1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/lock.h> 42 #include <sys/limits.h> 43 #include <sys/module.h> 44 #include <sys/protosw.h> 45 #include <sys/domain.h> 46 #include <sys/refcount.h> 47 #include <sys/rmlock.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 #include <netinet/in.h> 57 #include <netinet/in_pcb.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/scope6_var.h> 62 #define TCPSTATES 63 #include <netinet/tcp_fsm.h> 64 #include <netinet/tcp_seq.h> 65 #include <netinet/tcp_timer.h> 66 #include <netinet/tcp_var.h> 67 #include <netinet/toecore.h> 68 #include <netinet/cc/cc.h> 69 70 #ifdef TCP_OFFLOAD 71 #include "common/common.h" 72 #include "common/t4_msg.h" 73 #include "common/t4_regs.h" 74 #include "common/t4_regs_values.h" 75 #include "common/t4_tcb.h" 76 #include "t4_clip.h" 77 #include "tom/t4_tom_l2t.h" 78 #include "tom/t4_tom.h" 79 #include "tom/t4_tls.h" 80 81 static struct protosw toe_protosw; 82 static struct protosw toe6_protosw; 83 84 /* Module ops */ 85 static int t4_tom_mod_load(void); 86 static int t4_tom_mod_unload(void); 87 static int t4_tom_modevent(module_t, int, void *); 88 89 /* ULD ops and helpers */ 90 static int t4_tom_activate(struct adapter *); 91 static int t4_tom_deactivate(struct adapter *); 92 static int t4_tom_stop(struct adapter *); 93 static int t4_tom_restart(struct adapter *); 94 95 static struct uld_info tom_uld_info = { 96 .uld_activate = t4_tom_activate, 97 .uld_deactivate = t4_tom_deactivate, 98 .uld_stop = t4_tom_stop, 99 .uld_restart = t4_tom_restart, 100 }; 101 102 static void release_offload_resources(struct toepcb *); 103 static void done_with_toepcb(struct toepcb *); 104 static int alloc_tid_tabs(struct adapter *); 105 static void free_tid_tabs(struct adapter *); 106 static void free_tom_data(struct adapter *, struct tom_data *); 107 static void reclaim_wr_resources(void *, int); 108 static void cleanup_stranded_tids(void *, int); 109 110 struct toepcb * 111 alloc_toepcb(struct vi_info *vi, int flags) 112 { 113 struct port_info *pi = vi->pi; 114 struct adapter *sc = pi->adapter; 115 struct toepcb *toep; 116 int tx_credits, txsd_total, len; 117 118 /* 119 * The firmware counts tx work request credits in units of 16 bytes 120 * each. Reserve room for an ABORT_REQ so the driver never has to worry 121 * about tx credits if it wants to abort a connection. 122 */ 123 tx_credits = sc->params.ofldq_wr_cred; 124 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); 125 126 /* 127 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte 128 * immediate payload, and firmware counts tx work request credits in 129 * units of 16 byte. Calculate the maximum work requests possible. 130 */ 131 txsd_total = tx_credits / 132 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); 133 134 len = offsetof(struct toepcb, txsd) + 135 txsd_total * sizeof(struct ofld_tx_sdesc); 136 137 toep = malloc(len, M_CXGBE, M_ZERO | flags); 138 if (toep == NULL) 139 return (NULL); 140 141 refcount_init(&toep->refcount, 1); 142 toep->td = sc->tom_softc; 143 toep->incarnation = sc->incarnation; 144 toep->vi = vi; 145 toep->tid = -1; 146 toep->tx_total = tx_credits; 147 toep->tx_credits = tx_credits; 148 mbufq_init(&toep->ulp_pduq, INT_MAX); 149 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); 150 toep->txsd_total = txsd_total; 151 toep->txsd_avail = txsd_total; 152 toep->txsd_pidx = 0; 153 toep->txsd_cidx = 0; 154 aiotx_init_toep(toep); 155 156 return (toep); 157 } 158 159 /* 160 * Initialize a toepcb after its params have been filled out. 161 */ 162 int 163 init_toepcb(struct vi_info *vi, struct toepcb *toep) 164 { 165 struct conn_params *cp = &toep->params; 166 struct port_info *pi = vi->pi; 167 struct adapter *sc = pi->adapter; 168 struct tx_cl_rl_params *tc; 169 170 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { 171 tc = &pi->sched_params->cl_rl[cp->tc_idx]; 172 mtx_lock(&sc->tc_lock); 173 if (tc->state != CS_HW_CONFIGURED) { 174 CH_ERR(vi, "tid %d cannot be bound to traffic class %d " 175 "because it is not configured (its state is %d)\n", 176 toep->tid, cp->tc_idx, tc->state); 177 cp->tc_idx = -1; 178 } else { 179 tc->refcount++; 180 } 181 mtx_unlock(&sc->tc_lock); 182 } 183 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 184 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; 185 toep->ctrlq = &sc->sge.ctrlq[cp->ctrlq_idx]; 186 187 tls_init_toep(toep); 188 MPASS(ulp_mode(toep) != ULP_MODE_TCPDDP); 189 190 toep->flags |= TPF_INITIALIZED; 191 192 return (0); 193 } 194 195 struct toepcb * 196 hold_toepcb(struct toepcb *toep) 197 { 198 199 refcount_acquire(&toep->refcount); 200 return (toep); 201 } 202 203 void 204 free_toepcb(struct toepcb *toep) 205 { 206 207 if (refcount_release(&toep->refcount) == 0) 208 return; 209 210 KASSERT(!(toep->flags & TPF_ATTACHED), 211 ("%s: attached to an inpcb", __func__)); 212 KASSERT(!(toep->flags & TPF_CPL_PENDING), 213 ("%s: CPL pending", __func__)); 214 215 if (toep->flags & TPF_INITIALIZED) { 216 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 217 ddp_uninit_toep(toep); 218 tls_uninit_toep(toep); 219 } 220 free(toep, M_CXGBE); 221 } 222 223 /* 224 * Set up the socket for TCP offload. 225 */ 226 void 227 offload_socket(struct socket *so, struct toepcb *toep) 228 { 229 struct tom_data *td = toep->td; 230 struct inpcb *inp = sotoinpcb(so); 231 struct tcpcb *tp = intotcpcb(inp); 232 struct sockbuf *sb; 233 234 INP_WLOCK_ASSERT(inp); 235 236 /* Update socket */ 237 sb = &so->so_snd; 238 SOCKBUF_LOCK(sb); 239 sb->sb_flags |= SB_NOCOALESCE; 240 SOCKBUF_UNLOCK(sb); 241 sb = &so->so_rcv; 242 SOCKBUF_LOCK(sb); 243 sb->sb_flags |= SB_NOCOALESCE; 244 if (inp->inp_vflag & INP_IPV6) 245 so->so_proto = &toe6_protosw; 246 else 247 so->so_proto = &toe_protosw; 248 SOCKBUF_UNLOCK(sb); 249 250 /* Update TCP PCB */ 251 tp->tod = &td->tod; 252 tp->t_toe = toep; 253 tp->t_flags |= TF_TOE; 254 255 /* Install an extra hold on inp */ 256 toep->inp = inp; 257 toep->flags |= TPF_ATTACHED; 258 in_pcbref(inp); 259 } 260 261 void 262 restore_so_proto(struct socket *so, bool v6) 263 { 264 if (v6) 265 so->so_proto = &tcp6_protosw; 266 else 267 so->so_proto = &tcp_protosw; 268 } 269 270 /* This is _not_ the normal way to "unoffload" a socket. */ 271 void 272 undo_offload_socket(struct socket *so) 273 { 274 struct inpcb *inp = sotoinpcb(so); 275 struct tcpcb *tp = intotcpcb(inp); 276 struct toepcb *toep = tp->t_toe; 277 struct sockbuf *sb; 278 279 INP_WLOCK_ASSERT(inp); 280 281 sb = &so->so_snd; 282 SOCKBUF_LOCK(sb); 283 sb->sb_flags &= ~SB_NOCOALESCE; 284 SOCKBUF_UNLOCK(sb); 285 sb = &so->so_rcv; 286 SOCKBUF_LOCK(sb); 287 sb->sb_flags &= ~SB_NOCOALESCE; 288 restore_so_proto(so, inp->inp_vflag & INP_IPV6); 289 SOCKBUF_UNLOCK(sb); 290 291 tp->tod = NULL; 292 tp->t_toe = NULL; 293 tp->t_flags &= ~TF_TOE; 294 295 toep->inp = NULL; 296 toep->flags &= ~TPF_ATTACHED; 297 if (in_pcbrele_wlocked(inp)) 298 panic("%s: inp freed.", __func__); 299 } 300 301 static void 302 release_offload_resources(struct toepcb *toep) 303 { 304 struct tom_data *td = toep->td; 305 struct adapter *sc = td_adapter(td); 306 int tid = toep->tid; 307 308 KASSERT(!(toep->flags & TPF_CPL_PENDING), 309 ("%s: %p has CPL pending.", __func__, toep)); 310 311 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", 312 __func__, toep, tid, toep->l2te, toep->ce); 313 314 if (toep->l2te) { 315 t4_l2t_release(toep->l2te); 316 toep->l2te = NULL; 317 } 318 if (tid >= 0) { 319 remove_tid(sc, tid, toep->ce ? 2 : 1); 320 release_tid(sc, tid, toep->ctrlq); 321 toep->tid = -1; 322 mtx_lock(&td->toep_list_lock); 323 if (toep->flags & TPF_IN_TOEP_LIST) { 324 toep->flags &= ~TPF_IN_TOEP_LIST; 325 TAILQ_REMOVE(&td->toep_list, toep, link); 326 } 327 mtx_unlock(&td->toep_list_lock); 328 } 329 if (toep->ce) { 330 t4_release_clip_entry(sc, toep->ce); 331 toep->ce = NULL; 332 } 333 if (toep->params.tc_idx != -1) 334 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); 335 } 336 337 /* 338 * Both the driver and kernel are done with the toepcb. 339 */ 340 static void 341 done_with_toepcb(struct toepcb *toep) 342 { 343 KASSERT(!(toep->flags & TPF_CPL_PENDING), 344 ("%s: %p has CPL pending.", __func__, toep)); 345 KASSERT(!(toep->flags & TPF_ATTACHED), 346 ("%s: %p is still attached.", __func__, toep)); 347 348 CTR(KTR_CXGBE, "%s: toep %p (0x%x)", __func__, toep, toep->flags); 349 350 /* 351 * These queues should have been emptied at approximately the same time 352 * that a normal connection's socket's so_snd would have been purged or 353 * drained. Do _not_ clean up here. 354 */ 355 MPASS(mbufq_empty(&toep->ulp_pduq)); 356 MPASS(mbufq_empty(&toep->ulp_pdu_reclaimq)); 357 #ifdef INVARIANTS 358 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 359 ddp_assert_empty(toep); 360 #endif 361 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); 362 MPASS(toep->tid == -1); 363 MPASS(toep->l2te == NULL); 364 MPASS(toep->ce == NULL); 365 MPASS((toep->flags & TPF_IN_TOEP_LIST) == 0); 366 367 free_toepcb(toep); 368 } 369 370 /* 371 * The kernel is done with the TCP PCB and this is our opportunity to unhook the 372 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no 373 * pending CPL) then it is time to release all resources tied to the toepcb. 374 * 375 * Also gets called when an offloaded active open fails and the TOM wants the 376 * kernel to take the TCP PCB back. 377 */ 378 void 379 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) 380 { 381 #if defined(KTR) || defined(INVARIANTS) 382 struct inpcb *inp = tptoinpcb(tp); 383 #endif 384 struct toepcb *toep = tp->t_toe; 385 386 INP_WLOCK_ASSERT(inp); 387 388 KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); 389 KASSERT(toep->flags & TPF_ATTACHED, 390 ("%s: not attached", __func__)); 391 392 #ifdef KTR 393 if (tp->t_state == TCPS_SYN_SENT) { 394 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", 395 __func__, toep->tid, toep, toep->flags, inp, 396 inp->inp_flags); 397 } else { 398 CTR6(KTR_CXGBE, 399 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", 400 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, 401 inp->inp_flags); 402 } 403 #endif 404 405 tp->tod = NULL; 406 tp->t_toe = NULL; 407 tp->t_flags &= ~TF_TOE; 408 toep->flags &= ~TPF_ATTACHED; 409 410 if (!(toep->flags & TPF_CPL_PENDING)) 411 done_with_toepcb(toep); 412 } 413 414 /* 415 * setsockopt handler. 416 */ 417 static void 418 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) 419 { 420 struct adapter *sc = tod->tod_softc; 421 struct toepcb *toep = tp->t_toe; 422 423 if (dir == SOPT_GET) 424 return; 425 426 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); 427 428 switch (name) { 429 case TCP_NODELAY: 430 if (tp->t_state != TCPS_ESTABLISHED) 431 break; 432 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 433 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, 434 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); 435 break; 436 default: 437 break; 438 } 439 } 440 441 static inline uint64_t 442 get_tcb_tflags(const uint64_t *tcb) 443 { 444 445 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); 446 } 447 448 static inline uint32_t 449 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) 450 { 451 #define LAST_WORD ((TCB_SIZE / 4) - 1) 452 uint64_t t1, t2; 453 int flit_idx; 454 455 MPASS(mask != 0); 456 MPASS(word <= LAST_WORD); 457 MPASS(shift < 32); 458 459 flit_idx = (LAST_WORD - word) / 2; 460 if (word & 0x1) 461 shift += 32; 462 t1 = be64toh(tcb[flit_idx]) >> shift; 463 t2 = 0; 464 if (fls(mask) > 64 - shift) { 465 /* 466 * Will spill over into the next logical flit, which is the flit 467 * before this one. The flit_idx before this one must be valid. 468 */ 469 MPASS(flit_idx > 0); 470 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); 471 } 472 return ((t2 | t1) & mask); 473 #undef LAST_WORD 474 } 475 #define GET_TCB_FIELD(tcb, F) \ 476 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) 477 478 /* 479 * Issues a CPL_GET_TCB to read the entire TCB for the tid. 480 */ 481 static int 482 send_get_tcb(struct adapter *sc, u_int tid) 483 { 484 struct cpl_get_tcb *cpl; 485 struct wrq_cookie cookie; 486 487 MPASS(tid >= sc->tids.tid_base); 488 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 489 490 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), 491 &cookie); 492 if (__predict_false(cpl == NULL)) 493 return (ENOMEM); 494 bzero(cpl, sizeof(*cpl)); 495 INIT_TP_WR(cpl, tid); 496 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); 497 if (chip_id(sc) >= CHELSIO_T7) { 498 cpl->reply_ctrl = 499 htobe16(V_T7_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id) | 500 V_T7_REPLY_CHAN(0) | V_NO_REPLY(0)); 501 } else { 502 cpl->reply_ctrl = 503 htobe16(V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id) | 504 V_REPLY_CHAN(0) | V_NO_REPLY(0)); 505 } 506 cpl->cookie = 0xff; 507 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); 508 509 return (0); 510 } 511 512 static struct tcb_histent * 513 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) 514 { 515 struct tcb_histent *te; 516 517 MPASS(flags == M_NOWAIT || flags == M_WAITOK); 518 519 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); 520 if (te == NULL) 521 return (NULL); 522 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); 523 callout_init_mtx(&te->te_callout, &te->te_lock, 0); 524 te->te_adapter = sc; 525 te->te_tid = tid; 526 527 return (te); 528 } 529 530 static void 531 free_tcb_histent(struct tcb_histent *te) 532 { 533 534 mtx_destroy(&te->te_lock); 535 free(te, M_CXGBE); 536 } 537 538 /* 539 * Start tracking the tid in the TCB history. 540 */ 541 int 542 add_tid_to_history(struct adapter *sc, u_int tid) 543 { 544 struct tcb_histent *te = NULL; 545 struct tom_data *td = sc->tom_softc; 546 int rc; 547 548 MPASS(tid >= sc->tids.tid_base); 549 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 550 551 if (td->tcb_history == NULL) 552 return (ENXIO); 553 554 rw_wlock(&td->tcb_history_lock); 555 if (td->tcb_history[tid] != NULL) { 556 rc = EEXIST; 557 goto done; 558 } 559 te = alloc_tcb_histent(sc, tid, M_NOWAIT); 560 if (te == NULL) { 561 rc = ENOMEM; 562 goto done; 563 } 564 mtx_lock(&te->te_lock); 565 rc = send_get_tcb(sc, tid); 566 if (rc == 0) { 567 te->te_flags |= TE_RPL_PENDING; 568 td->tcb_history[tid] = te; 569 } else { 570 free(te, M_CXGBE); 571 } 572 mtx_unlock(&te->te_lock); 573 done: 574 rw_wunlock(&td->tcb_history_lock); 575 return (rc); 576 } 577 578 static void 579 remove_tcb_histent(struct tcb_histent *te) 580 { 581 struct adapter *sc = te->te_adapter; 582 struct tom_data *td = sc->tom_softc; 583 584 rw_assert(&td->tcb_history_lock, RA_WLOCKED); 585 mtx_assert(&te->te_lock, MA_OWNED); 586 MPASS(td->tcb_history[te->te_tid] == te); 587 588 td->tcb_history[te->te_tid] = NULL; 589 free_tcb_histent(te); 590 rw_wunlock(&td->tcb_history_lock); 591 } 592 593 static inline struct tcb_histent * 594 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) 595 { 596 struct tcb_histent *te; 597 struct tom_data *td = sc->tom_softc; 598 599 MPASS(tid >= sc->tids.tid_base); 600 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 601 602 if (td->tcb_history == NULL) 603 return (NULL); 604 605 if (addrem) 606 rw_wlock(&td->tcb_history_lock); 607 else 608 rw_rlock(&td->tcb_history_lock); 609 te = td->tcb_history[tid]; 610 if (te != NULL) { 611 mtx_lock(&te->te_lock); 612 return (te); /* with both locks held */ 613 } 614 if (addrem) 615 rw_wunlock(&td->tcb_history_lock); 616 else 617 rw_runlock(&td->tcb_history_lock); 618 619 return (te); 620 } 621 622 static inline void 623 release_tcb_histent(struct tcb_histent *te) 624 { 625 struct adapter *sc = te->te_adapter; 626 struct tom_data *td = sc->tom_softc; 627 628 mtx_assert(&te->te_lock, MA_OWNED); 629 mtx_unlock(&te->te_lock); 630 rw_assert(&td->tcb_history_lock, RA_RLOCKED); 631 rw_runlock(&td->tcb_history_lock); 632 } 633 634 static void 635 request_tcb(void *arg) 636 { 637 struct tcb_histent *te = arg; 638 639 mtx_assert(&te->te_lock, MA_OWNED); 640 641 /* Noone else is supposed to update the histent. */ 642 MPASS(!(te->te_flags & TE_RPL_PENDING)); 643 if (send_get_tcb(te->te_adapter, te->te_tid) == 0) 644 te->te_flags |= TE_RPL_PENDING; 645 else 646 callout_schedule(&te->te_callout, hz / 100); 647 } 648 649 static void 650 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) 651 { 652 struct tom_data *td = te->te_adapter->tom_softc; 653 uint64_t tflags = get_tcb_tflags(tcb); 654 uint8_t sample = 0; 655 656 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { 657 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) 658 sample |= TS_RTO; 659 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) 660 sample |= TS_DUPACKS; 661 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) 662 sample |= TS_FASTREXMT; 663 } 664 665 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { 666 uint32_t snd_wnd; 667 668 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ 669 670 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 671 if (tflags & V_TF_RECV_SCALE(1)) 672 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); 673 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) 674 sample |= TS_CWND_LIMITED; /* maybe due to CWND */ 675 } 676 677 if (tflags & V_TF_CCTRL_ECN(1)) { 678 679 /* 680 * CE marker on incoming IP hdr, echoing ECE back in the TCP 681 * hdr. Indicates congestion somewhere on the way from the peer 682 * to this node. 683 */ 684 if (tflags & V_TF_CCTRL_ECE(1)) 685 sample |= TS_ECN_ECE; 686 687 /* 688 * ECE seen and CWR sent (or about to be sent). Might indicate 689 * congestion on the way to the peer. This node is reducing its 690 * congestion window in response. 691 */ 692 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) 693 sample |= TS_ECN_CWR; 694 } 695 696 te->te_sample[te->te_pidx] = sample; 697 if (++te->te_pidx == nitems(te->te_sample)) 698 te->te_pidx = 0; 699 memcpy(te->te_tcb, tcb, TCB_SIZE); 700 te->te_flags |= TE_ACTIVE; 701 } 702 703 static int 704 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) 705 { 706 struct adapter *sc = iq->adapter; 707 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); 708 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); 709 struct tcb_histent *te; 710 const u_int tid = GET_TID(cpl); 711 bool remove; 712 713 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; 714 te = lookup_tcb_histent(sc, tid, remove); 715 if (te == NULL) { 716 /* Not in the history. Who issued the GET_TCB for this? */ 717 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " 718 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, 719 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), 720 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), 721 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); 722 goto done; 723 } 724 725 MPASS(te->te_flags & TE_RPL_PENDING); 726 te->te_flags &= ~TE_RPL_PENDING; 727 if (remove) { 728 remove_tcb_histent(te); 729 } else { 730 update_tcb_histent(te, tcb); 731 callout_reset(&te->te_callout, hz / 10, request_tcb, te); 732 release_tcb_histent(te); 733 } 734 done: 735 m_freem(m); 736 return (0); 737 } 738 739 static void 740 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) 741 { 742 uint32_t v; 743 744 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); 745 746 v = GET_TCB_FIELD(tcb, T_SRTT); 747 ti->tcpi_rtt = tcp_ticks_to_us(sc, v); 748 749 v = GET_TCB_FIELD(tcb, T_RTTVAR); 750 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); 751 752 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); 753 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); 754 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); 755 ti->tcpi_rcv_adv = GET_TCB_FIELD(tcb, RCV_ADV); 756 ti->tcpi_dupacks = GET_TCB_FIELD(tcb, T_DUPACKS); 757 758 v = GET_TCB_FIELD(tcb, TX_MAX); 759 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); 760 ti->tcpi_snd_una = v - GET_TCB_FIELD(tcb, SND_UNA_RAW); 761 ti->tcpi_snd_max = v - GET_TCB_FIELD(tcb, SND_MAX_RAW); 762 763 /* Receive window being advertised by us. */ 764 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ 765 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); 766 767 /* Send window */ 768 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ 769 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); 770 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) 771 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; 772 else 773 ti->tcpi_snd_wscale = 0; 774 775 } 776 777 static void 778 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, 779 struct tcp_info *ti) 780 { 781 782 fill_tcp_info_from_tcb(sc, te->te_tcb, ti); 783 } 784 785 /* 786 * Reads the TCB for the given tid using a memory window and copies it to 'buf' 787 * in the same format as CPL_GET_TCB_RPL. 788 */ 789 static void 790 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) 791 { 792 int i, j, k, rc; 793 uint32_t addr; 794 u_char *tcb, tmp; 795 796 MPASS(tid >= sc->tids.tid_base); 797 MPASS(tid - sc->tids.tid_base < sc->tids.ntids); 798 799 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; 800 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); 801 if (rc != 0) 802 return; 803 804 tcb = (u_char *)buf; 805 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { 806 for (k = 0; k < 16; k++) { 807 tmp = tcb[i + k]; 808 tcb[i + k] = tcb[j + k]; 809 tcb[j + k] = tmp; 810 } 811 } 812 } 813 814 static void 815 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) 816 { 817 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; 818 struct tcb_histent *te; 819 820 ti->tcpi_toe_tid = tid; 821 te = lookup_tcb_histent(sc, tid, false); 822 if (te != NULL) { 823 fill_tcp_info_from_history(sc, te, ti); 824 release_tcb_histent(te); 825 } else { 826 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { 827 /* XXX: tell firmware to flush TCB cache. */ 828 } 829 read_tcb_using_memwin(sc, tid, tcb); 830 fill_tcp_info_from_tcb(sc, tcb, ti); 831 } 832 } 833 834 /* 835 * Called by the kernel to allow the TOE driver to "refine" values filled up in 836 * the tcp_info for an offloaded connection. 837 */ 838 static void 839 t4_tcp_info(struct toedev *tod, const struct tcpcb *tp, struct tcp_info *ti) 840 { 841 struct adapter *sc = tod->tod_softc; 842 struct toepcb *toep = tp->t_toe; 843 844 INP_LOCK_ASSERT(tptoinpcb(tp)); 845 MPASS(ti != NULL); 846 847 fill_tcp_info(sc, toep->tid, ti); 848 } 849 850 #ifdef KERN_TLS 851 static int 852 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, 853 struct ktls_session *tls, int direction) 854 { 855 struct toepcb *toep = tp->t_toe; 856 857 INP_WLOCK_ASSERT(tptoinpcb(tp)); 858 MPASS(tls != NULL); 859 860 return (tls_alloc_ktls(toep, tls, direction)); 861 } 862 #endif 863 864 static void 865 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) 866 { 867 struct wrq_cookie cookie; 868 struct fw_flowc_wr *flowc; 869 struct ofld_tx_sdesc *txsd; 870 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); 871 const int flowclen16 = howmany(flowclen, 16); 872 873 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { 874 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, 875 toep->tid, toep->tx_credits, toep->txsd_avail); 876 return; 877 } 878 879 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); 880 if (__predict_false(flowc == NULL)) { 881 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); 882 return; 883 } 884 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 885 V_FW_FLOWC_WR_NPARAMS(1)); 886 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | 887 V_FW_WR_FLOWID(toep->tid)); 888 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; 889 flowc->mnemval[0].val = htobe32(toep->params.emss); 890 891 txsd = &toep->txsd[toep->txsd_pidx]; 892 _Static_assert(flowclen16 <= MAX_OFLD_TX_SDESC_CREDITS, 893 "MAX_OFLD_TX_SDESC_CREDITS too small"); 894 txsd->tx_credits = flowclen16; 895 txsd->plen = 0; 896 toep->tx_credits -= txsd->tx_credits; 897 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 898 toep->txsd_pidx = 0; 899 toep->txsd_avail--; 900 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); 901 } 902 903 static void 904 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) 905 { 906 struct work_request_hdr *wrh; 907 struct ulp_txpkt *ulpmc; 908 int idx, len; 909 struct wrq_cookie cookie; 910 struct inpcb *inp = tptoinpcb(tp); 911 struct toepcb *toep = tp->t_toe; 912 struct adapter *sc = td_adapter(toep->td); 913 unsigned short *mtus = &sc->params.mtus[0]; 914 915 INP_WLOCK_ASSERT(inp); 916 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ 917 918 /* tp->snd_una and snd_max are in host byte order too. */ 919 seq = be32toh(seq); 920 921 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", 922 __func__, toep->tid, seq, mtu, toep->params.mtu_idx, 923 mtus[toep->params.mtu_idx]); 924 925 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ 926 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { 927 CTR5(KTR_CXGBE, 928 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", 929 __func__, toep->tid, seq, tp->snd_una, tp->snd_max); 930 return; 931 } 932 933 /* Find the best mtu_idx for the suggested MTU. */ 934 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) 935 continue; 936 if (idx >= toep->params.mtu_idx) 937 return; /* Never increase the PMTU (just like the kernel). */ 938 939 /* 940 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first 941 * one updates the mtu_idx and the second one triggers a retransmit. 942 */ 943 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); 944 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); 945 if (wrh == NULL) { 946 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", 947 toep->tid, toep->params.mtu_idx, idx); 948 return; 949 } 950 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ 951 ulpmc = (struct ulp_txpkt *)(wrh + 1); 952 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_T_MAXSEG, 953 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx)); 954 ulpmc = mk_set_tcb_field_ulp(sc, ulpmc, toep->tid, W_TCB_TIMESTAMP, 955 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0); 956 commit_wrq_wr(toep->ctrlq, wrh, &cookie); 957 958 /* Update the software toepcb and tcpcb. */ 959 toep->params.mtu_idx = idx; 960 tp->t_maxseg = mtus[toep->params.mtu_idx]; 961 if (inp->inp_inc.inc_flags & INC_ISIPV6) 962 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 963 else 964 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); 965 toep->params.emss = tp->t_maxseg; 966 if (tp->t_flags & TF_RCVD_TSTMP) 967 toep->params.emss -= TCPOLEN_TSTAMP_APPA; 968 969 /* Update the firmware flowc. */ 970 send_mss_flowc_wr(sc, toep); 971 972 /* Update the MTU in the kernel's hostcache. */ 973 if (sc->tt.update_hc_on_pmtu_change != 0) { 974 struct in_conninfo inc = {0}; 975 976 inc.inc_fibnum = inp->inp_inc.inc_fibnum; 977 if (inp->inp_inc.inc_flags & INC_ISIPV6) { 978 inc.inc_flags |= INC_ISIPV6; 979 inc.inc6_faddr = inp->inp_inc.inc6_faddr; 980 } else { 981 inc.inc_faddr = inp->inp_inc.inc_faddr; 982 } 983 tcp_hc_updatemtu(&inc, mtu); 984 } 985 986 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", 987 __func__, toep->tid, toep->params.mtu_idx, 988 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); 989 } 990 991 /* 992 * The TOE driver will not receive any more CPLs for the tid associated with the 993 * toepcb; release the hold on the inpcb. 994 */ 995 void 996 final_cpl_received(struct toepcb *toep) 997 { 998 struct inpcb *inp = toep->inp; 999 bool need_wakeup; 1000 1001 KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); 1002 INP_WLOCK_ASSERT(inp); 1003 KASSERT(toep->flags & TPF_CPL_PENDING, 1004 ("%s: CPL not pending already?", __func__)); 1005 1006 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", 1007 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); 1008 1009 if (ulp_mode(toep) == ULP_MODE_TCPDDP) 1010 release_ddp_resources(toep); 1011 toep->inp = NULL; 1012 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; 1013 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); 1014 mbufq_drain(&toep->ulp_pduq); 1015 mbufq_drain(&toep->ulp_pdu_reclaimq); 1016 release_offload_resources(toep); 1017 if (!(toep->flags & TPF_ATTACHED)) 1018 done_with_toepcb(toep); 1019 1020 if (!in_pcbrele_wlocked(inp)) 1021 INP_WUNLOCK(inp); 1022 1023 if (need_wakeup) { 1024 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); 1025 1026 mtx_lock(lock); 1027 wakeup(toep); 1028 mtx_unlock(lock); 1029 } 1030 } 1031 1032 void 1033 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) 1034 { 1035 struct tid_info *t = &sc->tids; 1036 1037 MPASS(tid >= t->tid_base); 1038 MPASS(tid - t->tid_base < t->ntids); 1039 1040 t->tid_tab[tid - t->tid_base] = ctx; 1041 atomic_add_int(&t->tids_in_use, ntids); 1042 } 1043 1044 void * 1045 lookup_tid(struct adapter *sc, int tid) 1046 { 1047 struct tid_info *t = &sc->tids; 1048 1049 return (t->tid_tab[tid - t->tid_base]); 1050 } 1051 1052 void 1053 update_tid(struct adapter *sc, int tid, void *ctx) 1054 { 1055 struct tid_info *t = &sc->tids; 1056 1057 t->tid_tab[tid - t->tid_base] = ctx; 1058 } 1059 1060 void 1061 remove_tid(struct adapter *sc, int tid, int ntids) 1062 { 1063 struct tid_info *t = &sc->tids; 1064 1065 t->tid_tab[tid - t->tid_base] = NULL; 1066 atomic_subtract_int(&t->tids_in_use, ntids); 1067 } 1068 1069 /* 1070 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt 1071 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't 1072 * account for any TCP options so the effective MSS (only payload, no headers or 1073 * options) could be different. 1074 */ 1075 static int 1076 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, 1077 struct offload_settings *s) 1078 { 1079 unsigned short *mtus = &sc->params.mtus[0]; 1080 int i, mss, mtu; 1081 1082 MPASS(inc != NULL); 1083 1084 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); 1085 if (inc->inc_flags & INC_ISIPV6) 1086 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1087 else 1088 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); 1089 1090 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) 1091 continue; 1092 1093 return (i); 1094 } 1095 1096 /* 1097 * Determine the receive window size for a socket. 1098 */ 1099 u_long 1100 select_rcv_wnd(struct socket *so) 1101 { 1102 unsigned long wnd; 1103 1104 SOCKBUF_LOCK_ASSERT(&so->so_rcv); 1105 1106 wnd = sbspace(&so->so_rcv); 1107 if (wnd < MIN_RCV_WND) 1108 wnd = MIN_RCV_WND; 1109 1110 return min(wnd, MAX_RCV_WND); 1111 } 1112 1113 int 1114 select_rcv_wscale(void) 1115 { 1116 int wscale = 0; 1117 unsigned long space = sb_max; 1118 1119 if (space > MAX_RCV_WND) 1120 space = MAX_RCV_WND; 1121 1122 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) 1123 wscale++; 1124 1125 return (wscale); 1126 } 1127 1128 __be64 1129 calc_options0(struct vi_info *vi, struct conn_params *cp) 1130 { 1131 uint64_t opt0 = 0; 1132 1133 opt0 |= F_TCAM_BYPASS; 1134 1135 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); 1136 opt0 |= V_WND_SCALE(cp->wscale); 1137 1138 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); 1139 opt0 |= V_MSS_IDX(cp->mtu_idx); 1140 1141 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); 1142 opt0 |= V_ULP_MODE(cp->ulp_mode); 1143 1144 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); 1145 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); 1146 1147 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); 1148 opt0 |= V_L2T_IDX(cp->l2t_idx); 1149 1150 opt0 |= V_SMAC_SEL(vi->smt_idx); 1151 opt0 |= V_TX_CHAN(vi->pi->tx_chan); 1152 1153 MPASS(cp->keepalive == 0 || cp->keepalive == 1); 1154 opt0 |= V_KEEP_ALIVE(cp->keepalive); 1155 1156 MPASS(cp->nagle == 0 || cp->nagle == 1); 1157 opt0 |= V_NAGLE(cp->nagle); 1158 1159 return (htobe64(opt0)); 1160 } 1161 1162 __be32 1163 calc_options2(struct vi_info *vi, struct conn_params *cp) 1164 { 1165 uint32_t opt2 = 0; 1166 struct port_info *pi = vi->pi; 1167 struct adapter *sc = pi->adapter; 1168 1169 /* 1170 * rx flow control, rx coalesce, congestion control, and tx pace are all 1171 * explicitly set by the driver. On T5+ the ISS is also set by the 1172 * driver to the value picked by the kernel. 1173 */ 1174 if (is_t4(sc)) { 1175 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; 1176 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; 1177 } else { 1178 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ 1179 opt2 |= F_T5_ISS; /* ISS provided in CPL */ 1180 } 1181 1182 MPASS(cp->sack == 0 || cp->sack == 1); 1183 opt2 |= V_SACK_EN(cp->sack); 1184 1185 MPASS(cp->tstamp == 0 || cp->tstamp == 1); 1186 opt2 |= V_TSTAMPS_EN(cp->tstamp); 1187 1188 if (cp->wscale > 0) 1189 opt2 |= F_WND_SCALE_EN; 1190 1191 MPASS(cp->ecn == 0 || cp->ecn == 1); 1192 opt2 |= V_CCTRL_ECN(cp->ecn); 1193 1194 opt2 |= V_TX_QUEUE(TX_MODQ(pi->tx_chan)); 1195 opt2 |= V_PACE(0); 1196 opt2 |= F_RSS_QUEUE_VALID; 1197 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); 1198 if (chip_id(sc) <= CHELSIO_T6) { 1199 MPASS(pi->rx_chan == 0 || pi->rx_chan == 1); 1200 opt2 |= V_RX_CHANNEL(pi->rx_chan); 1201 } 1202 1203 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); 1204 opt2 |= V_CONG_CNTRL(cp->cong_algo); 1205 1206 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); 1207 if (cp->rx_coalesce == 1) 1208 opt2 |= V_RX_COALESCE(M_RX_COALESCE); 1209 1210 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); 1211 MPASS(cp->ulp_mode != ULP_MODE_TCPDDP); 1212 1213 return (htobe32(opt2)); 1214 } 1215 1216 uint64_t 1217 select_ntuple(struct vi_info *vi, struct l2t_entry *e) 1218 { 1219 struct adapter *sc = vi->adapter; 1220 struct tp_params *tp = &sc->params.tp; 1221 uint64_t ntuple = 0; 1222 1223 /* 1224 * Initialize each of the fields which we care about which are present 1225 * in the Compressed Filter Tuple. 1226 */ 1227 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) 1228 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; 1229 1230 if (tp->port_shift >= 0) 1231 ntuple |= (uint64_t)e->hw_port << tp->port_shift; 1232 1233 if (tp->protocol_shift >= 0) 1234 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; 1235 1236 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { 1237 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | 1238 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << 1239 tp->vnic_shift; 1240 } 1241 1242 return (ntuple); 1243 } 1244 1245 /* 1246 * Initialize various connection parameters. 1247 */ 1248 void 1249 init_conn_params(struct vi_info *vi , struct offload_settings *s, 1250 struct in_conninfo *inc, struct socket *so, 1251 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) 1252 { 1253 struct port_info *pi = vi->pi; 1254 struct adapter *sc = pi->adapter; 1255 struct tom_tunables *tt = &sc->tt; 1256 struct inpcb *inp = sotoinpcb(so); 1257 struct tcpcb *tp = intotcpcb(inp); 1258 u_long wnd; 1259 u_int q_idx; 1260 1261 MPASS(s->offload != 0); 1262 1263 /* Congestion control algorithm */ 1264 if (s->cong_algo >= 0) 1265 cp->cong_algo = s->cong_algo & M_CONG_CNTRL; 1266 else if (sc->tt.cong_algorithm >= 0) 1267 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; 1268 else { 1269 struct cc_algo *cc = CC_ALGO(tp); 1270 1271 if (strcasecmp(cc->name, "reno") == 0) 1272 cp->cong_algo = CONG_ALG_RENO; 1273 else if (strcasecmp(cc->name, "tahoe") == 0) 1274 cp->cong_algo = CONG_ALG_TAHOE; 1275 if (strcasecmp(cc->name, "newreno") == 0) 1276 cp->cong_algo = CONG_ALG_NEWRENO; 1277 if (strcasecmp(cc->name, "highspeed") == 0) 1278 cp->cong_algo = CONG_ALG_HIGHSPEED; 1279 else { 1280 /* 1281 * Use newreno in case the algorithm selected by the 1282 * host stack is not supported by the hardware. 1283 */ 1284 cp->cong_algo = CONG_ALG_NEWRENO; 1285 } 1286 } 1287 1288 /* Tx traffic scheduling class. */ 1289 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) 1290 cp->tc_idx = s->sched_class; 1291 else 1292 cp->tc_idx = -1; 1293 1294 /* Nagle's algorithm. */ 1295 if (s->nagle >= 0) 1296 cp->nagle = s->nagle > 0 ? 1 : 0; 1297 else 1298 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; 1299 1300 /* TCP Keepalive. */ 1301 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) 1302 cp->keepalive = 1; 1303 else 1304 cp->keepalive = 0; 1305 1306 /* Optimization that's specific to T5 @ 40G. */ 1307 if (tt->tx_align >= 0) 1308 cp->tx_align = tt->tx_align > 0 ? 1 : 0; 1309 else if (chip_id(sc) == CHELSIO_T5 && 1310 (port_top_speed(pi) > 10 || sc->params.nports > 2)) 1311 cp->tx_align = 1; 1312 else 1313 cp->tx_align = 0; 1314 1315 /* ULP mode. */ 1316 cp->ulp_mode = ULP_MODE_NONE; 1317 1318 /* Rx coalescing. */ 1319 if (s->rx_coalesce >= 0) 1320 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; 1321 else if (tt->rx_coalesce >= 0) 1322 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; 1323 else 1324 cp->rx_coalesce = 1; /* default */ 1325 1326 /* 1327 * Index in the PMTU table. This controls the MSS that we announce in 1328 * our SYN initially, but after ESTABLISHED it controls the MSS that we 1329 * use to send data. 1330 */ 1331 cp->mtu_idx = find_best_mtu_idx(sc, inc, s); 1332 1333 /* Control queue. */ 1334 cp->ctrlq_idx = vi->pi->port_id; 1335 1336 /* Tx queue for this connection. */ 1337 if (s->txq == QUEUE_RANDOM) 1338 q_idx = arc4random(); 1339 else if (s->txq == QUEUE_ROUNDROBIN) 1340 q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); 1341 else 1342 q_idx = s->txq; 1343 cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; 1344 1345 /* Rx queue for this connection. */ 1346 if (s->rxq == QUEUE_RANDOM) 1347 q_idx = arc4random(); 1348 else if (s->rxq == QUEUE_ROUNDROBIN) 1349 q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); 1350 else 1351 q_idx = s->rxq; 1352 cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; 1353 1354 if (SOLISTENING(so)) { 1355 /* Passive open */ 1356 MPASS(tcpopt != NULL); 1357 1358 /* TCP timestamp option */ 1359 if (tcpopt->tstamp && 1360 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) 1361 cp->tstamp = 1; 1362 else 1363 cp->tstamp = 0; 1364 1365 /* SACK */ 1366 if (tcpopt->sack && 1367 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) 1368 cp->sack = 1; 1369 else 1370 cp->sack = 0; 1371 1372 /* Receive window scaling. */ 1373 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) 1374 cp->wscale = select_rcv_wscale(); 1375 else 1376 cp->wscale = 0; 1377 1378 /* ECN */ 1379 if (tcpopt->ecn && /* XXX: review. */ 1380 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) 1381 cp->ecn = 1; 1382 else 1383 cp->ecn = 0; 1384 1385 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); 1386 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1387 1388 if (tt->sndbuf > 0) 1389 cp->sndbuf = tt->sndbuf; 1390 else if (so->sol_sbsnd_flags & SB_AUTOSIZE && 1391 V_tcp_do_autosndbuf) 1392 cp->sndbuf = 256 * 1024; 1393 else 1394 cp->sndbuf = so->sol_sbsnd_hiwat; 1395 } else { 1396 /* Active open */ 1397 1398 /* TCP timestamp option */ 1399 if (s->tstamp > 0 || 1400 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) 1401 cp->tstamp = 1; 1402 else 1403 cp->tstamp = 0; 1404 1405 /* SACK */ 1406 if (s->sack > 0 || 1407 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) 1408 cp->sack = 1; 1409 else 1410 cp->sack = 0; 1411 1412 /* Receive window scaling */ 1413 if (tp->t_flags & TF_REQ_SCALE) 1414 cp->wscale = select_rcv_wscale(); 1415 else 1416 cp->wscale = 0; 1417 1418 /* ECN */ 1419 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) 1420 cp->ecn = 1; 1421 else 1422 cp->ecn = 0; 1423 1424 SOCKBUF_LOCK(&so->so_rcv); 1425 wnd = max(select_rcv_wnd(so), MIN_RCV_WND); 1426 SOCKBUF_UNLOCK(&so->so_rcv); 1427 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); 1428 1429 if (tt->sndbuf > 0) 1430 cp->sndbuf = tt->sndbuf; 1431 else { 1432 SOCKBUF_LOCK(&so->so_snd); 1433 if (so->so_snd.sb_flags & SB_AUTOSIZE && 1434 V_tcp_do_autosndbuf) 1435 cp->sndbuf = 256 * 1024; 1436 else 1437 cp->sndbuf = so->so_snd.sb_hiwat; 1438 SOCKBUF_UNLOCK(&so->so_snd); 1439 } 1440 } 1441 1442 cp->l2t_idx = l2t_idx; 1443 1444 /* This will be initialized on ESTABLISHED. */ 1445 cp->emss = 0; 1446 } 1447 1448 void 1449 update_tid_qid_sel(struct vi_info *vi, struct conn_params *cp, int tid) 1450 { 1451 struct adapter *sc = vi->adapter; 1452 const int mask = sc->params.tid_qid_sel_mask; 1453 struct sge_ofld_txq *ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 1454 uint32_t ngroup; 1455 int g, nqpg; 1456 1457 cp->ctrlq_idx = ofld_txq_group(tid, mask); 1458 CTR(KTR_CXGBE, "tid %u is on core %u", tid, cp->ctrlq_idx); 1459 if ((ofld_txq->wrq.eq.cntxt_id & mask) == (tid & mask)) 1460 return; 1461 1462 ngroup = 1 << bitcount32(mask); 1463 MPASS(vi->nofldtxq % ngroup == 0); 1464 g = ofld_txq_group(tid, mask); 1465 nqpg = vi->nofldtxq / ngroup; 1466 cp->txq_idx = vi->first_ofld_txq + g * nqpg + arc4random() % nqpg; 1467 #ifdef INVARIANTS 1468 MPASS(cp->txq_idx < vi->first_ofld_txq + vi->nofldtxq); 1469 ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; 1470 MPASS((ofld_txq->wrq.eq.cntxt_id & mask) == (tid & mask)); 1471 #endif 1472 } 1473 1474 int 1475 negative_advice(int status) 1476 { 1477 1478 return (status == CPL_ERR_RTX_NEG_ADVICE || 1479 status == CPL_ERR_PERSIST_NEG_ADVICE || 1480 status == CPL_ERR_KEEPALV_NEG_ADVICE); 1481 } 1482 1483 static int 1484 alloc_tid_tab(struct adapter *sc) 1485 { 1486 struct tid_info *t = &sc->tids; 1487 1488 MPASS(t->ntids > 0); 1489 MPASS(t->tid_tab == NULL); 1490 1491 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, 1492 M_ZERO | M_NOWAIT); 1493 if (t->tid_tab == NULL) 1494 return (ENOMEM); 1495 atomic_store_rel_int(&t->tids_in_use, 0); 1496 1497 return (0); 1498 } 1499 1500 static void 1501 free_tid_tab(struct adapter *sc) 1502 { 1503 struct tid_info *t = &sc->tids; 1504 1505 KASSERT(t->tids_in_use == 0, 1506 ("%s: %d tids still in use.", __func__, t->tids_in_use)); 1507 1508 free(t->tid_tab, M_CXGBE); 1509 t->tid_tab = NULL; 1510 } 1511 1512 static void 1513 free_tid_tabs(struct adapter *sc) 1514 { 1515 free_tid_tab(sc); 1516 free_stid_tab(sc); 1517 } 1518 1519 static int 1520 alloc_tid_tabs(struct adapter *sc) 1521 { 1522 int rc; 1523 1524 rc = alloc_tid_tab(sc); 1525 if (rc != 0) 1526 goto failed; 1527 1528 rc = alloc_stid_tab(sc); 1529 if (rc != 0) 1530 goto failed; 1531 1532 return (0); 1533 failed: 1534 free_tid_tabs(sc); 1535 return (rc); 1536 } 1537 1538 static inline void 1539 alloc_tcb_history(struct adapter *sc, struct tom_data *td) 1540 { 1541 1542 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) 1543 return; 1544 rw_init(&td->tcb_history_lock, "TCB history"); 1545 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), 1546 M_CXGBE, M_ZERO | M_NOWAIT); 1547 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); 1548 } 1549 1550 static inline void 1551 free_tcb_history(struct adapter *sc, struct tom_data *td) 1552 { 1553 #ifdef INVARIANTS 1554 int i; 1555 1556 if (td->tcb_history != NULL) { 1557 for (i = 0; i < sc->tids.ntids; i++) { 1558 MPASS(td->tcb_history[i] == NULL); 1559 } 1560 } 1561 #endif 1562 free(td->tcb_history, M_CXGBE); 1563 if (rw_initialized(&td->tcb_history_lock)) 1564 rw_destroy(&td->tcb_history_lock); 1565 } 1566 1567 static void 1568 free_tom_data(struct adapter *sc, struct tom_data *td) 1569 { 1570 1571 ASSERT_SYNCHRONIZED_OP(sc); 1572 1573 KASSERT(TAILQ_EMPTY(&td->toep_list), 1574 ("%s: TOE PCB list is not empty.", __func__)); 1575 KASSERT(td->lctx_count == 0, 1576 ("%s: lctx hash table is not empty.", __func__)); 1577 1578 t4_free_ppod_region(&td->pr); 1579 1580 if (td->listen_mask != 0) 1581 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); 1582 1583 if (mtx_initialized(&td->unsent_wr_lock)) 1584 mtx_destroy(&td->unsent_wr_lock); 1585 if (mtx_initialized(&td->lctx_hash_lock)) 1586 mtx_destroy(&td->lctx_hash_lock); 1587 if (mtx_initialized(&td->toep_list_lock)) 1588 mtx_destroy(&td->toep_list_lock); 1589 1590 free_tcb_history(sc, td); 1591 free_tid_tabs(sc); 1592 free(td, M_CXGBE); 1593 } 1594 1595 static char * 1596 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, 1597 int *buflen) 1598 { 1599 char *pkt; 1600 struct tcphdr *th; 1601 int ipv6, len; 1602 const int maxlen = 1603 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + 1604 max(sizeof(struct ip), sizeof(struct ip6_hdr)) + 1605 sizeof(struct tcphdr); 1606 1607 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); 1608 1609 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); 1610 if (pkt == NULL) 1611 return (NULL); 1612 1613 ipv6 = inp->inp_vflag & INP_IPV6; 1614 len = 0; 1615 1616 if (EVL_VLANOFTAG(vtag) == 0xfff) { 1617 struct ether_header *eh = (void *)pkt; 1618 1619 if (ipv6) 1620 eh->ether_type = htons(ETHERTYPE_IPV6); 1621 else 1622 eh->ether_type = htons(ETHERTYPE_IP); 1623 1624 len += sizeof(*eh); 1625 } else { 1626 struct ether_vlan_header *evh = (void *)pkt; 1627 1628 evh->evl_encap_proto = htons(ETHERTYPE_VLAN); 1629 evh->evl_tag = htons(vtag); 1630 if (ipv6) 1631 evh->evl_proto = htons(ETHERTYPE_IPV6); 1632 else 1633 evh->evl_proto = htons(ETHERTYPE_IP); 1634 1635 len += sizeof(*evh); 1636 } 1637 1638 if (ipv6) { 1639 struct ip6_hdr *ip6 = (void *)&pkt[len]; 1640 1641 ip6->ip6_vfc = IPV6_VERSION; 1642 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1643 ip6->ip6_nxt = IPPROTO_TCP; 1644 if (open_type == OPEN_TYPE_ACTIVE) { 1645 ip6->ip6_src = inp->in6p_laddr; 1646 ip6->ip6_dst = inp->in6p_faddr; 1647 } else if (open_type == OPEN_TYPE_LISTEN) { 1648 ip6->ip6_src = inp->in6p_laddr; 1649 ip6->ip6_dst = ip6->ip6_src; 1650 } 1651 1652 len += sizeof(*ip6); 1653 } else { 1654 struct ip *ip = (void *)&pkt[len]; 1655 1656 ip->ip_v = IPVERSION; 1657 ip->ip_hl = sizeof(*ip) >> 2; 1658 ip->ip_tos = inp->inp_ip_tos; 1659 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); 1660 ip->ip_ttl = inp->inp_ip_ttl; 1661 ip->ip_p = IPPROTO_TCP; 1662 if (open_type == OPEN_TYPE_ACTIVE) { 1663 ip->ip_src = inp->inp_laddr; 1664 ip->ip_dst = inp->inp_faddr; 1665 } else if (open_type == OPEN_TYPE_LISTEN) { 1666 ip->ip_src = inp->inp_laddr; 1667 ip->ip_dst = ip->ip_src; 1668 } 1669 1670 len += sizeof(*ip); 1671 } 1672 1673 th = (void *)&pkt[len]; 1674 if (open_type == OPEN_TYPE_ACTIVE) { 1675 th->th_sport = inp->inp_lport; /* network byte order already */ 1676 th->th_dport = inp->inp_fport; /* ditto */ 1677 } else if (open_type == OPEN_TYPE_LISTEN) { 1678 th->th_sport = inp->inp_lport; /* network byte order already */ 1679 th->th_dport = th->th_sport; 1680 } 1681 len += sizeof(th); 1682 1683 *pktlen = *buflen = len; 1684 return (pkt); 1685 } 1686 1687 const struct offload_settings * 1688 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, 1689 uint16_t vtag, struct inpcb *inp) 1690 { 1691 const struct t4_offload_policy *op; 1692 char *pkt; 1693 struct offload_rule *r; 1694 int i, matched, pktlen, buflen; 1695 static const struct offload_settings allow_offloading_settings = { 1696 .offload = 1, 1697 .rx_coalesce = -1, 1698 .cong_algo = -1, 1699 .sched_class = -1, 1700 .tstamp = -1, 1701 .sack = -1, 1702 .nagle = -1, 1703 .ecn = -1, 1704 .ddp = -1, 1705 .tls = -1, 1706 .txq = QUEUE_RANDOM, 1707 .rxq = QUEUE_RANDOM, 1708 .mss = -1, 1709 }; 1710 static const struct offload_settings disallow_offloading_settings = { 1711 .offload = 0, 1712 /* rest is irrelevant when offload is off. */ 1713 }; 1714 1715 rw_assert(&sc->policy_lock, RA_LOCKED); 1716 1717 /* 1718 * If there's no Connection Offloading Policy attached to the device 1719 * then we need to return a default static policy. If 1720 * "cop_managed_offloading" is true, then we need to disallow 1721 * offloading until a COP is attached to the device. Otherwise we 1722 * allow offloading ... 1723 */ 1724 op = sc->policy; 1725 if (op == NULL) { 1726 if (sc->tt.cop_managed_offloading) 1727 return (&disallow_offloading_settings); 1728 else 1729 return (&allow_offloading_settings); 1730 } 1731 1732 switch (open_type) { 1733 case OPEN_TYPE_ACTIVE: 1734 case OPEN_TYPE_LISTEN: 1735 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); 1736 break; 1737 case OPEN_TYPE_PASSIVE: 1738 MPASS(m != NULL); 1739 pkt = mtod(m, char *); 1740 MPASS(*pkt == CPL_PASS_ACCEPT_REQ); 1741 pkt += sizeof(struct cpl_pass_accept_req); 1742 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); 1743 buflen = m->m_len - sizeof(struct cpl_pass_accept_req); 1744 break; 1745 default: 1746 MPASS(0); 1747 return (&disallow_offloading_settings); 1748 } 1749 1750 if (pkt == NULL || pktlen == 0 || buflen == 0) 1751 return (&disallow_offloading_settings); 1752 1753 matched = 0; 1754 r = &op->rule[0]; 1755 for (i = 0; i < op->nrules; i++, r++) { 1756 if (r->open_type != open_type && 1757 r->open_type != OPEN_TYPE_DONTCARE) { 1758 continue; 1759 } 1760 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); 1761 if (matched) 1762 break; 1763 } 1764 1765 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) 1766 free(pkt, M_CXGBE); 1767 1768 return (matched ? &r->settings : &disallow_offloading_settings); 1769 } 1770 1771 static void 1772 reclaim_wr_resources(void *arg, int count) 1773 { 1774 struct tom_data *td = arg; 1775 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); 1776 struct cpl_act_open_req *cpl; 1777 u_int opcode, atid, tid; 1778 struct wrqe *wr; 1779 struct adapter *sc = td_adapter(td); 1780 1781 mtx_lock(&td->unsent_wr_lock); 1782 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); 1783 mtx_unlock(&td->unsent_wr_lock); 1784 1785 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { 1786 STAILQ_REMOVE_HEAD(&twr_list, link); 1787 1788 cpl = wrtod(wr); 1789 opcode = GET_OPCODE(cpl); 1790 1791 switch (opcode) { 1792 case CPL_ACT_OPEN_REQ: 1793 case CPL_ACT_OPEN_REQ6: 1794 atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); 1795 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); 1796 act_open_failure_cleanup(sc, lookup_atid(sc, atid), 1797 EHOSTUNREACH); 1798 free(wr, M_CXGBE); 1799 break; 1800 case CPL_PASS_ACCEPT_RPL: 1801 tid = GET_TID(cpl); 1802 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); 1803 synack_failure_cleanup(sc, lookup_tid(sc, tid)); 1804 free(wr, M_CXGBE); 1805 break; 1806 default: 1807 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " 1808 "opcode %x\n", __func__, wr, wr->wr_len, opcode); 1809 /* WR not freed here; go look at it with a debugger. */ 1810 } 1811 } 1812 } 1813 1814 /* 1815 * Based on do_abort_req. We treat an abrupt hardware stop as a connection 1816 * abort from the hardware. 1817 */ 1818 static void 1819 live_tid_failure_cleanup(struct adapter *sc, struct toepcb *toep, u_int status) 1820 { 1821 struct inpcb *inp; 1822 struct tcpcb *tp; 1823 struct epoch_tracker et; 1824 1825 MPASS(!(toep->flags & TPF_SYNQE)); 1826 1827 inp = toep->inp; 1828 CURVNET_SET(toep->vnet); 1829 NET_EPOCH_ENTER(et); /* for tcp_close */ 1830 INP_WLOCK(inp); 1831 tp = intotcpcb(inp); 1832 toep->flags |= TPF_ABORT_SHUTDOWN; 1833 if ((inp->inp_flags & INP_DROPPED) == 0) { 1834 struct socket *so = inp->inp_socket; 1835 1836 if (so != NULL) 1837 so_error_set(so, status); 1838 tp = tcp_close(tp); 1839 if (tp == NULL) 1840 INP_WLOCK(inp); /* re-acquire */ 1841 } 1842 final_cpl_received(toep); 1843 NET_EPOCH_EXIT(et); 1844 CURVNET_RESTORE(); 1845 } 1846 1847 static void 1848 cleanup_stranded_tids(void *arg, int count) 1849 { 1850 TAILQ_HEAD(, toepcb) tlist = TAILQ_HEAD_INITIALIZER(tlist); 1851 TAILQ_HEAD(, synq_entry) slist = TAILQ_HEAD_INITIALIZER(slist); 1852 struct tom_data *td = arg; 1853 struct adapter *sc = td_adapter(td); 1854 struct toepcb *toep; 1855 struct synq_entry *synqe; 1856 1857 /* Clean up synq entries. */ 1858 mtx_lock(&td->toep_list_lock); 1859 TAILQ_SWAP(&td->stranded_synqe, &slist, synq_entry, link); 1860 mtx_unlock(&td->toep_list_lock); 1861 while ((synqe = TAILQ_FIRST(&slist)) != NULL) { 1862 TAILQ_REMOVE(&slist, synqe, link); 1863 MPASS(synqe->tid >= 0); /* stale, was kept around for debug */ 1864 synqe->tid = -1; 1865 synack_failure_cleanup(sc, synqe); 1866 } 1867 1868 /* Clean up in-flight active opens. */ 1869 mtx_lock(&td->toep_list_lock); 1870 TAILQ_SWAP(&td->stranded_atids, &tlist, toepcb, link); 1871 mtx_unlock(&td->toep_list_lock); 1872 while ((toep = TAILQ_FIRST(&tlist)) != NULL) { 1873 TAILQ_REMOVE(&tlist, toep, link); 1874 MPASS(toep->tid >= 0); /* stale, was kept around for debug */ 1875 toep->tid = -1; 1876 act_open_failure_cleanup(sc, toep, EHOSTUNREACH); 1877 } 1878 1879 /* Clean up live connections. */ 1880 mtx_lock(&td->toep_list_lock); 1881 TAILQ_SWAP(&td->stranded_tids, &tlist, toepcb, link); 1882 mtx_unlock(&td->toep_list_lock); 1883 while ((toep = TAILQ_FIRST(&tlist)) != NULL) { 1884 TAILQ_REMOVE(&tlist, toep, link); 1885 MPASS(toep->tid >= 0); /* stale, was kept around for debug */ 1886 toep->tid = -1; 1887 live_tid_failure_cleanup(sc, toep, ECONNABORTED); 1888 } 1889 } 1890 1891 /* 1892 * Ground control to Major TOM 1893 * Commencing countdown, engines on 1894 */ 1895 static int 1896 t4_tom_activate(struct adapter *sc) 1897 { 1898 struct tom_data *td; 1899 struct toedev *tod; 1900 struct vi_info *vi; 1901 int i, rc, v; 1902 1903 ASSERT_SYNCHRONIZED_OP(sc); 1904 1905 /* per-adapter softc for TOM */ 1906 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); 1907 if (td == NULL) 1908 return (ENOMEM); 1909 1910 /* List of TOE PCBs and associated lock */ 1911 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); 1912 TAILQ_INIT(&td->toep_list); 1913 TAILQ_INIT(&td->synqe_list); 1914 TAILQ_INIT(&td->stranded_atids); 1915 TAILQ_INIT(&td->stranded_tids); 1916 TASK_INIT(&td->cleanup_stranded_tids, 0, cleanup_stranded_tids, td); 1917 1918 /* Listen context */ 1919 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); 1920 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, 1921 &td->listen_mask, HASH_NOWAIT); 1922 1923 /* List of WRs for which L2 resolution failed */ 1924 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); 1925 STAILQ_INIT(&td->unsent_wr_list); 1926 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); 1927 1928 /* TID tables */ 1929 rc = alloc_tid_tabs(sc); 1930 if (rc != 0) 1931 goto done; 1932 1933 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, 1934 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); 1935 if (rc != 0) 1936 goto done; 1937 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, 1938 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); 1939 1940 alloc_tcb_history(sc, td); 1941 1942 /* toedev ops */ 1943 tod = &td->tod; 1944 init_toedev(tod); 1945 tod->tod_softc = sc; 1946 tod->tod_connect = t4_connect; 1947 tod->tod_listen_start = t4_listen_start; 1948 tod->tod_listen_stop = t4_listen_stop; 1949 tod->tod_rcvd = t4_rcvd; 1950 tod->tod_output = t4_tod_output; 1951 tod->tod_send_rst = t4_send_rst; 1952 tod->tod_send_fin = t4_send_fin; 1953 tod->tod_pcb_detach = t4_pcb_detach; 1954 tod->tod_l2_update = t4_l2_update; 1955 tod->tod_syncache_added = t4_syncache_added; 1956 tod->tod_syncache_removed = t4_syncache_removed; 1957 tod->tod_syncache_respond = t4_syncache_respond; 1958 tod->tod_offload_socket = t4_offload_socket; 1959 tod->tod_ctloutput = t4_ctloutput; 1960 tod->tod_tcp_info = t4_tcp_info; 1961 #ifdef KERN_TLS 1962 tod->tod_alloc_tls_session = t4_alloc_tls_session; 1963 #endif 1964 tod->tod_pmtu_update = t4_pmtu_update; 1965 1966 for_each_port(sc, i) { 1967 for_each_vi(sc->port[i], v, vi) { 1968 SETTOEDEV(vi->ifp, &td->tod); 1969 } 1970 } 1971 1972 sc->tom_softc = td; 1973 register_toedev(sc->tom_softc); 1974 1975 done: 1976 if (rc != 0) 1977 free_tom_data(sc, td); 1978 return (rc); 1979 } 1980 1981 static int 1982 t4_tom_deactivate(struct adapter *sc) 1983 { 1984 int rc = 0, i, v; 1985 struct tom_data *td = sc->tom_softc; 1986 struct vi_info *vi; 1987 1988 ASSERT_SYNCHRONIZED_OP(sc); 1989 1990 if (td == NULL) 1991 return (0); /* XXX. KASSERT? */ 1992 1993 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) 1994 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ 1995 1996 if (sc->offload_map != 0) { 1997 for_each_port(sc, i) { 1998 for_each_vi(sc->port[i], v, vi) { 1999 toe_capability(vi, false); 2000 if_setcapenablebit(vi->ifp, 0, IFCAP_TOE); 2001 SETTOEDEV(vi->ifp, NULL); 2002 } 2003 } 2004 MPASS(sc->offload_map == 0); 2005 } 2006 2007 mtx_lock(&td->toep_list_lock); 2008 if (!TAILQ_EMPTY(&td->toep_list)) 2009 rc = EBUSY; 2010 MPASS(TAILQ_EMPTY(&td->synqe_list)); 2011 MPASS(TAILQ_EMPTY(&td->stranded_tids)); 2012 mtx_unlock(&td->toep_list_lock); 2013 2014 mtx_lock(&td->lctx_hash_lock); 2015 if (td->lctx_count > 0) 2016 rc = EBUSY; 2017 mtx_unlock(&td->lctx_hash_lock); 2018 2019 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 2020 taskqueue_drain(taskqueue_thread, &td->cleanup_stranded_tids); 2021 mtx_lock(&td->unsent_wr_lock); 2022 if (!STAILQ_EMPTY(&td->unsent_wr_list)) 2023 rc = EBUSY; 2024 mtx_unlock(&td->unsent_wr_lock); 2025 2026 if (rc == 0) { 2027 unregister_toedev(sc->tom_softc); 2028 free_tom_data(sc, td); 2029 sc->tom_softc = NULL; 2030 } 2031 2032 return (rc); 2033 } 2034 2035 static void 2036 stop_atids(struct adapter *sc) 2037 { 2038 struct tom_data *td = sc->tom_softc; 2039 struct tid_info *t = &sc->tids; 2040 struct toepcb *toep; 2041 int atid; 2042 2043 /* 2044 * Hashfilters and T6-KTLS are the only other users of atids but they're 2045 * both mutually exclusive with TOE. That means t4_tom owns all the 2046 * atids in the table. 2047 */ 2048 MPASS(!is_hashfilter(sc)); 2049 if (is_t6(sc)) 2050 MPASS(!(sc->flags & KERN_TLS_ON)); 2051 2052 /* New atids are not being allocated. */ 2053 #ifdef INVARIANTS 2054 mtx_lock(&t->atid_lock); 2055 MPASS(t->atid_alloc_stopped == true); 2056 mtx_unlock(&t->atid_lock); 2057 #endif 2058 2059 /* 2060 * In-use atids fall in one of these two categories: 2061 * a) Those waiting for L2 resolution before being submitted to 2062 * hardware. 2063 * b) Those that have been submitted to hardware and are awaiting 2064 * replies that will never arrive because the LLD is stopped. 2065 */ 2066 for (atid = 0; atid < t->natids; atid++) { 2067 toep = lookup_atid(sc, atid); 2068 if ((uintptr_t)toep >= (uintptr_t)&t->atid_tab[0] && 2069 (uintptr_t)toep < (uintptr_t)&t->atid_tab[t->natids]) 2070 continue; 2071 if (__predict_false(toep == NULL)) 2072 continue; 2073 MPASS(toep->tid == atid); 2074 MPASS(toep->incarnation == sc->incarnation); 2075 /* 2076 * Take the atid out of the lookup table. toep->tid is stale 2077 * after this but useful for debug. 2078 */ 2079 CTR(KTR_CXGBE, "%s: atid %d@%d STRANDED, removed from table", 2080 __func__, atid, toep->incarnation); 2081 free_atid(sc, toep->tid); 2082 #if 0 2083 toep->tid = -1; 2084 #endif 2085 mtx_lock(&td->toep_list_lock); 2086 toep->flags &= ~TPF_IN_TOEP_LIST; 2087 TAILQ_REMOVE(&td->toep_list, toep, link); 2088 TAILQ_INSERT_TAIL(&td->stranded_atids, toep, link); 2089 mtx_unlock(&td->toep_list_lock); 2090 } 2091 MPASS(atomic_load_int(&t->atids_in_use) == 0); 2092 } 2093 2094 static void 2095 stop_tids(struct adapter *sc) 2096 { 2097 struct tom_data *td = sc->tom_softc; 2098 struct toepcb *toep; 2099 #ifdef INVARIANTS 2100 struct tid_info *t = &sc->tids; 2101 #endif 2102 2103 /* 2104 * The LLD's offload queues are stopped so do_act_establish and 2105 * do_pass_accept_req cannot run and insert tids in parallel with this 2106 * thread. stop_stid_tab has also run and removed the synq entries' 2107 * tids from the table. The only tids in the table are for connections 2108 * at or beyond ESTABLISHED that are still waiting for the final CPL. 2109 */ 2110 mtx_lock(&td->toep_list_lock); 2111 TAILQ_FOREACH(toep, &td->toep_list, link) { 2112 MPASS(sc->incarnation == toep->incarnation); 2113 MPASS(toep->tid >= 0); 2114 MPASS(toep == lookup_tid(sc, toep->tid)); 2115 /* Remove tid from the lookup table immediately. */ 2116 CTR(KTR_CXGBE, "%s: tid %d@%d STRANDED, removed from table", 2117 __func__, toep->tid, toep->incarnation); 2118 remove_tid(sc, toep->tid, toep->ce ? 2 : 1); 2119 #if 0 2120 /* toep->tid is stale now but left alone for debug. */ 2121 toep->tid = -1; 2122 #endif 2123 /* All toep in this list will get bulk moved to stranded_tids */ 2124 toep->flags &= ~TPF_IN_TOEP_LIST; 2125 } 2126 MPASS(TAILQ_EMPTY(&td->stranded_tids)); 2127 TAILQ_CONCAT(&td->stranded_tids, &td->toep_list, link); 2128 MPASS(TAILQ_EMPTY(&td->toep_list)); 2129 mtx_unlock(&td->toep_list_lock); 2130 2131 MPASS(atomic_load_int(&t->tids_in_use) == 0); 2132 } 2133 2134 /* 2135 * L2T is stable because 2136 * 1. stop_lld stopped all new allocations. 2137 * 2. stop_lld also stopped the tx wrq so nothing is enqueueing new WRs to the 2138 * queue or to l2t_entry->wr_list. 2139 * 3. t4_l2t_update is ignoring all L2 updates. 2140 */ 2141 static void 2142 stop_tom_l2t(struct adapter *sc) 2143 { 2144 struct l2t_data *d = sc->l2t; 2145 struct tom_data *td = sc->tom_softc; 2146 struct l2t_entry *e; 2147 struct wrqe *wr; 2148 int i; 2149 2150 /* 2151 * This task cannot be enqueued because L2 state changes are not being 2152 * processed. But if it's already scheduled or running then we need to 2153 * wait for it to cleanup the atids in the unsent_wr_list. 2154 */ 2155 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); 2156 MPASS(STAILQ_EMPTY(&td->unsent_wr_list)); 2157 2158 for (i = 0; i < d->l2t_size; i++) { 2159 e = &d->l2tab[i]; 2160 mtx_lock(&e->lock); 2161 if (e->state == L2T_STATE_VALID || e->state == L2T_STATE_STALE) 2162 e->state = L2T_STATE_RESOLVING; 2163 /* 2164 * stop_atids is going to clean up _all_ atids in use, including 2165 * these that were pending L2 resolution. Just discard the WRs. 2166 */ 2167 while ((wr = STAILQ_FIRST(&e->wr_list)) != NULL) { 2168 STAILQ_REMOVE_HEAD(&e->wr_list, link); 2169 free(wr, M_CXGBE); 2170 } 2171 mtx_unlock(&e->lock); 2172 } 2173 } 2174 2175 static int 2176 t4_tom_stop(struct adapter *sc) 2177 { 2178 struct tid_info *t = &sc->tids; 2179 struct tom_data *td = sc->tom_softc; 2180 2181 ASSERT_SYNCHRONIZED_OP(sc); 2182 2183 stop_tom_l2t(sc); 2184 if (atomic_load_int(&t->atids_in_use) > 0) 2185 stop_atids(sc); 2186 if (atomic_load_int(&t->stids_in_use) > 0) 2187 stop_stid_tab(sc); 2188 if (atomic_load_int(&t->tids_in_use) > 0) 2189 stop_tids(sc); 2190 taskqueue_enqueue(taskqueue_thread, &td->cleanup_stranded_tids); 2191 2192 /* 2193 * L2T and atid_tab are restarted before t4_tom_restart so this assert 2194 * is not valid in t4_tom_restart. This is the next best place for it. 2195 */ 2196 MPASS(STAILQ_EMPTY(&td->unsent_wr_list)); 2197 2198 return (0); 2199 } 2200 2201 static int 2202 t4_tom_restart(struct adapter *sc) 2203 { 2204 ASSERT_SYNCHRONIZED_OP(sc); 2205 2206 restart_stid_tab(sc); 2207 2208 return (0); 2209 } 2210 2211 static int 2212 t4_ctloutput_tom(struct socket *so, struct sockopt *sopt) 2213 { 2214 struct tcpcb *tp = sototcpcb(so); 2215 struct toepcb *toep = tp->t_toe; 2216 int error, optval; 2217 2218 if (sopt->sopt_level == IPPROTO_TCP && sopt->sopt_name == TCP_USE_DDP) { 2219 if (sopt->sopt_dir != SOPT_SET) 2220 return (EOPNOTSUPP); 2221 2222 if (sopt->sopt_td != NULL) { 2223 /* Only settable by the kernel. */ 2224 return (EPERM); 2225 } 2226 2227 error = sooptcopyin(sopt, &optval, sizeof(optval), 2228 sizeof(optval)); 2229 if (error != 0) 2230 return (error); 2231 2232 if (optval != 0) 2233 return (t4_enable_ddp_rcv(so, toep)); 2234 else 2235 return (EOPNOTSUPP); 2236 } 2237 return (tcp_ctloutput(so, sopt)); 2238 } 2239 2240 static int 2241 t4_aio_queue_tom(struct socket *so, struct kaiocb *job) 2242 { 2243 struct tcpcb *tp = sototcpcb(so); 2244 struct toepcb *toep = tp->t_toe; 2245 int error; 2246 2247 /* 2248 * No lock is needed as TOE sockets never change between 2249 * active and passive. 2250 */ 2251 if (SOLISTENING(so)) 2252 return (EINVAL); 2253 2254 if (ulp_mode(toep) == ULP_MODE_TCPDDP || 2255 ulp_mode(toep) == ULP_MODE_NONE) { 2256 error = t4_aio_queue_ddp(so, job); 2257 if (error == 0) 2258 return (0); 2259 else if (error != EOPNOTSUPP) 2260 return (soaio_queue_generic(so, job)); 2261 } 2262 2263 if (t4_aio_queue_aiotx(so, job) != 0) 2264 return (soaio_queue_generic(so, job)); 2265 else 2266 return (0); 2267 } 2268 2269 /* 2270 * Request/response structure used to find out the adapter offloading 2271 * a socket. 2272 */ 2273 struct find_offload_adapter_data { 2274 struct socket *so; 2275 struct adapter *sc; /* result */ 2276 }; 2277 2278 static void 2279 find_offload_adapter_cb(struct adapter *sc, void *arg) 2280 { 2281 struct find_offload_adapter_data *fa = arg; 2282 struct socket *so = fa->so; 2283 struct tom_data *td = sc->tom_softc; 2284 struct tcpcb *tp; 2285 struct inpcb *inp; 2286 2287 /* Non-TCP were filtered out earlier. */ 2288 MPASS(so->so_proto->pr_protocol == IPPROTO_TCP); 2289 2290 if (fa->sc != NULL) 2291 return; /* Found already. */ 2292 2293 if (td == NULL) 2294 return; /* TOE not enabled on this adapter. */ 2295 2296 inp = sotoinpcb(so); 2297 INP_WLOCK(inp); 2298 if ((inp->inp_flags & INP_DROPPED) == 0) { 2299 tp = intotcpcb(inp); 2300 if (tp->t_flags & TF_TOE && tp->tod == &td->tod) 2301 fa->sc = sc; /* Found. */ 2302 } 2303 INP_WUNLOCK(inp); 2304 } 2305 2306 struct adapter * 2307 find_offload_adapter(struct socket *so) 2308 { 2309 struct find_offload_adapter_data fa; 2310 2311 fa.sc = NULL; 2312 fa.so = so; 2313 t4_iterate(find_offload_adapter_cb, &fa); 2314 return (fa.sc); 2315 } 2316 2317 void 2318 send_txdataplen_max_flowc_wr(struct adapter *sc, struct toepcb *toep, 2319 int maxlen) 2320 { 2321 struct wrqe *wr; 2322 struct fw_flowc_wr *flowc; 2323 const u_int nparams = 1; 2324 u_int flowclen; 2325 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; 2326 2327 CTR(KTR_CXGBE, "%s: tid %u maxlen=%d", __func__, toep->tid, maxlen); 2328 2329 flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); 2330 2331 wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq); 2332 if (wr == NULL) { 2333 /* XXX */ 2334 panic("%s: allocation failure.", __func__); 2335 } 2336 flowc = wrtod(wr); 2337 memset(flowc, 0, wr->wr_len); 2338 2339 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | 2340 V_FW_FLOWC_WR_NPARAMS(nparams)); 2341 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | 2342 V_FW_WR_FLOWID(toep->tid)); 2343 2344 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_TXDATAPLEN_MAX; 2345 flowc->mnemval[0].val = htobe32(maxlen); 2346 2347 KASSERT(howmany(flowclen, 16) <= MAX_OFLD_TX_SDESC_CREDITS, 2348 ("%s: tx_credits %u too large", __func__, howmany(flowclen, 16))); 2349 txsd->tx_credits = howmany(flowclen, 16); 2350 txsd->plen = 0; 2351 KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, 2352 ("%s: not enough credits (%d)", __func__, toep->tx_credits)); 2353 toep->tx_credits -= txsd->tx_credits; 2354 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) 2355 toep->txsd_pidx = 0; 2356 toep->txsd_avail--; 2357 2358 t4_wrq_tx(sc, wr); 2359 } 2360 2361 static int 2362 t4_tom_mod_load(void) 2363 { 2364 /* CPL handlers */ 2365 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); 2366 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, 2367 CPL_COOKIE_TOM); 2368 t4_init_connect_cpl_handlers(); 2369 t4_init_listen_cpl_handlers(); 2370 t4_init_cpl_io_handlers(); 2371 2372 t4_ddp_mod_load(); 2373 t4_tls_mod_load(); 2374 2375 bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw)); 2376 toe_protosw.pr_ctloutput = t4_ctloutput_tom; 2377 toe_protosw.pr_aio_queue = t4_aio_queue_tom; 2378 2379 bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); 2380 toe6_protosw.pr_ctloutput = t4_ctloutput_tom; 2381 toe6_protosw.pr_aio_queue = t4_aio_queue_tom; 2382 2383 return (t4_register_uld(&tom_uld_info, ULD_TOM)); 2384 } 2385 2386 static void 2387 tom_uninit(struct adapter *sc, void *arg) 2388 { 2389 bool *ok_to_unload = arg; 2390 2391 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) 2392 return; 2393 2394 /* Try to free resources (works only if no port has IFCAP_TOE) */ 2395 if (uld_active(sc, ULD_TOM) && t4_deactivate_uld(sc, ULD_TOM) != 0) 2396 *ok_to_unload = false; 2397 2398 end_synchronized_op(sc, 0); 2399 } 2400 2401 static int 2402 t4_tom_mod_unload(void) 2403 { 2404 bool ok_to_unload = true; 2405 2406 t4_iterate(tom_uninit, &ok_to_unload); 2407 if (!ok_to_unload) 2408 return (EBUSY); 2409 2410 if (t4_unregister_uld(&tom_uld_info, ULD_TOM) == EBUSY) 2411 return (EBUSY); 2412 2413 t4_tls_mod_unload(); 2414 t4_ddp_mod_unload(); 2415 2416 t4_uninit_connect_cpl_handlers(); 2417 t4_uninit_listen_cpl_handlers(); 2418 t4_uninit_cpl_io_handlers(); 2419 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); 2420 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); 2421 2422 return (0); 2423 } 2424 #endif /* TCP_OFFLOAD */ 2425 2426 static int 2427 t4_tom_modevent(module_t mod, int cmd, void *arg) 2428 { 2429 int rc = 0; 2430 2431 #ifdef TCP_OFFLOAD 2432 switch (cmd) { 2433 case MOD_LOAD: 2434 rc = t4_tom_mod_load(); 2435 break; 2436 2437 case MOD_UNLOAD: 2438 rc = t4_tom_mod_unload(); 2439 break; 2440 2441 default: 2442 rc = EINVAL; 2443 } 2444 #else 2445 printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); 2446 rc = EOPNOTSUPP; 2447 #endif 2448 return (rc); 2449 } 2450 2451 static moduledata_t t4_tom_moddata= { 2452 "t4_tom", 2453 t4_tom_modevent, 2454 0 2455 }; 2456 2457 MODULE_VERSION(t4_tom, 1); 2458 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); 2459 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); 2460 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); 2461