1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2018 Chelsio Communications, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/rwlock.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 #include <netinet/in.h>
44
45 #include "common/common.h"
46 #include "common/t4_msg.h"
47 #include "t4_smt.h"
48
49 /*
50 * Module locking notes: There is a RW lock protecting the SMAC table as a
51 * whole plus a spinlock per SMT entry. Entry lookups and allocations happen
52 * under the protection of the table lock, individual entry changes happen
53 * while holding that entry's spinlock. The table lock nests outside the
54 * entry locks. Allocations of new entries take the table lock as writers so
55 * no other lookups can happen while allocating new entries. Entry updates
56 * take the table lock as readers so multiple entries can be updated in
57 * parallel. An SMT entry can be dropped by decrementing its reference count
58 * and therefore can happen in parallel with entry allocation but no entry
59 * can change state or increment its ref count during allocation as both of
60 * these perform lookups.
61 *
62 * Note: We do not take references to ifnets in this module because both
63 * the TOE and the sockets already hold references to the interfaces and the
64 * lifetime of an SMT entry is fully contained in the lifetime of the TOE.
65 */
66
67 /*
68 * Allocate a free SMT entry. Must be called with smt_data.lock held.
69 */
70 struct smt_entry *
t4_find_or_alloc_sme(struct smt_data * s,uint8_t * smac)71 t4_find_or_alloc_sme(struct smt_data *s, uint8_t *smac)
72 {
73 struct smt_entry *end, *e;
74 struct smt_entry *first_free = NULL;
75
76 rw_assert(&s->lock, RA_WLOCKED);
77 for (e = &s->smtab[0], end = &s->smtab[s->smt_size]; e != end; ++e) {
78 if (atomic_load_acq_int(&e->refcnt) == 0) {
79 if (!first_free)
80 first_free = e;
81 } else {
82 if (e->state == SMT_STATE_SWITCHING) {
83 /*
84 * This entry is actually in use. See if we can
85 * re-use it?
86 */
87 if (memcmp(e->smac, smac, ETHER_ADDR_LEN) == 0)
88 goto found_reuse;
89 }
90 }
91 }
92 if (first_free) {
93 e = first_free;
94 goto found;
95 }
96 return NULL;
97
98 found:
99 e->state = SMT_STATE_UNUSED;
100 found_reuse:
101 atomic_add_int(&e->refcnt, 1);
102 return e;
103 }
104
105 /*
106 * Write an SMT entry. Must be called with the entry locked.
107 */
108 int
t4_write_sme(struct smt_entry * e)109 t4_write_sme(struct smt_entry *e)
110 {
111 struct smt_data *s;
112 struct sge_wrq *wrq;
113 struct adapter *sc;
114 struct wrq_cookie cookie;
115 struct cpl_smt_write_req *req;
116 struct cpl_t6_smt_write_req *t6req;
117 u8 row;
118
119 mtx_assert(&e->lock, MA_OWNED);
120
121 MPASS(e->wrq != NULL);
122 wrq = e->wrq;
123 sc = wrq->adapter;
124 MPASS(wrq->adapter != NULL);
125 s = sc->smt;
126
127
128 if (chip_id(sc) <= CHELSIO_T5) {
129 /* Source MAC Table (SMT) contains 256 SMAC entries
130 * organized in 128 rows of 2 entries each.
131 */
132 req = start_wrq_wr(wrq, howmany(sizeof(*req), 16), &cookie);
133 if (req == NULL)
134 return (ENOMEM);
135 INIT_TP_WR(req, 0);
136 /* Each row contains an SMAC pair.
137 * LSB selects the SMAC entry within a row
138 */
139 row = (e->idx >> 1);
140 if (e->idx & 1) {
141 req->pfvf1 = 0x0;
142 memcpy(req->src_mac1, e->smac, ETHER_ADDR_LEN);
143 /* fill pfvf0/src_mac0 with entry
144 * at prev index from smt-tab.
145 */
146 req->pfvf0 = 0x0;
147 memcpy(req->src_mac0, s->smtab[e->idx - 1].smac,
148 ETHER_ADDR_LEN);
149 } else {
150 req->pfvf0 = 0x0;
151 memcpy(req->src_mac0, e->smac, ETHER_ADDR_LEN);
152 /* fill pfvf1/src_mac1 with entry
153 * at next index from smt-tab
154 */
155 req->pfvf1 = 0x0;
156 memcpy(req->src_mac1, s->smtab[e->idx + 1].smac,
157 ETHER_ADDR_LEN);
158 }
159 } else {
160 /* Source MAC Table (SMT) contains 256 SMAC entries */
161 t6req = start_wrq_wr(wrq, howmany(sizeof(*t6req), 16), &cookie);
162 if (t6req == NULL)
163 return (ENOMEM);
164 INIT_TP_WR(t6req, 0);
165 req = (struct cpl_smt_write_req *)t6req;
166
167 /* fill pfvf0/src_mac0 from smt-tab */
168 req->pfvf0 = 0x0;
169 memcpy(req->src_mac0, s->smtab[e->idx].smac, ETHER_ADDR_LEN);
170 row = e->idx;
171 }
172 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, e->idx |
173 V_TID_QID(e->iqid)));
174 req->params = htonl(V_SMTW_NORPL(0) |
175 V_SMTW_IDX(row) |
176 V_SMTW_OVLAN_IDX(0));
177
178 commit_wrq_wr(wrq, req, &cookie);
179
180 return (0);
181 }
182
183 /*
184 * Allocate an SMT entry for use by a switching rule.
185 */
186 struct smt_entry *
t4_smt_alloc_switching(struct smt_data * s,uint8_t * smac)187 t4_smt_alloc_switching(struct smt_data *s, uint8_t *smac)
188 {
189 struct smt_entry *e;
190
191 MPASS(s != NULL);
192 rw_wlock(&s->lock);
193 e = t4_find_or_alloc_sme(s, smac);
194 rw_wunlock(&s->lock);
195 return e;
196 }
197
198 /*
199 * Sets/updates the contents of a switching SMT entry that has been allocated
200 * with an earlier call to @t4_smt_alloc_switching.
201 */
202 int
t4_smt_set_switching(struct adapter * sc,struct smt_entry * e,uint16_t pfvf,uint8_t * smac)203 t4_smt_set_switching(struct adapter *sc, struct smt_entry *e, uint16_t pfvf,
204 uint8_t *smac)
205 {
206 int rc = 0;
207
208 if (atomic_load_acq_int(&e->refcnt) == 1) {
209 /* Setup the entry for the first time */
210 mtx_lock(&e->lock);
211 e->wrq = &sc->sge.ctrlq[0];
212 e->iqid = sc->sge.fwq.abs_id;
213 e->pfvf = pfvf;
214 e->state = SMT_STATE_SWITCHING;
215 memcpy(e->smac, smac, ETHER_ADDR_LEN);
216 rc = t4_write_sme(e);
217 mtx_unlock(&e->lock);
218 }
219
220 return (rc);
221 }
222
223 int
t4_init_smt(struct adapter * sc,int flags)224 t4_init_smt(struct adapter *sc, int flags)
225 {
226 int i, smt_size;
227 struct smt_data *s;
228
229 smt_size = SMT_SIZE;
230 s = malloc(sizeof(*s) + smt_size * sizeof (struct smt_entry), M_CXGBE,
231 M_ZERO | flags);
232 if (!s)
233 return (ENOMEM);
234
235 s->smt_size = smt_size;
236 rw_init(&s->lock, "SMT");
237
238 for (i = 0; i < smt_size; i++) {
239 struct smt_entry *e = &s->smtab[i];
240
241 e->idx = i;
242 e->state = SMT_STATE_UNUSED;
243 mtx_init(&e->lock, "SMT_E", NULL, MTX_DEF);
244 atomic_store_rel_int(&e->refcnt, 0);
245 }
246
247 sc->smt = s;
248
249 return (0);
250 }
251
252 int
t4_free_smt(struct smt_data * s)253 t4_free_smt(struct smt_data *s)
254 {
255 int i;
256
257 for (i = 0; i < s->smt_size; i++)
258 mtx_destroy(&s->smtab[i].lock);
259 rw_destroy(&s->lock);
260 free(s, M_CXGBE);
261
262 return (0);
263 }
264
265 int
do_smt_write_rpl(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)266 do_smt_write_rpl(struct sge_iq *iq, const struct rss_header *rss,
267 struct mbuf *m)
268 {
269 struct adapter *sc = iq->adapter;
270 const struct cpl_smt_write_rpl *rpl = (const void *)(rss + 1);
271 unsigned int tid = GET_TID(rpl);
272 unsigned int smtidx = G_TID_TID(tid);
273
274 if (__predict_false(rpl->status != CPL_ERR_NONE)) {
275 struct smt_entry *e = &sc->smt->smtab[smtidx];
276 log(LOG_ERR,
277 "Unexpected SMT_WRITE_RPL (%u) for entry at hw_idx %u\n",
278 rpl->status, smtidx);
279 mtx_lock(&e->lock);
280 e->state = SMT_STATE_ERROR;
281 mtx_unlock(&e->lock);
282 return (EINVAL);
283 }
284
285 return (0);
286 }
287
288 static char
smt_state(const struct smt_entry * e)289 smt_state(const struct smt_entry *e)
290 {
291 switch (e->state) {
292 case SMT_STATE_SWITCHING: return 'X';
293 case SMT_STATE_ERROR: return 'E';
294 default: return 'U';
295 }
296 }
297
298 int
sysctl_smt(SYSCTL_HANDLER_ARGS)299 sysctl_smt(SYSCTL_HANDLER_ARGS)
300 {
301 struct adapter *sc = arg1;
302 struct smt_data *smt = sc->smt;
303 struct smt_entry *e;
304 struct sbuf *sb;
305 int rc, i, header = 0;
306
307 if (smt == NULL)
308 return (ENXIO);
309
310 rc = sysctl_wire_old_buffer(req, 0);
311 if (rc != 0)
312 return (rc);
313
314 sb = sbuf_new_for_sysctl(NULL, NULL, SMT_SIZE, req);
315 if (sb == NULL)
316 return (ENOMEM);
317
318 e = &smt->smtab[0];
319 for (i = 0; i < smt->smt_size; i++, e++) {
320 mtx_lock(&e->lock);
321 if (e->state == SMT_STATE_UNUSED)
322 goto skip;
323
324 if (header == 0) {
325 sbuf_printf(sb, " Idx "
326 "Ethernet address State Users");
327 header = 1;
328 }
329 sbuf_printf(sb, "\n%4u %02x:%02x:%02x:%02x:%02x:%02x "
330 "%c %5u",
331 e->idx, e->smac[0], e->smac[1], e->smac[2],
332 e->smac[3], e->smac[4], e->smac[5],
333 smt_state(e), atomic_load_acq_int(&e->refcnt));
334 skip:
335 mtx_unlock(&e->lock);
336 }
337
338 rc = sbuf_finish(sb);
339 sbuf_delete(sb);
340
341 return (rc);
342 }
343