] == NULL)
7790 continue;
7791 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7792 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7793 (i << 16) | j, sysctl_cim_ibq, "A", NULL);
7794 }
7795
7796 /* OBQs */
7797 switch (chip_id(sc)) {
7798 case CHELSIO_T4:
7799 qname = t4_obq;
7800 qcount = CIM_NUM_OBQ;
7801 break;
7802 case CHELSIO_T5:
7803 case CHELSIO_T6:
7804 qname = t4_obq;
7805 qcount = nitems(t4_obq);
7806 break;
7807 case CHELSIO_T7:
7808 default:
7809 if (i == 0) {
7810 qname = t7_obq;
7811 qcount = nitems(t7_obq);
7812 } else {
7813 qname = t7_obq_sec;
7814 qcount = nitems(t7_obq_sec);
7815 }
7816 break;
7817 }
7818 MPASS(qcount <= sc->chip_params->cim_num_obq);
7819 for (j = 0; j < qcount; j++) {
7820 if (qname[j] == NULL)
7821 continue;
7822 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7823 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7824 (i << 16) | j, sysctl_cim_obq, "A", NULL);
7825 }
7826 }
7827 }
7828
7829 /*
7830 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7831 */
7832 static char *caps_decoder[] = {
7833 "\20\001IPMI\002NCSI", /* 0: NBM */
7834 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7835 "\20\001INGRESS\002EGRESS", /* 2: switch */
7836 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7837 "\006HASHFILTER\007ETHOFLD",
7838 "\20\001TOE\002SENDPATH", /* 4: TOE */
7839 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */
7840 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7841 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7842 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7843 "\007T10DIF"
7844 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7845 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7846 "\004TLS_HW,\005TOE_IPSEC",
7847 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7848 "\004PO_INITIATOR\005PO_TARGET",
7849 "\20\001NVMe_TCP", /* 9: NVMe */
7850 };
7851
7852 void
t4_sysctls(struct adapter * sc)7853 t4_sysctls(struct adapter *sc)
7854 {
7855 struct sysctl_ctx_list *ctx = &sc->ctx;
7856 struct sysctl_oid *oid;
7857 struct sysctl_oid_list *children, *c0;
7858 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7859
7860 /*
7861 * dev.t4nex.X.
7862 */
7863 oid = device_get_sysctl_tree(sc->dev);
7864 c0 = children = SYSCTL_CHILDREN(oid);
7865
7866 sc->sc_do_rxcopy = 1;
7867 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7868 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7869
7870 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7871 sc->params.nports, "# of ports");
7872
7873 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7874 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7875 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7876 "available doorbells");
7877
7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7879 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7880
7881 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7882 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7883 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7884 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7885
7886 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7887 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7888 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7889 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7890
7891 t4_sge_sysctls(sc, ctx, children);
7892
7893 sc->lro_timeout = 100;
7894 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7895 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7896
7897 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7898 &sc->debug_flags, 0, "flags to enable runtime debugging");
7899
7900 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW,
7901 &sc->intr_flags, 0, "flags for the slow interrupt handler");
7902
7903 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7904 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7905
7906 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7907 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7908
7909 if (sc->flags & IS_VF)
7910 return;
7911
7912 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7913 NULL, chip_rev(sc), "chip hardware revision");
7914
7915 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7916 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7917
7918 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7919 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7920
7921 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7922 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7923
7924 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7925 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7926
7927 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7928 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7929
7930 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7931 sc->er_version, 0, "expansion ROM version");
7932
7933 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7934 sc->bs_version, 0, "bootstrap firmware version");
7935
7936 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7937 NULL, sc->params.scfg_vers, "serial config version");
7938
7939 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7940 NULL, sc->params.vpd_vers, "VPD version");
7941
7942 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7943 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7944
7945 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7946 sc->cfcsum, "config file checksum");
7947
7948 #define SYSCTL_CAP(name, n, text) \
7949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7950 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7951 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7952 "available " text " capabilities")
7953
7954 SYSCTL_CAP(nbmcaps, 0, "NBM");
7955 SYSCTL_CAP(linkcaps, 1, "link");
7956 SYSCTL_CAP(switchcaps, 2, "switch");
7957 SYSCTL_CAP(nvmecaps, 9, "NVMe");
7958 SYSCTL_CAP(niccaps, 3, "NIC");
7959 SYSCTL_CAP(toecaps, 4, "TCP offload");
7960 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7961 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7962 SYSCTL_CAP(cryptocaps, 7, "crypto");
7963 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7964 #undef SYSCTL_CAP
7965
7966 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7967 NULL, sc->tids.nftids, "number of filters");
7968
7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7970 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7971 sysctl_temperature, "I", "chip temperature (in Celsius)");
7972 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7973 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7974 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7975
7976 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7977 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7978 "I", "core Vdd (in mV)");
7979
7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7981 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7982 sysctl_cpus, "A", "local CPUs");
7983
7984 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7985 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7986 sysctl_cpus, "A", "preferred CPUs for interrupts");
7987
7988 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7989 &sc->swintr, 0, "software triggered interrupts");
7990
7991 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7992 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7993 "1 = reset adapter, 0 = zero reset counter");
7994
7995 /*
7996 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7997 */
7998 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7999 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
8000 "logs and miscellaneous information");
8001 children = SYSCTL_CHILDREN(oid);
8002
8003 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
8004 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8005 sysctl_cctrl, "A", "congestion control");
8006
8007 cim_sysctls(sc, ctx, children);
8008
8009 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
8010 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8011 sysctl_cpl_stats, "A", "CPL statistics");
8012
8013 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
8014 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8015 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
8016
8017 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
8018 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8019 sysctl_tid_stats, "A", "tid stats");
8020
8021 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
8022 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1,
8023 sysctl_devlog, "A", "firmware's device log (all cores)");
8024
8025 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
8026 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8027 sysctl_fcoe_stats, "A", "FCoE statistics");
8028
8029 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8031 sysctl_hw_sched, "A", "hardware scheduler ");
8032
8033 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
8034 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8035 sysctl_l2t, "A", "hardware L2 table");
8036
8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
8038 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8039 sysctl_smt, "A", "hardware source MAC table");
8040
8041 #ifdef INET6
8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
8043 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8044 sysctl_clip, "A", "active CLIP table entries");
8045 #endif
8046
8047 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
8048 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8049 sysctl_lb_stats, "A", "loopback statistics");
8050
8051 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
8052 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8053 sysctl_meminfo, "A", "memory regions");
8054
8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
8056 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8057 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 :
8058 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam),
8059 "A", "MPS TCAM entries");
8060
8061 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
8062 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8063 sysctl_path_mtus, "A", "path MTUs");
8064
8065 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
8066 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8067 sysctl_pm_stats, "A", "PM statistics");
8068
8069 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
8070 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8071 sysctl_rdma_stats, "A", "RDMA statistics");
8072
8073 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
8074 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8075 sysctl_tcp_stats, "A", "TCP statistics");
8076
8077 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
8078 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8079 sysctl_tids, "A", "TID information");
8080
8081 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
8082 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8083 sysctl_tp_err_stats, "A", "TP error statistics");
8084
8085 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
8086 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8087 sysctl_tnl_stats, "A", "TP tunnel statistics");
8088
8089 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
8090 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
8091 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
8092
8093 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
8094 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8095 sysctl_tp_la, "A", "TP logic analyzer");
8096
8097 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
8098 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8099 sysctl_tx_rate, "A", "Tx rate");
8100
8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
8102 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8103 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
8104
8105 if (chip_id(sc) >= CHELSIO_T5) {
8106 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
8107 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8108 sysctl_wcwr_stats, "A", "write combined work requests");
8109 }
8110
8111 #ifdef KERN_TLS
8112 if (is_ktls(sc)) {
8113 /*
8114 * dev.t4nex.0.tls.
8115 */
8116 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
8117 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
8118 children = SYSCTL_CHILDREN(oid);
8119
8120 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
8121 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
8122 "keys in work requests (1) or attempt to store TLS keys "
8123 "in card memory.");
8124
8125 if (is_t6(sc))
8126 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
8127 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
8128 "combine TCB field updates with TLS record work "
8129 "requests.");
8130 else {
8131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records",
8132 CTLFLAG_RW, &sc->tlst.short_records, 0,
8133 "Use cipher-only mode for short records.");
8134 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash",
8135 CTLFLAG_RW, &sc->tlst.partial_ghash, 0,
8136 "Use partial GHASH for AES-GCM records.");
8137 }
8138 }
8139 #endif
8140
8141 #ifdef TCP_OFFLOAD
8142 if (is_offload(sc)) {
8143 int i;
8144 char s[4];
8145
8146 /*
8147 * dev.t4nex.X.toe.
8148 */
8149 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
8150 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
8151 children = SYSCTL_CHILDREN(oid);
8152
8153 sc->tt.cong_algorithm = -1;
8154 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
8155 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
8156 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
8157 "3 = highspeed)");
8158
8159 sc->tt.sndbuf = -1;
8160 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
8161 &sc->tt.sndbuf, 0, "hardware send buffer");
8162
8163 sc->tt.ddp = 0;
8164 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
8165 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
8166 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
8167 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
8168
8169 sc->tt.rx_coalesce = -1;
8170 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
8171 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
8172
8173 sc->tt.tls = 1;
8174 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
8175 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
8176 "Inline TLS allowed");
8177
8178 sc->tt.tx_align = -1;
8179 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
8180 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
8181
8182 sc->tt.tx_zcopy = 0;
8183 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
8184 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
8185 "Enable zero-copy aio_write(2)");
8186
8187 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
8188 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8189 "cop_managed_offloading", CTLFLAG_RW,
8190 &sc->tt.cop_managed_offloading, 0,
8191 "COP (Connection Offload Policy) controls all TOE offload");
8192
8193 sc->tt.autorcvbuf_inc = 16 * 1024;
8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
8195 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
8196 "autorcvbuf increment");
8197
8198 sc->tt.update_hc_on_pmtu_change = 1;
8199 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8200 "update_hc_on_pmtu_change", CTLFLAG_RW,
8201 &sc->tt.update_hc_on_pmtu_change, 0,
8202 "Update hostcache entry if the PMTU changes");
8203
8204 sc->tt.iso = 1;
8205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
8206 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
8207
8208 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
8209 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8210 sysctl_tp_tick, "A", "TP timer tick (us)");
8211
8212 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
8213 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
8214 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
8215
8216 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
8217 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
8218 sysctl_tp_tick, "A", "DACK tick (us)");
8219
8220 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
8221 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8222 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
8223
8224 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
8225 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8226 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
8227 "Minimum retransmit interval (us)");
8228
8229 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
8230 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8231 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
8232 "Maximum retransmit interval (us)");
8233
8234 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
8235 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8236 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
8237 "Persist timer min (us)");
8238
8239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
8240 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8241 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
8242 "Persist timer max (us)");
8243
8244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
8245 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8246 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
8247 "Keepalive idle timer (us)");
8248
8249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
8250 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8251 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
8252 "Keepalive interval timer (us)");
8253
8254 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
8255 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8256 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
8257
8258 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
8259 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8260 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
8261 "FINWAIT2 timer (us)");
8262
8263 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
8264 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8265 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
8266 "Number of SYN retransmissions before abort");
8267
8268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
8269 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8270 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
8271 "Number of retransmissions before abort");
8272
8273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
8274 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8275 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
8276 "Number of keepalive probes before abort");
8277
8278 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
8279 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8280 "TOE retransmit backoffs");
8281 children = SYSCTL_CHILDREN(oid);
8282 for (i = 0; i < 16; i++) {
8283 snprintf(s, sizeof(s), "%u", i);
8284 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8285 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8286 i, sysctl_tp_backoff, "IU",
8287 "TOE retransmit backoff");
8288 }
8289 }
8290 #endif
8291 }
8292
8293 void
vi_sysctls(struct vi_info * vi)8294 vi_sysctls(struct vi_info *vi)
8295 {
8296 struct sysctl_ctx_list *ctx = &vi->ctx;
8297 struct sysctl_oid *oid;
8298 struct sysctl_oid_list *children;
8299
8300 /*
8301 * dev.v?(cxgbe|cxl).X.
8302 */
8303 oid = device_get_sysctl_tree(vi->dev);
8304 children = SYSCTL_CHILDREN(oid);
8305
8306 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8307 vi->viid, "VI identifer");
8308 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8309 &vi->nrxq, 0, "# of rx queues");
8310 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8311 &vi->ntxq, 0, "# of tx queues");
8312 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8313 &vi->first_rxq, 0, "index of first rx queue");
8314 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8315 &vi->first_txq, 0, "index of first tx queue");
8316 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8317 vi->rss_base, "start of RSS indirection table");
8318 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8319 vi->rss_size, "size of RSS indirection table");
8320
8321 if (IS_MAIN_VI(vi)) {
8322 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8323 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8324 sysctl_noflowq, "IU",
8325 "Reserve queue 0 for non-flowid packets");
8326 }
8327
8328 if (vi->adapter->flags & IS_VF) {
8329 MPASS(vi->flags & TX_USES_VM_WR);
8330 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8331 NULL, 1, "use VM work requests for transmit");
8332 } else {
8333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8334 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8335 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8336 }
8337
8338 #ifdef TCP_OFFLOAD
8339 if (vi->nofldrxq != 0) {
8340 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8341 &vi->nofldrxq, 0,
8342 "# of rx queues for offloaded TCP connections");
8343 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8344 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8345 "index of first TOE rx queue");
8346 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8347 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8348 sysctl_holdoff_tmr_idx_ofld, "I",
8349 "holdoff timer index for TOE queues");
8350 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8351 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8352 sysctl_holdoff_pktc_idx_ofld, "I",
8353 "holdoff packet counter index for TOE queues");
8354 }
8355 #endif
8356 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8357 if (vi->nofldtxq != 0) {
8358 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8359 &vi->nofldtxq, 0,
8360 "# of tx queues for TOE/ETHOFLD");
8361 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8362 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8363 "index of first TOE/ETHOFLD tx queue");
8364 }
8365 #endif
8366 #ifdef DEV_NETMAP
8367 if (vi->nnmrxq != 0) {
8368 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8369 &vi->nnmrxq, 0, "# of netmap rx queues");
8370 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8371 &vi->nnmtxq, 0, "# of netmap tx queues");
8372 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8373 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8374 "index of first netmap rx queue");
8375 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8376 CTLFLAG_RD, &vi->first_nm_txq, 0,
8377 "index of first netmap tx queue");
8378 }
8379 #endif
8380
8381 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8382 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8383 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8384 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8385 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8386 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8387
8388 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8389 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8390 sysctl_qsize_rxq, "I", "rx queue size");
8391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8392 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8393 sysctl_qsize_txq, "I", "tx queue size");
8394 }
8395
8396 static void
cxgbe_sysctls(struct port_info * pi)8397 cxgbe_sysctls(struct port_info *pi)
8398 {
8399 struct sysctl_ctx_list *ctx = &pi->ctx;
8400 struct sysctl_oid *oid;
8401 struct sysctl_oid_list *children, *children2;
8402 struct adapter *sc = pi->adapter;
8403 int i;
8404 char name[16];
8405 static char *tc_flags = {"\20\1USER"};
8406
8407 /*
8408 * dev.cxgbe.X.
8409 */
8410 oid = device_get_sysctl_tree(pi->dev);
8411 children = SYSCTL_CHILDREN(oid);
8412
8413 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8414 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8415 sysctl_linkdnrc, "A", "reason why link is down");
8416 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8417 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8418 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8419 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8421 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8422 sysctl_btphy, "I", "PHY firmware version");
8423 }
8424
8425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8426 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8427 sysctl_pause_settings, "A",
8428 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8430 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8431 "FEC in use on the link");
8432 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8433 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8434 sysctl_requested_fec, "A",
8435 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8437 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8438 "FEC recommended by the cable/transceiver");
8439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8440 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8441 sysctl_autoneg, "I",
8442 "autonegotiation (-1 = not supported)");
8443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8444 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8445 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8446
8447 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8448 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8449 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8450 &pi->link_cfg.pcaps, 0, "port capabilities");
8451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8452 &pi->link_cfg.acaps, 0, "advertised capabilities");
8453 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8454 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8455
8456 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8457 port_top_speed(pi), "max speed (in Gbps)");
8458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8459 pi->mps_bg_map, "MPS buffer group map");
8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8461 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8463 pi->tx_chan, "TP tx c-channel");
8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8465 pi->rx_chan, "TP rx c-channel");
8466
8467 if (sc->flags & IS_VF)
8468 return;
8469
8470 /*
8471 * dev.(cxgbe|cxl).X.tc.
8472 */
8473 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8474 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8475 "Tx scheduler traffic classes (cl_rl)");
8476 children2 = SYSCTL_CHILDREN(oid);
8477 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8478 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8479 "pktsize for per-flow cl-rl (0 means up to the driver )");
8480 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8481 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8482 "burstsize for per-flow cl-rl (0 means up to the driver)");
8483 for (i = 0; i < sc->params.nsched_cls; i++) {
8484 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8485
8486 snprintf(name, sizeof(name), "%d", i);
8487 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8488 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8489 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8490 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8491 CTLFLAG_RD, &tc->state, 0, "current state");
8492 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8494 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8495 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8496 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8497 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8498 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8499 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8500 "traffic class parameters");
8501 }
8502
8503 /*
8504 * dev.cxgbe.X.stats.
8505 */
8506 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8507 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8508 children = SYSCTL_CHILDREN(oid);
8509 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8510 &pi->tx_parse_error, 0,
8511 "# of tx packets with invalid length or # of segments");
8512
8513 #define T4_LBSTAT(name, stat, desc) do { \
8514 if (sc->params.tp.lb_mode) { \
8515 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8516 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \
8517 A_MPS_PORT_STAT_##stat##_L, \
8518 sysctl_handle_t4_portstat64, "QU", desc); \
8519 } else { \
8520 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8521 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8522 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8523 sysctl_handle_t4_reg64, "QU", desc); \
8524 } \
8525 } while (0)
8526
8527 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8528 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8529 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8530 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8531 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8532 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8533 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8534 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8535 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8536 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8537 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8538 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8539 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8540 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8541 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8542 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8543 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8544 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8545 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8546 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8547 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8548 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8549 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8550
8551 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8552 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8553 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8554 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8555 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8556 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8557 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8558 if (is_t6(sc)) {
8559 /* Read from port_stats and may be stale by up to 1s */
8560 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err",
8561 CTLFLAG_RD, &pi->stats.rx_fcs_err,
8562 "# of frames received with bad FCS since last link up");
8563 } else {
8564 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8565 "# of frames received with bad FCS");
8566 }
8567 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8568 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8569 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8570 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8571 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8572 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8573 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8574 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8575 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8576 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8577 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8578 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8579 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8580 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8581 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8582 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8583 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8584 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8585 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8586 #undef T4_LBSTAT
8587
8588 #define T4_REGSTAT(name, stat, desc) do { \
8589 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8590 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8591 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \
8592 } while (0)
8593
8594 if (pi->mps_bg_map & 1) {
8595 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME,
8596 "# drops due to buffer-group 0 overflows");
8597 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME,
8598 "# of buffer-group 0 truncated packets");
8599 }
8600 if (pi->mps_bg_map & 2) {
8601 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME,
8602 "# drops due to buffer-group 1 overflows");
8603 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME,
8604 "# of buffer-group 1 truncated packets");
8605 }
8606 if (pi->mps_bg_map & 4) {
8607 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME,
8608 "# drops due to buffer-group 2 overflows");
8609 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME,
8610 "# of buffer-group 2 truncated packets");
8611 }
8612 if (pi->mps_bg_map & 8) {
8613 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME,
8614 "# drops due to buffer-group 3 overflows");
8615 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME,
8616 "# of buffer-group 3 truncated packets");
8617 }
8618 #undef T4_REGSTAT
8619 }
8620
8621 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8622 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8623 {
8624 int rc, *i, space = 0;
8625 struct sbuf sb;
8626
8627 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8628 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8629 if (space)
8630 sbuf_printf(&sb, " ");
8631 sbuf_printf(&sb, "%d", *i);
8632 space = 1;
8633 }
8634 rc = sbuf_finish(&sb);
8635 sbuf_delete(&sb);
8636 return (rc);
8637 }
8638
8639 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8640 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8641 {
8642 int rc;
8643 struct sbuf *sb;
8644
8645 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8646 if (sb == NULL)
8647 return (ENOMEM);
8648
8649 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8650 rc = sbuf_finish(sb);
8651 sbuf_delete(sb);
8652
8653 return (rc);
8654 }
8655
8656 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8657 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8658 {
8659 int rc;
8660 struct sbuf *sb;
8661
8662 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8663 if (sb == NULL)
8664 return (ENOMEM);
8665
8666 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8667 rc = sbuf_finish(sb);
8668 sbuf_delete(sb);
8669
8670 return (rc);
8671 }
8672
8673 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8674 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8675 {
8676 struct port_info *pi = arg1;
8677 int op = arg2;
8678 struct adapter *sc = pi->adapter;
8679 u_int v;
8680 int rc;
8681
8682 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8683 if (rc)
8684 return (rc);
8685 if (!hw_all_ok(sc))
8686 rc = ENXIO;
8687 else {
8688 /* XXX: magic numbers */
8689 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8690 op ? 0x20 : 0xc820, &v);
8691 }
8692 end_synchronized_op(sc, 0);
8693 if (rc)
8694 return (rc);
8695 if (op == 0)
8696 v /= 256;
8697
8698 rc = sysctl_handle_int(oidp, &v, 0, req);
8699 return (rc);
8700 }
8701
8702 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8703 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8704 {
8705 struct vi_info *vi = arg1;
8706 int rc, val;
8707
8708 val = vi->rsrv_noflowq;
8709 rc = sysctl_handle_int(oidp, &val, 0, req);
8710 if (rc != 0 || req->newptr == NULL)
8711 return (rc);
8712
8713 if ((val >= 1) && (vi->ntxq > 1))
8714 vi->rsrv_noflowq = 1;
8715 else
8716 vi->rsrv_noflowq = 0;
8717
8718 return (rc);
8719 }
8720
8721 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8722 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8723 {
8724 struct vi_info *vi = arg1;
8725 struct adapter *sc = vi->adapter;
8726 int rc, val, i;
8727
8728 MPASS(!(sc->flags & IS_VF));
8729
8730 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8731 rc = sysctl_handle_int(oidp, &val, 0, req);
8732 if (rc != 0 || req->newptr == NULL)
8733 return (rc);
8734
8735 if (val != 0 && val != 1)
8736 return (EINVAL);
8737
8738 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8739 "t4txvm");
8740 if (rc)
8741 return (rc);
8742 if (!hw_all_ok(sc))
8743 rc = ENXIO;
8744 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8745 /*
8746 * We don't want parse_pkt to run with one setting (VF or PF)
8747 * and then eth_tx to see a different setting but still use
8748 * stale information calculated by parse_pkt.
8749 */
8750 rc = EBUSY;
8751 } else {
8752 struct port_info *pi = vi->pi;
8753 struct sge_txq *txq;
8754 uint32_t ctrl0;
8755 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8756
8757 if (val) {
8758 vi->flags |= TX_USES_VM_WR;
8759 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8760 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8761 V_TXPKT_INTF(pi->hw_port));
8762 if (!(sc->flags & IS_VF))
8763 npkt--;
8764 } else {
8765 vi->flags &= ~TX_USES_VM_WR;
8766 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8767 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8768 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
8769 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8770 }
8771 for_each_txq(vi, i, txq) {
8772 txq->cpl_ctrl0 = ctrl0;
8773 txq->txp.max_npkt = npkt;
8774 }
8775 }
8776 end_synchronized_op(sc, LOCK_HELD);
8777 return (rc);
8778 }
8779
8780 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8781 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8782 {
8783 struct vi_info *vi = arg1;
8784 struct adapter *sc = vi->adapter;
8785 int idx, rc, i;
8786 struct sge_rxq *rxq;
8787 uint8_t v;
8788
8789 idx = vi->tmr_idx;
8790
8791 rc = sysctl_handle_int(oidp, &idx, 0, req);
8792 if (rc != 0 || req->newptr == NULL)
8793 return (rc);
8794
8795 if (idx < 0 || idx >= SGE_NTIMERS)
8796 return (EINVAL);
8797
8798 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8799 "t4tmr");
8800 if (rc)
8801 return (rc);
8802
8803 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8804 for_each_rxq(vi, i, rxq) {
8805 #ifdef atomic_store_rel_8
8806 atomic_store_rel_8(&rxq->iq.intr_params, v);
8807 #else
8808 rxq->iq.intr_params = v;
8809 #endif
8810 }
8811 vi->tmr_idx = idx;
8812
8813 end_synchronized_op(sc, LOCK_HELD);
8814 return (0);
8815 }
8816
8817 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8818 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8819 {
8820 struct vi_info *vi = arg1;
8821 struct adapter *sc = vi->adapter;
8822 int idx, rc;
8823
8824 idx = vi->pktc_idx;
8825
8826 rc = sysctl_handle_int(oidp, &idx, 0, req);
8827 if (rc != 0 || req->newptr == NULL)
8828 return (rc);
8829
8830 if (idx < -1 || idx >= SGE_NCOUNTERS)
8831 return (EINVAL);
8832
8833 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8834 "t4pktc");
8835 if (rc)
8836 return (rc);
8837
8838 if (vi->flags & VI_INIT_DONE)
8839 rc = EBUSY; /* cannot be changed once the queues are created */
8840 else
8841 vi->pktc_idx = idx;
8842
8843 end_synchronized_op(sc, LOCK_HELD);
8844 return (rc);
8845 }
8846
8847 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8848 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8849 {
8850 struct vi_info *vi = arg1;
8851 struct adapter *sc = vi->adapter;
8852 int qsize, rc;
8853
8854 qsize = vi->qsize_rxq;
8855
8856 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8857 if (rc != 0 || req->newptr == NULL)
8858 return (rc);
8859
8860 if (qsize < 128 || (qsize & 7))
8861 return (EINVAL);
8862
8863 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8864 "t4rxqs");
8865 if (rc)
8866 return (rc);
8867
8868 if (vi->flags & VI_INIT_DONE)
8869 rc = EBUSY; /* cannot be changed once the queues are created */
8870 else
8871 vi->qsize_rxq = qsize;
8872
8873 end_synchronized_op(sc, LOCK_HELD);
8874 return (rc);
8875 }
8876
8877 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8878 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8879 {
8880 struct vi_info *vi = arg1;
8881 struct adapter *sc = vi->adapter;
8882 int qsize, rc;
8883
8884 qsize = vi->qsize_txq;
8885
8886 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8887 if (rc != 0 || req->newptr == NULL)
8888 return (rc);
8889
8890 if (qsize < 128 || qsize > 65536)
8891 return (EINVAL);
8892
8893 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8894 "t4txqs");
8895 if (rc)
8896 return (rc);
8897
8898 if (vi->flags & VI_INIT_DONE)
8899 rc = EBUSY; /* cannot be changed once the queues are created */
8900 else
8901 vi->qsize_txq = qsize;
8902
8903 end_synchronized_op(sc, LOCK_HELD);
8904 return (rc);
8905 }
8906
8907 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8908 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8909 {
8910 struct port_info *pi = arg1;
8911 struct adapter *sc = pi->adapter;
8912 struct link_config *lc = &pi->link_cfg;
8913 int rc;
8914
8915 if (req->newptr == NULL) {
8916 struct sbuf *sb;
8917 static char *bits = "\20\1RX\2TX\3AUTO";
8918
8919 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8920 if (sb == NULL)
8921 return (ENOMEM);
8922
8923 if (lc->link_ok) {
8924 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8925 (lc->requested_fc & PAUSE_AUTONEG), bits);
8926 } else {
8927 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8928 PAUSE_RX | PAUSE_AUTONEG), bits);
8929 }
8930 rc = sbuf_finish(sb);
8931 sbuf_delete(sb);
8932 } else {
8933 char s[2];
8934 int n;
8935
8936 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8937 PAUSE_AUTONEG));
8938 s[1] = 0;
8939
8940 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8941 if (rc != 0)
8942 return(rc);
8943
8944 if (s[1] != 0)
8945 return (EINVAL);
8946 if (s[0] < '0' || s[0] > '9')
8947 return (EINVAL); /* not a number */
8948 n = s[0] - '0';
8949 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8950 return (EINVAL); /* some other bit is set too */
8951
8952 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8953 "t4PAUSE");
8954 if (rc)
8955 return (rc);
8956 if (hw_all_ok(sc)) {
8957 PORT_LOCK(pi);
8958 lc->requested_fc = n;
8959 fixup_link_config(pi);
8960 if (pi->up_vis > 0)
8961 rc = apply_link_config(pi);
8962 set_current_media(pi);
8963 PORT_UNLOCK(pi);
8964 }
8965 end_synchronized_op(sc, 0);
8966 }
8967
8968 return (rc);
8969 }
8970
8971 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8972 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8973 {
8974 struct port_info *pi = arg1;
8975 struct link_config *lc = &pi->link_cfg;
8976 int rc;
8977 struct sbuf *sb;
8978
8979 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8980 if (sb == NULL)
8981 return (ENOMEM);
8982 if (lc->link_ok)
8983 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits);
8984 else
8985 sbuf_printf(sb, "no link");
8986 rc = sbuf_finish(sb);
8987 sbuf_delete(sb);
8988
8989 return (rc);
8990 }
8991
8992 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8993 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8994 {
8995 struct port_info *pi = arg1;
8996 struct adapter *sc = pi->adapter;
8997 struct link_config *lc = &pi->link_cfg;
8998 int rc;
8999 int8_t old = lc->requested_fec;
9000
9001 if (req->newptr == NULL) {
9002 struct sbuf *sb;
9003
9004 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9005 if (sb == NULL)
9006 return (ENOMEM);
9007
9008 sbuf_printf(sb, "%b", old, t4_fec_bits);
9009 rc = sbuf_finish(sb);
9010 sbuf_delete(sb);
9011 } else {
9012 char s[8];
9013 int n;
9014
9015 snprintf(s, sizeof(s), "%d", old == FEC_AUTO ? -1 :
9016 old & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
9017
9018 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
9019 if (rc != 0)
9020 return(rc);
9021
9022 n = strtol(&s[0], NULL, 0);
9023 if (n < 0 || n & FEC_AUTO)
9024 n = FEC_AUTO;
9025 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
9026 return (EINVAL);/* some other bit is set too */
9027
9028 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9029 "t4reqf");
9030 if (rc)
9031 return (rc);
9032 PORT_LOCK(pi);
9033 if (lc->requested_fec != old) {
9034 rc = EBUSY;
9035 goto done;
9036 }
9037 if (n == FEC_AUTO)
9038 lc->requested_fec = FEC_AUTO;
9039 else if (n == 0 || n == FEC_NONE)
9040 lc->requested_fec = FEC_NONE;
9041 else {
9042 if ((lc->pcaps |
9043 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
9044 lc->pcaps) {
9045 rc = ENOTSUP;
9046 goto done;
9047 }
9048 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
9049 FEC_MODULE);
9050 }
9051 if (hw_all_ok(sc)) {
9052 fixup_link_config(pi);
9053 if (pi->up_vis > 0) {
9054 rc = apply_link_config(pi);
9055 if (rc != 0) {
9056 lc->requested_fec = old;
9057 if (rc == FW_EPROTO)
9058 rc = ENOTSUP;
9059 }
9060 }
9061 }
9062 done:
9063 PORT_UNLOCK(pi);
9064 end_synchronized_op(sc, 0);
9065 }
9066
9067 return (rc);
9068 }
9069
9070 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)9071 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
9072 {
9073 struct port_info *pi = arg1;
9074 struct adapter *sc = pi->adapter;
9075 struct link_config *lc = &pi->link_cfg;
9076 int rc;
9077 int8_t fec;
9078 struct sbuf *sb;
9079
9080 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9081 if (sb == NULL)
9082 return (ENOMEM);
9083
9084 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
9085 rc = EBUSY;
9086 goto done;
9087 }
9088 if (!hw_all_ok(sc)) {
9089 rc = ENXIO;
9090 goto done;
9091 }
9092 PORT_LOCK(pi);
9093 if (pi->up_vis == 0) {
9094 /*
9095 * If all the interfaces are administratively down the firmware
9096 * does not report transceiver changes. Refresh port info here.
9097 * This is the only reason we have a synchronized op in this
9098 * function. Just PORT_LOCK would have been enough otherwise.
9099 */
9100 t4_update_port_info(pi);
9101 }
9102
9103 fec = lc->fec_hint;
9104 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
9105 !fec_supported(lc->pcaps)) {
9106 PORT_UNLOCK(pi);
9107 sbuf_printf(sb, "n/a");
9108 } else {
9109 if (fec == 0)
9110 fec = FEC_NONE;
9111 PORT_UNLOCK(pi);
9112 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits);
9113 }
9114 rc = sbuf_finish(sb);
9115 done:
9116 sbuf_delete(sb);
9117 end_synchronized_op(sc, 0);
9118
9119 return (rc);
9120 }
9121
9122 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)9123 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
9124 {
9125 struct port_info *pi = arg1;
9126 struct adapter *sc = pi->adapter;
9127 struct link_config *lc = &pi->link_cfg;
9128 int rc, val;
9129
9130 if (lc->pcaps & FW_PORT_CAP32_ANEG)
9131 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
9132 else
9133 val = -1;
9134 rc = sysctl_handle_int(oidp, &val, 0, req);
9135 if (rc != 0 || req->newptr == NULL)
9136 return (rc);
9137 if (val == 0)
9138 val = AUTONEG_DISABLE;
9139 else if (val == 1)
9140 val = AUTONEG_ENABLE;
9141 else
9142 val = AUTONEG_AUTO;
9143
9144 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9145 "t4aneg");
9146 if (rc)
9147 return (rc);
9148 PORT_LOCK(pi);
9149 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
9150 rc = ENOTSUP;
9151 goto done;
9152 }
9153 lc->requested_aneg = val;
9154 if (hw_all_ok(sc)) {
9155 fixup_link_config(pi);
9156 if (pi->up_vis > 0)
9157 rc = apply_link_config(pi);
9158 set_current_media(pi);
9159 }
9160 done:
9161 PORT_UNLOCK(pi);
9162 end_synchronized_op(sc, 0);
9163 return (rc);
9164 }
9165
9166 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)9167 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
9168 {
9169 struct port_info *pi = arg1;
9170 struct adapter *sc = pi->adapter;
9171 struct link_config *lc = &pi->link_cfg;
9172 int rc, val;
9173
9174 val = lc->force_fec;
9175 MPASS(val >= -1 && val <= 1);
9176 rc = sysctl_handle_int(oidp, &val, 0, req);
9177 if (rc != 0 || req->newptr == NULL)
9178 return (rc);
9179 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
9180 return (ENOTSUP);
9181 if (val < -1 || val > 1)
9182 return (EINVAL);
9183
9184 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
9185 if (rc)
9186 return (rc);
9187 PORT_LOCK(pi);
9188 lc->force_fec = val;
9189 if (hw_all_ok(sc)) {
9190 fixup_link_config(pi);
9191 if (pi->up_vis > 0)
9192 rc = apply_link_config(pi);
9193 }
9194 PORT_UNLOCK(pi);
9195 end_synchronized_op(sc, 0);
9196 return (rc);
9197 }
9198
9199 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)9200 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
9201 {
9202 struct adapter *sc = arg1;
9203 int rc, reg = arg2;
9204 uint64_t val;
9205
9206 mtx_lock(&sc->reg_lock);
9207 if (hw_off_limits(sc))
9208 rc = ENXIO;
9209 else {
9210 rc = 0;
9211 val = t4_read_reg64(sc, reg);
9212 }
9213 mtx_unlock(&sc->reg_lock);
9214 if (rc == 0)
9215 rc = sysctl_handle_64(oidp, &val, 0, req);
9216 return (rc);
9217 }
9218
9219 static int
sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)9220 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)
9221 {
9222 struct port_info *pi = arg1;
9223 struct adapter *sc = pi->adapter;
9224 int rc, i, reg = arg2;
9225 uint64_t val;
9226
9227 mtx_lock(&sc->reg_lock);
9228 if (hw_off_limits(sc))
9229 rc = ENXIO;
9230 else {
9231 val = 0;
9232 for (i = 0; i < sc->params.tp.lb_nchan; i++) {
9233 val += t4_read_reg64(sc,
9234 t4_port_reg(sc, pi->tx_chan + i, reg));
9235 }
9236 rc = 0;
9237 }
9238 mtx_unlock(&sc->reg_lock);
9239 if (rc == 0)
9240 rc = sysctl_handle_64(oidp, &val, 0, req);
9241 return (rc);
9242 }
9243
9244 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)9245 sysctl_temperature(SYSCTL_HANDLER_ARGS)
9246 {
9247 struct adapter *sc = arg1;
9248 int rc, t;
9249 uint32_t param, val;
9250
9251 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
9252 if (rc)
9253 return (rc);
9254 if (!hw_all_ok(sc))
9255 rc = ENXIO;
9256 else {
9257 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9258 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9259 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
9260 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9261 }
9262 end_synchronized_op(sc, 0);
9263 if (rc)
9264 return (rc);
9265
9266 /* unknown is returned as 0 but we display -1 in that case */
9267 t = val == 0 ? -1 : val;
9268
9269 rc = sysctl_handle_int(oidp, &t, 0, req);
9270 return (rc);
9271 }
9272
9273 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)9274 sysctl_vdd(SYSCTL_HANDLER_ARGS)
9275 {
9276 struct adapter *sc = arg1;
9277 int rc;
9278 uint32_t param, val;
9279
9280 if (sc->params.core_vdd == 0) {
9281 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9282 "t4vdd");
9283 if (rc)
9284 return (rc);
9285 if (!hw_all_ok(sc))
9286 rc = ENXIO;
9287 else {
9288 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9289 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9290 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
9291 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
9292 ¶m, &val);
9293 }
9294 end_synchronized_op(sc, 0);
9295 if (rc)
9296 return (rc);
9297 sc->params.core_vdd = val;
9298 }
9299
9300 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
9301 }
9302
9303 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)9304 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
9305 {
9306 struct adapter *sc = arg1;
9307 int rc, v;
9308 uint32_t param, val;
9309
9310 v = sc->sensor_resets;
9311 rc = sysctl_handle_int(oidp, &v, 0, req);
9312 if (rc != 0 || req->newptr == NULL || v <= 0)
9313 return (rc);
9314
9315 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
9316 chip_id(sc) < CHELSIO_T5)
9317 return (ENOTSUP);
9318
9319 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
9320 if (rc)
9321 return (rc);
9322 if (!hw_all_ok(sc))
9323 rc = ENXIO;
9324 else {
9325 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9326 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9327 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
9328 val = 1;
9329 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9330 }
9331 end_synchronized_op(sc, 0);
9332 if (rc == 0)
9333 sc->sensor_resets++;
9334 return (rc);
9335 }
9336
9337 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9338 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9339 {
9340 struct adapter *sc = arg1;
9341 struct sbuf *sb;
9342 int rc;
9343 uint32_t param, val;
9344 uint8_t coreid = (uint8_t)arg2;
9345
9346 KASSERT(coreid < sc->params.ncores,
9347 ("%s: bad coreid %u\n", __func__, coreid));
9348
9349 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9350 if (rc)
9351 return (rc);
9352 if (!hw_all_ok(sc))
9353 rc = ENXIO;
9354 else {
9355 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9356 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) |
9357 V_FW_PARAMS_PARAM_Y(coreid);
9358 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9359 }
9360 end_synchronized_op(sc, 0);
9361 if (rc)
9362 return (rc);
9363
9364 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9365 if (sb == NULL)
9366 return (ENOMEM);
9367
9368 if (val == 0xffffffff) {
9369 /* Only debug and custom firmwares report load averages. */
9370 sbuf_printf(sb, "not available");
9371 } else {
9372 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9373 (val >> 16) & 0xff);
9374 }
9375 rc = sbuf_finish(sb);
9376 sbuf_delete(sb);
9377
9378 return (rc);
9379 }
9380
9381 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9382 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9383 {
9384 struct adapter *sc = arg1;
9385 struct sbuf *sb;
9386 int rc, i;
9387 uint16_t incr[NMTUS][NCCTRL_WIN];
9388 static const char *dec_fac[] = {
9389 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9390 "0.9375"
9391 };
9392
9393 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9394 if (sb == NULL)
9395 return (ENOMEM);
9396
9397 rc = 0;
9398 mtx_lock(&sc->reg_lock);
9399 if (hw_off_limits(sc))
9400 rc = ENXIO;
9401 else
9402 t4_read_cong_tbl(sc, incr);
9403 mtx_unlock(&sc->reg_lock);
9404 if (rc)
9405 goto done;
9406
9407 for (i = 0; i < NCCTRL_WIN; ++i) {
9408 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9409 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9410 incr[5][i], incr[6][i], incr[7][i]);
9411 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9412 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9413 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9414 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9415 }
9416
9417 rc = sbuf_finish(sb);
9418 done:
9419 sbuf_delete(sb);
9420 return (rc);
9421 }
9422
9423 static int
sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)9424 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)
9425 {
9426 struct adapter *sc = arg1;
9427 struct sbuf *sb;
9428 int rc, i, n, qid, coreid;
9429 uint32_t *buf, *p;
9430
9431 qid = arg2 & 0xffff;
9432 coreid = arg2 >> 16;
9433
9434 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq,
9435 ("%s: bad ibq qid %d\n", __func__, qid));
9436 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9437 ("%s: bad coreid %d\n", __func__, coreid));
9438
9439 n = 4 * CIM_IBQ_SIZE;
9440 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9441 mtx_lock(&sc->reg_lock);
9442 if (hw_off_limits(sc))
9443 rc = -ENXIO;
9444 else
9445 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n);
9446 mtx_unlock(&sc->reg_lock);
9447 if (rc < 0) {
9448 rc = -rc;
9449 goto done;
9450 }
9451 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9452
9453 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9454 if (sb == NULL) {
9455 rc = ENOMEM;
9456 goto done;
9457 }
9458 for (i = 0, p = buf; i < n; i += 16, p += 4)
9459 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9460 p[2], p[3]);
9461 rc = sbuf_finish(sb);
9462 sbuf_delete(sb);
9463 done:
9464 free(buf, M_CXGBE);
9465 return (rc);
9466 }
9467
9468 static int
sysctl_cim_obq(SYSCTL_HANDLER_ARGS)9469 sysctl_cim_obq(SYSCTL_HANDLER_ARGS)
9470 {
9471 struct adapter *sc = arg1;
9472 struct sbuf *sb;
9473 int rc, i, n, qid, coreid;
9474 uint32_t *buf, *p;
9475
9476 qid = arg2 & 0xffff;
9477 coreid = arg2 >> 16;
9478
9479 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq,
9480 ("%s: bad obq qid %d\n", __func__, qid));
9481 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9482 ("%s: bad coreid %d\n", __func__, coreid));
9483
9484 n = 6 * CIM_OBQ_SIZE * 4;
9485 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9486 mtx_lock(&sc->reg_lock);
9487 if (hw_off_limits(sc))
9488 rc = -ENXIO;
9489 else
9490 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n);
9491 mtx_unlock(&sc->reg_lock);
9492 if (rc < 0) {
9493 rc = -rc;
9494 goto done;
9495 }
9496 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9497
9498 rc = sysctl_wire_old_buffer(req, 0);
9499 if (rc != 0)
9500 goto done;
9501
9502 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9503 if (sb == NULL) {
9504 rc = ENOMEM;
9505 goto done;
9506 }
9507 for (i = 0, p = buf; i < n; i += 16, p += 4)
9508 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9509 p[2], p[3]);
9510 rc = sbuf_finish(sb);
9511 sbuf_delete(sb);
9512 done:
9513 free(buf, M_CXGBE);
9514 return (rc);
9515 }
9516
9517 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9518 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9519 {
9520 uint32_t *p;
9521
9522 sbuf_printf(sb, "Status Data PC%s",
9523 cfg & F_UPDBGLACAPTPCONLY ? "" :
9524 " LS0Stat LS0Addr LS0Data");
9525
9526 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9527 if (cfg & F_UPDBGLACAPTPCONLY) {
9528 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9529 p[6], p[7]);
9530 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9531 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9532 p[4] & 0xff, p[5] >> 8);
9533 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9534 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9535 p[1] & 0xf, p[2] >> 4);
9536 } else {
9537 sbuf_printf(sb,
9538 "\n %02x %x%07x %x%07x %08x %08x "
9539 "%08x%08x%08x%08x",
9540 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9541 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9542 p[6], p[7]);
9543 }
9544 }
9545 }
9546
9547 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9548 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9549 {
9550 uint32_t *p;
9551
9552 sbuf_printf(sb, "Status Inst Data PC%s",
9553 cfg & F_UPDBGLACAPTPCONLY ? "" :
9554 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9555
9556 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9557 if (cfg & F_UPDBGLACAPTPCONLY) {
9558 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9559 p[3] & 0xff, p[2], p[1], p[0]);
9560 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9561 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9562 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9563 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9564 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9565 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9566 p[6] >> 16);
9567 } else {
9568 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9569 "%08x %08x %08x %08x %08x %08x",
9570 (p[9] >> 16) & 0xff,
9571 p[9] & 0xffff, p[8] >> 16,
9572 p[8] & 0xffff, p[7] >> 16,
9573 p[7] & 0xffff, p[6] >> 16,
9574 p[2], p[1], p[0], p[5], p[4], p[3]);
9575 }
9576 }
9577 }
9578
9579 static int
sbuf_cim_la(struct adapter * sc,int coreid,struct sbuf * sb,int flags)9580 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
9581 {
9582 uint32_t cfg, *buf;
9583 int rc;
9584
9585 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9586 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9587 M_ZERO | flags);
9588 if (buf == NULL)
9589 return (ENOMEM);
9590
9591 mtx_lock(&sc->reg_lock);
9592 if (hw_off_limits(sc))
9593 rc = ENXIO;
9594 else {
9595 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
9596 &cfg);
9597 if (rc == 0)
9598 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL);
9599 }
9600 mtx_unlock(&sc->reg_lock);
9601 if (rc == 0) {
9602 if (chip_id(sc) < CHELSIO_T6)
9603 sbuf_cim_la4(sc, sb, buf, cfg);
9604 else
9605 sbuf_cim_la6(sc, sb, buf, cfg);
9606 }
9607 free(buf, M_CXGBE);
9608 return (rc);
9609 }
9610
9611 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9612 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9613 {
9614 struct adapter *sc = arg1;
9615 int coreid = arg2;
9616 struct sbuf *sb;
9617 int rc;
9618
9619 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9620 if (sb == NULL)
9621 return (ENOMEM);
9622
9623 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK);
9624 if (rc == 0)
9625 rc = sbuf_finish(sb);
9626 sbuf_delete(sb);
9627 return (rc);
9628 }
9629
9630 static void
dump_cim_regs(struct adapter * sc)9631 dump_cim_regs(struct adapter *sc)
9632 {
9633 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9634 device_get_nameunit(sc->dev),
9635 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9636 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9637 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9638 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9639 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9640 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9641 device_get_nameunit(sc->dev),
9642 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9643 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9644 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9645 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9646 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9647 }
9648
9649 static void
dump_cimla(struct adapter * sc)9650 dump_cimla(struct adapter *sc)
9651 {
9652 struct sbuf sb;
9653 int rc;
9654
9655 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9656 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9657 device_get_nameunit(sc->dev));
9658 return;
9659 }
9660 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK);
9661 if (rc == 0) {
9662 rc = sbuf_finish(&sb);
9663 if (rc == 0) {
9664 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9665 device_get_nameunit(sc->dev), sbuf_data(&sb));
9666 }
9667 }
9668 sbuf_delete(&sb);
9669 }
9670
9671 void
t4_os_cim_err(struct adapter * sc)9672 t4_os_cim_err(struct adapter *sc)
9673 {
9674 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9675 }
9676
9677 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9678 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9679 {
9680 struct adapter *sc = arg1;
9681 u_int i;
9682 struct sbuf *sb;
9683 uint32_t *buf, *p;
9684 int rc;
9685
9686 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9687 if (sb == NULL)
9688 return (ENOMEM);
9689
9690 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9691 M_ZERO | M_WAITOK);
9692
9693 rc = 0;
9694 mtx_lock(&sc->reg_lock);
9695 if (hw_off_limits(sc))
9696 rc = ENXIO;
9697 else
9698 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9699 mtx_unlock(&sc->reg_lock);
9700 if (rc)
9701 goto done;
9702
9703 p = buf;
9704 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9705 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9706 p[1], p[0]);
9707 }
9708
9709 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9710 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9711 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9712 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9713 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9714 (p[1] >> 2) | ((p[2] & 3) << 30),
9715 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9716 p[0] & 1);
9717 }
9718 rc = sbuf_finish(sb);
9719 done:
9720 sbuf_delete(sb);
9721 free(buf, M_CXGBE);
9722 return (rc);
9723 }
9724
9725 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9726 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9727 {
9728 struct adapter *sc = arg1;
9729 u_int i;
9730 struct sbuf *sb;
9731 uint32_t *buf, *p;
9732 int rc;
9733
9734 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9735 if (sb == NULL)
9736 return (ENOMEM);
9737
9738 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9739 M_ZERO | M_WAITOK);
9740
9741 rc = 0;
9742 mtx_lock(&sc->reg_lock);
9743 if (hw_off_limits(sc))
9744 rc = ENXIO;
9745 else
9746 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9747 mtx_unlock(&sc->reg_lock);
9748 if (rc)
9749 goto done;
9750
9751 p = buf;
9752 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9753 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9754 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9755 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9756 p[4], p[3], p[2], p[1], p[0]);
9757 }
9758
9759 sbuf_printf(sb, "\n\nCntl ID Data");
9760 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9761 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9762 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9763 }
9764
9765 rc = sbuf_finish(sb);
9766 done:
9767 sbuf_delete(sb);
9768 free(buf, M_CXGBE);
9769 return (rc);
9770 }
9771
9772 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9773 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9774 {
9775 struct adapter *sc = arg1;
9776 struct sbuf *sb;
9777 int rc, i;
9778 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9779 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9780 uint16_t thres[CIM_NUM_IBQ];
9781 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9782 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9783 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9784 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9785 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9786 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9787 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9788 };
9789
9790 MPASS(chip_id(sc) < CHELSIO_T7);
9791
9792 cim_num_obq = sc->chip_params->cim_num_obq;
9793 if (is_t4(sc)) {
9794 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9795 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9796 } else {
9797 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9798 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9799 }
9800 nq = CIM_NUM_IBQ + cim_num_obq;
9801
9802 mtx_lock(&sc->reg_lock);
9803 if (hw_off_limits(sc))
9804 rc = ENXIO;
9805 else {
9806 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9807 if (rc == 0) {
9808 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9809 obq_wr);
9810 if (rc == 0)
9811 t4_read_cimq_cfg(sc, base, size, thres);
9812 }
9813 }
9814 mtx_unlock(&sc->reg_lock);
9815 if (rc)
9816 return (rc);
9817
9818 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9819 if (sb == NULL)
9820 return (ENOMEM);
9821
9822 sbuf_printf(sb,
9823 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9824
9825 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9826 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9827 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9828 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9829 G_QUEREMFLITS(p[2]) * 16);
9830 for ( ; i < nq; i++, p += 4, wr += 2)
9831 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9832 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9833 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9834 G_QUEREMFLITS(p[2]) * 16);
9835
9836 rc = sbuf_finish(sb);
9837 sbuf_delete(sb);
9838
9839 return (rc);
9840 }
9841
9842 static int
sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)9843 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)
9844 {
9845 struct adapter *sc = arg1;
9846 u_int coreid = arg2;
9847 struct sbuf *sb;
9848 int rc, i;
9849 u_int addr;
9850 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9851 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9852 uint16_t thres[CIM_NUM_IBQ_T7];
9853 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr;
9854 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat;
9855 static const char * const qname_ibq_t7[] = {
9856 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI",
9857 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7",
9858 };
9859 static const char * const qname_obq_t7[] = {
9860 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX",
9861 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5",
9862 "IPC6", "IPC7"
9863 };
9864 static const char * const qname_ibq_sec_t7[] = {
9865 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD",
9866 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD",
9867 };
9868 static const char * const qname_obq_sec_t7[] = {
9869 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX",
9870 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD",
9871 "RSVD", "RSVD",
9872 };
9873
9874 MPASS(chip_id(sc) >= CHELSIO_T7);
9875
9876 mtx_lock(&sc->reg_lock);
9877 if (hw_off_limits(sc))
9878 rc = ENXIO;
9879 else {
9880 rc = -t4_cim_read_core(sc, 1, coreid,
9881 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat);
9882 if (rc != 0)
9883 goto unlock;
9884
9885 rc = -t4_cim_read_core(sc, 1, coreid,
9886 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7,
9887 &stat[4 * CIM_NUM_IBQ_T7]);
9888 if (rc != 0)
9889 goto unlock;
9890
9891 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR;
9892 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) {
9893 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1,
9894 &obq_wr[i]);
9895 if (rc != 0)
9896 goto unlock;
9897 }
9898 t4_read_cimq_cfg_core(sc, coreid, base, size, thres);
9899 }
9900 unlock:
9901 mtx_unlock(&sc->reg_lock);
9902 if (rc)
9903 return (rc);
9904
9905 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9906 if (sb == NULL)
9907 return (ENOMEM);
9908
9909 sbuf_printf(sb,
9910 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9911
9912 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) {
9913 if (!size[i])
9914 continue;
9915
9916 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9917 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i],
9918 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff,
9919 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]),
9920 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16);
9921 }
9922
9923 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) {
9924 if (!size[i])
9925 continue;
9926
9927 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u",
9928 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] :
9929 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7],
9930 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff,
9931 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9932 G_T7_QUEREMFLITS(p[2]) * 16);
9933 }
9934
9935 rc = sbuf_finish(sb);
9936 sbuf_delete(sb);
9937 return (rc);
9938 }
9939
9940 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9941 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9942 {
9943 struct adapter *sc = arg1;
9944 struct sbuf *sb;
9945 int rc;
9946 struct tp_cpl_stats stats;
9947
9948 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9949 if (sb == NULL)
9950 return (ENOMEM);
9951
9952 rc = 0;
9953 mtx_lock(&sc->reg_lock);
9954 if (hw_off_limits(sc))
9955 rc = ENXIO;
9956 else
9957 t4_tp_get_cpl_stats(sc, &stats, 0);
9958 mtx_unlock(&sc->reg_lock);
9959 if (rc)
9960 goto done;
9961
9962 if (sc->chip_params->nchan > 2) {
9963 sbuf_printf(sb, " channel 0 channel 1"
9964 " channel 2 channel 3");
9965 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9966 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9967 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9968 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9969 } else {
9970 sbuf_printf(sb, " channel 0 channel 1");
9971 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9972 stats.req[0], stats.req[1]);
9973 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9974 stats.rsp[0], stats.rsp[1]);
9975 }
9976
9977 rc = sbuf_finish(sb);
9978 done:
9979 sbuf_delete(sb);
9980 return (rc);
9981 }
9982
9983 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9984 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9985 {
9986 struct adapter *sc = arg1;
9987 struct sbuf *sb;
9988 int rc;
9989 struct tp_usm_stats stats;
9990
9991 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9992 if (sb == NULL)
9993 return (ENOMEM);
9994
9995 rc = 0;
9996 mtx_lock(&sc->reg_lock);
9997 if (hw_off_limits(sc))
9998 rc = ENXIO;
9999 else
10000 t4_get_usm_stats(sc, &stats, 1);
10001 mtx_unlock(&sc->reg_lock);
10002 if (rc == 0) {
10003 sbuf_printf(sb, "Frames: %u\n", stats.frames);
10004 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
10005 sbuf_printf(sb, "Drops: %u", stats.drops);
10006 rc = sbuf_finish(sb);
10007 }
10008 sbuf_delete(sb);
10009
10010 return (rc);
10011 }
10012
10013 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)10014 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
10015 {
10016 struct adapter *sc = arg1;
10017 struct sbuf *sb;
10018 int rc;
10019 struct tp_tid_stats stats;
10020
10021 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10022 if (sb == NULL)
10023 return (ENOMEM);
10024
10025 rc = 0;
10026 mtx_lock(&sc->reg_lock);
10027 if (hw_off_limits(sc))
10028 rc = ENXIO;
10029 else
10030 t4_tp_get_tid_stats(sc, &stats, 1);
10031 mtx_unlock(&sc->reg_lock);
10032 if (rc == 0) {
10033 sbuf_printf(sb, "Delete: %u\n", stats.del);
10034 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
10035 sbuf_printf(sb, "Active: %u\n", stats.act);
10036 sbuf_printf(sb, "Passive: %u", stats.pas);
10037 rc = sbuf_finish(sb);
10038 }
10039 sbuf_delete(sb);
10040
10041 return (rc);
10042 }
10043
10044 static const char * const devlog_level_strings[] = {
10045 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
10046 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
10047 [FW_DEVLOG_LEVEL_ERR] = "ERR",
10048 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
10049 [FW_DEVLOG_LEVEL_INFO] = "INFO",
10050 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
10051 };
10052
10053 static const char * const devlog_facility_strings[] = {
10054 [FW_DEVLOG_FACILITY_CORE] = "CORE",
10055 [FW_DEVLOG_FACILITY_CF] = "CF",
10056 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
10057 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
10058 [FW_DEVLOG_FACILITY_RES] = "RES",
10059 [FW_DEVLOG_FACILITY_HW] = "HW",
10060 [FW_DEVLOG_FACILITY_FLR] = "FLR",
10061 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
10062 [FW_DEVLOG_FACILITY_PHY] = "PHY",
10063 [FW_DEVLOG_FACILITY_MAC] = "MAC",
10064 [FW_DEVLOG_FACILITY_PORT] = "PORT",
10065 [FW_DEVLOG_FACILITY_VI] = "VI",
10066 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
10067 [FW_DEVLOG_FACILITY_ACL] = "ACL",
10068 [FW_DEVLOG_FACILITY_TM] = "TM",
10069 [FW_DEVLOG_FACILITY_QFC] = "QFC",
10070 [FW_DEVLOG_FACILITY_DCB] = "DCB",
10071 [FW_DEVLOG_FACILITY_ETH] = "ETH",
10072 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
10073 [FW_DEVLOG_FACILITY_RI] = "RI",
10074 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
10075 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
10076 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
10077 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
10078 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
10079 };
10080
10081 static int
sbuf_devlog(struct adapter * sc,int coreid,struct sbuf * sb,int flags)10082 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
10083 {
10084 int i, j, rc, nentries, first = 0;
10085 struct devlog_params *dparams = &sc->params.devlog;
10086 struct fw_devlog_e *buf, *e;
10087 uint32_t addr, size;
10088 uint64_t ftstamp = UINT64_MAX;
10089
10090 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10091 ("%s: bad coreid %d\n", __func__, coreid));
10092
10093 if (dparams->addr == 0)
10094 return (ENXIO);
10095
10096 size = dparams->size / sc->params.ncores;
10097 addr = dparams->addr + coreid * size;
10098
10099 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
10100 buf = malloc(size, M_CXGBE, M_ZERO | flags);
10101 if (buf == NULL)
10102 return (ENOMEM);
10103
10104 mtx_lock(&sc->reg_lock);
10105 if (hw_off_limits(sc))
10106 rc = ENXIO;
10107 else
10108 rc = read_via_memwin(sc, 1, addr, (void *)buf, size);
10109 mtx_unlock(&sc->reg_lock);
10110 if (rc != 0)
10111 goto done;
10112
10113 nentries = size / sizeof(struct fw_devlog_e);
10114 for (i = 0; i < nentries; i++) {
10115 e = &buf[i];
10116
10117 if (e->timestamp == 0)
10118 break; /* end */
10119
10120 e->timestamp = be64toh(e->timestamp);
10121 e->seqno = be32toh(e->seqno);
10122 for (j = 0; j < 8; j++)
10123 e->params[j] = be32toh(e->params[j]);
10124
10125 if (e->timestamp < ftstamp) {
10126 ftstamp = e->timestamp;
10127 first = i;
10128 }
10129 }
10130
10131 if (buf[first].timestamp == 0)
10132 goto done; /* nothing in the log */
10133
10134 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
10135 "Seq#", "Tstamp", "Level", "Facility", "Message");
10136
10137 i = first;
10138 do {
10139 e = &buf[i];
10140 if (e->timestamp == 0)
10141 break; /* end */
10142
10143 sbuf_printf(sb, "%10d %15ju %8s %8s ",
10144 e->seqno, e->timestamp,
10145 (e->level < nitems(devlog_level_strings) ?
10146 devlog_level_strings[e->level] : "UNKNOWN"),
10147 (e->facility < nitems(devlog_facility_strings) ?
10148 devlog_facility_strings[e->facility] : "UNKNOWN"));
10149 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
10150 e->params[2], e->params[3], e->params[4],
10151 e->params[5], e->params[6], e->params[7]);
10152
10153 if (++i == nentries)
10154 i = 0;
10155 } while (i != first);
10156 done:
10157 free(buf, M_CXGBE);
10158 return (rc);
10159 }
10160
10161 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)10162 sysctl_devlog(SYSCTL_HANDLER_ARGS)
10163 {
10164 struct adapter *sc = arg1;
10165 int rc, i, coreid = arg2;
10166 struct sbuf *sb;
10167
10168 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10169 if (sb == NULL)
10170 return (ENOMEM);
10171 if (coreid == -1) {
10172 /* -1 means all cores */
10173 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10174 if (sc->params.ncores > 0)
10175 sbuf_printf(sb, "=== CIM core %u ===\n", i);
10176 rc = sbuf_devlog(sc, i, sb, M_WAITOK);
10177 }
10178 } else {
10179 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10180 ("%s: bad coreid %d\n", __func__, coreid));
10181 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK);
10182 }
10183 if (rc == 0)
10184 rc = sbuf_finish(sb);
10185 sbuf_delete(sb);
10186 return (rc);
10187 }
10188
10189 static void
dump_devlog(struct adapter * sc)10190 dump_devlog(struct adapter *sc)
10191 {
10192 int rc, i;
10193 struct sbuf sb;
10194
10195 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
10196 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
10197 device_get_nameunit(sc->dev));
10198 return;
10199 }
10200 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10201 if (sc->params.ncores > 0)
10202 sbuf_printf(&sb, "=== CIM core %u ===\n", i);
10203 rc = sbuf_devlog(sc, i, &sb, M_WAITOK);
10204 }
10205 if (rc == 0) {
10206 sbuf_finish(&sb);
10207 log(LOG_DEBUG, "%s: device log follows.\n%s",
10208 device_get_nameunit(sc->dev), sbuf_data(&sb));
10209 }
10210 sbuf_delete(&sb);
10211 }
10212
10213 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)10214 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
10215 {
10216 struct adapter *sc = arg1;
10217 struct sbuf *sb;
10218 int rc;
10219 struct tp_fcoe_stats stats[MAX_NCHAN];
10220 int i, nchan = sc->chip_params->nchan;
10221
10222 rc = 0;
10223 mtx_lock(&sc->reg_lock);
10224 if (hw_off_limits(sc))
10225 rc = ENXIO;
10226 else {
10227 for (i = 0; i < nchan; i++)
10228 t4_get_fcoe_stats(sc, i, &stats[i], 1);
10229 }
10230 mtx_unlock(&sc->reg_lock);
10231 if (rc != 0)
10232 return (rc);
10233
10234 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10235 if (sb == NULL)
10236 return (ENOMEM);
10237
10238 if (nchan > 2) {
10239 sbuf_printf(sb, " channel 0 channel 1"
10240 " channel 2 channel 3");
10241 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
10242 stats[0].octets_ddp, stats[1].octets_ddp,
10243 stats[2].octets_ddp, stats[3].octets_ddp);
10244 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
10245 stats[0].frames_ddp, stats[1].frames_ddp,
10246 stats[2].frames_ddp, stats[3].frames_ddp);
10247 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
10248 stats[0].frames_drop, stats[1].frames_drop,
10249 stats[2].frames_drop, stats[3].frames_drop);
10250 } else {
10251 sbuf_printf(sb, " channel 0 channel 1");
10252 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
10253 stats[0].octets_ddp, stats[1].octets_ddp);
10254 sbuf_printf(sb, "\nframesDDP: %16u %16u",
10255 stats[0].frames_ddp, stats[1].frames_ddp);
10256 sbuf_printf(sb, "\nframesDrop: %16u %16u",
10257 stats[0].frames_drop, stats[1].frames_drop);
10258 }
10259
10260 rc = sbuf_finish(sb);
10261 sbuf_delete(sb);
10262
10263 return (rc);
10264 }
10265
10266 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)10267 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
10268 {
10269 struct adapter *sc = arg1;
10270 struct sbuf *sb;
10271 int rc, i;
10272 unsigned int map, kbps, ipg, mode;
10273 unsigned int pace_tab[NTX_SCHED];
10274
10275 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
10276 if (sb == NULL)
10277 return (ENOMEM);
10278
10279 mtx_lock(&sc->reg_lock);
10280 if (hw_off_limits(sc)) {
10281 mtx_unlock(&sc->reg_lock);
10282 rc = ENXIO;
10283 goto done;
10284 }
10285
10286 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
10287 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
10288 t4_read_pace_tbl(sc, pace_tab);
10289 mtx_unlock(&sc->reg_lock);
10290
10291 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
10292 "Class IPG (0.1 ns) Flow IPG (us)");
10293
10294 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
10295 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
10296 sbuf_printf(sb, "\n %u %-5s %u ", i,
10297 (mode & (1 << i)) ? "flow" : "class", map & 3);
10298 if (kbps)
10299 sbuf_printf(sb, "%9u ", kbps);
10300 else
10301 sbuf_printf(sb, " disabled ");
10302
10303 if (ipg)
10304 sbuf_printf(sb, "%13u ", ipg);
10305 else
10306 sbuf_printf(sb, " disabled ");
10307
10308 if (pace_tab[i])
10309 sbuf_printf(sb, "%10u", pace_tab[i]);
10310 else
10311 sbuf_printf(sb, " disabled");
10312 }
10313 rc = sbuf_finish(sb);
10314 done:
10315 sbuf_delete(sb);
10316 return (rc);
10317 }
10318
10319 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)10320 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
10321 {
10322 struct adapter *sc = arg1;
10323 struct sbuf *sb;
10324 int rc, i, j;
10325 uint64_t *p0, *p1;
10326 struct lb_port_stats s[2];
10327 static const char *stat_name[] = {
10328 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
10329 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
10330 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
10331 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
10332 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
10333 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
10334 "BG2FramesTrunc:", "BG3FramesTrunc:"
10335 };
10336
10337 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10338 if (sb == NULL)
10339 return (ENOMEM);
10340
10341 memset(s, 0, sizeof(s));
10342
10343 rc = 0;
10344 for (i = 0; i < sc->chip_params->nchan; i += 2) {
10345 mtx_lock(&sc->reg_lock);
10346 if (hw_off_limits(sc))
10347 rc = ENXIO;
10348 else {
10349 t4_get_lb_stats(sc, i, &s[0]);
10350 t4_get_lb_stats(sc, i + 1, &s[1]);
10351 }
10352 mtx_unlock(&sc->reg_lock);
10353 if (rc != 0)
10354 break;
10355
10356 p0 = &s[0].octets;
10357 p1 = &s[1].octets;
10358 sbuf_printf(sb, "%s Loopback %u"
10359 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
10360
10361 for (j = 0; j < nitems(stat_name); j++)
10362 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
10363 *p0++, *p1++);
10364 }
10365
10366 if (rc == 0)
10367 rc = sbuf_finish(sb);
10368 sbuf_delete(sb);
10369
10370 return (rc);
10371 }
10372
10373 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)10374 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
10375 {
10376 int rc = 0;
10377 struct port_info *pi = arg1;
10378 struct link_config *lc = &pi->link_cfg;
10379 struct sbuf *sb;
10380
10381 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
10382 if (sb == NULL)
10383 return (ENOMEM);
10384
10385 if (lc->link_ok || lc->link_down_rc == 255)
10386 sbuf_printf(sb, "n/a");
10387 else
10388 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
10389
10390 rc = sbuf_finish(sb);
10391 sbuf_delete(sb);
10392
10393 return (rc);
10394 }
10395
10396 struct mem_desc {
10397 uint64_t base;
10398 uint64_t limit;
10399 u_int idx;
10400 };
10401
10402 static int
mem_desc_cmp(const void * a,const void * b)10403 mem_desc_cmp(const void *a, const void *b)
10404 {
10405 const uint64_t v1 = ((const struct mem_desc *)a)->base;
10406 const uint64_t v2 = ((const struct mem_desc *)b)->base;
10407
10408 if (v1 < v2)
10409 return (-1);
10410 else if (v1 > v2)
10411 return (1);
10412
10413 return (0);
10414 }
10415
10416 static void
mem_region_show(struct sbuf * sb,const char * name,uint64_t from,uint64_t to)10417 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to)
10418 {
10419 uintmax_t size;
10420
10421 if (from == to)
10422 return;
10423
10424 size = to - from + 1;
10425 if (size == 0)
10426 return;
10427
10428 if (from > UINT32_MAX || to > UINT32_MAX)
10429 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name,
10430 (uintmax_t)from, (uintmax_t)to, size);
10431 else
10432 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name,
10433 (uintmax_t)from, (uintmax_t)to, size);
10434 }
10435
10436 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)10437 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
10438 {
10439 struct adapter *sc = arg1;
10440 struct sbuf *sb;
10441 int rc, i, n, nchan;
10442 uint32_t lo, hi, used, free, alloc;
10443 static const char *memory[] = {
10444 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
10445 };
10446 static const char *region[] = {
10447 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
10448 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
10449 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
10450 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
10451 "RQUDP region:", "PBL region:", "TXPBL region:",
10452 "TLSKey region:", "RRQ region:", "NVMe STAG region:",
10453 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:",
10454 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:",
10455 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:",
10456 };
10457 struct mem_desc avail[4];
10458 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
10459 struct mem_desc *md;
10460
10461 rc = sysctl_wire_old_buffer(req, 0);
10462 if (rc != 0)
10463 return (rc);
10464
10465 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10466 if (sb == NULL)
10467 return (ENOMEM);
10468
10469 for (i = 0; i < nitems(mem); i++) {
10470 mem[i].limit = 0;
10471 mem[i].idx = i;
10472 }
10473
10474 mtx_lock(&sc->reg_lock);
10475 if (hw_off_limits(sc)) {
10476 rc = ENXIO;
10477 goto done;
10478 }
10479
10480 /* Find and sort the populated memory ranges */
10481 i = 0;
10482 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
10483 if (lo & F_EDRAM0_ENABLE) {
10484 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
10485 if (chip_id(sc) >= CHELSIO_T7) {
10486 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20;
10487 avail[i].limit = avail[i].base +
10488 (G_T7_EDRAM0_SIZE(hi) << 20);
10489 } else {
10490 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20;
10491 avail[i].limit = avail[i].base +
10492 (G_EDRAM0_SIZE(hi) << 20);
10493 }
10494 avail[i].idx = 0;
10495 i++;
10496 }
10497 if (lo & F_EDRAM1_ENABLE) {
10498 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10499 if (chip_id(sc) >= CHELSIO_T7) {
10500 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20;
10501 avail[i].limit = avail[i].base +
10502 (G_T7_EDRAM1_SIZE(hi) << 20);
10503 } else {
10504 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20;
10505 avail[i].limit = avail[i].base +
10506 (G_EDRAM1_SIZE(hi) << 20);
10507 }
10508 avail[i].idx = 1;
10509 i++;
10510 }
10511 if (lo & F_EXT_MEM_ENABLE) {
10512 switch (chip_id(sc)) {
10513 case CHELSIO_T4:
10514 case CHELSIO_T6:
10515 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10516 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20;
10517 avail[i].limit = avail[i].base +
10518 (G_EXT_MEM_SIZE(hi) << 20);
10519 avail[i].idx = 2;
10520 break;
10521 case CHELSIO_T5:
10522 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10523 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20;
10524 avail[i].limit = avail[i].base +
10525 (G_EXT_MEM0_SIZE(hi) << 20);
10526 avail[i].idx = 3; /* Call it MC0 for T5 */
10527 break;
10528 default:
10529 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10530 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20;
10531 avail[i].limit = avail[i].base +
10532 (G_T7_EXT_MEM0_SIZE(hi) << 20);
10533 avail[i].idx = 3; /* Call it MC0 for T7+ */
10534 break;
10535 }
10536 i++;
10537 }
10538 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) {
10539 /* Only T5 and T7+ have 2 MCs. */
10540 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7);
10541
10542 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10543 if (chip_id(sc) >= CHELSIO_T7) {
10544 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20;
10545 avail[i].limit = avail[i].base +
10546 (G_T7_EXT_MEM1_SIZE(hi) << 20);
10547 } else {
10548 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20;
10549 avail[i].limit = avail[i].base +
10550 (G_EXT_MEM1_SIZE(hi) << 20);
10551 }
10552 avail[i].idx = 4;
10553 i++;
10554 }
10555 if (lo & F_HMA_MUX) {
10556 /* Only T6+ have HMA. */
10557 MPASS(chip_id(sc) >= CHELSIO_T6);
10558
10559 if (chip_id(sc) >= CHELSIO_T7) {
10560 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR);
10561 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20;
10562 avail[i].limit = avail[i].base +
10563 (G_T7_HMA_SIZE(hi) << 20);
10564 } else {
10565 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10566 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10567 avail[i].limit = avail[i].base +
10568 (G_EXT_MEM1_SIZE(hi) << 20);
10569 }
10570 avail[i].idx = 5;
10571 i++;
10572 }
10573 MPASS(i <= nitems(avail));
10574 if (!i) /* no memory available */
10575 goto done;
10576 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10577
10578 md = &mem[0];
10579 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10580 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10581 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10582 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10583 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10584 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10585 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10586 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10587 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10588
10589 /* the next few have explicit upper bounds */
10590 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10591 md->limit = md->base - 1 +
10592 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10593 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10594 md++;
10595
10596 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10597 md->limit = md->base - 1 +
10598 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10599 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10600 md++;
10601
10602 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10603 if (chip_id(sc) <= CHELSIO_T5)
10604 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10605 else
10606 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10607 md->limit = 0;
10608 } else {
10609 md->base = 0;
10610 md->idx = nitems(region); /* hide it */
10611 }
10612 md++;
10613
10614 #define ulp_region(reg) do {\
10615 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \
10616 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \
10617 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \
10618 md->limit += (1 << shift) - 1; \
10619 md++; \
10620 } while (0)
10621
10622 #define hide_ulp_region() do { \
10623 md->base = 0; \
10624 md->idx = nitems(region); \
10625 md++; \
10626 } while (0)
10627
10628 ulp_region(RX_ISCSI);
10629 ulp_region(RX_TDDP);
10630 ulp_region(TX_TPT);
10631 ulp_region(RX_STAG);
10632 ulp_region(RX_RQ);
10633 if (chip_id(sc) < CHELSIO_T7)
10634 ulp_region(RX_RQUDP);
10635 else
10636 hide_ulp_region();
10637 ulp_region(RX_PBL);
10638 ulp_region(TX_PBL);
10639 if (chip_id(sc) >= CHELSIO_T6)
10640 ulp_region(RX_TLS_KEY);
10641 else
10642 hide_ulp_region();
10643 if (chip_id(sc) >= CHELSIO_T7) {
10644 ulp_region(RX_RRQ);
10645 ulp_region(RX_NVME_TCP_STAG);
10646 ulp_region(RX_NVME_TCP_RQ);
10647 ulp_region(RX_NVME_TCP_PBL);
10648 ulp_region(TX_NVME_TCP_TPT);
10649 ulp_region(TX_NVME_TCP_PBL);
10650 } else {
10651 hide_ulp_region();
10652 hide_ulp_region();
10653 hide_ulp_region();
10654 hide_ulp_region();
10655 hide_ulp_region();
10656 hide_ulp_region();
10657 }
10658 #undef ulp_region
10659 #undef hide_ulp_region
10660
10661 md->base = 0;
10662 if (is_t4(sc))
10663 md->idx = nitems(region);
10664 else {
10665 uint32_t size = 0;
10666 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10667 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10668
10669 if (is_t5(sc)) {
10670 if (sge_ctrl & F_VFIFO_ENABLE)
10671 size = fifo_size << 2;
10672 } else
10673 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10674
10675 if (size) {
10676 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10677 md->limit = md->base + size - 1;
10678 } else
10679 md->idx = nitems(region);
10680 }
10681 md++;
10682
10683 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10684 md->limit = 0;
10685 md++;
10686 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10687 md->limit = 0;
10688 md++;
10689
10690 if (chip_id(sc) >= CHELSIO_T7) {
10691 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false);
10692 md->base = lo;
10693 } else {
10694 md->base = 0;
10695 md->idx = nitems(region);
10696 }
10697 md++;
10698
10699 md->base = sc->vres.ocq.start;
10700 if (sc->vres.ocq.size)
10701 md->limit = md->base + sc->vres.ocq.size - 1;
10702 else
10703 md->idx = nitems(region); /* hide it */
10704 md++;
10705
10706 /* add any address-space holes, there can be up to 3 */
10707 for (n = 0; n < i - 1; n++)
10708 if (avail[n].limit < avail[n + 1].base)
10709 (md++)->base = avail[n].limit;
10710 if (avail[n].limit)
10711 (md++)->base = avail[n].limit;
10712
10713 n = md - mem;
10714 MPASS(n <= nitems(mem));
10715 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10716
10717 for (lo = 0; lo < i; lo++)
10718 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10719 avail[lo].limit - 1);
10720
10721 sbuf_printf(sb, "\n");
10722 for (i = 0; i < n; i++) {
10723 if (mem[i].idx >= nitems(region))
10724 continue; /* skip holes */
10725 if (!mem[i].limit)
10726 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10727 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10728 mem[i].limit);
10729 }
10730
10731 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10732 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10733 if (hi != lo - 1) {
10734 sbuf_printf(sb, "\n");
10735 mem_region_show(sb, "uP RAM:", lo, hi);
10736 }
10737
10738 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10739 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10740 if (hi != lo - 1)
10741 mem_region_show(sb, "uP Extmem2:", lo, hi);
10742
10743 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10744 if (chip_id(sc) >= CHELSIO_T7)
10745 nchan = 1 << G_T7_PMRXNUMCHN(lo);
10746 else
10747 nchan = lo & F_PMRXNUMCHN ? 2 : 1;
10748 for (i = 0, free = 0; i < nchan; i++)
10749 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10750 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10751 G_PMRXMAXPAGE(lo), free,
10752 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan);
10753
10754 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10755 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10756 if (chip_id(sc) >= CHELSIO_T7)
10757 nchan = 1 << G_T7_PMTXNUMCHN(lo);
10758 else
10759 nchan = 1 << G_PMTXNUMCHN(lo);
10760 for (i = 0, free = 0; i < nchan; i++)
10761 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10762 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10763 G_PMTXMAXPAGE(lo), free,
10764 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10765 hi >= (1 << 20) ? 'M' : 'K', nchan);
10766 sbuf_printf(sb, "%u p-structs (%u free)\n",
10767 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10768 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10769
10770 for (i = 0; i < 4; i++) {
10771 if (chip_id(sc) > CHELSIO_T5)
10772 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10773 else
10774 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10775 if (is_t5(sc)) {
10776 used = G_T5_USED(lo);
10777 alloc = G_T5_ALLOC(lo);
10778 } else {
10779 used = G_USED(lo);
10780 alloc = G_ALLOC(lo);
10781 }
10782 /* For T6+ these are MAC buffer groups */
10783 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10784 i, used, alloc);
10785 }
10786 for (i = 0; i < sc->chip_params->nchan; i++) {
10787 if (chip_id(sc) > CHELSIO_T5)
10788 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10789 else
10790 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10791 if (is_t5(sc)) {
10792 used = G_T5_USED(lo);
10793 alloc = G_T5_ALLOC(lo);
10794 } else {
10795 used = G_USED(lo);
10796 alloc = G_ALLOC(lo);
10797 }
10798 /* For T6+ these are MAC buffer groups */
10799 sbuf_printf(sb,
10800 "\nLoopback %d using %u pages out of %u allocated",
10801 i, used, alloc);
10802 }
10803 done:
10804 mtx_unlock(&sc->reg_lock);
10805 if (rc == 0)
10806 rc = sbuf_finish(sb);
10807 sbuf_delete(sb);
10808 return (rc);
10809 }
10810
10811 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10812 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10813 {
10814 *mask = x | y;
10815 y = htobe64(y);
10816 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10817 }
10818
10819 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10820 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10821 {
10822 struct adapter *sc = arg1;
10823 struct sbuf *sb;
10824 int rc, i;
10825
10826 MPASS(chip_id(sc) <= CHELSIO_T5);
10827
10828 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10829 if (sb == NULL)
10830 return (ENOMEM);
10831
10832 sbuf_printf(sb,
10833 "Idx Ethernet address Mask Vld Ports PF"
10834 " VF Replication P0 P1 P2 P3 ML");
10835 rc = 0;
10836 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10837 uint64_t tcamx, tcamy, mask;
10838 uint32_t cls_lo, cls_hi;
10839 uint8_t addr[ETHER_ADDR_LEN];
10840
10841 mtx_lock(&sc->reg_lock);
10842 if (hw_off_limits(sc))
10843 rc = ENXIO;
10844 else {
10845 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10846 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10847 }
10848 mtx_unlock(&sc->reg_lock);
10849 if (rc != 0)
10850 break;
10851 if (tcamx & tcamy)
10852 continue;
10853 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10854 mtx_lock(&sc->reg_lock);
10855 if (hw_off_limits(sc))
10856 rc = ENXIO;
10857 else {
10858 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10859 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10860 }
10861 mtx_unlock(&sc->reg_lock);
10862 if (rc != 0)
10863 break;
10864 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10865 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10866 addr[3], addr[4], addr[5], (uintmax_t)mask,
10867 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10868 G_PORTMAP(cls_hi), G_PF(cls_lo),
10869 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10870
10871 if (cls_lo & F_REPLICATE) {
10872 struct fw_ldst_cmd ldst_cmd;
10873
10874 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10875 ldst_cmd.op_to_addrspace =
10876 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10877 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10878 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10879 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10880 ldst_cmd.u.mps.rplc.fid_idx =
10881 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10882 V_FW_LDST_CMD_IDX(i));
10883
10884 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10885 "t4mps");
10886 if (rc)
10887 break;
10888 if (hw_off_limits(sc))
10889 rc = ENXIO;
10890 else
10891 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10892 sizeof(ldst_cmd), &ldst_cmd);
10893 end_synchronized_op(sc, 0);
10894 if (rc != 0)
10895 break;
10896 else {
10897 sbuf_printf(sb, " %08x %08x %08x %08x",
10898 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10899 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10900 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10901 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10902 }
10903 } else
10904 sbuf_printf(sb, "%36s", "");
10905
10906 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10907 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10908 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10909 }
10910
10911 if (rc)
10912 (void) sbuf_finish(sb);
10913 else
10914 rc = sbuf_finish(sb);
10915 sbuf_delete(sb);
10916
10917 return (rc);
10918 }
10919
10920 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10921 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10922 {
10923 struct adapter *sc = arg1;
10924 struct sbuf *sb;
10925 int rc, i;
10926
10927 MPASS(chip_id(sc) == CHELSIO_T6);
10928
10929 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10930 if (sb == NULL)
10931 return (ENOMEM);
10932
10933 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10934 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10935 " Replication"
10936 " P0 P1 P2 P3 ML");
10937
10938 rc = 0;
10939 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10940 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10941 uint16_t ivlan;
10942 uint64_t tcamx, tcamy, val, mask;
10943 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10944 uint8_t addr[ETHER_ADDR_LEN];
10945
10946 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10947 if (i < 256)
10948 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10949 else
10950 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10951 mtx_lock(&sc->reg_lock);
10952 if (hw_off_limits(sc))
10953 rc = ENXIO;
10954 else {
10955 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10956 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10957 tcamy = G_DMACH(val) << 32;
10958 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10959 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10960 }
10961 mtx_unlock(&sc->reg_lock);
10962 if (rc != 0)
10963 break;
10964
10965 lookup_type = G_DATALKPTYPE(data2);
10966 port_num = G_DATAPORTNUM(data2);
10967 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10968 /* Inner header VNI */
10969 vniy = ((data2 & F_DATAVIDH2) << 23) |
10970 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10971 dip_hit = data2 & F_DATADIPHIT;
10972 vlan_vld = 0;
10973 } else {
10974 vniy = 0;
10975 dip_hit = 0;
10976 vlan_vld = data2 & F_DATAVIDH2;
10977 ivlan = G_VIDL(val);
10978 }
10979
10980 ctl |= V_CTLXYBITSEL(1);
10981 mtx_lock(&sc->reg_lock);
10982 if (hw_off_limits(sc))
10983 rc = ENXIO;
10984 else {
10985 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10986 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10987 tcamx = G_DMACH(val) << 32;
10988 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10989 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10990 }
10991 mtx_unlock(&sc->reg_lock);
10992 if (rc != 0)
10993 break;
10994
10995 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10996 /* Inner header VNI mask */
10997 vnix = ((data2 & F_DATAVIDH2) << 23) |
10998 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10999 } else
11000 vnix = 0;
11001
11002 if (tcamx & tcamy)
11003 continue;
11004 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11005
11006 mtx_lock(&sc->reg_lock);
11007 if (hw_off_limits(sc))
11008 rc = ENXIO;
11009 else {
11010 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11011 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11012 }
11013 mtx_unlock(&sc->reg_lock);
11014 if (rc != 0)
11015 break;
11016
11017 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11018 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11019 "%012jx %06x %06x - - %3c"
11020 " I %4x %3c %#x%4u%4d", i, addr[0],
11021 addr[1], addr[2], addr[3], addr[4], addr[5],
11022 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11023 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11024 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11025 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11026 } else {
11027 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11028 "%012jx - - ", i, addr[0], addr[1],
11029 addr[2], addr[3], addr[4], addr[5],
11030 (uintmax_t)mask);
11031
11032 if (vlan_vld)
11033 sbuf_printf(sb, "%4u Y ", ivlan);
11034 else
11035 sbuf_printf(sb, " - N ");
11036
11037 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11038 lookup_type ? 'I' : 'O', port_num,
11039 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11040 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11041 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11042 }
11043
11044
11045 if (cls_lo & F_T6_REPLICATE) {
11046 struct fw_ldst_cmd ldst_cmd;
11047
11048 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11049 ldst_cmd.op_to_addrspace =
11050 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11051 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11052 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11053 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11054 ldst_cmd.u.mps.rplc.fid_idx =
11055 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11056 V_FW_LDST_CMD_IDX(i));
11057
11058 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11059 "t6mps");
11060 if (rc)
11061 break;
11062 if (hw_off_limits(sc))
11063 rc = ENXIO;
11064 else
11065 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11066 sizeof(ldst_cmd), &ldst_cmd);
11067 end_synchronized_op(sc, 0);
11068 if (rc != 0)
11069 break;
11070 else {
11071 sbuf_printf(sb, " %08x %08x %08x %08x"
11072 " %08x %08x %08x %08x",
11073 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11074 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11075 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11076 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11077 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11078 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11079 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11080 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11081 }
11082 } else
11083 sbuf_printf(sb, "%72s", "");
11084
11085 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11086 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11087 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11088 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11089 }
11090
11091 if (rc)
11092 (void) sbuf_finish(sb);
11093 else
11094 rc = sbuf_finish(sb);
11095 sbuf_delete(sb);
11096
11097 return (rc);
11098 }
11099
11100 static int
sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)11101 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)
11102 {
11103 struct adapter *sc = arg1;
11104 struct sbuf *sb;
11105 int rc, i;
11106
11107 MPASS(chip_id(sc) >= CHELSIO_T7);
11108
11109 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11110 if (sb == NULL)
11111 return (ENOMEM);
11112
11113 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
11114 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
11115 " Replication"
11116 " P0 P1 P2 P3 ML");
11117
11118 rc = 0;
11119 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
11120 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
11121 uint16_t ivlan;
11122 uint64_t tcamx, tcamy, val, mask;
11123 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
11124 uint8_t addr[ETHER_ADDR_LEN];
11125
11126 /* Read tcamy */
11127 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11128 if (chip_rev(sc) == 0) {
11129 if (i < 256)
11130 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11131 else
11132 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1);
11133 } else {
11134 #if 0
11135 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11136 #endif
11137 if (i < 512)
11138 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11139 else if (i < 1024)
11140 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1);
11141 else
11142 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2);
11143 }
11144
11145 mtx_lock(&sc->reg_lock);
11146 if (hw_off_limits(sc))
11147 rc = ENXIO;
11148 else {
11149 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11150 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11151 tcamy = G_DMACH(val) << 32;
11152 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11153 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11154 }
11155 mtx_unlock(&sc->reg_lock);
11156 if (rc != 0)
11157 break;
11158
11159 lookup_type = G_DATALKPTYPE(data2);
11160 port_num = G_DATAPORTNUM(data2);
11161 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11162 /* Inner header VNI */
11163 vniy = (((data2 & F_DATAVIDH2) |
11164 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11165 dip_hit = data2 & F_DATADIPHIT;
11166 vlan_vld = 0;
11167 } else {
11168 vniy = 0;
11169 dip_hit = 0;
11170 vlan_vld = data2 & F_DATAVIDH2;
11171 ivlan = G_VIDL(val);
11172 }
11173
11174 ctl |= V_CTLXYBITSEL(1);
11175 mtx_lock(&sc->reg_lock);
11176 if (hw_off_limits(sc))
11177 rc = ENXIO;
11178 else {
11179 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11180 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11181 tcamx = G_DMACH(val) << 32;
11182 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11183 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11184 }
11185 mtx_unlock(&sc->reg_lock);
11186 if (rc != 0)
11187 break;
11188
11189 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11190 /* Inner header VNI mask */
11191 vnix = (((data2 & F_DATAVIDH2) |
11192 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11193 } else
11194 vnix = 0;
11195
11196 if (tcamx & tcamy)
11197 continue;
11198 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11199
11200 mtx_lock(&sc->reg_lock);
11201 if (hw_off_limits(sc))
11202 rc = ENXIO;
11203 else {
11204 if (chip_rev(sc) == 0) {
11205 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11206 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11207 } else {
11208 t4_write_reg(sc, A_MPS_CLS_SRAM_H,
11209 V_SRAMWRN(0) | V_SRAMINDEX(i));
11210 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L);
11211 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H);
11212 }
11213 }
11214 mtx_unlock(&sc->reg_lock);
11215 if (rc != 0)
11216 break;
11217
11218 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11219 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11220 "%012jx %06x %06x - - %3c"
11221 " I %4x %3c %#x%4u%4d", i, addr[0],
11222 addr[1], addr[2], addr[3], addr[4], addr[5],
11223 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11224 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11225 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11226 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11227 } else {
11228 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11229 "%012jx - - ", i, addr[0], addr[1],
11230 addr[2], addr[3], addr[4], addr[5],
11231 (uintmax_t)mask);
11232
11233 if (vlan_vld)
11234 sbuf_printf(sb, "%4u Y ", ivlan);
11235 else
11236 sbuf_printf(sb, " - N ");
11237
11238 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11239 lookup_type ? 'I' : 'O', port_num,
11240 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11241 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11242 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11243 }
11244
11245 if (cls_lo & F_T6_REPLICATE) {
11246 struct fw_ldst_cmd ldst_cmd;
11247
11248 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11249 ldst_cmd.op_to_addrspace =
11250 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11251 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11252 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11253 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11254 ldst_cmd.u.mps.rplc.fid_idx =
11255 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11256 V_FW_LDST_CMD_IDX(i));
11257
11258 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11259 "t6mps");
11260 if (rc)
11261 break;
11262 if (hw_off_limits(sc))
11263 rc = ENXIO;
11264 else
11265 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11266 sizeof(ldst_cmd), &ldst_cmd);
11267 end_synchronized_op(sc, 0);
11268 if (rc != 0)
11269 break;
11270 else {
11271 sbuf_printf(sb, " %08x %08x %08x %08x"
11272 " %08x %08x %08x %08x",
11273 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11274 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11275 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11276 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11277 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11278 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11279 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11280 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11281 }
11282 } else
11283 sbuf_printf(sb, "%72s", "");
11284
11285 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11286 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11287 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11288 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11289 }
11290
11291 if (rc)
11292 (void) sbuf_finish(sb);
11293 else
11294 rc = sbuf_finish(sb);
11295 sbuf_delete(sb);
11296
11297 return (rc);
11298 }
11299
11300 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)11301 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
11302 {
11303 struct adapter *sc = arg1;
11304 struct sbuf *sb;
11305 int rc;
11306 uint16_t mtus[NMTUS];
11307
11308 rc = 0;
11309 mtx_lock(&sc->reg_lock);
11310 if (hw_off_limits(sc))
11311 rc = ENXIO;
11312 else
11313 t4_read_mtu_tbl(sc, mtus, NULL);
11314 mtx_unlock(&sc->reg_lock);
11315 if (rc != 0)
11316 return (rc);
11317
11318 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11319 if (sb == NULL)
11320 return (ENOMEM);
11321
11322 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
11323 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
11324 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
11325 mtus[14], mtus[15]);
11326
11327 rc = sbuf_finish(sb);
11328 sbuf_delete(sb);
11329
11330 return (rc);
11331 }
11332
11333 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)11334 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
11335 {
11336 struct adapter *sc = arg1;
11337 struct sbuf *sb;
11338 int rc, i;
11339 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
11340 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
11341 uint32_t stats[T7_PM_RX_CACHE_NSTATS];
11342 static const char *tx_stats[MAX_PM_NSTATS] = {
11343 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
11344 "Tx FIFO wait", NULL, "Tx latency"
11345 };
11346 static const char *rx_stats[MAX_PM_NSTATS] = {
11347 "Read:", "Write bypass:", "Write mem:", "Flush:",
11348 "Rx FIFO wait", NULL, "Rx latency"
11349 };
11350
11351 rc = 0;
11352 mtx_lock(&sc->reg_lock);
11353 if (hw_off_limits(sc))
11354 rc = ENXIO;
11355 else {
11356 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
11357 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
11358 if (chip_id(sc) >= CHELSIO_T7)
11359 t4_pmrx_cache_get_stats(sc, stats);
11360 }
11361 mtx_unlock(&sc->reg_lock);
11362 if (rc != 0)
11363 return (rc);
11364
11365 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11366 if (sb == NULL)
11367 return (ENOMEM);
11368
11369 sbuf_printf(sb, " Tx pcmds Tx bytes");
11370 for (i = 0; i < 4; i++) {
11371 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11372 tx_cyc[i]);
11373 }
11374
11375 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
11376 for (i = 0; i < 4; i++) {
11377 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11378 rx_cyc[i]);
11379 }
11380
11381 if (chip_id(sc) > CHELSIO_T5) {
11382 sbuf_printf(sb,
11383 "\n Total wait Total occupancy");
11384 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11385 tx_cyc[i]);
11386 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11387 rx_cyc[i]);
11388
11389 i += 2;
11390 MPASS(i < nitems(tx_stats));
11391
11392 sbuf_printf(sb,
11393 "\n Reads Total wait");
11394 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11395 tx_cyc[i]);
11396 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11397 rx_cyc[i]);
11398 }
11399
11400 if (chip_id(sc) >= CHELSIO_T7) {
11401 i = 0;
11402 sbuf_printf(sb, "\n\nPM RX Cache Stats\n");
11403 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]);
11404 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]);
11405 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]);
11406 sbuf_printf(sb, "%-40s %u\n", "Write Split Request",
11407 stats[i++]);
11408 sbuf_printf(sb, "%-40s %u\n",
11409 "Normal Read Split (Read Invalidate)", stats[i++]);
11410 sbuf_printf(sb, "%-40s %u\n",
11411 "Feedback Read Split (Read NoInvalidate)",
11412 stats[i++]);
11413 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]);
11414 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit",
11415 stats[i++]);
11416 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit",
11417 stats[i++]);
11418 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail",
11419 stats[i++]);
11420 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail",
11421 stats[i++]);
11422 sbuf_printf(sb, "%-40s %u\n",
11423 "Normal Read Hit Partial Avail",
11424 stats[i++]);
11425 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail",
11426 stats[i++]);
11427 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail",
11428 stats[i++]);
11429 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail",
11430 stats[i++]);
11431 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free",
11432 stats[i++]);
11433 sbuf_printf(sb, "%-40s %u\n",
11434 "Normal Read Part-avail Mul-Regions",
11435 stats[i++]);
11436 sbuf_printf(sb, "%-40s %u\n",
11437 "FB Read Part-avail Mul-Regions",
11438 stats[i++]);
11439 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used",
11440 stats[i++]);
11441 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used",
11442 stats[i++]);
11443 sbuf_printf(sb, "%-40s %u\n",
11444 "Write Miss LRU-Multiple Evict", stats[i++]);
11445 sbuf_printf(sb, "%-40s %u\n",
11446 "Write Hit Increasing Islands", stats[i++]);
11447 sbuf_printf(sb, "%-40s %u\n",
11448 "Normal Read Island Read split", stats[i++]);
11449 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction",
11450 stats[i++]);
11451 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction",
11452 stats[i++]);
11453 }
11454
11455 rc = sbuf_finish(sb);
11456 sbuf_delete(sb);
11457
11458 return (rc);
11459 }
11460
11461 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)11462 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
11463 {
11464 struct adapter *sc = arg1;
11465 struct sbuf *sb;
11466 int rc;
11467 struct tp_rdma_stats stats;
11468
11469 rc = 0;
11470 mtx_lock(&sc->reg_lock);
11471 if (hw_off_limits(sc))
11472 rc = ENXIO;
11473 else
11474 t4_tp_get_rdma_stats(sc, &stats, 0);
11475 mtx_unlock(&sc->reg_lock);
11476 if (rc != 0)
11477 return (rc);
11478
11479 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11480 if (sb == NULL)
11481 return (ENOMEM);
11482
11483 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
11484 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
11485
11486 rc = sbuf_finish(sb);
11487 sbuf_delete(sb);
11488
11489 return (rc);
11490 }
11491
11492 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)11493 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
11494 {
11495 struct adapter *sc = arg1;
11496 struct sbuf *sb;
11497 int rc;
11498 struct tp_tcp_stats v4, v6;
11499
11500 rc = 0;
11501 mtx_lock(&sc->reg_lock);
11502 if (hw_off_limits(sc))
11503 rc = ENXIO;
11504 else
11505 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
11506 mtx_unlock(&sc->reg_lock);
11507 if (rc != 0)
11508 return (rc);
11509
11510 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11511 if (sb == NULL)
11512 return (ENOMEM);
11513
11514 sbuf_printf(sb,
11515 " IP IPv6\n");
11516 sbuf_printf(sb, "OutRsts: %20u %20u\n",
11517 v4.tcp_out_rsts, v6.tcp_out_rsts);
11518 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
11519 v4.tcp_in_segs, v6.tcp_in_segs);
11520 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
11521 v4.tcp_out_segs, v6.tcp_out_segs);
11522 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
11523 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
11524
11525 rc = sbuf_finish(sb);
11526 sbuf_delete(sb);
11527
11528 return (rc);
11529 }
11530
11531 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)11532 sysctl_tids(SYSCTL_HANDLER_ARGS)
11533 {
11534 struct adapter *sc = arg1;
11535 struct sbuf *sb;
11536 int rc;
11537 uint32_t x, y;
11538 struct tid_info *t = &sc->tids;
11539
11540 rc = 0;
11541 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11542 if (sb == NULL)
11543 return (ENOMEM);
11544
11545 if (t->natids) {
11546 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
11547 t->atids_in_use);
11548 }
11549
11550 if (t->nhpftids) {
11551 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
11552 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
11553 }
11554
11555 if (t->ntids) {
11556 bool hashen = false;
11557
11558 mtx_lock(&sc->reg_lock);
11559 if (hw_off_limits(sc))
11560 rc = ENXIO;
11561 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
11562 hashen = true;
11563 if (chip_id(sc) <= CHELSIO_T5) {
11564 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
11565 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
11566 } else {
11567 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
11568 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
11569 }
11570 }
11571 mtx_unlock(&sc->reg_lock);
11572 if (rc != 0)
11573 goto done;
11574
11575 sbuf_printf(sb, "TID range: ");
11576 if (hashen) {
11577 if (x)
11578 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
11579 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
11580 } else {
11581 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
11582 t->ntids - 1);
11583 }
11584 sbuf_printf(sb, ", in use: %u\n",
11585 atomic_load_acq_int(&t->tids_in_use));
11586 }
11587
11588 if (t->nstids) {
11589 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
11590 t->stid_base + t->nstids - 1, t->stids_in_use);
11591 }
11592
11593 if (t->nftids) {
11594 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
11595 t->ftid_end, t->ftids_in_use);
11596 }
11597
11598 if (t->netids) {
11599 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
11600 t->etid_base + t->netids - 1, t->etids_in_use);
11601 }
11602
11603 mtx_lock(&sc->reg_lock);
11604 if (hw_off_limits(sc))
11605 rc = ENXIO;
11606 else {
11607 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
11608 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
11609 }
11610 mtx_unlock(&sc->reg_lock);
11611 if (rc != 0)
11612 goto done;
11613 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
11614 done:
11615 if (rc == 0)
11616 rc = sbuf_finish(sb);
11617 else
11618 (void)sbuf_finish(sb);
11619 sbuf_delete(sb);
11620
11621 return (rc);
11622 }
11623
11624 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)11625 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
11626 {
11627 struct adapter *sc = arg1;
11628 struct sbuf *sb;
11629 int rc;
11630 struct tp_err_stats stats;
11631
11632 rc = 0;
11633 mtx_lock(&sc->reg_lock);
11634 if (hw_off_limits(sc))
11635 rc = ENXIO;
11636 else
11637 t4_tp_get_err_stats(sc, &stats, 0);
11638 mtx_unlock(&sc->reg_lock);
11639 if (rc != 0)
11640 return (rc);
11641
11642 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11643 if (sb == NULL)
11644 return (ENOMEM);
11645
11646 if (sc->chip_params->nchan > 2) {
11647 sbuf_printf(sb, " channel 0 channel 1"
11648 " channel 2 channel 3\n");
11649 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
11650 stats.mac_in_errs[0], stats.mac_in_errs[1],
11651 stats.mac_in_errs[2], stats.mac_in_errs[3]);
11652 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
11653 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
11654 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
11655 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
11656 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
11657 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
11658 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
11659 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
11660 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
11661 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
11662 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
11663 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
11664 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
11665 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
11666 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
11667 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
11668 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
11669 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
11670 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
11671 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
11672 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
11673 } else {
11674 sbuf_printf(sb, " channel 0 channel 1\n");
11675 sbuf_printf(sb, "macInErrs: %10u %10u\n",
11676 stats.mac_in_errs[0], stats.mac_in_errs[1]);
11677 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
11678 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
11679 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
11680 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
11681 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
11682 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
11683 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
11684 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
11685 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
11686 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
11687 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
11688 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
11689 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
11690 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
11691 }
11692
11693 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
11694 stats.ofld_no_neigh, stats.ofld_cong_defer);
11695
11696 rc = sbuf_finish(sb);
11697 sbuf_delete(sb);
11698
11699 return (rc);
11700 }
11701
11702 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)11703 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
11704 {
11705 struct adapter *sc = arg1;
11706 struct sbuf *sb;
11707 int rc;
11708 struct tp_tnl_stats stats;
11709
11710 rc = 0;
11711 mtx_lock(&sc->reg_lock);
11712 if (hw_off_limits(sc))
11713 rc = ENXIO;
11714 else
11715 t4_tp_get_tnl_stats(sc, &stats, 1);
11716 mtx_unlock(&sc->reg_lock);
11717 if (rc != 0)
11718 return (rc);
11719
11720 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11721 if (sb == NULL)
11722 return (ENOMEM);
11723
11724 if (sc->chip_params->nchan > 2) {
11725 sbuf_printf(sb, " channel 0 channel 1"
11726 " channel 2 channel 3\n");
11727 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
11728 stats.out_pkt[0], stats.out_pkt[1],
11729 stats.out_pkt[2], stats.out_pkt[3]);
11730 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
11731 stats.in_pkt[0], stats.in_pkt[1],
11732 stats.in_pkt[2], stats.in_pkt[3]);
11733 } else {
11734 sbuf_printf(sb, " channel 0 channel 1\n");
11735 sbuf_printf(sb, "OutPkts: %10u %10u\n",
11736 stats.out_pkt[0], stats.out_pkt[1]);
11737 sbuf_printf(sb, "InPkts: %10u %10u",
11738 stats.in_pkt[0], stats.in_pkt[1]);
11739 }
11740
11741 rc = sbuf_finish(sb);
11742 sbuf_delete(sb);
11743
11744 return (rc);
11745 }
11746
11747 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)11748 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
11749 {
11750 struct adapter *sc = arg1;
11751 struct tp_params *tpp = &sc->params.tp;
11752 u_int mask;
11753 int rc;
11754
11755 mask = tpp->la_mask >> 16;
11756 rc = sysctl_handle_int(oidp, &mask, 0, req);
11757 if (rc != 0 || req->newptr == NULL)
11758 return (rc);
11759 if (mask > 0xffff)
11760 return (EINVAL);
11761 mtx_lock(&sc->reg_lock);
11762 if (hw_off_limits(sc))
11763 rc = ENXIO;
11764 else {
11765 tpp->la_mask = mask << 16;
11766 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
11767 tpp->la_mask);
11768 }
11769 mtx_unlock(&sc->reg_lock);
11770
11771 return (rc);
11772 }
11773
11774 struct field_desc {
11775 const char *name;
11776 u_int start;
11777 u_int width;
11778 };
11779
11780 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)11781 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
11782 {
11783 char buf[32];
11784 int line_size = 0;
11785
11786 while (f->name) {
11787 uint64_t mask = (1ULL << f->width) - 1;
11788 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
11789 ((uintmax_t)v >> f->start) & mask);
11790
11791 if (line_size + len >= 79) {
11792 line_size = 8;
11793 sbuf_printf(sb, "\n ");
11794 }
11795 sbuf_printf(sb, "%s ", buf);
11796 line_size += len + 1;
11797 f++;
11798 }
11799 sbuf_printf(sb, "\n");
11800 }
11801
11802 static const struct field_desc tp_la0[] = {
11803 { "RcfOpCodeOut", 60, 4 },
11804 { "State", 56, 4 },
11805 { "WcfState", 52, 4 },
11806 { "RcfOpcSrcOut", 50, 2 },
11807 { "CRxError", 49, 1 },
11808 { "ERxError", 48, 1 },
11809 { "SanityFailed", 47, 1 },
11810 { "SpuriousMsg", 46, 1 },
11811 { "FlushInputMsg", 45, 1 },
11812 { "FlushInputCpl", 44, 1 },
11813 { "RssUpBit", 43, 1 },
11814 { "RssFilterHit", 42, 1 },
11815 { "Tid", 32, 10 },
11816 { "InitTcb", 31, 1 },
11817 { "LineNumber", 24, 7 },
11818 { "Emsg", 23, 1 },
11819 { "EdataOut", 22, 1 },
11820 { "Cmsg", 21, 1 },
11821 { "CdataOut", 20, 1 },
11822 { "EreadPdu", 19, 1 },
11823 { "CreadPdu", 18, 1 },
11824 { "TunnelPkt", 17, 1 },
11825 { "RcfPeerFin", 16, 1 },
11826 { "RcfReasonOut", 12, 4 },
11827 { "TxCchannel", 10, 2 },
11828 { "RcfTxChannel", 8, 2 },
11829 { "RxEchannel", 6, 2 },
11830 { "RcfRxChannel", 5, 1 },
11831 { "RcfDataOutSrdy", 4, 1 },
11832 { "RxDvld", 3, 1 },
11833 { "RxOoDvld", 2, 1 },
11834 { "RxCongestion", 1, 1 },
11835 { "TxCongestion", 0, 1 },
11836 { NULL }
11837 };
11838
11839 static const struct field_desc tp_la1[] = {
11840 { "CplCmdIn", 56, 8 },
11841 { "CplCmdOut", 48, 8 },
11842 { "ESynOut", 47, 1 },
11843 { "EAckOut", 46, 1 },
11844 { "EFinOut", 45, 1 },
11845 { "ERstOut", 44, 1 },
11846 { "SynIn", 43, 1 },
11847 { "AckIn", 42, 1 },
11848 { "FinIn", 41, 1 },
11849 { "RstIn", 40, 1 },
11850 { "DataIn", 39, 1 },
11851 { "DataInVld", 38, 1 },
11852 { "PadIn", 37, 1 },
11853 { "RxBufEmpty", 36, 1 },
11854 { "RxDdp", 35, 1 },
11855 { "RxFbCongestion", 34, 1 },
11856 { "TxFbCongestion", 33, 1 },
11857 { "TxPktSumSrdy", 32, 1 },
11858 { "RcfUlpType", 28, 4 },
11859 { "Eread", 27, 1 },
11860 { "Ebypass", 26, 1 },
11861 { "Esave", 25, 1 },
11862 { "Static0", 24, 1 },
11863 { "Cread", 23, 1 },
11864 { "Cbypass", 22, 1 },
11865 { "Csave", 21, 1 },
11866 { "CPktOut", 20, 1 },
11867 { "RxPagePoolFull", 18, 2 },
11868 { "RxLpbkPkt", 17, 1 },
11869 { "TxLpbkPkt", 16, 1 },
11870 { "RxVfValid", 15, 1 },
11871 { "SynLearned", 14, 1 },
11872 { "SetDelEntry", 13, 1 },
11873 { "SetInvEntry", 12, 1 },
11874 { "CpcmdDvld", 11, 1 },
11875 { "CpcmdSave", 10, 1 },
11876 { "RxPstructsFull", 8, 2 },
11877 { "EpcmdDvld", 7, 1 },
11878 { "EpcmdFlush", 6, 1 },
11879 { "EpcmdTrimPrefix", 5, 1 },
11880 { "EpcmdTrimPostfix", 4, 1 },
11881 { "ERssIp4Pkt", 3, 1 },
11882 { "ERssIp6Pkt", 2, 1 },
11883 { "ERssTcpUdpPkt", 1, 1 },
11884 { "ERssFceFipPkt", 0, 1 },
11885 { NULL }
11886 };
11887
11888 static const struct field_desc tp_la2[] = {
11889 { "CplCmdIn", 56, 8 },
11890 { "MpsVfVld", 55, 1 },
11891 { "MpsPf", 52, 3 },
11892 { "MpsVf", 44, 8 },
11893 { "SynIn", 43, 1 },
11894 { "AckIn", 42, 1 },
11895 { "FinIn", 41, 1 },
11896 { "RstIn", 40, 1 },
11897 { "DataIn", 39, 1 },
11898 { "DataInVld", 38, 1 },
11899 { "PadIn", 37, 1 },
11900 { "RxBufEmpty", 36, 1 },
11901 { "RxDdp", 35, 1 },
11902 { "RxFbCongestion", 34, 1 },
11903 { "TxFbCongestion", 33, 1 },
11904 { "TxPktSumSrdy", 32, 1 },
11905 { "RcfUlpType", 28, 4 },
11906 { "Eread", 27, 1 },
11907 { "Ebypass", 26, 1 },
11908 { "Esave", 25, 1 },
11909 { "Static0", 24, 1 },
11910 { "Cread", 23, 1 },
11911 { "Cbypass", 22, 1 },
11912 { "Csave", 21, 1 },
11913 { "CPktOut", 20, 1 },
11914 { "RxPagePoolFull", 18, 2 },
11915 { "RxLpbkPkt", 17, 1 },
11916 { "TxLpbkPkt", 16, 1 },
11917 { "RxVfValid", 15, 1 },
11918 { "SynLearned", 14, 1 },
11919 { "SetDelEntry", 13, 1 },
11920 { "SetInvEntry", 12, 1 },
11921 { "CpcmdDvld", 11, 1 },
11922 { "CpcmdSave", 10, 1 },
11923 { "RxPstructsFull", 8, 2 },
11924 { "EpcmdDvld", 7, 1 },
11925 { "EpcmdFlush", 6, 1 },
11926 { "EpcmdTrimPrefix", 5, 1 },
11927 { "EpcmdTrimPostfix", 4, 1 },
11928 { "ERssIp4Pkt", 3, 1 },
11929 { "ERssIp6Pkt", 2, 1 },
11930 { "ERssTcpUdpPkt", 1, 1 },
11931 { "ERssFceFipPkt", 0, 1 },
11932 { NULL }
11933 };
11934
11935 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11936 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11937 {
11938
11939 field_desc_show(sb, *p, tp_la0);
11940 }
11941
11942 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11943 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11944 {
11945
11946 if (idx)
11947 sbuf_printf(sb, "\n");
11948 field_desc_show(sb, p[0], tp_la0);
11949 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11950 field_desc_show(sb, p[1], tp_la0);
11951 }
11952
11953 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11954 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11955 {
11956
11957 if (idx)
11958 sbuf_printf(sb, "\n");
11959 field_desc_show(sb, p[0], tp_la0);
11960 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11961 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11962 }
11963
11964 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11965 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11966 {
11967 struct adapter *sc = arg1;
11968 struct sbuf *sb;
11969 uint64_t *buf, *p;
11970 int rc;
11971 u_int i, inc;
11972 void (*show_func)(struct sbuf *, uint64_t *, int);
11973
11974 rc = 0;
11975 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11976 if (sb == NULL)
11977 return (ENOMEM);
11978
11979 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11980
11981 mtx_lock(&sc->reg_lock);
11982 if (hw_off_limits(sc))
11983 rc = ENXIO;
11984 else {
11985 t4_tp_read_la(sc, buf, NULL);
11986 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11987 case 2:
11988 inc = 2;
11989 show_func = tp_la_show2;
11990 break;
11991 case 3:
11992 inc = 2;
11993 show_func = tp_la_show3;
11994 break;
11995 default:
11996 inc = 1;
11997 show_func = tp_la_show;
11998 }
11999 }
12000 mtx_unlock(&sc->reg_lock);
12001 if (rc != 0)
12002 goto done;
12003
12004 p = buf;
12005 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
12006 (*show_func)(sb, p, i);
12007 rc = sbuf_finish(sb);
12008 done:
12009 sbuf_delete(sb);
12010 free(buf, M_CXGBE);
12011 return (rc);
12012 }
12013
12014 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)12015 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
12016 {
12017 struct adapter *sc = arg1;
12018 struct sbuf *sb;
12019 int rc;
12020 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
12021
12022 rc = 0;
12023 mtx_lock(&sc->reg_lock);
12024 if (hw_off_limits(sc))
12025 rc = ENXIO;
12026 else
12027 t4_get_chan_txrate(sc, nrate, orate);
12028 mtx_unlock(&sc->reg_lock);
12029 if (rc != 0)
12030 return (rc);
12031
12032 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
12033 if (sb == NULL)
12034 return (ENOMEM);
12035
12036 if (sc->chip_params->nchan > 2) {
12037 sbuf_printf(sb, " channel 0 channel 1"
12038 " channel 2 channel 3\n");
12039 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
12040 nrate[0], nrate[1], nrate[2], nrate[3]);
12041 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
12042 orate[0], orate[1], orate[2], orate[3]);
12043 } else {
12044 sbuf_printf(sb, " channel 0 channel 1\n");
12045 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
12046 nrate[0], nrate[1]);
12047 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
12048 orate[0], orate[1]);
12049 }
12050
12051 rc = sbuf_finish(sb);
12052 sbuf_delete(sb);
12053
12054 return (rc);
12055 }
12056
12057 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)12058 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
12059 {
12060 struct adapter *sc = arg1;
12061 struct sbuf *sb;
12062 uint32_t *buf, *p;
12063 int rc, i;
12064
12065 rc = 0;
12066 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12067 if (sb == NULL)
12068 return (ENOMEM);
12069
12070 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
12071 M_ZERO | M_WAITOK);
12072
12073 mtx_lock(&sc->reg_lock);
12074 if (hw_off_limits(sc))
12075 rc = ENXIO;
12076 else
12077 t4_ulprx_read_la(sc, buf);
12078 mtx_unlock(&sc->reg_lock);
12079 if (rc != 0)
12080 goto done;
12081
12082 p = buf;
12083 sbuf_printf(sb, " Pcmd Type Message"
12084 " Data");
12085 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
12086 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
12087 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
12088 }
12089 rc = sbuf_finish(sb);
12090 done:
12091 sbuf_delete(sb);
12092 free(buf, M_CXGBE);
12093 return (rc);
12094 }
12095
12096 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)12097 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
12098 {
12099 struct adapter *sc = arg1;
12100 struct sbuf *sb;
12101 int rc;
12102 uint32_t cfg, s1, s2;
12103
12104 MPASS(chip_id(sc) >= CHELSIO_T5);
12105
12106 rc = 0;
12107 mtx_lock(&sc->reg_lock);
12108 if (hw_off_limits(sc))
12109 rc = ENXIO;
12110 else {
12111 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
12112 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
12113 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
12114 }
12115 mtx_unlock(&sc->reg_lock);
12116 if (rc != 0)
12117 return (rc);
12118
12119 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12120 if (sb == NULL)
12121 return (ENOMEM);
12122
12123 if (G_STATSOURCE_T5(cfg) == 7) {
12124 int mode;
12125
12126 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
12127 if (mode == 0)
12128 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
12129 else if (mode == 1)
12130 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
12131 else
12132 sbuf_printf(sb, "unknown mode %d", mode);
12133 }
12134 rc = sbuf_finish(sb);
12135 sbuf_delete(sb);
12136
12137 return (rc);
12138 }
12139
12140 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)12141 sysctl_cpus(SYSCTL_HANDLER_ARGS)
12142 {
12143 struct adapter *sc = arg1;
12144 enum cpu_sets op = arg2;
12145 cpuset_t cpuset;
12146 struct sbuf *sb;
12147 int i, rc;
12148
12149 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
12150
12151 CPU_ZERO(&cpuset);
12152 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
12153 if (rc != 0)
12154 return (rc);
12155
12156 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12157 if (sb == NULL)
12158 return (ENOMEM);
12159
12160 CPU_FOREACH(i)
12161 sbuf_printf(sb, "%d ", i);
12162 rc = sbuf_finish(sb);
12163 sbuf_delete(sb);
12164
12165 return (rc);
12166 }
12167
12168 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)12169 sysctl_reset(SYSCTL_HANDLER_ARGS)
12170 {
12171 struct adapter *sc = arg1;
12172 u_int val;
12173 int rc;
12174
12175 val = atomic_load_int(&sc->num_resets);
12176 rc = sysctl_handle_int(oidp, &val, 0, req);
12177 if (rc != 0 || req->newptr == NULL)
12178 return (rc);
12179
12180 if (val == 0) {
12181 /* Zero out the counter that tracks reset. */
12182 atomic_store_int(&sc->num_resets, 0);
12183 return (0);
12184 }
12185
12186 if (val != 1)
12187 return (EINVAL); /* 0 or 1 are the only legal values */
12188
12189 if (hw_off_limits(sc)) /* harmless race */
12190 return (EALREADY);
12191
12192 taskqueue_enqueue(reset_tq, &sc->reset_task);
12193 return (0);
12194 }
12195
12196 #ifdef TCP_OFFLOAD
12197 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)12198 sysctl_tls(SYSCTL_HANDLER_ARGS)
12199 {
12200 struct adapter *sc = arg1;
12201 int i, j, v, rc;
12202 struct vi_info *vi;
12203
12204 v = sc->tt.tls;
12205 rc = sysctl_handle_int(oidp, &v, 0, req);
12206 if (rc != 0 || req->newptr == NULL)
12207 return (rc);
12208
12209 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
12210 return (ENOTSUP);
12211
12212 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
12213 if (rc)
12214 return (rc);
12215 if (hw_off_limits(sc))
12216 rc = ENXIO;
12217 else {
12218 sc->tt.tls = !!v;
12219 for_each_port(sc, i) {
12220 for_each_vi(sc->port[i], j, vi) {
12221 if (vi->flags & VI_INIT_DONE)
12222 t4_update_fl_bufsize(vi->ifp);
12223 }
12224 }
12225 }
12226 end_synchronized_op(sc, 0);
12227
12228 return (rc);
12229
12230 }
12231
12232 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)12233 unit_conv(char *buf, size_t len, u_int val, u_int factor)
12234 {
12235 u_int rem = val % factor;
12236
12237 if (rem == 0)
12238 snprintf(buf, len, "%u", val / factor);
12239 else {
12240 while (rem % 10 == 0)
12241 rem /= 10;
12242 snprintf(buf, len, "%u.%u", val / factor, rem);
12243 }
12244 }
12245
12246 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)12247 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
12248 {
12249 struct adapter *sc = arg1;
12250 char buf[16];
12251 u_int res, re;
12252 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12253
12254 mtx_lock(&sc->reg_lock);
12255 if (hw_off_limits(sc))
12256 res = (u_int)-1;
12257 else
12258 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
12259 mtx_unlock(&sc->reg_lock);
12260 if (res == (u_int)-1)
12261 return (ENXIO);
12262
12263 switch (arg2) {
12264 case 0:
12265 /* timer_tick */
12266 re = G_TIMERRESOLUTION(res);
12267 break;
12268 case 1:
12269 /* TCP timestamp tick */
12270 re = G_TIMESTAMPRESOLUTION(res);
12271 break;
12272 case 2:
12273 /* DACK tick */
12274 re = G_DELAYEDACKRESOLUTION(res);
12275 break;
12276 default:
12277 return (EDOOFUS);
12278 }
12279
12280 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
12281
12282 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
12283 }
12284
12285 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)12286 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
12287 {
12288 struct adapter *sc = arg1;
12289 int rc;
12290 u_int dack_tmr, dack_re, v;
12291 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12292
12293 mtx_lock(&sc->reg_lock);
12294 if (hw_off_limits(sc))
12295 rc = ENXIO;
12296 else {
12297 rc = 0;
12298 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
12299 A_TP_TIMER_RESOLUTION));
12300 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
12301 }
12302 mtx_unlock(&sc->reg_lock);
12303 if (rc != 0)
12304 return (rc);
12305
12306 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
12307
12308 return (sysctl_handle_int(oidp, &v, 0, req));
12309 }
12310
12311 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)12312 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
12313 {
12314 struct adapter *sc = arg1;
12315 int rc, reg = arg2;
12316 u_int tre;
12317 u_long tp_tick_us, v;
12318 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12319
12320 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
12321 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
12322 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
12323 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
12324
12325 mtx_lock(&sc->reg_lock);
12326 if (hw_off_limits(sc))
12327 rc = ENXIO;
12328 else {
12329 rc = 0;
12330 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
12331 tp_tick_us = (cclk_ps << tre) / 1000000;
12332 if (reg == A_TP_INIT_SRTT)
12333 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
12334 else
12335 v = tp_tick_us * t4_read_reg(sc, reg);
12336 }
12337 mtx_unlock(&sc->reg_lock);
12338 if (rc != 0)
12339 return (rc);
12340 else
12341 return (sysctl_handle_long(oidp, &v, 0, req));
12342 }
12343
12344 /*
12345 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
12346 * passed to this function.
12347 */
12348 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)12349 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
12350 {
12351 struct adapter *sc = arg1;
12352 int rc, idx = arg2;
12353 u_int v;
12354
12355 MPASS(idx >= 0 && idx <= 24);
12356
12357 mtx_lock(&sc->reg_lock);
12358 if (hw_off_limits(sc))
12359 rc = ENXIO;
12360 else {
12361 rc = 0;
12362 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
12363 }
12364 mtx_unlock(&sc->reg_lock);
12365 if (rc != 0)
12366 return (rc);
12367 else
12368 return (sysctl_handle_int(oidp, &v, 0, req));
12369 }
12370
12371 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)12372 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
12373 {
12374 struct adapter *sc = arg1;
12375 int rc, idx = arg2;
12376 u_int shift, v, r;
12377
12378 MPASS(idx >= 0 && idx < 16);
12379
12380 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
12381 shift = (idx & 3) << 3;
12382 mtx_lock(&sc->reg_lock);
12383 if (hw_off_limits(sc))
12384 rc = ENXIO;
12385 else {
12386 rc = 0;
12387 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
12388 }
12389 mtx_unlock(&sc->reg_lock);
12390 if (rc != 0)
12391 return (rc);
12392 else
12393 return (sysctl_handle_int(oidp, &v, 0, req));
12394 }
12395
12396 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)12397 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
12398 {
12399 struct vi_info *vi = arg1;
12400 struct adapter *sc = vi->adapter;
12401 int idx, rc, i;
12402 struct sge_ofld_rxq *ofld_rxq;
12403 uint8_t v;
12404
12405 idx = vi->ofld_tmr_idx;
12406
12407 rc = sysctl_handle_int(oidp, &idx, 0, req);
12408 if (rc != 0 || req->newptr == NULL)
12409 return (rc);
12410
12411 if (idx < 0 || idx >= SGE_NTIMERS)
12412 return (EINVAL);
12413
12414 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12415 "t4otmr");
12416 if (rc)
12417 return (rc);
12418
12419 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
12420 for_each_ofld_rxq(vi, i, ofld_rxq) {
12421 #ifdef atomic_store_rel_8
12422 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
12423 #else
12424 ofld_rxq->iq.intr_params = v;
12425 #endif
12426 }
12427 vi->ofld_tmr_idx = idx;
12428
12429 end_synchronized_op(sc, LOCK_HELD);
12430 return (0);
12431 }
12432
12433 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)12434 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
12435 {
12436 struct vi_info *vi = arg1;
12437 struct adapter *sc = vi->adapter;
12438 int idx, rc;
12439
12440 idx = vi->ofld_pktc_idx;
12441
12442 rc = sysctl_handle_int(oidp, &idx, 0, req);
12443 if (rc != 0 || req->newptr == NULL)
12444 return (rc);
12445
12446 if (idx < -1 || idx >= SGE_NCOUNTERS)
12447 return (EINVAL);
12448
12449 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12450 "t4opktc");
12451 if (rc)
12452 return (rc);
12453
12454 if (vi->flags & VI_INIT_DONE)
12455 rc = EBUSY; /* cannot be changed once the queues are created */
12456 else
12457 vi->ofld_pktc_idx = idx;
12458
12459 end_synchronized_op(sc, LOCK_HELD);
12460 return (rc);
12461 }
12462 #endif
12463
12464 static int
get_sge_context(struct adapter * sc,int mem_id,uint32_t cid,int len,uint32_t * data)12465 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len,
12466 uint32_t *data)
12467 {
12468 int rc;
12469
12470 if (len < sc->chip_params->sge_ctxt_size)
12471 return (ENOBUFS);
12472 if (cid > M_CTXTQID)
12473 return (EINVAL);
12474 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS &&
12475 mem_id != CTXT_FLM && mem_id != CTXT_CNM)
12476 return (EINVAL);
12477
12478 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
12479 if (rc)
12480 return (rc);
12481
12482 if (hw_off_limits(sc)) {
12483 rc = ENXIO;
12484 goto done;
12485 }
12486
12487 if (sc->flags & FW_OK) {
12488 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data);
12489 if (rc == 0)
12490 goto done;
12491 }
12492
12493 /*
12494 * Read via firmware failed or wasn't even attempted. Read directly via
12495 * the backdoor.
12496 */
12497 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data);
12498 done:
12499 end_synchronized_op(sc, 0);
12500 return (rc);
12501 }
12502
12503 static int
load_fw(struct adapter * sc,struct t4_data * fw)12504 load_fw(struct adapter *sc, struct t4_data *fw)
12505 {
12506 int rc;
12507 uint8_t *fw_data;
12508
12509 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
12510 if (rc)
12511 return (rc);
12512
12513 if (hw_off_limits(sc)) {
12514 rc = ENXIO;
12515 goto done;
12516 }
12517
12518 /*
12519 * The firmware, with the sole exception of the memory parity error
12520 * handler, runs from memory and not flash. It is almost always safe to
12521 * install a new firmware on a running system. Just set bit 1 in
12522 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
12523 */
12524 if (sc->flags & FULL_INIT_DONE &&
12525 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
12526 rc = EBUSY;
12527 goto done;
12528 }
12529
12530 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
12531
12532 rc = copyin(fw->data, fw_data, fw->len);
12533 if (rc == 0)
12534 rc = -t4_load_fw(sc, fw_data, fw->len);
12535
12536 free(fw_data, M_CXGBE);
12537 done:
12538 end_synchronized_op(sc, 0);
12539 return (rc);
12540 }
12541
12542 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)12543 load_cfg(struct adapter *sc, struct t4_data *cfg)
12544 {
12545 int rc;
12546 uint8_t *cfg_data = NULL;
12547
12548 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12549 if (rc)
12550 return (rc);
12551
12552 if (hw_off_limits(sc)) {
12553 rc = ENXIO;
12554 goto done;
12555 }
12556
12557 if (cfg->len == 0) {
12558 /* clear */
12559 rc = -t4_load_cfg(sc, NULL, 0);
12560 goto done;
12561 }
12562
12563 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
12564
12565 rc = copyin(cfg->data, cfg_data, cfg->len);
12566 if (rc == 0)
12567 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
12568
12569 free(cfg_data, M_CXGBE);
12570 done:
12571 end_synchronized_op(sc, 0);
12572 return (rc);
12573 }
12574
12575 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)12576 load_boot(struct adapter *sc, struct t4_bootrom *br)
12577 {
12578 int rc;
12579 uint8_t *br_data = NULL;
12580 u_int offset;
12581
12582 if (br->len > 1024 * 1024)
12583 return (EFBIG);
12584
12585 if (br->pf_offset == 0) {
12586 /* pfidx */
12587 if (br->pfidx_addr > 7)
12588 return (EINVAL);
12589 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
12590 A_PCIE_PF_EXPROM_OFST)));
12591 } else if (br->pf_offset == 1) {
12592 /* offset */
12593 offset = G_OFFSET(br->pfidx_addr);
12594 } else {
12595 return (EINVAL);
12596 }
12597
12598 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
12599 if (rc)
12600 return (rc);
12601
12602 if (hw_off_limits(sc)) {
12603 rc = ENXIO;
12604 goto done;
12605 }
12606
12607 if (br->len == 0) {
12608 /* clear */
12609 rc = -t4_load_boot(sc, NULL, offset, 0);
12610 goto done;
12611 }
12612
12613 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
12614
12615 rc = copyin(br->data, br_data, br->len);
12616 if (rc == 0)
12617 rc = -t4_load_boot(sc, br_data, offset, br->len);
12618
12619 free(br_data, M_CXGBE);
12620 done:
12621 end_synchronized_op(sc, 0);
12622 return (rc);
12623 }
12624
12625 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)12626 load_bootcfg(struct adapter *sc, struct t4_data *bc)
12627 {
12628 int rc;
12629 uint8_t *bc_data = NULL;
12630
12631 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12632 if (rc)
12633 return (rc);
12634
12635 if (hw_off_limits(sc)) {
12636 rc = ENXIO;
12637 goto done;
12638 }
12639
12640 if (bc->len == 0) {
12641 /* clear */
12642 rc = -t4_load_bootcfg(sc, NULL, 0);
12643 goto done;
12644 }
12645
12646 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
12647
12648 rc = copyin(bc->data, bc_data, bc->len);
12649 if (rc == 0)
12650 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
12651
12652 free(bc_data, M_CXGBE);
12653 done:
12654 end_synchronized_op(sc, 0);
12655 return (rc);
12656 }
12657
12658 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)12659 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
12660 {
12661 int rc;
12662 struct cudbg_init *cudbg;
12663 void *handle, *buf;
12664
12665 /* buf is large, don't block if no memory is available */
12666 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
12667 if (buf == NULL)
12668 return (ENOMEM);
12669
12670 handle = cudbg_alloc_handle();
12671 if (handle == NULL) {
12672 rc = ENOMEM;
12673 goto done;
12674 }
12675
12676 cudbg = cudbg_get_init(handle);
12677 cudbg->adap = sc;
12678 cudbg->print = (cudbg_print_cb)printf;
12679
12680 #ifndef notyet
12681 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
12682 __func__, dump->wr_flash, dump->len, dump->data);
12683 #endif
12684
12685 if (dump->wr_flash)
12686 cudbg->use_flash = 1;
12687 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
12688 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
12689
12690 rc = cudbg_collect(handle, buf, &dump->len);
12691 if (rc != 0)
12692 goto done;
12693
12694 rc = copyout(buf, dump->data, dump->len);
12695 done:
12696 cudbg_free_handle(handle);
12697 free(buf, M_CXGBE);
12698 return (rc);
12699 }
12700
12701 static void
free_offload_policy(struct t4_offload_policy * op)12702 free_offload_policy(struct t4_offload_policy *op)
12703 {
12704 struct offload_rule *r;
12705 int i;
12706
12707 if (op == NULL)
12708 return;
12709
12710 r = &op->rule[0];
12711 for (i = 0; i < op->nrules; i++, r++) {
12712 free(r->bpf_prog.bf_insns, M_CXGBE);
12713 }
12714 free(op->rule, M_CXGBE);
12715 free(op, M_CXGBE);
12716 }
12717
12718 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)12719 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
12720 {
12721 int i, rc, len;
12722 struct t4_offload_policy *op, *old;
12723 struct bpf_program *bf;
12724 const struct offload_settings *s;
12725 struct offload_rule *r;
12726 void *u;
12727
12728 if (!is_offload(sc))
12729 return (ENODEV);
12730
12731 if (uop->nrules == 0) {
12732 /* Delete installed policies. */
12733 op = NULL;
12734 goto set_policy;
12735 } else if (uop->nrules > 256) { /* arbitrary */
12736 return (E2BIG);
12737 }
12738
12739 /* Copy userspace offload policy to kernel */
12740 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
12741 op->nrules = uop->nrules;
12742 len = op->nrules * sizeof(struct offload_rule);
12743 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12744 rc = copyin(uop->rule, op->rule, len);
12745 if (rc) {
12746 free(op->rule, M_CXGBE);
12747 free(op, M_CXGBE);
12748 return (rc);
12749 }
12750
12751 r = &op->rule[0];
12752 for (i = 0; i < op->nrules; i++, r++) {
12753
12754 /* Validate open_type */
12755 if (r->open_type != OPEN_TYPE_LISTEN &&
12756 r->open_type != OPEN_TYPE_ACTIVE &&
12757 r->open_type != OPEN_TYPE_PASSIVE &&
12758 r->open_type != OPEN_TYPE_DONTCARE) {
12759 error:
12760 /*
12761 * Rules 0 to i have malloc'd filters that need to be
12762 * freed. Rules i+1 to nrules have userspace pointers
12763 * and should be left alone.
12764 */
12765 op->nrules = i;
12766 free_offload_policy(op);
12767 return (rc);
12768 }
12769
12770 /* Validate settings */
12771 s = &r->settings;
12772 if ((s->offload != 0 && s->offload != 1) ||
12773 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
12774 s->sched_class < -1 ||
12775 s->sched_class >= sc->params.nsched_cls) {
12776 rc = EINVAL;
12777 goto error;
12778 }
12779
12780 bf = &r->bpf_prog;
12781 u = bf->bf_insns; /* userspace ptr */
12782 bf->bf_insns = NULL;
12783 if (bf->bf_len == 0) {
12784 /* legal, matches everything */
12785 continue;
12786 }
12787 len = bf->bf_len * sizeof(*bf->bf_insns);
12788 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12789 rc = copyin(u, bf->bf_insns, len);
12790 if (rc != 0)
12791 goto error;
12792
12793 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
12794 rc = EINVAL;
12795 goto error;
12796 }
12797 }
12798 set_policy:
12799 rw_wlock(&sc->policy_lock);
12800 old = sc->policy;
12801 sc->policy = op;
12802 rw_wunlock(&sc->policy_lock);
12803 free_offload_policy(old);
12804
12805 return (0);
12806 }
12807
12808 #define MAX_READ_BUF_SIZE (128 * 1024)
12809 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)12810 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
12811 {
12812 uint32_t addr, remaining, n;
12813 uint32_t *buf;
12814 int rc;
12815 uint8_t *dst;
12816
12817 mtx_lock(&sc->reg_lock);
12818 if (hw_off_limits(sc))
12819 rc = ENXIO;
12820 else
12821 rc = validate_mem_range(sc, mr->addr, mr->len);
12822 mtx_unlock(&sc->reg_lock);
12823 if (rc != 0)
12824 return (rc);
12825
12826 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
12827 addr = mr->addr;
12828 remaining = mr->len;
12829 dst = (void *)mr->data;
12830
12831 while (remaining) {
12832 n = min(remaining, MAX_READ_BUF_SIZE);
12833 mtx_lock(&sc->reg_lock);
12834 if (hw_off_limits(sc))
12835 rc = ENXIO;
12836 else
12837 read_via_memwin(sc, 2, addr, buf, n);
12838 mtx_unlock(&sc->reg_lock);
12839 if (rc != 0)
12840 break;
12841
12842 rc = copyout(buf, dst, n);
12843 if (rc != 0)
12844 break;
12845
12846 dst += n;
12847 remaining -= n;
12848 addr += n;
12849 }
12850
12851 free(buf, M_CXGBE);
12852 return (rc);
12853 }
12854 #undef MAX_READ_BUF_SIZE
12855
12856 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12857 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12858 {
12859 int rc;
12860
12861 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12862 return (EINVAL);
12863
12864 if (i2cd->len > sizeof(i2cd->data))
12865 return (EFBIG);
12866
12867 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12868 if (rc)
12869 return (rc);
12870 if (hw_off_limits(sc))
12871 rc = ENXIO;
12872 else
12873 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12874 i2cd->offset, i2cd->len, &i2cd->data[0]);
12875 end_synchronized_op(sc, 0);
12876
12877 return (rc);
12878 }
12879
12880 static int
clear_stats(struct adapter * sc,u_int port_id)12881 clear_stats(struct adapter *sc, u_int port_id)
12882 {
12883 int i, v, chan_map;
12884 struct port_info *pi;
12885 struct vi_info *vi;
12886 struct sge_rxq *rxq;
12887 struct sge_txq *txq;
12888 struct sge_wrq *wrq;
12889 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12890 struct sge_ofld_txq *ofld_txq;
12891 #endif
12892 #ifdef TCP_OFFLOAD
12893 struct sge_ofld_rxq *ofld_rxq;
12894 #endif
12895
12896 if (port_id >= sc->params.nports)
12897 return (EINVAL);
12898 pi = sc->port[port_id];
12899 if (pi == NULL)
12900 return (EIO);
12901
12902 mtx_lock(&sc->reg_lock);
12903 if (!hw_off_limits(sc)) {
12904 /* MAC stats */
12905 t4_clr_port_stats(sc, pi->hw_port);
12906 if (is_t6(sc)) {
12907 if (pi->fcs_reg != -1)
12908 pi->fcs_base = t4_read_reg64(sc,
12909 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
12910 else
12911 pi->stats.rx_fcs_err = 0;
12912 }
12913 for_each_vi(pi, v, vi) {
12914 if (vi->flags & VI_INIT_DONE)
12915 t4_clr_vi_stats(sc, vi->vin);
12916 }
12917 chan_map = pi->rx_e_chan_map;
12918 v = 0; /* reuse */
12919 while (chan_map) {
12920 i = ffs(chan_map) - 1;
12921 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12922 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12923 chan_map &= ~(1 << i);
12924 }
12925 }
12926 mtx_unlock(&sc->reg_lock);
12927 pi->tx_parse_error = 0;
12928 pi->tnl_cong_drops = 0;
12929
12930 /*
12931 * Since this command accepts a port, clear stats for
12932 * all VIs on this port.
12933 */
12934 for_each_vi(pi, v, vi) {
12935 if (vi->flags & VI_INIT_DONE) {
12936
12937 for_each_rxq(vi, i, rxq) {
12938 #if defined(INET) || defined(INET6)
12939 rxq->lro.lro_queued = 0;
12940 rxq->lro.lro_flushed = 0;
12941 #endif
12942 rxq->rxcsum = 0;
12943 rxq->vlan_extraction = 0;
12944 rxq->vxlan_rxcsum = 0;
12945
12946 rxq->fl.cl_allocated = 0;
12947 rxq->fl.cl_recycled = 0;
12948 rxq->fl.cl_fast_recycled = 0;
12949 }
12950
12951 for_each_txq(vi, i, txq) {
12952 txq->txcsum = 0;
12953 txq->tso_wrs = 0;
12954 txq->vlan_insertion = 0;
12955 txq->imm_wrs = 0;
12956 txq->sgl_wrs = 0;
12957 txq->txpkt_wrs = 0;
12958 txq->txpkts0_wrs = 0;
12959 txq->txpkts1_wrs = 0;
12960 txq->txpkts0_pkts = 0;
12961 txq->txpkts1_pkts = 0;
12962 txq->txpkts_flush = 0;
12963 txq->raw_wrs = 0;
12964 txq->vxlan_tso_wrs = 0;
12965 txq->vxlan_txcsum = 0;
12966 txq->kern_tls_records = 0;
12967 txq->kern_tls_short = 0;
12968 txq->kern_tls_partial = 0;
12969 txq->kern_tls_full = 0;
12970 txq->kern_tls_octets = 0;
12971 txq->kern_tls_waste = 0;
12972 txq->kern_tls_header = 0;
12973 txq->kern_tls_fin_short = 0;
12974 txq->kern_tls_cbc = 0;
12975 txq->kern_tls_gcm = 0;
12976 if (is_t6(sc)) {
12977 txq->kern_tls_options = 0;
12978 txq->kern_tls_fin = 0;
12979 } else {
12980 txq->kern_tls_ghash_received = 0;
12981 txq->kern_tls_ghash_requested = 0;
12982 txq->kern_tls_lso = 0;
12983 txq->kern_tls_partial_ghash = 0;
12984 txq->kern_tls_splitmode = 0;
12985 txq->kern_tls_trailer = 0;
12986 }
12987 mp_ring_reset_stats(txq->r);
12988 }
12989
12990 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12991 for_each_ofld_txq(vi, i, ofld_txq) {
12992 ofld_txq->wrq.tx_wrs_direct = 0;
12993 ofld_txq->wrq.tx_wrs_copied = 0;
12994 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12995 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12996 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12997 counter_u64_zero(ofld_txq->tx_nvme_pdus);
12998 counter_u64_zero(ofld_txq->tx_nvme_octets);
12999 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs);
13000 counter_u64_zero(ofld_txq->tx_aio_jobs);
13001 counter_u64_zero(ofld_txq->tx_aio_octets);
13002 counter_u64_zero(ofld_txq->tx_toe_tls_records);
13003 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
13004 }
13005 #endif
13006 #ifdef TCP_OFFLOAD
13007 for_each_ofld_rxq(vi, i, ofld_rxq) {
13008 ofld_rxq->fl.cl_allocated = 0;
13009 ofld_rxq->fl.cl_recycled = 0;
13010 ofld_rxq->fl.cl_fast_recycled = 0;
13011 counter_u64_zero(
13012 ofld_rxq->rx_iscsi_ddp_setup_ok);
13013 counter_u64_zero(
13014 ofld_rxq->rx_iscsi_ddp_setup_error);
13015 ofld_rxq->rx_iscsi_ddp_pdus = 0;
13016 ofld_rxq->rx_iscsi_ddp_octets = 0;
13017 ofld_rxq->rx_iscsi_fl_pdus = 0;
13018 ofld_rxq->rx_iscsi_fl_octets = 0;
13019 counter_u64_zero(
13020 ofld_rxq->rx_nvme_ddp_setup_ok);
13021 counter_u64_zero(
13022 ofld_rxq->rx_nvme_ddp_setup_no_stag);
13023 counter_u64_zero(
13024 ofld_rxq->rx_nvme_ddp_setup_error);
13025 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus);
13026 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets);
13027 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus);
13028 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets);
13029 counter_u64_zero(
13030 ofld_rxq->rx_nvme_invalid_headers);
13031 counter_u64_zero(
13032 ofld_rxq->rx_nvme_header_digest_errors);
13033 counter_u64_zero(
13034 ofld_rxq->rx_nvme_data_digest_errors);
13035 ofld_rxq->rx_aio_ddp_jobs = 0;
13036 ofld_rxq->rx_aio_ddp_octets = 0;
13037 ofld_rxq->rx_toe_tls_records = 0;
13038 ofld_rxq->rx_toe_tls_octets = 0;
13039 ofld_rxq->rx_toe_ddp_octets = 0;
13040 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
13041 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
13042 counter_u64_zero(ofld_rxq->ddp_buffer_free);
13043 }
13044 #endif
13045
13046 if (IS_MAIN_VI(vi)) {
13047 wrq = &sc->sge.ctrlq[pi->port_id];
13048 wrq->tx_wrs_direct = 0;
13049 wrq->tx_wrs_copied = 0;
13050 }
13051 }
13052 }
13053
13054 return (0);
13055 }
13056
13057 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13058 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13059 {
13060 #ifdef INET6
13061 struct in6_addr in6;
13062
13063 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13064 if (t4_get_clip_entry(sc, &in6, true) != NULL)
13065 return (0);
13066 else
13067 return (EIO);
13068 #else
13069 return (ENOTSUP);
13070 #endif
13071 }
13072
13073 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13074 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13075 {
13076 #ifdef INET6
13077 struct in6_addr in6;
13078
13079 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13080 return (t4_release_clip_addr(sc, &in6));
13081 #else
13082 return (ENOTSUP);
13083 #endif
13084 }
13085
13086 int
t4_os_find_pci_capability(struct adapter * sc,int cap)13087 t4_os_find_pci_capability(struct adapter *sc, int cap)
13088 {
13089 int i;
13090
13091 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
13092 }
13093
13094 void
t4_os_portmod_changed(struct port_info * pi)13095 t4_os_portmod_changed(struct port_info *pi)
13096 {
13097 struct adapter *sc = pi->adapter;
13098 struct vi_info *vi;
13099 if_t ifp;
13100 static const char *mod_str[] = {
13101 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
13102 "LR_SIMPLEX", "DR"
13103 };
13104
13105 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
13106 ("%s: port_type %u", __func__, pi->port_type));
13107
13108 vi = &pi->vi[0];
13109 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
13110 PORT_LOCK(pi);
13111 build_medialist(pi);
13112 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
13113 fixup_link_config(pi);
13114 apply_link_config(pi);
13115 }
13116 PORT_UNLOCK(pi);
13117 end_synchronized_op(sc, LOCK_HELD);
13118 }
13119
13120 ifp = vi->ifp;
13121 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
13122 if_printf(ifp, "transceiver unplugged.\n");
13123 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
13124 if_printf(ifp, "unknown transceiver inserted.\n");
13125 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
13126 if_printf(ifp, "unsupported transceiver inserted.\n");
13127 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
13128 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
13129 port_top_speed(pi), mod_str[pi->mod_type]);
13130 } else {
13131 if_printf(ifp, "transceiver (type %d) inserted.\n",
13132 pi->mod_type);
13133 }
13134 }
13135
13136 void
t4_os_link_changed(struct port_info * pi)13137 t4_os_link_changed(struct port_info *pi)
13138 {
13139 struct vi_info *vi;
13140 if_t ifp;
13141 struct link_config *lc = &pi->link_cfg;
13142 struct adapter *sc = pi->adapter;
13143 int v;
13144
13145 PORT_LOCK_ASSERT_OWNED(pi);
13146
13147 if (is_t6(sc)) {
13148 if (lc->link_ok) {
13149 if (lc->speed > 25000 ||
13150 (lc->speed == 25000 && lc->fec == FEC_RS))
13151 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS;
13152 else
13153 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS;
13154 pi->fcs_base = t4_read_reg64(sc,
13155 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
13156 pi->stats.rx_fcs_err = 0;
13157 } else {
13158 pi->fcs_reg = -1;
13159 }
13160 } else {
13161 MPASS(pi->fcs_reg != -1);
13162 MPASS(pi->fcs_base == 0);
13163 }
13164
13165 for_each_vi(pi, v, vi) {
13166 ifp = vi->ifp;
13167 if (ifp == NULL || IS_DETACHING(vi))
13168 continue;
13169
13170 if (lc->link_ok) {
13171 if_setbaudrate(ifp, IF_Mbps(lc->speed));
13172 if_link_state_change(ifp, LINK_STATE_UP);
13173 } else {
13174 if_link_state_change(ifp, LINK_STATE_DOWN);
13175 }
13176 }
13177 }
13178
13179 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)13180 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
13181 {
13182 struct adapter *sc;
13183
13184 sx_slock(&t4_list_lock);
13185 SLIST_FOREACH(sc, &t4_list, link) {
13186 /*
13187 * func should not make any assumptions about what state sc is
13188 * in - the only guarantee is that sc->sc_lock is a valid lock.
13189 */
13190 func(sc, arg);
13191 }
13192 sx_sunlock(&t4_list_lock);
13193 }
13194
13195 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)13196 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
13197 struct thread *td)
13198 {
13199 int rc;
13200 struct adapter *sc = dev->si_drv1;
13201
13202 rc = priv_check(td, PRIV_DRIVER);
13203 if (rc != 0)
13204 return (rc);
13205
13206 switch (cmd) {
13207 case CHELSIO_T4_GETREG: {
13208 struct t4_reg *edata = (struct t4_reg *)data;
13209
13210 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13211 return (EFAULT);
13212
13213 mtx_lock(&sc->reg_lock);
13214 if (hw_off_limits(sc))
13215 rc = ENXIO;
13216 else if (edata->size == 4)
13217 edata->val = t4_read_reg(sc, edata->addr);
13218 else if (edata->size == 8)
13219 edata->val = t4_read_reg64(sc, edata->addr);
13220 else
13221 rc = EINVAL;
13222 mtx_unlock(&sc->reg_lock);
13223
13224 break;
13225 }
13226 case CHELSIO_T4_SETREG: {
13227 struct t4_reg *edata = (struct t4_reg *)data;
13228
13229 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13230 return (EFAULT);
13231
13232 mtx_lock(&sc->reg_lock);
13233 if (hw_off_limits(sc))
13234 rc = ENXIO;
13235 else if (edata->size == 4) {
13236 if (edata->val & 0xffffffff00000000)
13237 rc = EINVAL;
13238 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
13239 } else if (edata->size == 8)
13240 t4_write_reg64(sc, edata->addr, edata->val);
13241 else
13242 rc = EINVAL;
13243 mtx_unlock(&sc->reg_lock);
13244
13245 break;
13246 }
13247 case CHELSIO_T4_REGDUMP: {
13248 struct t4_regdump *regs = (struct t4_regdump *)data;
13249 int reglen = t4_get_regs_len(sc);
13250 uint8_t *buf;
13251
13252 if (regs->len < reglen) {
13253 regs->len = reglen; /* hint to the caller */
13254 return (ENOBUFS);
13255 }
13256
13257 regs->len = reglen;
13258 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
13259 mtx_lock(&sc->reg_lock);
13260 if (hw_off_limits(sc))
13261 rc = ENXIO;
13262 else
13263 get_regs(sc, regs, buf);
13264 mtx_unlock(&sc->reg_lock);
13265 if (rc == 0)
13266 rc = copyout(buf, regs->data, reglen);
13267 free(buf, M_CXGBE);
13268 break;
13269 }
13270 case CHELSIO_T4_GET_FILTER_MODE:
13271 rc = get_filter_mode(sc, (uint32_t *)data);
13272 break;
13273 case CHELSIO_T4_SET_FILTER_MODE:
13274 rc = set_filter_mode(sc, *(uint32_t *)data);
13275 break;
13276 case CHELSIO_T4_SET_FILTER_MASK:
13277 rc = set_filter_mask(sc, *(uint32_t *)data);
13278 break;
13279 case CHELSIO_T4_GET_FILTER:
13280 rc = get_filter(sc, (struct t4_filter *)data);
13281 break;
13282 case CHELSIO_T4_SET_FILTER:
13283 rc = set_filter(sc, (struct t4_filter *)data);
13284 break;
13285 case CHELSIO_T4_DEL_FILTER:
13286 rc = del_filter(sc, (struct t4_filter *)data);
13287 break;
13288 case CHELSIO_T4_GET_SGE_CONTEXT: {
13289 struct t4_sge_context *ctxt = (struct t4_sge_context *)data;
13290
13291 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13292 sizeof(ctxt->data), &ctxt->data[0]);
13293 break;
13294 }
13295 case CHELSIO_T4_LOAD_FW:
13296 rc = load_fw(sc, (struct t4_data *)data);
13297 break;
13298 case CHELSIO_T4_GET_MEM:
13299 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
13300 break;
13301 case CHELSIO_T4_GET_I2C:
13302 rc = read_i2c(sc, (struct t4_i2c_data *)data);
13303 break;
13304 case CHELSIO_T4_CLEAR_STATS:
13305 rc = clear_stats(sc, *(uint32_t *)data);
13306 break;
13307 case CHELSIO_T4_SCHED_CLASS:
13308 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
13309 break;
13310 case CHELSIO_T4_SCHED_QUEUE:
13311 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
13312 break;
13313 case CHELSIO_T4_GET_TRACER:
13314 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
13315 break;
13316 case CHELSIO_T4_SET_TRACER:
13317 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
13318 break;
13319 case CHELSIO_T4_LOAD_CFG:
13320 rc = load_cfg(sc, (struct t4_data *)data);
13321 break;
13322 case CHELSIO_T4_LOAD_BOOT:
13323 rc = load_boot(sc, (struct t4_bootrom *)data);
13324 break;
13325 case CHELSIO_T4_LOAD_BOOTCFG:
13326 rc = load_bootcfg(sc, (struct t4_data *)data);
13327 break;
13328 case CHELSIO_T4_CUDBG_DUMP:
13329 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
13330 break;
13331 case CHELSIO_T4_SET_OFLD_POLICY:
13332 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
13333 break;
13334 case CHELSIO_T4_HOLD_CLIP_ADDR:
13335 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
13336 break;
13337 case CHELSIO_T4_RELEASE_CLIP_ADDR:
13338 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
13339 break;
13340 case CHELSIO_T4_GET_SGE_CTXT: {
13341 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data;
13342
13343 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13344 sizeof(ctxt->data), &ctxt->data[0]);
13345 break;
13346 }
13347 default:
13348 rc = ENOTTY;
13349 }
13350
13351 return (rc);
13352 }
13353
13354 #ifdef TCP_OFFLOAD
13355 int
toe_capability(struct vi_info * vi,bool enable)13356 toe_capability(struct vi_info *vi, bool enable)
13357 {
13358 int rc;
13359 struct port_info *pi = vi->pi;
13360 struct adapter *sc = pi->adapter;
13361
13362 ASSERT_SYNCHRONIZED_OP(sc);
13363
13364 if (!is_offload(sc))
13365 return (ENODEV);
13366 if (!hw_all_ok(sc))
13367 return (ENXIO);
13368
13369 if (enable) {
13370 #ifdef KERN_TLS
13371 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
13372 int i, j, n;
13373 struct port_info *p;
13374 struct vi_info *v;
13375
13376 /*
13377 * Reconfigure hardware for TOE if TXTLS is not enabled
13378 * on any ifnet.
13379 */
13380 n = 0;
13381 for_each_port(sc, i) {
13382 p = sc->port[i];
13383 for_each_vi(p, j, v) {
13384 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
13385 CH_WARN(sc,
13386 "%s has NIC TLS enabled.\n",
13387 device_get_nameunit(v->dev));
13388 n++;
13389 }
13390 }
13391 }
13392 if (n > 0) {
13393 CH_WARN(sc, "Disable NIC TLS on all interfaces "
13394 "associated with this adapter before "
13395 "trying to enable TOE.\n");
13396 return (EAGAIN);
13397 }
13398 rc = t6_config_kern_tls(sc, false);
13399 if (rc)
13400 return (rc);
13401 }
13402 #endif
13403 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
13404 /* TOE is already enabled. */
13405 return (0);
13406 }
13407
13408 /*
13409 * We need the port's queues around so that we're able to send
13410 * and receive CPLs to/from the TOE even if the ifnet for this
13411 * port has never been UP'd administratively.
13412 */
13413 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
13414 return (rc);
13415 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
13416 ((rc = vi_init(&pi->vi[0])) != 0))
13417 return (rc);
13418
13419 if (isset(&sc->offload_map, pi->port_id)) {
13420 /* TOE is enabled on another VI of this port. */
13421 MPASS(pi->uld_vis > 0);
13422 pi->uld_vis++;
13423 return (0);
13424 }
13425
13426 if (!uld_active(sc, ULD_TOM)) {
13427 rc = t4_activate_uld(sc, ULD_TOM);
13428 if (rc == EAGAIN) {
13429 log(LOG_WARNING,
13430 "You must kldload t4_tom.ko before trying "
13431 "to enable TOE on a cxgbe interface.\n");
13432 }
13433 if (rc != 0)
13434 return (rc);
13435 KASSERT(sc->tom_softc != NULL,
13436 ("%s: TOM activated but softc NULL", __func__));
13437 KASSERT(uld_active(sc, ULD_TOM),
13438 ("%s: TOM activated but flag not set", __func__));
13439 }
13440
13441 /*
13442 * Activate iWARP, iSCSI, and NVMe too, if the modules
13443 * are loaded.
13444 */
13445 if (!uld_active(sc, ULD_IWARP))
13446 (void) t4_activate_uld(sc, ULD_IWARP);
13447 if (!uld_active(sc, ULD_ISCSI))
13448 (void) t4_activate_uld(sc, ULD_ISCSI);
13449 if (!uld_active(sc, ULD_NVME))
13450 (void) t4_activate_uld(sc, ULD_NVME);
13451
13452 if (pi->uld_vis++ == 0)
13453 setbit(&sc->offload_map, pi->port_id);
13454 } else {
13455 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
13456 /* TOE is already disabled. */
13457 return (0);
13458 }
13459 MPASS(isset(&sc->offload_map, pi->port_id));
13460 MPASS(pi->uld_vis > 0);
13461 if (--pi->uld_vis == 0)
13462 clrbit(&sc->offload_map, pi->port_id);
13463 }
13464
13465 return (0);
13466 }
13467
13468 /*
13469 * Add an upper layer driver to the global list.
13470 */
13471 int
t4_register_uld(struct uld_info * ui,int id)13472 t4_register_uld(struct uld_info *ui, int id)
13473 {
13474 int rc;
13475
13476 if (id < 0 || id > ULD_MAX)
13477 return (EINVAL);
13478 sx_xlock(&t4_uld_list_lock);
13479 if (t4_uld_list[id] != NULL)
13480 rc = EEXIST;
13481 else {
13482 t4_uld_list[id] = ui;
13483 rc = 0;
13484 }
13485 sx_xunlock(&t4_uld_list_lock);
13486 return (rc);
13487 }
13488
13489 int
t4_unregister_uld(struct uld_info * ui,int id)13490 t4_unregister_uld(struct uld_info *ui, int id)
13491 {
13492
13493 if (id < 0 || id > ULD_MAX)
13494 return (EINVAL);
13495 sx_xlock(&t4_uld_list_lock);
13496 MPASS(t4_uld_list[id] == ui);
13497 t4_uld_list[id] = NULL;
13498 sx_xunlock(&t4_uld_list_lock);
13499 return (0);
13500 }
13501
13502 int
t4_activate_uld(struct adapter * sc,int id)13503 t4_activate_uld(struct adapter *sc, int id)
13504 {
13505 int rc;
13506
13507 ASSERT_SYNCHRONIZED_OP(sc);
13508
13509 if (id < 0 || id > ULD_MAX)
13510 return (EINVAL);
13511
13512 /* Adapter needs to be initialized before any ULD can be activated. */
13513 if (!(sc->flags & FULL_INIT_DONE)) {
13514 rc = adapter_init(sc);
13515 if (rc != 0)
13516 return (rc);
13517 }
13518
13519 sx_slock(&t4_uld_list_lock);
13520 if (t4_uld_list[id] == NULL)
13521 rc = EAGAIN; /* load the KLD with this ULD and try again. */
13522 else {
13523 rc = t4_uld_list[id]->uld_activate(sc);
13524 if (rc == 0)
13525 setbit(&sc->active_ulds, id);
13526 }
13527 sx_sunlock(&t4_uld_list_lock);
13528
13529 return (rc);
13530 }
13531
13532 int
t4_deactivate_uld(struct adapter * sc,int id)13533 t4_deactivate_uld(struct adapter *sc, int id)
13534 {
13535 int rc;
13536
13537 ASSERT_SYNCHRONIZED_OP(sc);
13538
13539 if (id < 0 || id > ULD_MAX)
13540 return (EINVAL);
13541
13542 sx_slock(&t4_uld_list_lock);
13543 if (t4_uld_list[id] == NULL)
13544 rc = ENXIO;
13545 else {
13546 rc = t4_uld_list[id]->uld_deactivate(sc);
13547 if (rc == 0)
13548 clrbit(&sc->active_ulds, id);
13549 }
13550 sx_sunlock(&t4_uld_list_lock);
13551
13552 return (rc);
13553 }
13554
13555 static int
deactivate_all_uld(struct adapter * sc)13556 deactivate_all_uld(struct adapter *sc)
13557 {
13558 int i, rc;
13559
13560 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
13561 if (rc != 0)
13562 return (ENXIO);
13563 sx_slock(&t4_uld_list_lock);
13564 for (i = 0; i <= ULD_MAX; i++) {
13565 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
13566 continue;
13567 rc = t4_uld_list[i]->uld_deactivate(sc);
13568 if (rc != 0)
13569 break;
13570 clrbit(&sc->active_ulds, i);
13571 }
13572 sx_sunlock(&t4_uld_list_lock);
13573 end_synchronized_op(sc, 0);
13574
13575 return (rc);
13576 }
13577
13578 static void
stop_all_uld(struct adapter * sc)13579 stop_all_uld(struct adapter *sc)
13580 {
13581 int i;
13582
13583 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
13584 return;
13585 sx_slock(&t4_uld_list_lock);
13586 for (i = 0; i <= ULD_MAX; i++) {
13587 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13588 t4_uld_list[i]->uld_stop == NULL)
13589 continue;
13590 (void) t4_uld_list[i]->uld_stop(sc);
13591 }
13592 sx_sunlock(&t4_uld_list_lock);
13593 end_synchronized_op(sc, 0);
13594 }
13595
13596 static void
restart_all_uld(struct adapter * sc)13597 restart_all_uld(struct adapter *sc)
13598 {
13599 int i;
13600
13601 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
13602 return;
13603 sx_slock(&t4_uld_list_lock);
13604 for (i = 0; i <= ULD_MAX; i++) {
13605 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13606 t4_uld_list[i]->uld_restart == NULL)
13607 continue;
13608 (void) t4_uld_list[i]->uld_restart(sc);
13609 }
13610 sx_sunlock(&t4_uld_list_lock);
13611 end_synchronized_op(sc, 0);
13612 }
13613
13614 int
uld_active(struct adapter * sc,int id)13615 uld_active(struct adapter *sc, int id)
13616 {
13617
13618 MPASS(id >= 0 && id <= ULD_MAX);
13619
13620 return (isset(&sc->active_ulds, id));
13621 }
13622 #endif
13623
13624 #ifdef KERN_TLS
13625 static int
ktls_capability(struct adapter * sc,bool enable)13626 ktls_capability(struct adapter *sc, bool enable)
13627 {
13628 ASSERT_SYNCHRONIZED_OP(sc);
13629
13630 if (!is_ktls(sc))
13631 return (ENODEV);
13632 if (!is_t6(sc))
13633 return (0);
13634 if (!hw_all_ok(sc))
13635 return (ENXIO);
13636
13637 if (enable) {
13638 if (sc->flags & KERN_TLS_ON)
13639 return (0); /* already on */
13640 if (sc->offload_map != 0) {
13641 CH_WARN(sc,
13642 "Disable TOE on all interfaces associated with "
13643 "this adapter before trying to enable NIC TLS.\n");
13644 return (EAGAIN);
13645 }
13646 return (t6_config_kern_tls(sc, true));
13647 } else {
13648 /*
13649 * Nothing to do for disable. If TOE is enabled sometime later
13650 * then toe_capability will reconfigure the hardware.
13651 */
13652 return (0);
13653 }
13654 }
13655 #endif
13656
13657 /*
13658 * t = ptr to tunable.
13659 * nc = number of CPUs.
13660 * c = compiled in default for that tunable.
13661 */
13662 static void
calculate_nqueues(int * t,int nc,const int c)13663 calculate_nqueues(int *t, int nc, const int c)
13664 {
13665 int nq;
13666
13667 if (*t > 0)
13668 return;
13669 nq = *t < 0 ? -*t : c;
13670 *t = min(nc, nq);
13671 }
13672
13673 /*
13674 * Come up with reasonable defaults for some of the tunables, provided they're
13675 * not set by the user (in which case we'll use the values as is).
13676 */
13677 static void
tweak_tunables(void)13678 tweak_tunables(void)
13679 {
13680 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
13681
13682 if (t4_ntxq < 1) {
13683 #ifdef RSS
13684 t4_ntxq = rss_getnumbuckets();
13685 #else
13686 calculate_nqueues(&t4_ntxq, nc, NTXQ);
13687 #endif
13688 }
13689
13690 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
13691
13692 if (t4_nrxq < 1) {
13693 #ifdef RSS
13694 t4_nrxq = rss_getnumbuckets();
13695 #else
13696 calculate_nqueues(&t4_nrxq, nc, NRXQ);
13697 #endif
13698 }
13699
13700 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
13701
13702 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13703 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
13704 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
13705 #endif
13706 #ifdef TCP_OFFLOAD
13707 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
13708 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
13709 #endif
13710
13711 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
13712 if (t4_toecaps_allowed == -1)
13713 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
13714 #else
13715 if (t4_toecaps_allowed == -1)
13716 t4_toecaps_allowed = 0;
13717 #endif
13718
13719 #ifdef TCP_OFFLOAD
13720 if (t4_rdmacaps_allowed == -1) {
13721 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
13722 FW_CAPS_CONFIG_RDMA_RDMAC;
13723 }
13724
13725 if (t4_iscsicaps_allowed == -1) {
13726 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
13727 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
13728 FW_CAPS_CONFIG_ISCSI_T10DIF;
13729 }
13730
13731 if (t4_nvmecaps_allowed == -1)
13732 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP;
13733
13734 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
13735 t4_tmr_idx_ofld = TMR_IDX_OFLD;
13736
13737 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
13738 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
13739 #else
13740 if (t4_rdmacaps_allowed == -1)
13741 t4_rdmacaps_allowed = 0;
13742
13743 if (t4_iscsicaps_allowed == -1)
13744 t4_iscsicaps_allowed = 0;
13745
13746 if (t4_nvmecaps_allowed == -1)
13747 t4_nvmecaps_allowed = 0;
13748 #endif
13749
13750 #ifdef DEV_NETMAP
13751 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
13752 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
13753 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
13754 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
13755 #endif
13756
13757 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
13758 t4_tmr_idx = TMR_IDX;
13759
13760 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
13761 t4_pktc_idx = PKTC_IDX;
13762
13763 if (t4_qsize_txq < 128)
13764 t4_qsize_txq = 128;
13765
13766 if (t4_qsize_rxq < 128)
13767 t4_qsize_rxq = 128;
13768 while (t4_qsize_rxq & 7)
13769 t4_qsize_rxq++;
13770
13771 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
13772
13773 /*
13774 * Number of VIs to create per-port. The first VI is the "main" regular
13775 * VI for the port. The rest are additional virtual interfaces on the
13776 * same physical port. Note that the main VI does not have native
13777 * netmap support but the extra VIs do.
13778 *
13779 * Limit the number of VIs per port to the number of available
13780 * MAC addresses per port.
13781 */
13782 if (t4_num_vis < 1)
13783 t4_num_vis = 1;
13784 if (t4_num_vis > nitems(vi_mac_funcs)) {
13785 t4_num_vis = nitems(vi_mac_funcs);
13786 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
13787 }
13788
13789 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
13790 pcie_relaxed_ordering = 1;
13791 #if defined(__i386__) || defined(__amd64__)
13792 if (cpu_vendor_id == CPU_VENDOR_INTEL)
13793 pcie_relaxed_ordering = 0;
13794 #endif
13795 }
13796 }
13797
13798 #ifdef DDB
13799 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)13800 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
13801 {
13802 uint32_t base, j, off, pf, reg, save, win_pos;
13803
13804 reg = chip_id(sc) > CHELSIO_T6 ?
13805 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) :
13806 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
13807 save = t4_read_reg(sc, reg);
13808 base = sc->memwin[2].mw_base;
13809
13810 if (is_t4(sc)) {
13811 pf = 0;
13812 win_pos = addr & ~0xf; /* start must be 16B aligned */
13813 } else {
13814 pf = V_PFNUM(sc->pf);
13815 win_pos = addr & ~0x7f; /* start must be 128B aligned */
13816 }
13817 off = addr - win_pos;
13818 if (chip_id(sc) > CHELSIO_T6)
13819 win_pos >>= X_T7_MEMOFST_SHIFT;
13820 t4_write_reg(sc, reg, win_pos | pf);
13821 t4_read_reg(sc, reg);
13822
13823 while (len > 0 && !db_pager_quit) {
13824 uint32_t buf[8];
13825 for (j = 0; j < 8; j++, off += 4)
13826 buf[j] = htonl(t4_read_reg(sc, base + off));
13827
13828 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
13829 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
13830 buf[7]);
13831 if (len <= sizeof(buf))
13832 len = 0;
13833 else
13834 len -= sizeof(buf);
13835 }
13836
13837 t4_write_reg(sc, reg, save);
13838 t4_read_reg(sc, reg);
13839 }
13840
13841 static void
t4_dump_tcb(struct adapter * sc,int tid)13842 t4_dump_tcb(struct adapter *sc, int tid)
13843 {
13844 uint32_t tcb_addr;
13845
13846 /* Dump TCB for the tid */
13847 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
13848 tcb_addr += tid * TCB_SIZE;
13849 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
13850 }
13851
13852 static void
t4_dump_devlog(struct adapter * sc)13853 t4_dump_devlog(struct adapter *sc)
13854 {
13855 struct devlog_params *dparams = &sc->params.devlog;
13856 struct fw_devlog_e e;
13857 int i, first, j, m, nentries, rc;
13858 uint64_t ftstamp = UINT64_MAX;
13859
13860 if (dparams->start == 0) {
13861 db_printf("devlog params not valid\n");
13862 return;
13863 }
13864
13865 nentries = dparams->size / sizeof(struct fw_devlog_e);
13866 m = fwmtype_to_hwmtype(dparams->memtype);
13867
13868 /* Find the first entry. */
13869 first = -1;
13870 for (i = 0; i < nentries && !db_pager_quit; i++) {
13871 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13872 sizeof(e), (void *)&e);
13873 if (rc != 0)
13874 break;
13875
13876 if (e.timestamp == 0)
13877 break;
13878
13879 e.timestamp = be64toh(e.timestamp);
13880 if (e.timestamp < ftstamp) {
13881 ftstamp = e.timestamp;
13882 first = i;
13883 }
13884 }
13885
13886 if (first == -1)
13887 return;
13888
13889 i = first;
13890 do {
13891 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13892 sizeof(e), (void *)&e);
13893 if (rc != 0)
13894 return;
13895
13896 if (e.timestamp == 0)
13897 return;
13898
13899 e.timestamp = be64toh(e.timestamp);
13900 e.seqno = be32toh(e.seqno);
13901 for (j = 0; j < 8; j++)
13902 e.params[j] = be32toh(e.params[j]);
13903
13904 db_printf("%10d %15ju %8s %8s ",
13905 e.seqno, e.timestamp,
13906 (e.level < nitems(devlog_level_strings) ?
13907 devlog_level_strings[e.level] : "UNKNOWN"),
13908 (e.facility < nitems(devlog_facility_strings) ?
13909 devlog_facility_strings[e.facility] : "UNKNOWN"));
13910 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13911 e.params[3], e.params[4], e.params[5], e.params[6],
13912 e.params[7]);
13913
13914 if (++i == nentries)
13915 i = 0;
13916 } while (i != first && !db_pager_quit);
13917 }
13918
13919 static DB_DEFINE_TABLE(show, t4, show_t4);
13920
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13921 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13922 {
13923 device_t dev;
13924 int t;
13925 bool valid;
13926
13927 valid = false;
13928 t = db_read_token();
13929 if (t == tIDENT) {
13930 dev = device_lookup_by_name(db_tok_string);
13931 valid = true;
13932 }
13933 db_skip_to_eol();
13934 if (!valid) {
13935 db_printf("usage: show t4 devlog <nexus>\n");
13936 return;
13937 }
13938
13939 if (dev == NULL) {
13940 db_printf("device not found\n");
13941 return;
13942 }
13943
13944 t4_dump_devlog(device_get_softc(dev));
13945 }
13946
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13947 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
13948 {
13949 device_t dev;
13950 int radix, tid, t;
13951 bool valid;
13952
13953 valid = false;
13954 radix = db_radix;
13955 db_radix = 10;
13956 t = db_read_token();
13957 if (t == tIDENT) {
13958 dev = device_lookup_by_name(db_tok_string);
13959 t = db_read_token();
13960 if (t == tNUMBER) {
13961 tid = db_tok_number;
13962 valid = true;
13963 }
13964 }
13965 db_radix = radix;
13966 db_skip_to_eol();
13967 if (!valid) {
13968 db_printf("usage: show t4 tcb <nexus> <tid>\n");
13969 return;
13970 }
13971
13972 if (dev == NULL) {
13973 db_printf("device not found\n");
13974 return;
13975 }
13976 if (tid < 0) {
13977 db_printf("invalid tid\n");
13978 return;
13979 }
13980
13981 t4_dump_tcb(device_get_softc(dev), tid);
13982 }
13983
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13984 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13985 {
13986 device_t dev;
13987 int radix, t;
13988 bool valid;
13989
13990 valid = false;
13991 radix = db_radix;
13992 db_radix = 10;
13993 t = db_read_token();
13994 if (t == tIDENT) {
13995 dev = device_lookup_by_name(db_tok_string);
13996 t = db_read_token();
13997 if (t == tNUMBER) {
13998 addr = db_tok_number;
13999 t = db_read_token();
14000 if (t == tNUMBER) {
14001 count = db_tok_number;
14002 valid = true;
14003 }
14004 }
14005 }
14006 db_radix = radix;
14007 db_skip_to_eol();
14008 if (!valid) {
14009 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
14010 return;
14011 }
14012
14013 if (dev == NULL) {
14014 db_printf("device not found\n");
14015 return;
14016 }
14017 if (addr < 0) {
14018 db_printf("invalid address\n");
14019 return;
14020 }
14021 if (count <= 0) {
14022 db_printf("invalid length\n");
14023 return;
14024 }
14025
14026 t4_dump_mem(device_get_softc(dev), addr, count);
14027 }
14028 #endif
14029
14030 static eventhandler_tag vxlan_start_evtag;
14031 static eventhandler_tag vxlan_stop_evtag;
14032
14033 struct vxlan_evargs {
14034 if_t ifp;
14035 uint16_t port;
14036 };
14037
14038 static void
enable_vxlan_rx(struct adapter * sc)14039 enable_vxlan_rx(struct adapter *sc)
14040 {
14041 int i, rc;
14042 struct port_info *pi;
14043 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
14044
14045 ASSERT_SYNCHRONIZED_OP(sc);
14046
14047 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
14048 F_VXLAN_EN);
14049 for_each_port(sc, i) {
14050 pi = sc->port[i];
14051 if (pi->vxlan_tcam_entry == true)
14052 continue;
14053 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
14054 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
14055 true);
14056 if (rc < 0) {
14057 rc = -rc;
14058 CH_ERR(&pi->vi[0],
14059 "failed to add VXLAN TCAM entry: %d.\n", rc);
14060 } else {
14061 MPASS(rc == sc->rawf_base + pi->port_id);
14062 pi->vxlan_tcam_entry = true;
14063 }
14064 }
14065 }
14066
14067 static void
t4_vxlan_start(struct adapter * sc,void * arg)14068 t4_vxlan_start(struct adapter *sc, void *arg)
14069 {
14070 struct vxlan_evargs *v = arg;
14071
14072 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14073 return;
14074 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
14075 return;
14076
14077 if (sc->vxlan_refcount == 0) {
14078 sc->vxlan_port = v->port;
14079 sc->vxlan_refcount = 1;
14080 if (!hw_off_limits(sc))
14081 enable_vxlan_rx(sc);
14082 } else if (sc->vxlan_port == v->port) {
14083 sc->vxlan_refcount++;
14084 } else {
14085 CH_ERR(sc, "VXLAN already configured on port %d; "
14086 "ignoring attempt to configure it on port %d\n",
14087 sc->vxlan_port, v->port);
14088 }
14089 end_synchronized_op(sc, 0);
14090 }
14091
14092 static void
t4_vxlan_stop(struct adapter * sc,void * arg)14093 t4_vxlan_stop(struct adapter *sc, void *arg)
14094 {
14095 struct vxlan_evargs *v = arg;
14096
14097 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14098 return;
14099 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
14100 return;
14101
14102 /*
14103 * VXLANs may have been configured before the driver was loaded so we
14104 * may see more stops than starts. This is not handled cleanly but at
14105 * least we keep the refcount sane.
14106 */
14107 if (sc->vxlan_port != v->port)
14108 goto done;
14109 if (sc->vxlan_refcount == 0) {
14110 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
14111 "ignoring attempt to stop it again.\n", sc->vxlan_port);
14112 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
14113 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
14114 done:
14115 end_synchronized_op(sc, 0);
14116 }
14117
14118 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14119 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
14120 sa_family_t family, u_int port)
14121 {
14122 struct vxlan_evargs v;
14123
14124 MPASS(family == AF_INET || family == AF_INET6);
14125 v.ifp = ifp;
14126 v.port = port;
14127
14128 t4_iterate(t4_vxlan_start, &v);
14129 }
14130
14131 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14132 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
14133 u_int port)
14134 {
14135 struct vxlan_evargs v;
14136
14137 MPASS(family == AF_INET || family == AF_INET6);
14138 v.ifp = ifp;
14139 v.port = port;
14140
14141 t4_iterate(t4_vxlan_stop, &v);
14142 }
14143
14144
14145 static struct sx mlu; /* mod load unload */
14146 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
14147
14148 static int
mod_event(module_t mod,int cmd,void * arg)14149 mod_event(module_t mod, int cmd, void *arg)
14150 {
14151 int rc = 0;
14152 static int loaded = 0;
14153
14154 switch (cmd) {
14155 case MOD_LOAD:
14156 sx_xlock(&mlu);
14157 if (loaded++ == 0) {
14158 t4_sge_modload();
14159 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14160 t4_filter_rpl, CPL_COOKIE_FILTER);
14161 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
14162 do_l2t_write_rpl, CPL_COOKIE_FILTER);
14163 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
14164 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
14165 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14166 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
14167 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
14168 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
14169 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
14170 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
14171 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
14172 do_smt_write_rpl);
14173 sx_init(&t4_list_lock, "T4/T5 adapters");
14174 SLIST_INIT(&t4_list);
14175 callout_init(&fatal_callout, 1);
14176 #ifdef TCP_OFFLOAD
14177 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
14178 #endif
14179 #ifdef INET6
14180 t4_clip_modload();
14181 #endif
14182 #ifdef KERN_TLS
14183 t6_ktls_modload();
14184 t7_ktls_modload();
14185 #endif
14186 t4_tracer_modload();
14187 tweak_tunables();
14188 vxlan_start_evtag =
14189 EVENTHANDLER_REGISTER(vxlan_start,
14190 t4_vxlan_start_handler, NULL,
14191 EVENTHANDLER_PRI_ANY);
14192 vxlan_stop_evtag =
14193 EVENTHANDLER_REGISTER(vxlan_stop,
14194 t4_vxlan_stop_handler, NULL,
14195 EVENTHANDLER_PRI_ANY);
14196 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
14197 taskqueue_thread_enqueue, &reset_tq);
14198 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
14199 "t4_rst_thr");
14200 }
14201 sx_xunlock(&mlu);
14202 break;
14203
14204 case MOD_UNLOAD:
14205 sx_xlock(&mlu);
14206 if (--loaded == 0) {
14207 #ifdef TCP_OFFLOAD
14208 int i;
14209 #endif
14210 int tries;
14211
14212 taskqueue_free(reset_tq);
14213
14214 tries = 0;
14215 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
14216 uprintf("%ju clusters with custom free routine "
14217 "still is use.\n", t4_sge_extfree_refs());
14218 pause("t4unload", 2 * hz);
14219 }
14220
14221 sx_slock(&t4_list_lock);
14222 if (!SLIST_EMPTY(&t4_list)) {
14223 rc = EBUSY;
14224 sx_sunlock(&t4_list_lock);
14225 goto done_unload;
14226 }
14227 #ifdef TCP_OFFLOAD
14228 sx_slock(&t4_uld_list_lock);
14229 for (i = 0; i <= ULD_MAX; i++) {
14230 if (t4_uld_list[i] != NULL) {
14231 rc = EBUSY;
14232 sx_sunlock(&t4_uld_list_lock);
14233 sx_sunlock(&t4_list_lock);
14234 goto done_unload;
14235 }
14236 }
14237 sx_sunlock(&t4_uld_list_lock);
14238 #endif
14239 sx_sunlock(&t4_list_lock);
14240
14241 if (t4_sge_extfree_refs() == 0) {
14242 EVENTHANDLER_DEREGISTER(vxlan_start,
14243 vxlan_start_evtag);
14244 EVENTHANDLER_DEREGISTER(vxlan_stop,
14245 vxlan_stop_evtag);
14246 t4_tracer_modunload();
14247 #ifdef KERN_TLS
14248 t7_ktls_modunload();
14249 t6_ktls_modunload();
14250 #endif
14251 #ifdef INET6
14252 t4_clip_modunload();
14253 #endif
14254 #ifdef TCP_OFFLOAD
14255 sx_destroy(&t4_uld_list_lock);
14256 #endif
14257 sx_destroy(&t4_list_lock);
14258 t4_sge_modunload();
14259 loaded = 0;
14260 } else {
14261 rc = EBUSY;
14262 loaded++; /* undo earlier decrement */
14263 }
14264 }
14265 done_unload:
14266 sx_xunlock(&mlu);
14267 break;
14268 }
14269
14270 return (rc);
14271 }
14272
14273 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
14274 MODULE_VERSION(t4nex, 1);
14275 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
14276 #ifdef DEV_NETMAP
14277 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
14278 #endif /* DEV_NETMAP */
14279
14280 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
14281 MODULE_VERSION(t5nex, 1);
14282 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
14283 #ifdef DEV_NETMAP
14284 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
14285 #endif /* DEV_NETMAP */
14286
14287 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
14288 MODULE_VERSION(t6nex, 1);
14289 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
14290 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
14291 #ifdef DEV_NETMAP
14292 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
14293 #endif /* DEV_NETMAP */
14294
14295 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0);
14296 MODULE_VERSION(chnex, 1);
14297 MODULE_DEPEND(chnex, crypto, 1, 1, 1);
14298 MODULE_DEPEND(chnex, firmware, 1, 1, 1);
14299 #ifdef DEV_NETMAP
14300 MODULE_DEPEND(chnex, netmap, 1, 1, 1);
14301 #endif /* DEV_NETMAP */
14302
14303 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
14304 MODULE_VERSION(cxgbe, 1);
14305
14306 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
14307 MODULE_VERSION(cxl, 1);
14308
14309 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
14310 MODULE_VERSION(cc, 1);
14311
14312 DRIVER_MODULE(che, chnex, che_driver, 0, 0);
14313 MODULE_VERSION(che, 1);
14314
14315 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
14316 MODULE_VERSION(vcxgbe, 1);
14317
14318 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
14319 MODULE_VERSION(vcxl, 1);
14320
14321 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
14322 MODULE_VERSION(vcc, 1);
14323
14324 DRIVER_MODULE(vche, che, vche_driver, 0, 0);
14325 MODULE_VERSION(vche, 1);
14326