1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011, 2025 Chelsio Communications.
5 * Written by: Navdeep Parhar <np@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36
37 #include <sys/param.h>
38 #include <sys/conf.h>
39 #include <sys/priv.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/eventhandler.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #ifdef RSS
61 #include <net/rss_config.h>
62 #endif
63 #include <netinet/in.h>
64 #include <netinet/ip.h>
65 #ifdef KERN_TLS
66 #include <netinet/tcp_seq.h>
67 #endif
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #ifdef DDB
75 #include <ddb/ddb.h>
76 #include <ddb/db_lex.h>
77 #endif
78
79 #include "common/common.h"
80 #include "common/t4_msg.h"
81 #include "common/t4_regs.h"
82 #include "common/t4_regs_values.h"
83 #include "cudbg/cudbg.h"
84 #include "t4_clip.h"
85 #include "t4_ioctl.h"
86 #include "t4_l2t.h"
87 #include "t4_mp_ring.h"
88 #include "t4_if.h"
89 #include "t4_smt.h"
90
91 /* T4 bus driver interface */
92 static int t4_probe(device_t);
93 static int t4_attach(device_t);
94 static int t4_detach(device_t);
95 static int t4_child_location(device_t, device_t, struct sbuf *);
96 static int t4_ready(device_t);
97 static int t4_read_port_device(device_t, int, device_t *);
98 static int t4_suspend(device_t);
99 static int t4_resume(device_t);
100 static int t4_reset_prepare(device_t, device_t);
101 static int t4_reset_post(device_t, device_t);
102 static device_method_t t4_methods[] = {
103 DEVMETHOD(device_probe, t4_probe),
104 DEVMETHOD(device_attach, t4_attach),
105 DEVMETHOD(device_detach, t4_detach),
106 DEVMETHOD(device_suspend, t4_suspend),
107 DEVMETHOD(device_resume, t4_resume),
108
109 DEVMETHOD(bus_child_location, t4_child_location),
110 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
111 DEVMETHOD(bus_reset_post, t4_reset_post),
112
113 DEVMETHOD(t4_is_main_ready, t4_ready),
114 DEVMETHOD(t4_read_port_device, t4_read_port_device),
115
116 DEVMETHOD_END
117 };
118 static driver_t t4_driver = {
119 "t4nex",
120 t4_methods,
121 sizeof(struct adapter)
122 };
123
124
125 /* T4 port (cxgbe) interface */
126 static int cxgbe_probe(device_t);
127 static int cxgbe_attach(device_t);
128 static int cxgbe_detach(device_t);
129 device_method_t cxgbe_methods[] = {
130 DEVMETHOD(device_probe, cxgbe_probe),
131 DEVMETHOD(device_attach, cxgbe_attach),
132 DEVMETHOD(device_detach, cxgbe_detach),
133 { 0, 0 }
134 };
135 static driver_t cxgbe_driver = {
136 "cxgbe",
137 cxgbe_methods,
138 sizeof(struct port_info)
139 };
140
141 /* T4 VI (vcxgbe) interface */
142 static int vcxgbe_probe(device_t);
143 static int vcxgbe_attach(device_t);
144 static int vcxgbe_detach(device_t);
145 static device_method_t vcxgbe_methods[] = {
146 DEVMETHOD(device_probe, vcxgbe_probe),
147 DEVMETHOD(device_attach, vcxgbe_attach),
148 DEVMETHOD(device_detach, vcxgbe_detach),
149 { 0, 0 }
150 };
151 static driver_t vcxgbe_driver = {
152 "vcxgbe",
153 vcxgbe_methods,
154 sizeof(struct vi_info)
155 };
156
157 static d_ioctl_t t4_ioctl;
158
159 static struct cdevsw t4_cdevsw = {
160 .d_version = D_VERSION,
161 .d_ioctl = t4_ioctl,
162 .d_name = "t4nex",
163 };
164
165 /* T5 bus driver interface */
166 static int t5_probe(device_t);
167 static device_method_t t5_methods[] = {
168 DEVMETHOD(device_probe, t5_probe),
169 DEVMETHOD(device_attach, t4_attach),
170 DEVMETHOD(device_detach, t4_detach),
171 DEVMETHOD(device_suspend, t4_suspend),
172 DEVMETHOD(device_resume, t4_resume),
173
174 DEVMETHOD(bus_child_location, t4_child_location),
175 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
176 DEVMETHOD(bus_reset_post, t4_reset_post),
177
178 DEVMETHOD(t4_is_main_ready, t4_ready),
179 DEVMETHOD(t4_read_port_device, t4_read_port_device),
180
181 DEVMETHOD_END
182 };
183 static driver_t t5_driver = {
184 "t5nex",
185 t5_methods,
186 sizeof(struct adapter)
187 };
188
189
190 /* T5 port (cxl) interface */
191 static driver_t cxl_driver = {
192 "cxl",
193 cxgbe_methods,
194 sizeof(struct port_info)
195 };
196
197 /* T5 VI (vcxl) interface */
198 static driver_t vcxl_driver = {
199 "vcxl",
200 vcxgbe_methods,
201 sizeof(struct vi_info)
202 };
203
204 /* T6 bus driver interface */
205 static int t6_probe(device_t);
206 static device_method_t t6_methods[] = {
207 DEVMETHOD(device_probe, t6_probe),
208 DEVMETHOD(device_attach, t4_attach),
209 DEVMETHOD(device_detach, t4_detach),
210 DEVMETHOD(device_suspend, t4_suspend),
211 DEVMETHOD(device_resume, t4_resume),
212
213 DEVMETHOD(bus_child_location, t4_child_location),
214 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
215 DEVMETHOD(bus_reset_post, t4_reset_post),
216
217 DEVMETHOD(t4_is_main_ready, t4_ready),
218 DEVMETHOD(t4_read_port_device, t4_read_port_device),
219
220 DEVMETHOD_END
221 };
222 static driver_t t6_driver = {
223 "t6nex",
224 t6_methods,
225 sizeof(struct adapter)
226 };
227
228
229 /* T6 port (cc) interface */
230 static driver_t cc_driver = {
231 "cc",
232 cxgbe_methods,
233 sizeof(struct port_info)
234 };
235
236 /* T6 VI (vcc) interface */
237 static driver_t vcc_driver = {
238 "vcc",
239 vcxgbe_methods,
240 sizeof(struct vi_info)
241 };
242
243 /* T7+ bus driver interface */
244 static int ch_probe(device_t);
245 static device_method_t ch_methods[] = {
246 DEVMETHOD(device_probe, ch_probe),
247 DEVMETHOD(device_attach, t4_attach),
248 DEVMETHOD(device_detach, t4_detach),
249 DEVMETHOD(device_suspend, t4_suspend),
250 DEVMETHOD(device_resume, t4_resume),
251
252 DEVMETHOD(bus_child_location, t4_child_location),
253 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
254 DEVMETHOD(bus_reset_post, t4_reset_post),
255
256 DEVMETHOD(t4_is_main_ready, t4_ready),
257 DEVMETHOD(t4_read_port_device, t4_read_port_device),
258
259 DEVMETHOD_END
260 };
261 static driver_t ch_driver = {
262 "chnex",
263 ch_methods,
264 sizeof(struct adapter)
265 };
266
267
268 /* T7+ port (che) interface */
269 static driver_t che_driver = {
270 "che",
271 cxgbe_methods,
272 sizeof(struct port_info)
273 };
274
275 /* T7+ VI (vche) interface */
276 static driver_t vche_driver = {
277 "vche",
278 vcxgbe_methods,
279 sizeof(struct vi_info)
280 };
281
282 /* ifnet interface */
283 static void cxgbe_init(void *);
284 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
285 static int cxgbe_transmit(if_t, struct mbuf *);
286 static void cxgbe_qflush(if_t);
287 #if defined(KERN_TLS) || defined(RATELIMIT)
288 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
289 struct m_snd_tag **);
290 #endif
291
292 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
293
294 /*
295 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
296 * then ADAPTER_LOCK, then t4_uld_list_lock.
297 */
298 static struct sx t4_list_lock;
299 SLIST_HEAD(, adapter) t4_list;
300 #ifdef TCP_OFFLOAD
301 static struct sx t4_uld_list_lock;
302 struct uld_info *t4_uld_list[ULD_MAX + 1];
303 #endif
304
305 /*
306 * Tunables. See tweak_tunables() too.
307 *
308 * Each tunable is set to a default value here if it's known at compile-time.
309 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
310 * provide a reasonable default (upto n) when the driver is loaded.
311 *
312 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
313 * T5 are under hw.cxl.
314 */
315 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
316 "cxgbe(4) parameters");
317 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
318 "cxgbe(4) T5+ parameters");
319 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
320 "cxgbe(4) TOE parameters");
321
322 /*
323 * Number of queues for tx and rx, NIC and offload.
324 */
325 #define NTXQ 16
326 int t4_ntxq = -NTXQ;
327 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
328 "Number of TX queues per port");
329 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
330
331 #define NRXQ 8
332 int t4_nrxq = -NRXQ;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
334 "Number of RX queues per port");
335 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
336
337 #define NTXQ_VI 1
338 static int t4_ntxq_vi = -NTXQ_VI;
339 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
340 "Number of TX queues per VI");
341
342 #define NRXQ_VI 1
343 static int t4_nrxq_vi = -NRXQ_VI;
344 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
345 "Number of RX queues per VI");
346
347 static int t4_rsrv_noflowq = 0;
348 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
349 0, "Reserve TX queue 0 of each VI for non-flowid packets");
350
351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
352 #define NOFLDTXQ 8
353 static int t4_nofldtxq = -NOFLDTXQ;
354 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
355 "Number of offload TX queues per port");
356
357 #define NOFLDTXQ_VI 1
358 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
359 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
360 "Number of offload TX queues per VI");
361 #endif
362
363 #if defined(TCP_OFFLOAD)
364 #define NOFLDRXQ 2
365 static int t4_nofldrxq = -NOFLDRXQ;
366 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
367 "Number of offload RX queues per port");
368
369 #define NOFLDRXQ_VI 1
370 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
371 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
372 "Number of offload RX queues per VI");
373
374 #define TMR_IDX_OFLD 1
375 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
376 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
377 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
378
379 #define PKTC_IDX_OFLD (-1)
380 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
381 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
382 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
383
384 /* 0 means chip/fw default, non-zero number is value in microseconds */
385 static u_long t4_toe_keepalive_idle = 0;
386 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
387 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
388
389 /* 0 means chip/fw default, non-zero number is value in microseconds */
390 static u_long t4_toe_keepalive_interval = 0;
391 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
392 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
393
394 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
395 static int t4_toe_keepalive_count = 0;
396 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
397 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
398
399 /* 0 means chip/fw default, non-zero number is value in microseconds */
400 static u_long t4_toe_rexmt_min = 0;
401 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
403
404 /* 0 means chip/fw default, non-zero number is value in microseconds */
405 static u_long t4_toe_rexmt_max = 0;
406 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
407 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
408
409 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
410 static int t4_toe_rexmt_count = 0;
411 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
413
414 /* -1 means chip/fw default, other values are raw backoff values to use */
415 static int t4_toe_rexmt_backoff[16] = {
416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
417 };
418 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
419 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
420 "cxgbe(4) TOE retransmit backoff values");
421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
422 &t4_toe_rexmt_backoff[0], 0, "");
423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
424 &t4_toe_rexmt_backoff[1], 0, "");
425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
426 &t4_toe_rexmt_backoff[2], 0, "");
427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
428 &t4_toe_rexmt_backoff[3], 0, "");
429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
430 &t4_toe_rexmt_backoff[4], 0, "");
431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
432 &t4_toe_rexmt_backoff[5], 0, "");
433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
434 &t4_toe_rexmt_backoff[6], 0, "");
435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
436 &t4_toe_rexmt_backoff[7], 0, "");
437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
438 &t4_toe_rexmt_backoff[8], 0, "");
439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
440 &t4_toe_rexmt_backoff[9], 0, "");
441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
442 &t4_toe_rexmt_backoff[10], 0, "");
443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
444 &t4_toe_rexmt_backoff[11], 0, "");
445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
446 &t4_toe_rexmt_backoff[12], 0, "");
447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
448 &t4_toe_rexmt_backoff[13], 0, "");
449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
450 &t4_toe_rexmt_backoff[14], 0, "");
451 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
452 &t4_toe_rexmt_backoff[15], 0, "");
453
454 int t4_ddp_rcvbuf_len = 256 * 1024;
455 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
456 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
457
458 unsigned int t4_ddp_rcvbuf_cache = 4;
459 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
460 &t4_ddp_rcvbuf_cache, 0,
461 "maximum number of free DDP RX buffers to cache per connection");
462 #endif
463
464 #ifdef DEV_NETMAP
465 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
466 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
467 static int t4_native_netmap = NN_EXTRA_VI;
468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
469 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
470
471 #define NNMTXQ 8
472 static int t4_nnmtxq = -NNMTXQ;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
474 "Number of netmap TX queues");
475
476 #define NNMRXQ 8
477 static int t4_nnmrxq = -NNMRXQ;
478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
479 "Number of netmap RX queues");
480
481 #define NNMTXQ_VI 2
482 static int t4_nnmtxq_vi = -NNMTXQ_VI;
483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
484 "Number of netmap TX queues per VI");
485
486 #define NNMRXQ_VI 2
487 static int t4_nnmrxq_vi = -NNMRXQ_VI;
488 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
489 "Number of netmap RX queues per VI");
490 #endif
491
492 /*
493 * Holdoff parameters for ports.
494 */
495 #define TMR_IDX 1
496 int t4_tmr_idx = TMR_IDX;
497 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
498 0, "Holdoff timer index");
499 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
500
501 #define PKTC_IDX (-1)
502 int t4_pktc_idx = PKTC_IDX;
503 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
504 0, "Holdoff packet counter index");
505 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
506
507 /*
508 * Size (# of entries) of each tx and rx queue.
509 */
510 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
512 "Number of descriptors in each TX queue");
513
514 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
516 "Number of descriptors in each RX queue");
517
518 /*
519 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
520 */
521 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
523 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
524
525 /*
526 * Configuration file. All the _CF names here are special.
527 */
528 #define DEFAULT_CF "default"
529 #define BUILTIN_CF "built-in"
530 #define FLASH_CF "flash"
531 #define UWIRE_CF "uwire"
532 #define FPGA_CF "fpga"
533 static char t4_cfg_file[32] = DEFAULT_CF;
534 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
535 sizeof(t4_cfg_file), "Firmware configuration file");
536
537 /*
538 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
539 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
540 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
541 * mark or when signalled to do so, 0 to never emit PAUSE.
542 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
543 * negotiated settings will override rx_pause/tx_pause.
544 * Otherwise rx_pause/tx_pause are applied forcibly.
545 */
546 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
548 &t4_pause_settings, 0,
549 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
550
551 /*
552 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
553 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
554 * 0 to disable FEC.
555 */
556 static int t4_fec = -1;
557 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
558 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
559
560 static const char *
561 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module";
562
563 /*
564 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
565 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
566 * driver runs as if this is set to 0.
567 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
568 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
569 * transceiver. Multiple FEC bits may not be okay but will be passed on to
570 * the firmware anyway (may result in l1cfg errors with old firmwares).
571 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
572 * means set all FEC bits that are valid for the speed.
573 */
574 static int t4_force_fec = -1;
575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
576 "Controls the use of FORCE_FEC bit in L1 configuration.");
577
578 /*
579 * Link autonegotiation.
580 * -1 to run with the firmware default.
581 * 0 to disable.
582 * 1 to enable.
583 */
584 static int t4_autoneg = -1;
585 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
586 "Link autonegotiation");
587
588 /*
589 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
590 * encouraged respectively). '-n' is the same as 'n' except the firmware
591 * version used in the checks is read from the firmware bundled with the driver.
592 */
593 static int t4_fw_install = 1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
595 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
596
597 /*
598 * ASIC features that will be used. Disable the ones you don't want so that the
599 * chip resources aren't wasted on features that will not be used.
600 */
601 static int t4_nbmcaps_allowed = 0;
602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
603 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
604
605 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
607 &t4_linkcaps_allowed, 0, "Default link capabilities");
608
609 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
610 FW_CAPS_CONFIG_SWITCH_EGRESS;
611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
612 &t4_switchcaps_allowed, 0, "Default switch capabilities");
613
614 static int t4_nvmecaps_allowed = -1;
615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN,
616 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities");
617
618 #ifdef RATELIMIT
619 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
620 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
621 #else
622 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
623 FW_CAPS_CONFIG_NIC_HASHFILTER;
624 #endif
625 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
626 &t4_niccaps_allowed, 0, "Default NIC capabilities");
627
628 static int t4_toecaps_allowed = -1;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
630 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
631
632 static int t4_rdmacaps_allowed = -1;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
634 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
635
636 static int t4_cryptocaps_allowed = -1;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
638 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
639
640 static int t4_iscsicaps_allowed = -1;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
642 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
643
644 static int t4_fcoecaps_allowed = 0;
645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
646 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
647
648 static int t5_write_combine = 0;
649 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
650 0, "Use WC instead of UC for BAR2");
651
652 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
653 static int t4_doorbells_allowed = 0xf;
654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
655 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
656
657 static int t4_num_vis = 1;
658 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
659 "Number of VIs per port");
660
661 /*
662 * PCIe Relaxed Ordering.
663 * -1: driver should figure out a good value.
664 * 0: disable RO.
665 * 1: enable RO.
666 * 2: leave RO alone.
667 */
668 static int pcie_relaxed_ordering = -1;
669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
670 &pcie_relaxed_ordering, 0,
671 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
672
673 static int t4_panic_on_fatal_err = 0;
674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
675 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
676
677 static int t4_reset_on_fatal_err = 0;
678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
679 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
680
681 static int t4_reset_method = 1;
682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
683 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
684
685 static int t4_clock_gate_on_suspend = 0;
686 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
687 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
688
689 static int t4_tx_vm_wr = 0;
690 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
691 "Use VM work requests to transmit packets.");
692
693 /*
694 * Set to non-zero to enable the attack filter. A packet that matches any of
695 * these conditions will get dropped on ingress:
696 * 1) IP && source address == destination address.
697 * 2) TCP/IP && source address is not a unicast address.
698 * 3) TCP/IP && destination address is not a unicast address.
699 * 4) IP && source address is loopback (127.x.y.z).
700 * 5) IP && destination address is loopback (127.x.y.z).
701 * 6) IPv6 && source address == destination address.
702 * 7) IPv6 && source address is not a unicast address.
703 * 8) IPv6 && source address is loopback (::1/128).
704 * 9) IPv6 && destination address is loopback (::1/128).
705 * 10) IPv6 && source address is unspecified (::/128).
706 * 11) IPv6 && destination address is unspecified (::/128).
707 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
708 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
709 */
710 static int t4_attack_filter = 0;
711 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
712 &t4_attack_filter, 0, "Drop suspicious traffic");
713
714 static int t4_drop_ip_fragments = 0;
715 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
716 &t4_drop_ip_fragments, 0, "Drop IP fragments");
717
718 static int t4_drop_pkts_with_l2_errors = 1;
719 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
720 &t4_drop_pkts_with_l2_errors, 0,
721 "Drop all frames with Layer 2 length or checksum errors");
722
723 static int t4_drop_pkts_with_l3_errors = 0;
724 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
725 &t4_drop_pkts_with_l3_errors, 0,
726 "Drop all frames with IP version, length, or checksum errors");
727
728 static int t4_drop_pkts_with_l4_errors = 0;
729 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
730 &t4_drop_pkts_with_l4_errors, 0,
731 "Drop all frames with Layer 4 length, checksum, or other errors");
732
733 #ifdef TCP_OFFLOAD
734 /*
735 * TOE tunables.
736 */
737 static int t4_cop_managed_offloading = 0;
738 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
739 &t4_cop_managed_offloading, 0,
740 "COP (Connection Offload Policy) controls all TOE offload");
741 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
742 #endif
743
744 #ifdef KERN_TLS
745 /*
746 * This enables KERN_TLS for all adapters if set.
747 */
748 static int t4_kern_tls = 0;
749 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
750 "Enable KERN_TLS mode for T6 adapters");
751
752 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
753 "cxgbe(4) KERN_TLS parameters");
754
755 static int t4_tls_inline_keys = 0;
756 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
757 &t4_tls_inline_keys, 0,
758 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
759 "in card memory.");
760
761 static int t4_tls_combo_wrs = 0;
762 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
763 0, "Attempt to combine TCB field updates with TLS record work requests.");
764
765 static int t4_tls_short_records = 1;
766 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN,
767 &t4_tls_short_records, 0, "Use cipher-only mode for short records.");
768
769 static int t4_tls_partial_ghash = 1;
770 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN,
771 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records.");
772 #endif
773
774 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
775 static int vi_mac_funcs[] = {
776 FW_VI_FUNC_ETH,
777 FW_VI_FUNC_OFLD,
778 FW_VI_FUNC_IWARP,
779 FW_VI_FUNC_OPENISCSI,
780 FW_VI_FUNC_OPENFCOE,
781 FW_VI_FUNC_FOISCSI,
782 FW_VI_FUNC_FOFCOE,
783 };
784
785 struct intrs_and_queues {
786 uint16_t intr_type; /* INTx, MSI, or MSI-X */
787 uint16_t num_vis; /* number of VIs for each port */
788 uint16_t nirq; /* Total # of vectors */
789 uint16_t ntxq; /* # of NIC txq's for each port */
790 uint16_t nrxq; /* # of NIC rxq's for each port */
791 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
792 uint16_t nofldrxq; /* # of TOE rxq's for each port */
793 uint16_t nnmtxq; /* # of netmap txq's */
794 uint16_t nnmrxq; /* # of netmap rxq's */
795
796 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
797 uint16_t ntxq_vi; /* # of NIC txq's */
798 uint16_t nrxq_vi; /* # of NIC rxq's */
799 uint16_t nofldtxq_vi; /* # of TOE txq's */
800 uint16_t nofldrxq_vi; /* # of TOE rxq's */
801 uint16_t nnmtxq_vi; /* # of netmap txq's */
802 uint16_t nnmrxq_vi; /* # of netmap rxq's */
803 };
804
805 static void setup_memwin(struct adapter *);
806 static void position_memwin(struct adapter *, int, uint32_t);
807 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
808 static int fwmtype_to_hwmtype(int);
809 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
810 uint32_t *);
811 static int fixup_devlog_params(struct adapter *);
812 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
813 static int contact_firmware(struct adapter *);
814 static int partition_resources(struct adapter *);
815 static int get_params__pre_init(struct adapter *);
816 static int set_params__pre_init(struct adapter *);
817 static int get_params__post_init(struct adapter *);
818 static int set_params__post_init(struct adapter *);
819 static void t4_set_desc(struct adapter *);
820 static bool fixed_ifmedia(struct port_info *);
821 static void build_medialist(struct port_info *);
822 static void init_link_config(struct port_info *);
823 static int fixup_link_config(struct port_info *);
824 static int apply_link_config(struct port_info *);
825 static int cxgbe_init_synchronized(struct vi_info *);
826 static int cxgbe_uninit_synchronized(struct vi_info *);
827 static int adapter_full_init(struct adapter *);
828 static void adapter_full_uninit(struct adapter *);
829 static int vi_full_init(struct vi_info *);
830 static void vi_full_uninit(struct vi_info *);
831 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
832 static void quiesce_txq(struct sge_txq *);
833 static void quiesce_wrq(struct sge_wrq *);
834 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
835 static void quiesce_vi(struct vi_info *);
836 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
837 driver_intr_t *, void *, char *);
838 static int t4_free_irq(struct adapter *, struct irq *);
839 static void t4_init_atid_table(struct adapter *);
840 static void t4_free_atid_table(struct adapter *);
841 static void stop_atid_allocator(struct adapter *);
842 static void restart_atid_allocator(struct adapter *);
843 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
844 static void vi_refresh_stats(struct vi_info *);
845 static void cxgbe_refresh_stats(struct vi_info *);
846 static void cxgbe_tick(void *);
847 static void vi_tick(void *);
848 static void cxgbe_sysctls(struct port_info *);
849 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
850 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
851 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
852 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
853 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
854 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
855 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
856 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
857 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
858 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
859 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
860 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
861 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
862 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
863 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
864 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
865 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS);
866 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
867 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
868 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
869 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
870 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
871 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
872 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS);
873 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS);
874 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
875 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
876 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
877 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
878 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS);
879 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
880 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
881 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
882 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
883 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
884 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
885 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
886 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
887 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
888 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
889 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
890 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS);
891 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
892 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
893 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
894 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
895 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
896 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
897 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
898 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
899 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
900 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
901 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
902 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
903 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
904 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
905 #ifdef TCP_OFFLOAD
906 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
907 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
908 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
909 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
910 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
911 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
912 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
913 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
914 #endif
915 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *);
916 static int load_fw(struct adapter *, struct t4_data *);
917 static int load_cfg(struct adapter *, struct t4_data *);
918 static int load_boot(struct adapter *, struct t4_bootrom *);
919 static int load_bootcfg(struct adapter *, struct t4_data *);
920 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
921 static void free_offload_policy(struct t4_offload_policy *);
922 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
923 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
924 static int read_i2c(struct adapter *, struct t4_i2c_data *);
925 static int clear_stats(struct adapter *, u_int);
926 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
927 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
928 static inline int stop_adapter(struct adapter *);
929 static inline void set_adapter_hwstatus(struct adapter *, const bool);
930 static int stop_lld(struct adapter *);
931 static inline int restart_adapter(struct adapter *);
932 static int restart_lld(struct adapter *);
933 #ifdef TCP_OFFLOAD
934 static int deactivate_all_uld(struct adapter *);
935 static void stop_all_uld(struct adapter *);
936 static void restart_all_uld(struct adapter *);
937 #endif
938 #ifdef KERN_TLS
939 static int ktls_capability(struct adapter *, bool);
940 #endif
941 static int mod_event(module_t, int, void *);
942 static int notify_siblings(device_t, int);
943 static uint64_t vi_get_counter(if_t, ift_counter);
944 static uint64_t cxgbe_get_counter(if_t, ift_counter);
945 static void enable_vxlan_rx(struct adapter *);
946 static void reset_adapter_task(void *, int);
947 static void fatal_error_task(void *, int);
948 static void dump_devlog(struct adapter *);
949 static void dump_cim_regs(struct adapter *);
950 static void dump_cimla(struct adapter *);
951
952 struct {
953 uint16_t device;
954 char *desc;
955 } t4_pciids[] = {
956 {0xa000, "Chelsio Terminator 4 FPGA"},
957 {0x4400, "Chelsio T440-dbg"},
958 {0x4401, "Chelsio T420-CR"},
959 {0x4402, "Chelsio T422-CR"},
960 {0x4403, "Chelsio T440-CR"},
961 {0x4404, "Chelsio T420-BCH"},
962 {0x4405, "Chelsio T440-BCH"},
963 {0x4406, "Chelsio T440-CH"},
964 {0x4407, "Chelsio T420-SO"},
965 {0x4408, "Chelsio T420-CX"},
966 {0x4409, "Chelsio T420-BT"},
967 {0x440a, "Chelsio T404-BT"},
968 {0x440e, "Chelsio T440-LP-CR"},
969 }, t5_pciids[] = {
970 {0xb000, "Chelsio Terminator 5 FPGA"},
971 {0x5400, "Chelsio T580-dbg"},
972 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
973 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
974 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
975 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
976 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
977 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
978 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
979 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
980 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
981 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
982 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
983 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
984 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
985 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
986 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
987 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
988 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
989
990 /* Custom */
991 {0x5483, "Custom T540-CR"},
992 {0x5484, "Custom T540-BT"},
993 }, t6_pciids[] = {
994 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
995 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
996 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
997 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
998 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
999 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
1000 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
1001 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
1002 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
1003 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
1004 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
1005 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
1006 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
1007 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
1008 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
1009 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
1010
1011 /* Custom */
1012 {0x6480, "Custom T6225-CR"},
1013 {0x6481, "Custom T62100-CR"},
1014 {0x6482, "Custom T6225-CR"},
1015 {0x6483, "Custom T62100-CR"},
1016 {0x6484, "Custom T64100-CR"},
1017 {0x6485, "Custom T6240-SO"},
1018 {0x6486, "Custom T6225-SO-CR"},
1019 {0x6487, "Custom T6225-CR"},
1020 }, t7_pciids[] = {
1021 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */
1022 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */
1023 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */
1024 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */
1025 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */
1026 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */
1027 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */
1028 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */
1029 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */
1030 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */
1031 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */
1032 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */
1033 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */
1034 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */
1035 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */
1036 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */
1037 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */
1038 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */
1039 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */
1040
1041 /* Custom */
1042 {0x7480, "Custom T7"},
1043 };
1044
1045 #ifdef TCP_OFFLOAD
1046 /*
1047 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
1048 * be exactly the same for both rxq and ofld_rxq.
1049 */
1050 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
1051 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
1052 #endif
1053 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
1054
1055 static int
t4_probe(device_t dev)1056 t4_probe(device_t dev)
1057 {
1058 int i;
1059 uint16_t v = pci_get_vendor(dev);
1060 uint16_t d = pci_get_device(dev);
1061 uint8_t f = pci_get_function(dev);
1062
1063 if (v != PCI_VENDOR_ID_CHELSIO)
1064 return (ENXIO);
1065
1066 /* Attach only to PF0 of the FPGA */
1067 if (d == 0xa000 && f != 0)
1068 return (ENXIO);
1069
1070 for (i = 0; i < nitems(t4_pciids); i++) {
1071 if (d == t4_pciids[i].device) {
1072 device_set_desc(dev, t4_pciids[i].desc);
1073 return (BUS_PROBE_DEFAULT);
1074 }
1075 }
1076
1077 return (ENXIO);
1078 }
1079
1080 static int
t5_probe(device_t dev)1081 t5_probe(device_t dev)
1082 {
1083 int i;
1084 uint16_t v = pci_get_vendor(dev);
1085 uint16_t d = pci_get_device(dev);
1086 uint8_t f = pci_get_function(dev);
1087
1088 if (v != PCI_VENDOR_ID_CHELSIO)
1089 return (ENXIO);
1090
1091 /* Attach only to PF0 of the FPGA */
1092 if (d == 0xb000 && f != 0)
1093 return (ENXIO);
1094
1095 for (i = 0; i < nitems(t5_pciids); i++) {
1096 if (d == t5_pciids[i].device) {
1097 device_set_desc(dev, t5_pciids[i].desc);
1098 return (BUS_PROBE_DEFAULT);
1099 }
1100 }
1101
1102 return (ENXIO);
1103 }
1104
1105 static int
t6_probe(device_t dev)1106 t6_probe(device_t dev)
1107 {
1108 int i;
1109 uint16_t v = pci_get_vendor(dev);
1110 uint16_t d = pci_get_device(dev);
1111
1112 if (v != PCI_VENDOR_ID_CHELSIO)
1113 return (ENXIO);
1114
1115 for (i = 0; i < nitems(t6_pciids); i++) {
1116 if (d == t6_pciids[i].device) {
1117 device_set_desc(dev, t6_pciids[i].desc);
1118 return (BUS_PROBE_DEFAULT);
1119 }
1120 }
1121
1122 return (ENXIO);
1123 }
1124
1125 static int
ch_probe(device_t dev)1126 ch_probe(device_t dev)
1127 {
1128 int i;
1129 uint16_t v = pci_get_vendor(dev);
1130 uint16_t d = pci_get_device(dev);
1131 uint8_t f = pci_get_function(dev);
1132
1133 if (v != PCI_VENDOR_ID_CHELSIO)
1134 return (ENXIO);
1135
1136 /* Attach only to PF0 of the FPGA */
1137 if (d == 0xd000 && f != 0)
1138 return (ENXIO);
1139
1140 for (i = 0; i < nitems(t7_pciids); i++) {
1141 if (d == t7_pciids[i].device) {
1142 device_set_desc(dev, t7_pciids[i].desc);
1143 return (BUS_PROBE_DEFAULT);
1144 }
1145 }
1146
1147 return (ENXIO);
1148 }
1149
1150 static void
t5_attribute_workaround(device_t dev)1151 t5_attribute_workaround(device_t dev)
1152 {
1153 device_t root_port;
1154 uint32_t v;
1155
1156 /*
1157 * The T5 chips do not properly echo the No Snoop and Relaxed
1158 * Ordering attributes when replying to a TLP from a Root
1159 * Port. As a workaround, find the parent Root Port and
1160 * disable No Snoop and Relaxed Ordering. Note that this
1161 * affects all devices under this root port.
1162 */
1163 root_port = pci_find_pcie_root_port(dev);
1164 if (root_port == NULL) {
1165 device_printf(dev, "Unable to find parent root port\n");
1166 return;
1167 }
1168
1169 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1170 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1171 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1172 0)
1173 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1174 device_get_nameunit(root_port));
1175 }
1176
1177 static const struct devnames devnames[] = {
1178 {
1179 .nexus_name = "t4nex",
1180 .ifnet_name = "cxgbe",
1181 .vi_ifnet_name = "vcxgbe",
1182 .pf03_drv_name = "t4iov",
1183 .vf_nexus_name = "t4vf",
1184 .vf_ifnet_name = "cxgbev"
1185 }, {
1186 .nexus_name = "t5nex",
1187 .ifnet_name = "cxl",
1188 .vi_ifnet_name = "vcxl",
1189 .pf03_drv_name = "t5iov",
1190 .vf_nexus_name = "t5vf",
1191 .vf_ifnet_name = "cxlv"
1192 }, {
1193 .nexus_name = "t6nex",
1194 .ifnet_name = "cc",
1195 .vi_ifnet_name = "vcc",
1196 .pf03_drv_name = "t6iov",
1197 .vf_nexus_name = "t6vf",
1198 .vf_ifnet_name = "ccv"
1199 }, {
1200 .nexus_name = "chnex",
1201 .ifnet_name = "che",
1202 .vi_ifnet_name = "vche",
1203 .pf03_drv_name = "chiov",
1204 .vf_nexus_name = "chvf",
1205 .vf_ifnet_name = "chev"
1206 }
1207 };
1208
1209 void
t4_init_devnames(struct adapter * sc)1210 t4_init_devnames(struct adapter *sc)
1211 {
1212 int id;
1213
1214 id = chip_id(sc);
1215 if (id < CHELSIO_T4) {
1216 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1217 sc->names = NULL;
1218 } else if (id - CHELSIO_T4 < nitems(devnames))
1219 sc->names = &devnames[id - CHELSIO_T4];
1220 else
1221 sc->names = &devnames[nitems(devnames) - 1];
1222 }
1223
1224 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1225 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1226 {
1227 const char *parent, *name;
1228 long value;
1229 int line, unit;
1230
1231 line = 0;
1232 parent = device_get_nameunit(sc->dev);
1233 name = sc->names->ifnet_name;
1234 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1235 if (resource_long_value(name, unit, "port", &value) == 0 &&
1236 value == pi->port_id)
1237 return (unit);
1238 }
1239 return (-1);
1240 }
1241
1242 static void
t4_calibration(void * arg)1243 t4_calibration(void *arg)
1244 {
1245 struct adapter *sc;
1246 struct clock_sync *cur, *nex;
1247 uint64_t hw;
1248 sbintime_t sbt;
1249 int next_up;
1250
1251 sc = (struct adapter *)arg;
1252
1253 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1254 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1255 sbt = sbinuptime();
1256
1257 cur = &sc->cal_info[sc->cal_current];
1258 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1259 nex = &sc->cal_info[next_up];
1260 if (__predict_false(sc->cal_count == 0)) {
1261 /* First time in, just get the values in */
1262 cur->hw_cur = hw;
1263 cur->sbt_cur = sbt;
1264 sc->cal_count++;
1265 goto done;
1266 }
1267
1268 if (cur->hw_cur == hw) {
1269 /* The clock is not advancing? */
1270 sc->cal_count = 0;
1271 atomic_store_rel_int(&cur->gen, 0);
1272 goto done;
1273 }
1274
1275 seqc_write_begin(&nex->gen);
1276 nex->hw_prev = cur->hw_cur;
1277 nex->sbt_prev = cur->sbt_cur;
1278 nex->hw_cur = hw;
1279 nex->sbt_cur = sbt;
1280 seqc_write_end(&nex->gen);
1281 sc->cal_current = next_up;
1282 done:
1283 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1284 sc, C_DIRECT_EXEC);
1285 }
1286
1287 static void
t4_calibration_start(struct adapter * sc)1288 t4_calibration_start(struct adapter *sc)
1289 {
1290 /*
1291 * Here if we have not done a calibration
1292 * then do so otherwise start the appropriate
1293 * timer.
1294 */
1295 int i;
1296
1297 for (i = 0; i < CNT_CAL_INFO; i++) {
1298 sc->cal_info[i].gen = 0;
1299 }
1300 sc->cal_current = 0;
1301 sc->cal_count = 0;
1302 sc->cal_gen = 0;
1303 t4_calibration(sc);
1304 }
1305
1306 static int
t4_attach(device_t dev)1307 t4_attach(device_t dev)
1308 {
1309 struct adapter *sc;
1310 int rc = 0, i, j, rqidx, tqidx, nports;
1311 struct make_dev_args mda;
1312 struct intrs_and_queues iaq;
1313 struct sge *s;
1314 uint32_t *buf;
1315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1316 int ofld_tqidx;
1317 #endif
1318 #ifdef TCP_OFFLOAD
1319 int ofld_rqidx;
1320 #endif
1321 #ifdef DEV_NETMAP
1322 int nm_rqidx, nm_tqidx;
1323 #endif
1324 int num_vis;
1325
1326 sc = device_get_softc(dev);
1327 sc->dev = dev;
1328 sysctl_ctx_init(&sc->ctx);
1329 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1330
1331 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1332 t5_attribute_workaround(dev);
1333 pci_enable_busmaster(dev);
1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1335 uint32_t v;
1336
1337 pci_set_max_read_req(dev, 4096);
1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1340 if (pcie_relaxed_ordering == 0 &&
1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1344 } else if (pcie_relaxed_ordering == 1 &&
1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1348 }
1349 }
1350
1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1353 sc->traceq = -1;
1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1356 device_get_nameunit(dev));
1357
1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1359 device_get_nameunit(dev));
1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1361 t4_add_adapter(sc);
1362
1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1364 TAILQ_INIT(&sc->sfl);
1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1366
1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1368
1369 sc->policy = NULL;
1370 rw_init(&sc->policy_lock, "connection offload policy");
1371
1372 callout_init(&sc->ktls_tick, 1);
1373
1374 callout_init(&sc->cal_callout, 1);
1375
1376 refcount_init(&sc->vxlan_refcount, 0);
1377
1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1380
1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1387
1388 rc = t4_map_bars_0_and_4(sc);
1389 if (rc != 0)
1390 goto done; /* error message displayed already */
1391
1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1393 memset(sc->port_map, 0xff, sizeof(sc->port_map));
1394
1395 /* Prepare the adapter for operation. */
1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1397 rc = -t4_prep_adapter(sc, buf);
1398 free(buf, M_CXGBE);
1399 if (rc != 0) {
1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1401 goto done;
1402 }
1403
1404 /*
1405 * This is the real PF# to which we're attaching. Works from within PCI
1406 * passthrough environments too, where pci_get_function() could return a
1407 * different PF# depending on the passthrough configuration. We need to
1408 * use the real PF# in all our communication with the firmware.
1409 */
1410 j = t4_read_reg(sc, A_PL_WHOAMI);
1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1412 sc->mbox = sc->pf;
1413
1414 t4_init_devnames(sc);
1415 if (sc->names == NULL) {
1416 rc = ENOTSUP;
1417 goto done; /* error message displayed already */
1418 }
1419
1420 /*
1421 * Do this really early, with the memory windows set up even before the
1422 * character device. The userland tool's register i/o and mem read
1423 * will work even in "recovery mode".
1424 */
1425 setup_memwin(sc);
1426 if (t4_init_devlog_ncores_params(sc, 0) == 0)
1427 fixup_devlog_params(sc);
1428 make_dev_args_init(&mda);
1429 mda.mda_devsw = &t4_cdevsw;
1430 mda.mda_uid = UID_ROOT;
1431 mda.mda_gid = GID_WHEEL;
1432 mda.mda_mode = 0600;
1433 mda.mda_si_drv1 = sc;
1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1435 if (rc != 0)
1436 device_printf(dev, "failed to create nexus char device: %d.\n",
1437 rc);
1438
1439 /* Go no further if recovery mode has been requested. */
1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1441 device_printf(dev, "recovery mode.\n");
1442 goto done;
1443 }
1444
1445 #if defined(__i386__)
1446 if ((cpu_feature & CPUID_CX8) == 0) {
1447 device_printf(dev, "64 bit atomics not available.\n");
1448 rc = ENOTSUP;
1449 goto done;
1450 }
1451 #endif
1452
1453 /* Contact the firmware and try to become the master driver. */
1454 rc = contact_firmware(sc);
1455 if (rc != 0)
1456 goto done; /* error message displayed already */
1457 MPASS(sc->flags & FW_OK);
1458
1459 rc = get_params__pre_init(sc);
1460 if (rc != 0)
1461 goto done; /* error message displayed already */
1462
1463 if (sc->flags & MASTER_PF) {
1464 rc = partition_resources(sc);
1465 if (rc != 0)
1466 goto done; /* error message displayed already */
1467 }
1468
1469 rc = get_params__post_init(sc);
1470 if (rc != 0)
1471 goto done; /* error message displayed already */
1472
1473 rc = set_params__post_init(sc);
1474 if (rc != 0)
1475 goto done; /* error message displayed already */
1476
1477 rc = t4_map_bar_2(sc);
1478 if (rc != 0)
1479 goto done; /* error message displayed already */
1480
1481 rc = t4_adj_doorbells(sc);
1482 if (rc != 0)
1483 goto done; /* error message displayed already */
1484
1485 rc = t4_create_dma_tag(sc);
1486 if (rc != 0)
1487 goto done; /* error message displayed already */
1488
1489 /*
1490 * First pass over all the ports - allocate VIs and initialize some
1491 * basic parameters like mac address, port type, etc.
1492 */
1493 for_each_port(sc, i) {
1494 struct port_info *pi;
1495
1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1497 sc->port[i] = pi;
1498
1499 /* These must be set before t4_port_init */
1500 pi->adapter = sc;
1501 pi->port_id = i;
1502 /*
1503 * XXX: vi[0] is special so we can't delay this allocation until
1504 * pi->nvi's final value is known.
1505 */
1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1507 M_ZERO | M_WAITOK);
1508
1509 /*
1510 * Allocate the "main" VI and initialize parameters
1511 * like mac addr.
1512 */
1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1514 if (rc != 0) {
1515 device_printf(dev, "unable to initialize port %d: %d\n",
1516 i, rc);
1517 free(pi->vi, M_CXGBE);
1518 free(pi, M_CXGBE);
1519 sc->port[i] = NULL;
1520 goto done;
1521 }
1522
1523 if (is_bt(pi->port_type))
1524 setbit(&sc->bt_map, pi->hw_port);
1525 else
1526 MPASS(!isset(&sc->bt_map, pi->hw_port));
1527
1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1529 device_get_nameunit(dev), i);
1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1531 for (j = 0; j < sc->params.tp.lb_nchan; j++)
1532 sc->chan_map[pi->tx_chan + j] = i;
1533 sc->port_map[pi->hw_port] = i;
1534
1535 /*
1536 * The MPS counter for FCS errors doesn't work correctly on the
1537 * T6 so we use the MAC counter here. Which MAC is in use
1538 * depends on the link settings which will be known when the
1539 * link comes up.
1540 */
1541 if (is_t6(sc))
1542 pi->fcs_reg = -1;
1543 else
1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L;
1545 pi->fcs_base = 0;
1546
1547 /* All VIs on this port share this media. */
1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1549 cxgbe_media_status);
1550
1551 PORT_LOCK(pi);
1552 init_link_config(pi);
1553 fixup_link_config(pi);
1554 build_medialist(pi);
1555 if (fixed_ifmedia(pi))
1556 pi->flags |= FIXED_IFMEDIA;
1557 PORT_UNLOCK(pi);
1558
1559 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1560 t4_ifnet_unit(sc, pi));
1561 if (pi->dev == NULL) {
1562 device_printf(dev,
1563 "failed to add device for port %d.\n", i);
1564 rc = ENXIO;
1565 goto done;
1566 }
1567 pi->vi[0].dev = pi->dev;
1568 device_set_softc(pi->dev, pi);
1569 }
1570
1571 /*
1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1573 */
1574 nports = sc->params.nports;
1575 rc = cfg_itype_and_nqueues(sc, &iaq);
1576 if (rc != 0)
1577 goto done; /* error message displayed already */
1578
1579 num_vis = iaq.num_vis;
1580 sc->intr_type = iaq.intr_type;
1581 sc->intr_count = iaq.nirq;
1582
1583 s = &sc->sge;
1584 s->nctrlq = max(sc->params.nports, sc->params.ncores);
1585 s->nrxq = nports * iaq.nrxq;
1586 s->ntxq = nports * iaq.ntxq;
1587 if (num_vis > 1) {
1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1590 }
1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1592 s->neq += nports; /* ctrl queues: 1 per port */
1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 if (is_offload(sc) || is_ethoffload(sc)) {
1596 s->nofldtxq = nports * iaq.nofldtxq;
1597 if (num_vis > 1)
1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1599 s->neq += s->nofldtxq;
1600
1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1602 M_CXGBE, M_ZERO | M_WAITOK);
1603 }
1604 #endif
1605 #ifdef TCP_OFFLOAD
1606 if (is_offload(sc)) {
1607 s->nofldrxq = nports * iaq.nofldrxq;
1608 if (num_vis > 1)
1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1610 s->neq += s->nofldrxq; /* free list */
1611 s->niq += s->nofldrxq;
1612
1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1614 M_CXGBE, M_ZERO | M_WAITOK);
1615 }
1616 #endif
1617 #ifdef DEV_NETMAP
1618 s->nnmrxq = 0;
1619 s->nnmtxq = 0;
1620 if (t4_native_netmap & NN_MAIN_VI) {
1621 s->nnmrxq += nports * iaq.nnmrxq;
1622 s->nnmtxq += nports * iaq.nnmtxq;
1623 }
1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1627 }
1628 s->neq += s->nnmtxq + s->nnmrxq;
1629 s->niq += s->nnmrxq;
1630
1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1632 M_CXGBE, M_ZERO | M_WAITOK);
1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1634 M_CXGBE, M_ZERO | M_WAITOK);
1635 #endif
1636 MPASS(s->niq <= s->iqmap_sz);
1637 MPASS(s->neq <= s->eqmap_sz);
1638
1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE,
1640 M_ZERO | M_WAITOK);
1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1642 M_ZERO | M_WAITOK);
1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1644 M_ZERO | M_WAITOK);
1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1646 M_ZERO | M_WAITOK);
1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1648 M_ZERO | M_WAITOK);
1649
1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1651 M_ZERO | M_WAITOK);
1652
1653 t4_init_l2t(sc, M_WAITOK);
1654 t4_init_smt(sc, M_WAITOK);
1655 t4_init_tx_sched(sc);
1656 t4_init_atid_table(sc);
1657 #ifdef RATELIMIT
1658 t4_init_etid_table(sc);
1659 #endif
1660 #ifdef INET6
1661 t4_init_clip_table(sc);
1662 #endif
1663 if (sc->vres.key.size != 0)
1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1666 t4_init_tpt(sc);
1667
1668 /*
1669 * Second pass over the ports. This time we know the number of rx and
1670 * tx queues that each port should get.
1671 */
1672 rqidx = tqidx = 0;
1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1674 ofld_tqidx = 0;
1675 #endif
1676 #ifdef TCP_OFFLOAD
1677 ofld_rqidx = 0;
1678 #endif
1679 #ifdef DEV_NETMAP
1680 nm_rqidx = nm_tqidx = 0;
1681 #endif
1682 for_each_port(sc, i) {
1683 struct port_info *pi = sc->port[i];
1684 struct vi_info *vi;
1685
1686 if (pi == NULL)
1687 continue;
1688
1689 pi->nvi = num_vis;
1690 for_each_vi(pi, j, vi) {
1691 vi->pi = pi;
1692 vi->adapter = sc;
1693 vi->first_intr = -1;
1694 vi->qsize_rxq = t4_qsize_rxq;
1695 vi->qsize_txq = t4_qsize_txq;
1696
1697 vi->first_rxq = rqidx;
1698 vi->first_txq = tqidx;
1699 vi->tmr_idx = t4_tmr_idx;
1700 vi->pktc_idx = t4_pktc_idx;
1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1703
1704 rqidx += vi->nrxq;
1705 tqidx += vi->ntxq;
1706
1707 if (j == 0 && vi->ntxq > 1)
1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1709 else
1710 vi->rsrv_noflowq = 0;
1711
1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1713 vi->first_ofld_txq = ofld_tqidx;
1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1715 ofld_tqidx += vi->nofldtxq;
1716 #endif
1717 #ifdef TCP_OFFLOAD
1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1720 vi->first_ofld_rxq = ofld_rqidx;
1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1722
1723 ofld_rqidx += vi->nofldrxq;
1724 #endif
1725 #ifdef DEV_NETMAP
1726 vi->first_nm_rxq = nm_rqidx;
1727 vi->first_nm_txq = nm_tqidx;
1728 if (j == 0) {
1729 vi->nnmrxq = iaq.nnmrxq;
1730 vi->nnmtxq = iaq.nnmtxq;
1731 } else {
1732 vi->nnmrxq = iaq.nnmrxq_vi;
1733 vi->nnmtxq = iaq.nnmtxq_vi;
1734 }
1735 nm_rqidx += vi->nnmrxq;
1736 nm_tqidx += vi->nnmtxq;
1737 #endif
1738 }
1739 }
1740
1741 rc = t4_setup_intr_handlers(sc);
1742 if (rc != 0) {
1743 device_printf(dev,
1744 "failed to setup interrupt handlers: %d\n", rc);
1745 goto done;
1746 }
1747
1748 bus_identify_children(dev);
1749
1750 /*
1751 * Ensure thread-safe mailbox access (in debug builds).
1752 *
1753 * So far this was the only thread accessing the mailbox but various
1754 * ifnets and sysctls are about to be created and their handlers/ioctls
1755 * will access the mailbox from different threads.
1756 */
1757 sc->flags |= CHK_MBOX_ACCESS;
1758
1759 bus_attach_children(dev);
1760 t4_calibration_start(sc);
1761
1762 device_printf(dev,
1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1768
1769 t4_set_desc(sc);
1770
1771 notify_siblings(dev, 0);
1772
1773 done:
1774 if (rc != 0 && sc->cdev) {
1775 /* cdev was created and so cxgbetool works; recover that way. */
1776 device_printf(dev,
1777 "error during attach, adapter is now in recovery mode.\n");
1778 rc = 0;
1779 }
1780
1781 if (rc != 0)
1782 t4_detach_common(dev);
1783 else
1784 t4_sysctls(sc);
1785
1786 return (rc);
1787 }
1788
1789 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1791 {
1792 struct adapter *sc;
1793 struct port_info *pi;
1794 int i;
1795
1796 sc = device_get_softc(bus);
1797 for_each_port(sc, i) {
1798 pi = sc->port[i];
1799 if (pi != NULL && pi->dev == dev) {
1800 sbuf_printf(sb, "port=%d", pi->port_id);
1801 break;
1802 }
1803 }
1804 return (0);
1805 }
1806
1807 static int
t4_ready(device_t dev)1808 t4_ready(device_t dev)
1809 {
1810 struct adapter *sc;
1811
1812 sc = device_get_softc(dev);
1813 if (sc->flags & FW_OK)
1814 return (0);
1815 return (ENXIO);
1816 }
1817
1818 static int
t4_read_port_device(device_t dev,int port,device_t * child)1819 t4_read_port_device(device_t dev, int port, device_t *child)
1820 {
1821 struct adapter *sc;
1822 struct port_info *pi;
1823
1824 sc = device_get_softc(dev);
1825 if (port < 0 || port >= MAX_NPORTS)
1826 return (EINVAL);
1827 pi = sc->port[port];
1828 if (pi == NULL || pi->dev == NULL)
1829 return (ENXIO);
1830 *child = pi->dev;
1831 return (0);
1832 }
1833
1834 static int
notify_siblings(device_t dev,int detaching)1835 notify_siblings(device_t dev, int detaching)
1836 {
1837 device_t sibling;
1838 int error, i;
1839
1840 error = 0;
1841 for (i = 0; i < PCI_FUNCMAX; i++) {
1842 if (i == pci_get_function(dev))
1843 continue;
1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1845 pci_get_slot(dev), i);
1846 if (sibling == NULL || !device_is_attached(sibling))
1847 continue;
1848 if (detaching)
1849 error = T4_DETACH_CHILD(sibling);
1850 else
1851 (void)T4_ATTACH_CHILD(sibling);
1852 if (error)
1853 break;
1854 }
1855 return (error);
1856 }
1857
1858 /*
1859 * Idempotent
1860 */
1861 static int
t4_detach(device_t dev)1862 t4_detach(device_t dev)
1863 {
1864 int rc;
1865
1866 rc = notify_siblings(dev, 1);
1867 if (rc) {
1868 device_printf(dev,
1869 "failed to detach sibling devices: %d\n", rc);
1870 return (rc);
1871 }
1872
1873 return (t4_detach_common(dev));
1874 }
1875
1876 int
t4_detach_common(device_t dev)1877 t4_detach_common(device_t dev)
1878 {
1879 struct adapter *sc;
1880 struct port_info *pi;
1881 int i, rc;
1882
1883 sc = device_get_softc(dev);
1884
1885 #ifdef TCP_OFFLOAD
1886 rc = deactivate_all_uld(sc);
1887 if (rc) {
1888 device_printf(dev,
1889 "failed to detach upper layer drivers: %d\n", rc);
1890 return (rc);
1891 }
1892 #endif
1893
1894 if (sc->cdev) {
1895 destroy_dev(sc->cdev);
1896 sc->cdev = NULL;
1897 }
1898
1899 sx_xlock(&t4_list_lock);
1900 SLIST_REMOVE(&t4_list, sc, adapter, link);
1901 sx_xunlock(&t4_list_lock);
1902
1903 sc->flags &= ~CHK_MBOX_ACCESS;
1904 if (sc->flags & FULL_INIT_DONE) {
1905 if (!(sc->flags & IS_VF))
1906 t4_intr_disable(sc);
1907 }
1908
1909 if (device_is_attached(dev)) {
1910 rc = bus_detach_children(dev);
1911 if (rc) {
1912 device_printf(dev,
1913 "failed to detach child devices: %d\n", rc);
1914 return (rc);
1915 }
1916 }
1917
1918 for (i = 0; i < sc->intr_count; i++)
1919 t4_free_irq(sc, &sc->irq[i]);
1920
1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1922 t4_free_tx_sched(sc);
1923
1924 for (i = 0; i < MAX_NPORTS; i++) {
1925 pi = sc->port[i];
1926 if (pi) {
1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1928
1929 mtx_destroy(&pi->pi_lock);
1930 free(pi->vi, M_CXGBE);
1931 free(pi, M_CXGBE);
1932 }
1933 }
1934 callout_stop(&sc->cal_callout);
1935 callout_drain(&sc->cal_callout);
1936 device_delete_children(dev);
1937 sysctl_ctx_free(&sc->ctx);
1938 adapter_full_uninit(sc);
1939
1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1941 t4_fw_bye(sc, sc->mbox);
1942
1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1944 pci_release_msi(dev);
1945
1946 if (sc->regs_res)
1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1948 sc->regs_res);
1949
1950 if (sc->udbs_res)
1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1952 sc->udbs_res);
1953
1954 if (sc->msix_res)
1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1956 sc->msix_res);
1957
1958 if (sc->l2t)
1959 t4_free_l2t(sc);
1960 if (sc->smt)
1961 t4_free_smt(sc->smt);
1962 t4_free_atid_table(sc);
1963 #ifdef RATELIMIT
1964 t4_free_etid_table(sc);
1965 #endif
1966 if (sc->key_map)
1967 vmem_destroy(sc->key_map);
1968 t4_free_tpt(sc);
1969 #ifdef INET6
1970 t4_destroy_clip_table(sc);
1971 #endif
1972
1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1974 free(sc->sge.ofld_txq, M_CXGBE);
1975 #endif
1976 #ifdef TCP_OFFLOAD
1977 free(sc->sge.ofld_rxq, M_CXGBE);
1978 #endif
1979 #ifdef DEV_NETMAP
1980 free(sc->sge.nm_rxq, M_CXGBE);
1981 free(sc->sge.nm_txq, M_CXGBE);
1982 #endif
1983 free(sc->irq, M_CXGBE);
1984 free(sc->sge.rxq, M_CXGBE);
1985 free(sc->sge.txq, M_CXGBE);
1986 free(sc->sge.ctrlq, M_CXGBE);
1987 free(sc->sge.iqmap, M_CXGBE);
1988 free(sc->sge.eqmap, M_CXGBE);
1989 free(sc->tids.ftid_tab, M_CXGBE);
1990 free(sc->tids.hpftid_tab, M_CXGBE);
1991 free_hftid_hash(&sc->tids);
1992 free(sc->tids.tid_tab, M_CXGBE);
1993 t4_destroy_dma_tag(sc);
1994
1995 callout_drain(&sc->ktls_tick);
1996 callout_drain(&sc->sfl_callout);
1997 if (mtx_initialized(&sc->tids.ftid_lock)) {
1998 mtx_destroy(&sc->tids.ftid_lock);
1999 cv_destroy(&sc->tids.ftid_cv);
2000 }
2001 if (mtx_initialized(&sc->tids.atid_lock))
2002 mtx_destroy(&sc->tids.atid_lock);
2003 if (mtx_initialized(&sc->ifp_lock))
2004 mtx_destroy(&sc->ifp_lock);
2005
2006 if (rw_initialized(&sc->policy_lock)) {
2007 rw_destroy(&sc->policy_lock);
2008 #ifdef TCP_OFFLOAD
2009 if (sc->policy != NULL)
2010 free_offload_policy(sc->policy);
2011 #endif
2012 }
2013
2014 for (i = 0; i < NUM_MEMWIN; i++) {
2015 struct memwin *mw = &sc->memwin[i];
2016
2017 if (rw_initialized(&mw->mw_lock))
2018 rw_destroy(&mw->mw_lock);
2019 }
2020
2021 mtx_destroy(&sc->sfl_lock);
2022 mtx_destroy(&sc->reg_lock);
2023 mtx_destroy(&sc->sc_lock);
2024
2025 bzero(sc, sizeof(*sc));
2026
2027 return (0);
2028 }
2029
2030 static inline int
stop_adapter(struct adapter * sc)2031 stop_adapter(struct adapter *sc)
2032 {
2033 struct port_info *pi;
2034 int i;
2035
2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2038 __func__, curthread, sc->flags, sc->error_flags);
2039 return (EALREADY);
2040 }
2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2042 sc->flags, sc->error_flags);
2043 t4_shutdown_adapter(sc);
2044 for_each_port(sc, i) {
2045 pi = sc->port[i];
2046 if (pi == NULL)
2047 continue;
2048 PORT_LOCK(pi);
2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
2050 /*
2051 * t4_shutdown_adapter has already shut down all the
2052 * PHYs but it also disables interrupts and DMA so there
2053 * won't be a link interrupt. Update the state manually
2054 * if the link was up previously and inform the kernel.
2055 */
2056 pi->link_cfg.link_ok = false;
2057 t4_os_link_changed(pi);
2058 }
2059 PORT_UNLOCK(pi);
2060 }
2061
2062 return (0);
2063 }
2064
2065 static inline int
restart_adapter(struct adapter * sc)2066 restart_adapter(struct adapter *sc)
2067 {
2068 uint32_t val;
2069
2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2072 __func__, curthread, sc->flags, sc->error_flags);
2073 return (EALREADY);
2074 }
2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2076 sc->flags, sc->error_flags);
2077
2078 MPASS(hw_off_limits(sc));
2079 MPASS((sc->flags & FW_OK) == 0);
2080 MPASS((sc->flags & MASTER_PF) == 0);
2081 MPASS(sc->reset_thread == NULL);
2082
2083 /*
2084 * The adapter is supposed to be back on PCIE with its config space and
2085 * BARs restored to their state before reset. Register access via
2086 * t4_read_reg BAR0 should just work.
2087 */
2088 sc->reset_thread = curthread;
2089 val = t4_read_reg(sc, A_PL_WHOAMI);
2090 if (val == 0xffffffff || val == 0xeeeeeeee) {
2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
2092 sc->reset_thread = NULL;
2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
2094 return (ENXIO);
2095 }
2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
2097 atomic_add_int(&sc->incarnation, 1);
2098 atomic_add_int(&sc->num_resets, 1);
2099
2100 return (0);
2101 }
2102
2103 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)2104 set_adapter_hwstatus(struct adapter *sc, const bool usable)
2105 {
2106 if (usable) {
2107 /* Must be marked reusable by the designated thread. */
2108 ASSERT_SYNCHRONIZED_OP(sc);
2109 MPASS(sc->reset_thread == curthread);
2110 mtx_lock(&sc->reg_lock);
2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2112 mtx_unlock(&sc->reg_lock);
2113 } else {
2114 /* Mark the adapter totally off limits. */
2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2116 mtx_lock(&sc->reg_lock);
2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2118 mtx_unlock(&sc->reg_lock);
2119 sc->flags &= ~(FW_OK | MASTER_PF);
2120 sc->reset_thread = NULL;
2121 end_synchronized_op(sc, 0);
2122 }
2123 }
2124
2125 static int
stop_lld(struct adapter * sc)2126 stop_lld(struct adapter *sc)
2127 {
2128 struct port_info *pi;
2129 struct vi_info *vi;
2130 if_t ifp;
2131 struct sge_rxq *rxq;
2132 struct sge_txq *txq;
2133 struct sge_wrq *wrq;
2134 #ifdef TCP_OFFLOAD
2135 struct sge_ofld_rxq *ofld_rxq;
2136 #endif
2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2138 struct sge_ofld_txq *ofld_txq;
2139 #endif
2140 int rc, i, j, k;
2141
2142 /*
2143 * XXX: Can there be a synch_op in progress that will hang because
2144 * hardware has been stopped? We'll hang too and the solution will be
2145 * to use a version of begin_synch_op that wakes up existing synch_op
2146 * with errors. Maybe stop_adapter should do this wakeup?
2147 *
2148 * I don't think any synch_op could get stranded waiting for DMA or
2149 * interrupt so I think we're okay here. Remove this comment block
2150 * after testing.
2151 */
2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2153 if (rc != 0)
2154 return (ENXIO);
2155
2156 /* Quiesce all activity. */
2157 for_each_port(sc, i) {
2158 pi = sc->port[i];
2159 if (pi == NULL)
2160 continue;
2161 pi->vxlan_tcam_entry = false;
2162 for_each_vi(pi, j, vi) {
2163 vi->xact_addr_filt = -1;
2164 mtx_lock(&vi->tick_mtx);
2165 vi->flags |= VI_SKIP_STATS;
2166 mtx_unlock(&vi->tick_mtx);
2167 if (!(vi->flags & VI_INIT_DONE))
2168 continue;
2169
2170 ifp = vi->ifp;
2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2172 mtx_lock(&vi->tick_mtx);
2173 callout_stop(&vi->tick);
2174 mtx_unlock(&vi->tick_mtx);
2175 callout_drain(&vi->tick);
2176 }
2177
2178 /*
2179 * Note that the HW is not available.
2180 */
2181 for_each_txq(vi, k, txq) {
2182 TXQ_LOCK(txq);
2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2184 TXQ_UNLOCK(txq);
2185 }
2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2187 for_each_ofld_txq(vi, k, ofld_txq) {
2188 TXQ_LOCK(&ofld_txq->wrq);
2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2190 TXQ_UNLOCK(&ofld_txq->wrq);
2191 }
2192 #endif
2193 for_each_rxq(vi, k, rxq) {
2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2195 }
2196 #if defined(TCP_OFFLOAD)
2197 for_each_ofld_rxq(vi, k, ofld_rxq) {
2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2199 }
2200 #endif
2201
2202 quiesce_vi(vi);
2203 }
2204
2205 if (sc->flags & FULL_INIT_DONE) {
2206 /* Control queue */
2207 wrq = &sc->sge.ctrlq[i];
2208 TXQ_LOCK(wrq);
2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2210 TXQ_UNLOCK(wrq);
2211 quiesce_wrq(wrq);
2212 }
2213
2214 if (pi->flags & HAS_TRACEQ) {
2215 pi->flags &= ~HAS_TRACEQ;
2216 sc->traceq = -1;
2217 sc->tracer_valid = 0;
2218 sc->tracer_enabled = 0;
2219 }
2220 }
2221 if (sc->flags & FULL_INIT_DONE) {
2222 /* Firmware event queue */
2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2225 }
2226
2227 /* Stop calibration */
2228 callout_stop(&sc->cal_callout);
2229 callout_drain(&sc->cal_callout);
2230
2231 if (t4_clock_gate_on_suspend) {
2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2235 }
2236
2237 end_synchronized_op(sc, 0);
2238
2239 stop_atid_allocator(sc);
2240 t4_stop_l2t(sc);
2241
2242 return (rc);
2243 }
2244
2245 int
suspend_adapter(struct adapter * sc)2246 suspend_adapter(struct adapter *sc)
2247 {
2248 stop_adapter(sc);
2249 stop_lld(sc);
2250 #ifdef TCP_OFFLOAD
2251 stop_all_uld(sc);
2252 #endif
2253 set_adapter_hwstatus(sc, false);
2254
2255 return (0);
2256 }
2257
2258 static int
t4_suspend(device_t dev)2259 t4_suspend(device_t dev)
2260 {
2261 struct adapter *sc = device_get_softc(dev);
2262 int rc;
2263
2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2265 rc = suspend_adapter(sc);
2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2267
2268 return (rc);
2269 }
2270
2271 struct adapter_pre_reset_state {
2272 u_int flags;
2273 uint16_t nbmcaps;
2274 uint16_t linkcaps;
2275 uint16_t switchcaps;
2276 uint16_t nvmecaps;
2277 uint16_t niccaps;
2278 uint16_t toecaps;
2279 uint16_t rdmacaps;
2280 uint16_t cryptocaps;
2281 uint16_t iscsicaps;
2282 uint16_t fcoecaps;
2283
2284 u_int cfcsum;
2285 char cfg_file[32];
2286
2287 struct adapter_params params;
2288 struct t4_virt_res vres;
2289 struct tid_info tids;
2290 struct sge sge;
2291
2292 int rawf_base;
2293 int nrawf;
2294
2295 };
2296
2297 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2299 {
2300
2301 ASSERT_SYNCHRONIZED_OP(sc);
2302
2303 o->flags = sc->flags;
2304
2305 o->nbmcaps = sc->nbmcaps;
2306 o->linkcaps = sc->linkcaps;
2307 o->switchcaps = sc->switchcaps;
2308 o->nvmecaps = sc->nvmecaps;
2309 o->niccaps = sc->niccaps;
2310 o->toecaps = sc->toecaps;
2311 o->rdmacaps = sc->rdmacaps;
2312 o->cryptocaps = sc->cryptocaps;
2313 o->iscsicaps = sc->iscsicaps;
2314 o->fcoecaps = sc->fcoecaps;
2315
2316 o->cfcsum = sc->cfcsum;
2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2319
2320 o->params = sc->params;
2321 o->vres = sc->vres;
2322 o->tids = sc->tids;
2323 o->sge = sc->sge;
2324
2325 o->rawf_base = sc->rawf_base;
2326 o->nrawf = sc->nrawf;
2327 }
2328
2329 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2331 {
2332 int rc = 0;
2333
2334 ASSERT_SYNCHRONIZED_OP(sc);
2335
2336 /* Capabilities */
2337 #define COMPARE_CAPS(c) do { \
2338 if (o->c##caps != sc->c##caps) { \
2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2340 sc->c##caps); \
2341 rc = EINVAL; \
2342 } \
2343 } while (0)
2344 COMPARE_CAPS(nbm);
2345 COMPARE_CAPS(link);
2346 COMPARE_CAPS(switch);
2347 COMPARE_CAPS(nvme);
2348 COMPARE_CAPS(nic);
2349 COMPARE_CAPS(toe);
2350 COMPARE_CAPS(rdma);
2351 COMPARE_CAPS(crypto);
2352 COMPARE_CAPS(iscsi);
2353 COMPARE_CAPS(fcoe);
2354 #undef COMPARE_CAPS
2355
2356 /* Firmware config file */
2357 if (o->cfcsum != sc->cfcsum) {
2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2359 o->cfcsum, sc->cfg_file, sc->cfcsum);
2360 rc = EINVAL;
2361 }
2362
2363 #define COMPARE_PARAM(p, name) do { \
2364 if (o->p != sc->p) { \
2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2366 rc = EINVAL; \
2367 } \
2368 } while (0)
2369 COMPARE_PARAM(sge.iq_start, iq_start);
2370 COMPARE_PARAM(sge.eq_start, eq_start);
2371 COMPARE_PARAM(tids.ftid_base, ftid_base);
2372 COMPARE_PARAM(tids.ftid_end, ftid_end);
2373 COMPARE_PARAM(tids.nftids, nftids);
2374 COMPARE_PARAM(vres.l2t.start, l2t_start);
2375 COMPARE_PARAM(vres.l2t.size, l2t_size);
2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2378 COMPARE_PARAM(tids.tid_base, tid_base);
2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2381 COMPARE_PARAM(tids.nhpftids, nhpftids);
2382 COMPARE_PARAM(rawf_base, rawf_base);
2383 COMPARE_PARAM(nrawf, nrawf);
2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2389 COMPARE_PARAM(tids.ntids, ntids);
2390 COMPARE_PARAM(tids.etid_base, etid_base);
2391 COMPARE_PARAM(tids.etid_end, etid_end);
2392 COMPARE_PARAM(tids.netids, netids);
2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2394 COMPARE_PARAM(params.ethoffload, ethoffload);
2395 COMPARE_PARAM(tids.natids, natids);
2396 COMPARE_PARAM(tids.stid_base, stid_base);
2397 COMPARE_PARAM(vres.ddp.start, ddp_start);
2398 COMPARE_PARAM(vres.ddp.size, ddp_size);
2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2400 COMPARE_PARAM(vres.stag.start, stag_start);
2401 COMPARE_PARAM(vres.stag.size, stag_size);
2402 COMPARE_PARAM(vres.rq.start, rq_start);
2403 COMPARE_PARAM(vres.rq.size, rq_size);
2404 COMPARE_PARAM(vres.pbl.start, pbl_start);
2405 COMPARE_PARAM(vres.pbl.size, pbl_size);
2406 COMPARE_PARAM(vres.qp.start, qp_start);
2407 COMPARE_PARAM(vres.qp.size, qp_size);
2408 COMPARE_PARAM(vres.cq.start, cq_start);
2409 COMPARE_PARAM(vres.cq.size, cq_size);
2410 COMPARE_PARAM(vres.ocq.start, ocq_start);
2411 COMPARE_PARAM(vres.ocq.size, ocq_size);
2412 COMPARE_PARAM(vres.srq.start, srq_start);
2413 COMPARE_PARAM(vres.srq.size, srq_size);
2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2418 COMPARE_PARAM(vres.key.start, key_start);
2419 COMPARE_PARAM(vres.key.size, key_size);
2420 #undef COMPARE_PARAM
2421
2422 return (rc);
2423 }
2424
2425 static int
restart_lld(struct adapter * sc)2426 restart_lld(struct adapter *sc)
2427 {
2428 struct adapter_pre_reset_state *old_state = NULL;
2429 struct port_info *pi;
2430 struct vi_info *vi;
2431 if_t ifp;
2432 struct sge_txq *txq;
2433 int rc, i, j, k;
2434
2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2436 if (rc != 0)
2437 return (ENXIO);
2438
2439 /* Restore memory window. */
2440 setup_memwin(sc);
2441
2442 /* Go no further if recovery mode has been requested. */
2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2445 rc = 0;
2446 set_adapter_hwstatus(sc, true);
2447 goto done;
2448 }
2449
2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2451 save_caps_and_params(sc, old_state);
2452
2453 /* Reestablish contact with firmware and become the primary PF. */
2454 rc = contact_firmware(sc);
2455 if (rc != 0)
2456 goto done; /* error message displayed already */
2457 MPASS(sc->flags & FW_OK);
2458
2459 if (sc->flags & MASTER_PF) {
2460 rc = partition_resources(sc);
2461 if (rc != 0)
2462 goto done; /* error message displayed already */
2463 }
2464
2465 rc = get_params__post_init(sc);
2466 if (rc != 0)
2467 goto done; /* error message displayed already */
2468
2469 rc = set_params__post_init(sc);
2470 if (rc != 0)
2471 goto done; /* error message displayed already */
2472
2473 rc = compare_caps_and_params(sc, old_state);
2474 if (rc != 0)
2475 goto done; /* error message displayed already */
2476
2477 for_each_port(sc, i) {
2478 pi = sc->port[i];
2479 MPASS(pi != NULL);
2480 MPASS(pi->vi != NULL);
2481 MPASS(pi->vi[0].dev == pi->dev);
2482
2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2484 if (rc != 0) {
2485 CH_ERR(sc,
2486 "failed to re-initialize port %d: %d\n", i, rc);
2487 goto done;
2488 }
2489 MPASS(sc->chan_map[pi->tx_chan] == i);
2490
2491 PORT_LOCK(pi);
2492 fixup_link_config(pi);
2493 build_medialist(pi);
2494 PORT_UNLOCK(pi);
2495 for_each_vi(pi, j, vi) {
2496 if (IS_MAIN_VI(vi))
2497 continue;
2498 rc = alloc_extra_vi(sc, pi, vi);
2499 if (rc != 0) {
2500 CH_ERR(vi,
2501 "failed to re-allocate extra VI: %d\n", rc);
2502 goto done;
2503 }
2504 }
2505 }
2506
2507 /*
2508 * Interrupts and queues are about to be enabled and other threads will
2509 * want to access the hardware too. It is safe to do so. Note that
2510 * this thread is still in the middle of a synchronized_op.
2511 */
2512 set_adapter_hwstatus(sc, true);
2513
2514 if (sc->flags & FULL_INIT_DONE) {
2515 rc = adapter_full_init(sc);
2516 if (rc != 0) {
2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2518 goto done;
2519 }
2520
2521 if (sc->vxlan_refcount > 0)
2522 enable_vxlan_rx(sc);
2523
2524 for_each_port(sc, i) {
2525 pi = sc->port[i];
2526 for_each_vi(pi, j, vi) {
2527 mtx_lock(&vi->tick_mtx);
2528 vi->flags &= ~VI_SKIP_STATS;
2529 mtx_unlock(&vi->tick_mtx);
2530 if (!(vi->flags & VI_INIT_DONE))
2531 continue;
2532 rc = vi_full_init(vi);
2533 if (rc != 0) {
2534 CH_ERR(vi, "failed to re-initialize "
2535 "interface: %d\n", rc);
2536 goto done;
2537 }
2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
2541 pi->flags |= HAS_TRACEQ;
2542 }
2543
2544 ifp = vi->ifp;
2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2546 continue;
2547 /*
2548 * Note that we do not setup multicast addresses
2549 * in the first pass. This ensures that the
2550 * unicast DMACs for all VIs on all ports get an
2551 * MPS TCAM entry.
2552 */
2553 rc = update_mac_settings(ifp, XGMAC_ALL &
2554 ~XGMAC_MCADDRS);
2555 if (rc != 0) {
2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2557 goto done;
2558 }
2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2560 true);
2561 if (rc != 0) {
2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2563 goto done;
2564 }
2565 for_each_txq(vi, k, txq) {
2566 TXQ_LOCK(txq);
2567 txq->eq.flags |= EQ_ENABLED;
2568 TXQ_UNLOCK(txq);
2569 }
2570 mtx_lock(&vi->tick_mtx);
2571 callout_schedule(&vi->tick, hz);
2572 mtx_unlock(&vi->tick_mtx);
2573 }
2574 PORT_LOCK(pi);
2575 if (pi->up_vis > 0) {
2576 t4_update_port_info(pi);
2577 fixup_link_config(pi);
2578 build_medialist(pi);
2579 apply_link_config(pi);
2580 if (pi->link_cfg.link_ok)
2581 t4_os_link_changed(pi);
2582 }
2583 PORT_UNLOCK(pi);
2584 }
2585
2586 /* Now reprogram the L2 multicast addresses. */
2587 for_each_port(sc, i) {
2588 pi = sc->port[i];
2589 for_each_vi(pi, j, vi) {
2590 if (!(vi->flags & VI_INIT_DONE))
2591 continue;
2592 ifp = vi->ifp;
2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2594 continue;
2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2596 if (rc != 0) {
2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2598 rc = 0; /* carry on */
2599 }
2600 }
2601 }
2602 }
2603
2604 /* Reset all calibration */
2605 t4_calibration_start(sc);
2606 done:
2607 end_synchronized_op(sc, 0);
2608 free(old_state, M_CXGBE);
2609
2610 restart_atid_allocator(sc);
2611 t4_restart_l2t(sc);
2612
2613 return (rc);
2614 }
2615
2616 int
resume_adapter(struct adapter * sc)2617 resume_adapter(struct adapter *sc)
2618 {
2619 restart_adapter(sc);
2620 restart_lld(sc);
2621 #ifdef TCP_OFFLOAD
2622 restart_all_uld(sc);
2623 #endif
2624 return (0);
2625 }
2626
2627 static int
t4_resume(device_t dev)2628 t4_resume(device_t dev)
2629 {
2630 struct adapter *sc = device_get_softc(dev);
2631 int rc;
2632
2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2634 rc = resume_adapter(sc);
2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2636
2637 return (rc);
2638 }
2639
2640 static int
t4_reset_prepare(device_t dev,device_t child)2641 t4_reset_prepare(device_t dev, device_t child)
2642 {
2643 struct adapter *sc = device_get_softc(dev);
2644
2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2646 return (0);
2647 }
2648
2649 static int
t4_reset_post(device_t dev,device_t child)2650 t4_reset_post(device_t dev, device_t child)
2651 {
2652 struct adapter *sc = device_get_softc(dev);
2653
2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2655 return (0);
2656 }
2657
2658 static int
reset_adapter_with_pl_rst(struct adapter * sc)2659 reset_adapter_with_pl_rst(struct adapter *sc)
2660 {
2661 /* This is a t4_write_reg without the hw_off_limits check. */
2662 MPASS(sc->error_flags & HW_OFF_LIMITS);
2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2666 return (0);
2667 }
2668
2669 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2670 reset_adapter_with_pcie_sbr(struct adapter *sc)
2671 {
2672 device_t pdev = device_get_parent(sc->dev);
2673 device_t gpdev = device_get_parent(pdev);
2674 device_t *children;
2675 int rc, i, lcap, lsta, nchildren;
2676 uint32_t v;
2677
2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2679 if (rc != 0) {
2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2681 device_get_nameunit(gpdev), rc);
2682 return (ENOTSUP);
2683 }
2684 lcap = v + PCIER_LINK_CAP;
2685 lsta = v + PCIER_LINK_STA;
2686
2687 nchildren = 0;
2688 device_get_children(pdev, &children, &nchildren);
2689 for (i = 0; i < nchildren; i++)
2690 pci_save_state(children[i]);
2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2693 pause("pcie_sbr1", hz / 10); /* 100ms */
2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2696 v = pci_read_config(gpdev, lsta, 2);
2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2700 rc = ETIMEDOUT;
2701 else
2702 rc = 0;
2703 if (rc != 0)
2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2705 __func__, v);
2706 else {
2707 for (i = 0; i < nchildren; i++)
2708 pci_restore_state(children[i]);
2709 }
2710 free(children, M_TEMP);
2711
2712 return (rc);
2713 }
2714
2715 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2717 {
2718 device_t pdev = device_get_parent(sc->dev);
2719 device_t gpdev = device_get_parent(pdev);
2720 device_t *children;
2721 int rc, i, lcap, lctl, lsta, nchildren;
2722 uint32_t v;
2723
2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2725 if (rc != 0) {
2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2727 device_get_nameunit(gpdev), rc);
2728 return (ENOTSUP);
2729 }
2730 lcap = v + PCIER_LINK_CAP;
2731 lctl = v + PCIER_LINK_CTL;
2732 lsta = v + PCIER_LINK_STA;
2733
2734 nchildren = 0;
2735 device_get_children(pdev, &children, &nchildren);
2736 for (i = 0; i < nchildren; i++)
2737 pci_save_state(children[i]);
2738 v = pci_read_config(gpdev, lctl, 2);
2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2743 v = pci_read_config(gpdev, lsta, 2);
2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2747 rc = ETIMEDOUT;
2748 else
2749 rc = 0;
2750 if (rc != 0)
2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2752 __func__, v);
2753 else {
2754 for (i = 0; i < nchildren; i++)
2755 pci_restore_state(children[i]);
2756 }
2757 free(children, M_TEMP);
2758
2759 return (rc);
2760 }
2761
2762 static inline int
reset_adapter(struct adapter * sc)2763 reset_adapter(struct adapter *sc)
2764 {
2765 int rc;
2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2767
2768 rc = suspend_adapter(sc);
2769 if (rc != 0)
2770 return (rc);
2771
2772 switch (reset_method) {
2773 case 1:
2774 rc = reset_adapter_with_pcie_sbr(sc);
2775 break;
2776 case 2:
2777 rc = reset_adapter_with_pcie_link_bounce(sc);
2778 break;
2779 case 0:
2780 default:
2781 rc = reset_adapter_with_pl_rst(sc);
2782 break;
2783 }
2784 if (rc == 0)
2785 rc = resume_adapter(sc);
2786 return (rc);
2787 }
2788
2789 static void
reset_adapter_task(void * arg,int pending)2790 reset_adapter_task(void *arg, int pending)
2791 {
2792 struct adapter *sc = arg;
2793 const int flags = sc->flags;
2794 const int eflags = sc->error_flags;
2795 int rc;
2796
2797 if (pending > 1)
2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2799 rc = reset_adapter(sc);
2800 if (rc != 0) {
2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2803 rc, flags, sc->flags, eflags, sc->error_flags);
2804 }
2805 }
2806
2807 static int
cxgbe_probe(device_t dev)2808 cxgbe_probe(device_t dev)
2809 {
2810 struct port_info *pi = device_get_softc(dev);
2811
2812 device_set_descf(dev, "port %d", pi->port_id);
2813
2814 return (BUS_PROBE_DEFAULT);
2815 }
2816
2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2821 #define T4_CAP_ENABLE (T4_CAP)
2822
2823 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2825 {
2826 if_t ifp;
2827 struct sbuf *sb;
2828 struct sysctl_ctx_list *ctx = &vi->ctx;
2829 struct sysctl_oid_list *children;
2830 struct pfil_head_args pa;
2831 struct adapter *sc = vi->adapter;
2832
2833 sysctl_ctx_init(ctx);
2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2839 #ifdef DEV_NETMAP
2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2844 #endif
2845 #ifdef TCP_OFFLOAD
2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2848 #endif
2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2852 #endif
2853
2854 vi->xact_addr_filt = -1;
2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2858 vi->flags |= TX_USES_VM_WR;
2859
2860 /* Allocate an ifnet and set it up */
2861 ifp = if_alloc_dev(IFT_ETHER, dev);
2862 vi->ifp = ifp;
2863 if_setsoftc(ifp, vi);
2864
2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2867
2868 if_setinitfn(ifp, cxgbe_init);
2869 if_setioctlfn(ifp, cxgbe_ioctl);
2870 if_settransmitfn(ifp, cxgbe_transmit);
2871 if_setqflushfn(ifp, cxgbe_qflush);
2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2873 if_setgetcounterfn(ifp, vi_get_counter);
2874 else
2875 if_setgetcounterfn(ifp, cxgbe_get_counter);
2876 #if defined(KERN_TLS) || defined(RATELIMIT)
2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2878 #endif
2879 #ifdef RATELIMIT
2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2881 #endif
2882
2883 if_setcapabilities(ifp, T4_CAP);
2884 if_setcapenable(ifp, T4_CAP_ENABLE);
2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2887 if (chip_id(sc) >= CHELSIO_T6) {
2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2893 }
2894
2895 #ifdef TCP_OFFLOAD
2896 if (vi->nofldrxq != 0)
2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2898 #endif
2899 #ifdef RATELIMIT
2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2903 }
2904 #endif
2905
2906 if_sethwtsomax(ifp, IP_MAXPACKET);
2907 if (vi->flags & TX_USES_VM_WR)
2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2909 else
2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2911 #ifdef RATELIMIT
2912 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2914 #endif
2915 if_sethwtsomaxsegsize(ifp, 65536);
2916 #ifdef KERN_TLS
2917 if (is_ktls(sc)) {
2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2921 }
2922 #endif
2923
2924 ether_ifattach(ifp, vi->hw_addr);
2925 #ifdef DEV_NETMAP
2926 if (vi->nnmrxq != 0)
2927 cxgbe_nm_attach(vi);
2928 #endif
2929 sb = sbuf_new_auto();
2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2933 case IFCAP_TOE:
2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2935 break;
2936 case IFCAP_TOE | IFCAP_TXRTLMT:
2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2938 break;
2939 case IFCAP_TXRTLMT:
2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2941 break;
2942 }
2943 #endif
2944 #ifdef TCP_OFFLOAD
2945 if (if_getcapabilities(ifp) & IFCAP_TOE)
2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2947 #endif
2948 #ifdef DEV_NETMAP
2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2951 vi->nnmtxq, vi->nnmrxq);
2952 #endif
2953 sbuf_finish(sb);
2954 device_printf(dev, "%s\n", sbuf_data(sb));
2955 sbuf_delete(sb);
2956
2957 vi_sysctls(vi);
2958
2959 pa.pa_version = PFIL_VERSION;
2960 pa.pa_flags = PFIL_IN;
2961 pa.pa_type = PFIL_TYPE_ETHERNET;
2962 pa.pa_headname = if_name(ifp);
2963 vi->pfil = pfil_head_register(&pa);
2964 }
2965
2966 static int
cxgbe_attach(device_t dev)2967 cxgbe_attach(device_t dev)
2968 {
2969 struct port_info *pi = device_get_softc(dev);
2970 struct adapter *sc = pi->adapter;
2971 struct vi_info *vi;
2972 int i;
2973
2974 sysctl_ctx_init(&pi->ctx);
2975
2976 cxgbe_vi_attach(dev, &pi->vi[0]);
2977
2978 for_each_vi(pi, i, vi) {
2979 if (i == 0)
2980 continue;
2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2982 if (vi->dev == NULL) {
2983 device_printf(dev, "failed to add VI %d\n", i);
2984 continue;
2985 }
2986 device_set_softc(vi->dev, vi);
2987 }
2988
2989 cxgbe_sysctls(pi);
2990
2991 bus_attach_children(dev);
2992
2993 return (0);
2994 }
2995
2996 static void
cxgbe_vi_detach(struct vi_info * vi)2997 cxgbe_vi_detach(struct vi_info *vi)
2998 {
2999 if_t ifp = vi->ifp;
3000
3001 if (vi->pfil != NULL) {
3002 pfil_head_unregister(vi->pfil);
3003 vi->pfil = NULL;
3004 }
3005
3006 ether_ifdetach(ifp);
3007
3008 /* Let detach proceed even if these fail. */
3009 #ifdef DEV_NETMAP
3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
3011 cxgbe_nm_detach(vi);
3012 #endif
3013 cxgbe_uninit_synchronized(vi);
3014 callout_drain(&vi->tick);
3015 mtx_destroy(&vi->tick_mtx);
3016 sysctl_ctx_free(&vi->ctx);
3017 vi_full_uninit(vi);
3018
3019 if_free(vi->ifp);
3020 vi->ifp = NULL;
3021 }
3022
3023 static int
cxgbe_detach(device_t dev)3024 cxgbe_detach(device_t dev)
3025 {
3026 struct port_info *pi = device_get_softc(dev);
3027 struct adapter *sc = pi->adapter;
3028 int rc;
3029
3030 /* Detach the extra VIs first. */
3031 rc = bus_generic_detach(dev);
3032 if (rc)
3033 return (rc);
3034
3035 sysctl_ctx_free(&pi->ctx);
3036 begin_vi_detach(sc, &pi->vi[0]);
3037 if (pi->flags & HAS_TRACEQ) {
3038 sc->traceq = -1; /* cloner should not create ifnet */
3039 t4_tracer_port_detach(sc);
3040 }
3041 cxgbe_vi_detach(&pi->vi[0]);
3042 ifmedia_removeall(&pi->media);
3043 end_vi_detach(sc, &pi->vi[0]);
3044
3045 return (0);
3046 }
3047
3048 static void
cxgbe_init(void * arg)3049 cxgbe_init(void *arg)
3050 {
3051 struct vi_info *vi = arg;
3052 struct adapter *sc = vi->adapter;
3053
3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
3055 return;
3056 cxgbe_init_synchronized(vi);
3057 end_synchronized_op(sc, 0);
3058 }
3059
3060 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
3062 {
3063 int rc = 0, mtu, flags;
3064 struct vi_info *vi = if_getsoftc(ifp);
3065 struct port_info *pi = vi->pi;
3066 struct adapter *sc = pi->adapter;
3067 struct ifreq *ifr = (struct ifreq *)data;
3068 uint32_t mask;
3069
3070 switch (cmd) {
3071 case SIOCSIFMTU:
3072 mtu = ifr->ifr_mtu;
3073 if (mtu < ETHERMIN || mtu > MAX_MTU)
3074 return (EINVAL);
3075
3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
3077 if (rc)
3078 return (rc);
3079 if_setmtu(ifp, mtu);
3080 if (vi->flags & VI_INIT_DONE) {
3081 t4_update_fl_bufsize(ifp);
3082 if (hw_all_ok(sc) &&
3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3084 rc = update_mac_settings(ifp, XGMAC_MTU);
3085 }
3086 end_synchronized_op(sc, 0);
3087 break;
3088
3089 case SIOCSIFFLAGS:
3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
3091 if (rc)
3092 return (rc);
3093
3094 if (!hw_all_ok(sc)) {
3095 rc = ENXIO;
3096 goto fail;
3097 }
3098
3099 if (if_getflags(ifp) & IFF_UP) {
3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3101 flags = vi->if_flags;
3102 if ((if_getflags(ifp) ^ flags) &
3103 (IFF_PROMISC | IFF_ALLMULTI)) {
3104 rc = update_mac_settings(ifp,
3105 XGMAC_PROMISC | XGMAC_ALLMULTI);
3106 }
3107 } else {
3108 rc = cxgbe_init_synchronized(vi);
3109 }
3110 vi->if_flags = if_getflags(ifp);
3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3112 rc = cxgbe_uninit_synchronized(vi);
3113 }
3114 end_synchronized_op(sc, 0);
3115 break;
3116
3117 case SIOCADDMULTI:
3118 case SIOCDELMULTI:
3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3120 if (rc)
3121 return (rc);
3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3124 end_synchronized_op(sc, 0);
3125 break;
3126
3127 case SIOCSIFCAP:
3128 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3129 if (rc)
3130 return (rc);
3131
3132 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3133 if (mask & IFCAP_TXCSUM) {
3134 if_togglecapenable(ifp, IFCAP_TXCSUM);
3135 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3136
3137 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3138 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3139 mask &= ~IFCAP_TSO4;
3140 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3141 if_printf(ifp,
3142 "tso4 disabled due to -txcsum.\n");
3143 }
3144 }
3145 if (mask & IFCAP_TXCSUM_IPV6) {
3146 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3147 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3148
3149 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3150 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3151 mask &= ~IFCAP_TSO6;
3152 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3153 if_printf(ifp,
3154 "tso6 disabled due to -txcsum6.\n");
3155 }
3156 }
3157 if (mask & IFCAP_RXCSUM)
3158 if_togglecapenable(ifp, IFCAP_RXCSUM);
3159 if (mask & IFCAP_RXCSUM_IPV6)
3160 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3161
3162 /*
3163 * Note that we leave CSUM_TSO alone (it is always set). The
3164 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3165 * sending a TSO request our way, so it's sufficient to toggle
3166 * IFCAP_TSOx only.
3167 */
3168 if (mask & IFCAP_TSO4) {
3169 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3170 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3171 if_printf(ifp, "enable txcsum first.\n");
3172 rc = EAGAIN;
3173 goto fail;
3174 }
3175 if_togglecapenable(ifp, IFCAP_TSO4);
3176 }
3177 if (mask & IFCAP_TSO6) {
3178 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3179 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3180 if_printf(ifp, "enable txcsum6 first.\n");
3181 rc = EAGAIN;
3182 goto fail;
3183 }
3184 if_togglecapenable(ifp, IFCAP_TSO6);
3185 }
3186 if (mask & IFCAP_LRO) {
3187 #if defined(INET) || defined(INET6)
3188 int i;
3189 struct sge_rxq *rxq;
3190
3191 if_togglecapenable(ifp, IFCAP_LRO);
3192 for_each_rxq(vi, i, rxq) {
3193 if (if_getcapenable(ifp) & IFCAP_LRO)
3194 rxq->iq.flags |= IQ_LRO_ENABLED;
3195 else
3196 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3197 }
3198 #endif
3199 }
3200 #ifdef TCP_OFFLOAD
3201 if (mask & IFCAP_TOE) {
3202 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3203
3204 rc = toe_capability(vi, enable);
3205 if (rc != 0)
3206 goto fail;
3207
3208 if_togglecapenable(ifp, mask);
3209 }
3210 #endif
3211 if (mask & IFCAP_VLAN_HWTAGGING) {
3212 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3213 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3214 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3215 }
3216 if (mask & IFCAP_VLAN_MTU) {
3217 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3218
3219 /* Need to find out how to disable auto-mtu-inflation */
3220 }
3221 if (mask & IFCAP_VLAN_HWTSO)
3222 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3223 if (mask & IFCAP_VLAN_HWCSUM)
3224 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3225 #ifdef RATELIMIT
3226 if (mask & IFCAP_TXRTLMT)
3227 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3228 #endif
3229 if (mask & IFCAP_HWRXTSTMP) {
3230 int i;
3231 struct sge_rxq *rxq;
3232
3233 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3234 for_each_rxq(vi, i, rxq) {
3235 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3236 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3237 else
3238 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3239 }
3240 }
3241 if (mask & IFCAP_MEXTPG)
3242 if_togglecapenable(ifp, IFCAP_MEXTPG);
3243
3244 #ifdef KERN_TLS
3245 if (mask & IFCAP_TXTLS) {
3246 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3247
3248 rc = ktls_capability(sc, enable);
3249 if (rc != 0)
3250 goto fail;
3251
3252 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3253 }
3254 #endif
3255 if (mask & IFCAP_VXLAN_HWCSUM) {
3256 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3257 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3258 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3259 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3260 }
3261 if (mask & IFCAP_VXLAN_HWTSO) {
3262 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3263 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3264 CSUM_INNER_IP_TSO);
3265 }
3266
3267 #ifdef VLAN_CAPABILITIES
3268 VLAN_CAPABILITIES(ifp);
3269 #endif
3270 fail:
3271 end_synchronized_op(sc, 0);
3272 break;
3273
3274 case SIOCSIFMEDIA:
3275 case SIOCGIFMEDIA:
3276 case SIOCGIFXMEDIA:
3277 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3278 break;
3279
3280 case SIOCGI2C: {
3281 struct ifi2creq i2c;
3282
3283 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3284 if (rc != 0)
3285 break;
3286 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3287 rc = EPERM;
3288 break;
3289 }
3290 if (i2c.len > sizeof(i2c.data)) {
3291 rc = EINVAL;
3292 break;
3293 }
3294 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3295 if (rc)
3296 return (rc);
3297 if (!hw_all_ok(sc))
3298 rc = ENXIO;
3299 else
3300 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3301 i2c.offset, i2c.len, &i2c.data[0]);
3302 end_synchronized_op(sc, 0);
3303 if (rc == 0)
3304 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3305 break;
3306 }
3307
3308 default:
3309 rc = ether_ioctl(ifp, cmd, data);
3310 }
3311
3312 return (rc);
3313 }
3314
3315 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3316 cxgbe_transmit(if_t ifp, struct mbuf *m)
3317 {
3318 struct vi_info *vi = if_getsoftc(ifp);
3319 struct port_info *pi = vi->pi;
3320 struct adapter *sc;
3321 struct sge_txq *txq;
3322 void *items[1];
3323 int rc;
3324
3325 M_ASSERTPKTHDR(m);
3326 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3327 #if defined(KERN_TLS) || defined(RATELIMIT)
3328 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3329 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3330 #endif
3331
3332 if (__predict_false(pi->link_cfg.link_ok == false)) {
3333 m_freem(m);
3334 return (ENETDOWN);
3335 }
3336
3337 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3338 if (__predict_false(rc != 0)) {
3339 if (__predict_true(rc == EINPROGRESS)) {
3340 /* queued by parse_pkt */
3341 MPASS(m != NULL);
3342 return (0);
3343 }
3344
3345 MPASS(m == NULL); /* was freed already */
3346 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3347 return (rc);
3348 }
3349
3350 /* Select a txq. */
3351 sc = vi->adapter;
3352 txq = &sc->sge.txq[vi->first_txq];
3353 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3354 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3355 vi->rsrv_noflowq);
3356
3357 items[0] = m;
3358 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3359 if (__predict_false(rc != 0))
3360 m_freem(m);
3361
3362 return (rc);
3363 }
3364
3365 static void
cxgbe_qflush(if_t ifp)3366 cxgbe_qflush(if_t ifp)
3367 {
3368 struct vi_info *vi = if_getsoftc(ifp);
3369 struct sge_txq *txq;
3370 int i;
3371
3372 /* queues do not exist if !VI_INIT_DONE. */
3373 if (vi->flags & VI_INIT_DONE) {
3374 for_each_txq(vi, i, txq) {
3375 TXQ_LOCK(txq);
3376 txq->eq.flags |= EQ_QFLUSH;
3377 TXQ_UNLOCK(txq);
3378 while (!mp_ring_is_idle(txq->r)) {
3379 mp_ring_check_drainage(txq->r, 4096);
3380 pause("qflush", 1);
3381 }
3382 TXQ_LOCK(txq);
3383 txq->eq.flags &= ~EQ_QFLUSH;
3384 TXQ_UNLOCK(txq);
3385 }
3386 }
3387 if_qflush(ifp);
3388 }
3389
3390 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3391 vi_get_counter(if_t ifp, ift_counter c)
3392 {
3393 struct vi_info *vi = if_getsoftc(ifp);
3394 struct fw_vi_stats_vf *s = &vi->stats;
3395
3396 mtx_lock(&vi->tick_mtx);
3397 vi_refresh_stats(vi);
3398 mtx_unlock(&vi->tick_mtx);
3399
3400 switch (c) {
3401 case IFCOUNTER_IPACKETS:
3402 return (s->rx_bcast_frames + s->rx_mcast_frames +
3403 s->rx_ucast_frames);
3404 case IFCOUNTER_IERRORS:
3405 return (s->rx_err_frames);
3406 case IFCOUNTER_OPACKETS:
3407 return (s->tx_bcast_frames + s->tx_mcast_frames +
3408 s->tx_ucast_frames + s->tx_offload_frames);
3409 case IFCOUNTER_OERRORS:
3410 return (s->tx_drop_frames);
3411 case IFCOUNTER_IBYTES:
3412 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3413 s->rx_ucast_bytes);
3414 case IFCOUNTER_OBYTES:
3415 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3416 s->tx_ucast_bytes + s->tx_offload_bytes);
3417 case IFCOUNTER_IMCASTS:
3418 return (s->rx_mcast_frames);
3419 case IFCOUNTER_OMCASTS:
3420 return (s->tx_mcast_frames);
3421 case IFCOUNTER_OQDROPS: {
3422 uint64_t drops;
3423
3424 drops = 0;
3425 if (vi->flags & VI_INIT_DONE) {
3426 int i;
3427 struct sge_txq *txq;
3428
3429 for_each_txq(vi, i, txq)
3430 drops += counter_u64_fetch(txq->r->dropped);
3431 }
3432
3433 return (drops);
3434
3435 }
3436
3437 default:
3438 return (if_get_counter_default(ifp, c));
3439 }
3440 }
3441
3442 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3443 cxgbe_get_counter(if_t ifp, ift_counter c)
3444 {
3445 struct vi_info *vi = if_getsoftc(ifp);
3446 struct port_info *pi = vi->pi;
3447 struct port_stats *s = &pi->stats;
3448
3449 mtx_lock(&vi->tick_mtx);
3450 cxgbe_refresh_stats(vi);
3451 mtx_unlock(&vi->tick_mtx);
3452
3453 switch (c) {
3454 case IFCOUNTER_IPACKETS:
3455 return (s->rx_frames);
3456
3457 case IFCOUNTER_IERRORS:
3458 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3459 s->rx_fcs_err + s->rx_len_err);
3460
3461 case IFCOUNTER_OPACKETS:
3462 return (s->tx_frames);
3463
3464 case IFCOUNTER_OERRORS:
3465 return (s->tx_error_frames);
3466
3467 case IFCOUNTER_IBYTES:
3468 return (s->rx_octets);
3469
3470 case IFCOUNTER_OBYTES:
3471 return (s->tx_octets);
3472
3473 case IFCOUNTER_IMCASTS:
3474 return (s->rx_mcast_frames);
3475
3476 case IFCOUNTER_OMCASTS:
3477 return (s->tx_mcast_frames);
3478
3479 case IFCOUNTER_IQDROPS:
3480 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3481 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3482 s->rx_trunc3 + pi->tnl_cong_drops);
3483
3484 case IFCOUNTER_OQDROPS: {
3485 uint64_t drops;
3486
3487 drops = s->tx_drop;
3488 if (vi->flags & VI_INIT_DONE) {
3489 int i;
3490 struct sge_txq *txq;
3491
3492 for_each_txq(vi, i, txq)
3493 drops += counter_u64_fetch(txq->r->dropped);
3494 }
3495
3496 return (drops);
3497
3498 }
3499
3500 default:
3501 return (if_get_counter_default(ifp, c));
3502 }
3503 }
3504
3505 #if defined(KERN_TLS) || defined(RATELIMIT)
3506 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3507 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3508 struct m_snd_tag **pt)
3509 {
3510 int error;
3511
3512 switch (params->hdr.type) {
3513 #ifdef RATELIMIT
3514 case IF_SND_TAG_TYPE_RATE_LIMIT:
3515 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3516 break;
3517 #endif
3518 #ifdef KERN_TLS
3519 case IF_SND_TAG_TYPE_TLS:
3520 {
3521 struct vi_info *vi = if_getsoftc(ifp);
3522
3523 if (is_t6(vi->pi->adapter))
3524 error = t6_tls_tag_alloc(ifp, params, pt);
3525 else
3526 error = t7_tls_tag_alloc(ifp, params, pt);
3527 break;
3528 }
3529 #endif
3530 default:
3531 error = EOPNOTSUPP;
3532 }
3533 return (error);
3534 }
3535 #endif
3536
3537 /*
3538 * The kernel picks a media from the list we had provided but we still validate
3539 * the requeste.
3540 */
3541 int
cxgbe_media_change(if_t ifp)3542 cxgbe_media_change(if_t ifp)
3543 {
3544 struct vi_info *vi = if_getsoftc(ifp);
3545 struct port_info *pi = vi->pi;
3546 struct ifmedia *ifm = &pi->media;
3547 struct link_config *lc = &pi->link_cfg;
3548 struct adapter *sc = pi->adapter;
3549 int rc;
3550
3551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3552 if (rc != 0)
3553 return (rc);
3554 PORT_LOCK(pi);
3555 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3556 /* ifconfig .. media autoselect */
3557 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3558 rc = ENOTSUP; /* AN not supported by transceiver */
3559 goto done;
3560 }
3561 lc->requested_aneg = AUTONEG_ENABLE;
3562 lc->requested_speed = 0;
3563 lc->requested_fc |= PAUSE_AUTONEG;
3564 } else {
3565 lc->requested_aneg = AUTONEG_DISABLE;
3566 lc->requested_speed =
3567 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3568 lc->requested_fc = 0;
3569 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3570 lc->requested_fc |= PAUSE_RX;
3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3572 lc->requested_fc |= PAUSE_TX;
3573 }
3574 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3575 fixup_link_config(pi);
3576 rc = apply_link_config(pi);
3577 }
3578 done:
3579 PORT_UNLOCK(pi);
3580 end_synchronized_op(sc, 0);
3581 return (rc);
3582 }
3583
3584 /*
3585 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3586 * given speed.
3587 */
3588 static int
port_mword(struct port_info * pi,uint32_t speed)3589 port_mword(struct port_info *pi, uint32_t speed)
3590 {
3591
3592 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3593 MPASS(powerof2(speed));
3594
3595 switch(pi->port_type) {
3596 case FW_PORT_TYPE_BT_SGMII:
3597 case FW_PORT_TYPE_BT_XFI:
3598 case FW_PORT_TYPE_BT_XAUI:
3599 /* BaseT */
3600 switch (speed) {
3601 case FW_PORT_CAP32_SPEED_100M:
3602 return (IFM_100_T);
3603 case FW_PORT_CAP32_SPEED_1G:
3604 return (IFM_1000_T);
3605 case FW_PORT_CAP32_SPEED_10G:
3606 return (IFM_10G_T);
3607 }
3608 break;
3609 case FW_PORT_TYPE_KX4:
3610 if (speed == FW_PORT_CAP32_SPEED_10G)
3611 return (IFM_10G_KX4);
3612 break;
3613 case FW_PORT_TYPE_CX4:
3614 if (speed == FW_PORT_CAP32_SPEED_10G)
3615 return (IFM_10G_CX4);
3616 break;
3617 case FW_PORT_TYPE_KX:
3618 if (speed == FW_PORT_CAP32_SPEED_1G)
3619 return (IFM_1000_KX);
3620 break;
3621 case FW_PORT_TYPE_KR:
3622 case FW_PORT_TYPE_BP_AP:
3623 case FW_PORT_TYPE_BP4_AP:
3624 case FW_PORT_TYPE_BP40_BA:
3625 case FW_PORT_TYPE_KR4_100G:
3626 case FW_PORT_TYPE_KR_SFP28:
3627 case FW_PORT_TYPE_KR_XLAUI:
3628 switch (speed) {
3629 case FW_PORT_CAP32_SPEED_1G:
3630 return (IFM_1000_KX);
3631 case FW_PORT_CAP32_SPEED_10G:
3632 return (IFM_10G_KR);
3633 case FW_PORT_CAP32_SPEED_25G:
3634 return (IFM_25G_KR);
3635 case FW_PORT_CAP32_SPEED_40G:
3636 return (IFM_40G_KR4);
3637 case FW_PORT_CAP32_SPEED_50G:
3638 return (IFM_50G_KR2);
3639 case FW_PORT_CAP32_SPEED_100G:
3640 return (IFM_100G_KR4);
3641 }
3642 break;
3643 case FW_PORT_TYPE_FIBER_XFI:
3644 case FW_PORT_TYPE_FIBER_XAUI:
3645 case FW_PORT_TYPE_SFP:
3646 case FW_PORT_TYPE_QSFP_10G:
3647 case FW_PORT_TYPE_QSA:
3648 case FW_PORT_TYPE_QSFP:
3649 case FW_PORT_TYPE_CR4_QSFP:
3650 case FW_PORT_TYPE_CR_QSFP:
3651 case FW_PORT_TYPE_CR2_QSFP:
3652 case FW_PORT_TYPE_SFP28:
3653 case FW_PORT_TYPE_SFP56:
3654 case FW_PORT_TYPE_QSFP56:
3655 case FW_PORT_TYPE_QSFPDD:
3656 /* Pluggable transceiver */
3657 switch (pi->mod_type) {
3658 case FW_PORT_MOD_TYPE_LR:
3659 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3660 switch (speed) {
3661 case FW_PORT_CAP32_SPEED_1G:
3662 return (IFM_1000_LX);
3663 case FW_PORT_CAP32_SPEED_10G:
3664 return (IFM_10G_LR);
3665 case FW_PORT_CAP32_SPEED_25G:
3666 return (IFM_25G_LR);
3667 case FW_PORT_CAP32_SPEED_40G:
3668 return (IFM_40G_LR4);
3669 case FW_PORT_CAP32_SPEED_50G:
3670 return (IFM_50G_LR2);
3671 case FW_PORT_CAP32_SPEED_100G:
3672 return (IFM_100G_LR4);
3673 case FW_PORT_CAP32_SPEED_200G:
3674 return (IFM_200G_LR4);
3675 case FW_PORT_CAP32_SPEED_400G:
3676 return (IFM_400G_LR8);
3677 }
3678 break;
3679 case FW_PORT_MOD_TYPE_SR:
3680 switch (speed) {
3681 case FW_PORT_CAP32_SPEED_1G:
3682 return (IFM_1000_SX);
3683 case FW_PORT_CAP32_SPEED_10G:
3684 return (IFM_10G_SR);
3685 case FW_PORT_CAP32_SPEED_25G:
3686 return (IFM_25G_SR);
3687 case FW_PORT_CAP32_SPEED_40G:
3688 return (IFM_40G_SR4);
3689 case FW_PORT_CAP32_SPEED_50G:
3690 return (IFM_50G_SR2);
3691 case FW_PORT_CAP32_SPEED_100G:
3692 return (IFM_100G_SR4);
3693 case FW_PORT_CAP32_SPEED_200G:
3694 return (IFM_200G_SR4);
3695 case FW_PORT_CAP32_SPEED_400G:
3696 return (IFM_400G_SR8);
3697 }
3698 break;
3699 case FW_PORT_MOD_TYPE_ER:
3700 if (speed == FW_PORT_CAP32_SPEED_10G)
3701 return (IFM_10G_ER);
3702 break;
3703 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3704 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3705 switch (speed) {
3706 case FW_PORT_CAP32_SPEED_1G:
3707 return (IFM_1000_CX);
3708 case FW_PORT_CAP32_SPEED_10G:
3709 return (IFM_10G_TWINAX);
3710 case FW_PORT_CAP32_SPEED_25G:
3711 return (IFM_25G_CR);
3712 case FW_PORT_CAP32_SPEED_40G:
3713 return (IFM_40G_CR4);
3714 case FW_PORT_CAP32_SPEED_50G:
3715 return (IFM_50G_CR2);
3716 case FW_PORT_CAP32_SPEED_100G:
3717 return (IFM_100G_CR4);
3718 case FW_PORT_CAP32_SPEED_200G:
3719 return (IFM_200G_CR4_PAM4);
3720 case FW_PORT_CAP32_SPEED_400G:
3721 return (IFM_400G_CR8);
3722 }
3723 break;
3724 case FW_PORT_MOD_TYPE_LRM:
3725 if (speed == FW_PORT_CAP32_SPEED_10G)
3726 return (IFM_10G_LRM);
3727 break;
3728 case FW_PORT_MOD_TYPE_DR:
3729 if (speed == FW_PORT_CAP32_SPEED_100G)
3730 return (IFM_100G_DR);
3731 if (speed == FW_PORT_CAP32_SPEED_200G)
3732 return (IFM_200G_DR4);
3733 if (speed == FW_PORT_CAP32_SPEED_400G)
3734 return (IFM_400G_DR4);
3735 break;
3736 case FW_PORT_MOD_TYPE_NA:
3737 MPASS(0); /* Not pluggable? */
3738 /* fall through */
3739 case FW_PORT_MOD_TYPE_ERROR:
3740 case FW_PORT_MOD_TYPE_UNKNOWN:
3741 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3742 break;
3743 case FW_PORT_MOD_TYPE_NONE:
3744 return (IFM_NONE);
3745 }
3746 break;
3747 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */
3748 if (chip_id(pi->adapter) >= CHELSIO_T7)
3749 return (IFM_UNKNOWN);
3750 /* fall through */
3751 case FW_PORT_TYPE_NONE:
3752 return (IFM_NONE);
3753 }
3754
3755 return (IFM_UNKNOWN);
3756 }
3757
3758 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3759 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3760 {
3761 struct vi_info *vi = if_getsoftc(ifp);
3762 struct port_info *pi = vi->pi;
3763 struct adapter *sc = pi->adapter;
3764 struct link_config *lc = &pi->link_cfg;
3765
3766 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3767 return;
3768 PORT_LOCK(pi);
3769
3770 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3771 /*
3772 * If all the interfaces are administratively down the firmware
3773 * does not report transceiver changes. Refresh port info here
3774 * so that ifconfig displays accurate ifmedia at all times.
3775 * This is the only reason we have a synchronized op in this
3776 * function. Just PORT_LOCK would have been enough otherwise.
3777 */
3778 t4_update_port_info(pi);
3779 build_medialist(pi);
3780 }
3781
3782 /* ifm_status */
3783 ifmr->ifm_status = IFM_AVALID;
3784 if (lc->link_ok == false)
3785 goto done;
3786 ifmr->ifm_status |= IFM_ACTIVE;
3787
3788 /* ifm_active */
3789 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3790 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3791 if (lc->fc & PAUSE_RX)
3792 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3793 if (lc->fc & PAUSE_TX)
3794 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3795 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3796 done:
3797 PORT_UNLOCK(pi);
3798 end_synchronized_op(sc, 0);
3799 }
3800
3801 static int
vcxgbe_probe(device_t dev)3802 vcxgbe_probe(device_t dev)
3803 {
3804 struct vi_info *vi = device_get_softc(dev);
3805
3806 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3807 vi - vi->pi->vi);
3808
3809 return (BUS_PROBE_DEFAULT);
3810 }
3811
3812 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3813 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3814 {
3815 int func, index, rc;
3816 uint32_t param, val;
3817
3818 ASSERT_SYNCHRONIZED_OP(sc);
3819
3820 index = vi - pi->vi;
3821 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3822 KASSERT(index < nitems(vi_mac_funcs),
3823 ("%s: VI %s doesn't have a MAC func", __func__,
3824 device_get_nameunit(vi->dev)));
3825 func = vi_mac_funcs[index];
3826 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1,
3827 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3828 if (rc < 0) {
3829 CH_ERR(vi, "failed to allocate virtual interface %d"
3830 "for port %d: %d\n", index, pi->port_id, -rc);
3831 return (-rc);
3832 }
3833 vi->viid = rc;
3834
3835 if (vi->rss_size == 1) {
3836 /*
3837 * This VI didn't get a slice of the RSS table. Reduce the
3838 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3839 * configuration file (nvi, rssnvi for this PF) if this is a
3840 * problem.
3841 */
3842 device_printf(vi->dev, "RSS table not available.\n");
3843 vi->rss_base = 0xffff;
3844
3845 return (0);
3846 }
3847
3848 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3849 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3850 V_FW_PARAMS_PARAM_YZ(vi->viid);
3851 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3852 if (rc)
3853 vi->rss_base = 0xffff;
3854 else {
3855 MPASS((val >> 16) == vi->rss_size);
3856 vi->rss_base = val & 0xffff;
3857 }
3858
3859 return (0);
3860 }
3861
3862 static int
vcxgbe_attach(device_t dev)3863 vcxgbe_attach(device_t dev)
3864 {
3865 struct vi_info *vi;
3866 struct port_info *pi;
3867 struct adapter *sc;
3868 int rc;
3869
3870 vi = device_get_softc(dev);
3871 pi = vi->pi;
3872 sc = pi->adapter;
3873
3874 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3875 if (rc)
3876 return (rc);
3877 rc = alloc_extra_vi(sc, pi, vi);
3878 end_synchronized_op(sc, 0);
3879 if (rc)
3880 return (rc);
3881
3882 cxgbe_vi_attach(dev, vi);
3883
3884 return (0);
3885 }
3886
3887 static int
vcxgbe_detach(device_t dev)3888 vcxgbe_detach(device_t dev)
3889 {
3890 struct vi_info *vi;
3891 struct adapter *sc;
3892
3893 vi = device_get_softc(dev);
3894 sc = vi->adapter;
3895
3896 begin_vi_detach(sc, vi);
3897 cxgbe_vi_detach(vi);
3898 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3899 end_vi_detach(sc, vi);
3900
3901 return (0);
3902 }
3903
3904 static struct callout fatal_callout;
3905 static struct taskqueue *reset_tq;
3906
3907 static void
delayed_panic(void * arg)3908 delayed_panic(void *arg)
3909 {
3910 struct adapter *sc = arg;
3911
3912 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3913 }
3914
3915 static void
fatal_error_task(void * arg,int pending)3916 fatal_error_task(void *arg, int pending)
3917 {
3918 struct adapter *sc = arg;
3919 int rc;
3920
3921 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3922 dump_cim_regs(sc);
3923 dump_cimla(sc);
3924 dump_devlog(sc);
3925 }
3926
3927 if (t4_reset_on_fatal_err) {
3928 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3929 rc = reset_adapter(sc);
3930 if (rc == 0 && t4_panic_on_fatal_err) {
3931 CH_ALERT(sc, "reset was successful, "
3932 "system will NOT panic.\n");
3933 return;
3934 }
3935 }
3936
3937 if (t4_panic_on_fatal_err) {
3938 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3939 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3940 }
3941 }
3942
3943 void
t4_fatal_err(struct adapter * sc,bool fw_error)3944 t4_fatal_err(struct adapter *sc, bool fw_error)
3945 {
3946 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3947
3948 stop_adapter(sc);
3949 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3950 return;
3951 if (fw_error) {
3952 /*
3953 * We are here because of a firmware error/timeout and not
3954 * because of a hardware interrupt. It is possible (although
3955 * not very likely) that an error interrupt was also raised but
3956 * this thread ran first and inhibited t4_intr_err. We walk the
3957 * main INT_CAUSE registers here to make sure we haven't missed
3958 * anything interesting.
3959 */
3960 t4_slow_intr_handler(sc, verbose);
3961 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3962 }
3963 t4_report_fw_error(sc);
3964 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3965 device_get_nameunit(sc->dev), fw_error);
3966 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3967 }
3968
3969 void
t4_add_adapter(struct adapter * sc)3970 t4_add_adapter(struct adapter *sc)
3971 {
3972 sx_xlock(&t4_list_lock);
3973 SLIST_INSERT_HEAD(&t4_list, sc, link);
3974 sx_xunlock(&t4_list_lock);
3975 }
3976
3977 int
t4_map_bars_0_and_4(struct adapter * sc)3978 t4_map_bars_0_and_4(struct adapter *sc)
3979 {
3980 sc->regs_rid = PCIR_BAR(0);
3981 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3982 &sc->regs_rid, RF_ACTIVE);
3983 if (sc->regs_res == NULL) {
3984 device_printf(sc->dev, "cannot map registers.\n");
3985 return (ENXIO);
3986 }
3987 sc->bt = rman_get_bustag(sc->regs_res);
3988 sc->bh = rman_get_bushandle(sc->regs_res);
3989 sc->mmio_len = rman_get_size(sc->regs_res);
3990 setbit(&sc->doorbells, DOORBELL_KDB);
3991
3992 sc->msix_rid = PCIR_BAR(4);
3993 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3994 &sc->msix_rid, RF_ACTIVE);
3995 if (sc->msix_res == NULL) {
3996 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3997 return (ENXIO);
3998 }
3999
4000 return (0);
4001 }
4002
4003 int
t4_map_bar_2(struct adapter * sc)4004 t4_map_bar_2(struct adapter *sc)
4005 {
4006
4007 /*
4008 * T4: only iWARP driver uses the userspace doorbells. There is no need
4009 * to map it if RDMA is disabled.
4010 */
4011 if (is_t4(sc) && sc->rdmacaps == 0)
4012 return (0);
4013
4014 sc->udbs_rid = PCIR_BAR(2);
4015 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4016 &sc->udbs_rid, RF_ACTIVE);
4017 if (sc->udbs_res == NULL) {
4018 device_printf(sc->dev, "cannot map doorbell BAR.\n");
4019 return (ENXIO);
4020 }
4021 sc->udbs_base = rman_get_virtual(sc->udbs_res);
4022
4023 if (chip_id(sc) >= CHELSIO_T5) {
4024 setbit(&sc->doorbells, DOORBELL_UDB);
4025 #if defined(__i386__) || defined(__amd64__)
4026 if (t5_write_combine) {
4027 int rc, mode;
4028
4029 /*
4030 * Enable write combining on BAR2. This is the
4031 * userspace doorbell BAR and is split into 128B
4032 * (UDBS_SEG_SIZE) doorbell regions, each associated
4033 * with an egress queue. The first 64B has the doorbell
4034 * and the second 64B can be used to submit a tx work
4035 * request with an implicit doorbell.
4036 */
4037
4038 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
4039 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
4040 if (rc == 0) {
4041 clrbit(&sc->doorbells, DOORBELL_UDB);
4042 setbit(&sc->doorbells, DOORBELL_WCWR);
4043 setbit(&sc->doorbells, DOORBELL_UDBWC);
4044 } else {
4045 device_printf(sc->dev,
4046 "couldn't enable write combining: %d\n",
4047 rc);
4048 }
4049
4050 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
4051 t4_write_reg(sc, A_SGE_STAT_CFG,
4052 V_STATSOURCE_T5(7) | mode);
4053 }
4054 #endif
4055 }
4056 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
4057
4058 return (0);
4059 }
4060
4061 int
t4_adj_doorbells(struct adapter * sc)4062 t4_adj_doorbells(struct adapter *sc)
4063 {
4064 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
4065 sc->doorbells &= t4_doorbells_allowed;
4066 return (0);
4067 }
4068 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
4069 sc->doorbells, t4_doorbells_allowed);
4070 return (EINVAL);
4071 }
4072
4073 struct memwin_init {
4074 uint32_t base;
4075 uint32_t aperture;
4076 };
4077
4078 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
4079 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4080 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4081 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
4082 };
4083
4084 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
4085 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4086 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4087 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
4088 };
4089
4090 static void
setup_memwin(struct adapter * sc)4091 setup_memwin(struct adapter *sc)
4092 {
4093 const struct memwin_init *mw_init;
4094 struct memwin *mw;
4095 int i;
4096 uint32_t bar0, reg;
4097
4098 if (is_t4(sc)) {
4099 /*
4100 * Read low 32b of bar0 indirectly via the hardware backdoor
4101 * mechanism. Works from within PCI passthrough environments
4102 * too, where rman_get_start() can return a different value. We
4103 * need to program the T4 memory window decoders with the actual
4104 * addresses that will be coming across the PCIe link.
4105 */
4106 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
4107 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
4108
4109 mw_init = &t4_memwin[0];
4110 } else {
4111 /* T5+ use the relative offset inside the PCIe BAR */
4112 bar0 = 0;
4113
4114 mw_init = &t5_memwin[0];
4115 }
4116
4117 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
4118 if (!rw_initialized(&mw->mw_lock)) {
4119 rw_init(&mw->mw_lock, "memory window access");
4120 mw->mw_base = mw_init->base;
4121 mw->mw_aperture = mw_init->aperture;
4122 mw->mw_curpos = 0;
4123 }
4124 reg = chip_id(sc) > CHELSIO_T6 ?
4125 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) :
4126 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i);
4127 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) |
4128 V_WINDOW(ilog2(mw->mw_aperture) - 10));
4129 rw_wlock(&mw->mw_lock);
4130 position_memwin(sc, i, mw->mw_curpos);
4131 rw_wunlock(&mw->mw_lock);
4132 }
4133
4134 /* flush */
4135 t4_read_reg(sc, reg);
4136 }
4137
4138 /*
4139 * Positions the memory window at the given address in the card's address space.
4140 * There are some alignment requirements and the actual position may be at an
4141 * address prior to the requested address. mw->mw_curpos always has the actual
4142 * position of the window.
4143 */
4144 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4145 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4146 {
4147 struct memwin *mw;
4148 uint32_t pf, reg, val;
4149
4150 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4151 mw = &sc->memwin[idx];
4152 rw_assert(&mw->mw_lock, RA_WLOCKED);
4153
4154 if (is_t4(sc)) {
4155 pf = 0;
4156 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4157 } else {
4158 pf = V_PFNUM(sc->pf);
4159 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4160 }
4161 if (chip_id(sc) > CHELSIO_T6) {
4162 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx);
4163 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf;
4164 } else {
4165 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4166 val = mw->mw_curpos | pf;
4167 }
4168 t4_write_reg(sc, reg, val);
4169 t4_read_reg(sc, reg); /* flush */
4170 }
4171
4172 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4173 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4174 int len, int rw)
4175 {
4176 struct memwin *mw;
4177 uint32_t mw_end, v;
4178
4179 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4180
4181 /* Memory can only be accessed in naturally aligned 4 byte units */
4182 if (addr & 3 || len & 3 || len <= 0)
4183 return (EINVAL);
4184
4185 mw = &sc->memwin[idx];
4186 while (len > 0) {
4187 rw_rlock(&mw->mw_lock);
4188 mw_end = mw->mw_curpos + mw->mw_aperture;
4189 if (addr >= mw_end || addr < mw->mw_curpos) {
4190 /* Will need to reposition the window */
4191 if (!rw_try_upgrade(&mw->mw_lock)) {
4192 rw_runlock(&mw->mw_lock);
4193 rw_wlock(&mw->mw_lock);
4194 }
4195 rw_assert(&mw->mw_lock, RA_WLOCKED);
4196 position_memwin(sc, idx, addr);
4197 rw_downgrade(&mw->mw_lock);
4198 mw_end = mw->mw_curpos + mw->mw_aperture;
4199 }
4200 rw_assert(&mw->mw_lock, RA_RLOCKED);
4201 while (addr < mw_end && len > 0) {
4202 if (rw == 0) {
4203 v = t4_read_reg(sc, mw->mw_base + addr -
4204 mw->mw_curpos);
4205 *val++ = le32toh(v);
4206 } else {
4207 v = *val++;
4208 t4_write_reg(sc, mw->mw_base + addr -
4209 mw->mw_curpos, htole32(v));
4210 }
4211 addr += 4;
4212 len -= 4;
4213 }
4214 rw_runlock(&mw->mw_lock);
4215 }
4216
4217 return (0);
4218 }
4219
4220 CTASSERT(M_TID_COOKIE == M_COOKIE);
4221 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4222
4223 static void
t4_init_atid_table(struct adapter * sc)4224 t4_init_atid_table(struct adapter *sc)
4225 {
4226 struct tid_info *t;
4227 int i;
4228
4229 t = &sc->tids;
4230 if (t->natids == 0)
4231 return;
4232
4233 MPASS(t->atid_tab == NULL);
4234
4235 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4236 M_ZERO | M_WAITOK);
4237 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4238 t->afree = t->atid_tab;
4239 t->atids_in_use = 0;
4240 t->atid_alloc_stopped = false;
4241 for (i = 1; i < t->natids; i++)
4242 t->atid_tab[i - 1].next = &t->atid_tab[i];
4243 t->atid_tab[t->natids - 1].next = NULL;
4244 }
4245
4246 static void
t4_free_atid_table(struct adapter * sc)4247 t4_free_atid_table(struct adapter *sc)
4248 {
4249 struct tid_info *t;
4250
4251 t = &sc->tids;
4252
4253 KASSERT(t->atids_in_use == 0,
4254 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4255
4256 if (mtx_initialized(&t->atid_lock))
4257 mtx_destroy(&t->atid_lock);
4258 free(t->atid_tab, M_CXGBE);
4259 t->atid_tab = NULL;
4260 }
4261
4262 static void
stop_atid_allocator(struct adapter * sc)4263 stop_atid_allocator(struct adapter *sc)
4264 {
4265 struct tid_info *t = &sc->tids;
4266
4267 if (t->natids == 0)
4268 return;
4269 mtx_lock(&t->atid_lock);
4270 t->atid_alloc_stopped = true;
4271 mtx_unlock(&t->atid_lock);
4272 }
4273
4274 static void
restart_atid_allocator(struct adapter * sc)4275 restart_atid_allocator(struct adapter *sc)
4276 {
4277 struct tid_info *t = &sc->tids;
4278
4279 if (t->natids == 0)
4280 return;
4281 mtx_lock(&t->atid_lock);
4282 KASSERT(t->atids_in_use == 0,
4283 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4284 t->atid_alloc_stopped = false;
4285 mtx_unlock(&t->atid_lock);
4286 }
4287
4288 int
alloc_atid(struct adapter * sc,void * ctx)4289 alloc_atid(struct adapter *sc, void *ctx)
4290 {
4291 struct tid_info *t = &sc->tids;
4292 int atid = -1;
4293
4294 mtx_lock(&t->atid_lock);
4295 if (t->afree && !t->atid_alloc_stopped) {
4296 union aopen_entry *p = t->afree;
4297
4298 atid = p - t->atid_tab;
4299 MPASS(atid <= M_TID_TID);
4300 t->afree = p->next;
4301 p->data = ctx;
4302 t->atids_in_use++;
4303 }
4304 mtx_unlock(&t->atid_lock);
4305 return (atid);
4306 }
4307
4308 void *
lookup_atid(struct adapter * sc,int atid)4309 lookup_atid(struct adapter *sc, int atid)
4310 {
4311 struct tid_info *t = &sc->tids;
4312
4313 return (t->atid_tab[atid].data);
4314 }
4315
4316 void
free_atid(struct adapter * sc,int atid)4317 free_atid(struct adapter *sc, int atid)
4318 {
4319 struct tid_info *t = &sc->tids;
4320 union aopen_entry *p = &t->atid_tab[atid];
4321
4322 mtx_lock(&t->atid_lock);
4323 p->next = t->afree;
4324 t->afree = p;
4325 t->atids_in_use--;
4326 mtx_unlock(&t->atid_lock);
4327 }
4328
4329 static void
queue_tid_release(struct adapter * sc,int tid)4330 queue_tid_release(struct adapter *sc, int tid)
4331 {
4332
4333 CXGBE_UNIMPLEMENTED("deferred tid release");
4334 }
4335
4336 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4337 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4338 {
4339 struct wrqe *wr;
4340 struct cpl_tid_release *req;
4341
4342 wr = alloc_wrqe(sizeof(*req), ctrlq);
4343 if (wr == NULL) {
4344 queue_tid_release(sc, tid); /* defer */
4345 return;
4346 }
4347 req = wrtod(wr);
4348
4349 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4350
4351 t4_wrq_tx(sc, wr);
4352 }
4353
4354 static int
t4_range_cmp(const void * a,const void * b)4355 t4_range_cmp(const void *a, const void *b)
4356 {
4357 return ((const struct t4_range *)a)->start -
4358 ((const struct t4_range *)b)->start;
4359 }
4360
4361 /*
4362 * Verify that the memory range specified by the addr/len pair is valid within
4363 * the card's address space.
4364 */
4365 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4366 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4367 {
4368 struct t4_range mem_ranges[4], *r, *next;
4369 uint32_t em, addr_len;
4370 int i, n, remaining;
4371
4372 /* Memory can only be accessed in naturally aligned 4 byte units */
4373 if (addr & 3 || len & 3 || len == 0)
4374 return (EINVAL);
4375
4376 /* Enabled memories */
4377 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4378
4379 r = &mem_ranges[0];
4380 n = 0;
4381 bzero(r, sizeof(mem_ranges));
4382 if (em & F_EDRAM0_ENABLE) {
4383 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4384 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4385 if (r->size > 0) {
4386 r->start = G_EDRAM0_BASE(addr_len) << 20;
4387 if (addr >= r->start &&
4388 addr + len <= r->start + r->size)
4389 return (0);
4390 r++;
4391 n++;
4392 }
4393 }
4394 if (em & F_EDRAM1_ENABLE) {
4395 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4396 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4397 if (r->size > 0) {
4398 r->start = G_EDRAM1_BASE(addr_len) << 20;
4399 if (addr >= r->start &&
4400 addr + len <= r->start + r->size)
4401 return (0);
4402 r++;
4403 n++;
4404 }
4405 }
4406 if (em & F_EXT_MEM_ENABLE) {
4407 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4408 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4409 if (r->size > 0) {
4410 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4411 if (addr >= r->start &&
4412 addr + len <= r->start + r->size)
4413 return (0);
4414 r++;
4415 n++;
4416 }
4417 }
4418 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4419 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4420 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4421 if (r->size > 0) {
4422 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4423 if (addr >= r->start &&
4424 addr + len <= r->start + r->size)
4425 return (0);
4426 r++;
4427 n++;
4428 }
4429 }
4430 MPASS(n <= nitems(mem_ranges));
4431
4432 if (n > 1) {
4433 /* Sort and merge the ranges. */
4434 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4435
4436 /* Start from index 0 and examine the next n - 1 entries. */
4437 r = &mem_ranges[0];
4438 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4439
4440 MPASS(r->size > 0); /* r is a valid entry. */
4441 next = r + 1;
4442 MPASS(next->size > 0); /* and so is the next one. */
4443
4444 while (r->start + r->size >= next->start) {
4445 /* Merge the next one into the current entry. */
4446 r->size = max(r->start + r->size,
4447 next->start + next->size) - r->start;
4448 n--; /* One fewer entry in total. */
4449 if (--remaining == 0)
4450 goto done; /* short circuit */
4451 next++;
4452 }
4453 if (next != r + 1) {
4454 /*
4455 * Some entries were merged into r and next
4456 * points to the first valid entry that couldn't
4457 * be merged.
4458 */
4459 MPASS(next->size > 0); /* must be valid */
4460 memcpy(r + 1, next, remaining * sizeof(*r));
4461 #ifdef INVARIANTS
4462 /*
4463 * This so that the foo->size assertion in the
4464 * next iteration of the loop do the right
4465 * thing for entries that were pulled up and are
4466 * no longer valid.
4467 */
4468 MPASS(n < nitems(mem_ranges));
4469 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4470 sizeof(struct t4_range));
4471 #endif
4472 }
4473 }
4474 done:
4475 /* Done merging the ranges. */
4476 MPASS(n > 0);
4477 r = &mem_ranges[0];
4478 for (i = 0; i < n; i++, r++) {
4479 if (addr >= r->start &&
4480 addr + len <= r->start + r->size)
4481 return (0);
4482 }
4483 }
4484
4485 return (EFAULT);
4486 }
4487
4488 static int
fwmtype_to_hwmtype(int mtype)4489 fwmtype_to_hwmtype(int mtype)
4490 {
4491
4492 switch (mtype) {
4493 case FW_MEMTYPE_EDC0:
4494 return (MEM_EDC0);
4495 case FW_MEMTYPE_EDC1:
4496 return (MEM_EDC1);
4497 case FW_MEMTYPE_EXTMEM:
4498 return (MEM_MC0);
4499 case FW_MEMTYPE_EXTMEM1:
4500 return (MEM_MC1);
4501 default:
4502 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4503 }
4504 }
4505
4506 /*
4507 * Verify that the memory range specified by the memtype/offset/len pair is
4508 * valid and lies entirely within the memtype specified. The global address of
4509 * the start of the range is returned in addr.
4510 */
4511 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4512 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4513 uint32_t *addr)
4514 {
4515 uint32_t em, addr_len, maddr;
4516
4517 /* Memory can only be accessed in naturally aligned 4 byte units */
4518 if (off & 3 || len & 3 || len == 0)
4519 return (EINVAL);
4520
4521 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4522 switch (fwmtype_to_hwmtype(mtype)) {
4523 case MEM_EDC0:
4524 if (!(em & F_EDRAM0_ENABLE))
4525 return (EINVAL);
4526 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4527 maddr = G_EDRAM0_BASE(addr_len) << 20;
4528 break;
4529 case MEM_EDC1:
4530 if (!(em & F_EDRAM1_ENABLE))
4531 return (EINVAL);
4532 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4533 maddr = G_EDRAM1_BASE(addr_len) << 20;
4534 break;
4535 case MEM_MC:
4536 if (!(em & F_EXT_MEM_ENABLE))
4537 return (EINVAL);
4538 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4539 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4540 break;
4541 case MEM_MC1:
4542 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4543 return (EINVAL);
4544 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4545 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4546 break;
4547 default:
4548 return (EINVAL);
4549 }
4550
4551 *addr = maddr + off; /* global address */
4552 return (validate_mem_range(sc, *addr, len));
4553 }
4554
4555 static int
fixup_devlog_params(struct adapter * sc)4556 fixup_devlog_params(struct adapter *sc)
4557 {
4558 struct devlog_params *dparams = &sc->params.devlog;
4559 int rc;
4560
4561 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4562 dparams->size, &dparams->addr);
4563
4564 return (rc);
4565 }
4566
4567 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4568 update_nirq(struct intrs_and_queues *iaq, int nports)
4569 {
4570
4571 iaq->nirq = T4_EXTRA_INTR;
4572 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4573 iaq->nirq += nports * iaq->nofldrxq;
4574 iaq->nirq += nports * (iaq->num_vis - 1) *
4575 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4576 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4577 }
4578
4579 /*
4580 * Adjust requirements to fit the number of interrupts available.
4581 */
4582 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4583 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4584 int navail)
4585 {
4586 int old_nirq;
4587 const int nports = sc->params.nports;
4588
4589 MPASS(nports > 0);
4590 MPASS(navail > 0);
4591
4592 bzero(iaq, sizeof(*iaq));
4593 iaq->intr_type = itype;
4594 iaq->num_vis = t4_num_vis;
4595 iaq->ntxq = t4_ntxq;
4596 iaq->ntxq_vi = t4_ntxq_vi;
4597 iaq->nrxq = t4_nrxq;
4598 iaq->nrxq_vi = t4_nrxq_vi;
4599 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4600 if (is_offload(sc) || is_ethoffload(sc)) {
4601 if (sc->params.tid_qid_sel_mask == 0) {
4602 iaq->nofldtxq = t4_nofldtxq;
4603 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4604 } else {
4605 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores);
4606 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi,
4607 sc->params.ncores);
4608 if (iaq->nofldtxq != t4_nofldtxq)
4609 device_printf(sc->dev,
4610 "nofldtxq updated (%d -> %d) for correct"
4611 " operation with %d firmware cores.\n",
4612 t4_nofldtxq, iaq->nofldtxq,
4613 sc->params.ncores);
4614 if (iaq->num_vis > 1 &&
4615 iaq->nofldtxq_vi != t4_nofldtxq_vi)
4616 device_printf(sc->dev,
4617 "nofldtxq_vi updated (%d -> %d) for correct"
4618 " operation with %d firmware cores.\n",
4619 t4_nofldtxq_vi, iaq->nofldtxq_vi,
4620 sc->params.ncores);
4621 }
4622 }
4623 #endif
4624 #ifdef TCP_OFFLOAD
4625 if (is_offload(sc)) {
4626 iaq->nofldrxq = t4_nofldrxq;
4627 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4628 }
4629 #endif
4630 #ifdef DEV_NETMAP
4631 if (t4_native_netmap & NN_MAIN_VI) {
4632 iaq->nnmtxq = t4_nnmtxq;
4633 iaq->nnmrxq = t4_nnmrxq;
4634 }
4635 if (t4_native_netmap & NN_EXTRA_VI) {
4636 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4637 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4638 }
4639 #endif
4640
4641 update_nirq(iaq, nports);
4642 if (iaq->nirq <= navail &&
4643 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4644 /*
4645 * This is the normal case -- there are enough interrupts for
4646 * everything.
4647 */
4648 goto done;
4649 }
4650
4651 /*
4652 * If extra VIs have been configured try reducing their count and see if
4653 * that works.
4654 */
4655 while (iaq->num_vis > 1) {
4656 iaq->num_vis--;
4657 update_nirq(iaq, nports);
4658 if (iaq->nirq <= navail &&
4659 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4660 device_printf(sc->dev, "virtual interfaces per port "
4661 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4662 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4663 "itype %d, navail %u, nirq %d.\n",
4664 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4665 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4666 itype, navail, iaq->nirq);
4667 goto done;
4668 }
4669 }
4670
4671 /*
4672 * Extra VIs will not be created. Log a message if they were requested.
4673 */
4674 MPASS(iaq->num_vis == 1);
4675 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4676 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4677 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4678 if (iaq->num_vis != t4_num_vis) {
4679 device_printf(sc->dev, "extra virtual interfaces disabled. "
4680 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4681 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4682 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4683 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4684 }
4685
4686 /*
4687 * Keep reducing the number of NIC rx queues to the next lower power of
4688 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4689 * if that works.
4690 */
4691 do {
4692 if (iaq->nrxq > 1) {
4693 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4694 if (iaq->nnmrxq > iaq->nrxq)
4695 iaq->nnmrxq = iaq->nrxq;
4696 }
4697 if (iaq->nofldrxq > 1)
4698 iaq->nofldrxq >>= 1;
4699
4700 old_nirq = iaq->nirq;
4701 update_nirq(iaq, nports);
4702 if (iaq->nirq <= navail &&
4703 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4704 device_printf(sc->dev, "running with reduced number of "
4705 "rx queues because of shortage of interrupts. "
4706 "nrxq=%u, nofldrxq=%u. "
4707 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4708 iaq->nofldrxq, itype, navail, iaq->nirq);
4709 goto done;
4710 }
4711 } while (old_nirq != iaq->nirq);
4712
4713 /* One interrupt for everything. Ugh. */
4714 device_printf(sc->dev, "running with minimal number of queues. "
4715 "itype %d, navail %u.\n", itype, navail);
4716 iaq->nirq = 1;
4717 iaq->nrxq = 1;
4718 iaq->ntxq = 1;
4719 if (iaq->nofldrxq > 0) {
4720 iaq->nofldrxq = 1;
4721 iaq->nofldtxq = 1;
4722 if (sc->params.tid_qid_sel_mask == 0)
4723 iaq->nofldtxq = 1;
4724 else
4725 iaq->nofldtxq = sc->params.ncores;
4726 }
4727 iaq->nnmtxq = 0;
4728 iaq->nnmrxq = 0;
4729 done:
4730 MPASS(iaq->num_vis > 0);
4731 if (iaq->num_vis > 1) {
4732 MPASS(iaq->nrxq_vi > 0);
4733 MPASS(iaq->ntxq_vi > 0);
4734 }
4735 MPASS(iaq->nirq > 0);
4736 MPASS(iaq->nrxq > 0);
4737 MPASS(iaq->ntxq > 0);
4738 if (itype == INTR_MSI)
4739 MPASS(powerof2(iaq->nirq));
4740 if (sc->params.tid_qid_sel_mask != 0)
4741 MPASS(iaq->nofldtxq % sc->params.ncores == 0);
4742 }
4743
4744 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4745 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4746 {
4747 int rc, itype, navail, nalloc;
4748
4749 for (itype = INTR_MSIX; itype; itype >>= 1) {
4750
4751 if ((itype & t4_intr_types) == 0)
4752 continue; /* not allowed */
4753
4754 if (itype == INTR_MSIX)
4755 navail = pci_msix_count(sc->dev);
4756 else if (itype == INTR_MSI)
4757 navail = pci_msi_count(sc->dev);
4758 else
4759 navail = 1;
4760 restart:
4761 if (navail == 0)
4762 continue;
4763
4764 calculate_iaq(sc, iaq, itype, navail);
4765 nalloc = iaq->nirq;
4766 rc = 0;
4767 if (itype == INTR_MSIX)
4768 rc = pci_alloc_msix(sc->dev, &nalloc);
4769 else if (itype == INTR_MSI)
4770 rc = pci_alloc_msi(sc->dev, &nalloc);
4771
4772 if (rc == 0 && nalloc > 0) {
4773 if (nalloc == iaq->nirq)
4774 return (0);
4775
4776 /*
4777 * Didn't get the number requested. Use whatever number
4778 * the kernel is willing to allocate.
4779 */
4780 device_printf(sc->dev, "fewer vectors than requested, "
4781 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4782 itype, iaq->nirq, nalloc);
4783 pci_release_msi(sc->dev);
4784 navail = nalloc;
4785 goto restart;
4786 }
4787
4788 device_printf(sc->dev,
4789 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4790 itype, rc, iaq->nirq, nalloc);
4791 }
4792
4793 device_printf(sc->dev,
4794 "failed to find a usable interrupt type. "
4795 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4796 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4797
4798 return (ENXIO);
4799 }
4800
4801 #define FW_VERSION(chip) ( \
4802 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4803 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4804 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4805 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4806 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4807
4808 /* Just enough of fw_hdr to cover all version info. */
4809 struct fw_h {
4810 __u8 ver;
4811 __u8 chip;
4812 __be16 len512;
4813 __be32 fw_ver;
4814 __be32 tp_microcode_ver;
4815 __u8 intfver_nic;
4816 __u8 intfver_vnic;
4817 __u8 intfver_ofld;
4818 __u8 intfver_ri;
4819 __u8 intfver_iscsipdu;
4820 __u8 intfver_iscsi;
4821 __u8 intfver_fcoepdu;
4822 __u8 intfver_fcoe;
4823 };
4824 /* Spot check a couple of fields. */
4825 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4826 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4827 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4828
4829 struct fw_info {
4830 uint8_t chip;
4831 char *kld_name;
4832 char *fw_mod_name;
4833 struct fw_h fw_h;
4834 } fw_info[] = {
4835 {
4836 .chip = CHELSIO_T4,
4837 .kld_name = "t4fw_cfg",
4838 .fw_mod_name = "t4fw",
4839 .fw_h = {
4840 .chip = FW_HDR_CHIP_T4,
4841 .fw_ver = htobe32(FW_VERSION(T4)),
4842 .intfver_nic = FW_INTFVER(T4, NIC),
4843 .intfver_vnic = FW_INTFVER(T4, VNIC),
4844 .intfver_ofld = FW_INTFVER(T4, OFLD),
4845 .intfver_ri = FW_INTFVER(T4, RI),
4846 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4847 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4848 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4849 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4850 },
4851 }, {
4852 .chip = CHELSIO_T5,
4853 .kld_name = "t5fw_cfg",
4854 .fw_mod_name = "t5fw",
4855 .fw_h = {
4856 .chip = FW_HDR_CHIP_T5,
4857 .fw_ver = htobe32(FW_VERSION(T5)),
4858 .intfver_nic = FW_INTFVER(T5, NIC),
4859 .intfver_vnic = FW_INTFVER(T5, VNIC),
4860 .intfver_ofld = FW_INTFVER(T5, OFLD),
4861 .intfver_ri = FW_INTFVER(T5, RI),
4862 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4863 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4864 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4865 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4866 },
4867 }, {
4868 .chip = CHELSIO_T6,
4869 .kld_name = "t6fw_cfg",
4870 .fw_mod_name = "t6fw",
4871 .fw_h = {
4872 .chip = FW_HDR_CHIP_T6,
4873 .fw_ver = htobe32(FW_VERSION(T6)),
4874 .intfver_nic = FW_INTFVER(T6, NIC),
4875 .intfver_vnic = FW_INTFVER(T6, VNIC),
4876 .intfver_ofld = FW_INTFVER(T6, OFLD),
4877 .intfver_ri = FW_INTFVER(T6, RI),
4878 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4879 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4880 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4881 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4882 },
4883 }, {
4884 .chip = CHELSIO_T7,
4885 .kld_name = "t7fw_cfg",
4886 .fw_mod_name = "t7fw",
4887 .fw_h = {
4888 .chip = FW_HDR_CHIP_T7,
4889 .fw_ver = htobe32(FW_VERSION(T7)),
4890 .intfver_nic = FW_INTFVER(T7, NIC),
4891 .intfver_vnic = FW_INTFVER(T7, VNIC),
4892 .intfver_ofld = FW_INTFVER(T7, OFLD),
4893 .intfver_ri = FW_INTFVER(T7, RI),
4894 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU),
4895 .intfver_iscsi = FW_INTFVER(T7, ISCSI),
4896 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU),
4897 .intfver_fcoe = FW_INTFVER(T7, FCOE),
4898 },
4899 }
4900 };
4901
4902 static struct fw_info *
find_fw_info(int chip)4903 find_fw_info(int chip)
4904 {
4905 int i;
4906
4907 for (i = 0; i < nitems(fw_info); i++) {
4908 if (fw_info[i].chip == chip)
4909 return (&fw_info[i]);
4910 }
4911 return (NULL);
4912 }
4913
4914 /*
4915 * Is the given firmware API compatible with the one the driver was compiled
4916 * with?
4917 */
4918 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4919 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4920 {
4921
4922 /* short circuit if it's the exact same firmware version */
4923 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4924 return (1);
4925
4926 /*
4927 * XXX: Is this too conservative? Perhaps I should limit this to the
4928 * features that are supported in the driver.
4929 */
4930 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4931 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4932 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4933 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4934 return (1);
4935 #undef SAME_INTF
4936
4937 return (0);
4938 }
4939
4940 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4941 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4942 const struct firmware **fw)
4943 {
4944 struct fw_info *fw_info;
4945
4946 *dcfg = NULL;
4947 if (fw != NULL)
4948 *fw = NULL;
4949
4950 fw_info = find_fw_info(chip_id(sc));
4951 if (fw_info == NULL) {
4952 device_printf(sc->dev,
4953 "unable to look up firmware information for chip %d.\n",
4954 chip_id(sc));
4955 return (EINVAL);
4956 }
4957
4958 *dcfg = firmware_get(fw_info->kld_name);
4959 if (*dcfg != NULL) {
4960 if (fw != NULL)
4961 *fw = firmware_get(fw_info->fw_mod_name);
4962 return (0);
4963 }
4964
4965 return (ENOENT);
4966 }
4967
4968 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4969 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4970 const struct firmware *fw)
4971 {
4972
4973 if (fw != NULL)
4974 firmware_put(fw, FIRMWARE_UNLOAD);
4975 if (dcfg != NULL)
4976 firmware_put(dcfg, FIRMWARE_UNLOAD);
4977 }
4978
4979 /*
4980 * Return values:
4981 * 0 means no firmware install attempted.
4982 * ERESTART means a firmware install was attempted and was successful.
4983 * +ve errno means a firmware install was attempted but failed.
4984 */
4985 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4986 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4987 const struct fw_h *drv_fw, const char *reason, int *already)
4988 {
4989 const struct firmware *cfg, *fw;
4990 const uint32_t c = be32toh(card_fw->fw_ver);
4991 uint32_t d, k;
4992 int rc, fw_install;
4993 struct fw_h bundled_fw;
4994 bool load_attempted;
4995
4996 cfg = fw = NULL;
4997 load_attempted = false;
4998 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4999
5000 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
5001 if (t4_fw_install < 0) {
5002 rc = load_fw_module(sc, &cfg, &fw);
5003 if (rc != 0 || fw == NULL) {
5004 device_printf(sc->dev,
5005 "failed to load firmware module: %d. cfg %p, fw %p;"
5006 " will use compiled-in firmware version for"
5007 "hw.cxgbe.fw_install checks.\n",
5008 rc, cfg, fw);
5009 } else {
5010 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
5011 }
5012 load_attempted = true;
5013 }
5014 d = be32toh(bundled_fw.fw_ver);
5015
5016 if (reason != NULL)
5017 goto install;
5018
5019 if ((sc->flags & FW_OK) == 0) {
5020
5021 if (c == 0xffffffff) {
5022 reason = "missing";
5023 goto install;
5024 }
5025
5026 rc = 0;
5027 goto done;
5028 }
5029
5030 if (!fw_compatible(card_fw, &bundled_fw)) {
5031 reason = "incompatible or unusable";
5032 goto install;
5033 }
5034
5035 if (d > c) {
5036 reason = "older than the version bundled with this driver";
5037 goto install;
5038 }
5039
5040 if (fw_install == 2 && d != c) {
5041 reason = "different than the version bundled with this driver";
5042 goto install;
5043 }
5044
5045 /* No reason to do anything to the firmware already on the card. */
5046 rc = 0;
5047 goto done;
5048
5049 install:
5050 rc = 0;
5051 if ((*already)++)
5052 goto done;
5053
5054 if (fw_install == 0) {
5055 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5056 "but the driver is prohibited from installing a firmware "
5057 "on the card.\n",
5058 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5059 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5060
5061 goto done;
5062 }
5063
5064 /*
5065 * We'll attempt to install a firmware. Load the module first (if it
5066 * hasn't been loaded already).
5067 */
5068 if (!load_attempted) {
5069 rc = load_fw_module(sc, &cfg, &fw);
5070 if (rc != 0 || fw == NULL) {
5071 device_printf(sc->dev,
5072 "failed to load firmware module: %d. cfg %p, fw %p\n",
5073 rc, cfg, fw);
5074 /* carry on */
5075 }
5076 }
5077 if (fw == NULL) {
5078 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5079 "but the driver cannot take corrective action because it "
5080 "is unable to load the firmware module.\n",
5081 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5082 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5083 rc = sc->flags & FW_OK ? 0 : ENOENT;
5084 goto done;
5085 }
5086 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
5087 if (k != d) {
5088 MPASS(t4_fw_install > 0);
5089 device_printf(sc->dev,
5090 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
5091 "expecting (%u.%u.%u.%u) and will not be used.\n",
5092 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
5093 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
5094 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5095 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5096 rc = sc->flags & FW_OK ? 0 : EINVAL;
5097 goto done;
5098 }
5099
5100 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5101 "installing firmware %u.%u.%u.%u on card.\n",
5102 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5103 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
5104 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5105 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5106
5107 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
5108 if (rc != 0) {
5109 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
5110 } else {
5111 /* Installed successfully, update the cached header too. */
5112 rc = ERESTART;
5113 memcpy(card_fw, fw->data, sizeof(*card_fw));
5114 }
5115 done:
5116 unload_fw_module(sc, cfg, fw);
5117
5118 return (rc);
5119 }
5120
5121 /*
5122 * Establish contact with the firmware and attempt to become the master driver.
5123 *
5124 * A firmware will be installed to the card if needed (if the driver is allowed
5125 * to do so).
5126 */
5127 static int
contact_firmware(struct adapter * sc)5128 contact_firmware(struct adapter *sc)
5129 {
5130 int rc, already = 0;
5131 enum dev_state state;
5132 struct fw_info *fw_info;
5133 struct fw_hdr *card_fw; /* fw on the card */
5134 const struct fw_h *drv_fw;
5135
5136 fw_info = find_fw_info(chip_id(sc));
5137 if (fw_info == NULL) {
5138 device_printf(sc->dev,
5139 "unable to look up firmware information for chip %d.\n",
5140 chip_id(sc));
5141 return (EINVAL);
5142 }
5143 drv_fw = &fw_info->fw_h;
5144
5145 /* Read the header of the firmware on the card */
5146 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
5147 restart:
5148 rc = -t4_get_fw_hdr(sc, card_fw);
5149 if (rc != 0) {
5150 device_printf(sc->dev,
5151 "unable to read firmware header from card's flash: %d\n",
5152 rc);
5153 goto done;
5154 }
5155
5156 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
5157 &already);
5158 if (rc == ERESTART)
5159 goto restart;
5160 if (rc != 0)
5161 goto done;
5162
5163 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
5164 if (rc < 0 || state == DEV_STATE_ERR) {
5165 rc = -rc;
5166 device_printf(sc->dev,
5167 "failed to connect to the firmware: %d, %d. "
5168 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5169 #if 0
5170 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5171 "not responding properly to HELLO", &already) == ERESTART)
5172 goto restart;
5173 #endif
5174 goto done;
5175 }
5176 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
5177 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
5178
5179 if (rc == sc->pf) {
5180 sc->flags |= MASTER_PF;
5181 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5182 NULL, &already);
5183 if (rc == ERESTART)
5184 rc = 0;
5185 else if (rc != 0)
5186 goto done;
5187 } else if (state == DEV_STATE_UNINIT) {
5188 /*
5189 * We didn't get to be the master so we definitely won't be
5190 * configuring the chip. It's a bug if someone else hasn't
5191 * configured it already.
5192 */
5193 device_printf(sc->dev, "couldn't be master(%d), "
5194 "device not already initialized either(%d). "
5195 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5196 rc = EPROTO;
5197 goto done;
5198 } else {
5199 /*
5200 * Some other PF is the master and has configured the chip.
5201 * This is allowed but untested.
5202 */
5203 device_printf(sc->dev, "PF%d is master, device state %d. "
5204 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5205 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5206 sc->cfcsum = 0;
5207 rc = 0;
5208 }
5209 done:
5210 if (rc != 0 && sc->flags & FW_OK) {
5211 t4_fw_bye(sc, sc->mbox);
5212 sc->flags &= ~FW_OK;
5213 }
5214 free(card_fw, M_CXGBE);
5215 return (rc);
5216 }
5217
5218 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff,u_int maxlen)5219 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5220 uint32_t mtype, uint32_t moff, u_int maxlen)
5221 {
5222 struct fw_info *fw_info;
5223 const struct firmware *dcfg, *rcfg = NULL;
5224 const uint32_t *cfdata;
5225 uint32_t cflen, addr;
5226 int rc;
5227
5228 load_fw_module(sc, &dcfg, NULL);
5229
5230 /* Card specific interpretation of "default". */
5231 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5232 if (pci_get_device(sc->dev) == 0x440a)
5233 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5234 if (is_fpga(sc))
5235 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5236 }
5237
5238 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5239 if (dcfg == NULL) {
5240 device_printf(sc->dev,
5241 "KLD with default config is not available.\n");
5242 rc = ENOENT;
5243 goto done;
5244 }
5245 cfdata = dcfg->data;
5246 cflen = dcfg->datasize & ~3;
5247 } else {
5248 char s[32];
5249
5250 fw_info = find_fw_info(chip_id(sc));
5251 if (fw_info == NULL) {
5252 device_printf(sc->dev,
5253 "unable to look up firmware information for chip %d.\n",
5254 chip_id(sc));
5255 rc = EINVAL;
5256 goto done;
5257 }
5258 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5259
5260 rcfg = firmware_get(s);
5261 if (rcfg == NULL) {
5262 device_printf(sc->dev,
5263 "unable to load module \"%s\" for configuration "
5264 "profile \"%s\".\n", s, cfg_file);
5265 rc = ENOENT;
5266 goto done;
5267 }
5268 cfdata = rcfg->data;
5269 cflen = rcfg->datasize & ~3;
5270 }
5271
5272 if (cflen > maxlen) {
5273 device_printf(sc->dev,
5274 "config file too long (%d, max allowed is %d).\n",
5275 cflen, maxlen);
5276 rc = EINVAL;
5277 goto done;
5278 }
5279
5280 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5281 if (rc != 0) {
5282 device_printf(sc->dev,
5283 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5284 __func__, mtype, moff, cflen, rc);
5285 rc = EINVAL;
5286 goto done;
5287 }
5288 write_via_memwin(sc, 2, addr, cfdata, cflen);
5289 done:
5290 if (rcfg != NULL)
5291 firmware_put(rcfg, FIRMWARE_UNLOAD);
5292 unload_fw_module(sc, dcfg, NULL);
5293 return (rc);
5294 }
5295
5296 struct caps_allowed {
5297 uint16_t nbmcaps;
5298 uint16_t linkcaps;
5299 uint16_t switchcaps;
5300 uint16_t nvmecaps;
5301 uint16_t niccaps;
5302 uint16_t toecaps;
5303 uint16_t rdmacaps;
5304 uint16_t cryptocaps;
5305 uint16_t iscsicaps;
5306 uint16_t fcoecaps;
5307 };
5308
5309 #define FW_PARAM_DEV(param) \
5310 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5311 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5312 #define FW_PARAM_PFVF(param) \
5313 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5314 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5315
5316 /*
5317 * Provide a configuration profile to the firmware and have it initialize the
5318 * chip accordingly. This may involve uploading a configuration file to the
5319 * card.
5320 */
5321 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5322 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5323 const struct caps_allowed *caps_allowed)
5324 {
5325 int rc;
5326 struct fw_caps_config_cmd caps;
5327 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5328 unsigned int maxlen = 0;
5329 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen);
5330
5331 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5332 if (rc != 0) {
5333 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5334 return (rc);
5335 }
5336
5337 bzero(&caps, sizeof(caps));
5338 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5339 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5340 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5341 mtype = 0;
5342 moff = 0;
5343 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5344 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5345 mtype = FW_MEMTYPE_FLASH;
5346 moff = cfg_addr;
5347 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5348 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5349 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5350 FW_LEN16(caps));
5351 } else {
5352 /*
5353 * Ask the firmware where it wants us to upload the config file.
5354 */
5355 param = FW_PARAM_DEV(CF);
5356 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5357 if (rc != 0) {
5358 /* No support for config file? Shouldn't happen. */
5359 device_printf(sc->dev,
5360 "failed to query config file location: %d.\n", rc);
5361 goto done;
5362 }
5363 mtype = G_FW_PARAMS_PARAM_Y(val);
5364 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5365 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5366 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5367 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5368 FW_LEN16(caps));
5369
5370 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen);
5371 if (rc != 0) {
5372 device_printf(sc->dev,
5373 "failed to upload config file to card: %d.\n", rc);
5374 goto done;
5375 }
5376 }
5377 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5378 if (rc != 0) {
5379 device_printf(sc->dev, "failed to pre-process config file: %d "
5380 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5381 goto done;
5382 }
5383
5384 finicsum = be32toh(caps.finicsum);
5385 cfcsum = be32toh(caps.cfcsum); /* actual */
5386 if (finicsum != cfcsum) {
5387 device_printf(sc->dev,
5388 "WARNING: config file checksum mismatch: %08x %08x\n",
5389 finicsum, cfcsum);
5390 }
5391 sc->cfcsum = cfcsum;
5392 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5393
5394 /*
5395 * Let the firmware know what features will (not) be used so it can tune
5396 * things accordingly.
5397 */
5398 #define LIMIT_CAPS(x) do { \
5399 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5400 } while (0)
5401 LIMIT_CAPS(nbm);
5402 LIMIT_CAPS(link);
5403 LIMIT_CAPS(switch);
5404 LIMIT_CAPS(nvme);
5405 LIMIT_CAPS(nic);
5406 LIMIT_CAPS(toe);
5407 LIMIT_CAPS(rdma);
5408 LIMIT_CAPS(crypto);
5409 LIMIT_CAPS(iscsi);
5410 LIMIT_CAPS(fcoe);
5411 #undef LIMIT_CAPS
5412 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5413 /*
5414 * TOE and hashfilters are mutually exclusive. It is a config
5415 * file or firmware bug if both are reported as available. Try
5416 * to cope with the situation in non-debug builds by disabling
5417 * TOE.
5418 */
5419 MPASS(caps.toecaps == 0);
5420
5421 caps.toecaps = 0;
5422 caps.rdmacaps = 0;
5423 caps.iscsicaps = 0;
5424 caps.nvmecaps = 0;
5425 }
5426
5427 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5428 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5429 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5430 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5431 if (rc != 0) {
5432 device_printf(sc->dev,
5433 "failed to process config file: %d.\n", rc);
5434 goto done;
5435 }
5436
5437 t4_tweak_chip_settings(sc);
5438 set_params__pre_init(sc);
5439
5440 /* get basic stuff going */
5441 rc = -t4_fw_initialize(sc, sc->mbox);
5442 if (rc != 0) {
5443 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5444 goto done;
5445 }
5446 done:
5447 return (rc);
5448 }
5449
5450 /*
5451 * Partition chip resources for use between various PFs, VFs, etc.
5452 */
5453 static int
partition_resources(struct adapter * sc)5454 partition_resources(struct adapter *sc)
5455 {
5456 char cfg_file[sizeof(t4_cfg_file)];
5457 struct caps_allowed caps_allowed;
5458 int rc;
5459 bool fallback;
5460
5461 /* Only the master driver gets to configure the chip resources. */
5462 MPASS(sc->flags & MASTER_PF);
5463
5464 #define COPY_CAPS(x) do { \
5465 caps_allowed.x##caps = t4_##x##caps_allowed; \
5466 } while (0)
5467 bzero(&caps_allowed, sizeof(caps_allowed));
5468 COPY_CAPS(nbm);
5469 COPY_CAPS(link);
5470 COPY_CAPS(switch);
5471 COPY_CAPS(nvme);
5472 COPY_CAPS(nic);
5473 COPY_CAPS(toe);
5474 COPY_CAPS(rdma);
5475 COPY_CAPS(crypto);
5476 COPY_CAPS(iscsi);
5477 COPY_CAPS(fcoe);
5478 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5479 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5480 retry:
5481 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5482 if (rc != 0 && fallback) {
5483 dump_devlog(sc);
5484 device_printf(sc->dev,
5485 "failed (%d) to configure card with \"%s\" profile, "
5486 "will fall back to a basic configuration and retry.\n",
5487 rc, cfg_file);
5488 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5489 bzero(&caps_allowed, sizeof(caps_allowed));
5490 COPY_CAPS(switch);
5491 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5492 fallback = false;
5493 goto retry;
5494 }
5495 #undef COPY_CAPS
5496 return (rc);
5497 }
5498
5499 /*
5500 * Retrieve parameters that are needed (or nice to have) very early.
5501 */
5502 static int
get_params__pre_init(struct adapter * sc)5503 get_params__pre_init(struct adapter *sc)
5504 {
5505 int rc;
5506 uint32_t param[2], val[2];
5507
5508 t4_get_version_info(sc);
5509
5510 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5511 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5512 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5513 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5514 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5515
5516 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5517 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5518 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5519 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5520 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5521
5522 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5523 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5524 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5525 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5526 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5527
5528 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5529 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5530 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5531 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5532 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5533
5534 param[0] = FW_PARAM_DEV(PORTVEC);
5535 param[1] = FW_PARAM_DEV(CCLK);
5536 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5537 if (rc != 0) {
5538 device_printf(sc->dev,
5539 "failed to query parameters (pre_init): %d.\n", rc);
5540 return (rc);
5541 }
5542
5543 sc->params.portvec = val[0];
5544 sc->params.nports = bitcount32(val[0]);
5545 sc->params.vpd.cclk = val[1];
5546
5547 /* Read device log parameters. */
5548 rc = -t4_init_devlog_ncores_params(sc, 1);
5549 if (rc == 0)
5550 fixup_devlog_params(sc);
5551 else {
5552 device_printf(sc->dev,
5553 "failed to get devlog parameters: %d.\n", rc);
5554 rc = 0; /* devlog isn't critical for device operation */
5555 }
5556
5557 return (rc);
5558 }
5559
5560 /*
5561 * Any params that need to be set before FW_INITIALIZE.
5562 */
5563 static int
set_params__pre_init(struct adapter * sc)5564 set_params__pre_init(struct adapter *sc)
5565 {
5566 int rc = 0;
5567 uint32_t param, val;
5568
5569 if (chip_id(sc) >= CHELSIO_T6) {
5570 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5571 val = 1;
5572 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5573 /* firmwares < 1.20.1.0 do not have this param. */
5574 if (rc == FW_EINVAL &&
5575 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5576 rc = 0;
5577 }
5578 if (rc != 0) {
5579 device_printf(sc->dev,
5580 "failed to enable high priority filters :%d.\n",
5581 rc);
5582 }
5583
5584 param = FW_PARAM_DEV(PPOD_EDRAM);
5585 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5586 if (rc == 0 && val == 1) {
5587 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5588 &val);
5589 if (rc != 0) {
5590 device_printf(sc->dev,
5591 "failed to set PPOD_EDRAM: %d.\n", rc);
5592 }
5593 }
5594 }
5595
5596 /* Enable opaque VIIDs with firmwares that support it. */
5597 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5598 val = 1;
5599 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5600 if (rc == 0 && val == 1)
5601 sc->params.viid_smt_extn_support = true;
5602 else
5603 sc->params.viid_smt_extn_support = false;
5604
5605 return (rc);
5606 }
5607
5608 /*
5609 * Retrieve various parameters that are of interest to the driver. The device
5610 * has been initialized by the firmware at this point.
5611 */
5612 static int
get_params__post_init(struct adapter * sc)5613 get_params__post_init(struct adapter *sc)
5614 {
5615 int rc;
5616 uint32_t param[7], val[7];
5617 struct fw_caps_config_cmd caps;
5618
5619 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5620 param[1] = FW_PARAM_PFVF(EQ_START);
5621 param[2] = FW_PARAM_PFVF(FILTER_START);
5622 param[3] = FW_PARAM_PFVF(FILTER_END);
5623 param[4] = FW_PARAM_PFVF(L2T_START);
5624 param[5] = FW_PARAM_PFVF(L2T_END);
5625 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5626 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5627 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5628 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5629 if (rc != 0) {
5630 device_printf(sc->dev,
5631 "failed to query parameters (post_init): %d.\n", rc);
5632 return (rc);
5633 }
5634
5635 sc->sge.iq_start = val[0];
5636 sc->sge.eq_start = val[1];
5637 if ((int)val[3] > (int)val[2]) {
5638 sc->tids.ftid_base = val[2];
5639 sc->tids.ftid_end = val[3];
5640 sc->tids.nftids = val[3] - val[2] + 1;
5641 }
5642 sc->vres.l2t.start = val[4];
5643 sc->vres.l2t.size = val[5] - val[4] + 1;
5644 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5645 if (sc->vres.l2t.size > 0)
5646 MPASS(fls(val[5]) <= S_SYNC_WR);
5647 sc->params.core_vdd = val[6];
5648
5649 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5650 param[1] = FW_PARAM_PFVF(EQ_END);
5651 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5652 if (rc != 0) {
5653 device_printf(sc->dev,
5654 "failed to query parameters (post_init2): %d.\n", rc);
5655 return (rc);
5656 }
5657 MPASS((int)val[0] >= sc->sge.iq_start);
5658 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5659 MPASS((int)val[1] >= sc->sge.eq_start);
5660 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5661
5662 if (chip_id(sc) >= CHELSIO_T6) {
5663
5664 sc->tids.tid_base = t4_read_reg(sc,
5665 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5666
5667 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5668 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5669 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5670 if (rc != 0) {
5671 device_printf(sc->dev,
5672 "failed to query hpfilter parameters: %d.\n", rc);
5673 return (rc);
5674 }
5675 if ((int)val[1] > (int)val[0]) {
5676 sc->tids.hpftid_base = val[0];
5677 sc->tids.hpftid_end = val[1];
5678 sc->tids.nhpftids = val[1] - val[0] + 1;
5679
5680 /*
5681 * These should go off if the layout changes and the
5682 * driver needs to catch up.
5683 */
5684 MPASS(sc->tids.hpftid_base == 0);
5685 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5686 }
5687
5688 param[0] = FW_PARAM_PFVF(RAWF_START);
5689 param[1] = FW_PARAM_PFVF(RAWF_END);
5690 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5691 if (rc != 0) {
5692 device_printf(sc->dev,
5693 "failed to query rawf parameters: %d.\n", rc);
5694 return (rc);
5695 }
5696 if ((int)val[1] > (int)val[0]) {
5697 sc->rawf_base = val[0];
5698 sc->nrawf = val[1] - val[0] + 1;
5699 }
5700 }
5701
5702 if (sc->params.ncores > 1) {
5703 MPASS(chip_id(sc) >= CHELSIO_T7);
5704
5705 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK);
5706 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5707 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0;
5708 }
5709
5710 /*
5711 * The parameters that follow may not be available on all firmwares. We
5712 * query them individually rather than in a compound query because old
5713 * firmwares fail the entire query if an unknown parameter is queried.
5714 */
5715
5716 /*
5717 * MPS buffer group configuration.
5718 */
5719 param[0] = FW_PARAM_DEV(MPSBGMAP);
5720 val[0] = 0;
5721 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5722 if (rc == 0)
5723 sc->params.mps_bg_map = val[0];
5724 else
5725 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5726
5727 param[0] = FW_PARAM_DEV(TPCHMAP);
5728 val[0] = 0;
5729 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5730 if (rc == 0)
5731 sc->params.tp_ch_map = val[0];
5732 else
5733 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5734
5735 param[0] = FW_PARAM_DEV(TX_TPCHMAP);
5736 val[0] = 0;
5737 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5738 if (rc == 0)
5739 sc->params.tx_tp_ch_map = val[0];
5740 else
5741 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */
5742
5743 /*
5744 * Determine whether the firmware supports the filter2 work request.
5745 */
5746 param[0] = FW_PARAM_DEV(FILTER2_WR);
5747 val[0] = 0;
5748 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5749 if (rc == 0)
5750 sc->params.filter2_wr_support = val[0] != 0;
5751 else
5752 sc->params.filter2_wr_support = 0;
5753
5754 /*
5755 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5756 */
5757 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5758 val[0] = 0;
5759 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5760 if (rc == 0)
5761 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5762 else
5763 sc->params.ulptx_memwrite_dsgl = false;
5764
5765 /* FW_RI_FR_NSMR_TPTE_WR support */
5766 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5767 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5768 if (rc == 0)
5769 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5770 else
5771 sc->params.fr_nsmr_tpte_wr_support = false;
5772
5773 /* Support for 512 SGL entries per FR MR. */
5774 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5775 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5776 if (rc == 0)
5777 sc->params.dev_512sgl_mr = val[0] != 0;
5778 else
5779 sc->params.dev_512sgl_mr = false;
5780
5781 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5782 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5783 if (rc == 0)
5784 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5785 else
5786 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5787
5788 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5789 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5790 if (rc == 0) {
5791 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5792 sc->params.nsched_cls = val[0];
5793 } else
5794 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5795
5796 /* get capabilites */
5797 bzero(&caps, sizeof(caps));
5798 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5799 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5800 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5801 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5802 if (rc != 0) {
5803 device_printf(sc->dev,
5804 "failed to get card capabilities: %d.\n", rc);
5805 return (rc);
5806 }
5807
5808 #define READ_CAPS(x) do { \
5809 sc->x = htobe16(caps.x); \
5810 } while (0)
5811 READ_CAPS(nbmcaps);
5812 READ_CAPS(linkcaps);
5813 READ_CAPS(switchcaps);
5814 READ_CAPS(nvmecaps);
5815 READ_CAPS(niccaps);
5816 READ_CAPS(toecaps);
5817 READ_CAPS(rdmacaps);
5818 READ_CAPS(cryptocaps);
5819 READ_CAPS(iscsicaps);
5820 READ_CAPS(fcoecaps);
5821
5822 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5823 MPASS(chip_id(sc) > CHELSIO_T4);
5824 MPASS(sc->toecaps == 0);
5825 sc->toecaps = 0;
5826
5827 param[0] = FW_PARAM_DEV(NTID);
5828 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5829 if (rc != 0) {
5830 device_printf(sc->dev,
5831 "failed to query HASHFILTER parameters: %d.\n", rc);
5832 return (rc);
5833 }
5834 sc->tids.ntids = val[0];
5835 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5836 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5837 sc->tids.ntids -= sc->tids.nhpftids;
5838 }
5839 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5840 sc->params.hash_filter = 1;
5841 }
5842 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5843 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5844 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5845 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5846 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5847 if (rc != 0) {
5848 device_printf(sc->dev,
5849 "failed to query NIC parameters: %d.\n", rc);
5850 return (rc);
5851 }
5852 if ((int)val[1] > (int)val[0]) {
5853 sc->tids.etid_base = val[0];
5854 sc->tids.etid_end = val[1];
5855 sc->tids.netids = val[1] - val[0] + 1;
5856 sc->params.eo_wr_cred = val[2];
5857 sc->params.ethoffload = 1;
5858 }
5859 }
5860 if (sc->toecaps) {
5861 /* query offload-related parameters */
5862 param[0] = FW_PARAM_DEV(NTID);
5863 param[1] = FW_PARAM_PFVF(SERVER_START);
5864 param[2] = FW_PARAM_PFVF(SERVER_END);
5865 param[3] = FW_PARAM_PFVF(TDDP_START);
5866 param[4] = FW_PARAM_PFVF(TDDP_END);
5867 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5868 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5869 if (rc != 0) {
5870 device_printf(sc->dev,
5871 "failed to query TOE parameters: %d.\n", rc);
5872 return (rc);
5873 }
5874 sc->tids.ntids = val[0];
5875 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5876 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5877 sc->tids.ntids -= sc->tids.nhpftids;
5878 }
5879 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5880 if ((int)val[2] > (int)val[1]) {
5881 sc->tids.stid_base = val[1];
5882 sc->tids.nstids = val[2] - val[1] + 1;
5883 }
5884 sc->vres.ddp.start = val[3];
5885 sc->vres.ddp.size = val[4] - val[3] + 1;
5886 sc->params.ofldq_wr_cred = val[5];
5887 sc->params.offload = 1;
5888 } else {
5889 /*
5890 * The firmware attempts memfree TOE configuration for -SO cards
5891 * and will report toecaps=0 if it runs out of resources (this
5892 * depends on the config file). It may not report 0 for other
5893 * capabilities dependent on the TOE in this case. Set them to
5894 * 0 here so that the driver doesn't bother tracking resources
5895 * that will never be used.
5896 */
5897 sc->iscsicaps = 0;
5898 sc->nvmecaps = 0;
5899 sc->rdmacaps = 0;
5900 }
5901 if (sc->nvmecaps || sc->rdmacaps) {
5902 param[0] = FW_PARAM_PFVF(STAG_START);
5903 param[1] = FW_PARAM_PFVF(STAG_END);
5904 param[2] = FW_PARAM_PFVF(PBL_START);
5905 param[3] = FW_PARAM_PFVF(PBL_END);
5906 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5907 if (rc != 0) {
5908 device_printf(sc->dev,
5909 "failed to query NVMe/RDMA parameters: %d.\n", rc);
5910 return (rc);
5911 }
5912 sc->vres.stag.start = val[0];
5913 sc->vres.stag.size = val[1] - val[0] + 1;
5914 sc->vres.pbl.start = val[2];
5915 sc->vres.pbl.size = val[3] - val[2] + 1;
5916 }
5917 if (sc->rdmacaps) {
5918 param[0] = FW_PARAM_PFVF(RQ_START);
5919 param[1] = FW_PARAM_PFVF(RQ_END);
5920 param[2] = FW_PARAM_PFVF(SQRQ_START);
5921 param[3] = FW_PARAM_PFVF(SQRQ_END);
5922 param[4] = FW_PARAM_PFVF(CQ_START);
5923 param[5] = FW_PARAM_PFVF(CQ_END);
5924 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5925 if (rc != 0) {
5926 device_printf(sc->dev,
5927 "failed to query RDMA parameters(1): %d.\n", rc);
5928 return (rc);
5929 }
5930 sc->vres.rq.start = val[0];
5931 sc->vres.rq.size = val[1] - val[0] + 1;
5932 sc->vres.qp.start = val[2];
5933 sc->vres.qp.size = val[3] - val[2] + 1;
5934 sc->vres.cq.start = val[4];
5935 sc->vres.cq.size = val[5] - val[4] + 1;
5936
5937 param[0] = FW_PARAM_PFVF(OCQ_START);
5938 param[1] = FW_PARAM_PFVF(OCQ_END);
5939 param[2] = FW_PARAM_PFVF(SRQ_START);
5940 param[3] = FW_PARAM_PFVF(SRQ_END);
5941 param[4] = FW_PARAM_DEV(MAXORDIRD_QP);
5942 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5943 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5944 if (rc != 0) {
5945 device_printf(sc->dev,
5946 "failed to query RDMA parameters(2): %d.\n", rc);
5947 return (rc);
5948 }
5949 sc->vres.ocq.start = val[0];
5950 sc->vres.ocq.size = val[1] - val[0] + 1;
5951 sc->vres.srq.start = val[2];
5952 sc->vres.srq.size = val[3] - val[2] + 1;
5953 sc->params.max_ordird_qp = val[4];
5954 sc->params.max_ird_adapter = val[5];
5955 }
5956 if (sc->iscsicaps) {
5957 param[0] = FW_PARAM_PFVF(ISCSI_START);
5958 param[1] = FW_PARAM_PFVF(ISCSI_END);
5959 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5960 if (rc != 0) {
5961 device_printf(sc->dev,
5962 "failed to query iSCSI parameters: %d.\n", rc);
5963 return (rc);
5964 }
5965 sc->vres.iscsi.start = val[0];
5966 sc->vres.iscsi.size = val[1] - val[0] + 1;
5967 }
5968 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5969 param[0] = FW_PARAM_PFVF(TLS_START);
5970 param[1] = FW_PARAM_PFVF(TLS_END);
5971 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5972 if (rc != 0) {
5973 device_printf(sc->dev,
5974 "failed to query TLS parameters: %d.\n", rc);
5975 return (rc);
5976 }
5977 sc->vres.key.start = val[0];
5978 sc->vres.key.size = val[1] - val[0] + 1;
5979 }
5980
5981 /*
5982 * We've got the params we wanted to query directly from the firmware.
5983 * Grab some others via other means.
5984 */
5985 t4_init_sge_params(sc);
5986 t4_init_tp_params(sc);
5987 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5988 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5989
5990 rc = t4_verify_chip_settings(sc);
5991 if (rc != 0)
5992 return (rc);
5993 t4_init_rx_buf_info(sc);
5994
5995 return (rc);
5996 }
5997
5998 #ifdef KERN_TLS
5999 static void
ktls_tick(void * arg)6000 ktls_tick(void *arg)
6001 {
6002 struct adapter *sc;
6003 uint32_t tstamp;
6004
6005 sc = arg;
6006 tstamp = tcp_ts_getticks();
6007 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
6008 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
6009 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
6010 }
6011
6012 static int
t6_config_kern_tls(struct adapter * sc,bool enable)6013 t6_config_kern_tls(struct adapter *sc, bool enable)
6014 {
6015 int rc;
6016 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6017 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
6018 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
6019 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
6020
6021 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
6022 if (rc != 0) {
6023 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
6024 enable ? "enable" : "disable", rc);
6025 return (rc);
6026 }
6027
6028 if (enable) {
6029 sc->flags |= KERN_TLS_ON;
6030 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
6031 C_HARDCLOCK);
6032 } else {
6033 sc->flags &= ~KERN_TLS_ON;
6034 callout_stop(&sc->ktls_tick);
6035 }
6036
6037 return (rc);
6038 }
6039 #endif
6040
6041 static int
set_params__post_init(struct adapter * sc)6042 set_params__post_init(struct adapter *sc)
6043 {
6044 uint32_t mask, param, val;
6045 #ifdef TCP_OFFLOAD
6046 int i, v, shift;
6047 #endif
6048
6049 /* ask for encapsulated CPLs */
6050 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
6051 val = 1;
6052 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
6053
6054 /* Enable 32b port caps if the firmware supports it. */
6055 param = FW_PARAM_PFVF(PORT_CAPS32);
6056 val = 1;
6057 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
6058 sc->params.port_caps32 = 1;
6059
6060 /* Let filter + maskhash steer to a part of the VI's RSS region. */
6061 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
6062 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
6063 V_MASKFILTER(val - 1));
6064
6065 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
6066 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
6067 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6068 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
6069 val = 0;
6070 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
6071 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
6072 F_ATTACKFILTERENABLE);
6073 val |= F_DROPERRORATTACK;
6074 }
6075 if (t4_drop_ip_fragments != 0) {
6076 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
6077 F_FRAGMENTDROP);
6078 val |= F_DROPERRORFRAG;
6079 }
6080 if (t4_drop_pkts_with_l2_errors != 0)
6081 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
6082 if (t4_drop_pkts_with_l3_errors != 0) {
6083 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
6084 F_DROPERRORCSUMIP;
6085 }
6086 if (t4_drop_pkts_with_l4_errors != 0) {
6087 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6088 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
6089 }
6090 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
6091
6092 #ifdef TCP_OFFLOAD
6093 /*
6094 * Override the TOE timers with user provided tunables. This is not the
6095 * recommended way to change the timers (the firmware config file is) so
6096 * these tunables are not documented.
6097 *
6098 * All the timer tunables are in microseconds.
6099 */
6100 if (t4_toe_keepalive_idle != 0) {
6101 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
6102 v &= M_KEEPALIVEIDLE;
6103 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
6104 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
6105 }
6106 if (t4_toe_keepalive_interval != 0) {
6107 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
6108 v &= M_KEEPALIVEINTVL;
6109 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
6110 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
6111 }
6112 if (t4_toe_keepalive_count != 0) {
6113 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
6114 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6115 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
6116 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
6117 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
6118 }
6119 if (t4_toe_rexmt_min != 0) {
6120 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
6121 v &= M_RXTMIN;
6122 t4_set_reg_field(sc, A_TP_RXT_MIN,
6123 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
6124 }
6125 if (t4_toe_rexmt_max != 0) {
6126 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
6127 v &= M_RXTMAX;
6128 t4_set_reg_field(sc, A_TP_RXT_MAX,
6129 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
6130 }
6131 if (t4_toe_rexmt_count != 0) {
6132 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
6133 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6134 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
6135 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
6136 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
6137 }
6138 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
6139 if (t4_toe_rexmt_backoff[i] != -1) {
6140 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
6141 shift = (i & 3) << 3;
6142 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
6143 M_TIMERBACKOFFINDEX0 << shift, v << shift);
6144 }
6145 }
6146 #endif
6147
6148 /*
6149 * Limit TOE connections to 2 reassembly "islands". This is
6150 * required to permit migrating TOE connections to either
6151 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
6152 */
6153 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
6154 V_PASSMODE(2));
6155
6156 #ifdef KERN_TLS
6157 if (is_ktls(sc)) {
6158 sc->tlst.inline_keys = t4_tls_inline_keys;
6159 if (t4_kern_tls != 0 && is_t6(sc)) {
6160 sc->tlst.combo_wrs = t4_tls_combo_wrs;
6161 t6_config_kern_tls(sc, true);
6162 } else {
6163 sc->tlst.short_records = t4_tls_short_records;
6164 sc->tlst.partial_ghash = t4_tls_partial_ghash;
6165 }
6166 }
6167 #endif
6168 return (0);
6169 }
6170
6171 #undef FW_PARAM_PFVF
6172 #undef FW_PARAM_DEV
6173
6174 static void
t4_set_desc(struct adapter * sc)6175 t4_set_desc(struct adapter *sc)
6176 {
6177 struct adapter_params *p = &sc->params;
6178
6179 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
6180 }
6181
6182 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)6183 ifmedia_add4(struct ifmedia *ifm, int m)
6184 {
6185
6186 ifmedia_add(ifm, m, 0, NULL);
6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
6188 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
6189 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
6190 }
6191
6192 /*
6193 * This is the selected media, which is not quite the same as the active media.
6194 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
6195 * and active are not the same, and "media: Ethernet selected" otherwise.
6196 */
6197 static void
set_current_media(struct port_info * pi)6198 set_current_media(struct port_info *pi)
6199 {
6200 struct link_config *lc;
6201 struct ifmedia *ifm;
6202 int mword;
6203 u_int speed;
6204
6205 PORT_LOCK_ASSERT_OWNED(pi);
6206
6207 /* Leave current media alone if it's already set to IFM_NONE. */
6208 ifm = &pi->media;
6209 if (ifm->ifm_cur != NULL &&
6210 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
6211 return;
6212
6213 lc = &pi->link_cfg;
6214 if (lc->requested_aneg != AUTONEG_DISABLE &&
6215 lc->pcaps & FW_PORT_CAP32_ANEG) {
6216 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6217 return;
6218 }
6219 mword = IFM_ETHER | IFM_FDX;
6220 if (lc->requested_fc & PAUSE_TX)
6221 mword |= IFM_ETH_TXPAUSE;
6222 if (lc->requested_fc & PAUSE_RX)
6223 mword |= IFM_ETH_RXPAUSE;
6224 if (lc->requested_speed == 0)
6225 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6226 else
6227 speed = lc->requested_speed;
6228 mword |= port_mword(pi, speed_to_fwcap(speed));
6229 ifmedia_set(ifm, mword);
6230 }
6231
6232 /*
6233 * Returns true if the ifmedia list for the port cannot change.
6234 */
6235 static bool
fixed_ifmedia(struct port_info * pi)6236 fixed_ifmedia(struct port_info *pi)
6237 {
6238
6239 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6240 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6241 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6242 pi->port_type == FW_PORT_TYPE_KX4 ||
6243 pi->port_type == FW_PORT_TYPE_KX ||
6244 pi->port_type == FW_PORT_TYPE_KR ||
6245 pi->port_type == FW_PORT_TYPE_BP_AP ||
6246 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6247 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6248 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6249 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6250 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6251 }
6252
6253 static void
build_medialist(struct port_info * pi)6254 build_medialist(struct port_info *pi)
6255 {
6256 uint32_t ss, speed;
6257 int unknown, mword, bit;
6258 struct link_config *lc;
6259 struct ifmedia *ifm;
6260
6261 PORT_LOCK_ASSERT_OWNED(pi);
6262
6263 if (pi->flags & FIXED_IFMEDIA)
6264 return;
6265
6266 /*
6267 * Rebuild the ifmedia list.
6268 */
6269 ifm = &pi->media;
6270 ifmedia_removeall(ifm);
6271 lc = &pi->link_cfg;
6272 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6273 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6274 MPASS(ss != 0);
6275 no_media:
6276 MPASS(LIST_EMPTY(&ifm->ifm_list));
6277 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6278 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6279 return;
6280 }
6281
6282 unknown = 0;
6283 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6284 speed = 1 << bit;
6285 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6286 if (ss & speed) {
6287 mword = port_mword(pi, speed);
6288 if (mword == IFM_NONE) {
6289 goto no_media;
6290 } else if (mword == IFM_UNKNOWN)
6291 unknown++;
6292 else
6293 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6294 }
6295 }
6296 if (unknown > 0) /* Add one unknown for all unknown media types. */
6297 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6298 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6299 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6300
6301 set_current_media(pi);
6302 }
6303
6304 /*
6305 * Initialize the requested fields in the link config based on driver tunables.
6306 */
6307 static void
init_link_config(struct port_info * pi)6308 init_link_config(struct port_info *pi)
6309 {
6310 struct link_config *lc = &pi->link_cfg;
6311
6312 PORT_LOCK_ASSERT_OWNED(pi);
6313
6314 lc->requested_caps = 0;
6315 lc->requested_speed = 0;
6316
6317 if (t4_autoneg == 0)
6318 lc->requested_aneg = AUTONEG_DISABLE;
6319 else if (t4_autoneg == 1)
6320 lc->requested_aneg = AUTONEG_ENABLE;
6321 else
6322 lc->requested_aneg = AUTONEG_AUTO;
6323
6324 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6325 PAUSE_AUTONEG);
6326
6327 if (t4_fec & FEC_AUTO)
6328 lc->requested_fec = FEC_AUTO;
6329 else if (t4_fec == 0)
6330 lc->requested_fec = FEC_NONE;
6331 else {
6332 /* -1 is handled by the FEC_AUTO block above and not here. */
6333 lc->requested_fec = t4_fec &
6334 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6335 if (lc->requested_fec == 0)
6336 lc->requested_fec = FEC_AUTO;
6337 }
6338 if (t4_force_fec < 0)
6339 lc->force_fec = -1;
6340 else if (t4_force_fec > 0)
6341 lc->force_fec = 1;
6342 else
6343 lc->force_fec = 0;
6344 }
6345
6346 /*
6347 * Makes sure that all requested settings comply with what's supported by the
6348 * port. Returns the number of settings that were invalid and had to be fixed.
6349 */
6350 static int
fixup_link_config(struct port_info * pi)6351 fixup_link_config(struct port_info *pi)
6352 {
6353 int n = 0;
6354 struct link_config *lc = &pi->link_cfg;
6355 uint32_t fwspeed;
6356
6357 PORT_LOCK_ASSERT_OWNED(pi);
6358
6359 /* Speed (when not autonegotiating) */
6360 if (lc->requested_speed != 0) {
6361 fwspeed = speed_to_fwcap(lc->requested_speed);
6362 if ((fwspeed & lc->pcaps) == 0) {
6363 n++;
6364 lc->requested_speed = 0;
6365 }
6366 }
6367
6368 /* Link autonegotiation */
6369 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6370 lc->requested_aneg == AUTONEG_DISABLE ||
6371 lc->requested_aneg == AUTONEG_AUTO);
6372 if (lc->requested_aneg == AUTONEG_ENABLE &&
6373 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6374 n++;
6375 lc->requested_aneg = AUTONEG_AUTO;
6376 }
6377
6378 /* Flow control */
6379 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6380 if (lc->requested_fc & PAUSE_TX &&
6381 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6382 n++;
6383 lc->requested_fc &= ~PAUSE_TX;
6384 }
6385 if (lc->requested_fc & PAUSE_RX &&
6386 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6387 n++;
6388 lc->requested_fc &= ~PAUSE_RX;
6389 }
6390 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6391 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6392 n++;
6393 lc->requested_fc |= PAUSE_AUTONEG;
6394 }
6395
6396 /* FEC */
6397 if ((lc->requested_fec & FEC_RS &&
6398 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6399 (lc->requested_fec & FEC_BASER_RS &&
6400 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6401 n++;
6402 lc->requested_fec = FEC_AUTO;
6403 }
6404
6405 return (n);
6406 }
6407
6408 /*
6409 * Apply the requested L1 settings, which are expected to be valid, to the
6410 * hardware.
6411 */
6412 static int
apply_link_config(struct port_info * pi)6413 apply_link_config(struct port_info *pi)
6414 {
6415 struct adapter *sc = pi->adapter;
6416 struct link_config *lc = &pi->link_cfg;
6417 int rc;
6418
6419 #ifdef INVARIANTS
6420 ASSERT_SYNCHRONIZED_OP(sc);
6421 PORT_LOCK_ASSERT_OWNED(pi);
6422
6423 if (lc->requested_aneg == AUTONEG_ENABLE)
6424 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6425 if (!(lc->requested_fc & PAUSE_AUTONEG))
6426 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6427 if (lc->requested_fc & PAUSE_TX)
6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6429 if (lc->requested_fc & PAUSE_RX)
6430 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6431 if (lc->requested_fec & FEC_RS)
6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6433 if (lc->requested_fec & FEC_BASER_RS)
6434 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6435 #endif
6436 if (!(sc->flags & IS_VF)) {
6437 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc);
6438 if (rc != 0) {
6439 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6440 return (rc);
6441 }
6442 }
6443
6444 /*
6445 * An L1_CFG will almost always result in a link-change event if the
6446 * link is up, and the driver will refresh the actual fec/fc/etc. when
6447 * the notification is processed. If the link is down then the actual
6448 * settings are meaningless.
6449 *
6450 * This takes care of the case where a change in the L1 settings may not
6451 * result in a notification.
6452 */
6453 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6454 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6455
6456 return (0);
6457 }
6458
6459 #define FW_MAC_EXACT_CHUNK 7
6460 struct mcaddr_ctx {
6461 if_t ifp;
6462 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6463 uint64_t hash;
6464 int i;
6465 int del;
6466 int rc;
6467 };
6468
6469 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6470 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6471 {
6472 struct mcaddr_ctx *ctx = arg;
6473 struct vi_info *vi = if_getsoftc(ctx->ifp);
6474 struct port_info *pi = vi->pi;
6475 struct adapter *sc = pi->adapter;
6476
6477 if (ctx->rc < 0)
6478 return (0);
6479
6480 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6481 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6482 ctx->i++;
6483
6484 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6485 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6486 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6487 if (ctx->rc < 0) {
6488 int j;
6489
6490 for (j = 0; j < ctx->i; j++) {
6491 if_printf(ctx->ifp,
6492 "failed to add mc address"
6493 " %02x:%02x:%02x:"
6494 "%02x:%02x:%02x rc=%d\n",
6495 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6496 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6497 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6498 -ctx->rc);
6499 }
6500 return (0);
6501 }
6502 ctx->del = 0;
6503 ctx->i = 0;
6504 }
6505
6506 return (1);
6507 }
6508
6509 /*
6510 * Program the port's XGMAC based on parameters in ifnet. The caller also
6511 * indicates which parameters should be programmed (the rest are left alone).
6512 */
6513 int
update_mac_settings(if_t ifp,int flags)6514 update_mac_settings(if_t ifp, int flags)
6515 {
6516 int rc = 0;
6517 struct vi_info *vi = if_getsoftc(ifp);
6518 struct port_info *pi = vi->pi;
6519 struct adapter *sc = pi->adapter;
6520 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6521 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6522
6523 ASSERT_SYNCHRONIZED_OP(sc);
6524 KASSERT(flags, ("%s: not told what to update.", __func__));
6525
6526 if (flags & XGMAC_MTU)
6527 mtu = if_getmtu(ifp);
6528
6529 if (flags & XGMAC_PROMISC)
6530 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6531
6532 if (flags & XGMAC_ALLMULTI)
6533 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6534
6535 if (flags & XGMAC_VLANEX)
6536 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6537
6538 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6539 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6540 allmulti, 1, vlanex, false);
6541 if (rc) {
6542 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6543 rc);
6544 return (rc);
6545 }
6546 }
6547
6548 if (flags & XGMAC_UCADDR) {
6549 uint8_t ucaddr[ETHER_ADDR_LEN];
6550
6551 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6552 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6553 ucaddr, true, &vi->smt_idx);
6554 if (rc < 0) {
6555 rc = -rc;
6556 if_printf(ifp, "change_mac failed: %d\n", rc);
6557 return (rc);
6558 } else {
6559 vi->xact_addr_filt = rc;
6560 rc = 0;
6561 }
6562 }
6563
6564 if (flags & XGMAC_MCADDRS) {
6565 struct epoch_tracker et;
6566 struct mcaddr_ctx ctx;
6567 int j;
6568
6569 ctx.ifp = ifp;
6570 ctx.hash = 0;
6571 ctx.i = 0;
6572 ctx.del = 1;
6573 ctx.rc = 0;
6574 /*
6575 * Unlike other drivers, we accumulate list of pointers into
6576 * interface address lists and we need to keep it safe even
6577 * after if_foreach_llmaddr() returns, thus we must enter the
6578 * network epoch.
6579 */
6580 NET_EPOCH_ENTER(et);
6581 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6582 if (ctx.rc < 0) {
6583 NET_EPOCH_EXIT(et);
6584 rc = -ctx.rc;
6585 return (rc);
6586 }
6587 if (ctx.i > 0) {
6588 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6589 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6590 NET_EPOCH_EXIT(et);
6591 if (rc < 0) {
6592 rc = -rc;
6593 for (j = 0; j < ctx.i; j++) {
6594 if_printf(ifp,
6595 "failed to add mcast address"
6596 " %02x:%02x:%02x:"
6597 "%02x:%02x:%02x rc=%d\n",
6598 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6599 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6600 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6601 rc);
6602 }
6603 return (rc);
6604 }
6605 ctx.del = 0;
6606 } else
6607 NET_EPOCH_EXIT(et);
6608
6609 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6610 if (rc != 0)
6611 if_printf(ifp, "failed to set mcast address hash: %d\n",
6612 rc);
6613 if (ctx.del == 0) {
6614 /* We clobbered the VXLAN entry if there was one. */
6615 pi->vxlan_tcam_entry = false;
6616 }
6617 }
6618
6619 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6620 pi->vxlan_tcam_entry == false) {
6621 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6622 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6623 true);
6624 if (rc < 0) {
6625 rc = -rc;
6626 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6627 rc);
6628 } else {
6629 MPASS(rc == sc->rawf_base + pi->port_id);
6630 rc = 0;
6631 pi->vxlan_tcam_entry = true;
6632 }
6633 }
6634
6635 return (rc);
6636 }
6637
6638 /*
6639 * {begin|end}_synchronized_op must be called from the same thread.
6640 */
6641 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6642 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6643 char *wmesg)
6644 {
6645 int rc;
6646
6647 #ifdef WITNESS
6648 /* the caller thinks it's ok to sleep, but is it really? */
6649 if (flags & SLEEP_OK)
6650 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6651 #endif
6652 ADAPTER_LOCK(sc);
6653 for (;;) {
6654
6655 if (vi && IS_DETACHING(vi)) {
6656 rc = ENXIO;
6657 goto done;
6658 }
6659
6660 if (!IS_BUSY(sc)) {
6661 rc = 0;
6662 break;
6663 }
6664
6665 if (!(flags & SLEEP_OK)) {
6666 rc = EBUSY;
6667 goto done;
6668 }
6669
6670 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6671 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6672 rc = EINTR;
6673 goto done;
6674 }
6675 }
6676
6677 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6678 SET_BUSY(sc);
6679 #ifdef INVARIANTS
6680 sc->last_op = wmesg;
6681 sc->last_op_thr = curthread;
6682 sc->last_op_flags = flags;
6683 #endif
6684
6685 done:
6686 if (!(flags & HOLD_LOCK) || rc)
6687 ADAPTER_UNLOCK(sc);
6688
6689 return (rc);
6690 }
6691
6692 /*
6693 * Tell if_ioctl and if_init that the VI is going away. This is
6694 * special variant of begin_synchronized_op and must be paired with a
6695 * call to end_vi_detach.
6696 */
6697 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6698 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6699 {
6700 ADAPTER_LOCK(sc);
6701 SET_DETACHING(vi);
6702 wakeup(&sc->flags);
6703 while (IS_BUSY(sc))
6704 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6705 SET_BUSY(sc);
6706 #ifdef INVARIANTS
6707 sc->last_op = "t4detach";
6708 sc->last_op_thr = curthread;
6709 sc->last_op_flags = 0;
6710 #endif
6711 ADAPTER_UNLOCK(sc);
6712 }
6713
6714 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6715 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6716 {
6717 ADAPTER_LOCK(sc);
6718 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6719 CLR_BUSY(sc);
6720 CLR_DETACHING(vi);
6721 wakeup(&sc->flags);
6722 ADAPTER_UNLOCK(sc);
6723 }
6724
6725 /*
6726 * {begin|end}_synchronized_op must be called from the same thread.
6727 */
6728 void
end_synchronized_op(struct adapter * sc,int flags)6729 end_synchronized_op(struct adapter *sc, int flags)
6730 {
6731
6732 if (flags & LOCK_HELD)
6733 ADAPTER_LOCK_ASSERT_OWNED(sc);
6734 else
6735 ADAPTER_LOCK(sc);
6736
6737 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6738 CLR_BUSY(sc);
6739 wakeup(&sc->flags);
6740 ADAPTER_UNLOCK(sc);
6741 }
6742
6743 static int
cxgbe_init_synchronized(struct vi_info * vi)6744 cxgbe_init_synchronized(struct vi_info *vi)
6745 {
6746 struct port_info *pi = vi->pi;
6747 struct adapter *sc = pi->adapter;
6748 if_t ifp = vi->ifp;
6749 int rc = 0, i;
6750 struct sge_txq *txq;
6751
6752 ASSERT_SYNCHRONIZED_OP(sc);
6753
6754 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6755 return (0); /* already running */
6756
6757 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6758 return (rc); /* error message displayed already */
6759
6760 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6761 return (rc); /* error message displayed already */
6762
6763 rc = update_mac_settings(ifp, XGMAC_ALL);
6764 if (rc)
6765 goto done; /* error message displayed already */
6766
6767 PORT_LOCK(pi);
6768 if (pi->up_vis == 0) {
6769 t4_update_port_info(pi);
6770 fixup_link_config(pi);
6771 build_medialist(pi);
6772 apply_link_config(pi);
6773 }
6774
6775 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6776 if (rc != 0) {
6777 if_printf(ifp, "enable_vi failed: %d\n", rc);
6778 PORT_UNLOCK(pi);
6779 goto done;
6780 }
6781
6782 /*
6783 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6784 * if this changes.
6785 */
6786
6787 for_each_txq(vi, i, txq) {
6788 TXQ_LOCK(txq);
6789 txq->eq.flags |= EQ_ENABLED;
6790 TXQ_UNLOCK(txq);
6791 }
6792
6793 /*
6794 * The first iq of the first port to come up is used for tracing.
6795 */
6796 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6797 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6798 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
6799 pi->flags |= HAS_TRACEQ;
6800 }
6801
6802 /* all ok */
6803 pi->up_vis++;
6804 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6805 if (pi->link_cfg.link_ok)
6806 t4_os_link_changed(pi);
6807 PORT_UNLOCK(pi);
6808
6809 mtx_lock(&vi->tick_mtx);
6810 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6811 callout_reset(&vi->tick, hz, vi_tick, vi);
6812 else
6813 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6814 mtx_unlock(&vi->tick_mtx);
6815 done:
6816 if (rc != 0)
6817 cxgbe_uninit_synchronized(vi);
6818
6819 return (rc);
6820 }
6821
6822 /*
6823 * Idempotent.
6824 */
6825 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6826 cxgbe_uninit_synchronized(struct vi_info *vi)
6827 {
6828 struct port_info *pi = vi->pi;
6829 struct adapter *sc = pi->adapter;
6830 if_t ifp = vi->ifp;
6831 int rc, i;
6832 struct sge_txq *txq;
6833
6834 ASSERT_SYNCHRONIZED_OP(sc);
6835
6836 if (!(vi->flags & VI_INIT_DONE)) {
6837 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6838 KASSERT(0, ("uninited VI is running"));
6839 if_printf(ifp, "uninited VI with running ifnet. "
6840 "vi->flags 0x%016lx, if_flags 0x%08x, "
6841 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6842 if_getdrvflags(ifp));
6843 }
6844 return (0);
6845 }
6846
6847 /*
6848 * Disable the VI so that all its data in either direction is discarded
6849 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6850 * tick) intact as the TP can deliver negative advice or data that it's
6851 * holding in its RAM (for an offloaded connection) even after the VI is
6852 * disabled.
6853 */
6854 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6855 if (rc) {
6856 if_printf(ifp, "disable_vi failed: %d\n", rc);
6857 return (rc);
6858 }
6859
6860 for_each_txq(vi, i, txq) {
6861 TXQ_LOCK(txq);
6862 txq->eq.flags &= ~EQ_ENABLED;
6863 TXQ_UNLOCK(txq);
6864 }
6865
6866 mtx_lock(&vi->tick_mtx);
6867 callout_stop(&vi->tick);
6868 mtx_unlock(&vi->tick_mtx);
6869
6870 PORT_LOCK(pi);
6871 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6872 PORT_UNLOCK(pi);
6873 return (0);
6874 }
6875 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6876 pi->up_vis--;
6877 if (pi->up_vis > 0) {
6878 PORT_UNLOCK(pi);
6879 return (0);
6880 }
6881
6882 pi->link_cfg.link_ok = false;
6883 pi->link_cfg.speed = 0;
6884 pi->link_cfg.link_down_rc = 255;
6885 t4_os_link_changed(pi);
6886 PORT_UNLOCK(pi);
6887
6888 return (0);
6889 }
6890
6891 /*
6892 * It is ok for this function to fail midway and return right away. t4_detach
6893 * will walk the entire sc->irq list and clean up whatever is valid.
6894 */
6895 int
t4_setup_intr_handlers(struct adapter * sc)6896 t4_setup_intr_handlers(struct adapter *sc)
6897 {
6898 int rc, rid, p, q, v;
6899 char s[8];
6900 struct irq *irq;
6901 struct port_info *pi;
6902 struct vi_info *vi;
6903 struct sge *sge = &sc->sge;
6904 struct sge_rxq *rxq;
6905 #ifdef TCP_OFFLOAD
6906 struct sge_ofld_rxq *ofld_rxq;
6907 #endif
6908 #ifdef DEV_NETMAP
6909 struct sge_nm_rxq *nm_rxq;
6910 #endif
6911 #ifdef RSS
6912 int nbuckets = rss_getnumbuckets();
6913 #endif
6914
6915 /*
6916 * Setup interrupts.
6917 */
6918 irq = &sc->irq[0];
6919 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6920 if (forwarding_intr_to_fwq(sc))
6921 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6922
6923 /* Multiple interrupts. */
6924 if (sc->flags & IS_VF)
6925 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6926 ("%s: too few intr.", __func__));
6927 else
6928 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6929 ("%s: too few intr.", __func__));
6930
6931 /* The first one is always error intr on PFs */
6932 if (!(sc->flags & IS_VF)) {
6933 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6934 if (rc != 0)
6935 return (rc);
6936 irq++;
6937 rid++;
6938 }
6939
6940 /* The second one is always the firmware event queue (first on VFs) */
6941 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6942 if (rc != 0)
6943 return (rc);
6944 irq++;
6945 rid++;
6946
6947 for_each_port(sc, p) {
6948 pi = sc->port[p];
6949 for_each_vi(pi, v, vi) {
6950 vi->first_intr = rid - 1;
6951
6952 if (vi->nnmrxq > 0) {
6953 int n = max(vi->nrxq, vi->nnmrxq);
6954
6955 rxq = &sge->rxq[vi->first_rxq];
6956 #ifdef DEV_NETMAP
6957 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6958 #endif
6959 for (q = 0; q < n; q++) {
6960 snprintf(s, sizeof(s), "%x%c%x", p,
6961 'a' + v, q);
6962 if (q < vi->nrxq)
6963 irq->rxq = rxq++;
6964 #ifdef DEV_NETMAP
6965 if (q < vi->nnmrxq)
6966 irq->nm_rxq = nm_rxq++;
6967
6968 if (irq->nm_rxq != NULL &&
6969 irq->rxq == NULL) {
6970 /* Netmap rx only */
6971 rc = t4_alloc_irq(sc, irq, rid,
6972 t4_nm_intr, irq->nm_rxq, s);
6973 }
6974 if (irq->nm_rxq != NULL &&
6975 irq->rxq != NULL) {
6976 /* NIC and Netmap rx */
6977 rc = t4_alloc_irq(sc, irq, rid,
6978 t4_vi_intr, irq, s);
6979 }
6980 #endif
6981 if (irq->rxq != NULL &&
6982 irq->nm_rxq == NULL) {
6983 /* NIC rx only */
6984 rc = t4_alloc_irq(sc, irq, rid,
6985 t4_intr, irq->rxq, s);
6986 }
6987 if (rc != 0)
6988 return (rc);
6989 #ifdef RSS
6990 if (q < vi->nrxq) {
6991 bus_bind_intr(sc->dev, irq->res,
6992 rss_getcpu(q % nbuckets));
6993 }
6994 #endif
6995 irq++;
6996 rid++;
6997 vi->nintr++;
6998 }
6999 } else {
7000 for_each_rxq(vi, q, rxq) {
7001 snprintf(s, sizeof(s), "%x%c%x", p,
7002 'a' + v, q);
7003 rc = t4_alloc_irq(sc, irq, rid,
7004 t4_intr, rxq, s);
7005 if (rc != 0)
7006 return (rc);
7007 #ifdef RSS
7008 bus_bind_intr(sc->dev, irq->res,
7009 rss_getcpu(q % nbuckets));
7010 #endif
7011 irq++;
7012 rid++;
7013 vi->nintr++;
7014 }
7015 }
7016 #ifdef TCP_OFFLOAD
7017 for_each_ofld_rxq(vi, q, ofld_rxq) {
7018 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
7019 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
7020 ofld_rxq, s);
7021 if (rc != 0)
7022 return (rc);
7023 irq++;
7024 rid++;
7025 vi->nintr++;
7026 }
7027 #endif
7028 }
7029 }
7030 MPASS(irq == &sc->irq[sc->intr_count]);
7031
7032 return (0);
7033 }
7034
7035 static void
write_global_rss_key(struct adapter * sc)7036 write_global_rss_key(struct adapter *sc)
7037 {
7038 #ifdef RSS
7039 int i;
7040 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7041 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7042
7043 CTASSERT(RSS_KEYSIZE == 40);
7044
7045 rss_getkey((void *)&raw_rss_key[0]);
7046 for (i = 0; i < nitems(rss_key); i++) {
7047 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
7048 }
7049 t4_write_rss_key(sc, &rss_key[0], -1, 1);
7050 #endif
7051 }
7052
7053 /*
7054 * Idempotent.
7055 */
7056 static int
adapter_full_init(struct adapter * sc)7057 adapter_full_init(struct adapter *sc)
7058 {
7059 int rc, i;
7060
7061 ASSERT_SYNCHRONIZED_OP(sc);
7062
7063 /*
7064 * queues that belong to the adapter (not any particular port).
7065 */
7066 rc = t4_setup_adapter_queues(sc);
7067 if (rc != 0)
7068 return (rc);
7069
7070 MPASS(sc->params.nports <= nitems(sc->tq));
7071 for (i = 0; i < sc->params.nports; i++) {
7072 if (sc->tq[i] != NULL)
7073 continue;
7074 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
7075 taskqueue_thread_enqueue, &sc->tq[i]);
7076 if (sc->tq[i] == NULL) {
7077 CH_ERR(sc, "failed to allocate task queue %d\n", i);
7078 return (ENOMEM);
7079 }
7080 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
7081 device_get_nameunit(sc->dev), i);
7082 }
7083
7084 if (!(sc->flags & IS_VF)) {
7085 write_global_rss_key(sc);
7086 t4_intr_enable(sc);
7087 }
7088 return (0);
7089 }
7090
7091 int
adapter_init(struct adapter * sc)7092 adapter_init(struct adapter *sc)
7093 {
7094 int rc;
7095
7096 ASSERT_SYNCHRONIZED_OP(sc);
7097 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
7098 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
7099 ("%s: FULL_INIT_DONE already", __func__));
7100
7101 rc = adapter_full_init(sc);
7102 if (rc != 0)
7103 adapter_full_uninit(sc);
7104 else
7105 sc->flags |= FULL_INIT_DONE;
7106
7107 return (rc);
7108 }
7109
7110 /*
7111 * Idempotent.
7112 */
7113 static void
adapter_full_uninit(struct adapter * sc)7114 adapter_full_uninit(struct adapter *sc)
7115 {
7116 int i;
7117
7118 t4_teardown_adapter_queues(sc);
7119
7120 for (i = 0; i < nitems(sc->tq); i++) {
7121 if (sc->tq[i] == NULL)
7122 continue;
7123 taskqueue_free(sc->tq[i]);
7124 sc->tq[i] = NULL;
7125 }
7126
7127 sc->flags &= ~FULL_INIT_DONE;
7128 }
7129
7130 #ifdef RSS
7131 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
7132 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
7133 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
7134 RSS_HASHTYPE_RSS_UDP_IPV6)
7135
7136 /* Translates kernel hash types to hardware. */
7137 static int
hashconfig_to_hashen(int hashconfig)7138 hashconfig_to_hashen(int hashconfig)
7139 {
7140 int hashen = 0;
7141
7142 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
7143 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
7144 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
7145 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
7146 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
7147 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7148 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7149 }
7150 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
7151 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7152 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7153 }
7154 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
7155 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7156 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
7157 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7158
7159 return (hashen);
7160 }
7161
7162 /* Translates hardware hash types to kernel. */
7163 static int
hashen_to_hashconfig(int hashen)7164 hashen_to_hashconfig(int hashen)
7165 {
7166 int hashconfig = 0;
7167
7168 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
7169 /*
7170 * If UDP hashing was enabled it must have been enabled for
7171 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
7172 * enabling any 4-tuple hash is nonsense configuration.
7173 */
7174 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7175 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
7176
7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7178 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7180 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
7181 }
7182 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7183 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
7184 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7185 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
7186 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
7187 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
7188 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
7189 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
7190
7191 return (hashconfig);
7192 }
7193 #endif
7194
7195 /*
7196 * Idempotent.
7197 */
7198 static int
vi_full_init(struct vi_info * vi)7199 vi_full_init(struct vi_info *vi)
7200 {
7201 struct adapter *sc = vi->adapter;
7202 struct sge_rxq *rxq;
7203 int rc, i, j;
7204 #ifdef RSS
7205 int nbuckets = rss_getnumbuckets();
7206 int hashconfig = rss_gethashconfig();
7207 int extra;
7208 #endif
7209
7210 ASSERT_SYNCHRONIZED_OP(sc);
7211
7212 /*
7213 * Allocate tx/rx/fl queues for this VI.
7214 */
7215 rc = t4_setup_vi_queues(vi);
7216 if (rc != 0)
7217 return (rc);
7218
7219 /*
7220 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7221 */
7222 if (vi->nrxq > vi->rss_size) {
7223 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7224 "some queues will never receive traffic.\n", vi->nrxq,
7225 vi->rss_size);
7226 } else if (vi->rss_size % vi->nrxq) {
7227 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7228 "expect uneven traffic distribution.\n", vi->nrxq,
7229 vi->rss_size);
7230 }
7231 #ifdef RSS
7232 if (vi->nrxq != nbuckets) {
7233 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7234 "performance will be impacted.\n", vi->nrxq, nbuckets);
7235 }
7236 #endif
7237 if (vi->rss == NULL)
7238 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7239 M_ZERO | M_WAITOK);
7240 for (i = 0; i < vi->rss_size;) {
7241 #ifdef RSS
7242 j = rss_get_indirection_to_bucket(i);
7243 j %= vi->nrxq;
7244 rxq = &sc->sge.rxq[vi->first_rxq + j];
7245 vi->rss[i++] = rxq->iq.abs_id;
7246 #else
7247 for_each_rxq(vi, j, rxq) {
7248 vi->rss[i++] = rxq->iq.abs_id;
7249 if (i == vi->rss_size)
7250 break;
7251 }
7252 #endif
7253 }
7254
7255 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7256 vi->rss, vi->rss_size);
7257 if (rc != 0) {
7258 CH_ERR(vi, "rss_config failed: %d\n", rc);
7259 return (rc);
7260 }
7261
7262 #ifdef RSS
7263 vi->hashen = hashconfig_to_hashen(hashconfig);
7264
7265 /*
7266 * We may have had to enable some hashes even though the global config
7267 * wants them disabled. This is a potential problem that must be
7268 * reported to the user.
7269 */
7270 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7271
7272 /*
7273 * If we consider only the supported hash types, then the enabled hashes
7274 * are a superset of the requested hashes. In other words, there cannot
7275 * be any supported hash that was requested but not enabled, but there
7276 * can be hashes that were not requested but had to be enabled.
7277 */
7278 extra &= SUPPORTED_RSS_HASHTYPES;
7279 MPASS((extra & hashconfig) == 0);
7280
7281 if (extra) {
7282 CH_ALERT(vi,
7283 "global RSS config (0x%x) cannot be accommodated.\n",
7284 hashconfig);
7285 }
7286 if (extra & RSS_HASHTYPE_RSS_IPV4)
7287 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7288 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7289 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7290 if (extra & RSS_HASHTYPE_RSS_IPV6)
7291 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7292 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7293 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7294 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7295 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7296 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7297 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7298 #else
7299 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
7300 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
7301 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7302 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
7303 #endif
7304 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7305 0, 0);
7306 if (rc != 0) {
7307 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7308 return (rc);
7309 }
7310
7311 return (0);
7312 }
7313
7314 int
vi_init(struct vi_info * vi)7315 vi_init(struct vi_info *vi)
7316 {
7317 int rc;
7318
7319 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7320 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7321 ("%s: VI_INIT_DONE already", __func__));
7322
7323 rc = vi_full_init(vi);
7324 if (rc != 0)
7325 vi_full_uninit(vi);
7326 else
7327 vi->flags |= VI_INIT_DONE;
7328
7329 return (rc);
7330 }
7331
7332 /*
7333 * Idempotent.
7334 */
7335 static void
vi_full_uninit(struct vi_info * vi)7336 vi_full_uninit(struct vi_info *vi)
7337 {
7338
7339 if (vi->flags & VI_INIT_DONE) {
7340 quiesce_vi(vi);
7341 free(vi->rss, M_CXGBE);
7342 free(vi->nm_rss, M_CXGBE);
7343 }
7344
7345 t4_teardown_vi_queues(vi);
7346 vi->flags &= ~VI_INIT_DONE;
7347 }
7348
7349 static void
quiesce_txq(struct sge_txq * txq)7350 quiesce_txq(struct sge_txq *txq)
7351 {
7352 struct sge_eq *eq = &txq->eq;
7353 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7354
7355 MPASS(eq->flags & EQ_SW_ALLOCATED);
7356 MPASS(!(eq->flags & EQ_ENABLED));
7357
7358 /* Wait for the mp_ring to empty. */
7359 while (!mp_ring_is_idle(txq->r)) {
7360 mp_ring_check_drainage(txq->r, 4096);
7361 pause("rquiesce", 1);
7362 }
7363 MPASS(txq->txp.npkt == 0);
7364
7365 if (eq->flags & EQ_HW_ALLOCATED) {
7366 /*
7367 * Hardware is alive and working normally. Wait for it to
7368 * finish and then wait for the driver to catch up and reclaim
7369 * all descriptors.
7370 */
7371 while (spg->cidx != htobe16(eq->pidx))
7372 pause("equiesce", 1);
7373 while (eq->cidx != eq->pidx)
7374 pause("dquiesce", 1);
7375 } else {
7376 /*
7377 * Hardware is unavailable. Discard all pending tx and reclaim
7378 * descriptors directly.
7379 */
7380 TXQ_LOCK(txq);
7381 while (eq->cidx != eq->pidx) {
7382 struct mbuf *m, *nextpkt;
7383 struct tx_sdesc *txsd;
7384
7385 txsd = &txq->sdesc[eq->cidx];
7386 for (m = txsd->m; m != NULL; m = nextpkt) {
7387 nextpkt = m->m_nextpkt;
7388 m->m_nextpkt = NULL;
7389 m_freem(m);
7390 }
7391 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7392 }
7393 spg->pidx = spg->cidx = htobe16(eq->cidx);
7394 TXQ_UNLOCK(txq);
7395 }
7396 }
7397
7398 static void
quiesce_wrq(struct sge_wrq * wrq)7399 quiesce_wrq(struct sge_wrq *wrq)
7400 {
7401 struct wrqe *wr;
7402
7403 TXQ_LOCK(wrq);
7404 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7405 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7406 #ifdef INVARIANTS
7407 wrq->nwr_pending--;
7408 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7409 #endif
7410 free(wr, M_CXGBE);
7411 }
7412 MPASS(wrq->nwr_pending == 0);
7413 MPASS(wrq->ndesc_needed == 0);
7414 wrq->nwr_pending = 0;
7415 wrq->ndesc_needed = 0;
7416 TXQ_UNLOCK(wrq);
7417 }
7418
7419 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7420 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7421 {
7422 /* Synchronize with the interrupt handler */
7423 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7424 pause("iqfree", 1);
7425
7426 if (fl != NULL) {
7427 MPASS(iq->flags & IQ_HAS_FL);
7428
7429 mtx_lock(&sc->sfl_lock);
7430 FL_LOCK(fl);
7431 fl->flags |= FL_DOOMED;
7432 FL_UNLOCK(fl);
7433 callout_stop(&sc->sfl_callout);
7434 mtx_unlock(&sc->sfl_lock);
7435
7436 KASSERT((fl->flags & FL_STARVING) == 0,
7437 ("%s: still starving", __func__));
7438
7439 /* Release all buffers if hardware is no longer available. */
7440 if (!(iq->flags & IQ_HW_ALLOCATED))
7441 free_fl_buffers(sc, fl);
7442 }
7443 }
7444
7445 /*
7446 * Wait for all activity on all the queues of the VI to complete. It is assumed
7447 * that no new work is being enqueued by the hardware or the driver. That part
7448 * should be arranged before calling this function.
7449 */
7450 static void
quiesce_vi(struct vi_info * vi)7451 quiesce_vi(struct vi_info *vi)
7452 {
7453 int i;
7454 struct adapter *sc = vi->adapter;
7455 struct sge_rxq *rxq;
7456 struct sge_txq *txq;
7457 #ifdef TCP_OFFLOAD
7458 struct sge_ofld_rxq *ofld_rxq;
7459 #endif
7460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7461 struct sge_ofld_txq *ofld_txq;
7462 #endif
7463
7464 if (!(vi->flags & VI_INIT_DONE))
7465 return;
7466
7467 for_each_txq(vi, i, txq) {
7468 quiesce_txq(txq);
7469 }
7470
7471 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7472 for_each_ofld_txq(vi, i, ofld_txq) {
7473 quiesce_wrq(&ofld_txq->wrq);
7474 }
7475 #endif
7476
7477 for_each_rxq(vi, i, rxq) {
7478 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7479 }
7480
7481 #ifdef TCP_OFFLOAD
7482 for_each_ofld_rxq(vi, i, ofld_rxq) {
7483 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7484 }
7485 #endif
7486 }
7487
7488 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7489 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7490 driver_intr_t *handler, void *arg, char *name)
7491 {
7492 int rc;
7493
7494 irq->rid = rid;
7495 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7496 RF_SHAREABLE | RF_ACTIVE);
7497 if (irq->res == NULL) {
7498 device_printf(sc->dev,
7499 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7500 return (ENOMEM);
7501 }
7502
7503 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7504 NULL, handler, arg, &irq->tag);
7505 if (rc != 0) {
7506 device_printf(sc->dev,
7507 "failed to setup interrupt for rid %d, name %s: %d\n",
7508 rid, name, rc);
7509 } else if (name)
7510 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7511
7512 return (rc);
7513 }
7514
7515 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7516 t4_free_irq(struct adapter *sc, struct irq *irq)
7517 {
7518 if (irq->tag)
7519 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7520 if (irq->res)
7521 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7522
7523 bzero(irq, sizeof(*irq));
7524
7525 return (0);
7526 }
7527
7528 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7529 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7530 {
7531
7532 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7533 t4_get_regs(sc, buf, regs->len);
7534 }
7535
7536 #define A_PL_INDIR_CMD 0x1f8
7537
7538 #define S_PL_AUTOINC 31
7539 #define M_PL_AUTOINC 0x1U
7540 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7541 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7542
7543 #define S_PL_VFID 20
7544 #define M_PL_VFID 0xffU
7545 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7546 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7547
7548 #define S_PL_ADDR 0
7549 #define M_PL_ADDR 0xfffffU
7550 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7551 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7552
7553 #define A_PL_INDIR_DATA 0x1fc
7554
7555 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7556 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7557 {
7558 u32 stats[2];
7559
7560 if (sc->flags & IS_VF) {
7561 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7562 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7563 } else {
7564 mtx_assert(&sc->reg_lock, MA_OWNED);
7565 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7566 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7567 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7568 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7569 }
7570 return (((uint64_t)stats[1]) << 32 | stats[0]);
7571 }
7572
7573 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7574 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7575 {
7576
7577 #define GET_STAT(name) \
7578 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7579
7580 if (!(sc->flags & IS_VF))
7581 mtx_lock(&sc->reg_lock);
7582 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7583 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7584 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7585 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7586 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7587 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7588 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7589 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7590 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7591 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7592 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7593 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7594 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7595 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7596 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7597 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7598 if (!(sc->flags & IS_VF))
7599 mtx_unlock(&sc->reg_lock);
7600
7601 #undef GET_STAT
7602 }
7603
7604 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7605 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7606 {
7607 int reg;
7608
7609 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7610 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7611 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7612 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7613 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7614 }
7615
7616 static void
vi_refresh_stats(struct vi_info * vi)7617 vi_refresh_stats(struct vi_info *vi)
7618 {
7619 struct timeval tv;
7620 const struct timeval interval = {0, 250000}; /* 250ms */
7621
7622 mtx_assert(&vi->tick_mtx, MA_OWNED);
7623
7624 if (vi->flags & VI_SKIP_STATS)
7625 return;
7626
7627 getmicrotime(&tv);
7628 timevalsub(&tv, &interval);
7629 if (timevalcmp(&tv, &vi->last_refreshed, <))
7630 return;
7631
7632 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7633 getmicrotime(&vi->last_refreshed);
7634 }
7635
7636 static void
cxgbe_refresh_stats(struct vi_info * vi)7637 cxgbe_refresh_stats(struct vi_info *vi)
7638 {
7639 u_int i, v, tnl_cong_drops, chan_map;
7640 struct timeval tv;
7641 const struct timeval interval = {0, 250000}; /* 250ms */
7642 struct port_info *pi;
7643 struct adapter *sc;
7644
7645 mtx_assert(&vi->tick_mtx, MA_OWNED);
7646
7647 if (vi->flags & VI_SKIP_STATS)
7648 return;
7649
7650 getmicrotime(&tv);
7651 timevalsub(&tv, &interval);
7652 if (timevalcmp(&tv, &vi->last_refreshed, <))
7653 return;
7654
7655 pi = vi->pi;
7656 sc = vi->adapter;
7657 tnl_cong_drops = 0;
7658 t4_get_port_stats(sc, pi->hw_port, &pi->stats);
7659 chan_map = pi->rx_e_chan_map;
7660 while (chan_map) {
7661 i = ffs(chan_map) - 1;
7662 mtx_lock(&sc->reg_lock);
7663 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7664 A_TP_MIB_TNL_CNG_DROP_0 + i);
7665 mtx_unlock(&sc->reg_lock);
7666 tnl_cong_drops += v;
7667 chan_map &= ~(1 << i);
7668 }
7669 pi->tnl_cong_drops = tnl_cong_drops;
7670 getmicrotime(&vi->last_refreshed);
7671 }
7672
7673 static void
cxgbe_tick(void * arg)7674 cxgbe_tick(void *arg)
7675 {
7676 struct vi_info *vi = arg;
7677
7678 MPASS(IS_MAIN_VI(vi));
7679 mtx_assert(&vi->tick_mtx, MA_OWNED);
7680
7681 cxgbe_refresh_stats(vi);
7682 callout_schedule(&vi->tick, hz);
7683 }
7684
7685 static void
vi_tick(void * arg)7686 vi_tick(void *arg)
7687 {
7688 struct vi_info *vi = arg;
7689
7690 mtx_assert(&vi->tick_mtx, MA_OWNED);
7691
7692 vi_refresh_stats(vi);
7693 callout_schedule(&vi->tick, hz);
7694 }
7695
7696 /* CIM inbound queues */
7697 static const char *t4_ibq[CIM_NUM_IBQ] = {
7698 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi"
7699 };
7700 static const char *t7_ibq[CIM_NUM_IBQ_T7] = {
7701 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7702 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3",
7703 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7"
7704 };
7705 static const char *t7_ibq_sec[] = {
7706 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7707 NULL, NULL, NULL, "ibq_ipc0"
7708 };
7709
7710 /* CIM outbound queues */
7711 static const char *t4_obq[CIM_NUM_OBQ_T5] = {
7712 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7713 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */
7714 };
7715 static const char *t7_obq[CIM_NUM_OBQ_T7] = {
7716 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7717 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3",
7718 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7"
7719 };
7720 static const char *t7_obq_sec[] = {
7721 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL,
7722 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0"
7723 };
7724
7725 static void
cim_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * c0)7726 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
7727 struct sysctl_oid_list *c0)
7728 {
7729 struct sysctl_oid *oid;
7730 struct sysctl_oid_list *children1;
7731 int i, j, qcount;
7732 char s[16];
7733 const char **qname;
7734
7735 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim",
7736 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block");
7737 c0 = SYSCTL_CHILDREN(oid);
7738
7739 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL,
7740 sc->params.ncores, "# of active CIM cores");
7741
7742 for (i = 0; i < sc->params.ncores; i++) {
7743 snprintf(s, sizeof(s), "%u", i);
7744 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s,
7745 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core");
7746 children1 = SYSCTL_CHILDREN(oid);
7747
7748 /*
7749 * CTLFLAG_SKIP because the misc.devlog sysctl already displays
7750 * the log for all cores. Use this sysctl to get the log for a
7751 * particular core only.
7752 */
7753 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog",
7754 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7755 sc, i, sysctl_devlog, "A", "firmware's device log");
7756
7757 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg",
7758 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7759 sysctl_loadavg, "A",
7760 "microprocessor load averages (select firmwares only)");
7761
7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg",
7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7764 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg,
7765 "A", "Queue configuration");
7766
7767 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la",
7768 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7769 sysctl_cim_la, "A", "Logic analyzer");
7770
7771 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la",
7772 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7773 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7774
7775 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la",
7776 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7777 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7778
7779 /* IBQs */
7780 switch (chip_id(sc)) {
7781 case CHELSIO_T4:
7782 case CHELSIO_T5:
7783 case CHELSIO_T6:
7784 qname = &t4_ibq[0];
7785 qcount = nitems(t4_ibq);
7786 break;
7787 case CHELSIO_T7:
7788 default:
7789 if (i == 0) {
7790 qname = &t7_ibq[0];
7791 qcount = nitems(t7_ibq);
7792 } else {
7793 qname = &t7_ibq_sec[0];
7794 qcount = nitems(t7_ibq_sec);
7795 }
7796 break;
7797 }
7798 MPASS(qcount <= sc->chip_params->cim_num_ibq);
7799 for (j = 0; j < qcount; j++) {
7800 if (qname[j] == NULL)
7801 continue;
7802 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7803 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7804 (i << 16) | j, sysctl_cim_ibq, "A", NULL);
7805 }
7806
7807 /* OBQs */
7808 switch (chip_id(sc)) {
7809 case CHELSIO_T4:
7810 qname = t4_obq;
7811 qcount = CIM_NUM_OBQ;
7812 break;
7813 case CHELSIO_T5:
7814 case CHELSIO_T6:
7815 qname = t4_obq;
7816 qcount = nitems(t4_obq);
7817 break;
7818 case CHELSIO_T7:
7819 default:
7820 if (i == 0) {
7821 qname = t7_obq;
7822 qcount = nitems(t7_obq);
7823 } else {
7824 qname = t7_obq_sec;
7825 qcount = nitems(t7_obq_sec);
7826 }
7827 break;
7828 }
7829 MPASS(qcount <= sc->chip_params->cim_num_obq);
7830 for (j = 0; j < qcount; j++) {
7831 if (qname[j] == NULL)
7832 continue;
7833 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7835 (i << 16) | j, sysctl_cim_obq, "A", NULL);
7836 }
7837 }
7838 }
7839
7840 /*
7841 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7842 */
7843 static char *caps_decoder[] = {
7844 "\20\001IPMI\002NCSI", /* 0: NBM */
7845 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7846 "\20\001INGRESS\002EGRESS", /* 2: switch */
7847 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7848 "\006HASHFILTER\007ETHOFLD",
7849 "\20\001TOE\002SENDPATH", /* 4: TOE */
7850 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */
7851 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7852 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7853 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7854 "\007T10DIF"
7855 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7856 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7857 "\004TLS_HW,\005TOE_IPSEC",
7858 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7859 "\004PO_INITIATOR\005PO_TARGET",
7860 "\20\001NVMe_TCP", /* 9: NVMe */
7861 };
7862
7863 void
t4_sysctls(struct adapter * sc)7864 t4_sysctls(struct adapter *sc)
7865 {
7866 struct sysctl_ctx_list *ctx = &sc->ctx;
7867 struct sysctl_oid *oid;
7868 struct sysctl_oid_list *children, *c0;
7869 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7870
7871 /*
7872 * dev.t4nex.X.
7873 */
7874 oid = device_get_sysctl_tree(sc->dev);
7875 c0 = children = SYSCTL_CHILDREN(oid);
7876
7877 sc->sc_do_rxcopy = 1;
7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7879 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7880
7881 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7882 sc->params.nports, "# of ports");
7883
7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7886 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7887 "available doorbells");
7888
7889 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7890 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7891
7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7893 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7894 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7895 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7896
7897 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7898 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7899 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7900 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7901
7902 t4_sge_sysctls(sc, ctx, children);
7903
7904 sc->lro_timeout = 100;
7905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7906 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7907
7908 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7909 &sc->debug_flags, 0, "flags to enable runtime debugging");
7910
7911 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7912 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7913
7914 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7915 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7916
7917 if (sc->flags & IS_VF)
7918 return;
7919
7920 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7921 NULL, chip_rev(sc), "chip hardware revision");
7922
7923 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7924 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7925
7926 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7927 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7928
7929 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7930 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7931
7932 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7933 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7934
7935 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7936 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7937
7938 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7939 sc->er_version, 0, "expansion ROM version");
7940
7941 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7942 sc->bs_version, 0, "bootstrap firmware version");
7943
7944 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7945 NULL, sc->params.scfg_vers, "serial config version");
7946
7947 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7948 NULL, sc->params.vpd_vers, "VPD version");
7949
7950 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7951 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7952
7953 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7954 sc->cfcsum, "config file checksum");
7955
7956 #define SYSCTL_CAP(name, n, text) \
7957 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7958 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7959 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7960 "available " text " capabilities")
7961
7962 SYSCTL_CAP(nbmcaps, 0, "NBM");
7963 SYSCTL_CAP(linkcaps, 1, "link");
7964 SYSCTL_CAP(switchcaps, 2, "switch");
7965 SYSCTL_CAP(nvmecaps, 9, "NVMe");
7966 SYSCTL_CAP(niccaps, 3, "NIC");
7967 SYSCTL_CAP(toecaps, 4, "TCP offload");
7968 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7969 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7970 SYSCTL_CAP(cryptocaps, 7, "crypto");
7971 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7972 #undef SYSCTL_CAP
7973
7974 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7975 NULL, sc->tids.nftids, "number of filters");
7976
7977 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7978 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7979 sysctl_temperature, "I", "chip temperature (in Celsius)");
7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7981 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7982 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7983
7984 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7985 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7986 "I", "core Vdd (in mV)");
7987
7988 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7989 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7990 sysctl_cpus, "A", "local CPUs");
7991
7992 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7993 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7994 sysctl_cpus, "A", "preferred CPUs for interrupts");
7995
7996 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7997 &sc->swintr, 0, "software triggered interrupts");
7998
7999 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
8000 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
8001 "1 = reset adapter, 0 = zero reset counter");
8002
8003 /*
8004 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
8005 */
8006 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
8007 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
8008 "logs and miscellaneous information");
8009 children = SYSCTL_CHILDREN(oid);
8010
8011 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
8012 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8013 sysctl_cctrl, "A", "congestion control");
8014
8015 cim_sysctls(sc, ctx, children);
8016
8017 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
8018 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8019 sysctl_cpl_stats, "A", "CPL statistics");
8020
8021 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
8022 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8023 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
8024
8025 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
8026 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8027 sysctl_tid_stats, "A", "tid stats");
8028
8029 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1,
8031 sysctl_devlog, "A", "firmware's device log (all cores)");
8032
8033 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
8034 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8035 sysctl_fcoe_stats, "A", "FCoE statistics");
8036
8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
8038 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8039 sysctl_hw_sched, "A", "hardware scheduler ");
8040
8041 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
8042 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8043 sysctl_l2t, "A", "hardware L2 table");
8044
8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
8046 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8047 sysctl_smt, "A", "hardware source MAC table");
8048
8049 #ifdef INET6
8050 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
8051 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8052 sysctl_clip, "A", "active CLIP table entries");
8053 #endif
8054
8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
8056 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8057 sysctl_lb_stats, "A", "loopback statistics");
8058
8059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
8060 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8061 sysctl_meminfo, "A", "memory regions");
8062
8063 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
8064 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8065 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 :
8066 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam),
8067 "A", "MPS TCAM entries");
8068
8069 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
8070 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8071 sysctl_path_mtus, "A", "path MTUs");
8072
8073 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
8074 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8075 sysctl_pm_stats, "A", "PM statistics");
8076
8077 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
8078 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8079 sysctl_rdma_stats, "A", "RDMA statistics");
8080
8081 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
8082 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8083 sysctl_tcp_stats, "A", "TCP statistics");
8084
8085 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
8086 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8087 sysctl_tids, "A", "TID information");
8088
8089 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
8090 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8091 sysctl_tp_err_stats, "A", "TP error statistics");
8092
8093 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
8094 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8095 sysctl_tnl_stats, "A", "TP tunnel statistics");
8096
8097 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
8098 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
8099 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
8100
8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
8102 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8103 sysctl_tp_la, "A", "TP logic analyzer");
8104
8105 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
8106 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8107 sysctl_tx_rate, "A", "Tx rate");
8108
8109 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
8110 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8111 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
8112
8113 if (chip_id(sc) >= CHELSIO_T5) {
8114 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
8115 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8116 sysctl_wcwr_stats, "A", "write combined work requests");
8117 }
8118
8119 #ifdef KERN_TLS
8120 if (is_ktls(sc)) {
8121 /*
8122 * dev.t4nex.0.tls.
8123 */
8124 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
8125 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
8126 children = SYSCTL_CHILDREN(oid);
8127
8128 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
8129 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
8130 "keys in work requests (1) or attempt to store TLS keys "
8131 "in card memory.");
8132
8133 if (is_t6(sc))
8134 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
8135 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
8136 "combine TCB field updates with TLS record work "
8137 "requests.");
8138 else {
8139 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records",
8140 CTLFLAG_RW, &sc->tlst.short_records, 0,
8141 "Use cipher-only mode for short records.");
8142 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash",
8143 CTLFLAG_RW, &sc->tlst.partial_ghash, 0,
8144 "Use partial GHASH for AES-GCM records.");
8145 }
8146 }
8147 #endif
8148
8149 #ifdef TCP_OFFLOAD
8150 if (is_offload(sc)) {
8151 int i;
8152 char s[4];
8153
8154 /*
8155 * dev.t4nex.X.toe.
8156 */
8157 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
8158 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
8159 children = SYSCTL_CHILDREN(oid);
8160
8161 sc->tt.cong_algorithm = -1;
8162 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
8163 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
8164 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
8165 "3 = highspeed)");
8166
8167 sc->tt.sndbuf = -1;
8168 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
8169 &sc->tt.sndbuf, 0, "hardware send buffer");
8170
8171 sc->tt.ddp = 0;
8172 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
8173 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
8174 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
8175 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
8176
8177 sc->tt.rx_coalesce = -1;
8178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
8179 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
8180
8181 sc->tt.tls = 1;
8182 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
8183 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
8184 "Inline TLS allowed");
8185
8186 sc->tt.tx_align = -1;
8187 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
8188 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
8189
8190 sc->tt.tx_zcopy = 0;
8191 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
8192 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
8193 "Enable zero-copy aio_write(2)");
8194
8195 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
8196 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8197 "cop_managed_offloading", CTLFLAG_RW,
8198 &sc->tt.cop_managed_offloading, 0,
8199 "COP (Connection Offload Policy) controls all TOE offload");
8200
8201 sc->tt.autorcvbuf_inc = 16 * 1024;
8202 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
8203 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
8204 "autorcvbuf increment");
8205
8206 sc->tt.update_hc_on_pmtu_change = 1;
8207 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8208 "update_hc_on_pmtu_change", CTLFLAG_RW,
8209 &sc->tt.update_hc_on_pmtu_change, 0,
8210 "Update hostcache entry if the PMTU changes");
8211
8212 sc->tt.iso = 1;
8213 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
8214 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
8215
8216 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
8217 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8218 sysctl_tp_tick, "A", "TP timer tick (us)");
8219
8220 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
8221 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
8222 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
8223
8224 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
8225 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
8226 sysctl_tp_tick, "A", "DACK tick (us)");
8227
8228 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
8229 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8230 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
8231
8232 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
8233 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8234 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
8235 "Minimum retransmit interval (us)");
8236
8237 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
8238 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8239 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
8240 "Maximum retransmit interval (us)");
8241
8242 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
8243 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8244 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
8245 "Persist timer min (us)");
8246
8247 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
8248 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8249 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
8250 "Persist timer max (us)");
8251
8252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
8253 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8254 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
8255 "Keepalive idle timer (us)");
8256
8257 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
8258 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8259 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
8260 "Keepalive interval timer (us)");
8261
8262 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
8263 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8264 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
8265
8266 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
8267 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8268 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
8269 "FINWAIT2 timer (us)");
8270
8271 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
8272 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8273 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
8274 "Number of SYN retransmissions before abort");
8275
8276 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
8277 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8278 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
8279 "Number of retransmissions before abort");
8280
8281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
8282 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8283 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
8284 "Number of keepalive probes before abort");
8285
8286 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
8287 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8288 "TOE retransmit backoffs");
8289 children = SYSCTL_CHILDREN(oid);
8290 for (i = 0; i < 16; i++) {
8291 snprintf(s, sizeof(s), "%u", i);
8292 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8293 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8294 i, sysctl_tp_backoff, "IU",
8295 "TOE retransmit backoff");
8296 }
8297 }
8298 #endif
8299 }
8300
8301 void
vi_sysctls(struct vi_info * vi)8302 vi_sysctls(struct vi_info *vi)
8303 {
8304 struct sysctl_ctx_list *ctx = &vi->ctx;
8305 struct sysctl_oid *oid;
8306 struct sysctl_oid_list *children;
8307
8308 /*
8309 * dev.v?(cxgbe|cxl).X.
8310 */
8311 oid = device_get_sysctl_tree(vi->dev);
8312 children = SYSCTL_CHILDREN(oid);
8313
8314 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8315 vi->viid, "VI identifer");
8316 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8317 &vi->nrxq, 0, "# of rx queues");
8318 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8319 &vi->ntxq, 0, "# of tx queues");
8320 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8321 &vi->first_rxq, 0, "index of first rx queue");
8322 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8323 &vi->first_txq, 0, "index of first tx queue");
8324 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8325 vi->rss_base, "start of RSS indirection table");
8326 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8327 vi->rss_size, "size of RSS indirection table");
8328
8329 if (IS_MAIN_VI(vi)) {
8330 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8331 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8332 sysctl_noflowq, "IU",
8333 "Reserve queue 0 for non-flowid packets");
8334 }
8335
8336 if (vi->adapter->flags & IS_VF) {
8337 MPASS(vi->flags & TX_USES_VM_WR);
8338 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8339 NULL, 1, "use VM work requests for transmit");
8340 } else {
8341 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8342 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8343 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8344 }
8345
8346 #ifdef TCP_OFFLOAD
8347 if (vi->nofldrxq != 0) {
8348 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8349 &vi->nofldrxq, 0,
8350 "# of rx queues for offloaded TCP connections");
8351 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8352 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8353 "index of first TOE rx queue");
8354 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8355 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8356 sysctl_holdoff_tmr_idx_ofld, "I",
8357 "holdoff timer index for TOE queues");
8358 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8359 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8360 sysctl_holdoff_pktc_idx_ofld, "I",
8361 "holdoff packet counter index for TOE queues");
8362 }
8363 #endif
8364 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8365 if (vi->nofldtxq != 0) {
8366 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8367 &vi->nofldtxq, 0,
8368 "# of tx queues for TOE/ETHOFLD");
8369 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8370 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8371 "index of first TOE/ETHOFLD tx queue");
8372 }
8373 #endif
8374 #ifdef DEV_NETMAP
8375 if (vi->nnmrxq != 0) {
8376 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8377 &vi->nnmrxq, 0, "# of netmap rx queues");
8378 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8379 &vi->nnmtxq, 0, "# of netmap tx queues");
8380 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8381 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8382 "index of first netmap rx queue");
8383 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8384 CTLFLAG_RD, &vi->first_nm_txq, 0,
8385 "index of first netmap tx queue");
8386 }
8387 #endif
8388
8389 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8390 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8391 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8392 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8393 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8394 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8395
8396 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8397 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8398 sysctl_qsize_rxq, "I", "rx queue size");
8399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8400 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8401 sysctl_qsize_txq, "I", "tx queue size");
8402 }
8403
8404 static void
cxgbe_sysctls(struct port_info * pi)8405 cxgbe_sysctls(struct port_info *pi)
8406 {
8407 struct sysctl_ctx_list *ctx = &pi->ctx;
8408 struct sysctl_oid *oid;
8409 struct sysctl_oid_list *children, *children2;
8410 struct adapter *sc = pi->adapter;
8411 int i;
8412 char name[16];
8413 static char *tc_flags = {"\20\1USER"};
8414
8415 /*
8416 * dev.cxgbe.X.
8417 */
8418 oid = device_get_sysctl_tree(pi->dev);
8419 children = SYSCTL_CHILDREN(oid);
8420
8421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8422 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8423 sysctl_linkdnrc, "A", "reason why link is down");
8424 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8426 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8427 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8428 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8429 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8430 sysctl_btphy, "I", "PHY firmware version");
8431 }
8432
8433 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8434 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8435 sysctl_pause_settings, "A",
8436 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8437 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8438 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8439 "FEC in use on the link");
8440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8441 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8442 sysctl_requested_fec, "A",
8443 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8444 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8445 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8446 "FEC recommended by the cable/transceiver");
8447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8448 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8449 sysctl_autoneg, "I",
8450 "autonegotiation (-1 = not supported)");
8451 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8452 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8453 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8454
8455 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8456 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8457 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8458 &pi->link_cfg.pcaps, 0, "port capabilities");
8459 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8460 &pi->link_cfg.acaps, 0, "advertised capabilities");
8461 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8462 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8463
8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8465 port_top_speed(pi), "max speed (in Gbps)");
8466 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8467 pi->mps_bg_map, "MPS buffer group map");
8468 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8469 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8470 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8471 pi->tx_chan, "TP tx c-channel");
8472 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8473 pi->rx_chan, "TP rx c-channel");
8474
8475 if (sc->flags & IS_VF)
8476 return;
8477
8478 /*
8479 * dev.(cxgbe|cxl).X.tc.
8480 */
8481 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8482 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8483 "Tx scheduler traffic classes (cl_rl)");
8484 children2 = SYSCTL_CHILDREN(oid);
8485 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8486 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8487 "pktsize for per-flow cl-rl (0 means up to the driver )");
8488 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8489 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8490 "burstsize for per-flow cl-rl (0 means up to the driver)");
8491 for (i = 0; i < sc->params.nsched_cls; i++) {
8492 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8493
8494 snprintf(name, sizeof(name), "%d", i);
8495 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8496 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8497 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8498 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8499 CTLFLAG_RD, &tc->state, 0, "current state");
8500 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8501 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8502 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8503 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8504 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8505 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8507 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8508 "traffic class parameters");
8509 }
8510
8511 /*
8512 * dev.cxgbe.X.stats.
8513 */
8514 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8515 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8516 children = SYSCTL_CHILDREN(oid);
8517 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8518 &pi->tx_parse_error, 0,
8519 "# of tx packets with invalid length or # of segments");
8520
8521 #define T4_LBSTAT(name, stat, desc) do { \
8522 if (sc->params.tp.lb_mode) { \
8523 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8524 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \
8525 A_MPS_PORT_STAT_##stat##_L, \
8526 sysctl_handle_t4_portstat64, "QU", desc); \
8527 } else { \
8528 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8529 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8530 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8531 sysctl_handle_t4_reg64, "QU", desc); \
8532 } \
8533 } while (0)
8534
8535 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8536 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8537 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8538 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8539 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8540 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8541 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8542 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8543 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8544 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8545 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8546 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8547 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8548 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8549 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8550 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8551 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8552 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8553 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8554 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8555 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8556 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8557 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8558
8559 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8560 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8561 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8562 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8563 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8564 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8565 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8566 if (is_t6(sc)) {
8567 /* Read from port_stats and may be stale by up to 1s */
8568 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err",
8569 CTLFLAG_RD, &pi->stats.rx_fcs_err,
8570 "# of frames received with bad FCS since last link up");
8571 } else {
8572 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8573 "# of frames received with bad FCS");
8574 }
8575 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8576 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8577 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8578 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8579 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8580 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8581 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8582 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8583 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8584 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8585 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8586 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8587 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8588 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8589 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8590 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8591 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8592 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8593 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8594 #undef T4_LBSTAT
8595
8596 #define T4_REGSTAT(name, stat, desc) do { \
8597 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8598 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8599 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \
8600 } while (0)
8601
8602 if (pi->mps_bg_map & 1) {
8603 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME,
8604 "# drops due to buffer-group 0 overflows");
8605 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME,
8606 "# of buffer-group 0 truncated packets");
8607 }
8608 if (pi->mps_bg_map & 2) {
8609 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME,
8610 "# drops due to buffer-group 1 overflows");
8611 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME,
8612 "# of buffer-group 1 truncated packets");
8613 }
8614 if (pi->mps_bg_map & 4) {
8615 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME,
8616 "# drops due to buffer-group 2 overflows");
8617 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME,
8618 "# of buffer-group 2 truncated packets");
8619 }
8620 if (pi->mps_bg_map & 8) {
8621 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME,
8622 "# drops due to buffer-group 3 overflows");
8623 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME,
8624 "# of buffer-group 3 truncated packets");
8625 }
8626 #undef T4_REGSTAT
8627 }
8628
8629 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8630 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8631 {
8632 int rc, *i, space = 0;
8633 struct sbuf sb;
8634
8635 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8636 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8637 if (space)
8638 sbuf_printf(&sb, " ");
8639 sbuf_printf(&sb, "%d", *i);
8640 space = 1;
8641 }
8642 rc = sbuf_finish(&sb);
8643 sbuf_delete(&sb);
8644 return (rc);
8645 }
8646
8647 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8648 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8649 {
8650 int rc;
8651 struct sbuf *sb;
8652
8653 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8654 if (sb == NULL)
8655 return (ENOMEM);
8656
8657 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8658 rc = sbuf_finish(sb);
8659 sbuf_delete(sb);
8660
8661 return (rc);
8662 }
8663
8664 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8665 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8666 {
8667 int rc;
8668 struct sbuf *sb;
8669
8670 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8671 if (sb == NULL)
8672 return (ENOMEM);
8673
8674 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8675 rc = sbuf_finish(sb);
8676 sbuf_delete(sb);
8677
8678 return (rc);
8679 }
8680
8681 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8682 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8683 {
8684 struct port_info *pi = arg1;
8685 int op = arg2;
8686 struct adapter *sc = pi->adapter;
8687 u_int v;
8688 int rc;
8689
8690 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8691 if (rc)
8692 return (rc);
8693 if (!hw_all_ok(sc))
8694 rc = ENXIO;
8695 else {
8696 /* XXX: magic numbers */
8697 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8698 op ? 0x20 : 0xc820, &v);
8699 }
8700 end_synchronized_op(sc, 0);
8701 if (rc)
8702 return (rc);
8703 if (op == 0)
8704 v /= 256;
8705
8706 rc = sysctl_handle_int(oidp, &v, 0, req);
8707 return (rc);
8708 }
8709
8710 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8711 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8712 {
8713 struct vi_info *vi = arg1;
8714 int rc, val;
8715
8716 val = vi->rsrv_noflowq;
8717 rc = sysctl_handle_int(oidp, &val, 0, req);
8718 if (rc != 0 || req->newptr == NULL)
8719 return (rc);
8720
8721 if ((val >= 1) && (vi->ntxq > 1))
8722 vi->rsrv_noflowq = 1;
8723 else
8724 vi->rsrv_noflowq = 0;
8725
8726 return (rc);
8727 }
8728
8729 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8730 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8731 {
8732 struct vi_info *vi = arg1;
8733 struct adapter *sc = vi->adapter;
8734 int rc, val, i;
8735
8736 MPASS(!(sc->flags & IS_VF));
8737
8738 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8739 rc = sysctl_handle_int(oidp, &val, 0, req);
8740 if (rc != 0 || req->newptr == NULL)
8741 return (rc);
8742
8743 if (val != 0 && val != 1)
8744 return (EINVAL);
8745
8746 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8747 "t4txvm");
8748 if (rc)
8749 return (rc);
8750 if (!hw_all_ok(sc))
8751 rc = ENXIO;
8752 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8753 /*
8754 * We don't want parse_pkt to run with one setting (VF or PF)
8755 * and then eth_tx to see a different setting but still use
8756 * stale information calculated by parse_pkt.
8757 */
8758 rc = EBUSY;
8759 } else {
8760 struct port_info *pi = vi->pi;
8761 struct sge_txq *txq;
8762 uint32_t ctrl0;
8763 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8764
8765 if (val) {
8766 vi->flags |= TX_USES_VM_WR;
8767 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8768 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8769 V_TXPKT_INTF(pi->hw_port));
8770 if (!(sc->flags & IS_VF))
8771 npkt--;
8772 } else {
8773 vi->flags &= ~TX_USES_VM_WR;
8774 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8775 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8776 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
8777 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8778 }
8779 for_each_txq(vi, i, txq) {
8780 txq->cpl_ctrl0 = ctrl0;
8781 txq->txp.max_npkt = npkt;
8782 }
8783 }
8784 end_synchronized_op(sc, LOCK_HELD);
8785 return (rc);
8786 }
8787
8788 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8789 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8790 {
8791 struct vi_info *vi = arg1;
8792 struct adapter *sc = vi->adapter;
8793 int idx, rc, i;
8794 struct sge_rxq *rxq;
8795 uint8_t v;
8796
8797 idx = vi->tmr_idx;
8798
8799 rc = sysctl_handle_int(oidp, &idx, 0, req);
8800 if (rc != 0 || req->newptr == NULL)
8801 return (rc);
8802
8803 if (idx < 0 || idx >= SGE_NTIMERS)
8804 return (EINVAL);
8805
8806 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8807 "t4tmr");
8808 if (rc)
8809 return (rc);
8810
8811 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8812 for_each_rxq(vi, i, rxq) {
8813 #ifdef atomic_store_rel_8
8814 atomic_store_rel_8(&rxq->iq.intr_params, v);
8815 #else
8816 rxq->iq.intr_params = v;
8817 #endif
8818 }
8819 vi->tmr_idx = idx;
8820
8821 end_synchronized_op(sc, LOCK_HELD);
8822 return (0);
8823 }
8824
8825 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8826 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8827 {
8828 struct vi_info *vi = arg1;
8829 struct adapter *sc = vi->adapter;
8830 int idx, rc;
8831
8832 idx = vi->pktc_idx;
8833
8834 rc = sysctl_handle_int(oidp, &idx, 0, req);
8835 if (rc != 0 || req->newptr == NULL)
8836 return (rc);
8837
8838 if (idx < -1 || idx >= SGE_NCOUNTERS)
8839 return (EINVAL);
8840
8841 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8842 "t4pktc");
8843 if (rc)
8844 return (rc);
8845
8846 if (vi->flags & VI_INIT_DONE)
8847 rc = EBUSY; /* cannot be changed once the queues are created */
8848 else
8849 vi->pktc_idx = idx;
8850
8851 end_synchronized_op(sc, LOCK_HELD);
8852 return (rc);
8853 }
8854
8855 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8856 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8857 {
8858 struct vi_info *vi = arg1;
8859 struct adapter *sc = vi->adapter;
8860 int qsize, rc;
8861
8862 qsize = vi->qsize_rxq;
8863
8864 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8865 if (rc != 0 || req->newptr == NULL)
8866 return (rc);
8867
8868 if (qsize < 128 || (qsize & 7))
8869 return (EINVAL);
8870
8871 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8872 "t4rxqs");
8873 if (rc)
8874 return (rc);
8875
8876 if (vi->flags & VI_INIT_DONE)
8877 rc = EBUSY; /* cannot be changed once the queues are created */
8878 else
8879 vi->qsize_rxq = qsize;
8880
8881 end_synchronized_op(sc, LOCK_HELD);
8882 return (rc);
8883 }
8884
8885 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8886 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8887 {
8888 struct vi_info *vi = arg1;
8889 struct adapter *sc = vi->adapter;
8890 int qsize, rc;
8891
8892 qsize = vi->qsize_txq;
8893
8894 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8895 if (rc != 0 || req->newptr == NULL)
8896 return (rc);
8897
8898 if (qsize < 128 || qsize > 65536)
8899 return (EINVAL);
8900
8901 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8902 "t4txqs");
8903 if (rc)
8904 return (rc);
8905
8906 if (vi->flags & VI_INIT_DONE)
8907 rc = EBUSY; /* cannot be changed once the queues are created */
8908 else
8909 vi->qsize_txq = qsize;
8910
8911 end_synchronized_op(sc, LOCK_HELD);
8912 return (rc);
8913 }
8914
8915 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8916 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8917 {
8918 struct port_info *pi = arg1;
8919 struct adapter *sc = pi->adapter;
8920 struct link_config *lc = &pi->link_cfg;
8921 int rc;
8922
8923 if (req->newptr == NULL) {
8924 struct sbuf *sb;
8925 static char *bits = "\20\1RX\2TX\3AUTO";
8926
8927 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8928 if (sb == NULL)
8929 return (ENOMEM);
8930
8931 if (lc->link_ok) {
8932 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8933 (lc->requested_fc & PAUSE_AUTONEG), bits);
8934 } else {
8935 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8936 PAUSE_RX | PAUSE_AUTONEG), bits);
8937 }
8938 rc = sbuf_finish(sb);
8939 sbuf_delete(sb);
8940 } else {
8941 char s[2];
8942 int n;
8943
8944 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8945 PAUSE_AUTONEG));
8946 s[1] = 0;
8947
8948 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8949 if (rc != 0)
8950 return(rc);
8951
8952 if (s[1] != 0)
8953 return (EINVAL);
8954 if (s[0] < '0' || s[0] > '9')
8955 return (EINVAL); /* not a number */
8956 n = s[0] - '0';
8957 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8958 return (EINVAL); /* some other bit is set too */
8959
8960 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8961 "t4PAUSE");
8962 if (rc)
8963 return (rc);
8964 if (hw_all_ok(sc)) {
8965 PORT_LOCK(pi);
8966 lc->requested_fc = n;
8967 fixup_link_config(pi);
8968 if (pi->up_vis > 0)
8969 rc = apply_link_config(pi);
8970 set_current_media(pi);
8971 PORT_UNLOCK(pi);
8972 }
8973 end_synchronized_op(sc, 0);
8974 }
8975
8976 return (rc);
8977 }
8978
8979 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8980 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8981 {
8982 struct port_info *pi = arg1;
8983 struct link_config *lc = &pi->link_cfg;
8984 int rc;
8985 struct sbuf *sb;
8986
8987 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8988 if (sb == NULL)
8989 return (ENOMEM);
8990 if (lc->link_ok)
8991 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits);
8992 else
8993 sbuf_printf(sb, "no link");
8994 rc = sbuf_finish(sb);
8995 sbuf_delete(sb);
8996
8997 return (rc);
8998 }
8999
9000 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)9001 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
9002 {
9003 struct port_info *pi = arg1;
9004 struct adapter *sc = pi->adapter;
9005 struct link_config *lc = &pi->link_cfg;
9006 int rc;
9007 int8_t old;
9008
9009 if (req->newptr == NULL) {
9010 struct sbuf *sb;
9011
9012 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9013 if (sb == NULL)
9014 return (ENOMEM);
9015
9016 sbuf_printf(sb, "%b", lc->requested_fec, t4_fec_bits);
9017 rc = sbuf_finish(sb);
9018 sbuf_delete(sb);
9019 } else {
9020 char s[8];
9021 int n;
9022
9023 snprintf(s, sizeof(s), "%d",
9024 lc->requested_fec == FEC_AUTO ? -1 :
9025 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
9026
9027 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
9028 if (rc != 0)
9029 return(rc);
9030
9031 n = strtol(&s[0], NULL, 0);
9032 if (n < 0 || n & FEC_AUTO)
9033 n = FEC_AUTO;
9034 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
9035 return (EINVAL);/* some other bit is set too */
9036
9037 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9038 "t4reqf");
9039 if (rc)
9040 return (rc);
9041 PORT_LOCK(pi);
9042 old = lc->requested_fec;
9043 if (n == FEC_AUTO)
9044 lc->requested_fec = FEC_AUTO;
9045 else if (n == 0 || n == FEC_NONE)
9046 lc->requested_fec = FEC_NONE;
9047 else {
9048 if ((lc->pcaps |
9049 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
9050 lc->pcaps) {
9051 rc = ENOTSUP;
9052 goto done;
9053 }
9054 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
9055 FEC_MODULE);
9056 }
9057 if (hw_all_ok(sc)) {
9058 fixup_link_config(pi);
9059 if (pi->up_vis > 0) {
9060 rc = apply_link_config(pi);
9061 if (rc != 0) {
9062 lc->requested_fec = old;
9063 if (rc == FW_EPROTO)
9064 rc = ENOTSUP;
9065 }
9066 }
9067 }
9068 done:
9069 PORT_UNLOCK(pi);
9070 end_synchronized_op(sc, 0);
9071 }
9072
9073 return (rc);
9074 }
9075
9076 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)9077 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
9078 {
9079 struct port_info *pi = arg1;
9080 struct adapter *sc = pi->adapter;
9081 struct link_config *lc = &pi->link_cfg;
9082 int rc;
9083 int8_t fec;
9084 struct sbuf *sb;
9085
9086 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9087 if (sb == NULL)
9088 return (ENOMEM);
9089
9090 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
9091 rc = EBUSY;
9092 goto done;
9093 }
9094 if (!hw_all_ok(sc)) {
9095 rc = ENXIO;
9096 goto done;
9097 }
9098 PORT_LOCK(pi);
9099 if (pi->up_vis == 0) {
9100 /*
9101 * If all the interfaces are administratively down the firmware
9102 * does not report transceiver changes. Refresh port info here.
9103 * This is the only reason we have a synchronized op in this
9104 * function. Just PORT_LOCK would have been enough otherwise.
9105 */
9106 t4_update_port_info(pi);
9107 }
9108
9109 fec = lc->fec_hint;
9110 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
9111 !fec_supported(lc->pcaps)) {
9112 PORT_UNLOCK(pi);
9113 sbuf_printf(sb, "n/a");
9114 } else {
9115 if (fec == 0)
9116 fec = FEC_NONE;
9117 PORT_UNLOCK(pi);
9118 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits);
9119 }
9120 rc = sbuf_finish(sb);
9121 done:
9122 sbuf_delete(sb);
9123 end_synchronized_op(sc, 0);
9124
9125 return (rc);
9126 }
9127
9128 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)9129 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
9130 {
9131 struct port_info *pi = arg1;
9132 struct adapter *sc = pi->adapter;
9133 struct link_config *lc = &pi->link_cfg;
9134 int rc, val;
9135
9136 if (lc->pcaps & FW_PORT_CAP32_ANEG)
9137 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
9138 else
9139 val = -1;
9140 rc = sysctl_handle_int(oidp, &val, 0, req);
9141 if (rc != 0 || req->newptr == NULL)
9142 return (rc);
9143 if (val == 0)
9144 val = AUTONEG_DISABLE;
9145 else if (val == 1)
9146 val = AUTONEG_ENABLE;
9147 else
9148 val = AUTONEG_AUTO;
9149
9150 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9151 "t4aneg");
9152 if (rc)
9153 return (rc);
9154 PORT_LOCK(pi);
9155 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
9156 rc = ENOTSUP;
9157 goto done;
9158 }
9159 lc->requested_aneg = val;
9160 if (hw_all_ok(sc)) {
9161 fixup_link_config(pi);
9162 if (pi->up_vis > 0)
9163 rc = apply_link_config(pi);
9164 set_current_media(pi);
9165 }
9166 done:
9167 PORT_UNLOCK(pi);
9168 end_synchronized_op(sc, 0);
9169 return (rc);
9170 }
9171
9172 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)9173 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
9174 {
9175 struct port_info *pi = arg1;
9176 struct adapter *sc = pi->adapter;
9177 struct link_config *lc = &pi->link_cfg;
9178 int rc, val;
9179
9180 val = lc->force_fec;
9181 MPASS(val >= -1 && val <= 1);
9182 rc = sysctl_handle_int(oidp, &val, 0, req);
9183 if (rc != 0 || req->newptr == NULL)
9184 return (rc);
9185 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
9186 return (ENOTSUP);
9187 if (val < -1 || val > 1)
9188 return (EINVAL);
9189
9190 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
9191 if (rc)
9192 return (rc);
9193 PORT_LOCK(pi);
9194 lc->force_fec = val;
9195 if (hw_all_ok(sc)) {
9196 fixup_link_config(pi);
9197 if (pi->up_vis > 0)
9198 rc = apply_link_config(pi);
9199 }
9200 PORT_UNLOCK(pi);
9201 end_synchronized_op(sc, 0);
9202 return (rc);
9203 }
9204
9205 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)9206 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
9207 {
9208 struct adapter *sc = arg1;
9209 int rc, reg = arg2;
9210 uint64_t val;
9211
9212 mtx_lock(&sc->reg_lock);
9213 if (hw_off_limits(sc))
9214 rc = ENXIO;
9215 else {
9216 rc = 0;
9217 val = t4_read_reg64(sc, reg);
9218 }
9219 mtx_unlock(&sc->reg_lock);
9220 if (rc == 0)
9221 rc = sysctl_handle_64(oidp, &val, 0, req);
9222 return (rc);
9223 }
9224
9225 static int
sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)9226 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)
9227 {
9228 struct port_info *pi = arg1;
9229 struct adapter *sc = pi->adapter;
9230 int rc, i, reg = arg2;
9231 uint64_t val;
9232
9233 mtx_lock(&sc->reg_lock);
9234 if (hw_off_limits(sc))
9235 rc = ENXIO;
9236 else {
9237 val = 0;
9238 for (i = 0; i < sc->params.tp.lb_nchan; i++) {
9239 val += t4_read_reg64(sc,
9240 t4_port_reg(sc, pi->tx_chan + i, reg));
9241 }
9242 rc = 0;
9243 }
9244 mtx_unlock(&sc->reg_lock);
9245 if (rc == 0)
9246 rc = sysctl_handle_64(oidp, &val, 0, req);
9247 return (rc);
9248 }
9249
9250 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)9251 sysctl_temperature(SYSCTL_HANDLER_ARGS)
9252 {
9253 struct adapter *sc = arg1;
9254 int rc, t;
9255 uint32_t param, val;
9256
9257 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
9258 if (rc)
9259 return (rc);
9260 if (!hw_all_ok(sc))
9261 rc = ENXIO;
9262 else {
9263 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9264 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9265 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
9266 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9267 }
9268 end_synchronized_op(sc, 0);
9269 if (rc)
9270 return (rc);
9271
9272 /* unknown is returned as 0 but we display -1 in that case */
9273 t = val == 0 ? -1 : val;
9274
9275 rc = sysctl_handle_int(oidp, &t, 0, req);
9276 return (rc);
9277 }
9278
9279 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)9280 sysctl_vdd(SYSCTL_HANDLER_ARGS)
9281 {
9282 struct adapter *sc = arg1;
9283 int rc;
9284 uint32_t param, val;
9285
9286 if (sc->params.core_vdd == 0) {
9287 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9288 "t4vdd");
9289 if (rc)
9290 return (rc);
9291 if (!hw_all_ok(sc))
9292 rc = ENXIO;
9293 else {
9294 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9295 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9296 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
9297 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
9298 ¶m, &val);
9299 }
9300 end_synchronized_op(sc, 0);
9301 if (rc)
9302 return (rc);
9303 sc->params.core_vdd = val;
9304 }
9305
9306 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
9307 }
9308
9309 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)9310 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
9311 {
9312 struct adapter *sc = arg1;
9313 int rc, v;
9314 uint32_t param, val;
9315
9316 v = sc->sensor_resets;
9317 rc = sysctl_handle_int(oidp, &v, 0, req);
9318 if (rc != 0 || req->newptr == NULL || v <= 0)
9319 return (rc);
9320
9321 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
9322 chip_id(sc) < CHELSIO_T5)
9323 return (ENOTSUP);
9324
9325 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
9326 if (rc)
9327 return (rc);
9328 if (!hw_all_ok(sc))
9329 rc = ENXIO;
9330 else {
9331 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9332 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9333 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
9334 val = 1;
9335 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9336 }
9337 end_synchronized_op(sc, 0);
9338 if (rc == 0)
9339 sc->sensor_resets++;
9340 return (rc);
9341 }
9342
9343 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9344 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9345 {
9346 struct adapter *sc = arg1;
9347 struct sbuf *sb;
9348 int rc;
9349 uint32_t param, val;
9350 uint8_t coreid = (uint8_t)arg2;
9351
9352 KASSERT(coreid < sc->params.ncores,
9353 ("%s: bad coreid %u\n", __func__, coreid));
9354
9355 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9356 if (rc)
9357 return (rc);
9358 if (!hw_all_ok(sc))
9359 rc = ENXIO;
9360 else {
9361 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9362 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) |
9363 V_FW_PARAMS_PARAM_Y(coreid);
9364 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9365 }
9366 end_synchronized_op(sc, 0);
9367 if (rc)
9368 return (rc);
9369
9370 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9371 if (sb == NULL)
9372 return (ENOMEM);
9373
9374 if (val == 0xffffffff) {
9375 /* Only debug and custom firmwares report load averages. */
9376 sbuf_printf(sb, "not available");
9377 } else {
9378 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9379 (val >> 16) & 0xff);
9380 }
9381 rc = sbuf_finish(sb);
9382 sbuf_delete(sb);
9383
9384 return (rc);
9385 }
9386
9387 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9388 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9389 {
9390 struct adapter *sc = arg1;
9391 struct sbuf *sb;
9392 int rc, i;
9393 uint16_t incr[NMTUS][NCCTRL_WIN];
9394 static const char *dec_fac[] = {
9395 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9396 "0.9375"
9397 };
9398
9399 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9400 if (sb == NULL)
9401 return (ENOMEM);
9402
9403 rc = 0;
9404 mtx_lock(&sc->reg_lock);
9405 if (hw_off_limits(sc))
9406 rc = ENXIO;
9407 else
9408 t4_read_cong_tbl(sc, incr);
9409 mtx_unlock(&sc->reg_lock);
9410 if (rc)
9411 goto done;
9412
9413 for (i = 0; i < NCCTRL_WIN; ++i) {
9414 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9415 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9416 incr[5][i], incr[6][i], incr[7][i]);
9417 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9418 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9419 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9420 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9421 }
9422
9423 rc = sbuf_finish(sb);
9424 done:
9425 sbuf_delete(sb);
9426 return (rc);
9427 }
9428
9429 static int
sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)9430 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)
9431 {
9432 struct adapter *sc = arg1;
9433 struct sbuf *sb;
9434 int rc, i, n, qid, coreid;
9435 uint32_t *buf, *p;
9436
9437 qid = arg2 & 0xffff;
9438 coreid = arg2 >> 16;
9439
9440 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq,
9441 ("%s: bad ibq qid %d\n", __func__, qid));
9442 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9443 ("%s: bad coreid %d\n", __func__, coreid));
9444
9445 n = 4 * CIM_IBQ_SIZE;
9446 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9447 mtx_lock(&sc->reg_lock);
9448 if (hw_off_limits(sc))
9449 rc = -ENXIO;
9450 else
9451 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n);
9452 mtx_unlock(&sc->reg_lock);
9453 if (rc < 0) {
9454 rc = -rc;
9455 goto done;
9456 }
9457 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9458
9459 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9460 if (sb == NULL) {
9461 rc = ENOMEM;
9462 goto done;
9463 }
9464 for (i = 0, p = buf; i < n; i += 16, p += 4)
9465 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9466 p[2], p[3]);
9467 rc = sbuf_finish(sb);
9468 sbuf_delete(sb);
9469 done:
9470 free(buf, M_CXGBE);
9471 return (rc);
9472 }
9473
9474 static int
sysctl_cim_obq(SYSCTL_HANDLER_ARGS)9475 sysctl_cim_obq(SYSCTL_HANDLER_ARGS)
9476 {
9477 struct adapter *sc = arg1;
9478 struct sbuf *sb;
9479 int rc, i, n, qid, coreid;
9480 uint32_t *buf, *p;
9481
9482 qid = arg2 & 0xffff;
9483 coreid = arg2 >> 16;
9484
9485 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq,
9486 ("%s: bad obq qid %d\n", __func__, qid));
9487 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9488 ("%s: bad coreid %d\n", __func__, coreid));
9489
9490 n = 6 * CIM_OBQ_SIZE * 4;
9491 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9492 mtx_lock(&sc->reg_lock);
9493 if (hw_off_limits(sc))
9494 rc = -ENXIO;
9495 else
9496 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n);
9497 mtx_unlock(&sc->reg_lock);
9498 if (rc < 0) {
9499 rc = -rc;
9500 goto done;
9501 }
9502 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9503
9504 rc = sysctl_wire_old_buffer(req, 0);
9505 if (rc != 0)
9506 goto done;
9507
9508 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9509 if (sb == NULL) {
9510 rc = ENOMEM;
9511 goto done;
9512 }
9513 for (i = 0, p = buf; i < n; i += 16, p += 4)
9514 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9515 p[2], p[3]);
9516 rc = sbuf_finish(sb);
9517 sbuf_delete(sb);
9518 done:
9519 free(buf, M_CXGBE);
9520 return (rc);
9521 }
9522
9523 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9524 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9525 {
9526 uint32_t *p;
9527
9528 sbuf_printf(sb, "Status Data PC%s",
9529 cfg & F_UPDBGLACAPTPCONLY ? "" :
9530 " LS0Stat LS0Addr LS0Data");
9531
9532 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9533 if (cfg & F_UPDBGLACAPTPCONLY) {
9534 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9535 p[6], p[7]);
9536 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9537 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9538 p[4] & 0xff, p[5] >> 8);
9539 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9540 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9541 p[1] & 0xf, p[2] >> 4);
9542 } else {
9543 sbuf_printf(sb,
9544 "\n %02x %x%07x %x%07x %08x %08x "
9545 "%08x%08x%08x%08x",
9546 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9547 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9548 p[6], p[7]);
9549 }
9550 }
9551 }
9552
9553 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9554 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9555 {
9556 uint32_t *p;
9557
9558 sbuf_printf(sb, "Status Inst Data PC%s",
9559 cfg & F_UPDBGLACAPTPCONLY ? "" :
9560 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9561
9562 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9563 if (cfg & F_UPDBGLACAPTPCONLY) {
9564 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9565 p[3] & 0xff, p[2], p[1], p[0]);
9566 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9567 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9568 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9569 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9570 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9571 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9572 p[6] >> 16);
9573 } else {
9574 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9575 "%08x %08x %08x %08x %08x %08x",
9576 (p[9] >> 16) & 0xff,
9577 p[9] & 0xffff, p[8] >> 16,
9578 p[8] & 0xffff, p[7] >> 16,
9579 p[7] & 0xffff, p[6] >> 16,
9580 p[2], p[1], p[0], p[5], p[4], p[3]);
9581 }
9582 }
9583 }
9584
9585 static int
sbuf_cim_la(struct adapter * sc,int coreid,struct sbuf * sb,int flags)9586 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
9587 {
9588 uint32_t cfg, *buf;
9589 int rc;
9590
9591 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9592 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9593 M_ZERO | flags);
9594 if (buf == NULL)
9595 return (ENOMEM);
9596
9597 mtx_lock(&sc->reg_lock);
9598 if (hw_off_limits(sc))
9599 rc = ENXIO;
9600 else {
9601 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
9602 &cfg);
9603 if (rc == 0)
9604 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL);
9605 }
9606 mtx_unlock(&sc->reg_lock);
9607 if (rc == 0) {
9608 if (chip_id(sc) < CHELSIO_T6)
9609 sbuf_cim_la4(sc, sb, buf, cfg);
9610 else
9611 sbuf_cim_la6(sc, sb, buf, cfg);
9612 }
9613 free(buf, M_CXGBE);
9614 return (rc);
9615 }
9616
9617 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9618 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9619 {
9620 struct adapter *sc = arg1;
9621 int coreid = arg2;
9622 struct sbuf *sb;
9623 int rc;
9624
9625 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9626 if (sb == NULL)
9627 return (ENOMEM);
9628
9629 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK);
9630 if (rc == 0)
9631 rc = sbuf_finish(sb);
9632 sbuf_delete(sb);
9633 return (rc);
9634 }
9635
9636 static void
dump_cim_regs(struct adapter * sc)9637 dump_cim_regs(struct adapter *sc)
9638 {
9639 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9640 device_get_nameunit(sc->dev),
9641 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9642 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9643 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9644 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9645 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9646 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9647 device_get_nameunit(sc->dev),
9648 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9649 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9650 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9651 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9652 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9653 }
9654
9655 static void
dump_cimla(struct adapter * sc)9656 dump_cimla(struct adapter *sc)
9657 {
9658 struct sbuf sb;
9659 int rc;
9660
9661 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9662 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9663 device_get_nameunit(sc->dev));
9664 return;
9665 }
9666 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK);
9667 if (rc == 0) {
9668 rc = sbuf_finish(&sb);
9669 if (rc == 0) {
9670 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9671 device_get_nameunit(sc->dev), sbuf_data(&sb));
9672 }
9673 }
9674 sbuf_delete(&sb);
9675 }
9676
9677 void
t4_os_cim_err(struct adapter * sc)9678 t4_os_cim_err(struct adapter *sc)
9679 {
9680 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9681 }
9682
9683 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9684 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9685 {
9686 struct adapter *sc = arg1;
9687 u_int i;
9688 struct sbuf *sb;
9689 uint32_t *buf, *p;
9690 int rc;
9691
9692 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9693 if (sb == NULL)
9694 return (ENOMEM);
9695
9696 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9697 M_ZERO | M_WAITOK);
9698
9699 rc = 0;
9700 mtx_lock(&sc->reg_lock);
9701 if (hw_off_limits(sc))
9702 rc = ENXIO;
9703 else
9704 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9705 mtx_unlock(&sc->reg_lock);
9706 if (rc)
9707 goto done;
9708
9709 p = buf;
9710 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9711 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9712 p[1], p[0]);
9713 }
9714
9715 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9716 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9717 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9718 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9719 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9720 (p[1] >> 2) | ((p[2] & 3) << 30),
9721 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9722 p[0] & 1);
9723 }
9724 rc = sbuf_finish(sb);
9725 done:
9726 sbuf_delete(sb);
9727 free(buf, M_CXGBE);
9728 return (rc);
9729 }
9730
9731 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9732 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9733 {
9734 struct adapter *sc = arg1;
9735 u_int i;
9736 struct sbuf *sb;
9737 uint32_t *buf, *p;
9738 int rc;
9739
9740 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9741 if (sb == NULL)
9742 return (ENOMEM);
9743
9744 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9745 M_ZERO | M_WAITOK);
9746
9747 rc = 0;
9748 mtx_lock(&sc->reg_lock);
9749 if (hw_off_limits(sc))
9750 rc = ENXIO;
9751 else
9752 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9753 mtx_unlock(&sc->reg_lock);
9754 if (rc)
9755 goto done;
9756
9757 p = buf;
9758 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9759 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9760 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9761 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9762 p[4], p[3], p[2], p[1], p[0]);
9763 }
9764
9765 sbuf_printf(sb, "\n\nCntl ID Data");
9766 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9767 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9768 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9769 }
9770
9771 rc = sbuf_finish(sb);
9772 done:
9773 sbuf_delete(sb);
9774 free(buf, M_CXGBE);
9775 return (rc);
9776 }
9777
9778 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9779 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9780 {
9781 struct adapter *sc = arg1;
9782 struct sbuf *sb;
9783 int rc, i;
9784 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9785 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9786 uint16_t thres[CIM_NUM_IBQ];
9787 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9788 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9789 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9790 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9791 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9792 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9793 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9794 };
9795
9796 MPASS(chip_id(sc) < CHELSIO_T7);
9797
9798 cim_num_obq = sc->chip_params->cim_num_obq;
9799 if (is_t4(sc)) {
9800 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9801 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9802 } else {
9803 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9804 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9805 }
9806 nq = CIM_NUM_IBQ + cim_num_obq;
9807
9808 mtx_lock(&sc->reg_lock);
9809 if (hw_off_limits(sc))
9810 rc = ENXIO;
9811 else {
9812 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9813 if (rc == 0) {
9814 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9815 obq_wr);
9816 if (rc == 0)
9817 t4_read_cimq_cfg(sc, base, size, thres);
9818 }
9819 }
9820 mtx_unlock(&sc->reg_lock);
9821 if (rc)
9822 return (rc);
9823
9824 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9825 if (sb == NULL)
9826 return (ENOMEM);
9827
9828 sbuf_printf(sb,
9829 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9830
9831 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9832 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9833 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9834 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9835 G_QUEREMFLITS(p[2]) * 16);
9836 for ( ; i < nq; i++, p += 4, wr += 2)
9837 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9838 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9839 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9840 G_QUEREMFLITS(p[2]) * 16);
9841
9842 rc = sbuf_finish(sb);
9843 sbuf_delete(sb);
9844
9845 return (rc);
9846 }
9847
9848 static int
sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)9849 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)
9850 {
9851 struct adapter *sc = arg1;
9852 u_int coreid = arg2;
9853 struct sbuf *sb;
9854 int rc, i;
9855 u_int addr;
9856 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9857 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9858 uint16_t thres[CIM_NUM_IBQ_T7];
9859 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr;
9860 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat;
9861 static const char * const qname_ibq_t7[] = {
9862 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI",
9863 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7",
9864 };
9865 static const char * const qname_obq_t7[] = {
9866 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX",
9867 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5",
9868 "IPC6", "IPC7"
9869 };
9870 static const char * const qname_ibq_sec_t7[] = {
9871 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD",
9872 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD",
9873 };
9874 static const char * const qname_obq_sec_t7[] = {
9875 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX",
9876 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD",
9877 "RSVD", "RSVD",
9878 };
9879
9880 MPASS(chip_id(sc) >= CHELSIO_T7);
9881
9882 mtx_lock(&sc->reg_lock);
9883 if (hw_off_limits(sc))
9884 rc = ENXIO;
9885 else {
9886 rc = -t4_cim_read_core(sc, 1, coreid,
9887 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat);
9888 if (rc != 0)
9889 goto unlock;
9890
9891 rc = -t4_cim_read_core(sc, 1, coreid,
9892 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7,
9893 &stat[4 * CIM_NUM_IBQ_T7]);
9894 if (rc != 0)
9895 goto unlock;
9896
9897 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR;
9898 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) {
9899 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1,
9900 &obq_wr[i]);
9901 if (rc != 0)
9902 goto unlock;
9903 }
9904 t4_read_cimq_cfg_core(sc, coreid, base, size, thres);
9905 }
9906 unlock:
9907 mtx_unlock(&sc->reg_lock);
9908 if (rc)
9909 return (rc);
9910
9911 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9912 if (sb == NULL)
9913 return (ENOMEM);
9914
9915 sbuf_printf(sb,
9916 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9917
9918 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) {
9919 if (!size[i])
9920 continue;
9921
9922 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9923 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i],
9924 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff,
9925 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]),
9926 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16);
9927 }
9928
9929 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) {
9930 if (!size[i])
9931 continue;
9932
9933 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u",
9934 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] :
9935 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7],
9936 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff,
9937 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9938 G_T7_QUEREMFLITS(p[2]) * 16);
9939 }
9940
9941 rc = sbuf_finish(sb);
9942 sbuf_delete(sb);
9943 return (rc);
9944 }
9945
9946 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9947 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9948 {
9949 struct adapter *sc = arg1;
9950 struct sbuf *sb;
9951 int rc;
9952 struct tp_cpl_stats stats;
9953
9954 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9955 if (sb == NULL)
9956 return (ENOMEM);
9957
9958 rc = 0;
9959 mtx_lock(&sc->reg_lock);
9960 if (hw_off_limits(sc))
9961 rc = ENXIO;
9962 else
9963 t4_tp_get_cpl_stats(sc, &stats, 0);
9964 mtx_unlock(&sc->reg_lock);
9965 if (rc)
9966 goto done;
9967
9968 if (sc->chip_params->nchan > 2) {
9969 sbuf_printf(sb, " channel 0 channel 1"
9970 " channel 2 channel 3");
9971 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9972 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9973 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9974 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9975 } else {
9976 sbuf_printf(sb, " channel 0 channel 1");
9977 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9978 stats.req[0], stats.req[1]);
9979 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9980 stats.rsp[0], stats.rsp[1]);
9981 }
9982
9983 rc = sbuf_finish(sb);
9984 done:
9985 sbuf_delete(sb);
9986 return (rc);
9987 }
9988
9989 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9990 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9991 {
9992 struct adapter *sc = arg1;
9993 struct sbuf *sb;
9994 int rc;
9995 struct tp_usm_stats stats;
9996
9997 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9998 if (sb == NULL)
9999 return (ENOMEM);
10000
10001 rc = 0;
10002 mtx_lock(&sc->reg_lock);
10003 if (hw_off_limits(sc))
10004 rc = ENXIO;
10005 else
10006 t4_get_usm_stats(sc, &stats, 1);
10007 mtx_unlock(&sc->reg_lock);
10008 if (rc == 0) {
10009 sbuf_printf(sb, "Frames: %u\n", stats.frames);
10010 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
10011 sbuf_printf(sb, "Drops: %u", stats.drops);
10012 rc = sbuf_finish(sb);
10013 }
10014 sbuf_delete(sb);
10015
10016 return (rc);
10017 }
10018
10019 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)10020 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
10021 {
10022 struct adapter *sc = arg1;
10023 struct sbuf *sb;
10024 int rc;
10025 struct tp_tid_stats stats;
10026
10027 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10028 if (sb == NULL)
10029 return (ENOMEM);
10030
10031 rc = 0;
10032 mtx_lock(&sc->reg_lock);
10033 if (hw_off_limits(sc))
10034 rc = ENXIO;
10035 else
10036 t4_tp_get_tid_stats(sc, &stats, 1);
10037 mtx_unlock(&sc->reg_lock);
10038 if (rc == 0) {
10039 sbuf_printf(sb, "Delete: %u\n", stats.del);
10040 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
10041 sbuf_printf(sb, "Active: %u\n", stats.act);
10042 sbuf_printf(sb, "Passive: %u", stats.pas);
10043 rc = sbuf_finish(sb);
10044 }
10045 sbuf_delete(sb);
10046
10047 return (rc);
10048 }
10049
10050 static const char * const devlog_level_strings[] = {
10051 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
10052 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
10053 [FW_DEVLOG_LEVEL_ERR] = "ERR",
10054 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
10055 [FW_DEVLOG_LEVEL_INFO] = "INFO",
10056 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
10057 };
10058
10059 static const char * const devlog_facility_strings[] = {
10060 [FW_DEVLOG_FACILITY_CORE] = "CORE",
10061 [FW_DEVLOG_FACILITY_CF] = "CF",
10062 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
10063 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
10064 [FW_DEVLOG_FACILITY_RES] = "RES",
10065 [FW_DEVLOG_FACILITY_HW] = "HW",
10066 [FW_DEVLOG_FACILITY_FLR] = "FLR",
10067 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
10068 [FW_DEVLOG_FACILITY_PHY] = "PHY",
10069 [FW_DEVLOG_FACILITY_MAC] = "MAC",
10070 [FW_DEVLOG_FACILITY_PORT] = "PORT",
10071 [FW_DEVLOG_FACILITY_VI] = "VI",
10072 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
10073 [FW_DEVLOG_FACILITY_ACL] = "ACL",
10074 [FW_DEVLOG_FACILITY_TM] = "TM",
10075 [FW_DEVLOG_FACILITY_QFC] = "QFC",
10076 [FW_DEVLOG_FACILITY_DCB] = "DCB",
10077 [FW_DEVLOG_FACILITY_ETH] = "ETH",
10078 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
10079 [FW_DEVLOG_FACILITY_RI] = "RI",
10080 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
10081 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
10082 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
10083 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
10084 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
10085 };
10086
10087 static int
sbuf_devlog(struct adapter * sc,int coreid,struct sbuf * sb,int flags)10088 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
10089 {
10090 int i, j, rc, nentries, first = 0;
10091 struct devlog_params *dparams = &sc->params.devlog;
10092 struct fw_devlog_e *buf, *e;
10093 uint32_t addr, size;
10094 uint64_t ftstamp = UINT64_MAX;
10095
10096 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10097 ("%s: bad coreid %d\n", __func__, coreid));
10098
10099 if (dparams->addr == 0)
10100 return (ENXIO);
10101
10102 size = dparams->size / sc->params.ncores;
10103 addr = dparams->addr + coreid * size;
10104
10105 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
10106 buf = malloc(size, M_CXGBE, M_ZERO | flags);
10107 if (buf == NULL)
10108 return (ENOMEM);
10109
10110 mtx_lock(&sc->reg_lock);
10111 if (hw_off_limits(sc))
10112 rc = ENXIO;
10113 else
10114 rc = read_via_memwin(sc, 1, addr, (void *)buf, size);
10115 mtx_unlock(&sc->reg_lock);
10116 if (rc != 0)
10117 goto done;
10118
10119 nentries = size / sizeof(struct fw_devlog_e);
10120 for (i = 0; i < nentries; i++) {
10121 e = &buf[i];
10122
10123 if (e->timestamp == 0)
10124 break; /* end */
10125
10126 e->timestamp = be64toh(e->timestamp);
10127 e->seqno = be32toh(e->seqno);
10128 for (j = 0; j < 8; j++)
10129 e->params[j] = be32toh(e->params[j]);
10130
10131 if (e->timestamp < ftstamp) {
10132 ftstamp = e->timestamp;
10133 first = i;
10134 }
10135 }
10136
10137 if (buf[first].timestamp == 0)
10138 goto done; /* nothing in the log */
10139
10140 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
10141 "Seq#", "Tstamp", "Level", "Facility", "Message");
10142
10143 i = first;
10144 do {
10145 e = &buf[i];
10146 if (e->timestamp == 0)
10147 break; /* end */
10148
10149 sbuf_printf(sb, "%10d %15ju %8s %8s ",
10150 e->seqno, e->timestamp,
10151 (e->level < nitems(devlog_level_strings) ?
10152 devlog_level_strings[e->level] : "UNKNOWN"),
10153 (e->facility < nitems(devlog_facility_strings) ?
10154 devlog_facility_strings[e->facility] : "UNKNOWN"));
10155 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
10156 e->params[2], e->params[3], e->params[4],
10157 e->params[5], e->params[6], e->params[7]);
10158
10159 if (++i == nentries)
10160 i = 0;
10161 } while (i != first);
10162 done:
10163 free(buf, M_CXGBE);
10164 return (rc);
10165 }
10166
10167 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)10168 sysctl_devlog(SYSCTL_HANDLER_ARGS)
10169 {
10170 struct adapter *sc = arg1;
10171 int rc, i, coreid = arg2;
10172 struct sbuf *sb;
10173
10174 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10175 if (sb == NULL)
10176 return (ENOMEM);
10177 if (coreid == -1) {
10178 /* -1 means all cores */
10179 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10180 if (sc->params.ncores > 0)
10181 sbuf_printf(sb, "=== CIM core %u ===\n", i);
10182 rc = sbuf_devlog(sc, i, sb, M_WAITOK);
10183 }
10184 } else {
10185 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10186 ("%s: bad coreid %d\n", __func__, coreid));
10187 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK);
10188 }
10189 if (rc == 0)
10190 rc = sbuf_finish(sb);
10191 sbuf_delete(sb);
10192 return (rc);
10193 }
10194
10195 static void
dump_devlog(struct adapter * sc)10196 dump_devlog(struct adapter *sc)
10197 {
10198 int rc, i;
10199 struct sbuf sb;
10200
10201 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
10202 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
10203 device_get_nameunit(sc->dev));
10204 return;
10205 }
10206 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10207 if (sc->params.ncores > 0)
10208 sbuf_printf(&sb, "=== CIM core %u ===\n", i);
10209 rc = sbuf_devlog(sc, i, &sb, M_WAITOK);
10210 }
10211 if (rc == 0) {
10212 sbuf_finish(&sb);
10213 log(LOG_DEBUG, "%s: device log follows.\n%s",
10214 device_get_nameunit(sc->dev), sbuf_data(&sb));
10215 }
10216 sbuf_delete(&sb);
10217 }
10218
10219 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)10220 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
10221 {
10222 struct adapter *sc = arg1;
10223 struct sbuf *sb;
10224 int rc;
10225 struct tp_fcoe_stats stats[MAX_NCHAN];
10226 int i, nchan = sc->chip_params->nchan;
10227
10228 rc = 0;
10229 mtx_lock(&sc->reg_lock);
10230 if (hw_off_limits(sc))
10231 rc = ENXIO;
10232 else {
10233 for (i = 0; i < nchan; i++)
10234 t4_get_fcoe_stats(sc, i, &stats[i], 1);
10235 }
10236 mtx_unlock(&sc->reg_lock);
10237 if (rc != 0)
10238 return (rc);
10239
10240 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10241 if (sb == NULL)
10242 return (ENOMEM);
10243
10244 if (nchan > 2) {
10245 sbuf_printf(sb, " channel 0 channel 1"
10246 " channel 2 channel 3");
10247 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
10248 stats[0].octets_ddp, stats[1].octets_ddp,
10249 stats[2].octets_ddp, stats[3].octets_ddp);
10250 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
10251 stats[0].frames_ddp, stats[1].frames_ddp,
10252 stats[2].frames_ddp, stats[3].frames_ddp);
10253 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
10254 stats[0].frames_drop, stats[1].frames_drop,
10255 stats[2].frames_drop, stats[3].frames_drop);
10256 } else {
10257 sbuf_printf(sb, " channel 0 channel 1");
10258 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
10259 stats[0].octets_ddp, stats[1].octets_ddp);
10260 sbuf_printf(sb, "\nframesDDP: %16u %16u",
10261 stats[0].frames_ddp, stats[1].frames_ddp);
10262 sbuf_printf(sb, "\nframesDrop: %16u %16u",
10263 stats[0].frames_drop, stats[1].frames_drop);
10264 }
10265
10266 rc = sbuf_finish(sb);
10267 sbuf_delete(sb);
10268
10269 return (rc);
10270 }
10271
10272 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)10273 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
10274 {
10275 struct adapter *sc = arg1;
10276 struct sbuf *sb;
10277 int rc, i;
10278 unsigned int map, kbps, ipg, mode;
10279 unsigned int pace_tab[NTX_SCHED];
10280
10281 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
10282 if (sb == NULL)
10283 return (ENOMEM);
10284
10285 mtx_lock(&sc->reg_lock);
10286 if (hw_off_limits(sc)) {
10287 mtx_unlock(&sc->reg_lock);
10288 rc = ENXIO;
10289 goto done;
10290 }
10291
10292 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
10293 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
10294 t4_read_pace_tbl(sc, pace_tab);
10295 mtx_unlock(&sc->reg_lock);
10296
10297 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
10298 "Class IPG (0.1 ns) Flow IPG (us)");
10299
10300 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
10301 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
10302 sbuf_printf(sb, "\n %u %-5s %u ", i,
10303 (mode & (1 << i)) ? "flow" : "class", map & 3);
10304 if (kbps)
10305 sbuf_printf(sb, "%9u ", kbps);
10306 else
10307 sbuf_printf(sb, " disabled ");
10308
10309 if (ipg)
10310 sbuf_printf(sb, "%13u ", ipg);
10311 else
10312 sbuf_printf(sb, " disabled ");
10313
10314 if (pace_tab[i])
10315 sbuf_printf(sb, "%10u", pace_tab[i]);
10316 else
10317 sbuf_printf(sb, " disabled");
10318 }
10319 rc = sbuf_finish(sb);
10320 done:
10321 sbuf_delete(sb);
10322 return (rc);
10323 }
10324
10325 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)10326 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
10327 {
10328 struct adapter *sc = arg1;
10329 struct sbuf *sb;
10330 int rc, i, j;
10331 uint64_t *p0, *p1;
10332 struct lb_port_stats s[2];
10333 static const char *stat_name[] = {
10334 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
10335 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
10336 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
10337 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
10338 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
10339 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
10340 "BG2FramesTrunc:", "BG3FramesTrunc:"
10341 };
10342
10343 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10344 if (sb == NULL)
10345 return (ENOMEM);
10346
10347 memset(s, 0, sizeof(s));
10348
10349 rc = 0;
10350 for (i = 0; i < sc->chip_params->nchan; i += 2) {
10351 mtx_lock(&sc->reg_lock);
10352 if (hw_off_limits(sc))
10353 rc = ENXIO;
10354 else {
10355 t4_get_lb_stats(sc, i, &s[0]);
10356 t4_get_lb_stats(sc, i + 1, &s[1]);
10357 }
10358 mtx_unlock(&sc->reg_lock);
10359 if (rc != 0)
10360 break;
10361
10362 p0 = &s[0].octets;
10363 p1 = &s[1].octets;
10364 sbuf_printf(sb, "%s Loopback %u"
10365 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
10366
10367 for (j = 0; j < nitems(stat_name); j++)
10368 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
10369 *p0++, *p1++);
10370 }
10371
10372 if (rc == 0)
10373 rc = sbuf_finish(sb);
10374 sbuf_delete(sb);
10375
10376 return (rc);
10377 }
10378
10379 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)10380 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
10381 {
10382 int rc = 0;
10383 struct port_info *pi = arg1;
10384 struct link_config *lc = &pi->link_cfg;
10385 struct sbuf *sb;
10386
10387 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
10388 if (sb == NULL)
10389 return (ENOMEM);
10390
10391 if (lc->link_ok || lc->link_down_rc == 255)
10392 sbuf_printf(sb, "n/a");
10393 else
10394 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
10395
10396 rc = sbuf_finish(sb);
10397 sbuf_delete(sb);
10398
10399 return (rc);
10400 }
10401
10402 struct mem_desc {
10403 uint64_t base;
10404 uint64_t limit;
10405 u_int idx;
10406 };
10407
10408 static int
mem_desc_cmp(const void * a,const void * b)10409 mem_desc_cmp(const void *a, const void *b)
10410 {
10411 const uint64_t v1 = ((const struct mem_desc *)a)->base;
10412 const uint64_t v2 = ((const struct mem_desc *)b)->base;
10413
10414 if (v1 < v2)
10415 return (-1);
10416 else if (v1 > v2)
10417 return (1);
10418
10419 return (0);
10420 }
10421
10422 static void
mem_region_show(struct sbuf * sb,const char * name,uint64_t from,uint64_t to)10423 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to)
10424 {
10425 uintmax_t size;
10426
10427 if (from == to)
10428 return;
10429
10430 size = to - from + 1;
10431 if (size == 0)
10432 return;
10433
10434 if (from > UINT32_MAX || to > UINT32_MAX)
10435 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name,
10436 (uintmax_t)from, (uintmax_t)to, size);
10437 else
10438 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name,
10439 (uintmax_t)from, (uintmax_t)to, size);
10440 }
10441
10442 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)10443 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
10444 {
10445 struct adapter *sc = arg1;
10446 struct sbuf *sb;
10447 int rc, i, n, nchan;
10448 uint32_t lo, hi, used, free, alloc;
10449 static const char *memory[] = {
10450 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
10451 };
10452 static const char *region[] = {
10453 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
10454 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
10455 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
10456 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
10457 "RQUDP region:", "PBL region:", "TXPBL region:",
10458 "TLSKey region:", "RRQ region:", "NVMe STAG region:",
10459 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:",
10460 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:",
10461 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:",
10462 };
10463 struct mem_desc avail[4];
10464 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
10465 struct mem_desc *md;
10466
10467 rc = sysctl_wire_old_buffer(req, 0);
10468 if (rc != 0)
10469 return (rc);
10470
10471 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10472 if (sb == NULL)
10473 return (ENOMEM);
10474
10475 for (i = 0; i < nitems(mem); i++) {
10476 mem[i].limit = 0;
10477 mem[i].idx = i;
10478 }
10479
10480 mtx_lock(&sc->reg_lock);
10481 if (hw_off_limits(sc)) {
10482 rc = ENXIO;
10483 goto done;
10484 }
10485
10486 /* Find and sort the populated memory ranges */
10487 i = 0;
10488 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
10489 if (lo & F_EDRAM0_ENABLE) {
10490 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
10491 if (chip_id(sc) >= CHELSIO_T7) {
10492 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20;
10493 avail[i].limit = avail[i].base +
10494 (G_T7_EDRAM0_SIZE(hi) << 20);
10495 } else {
10496 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20;
10497 avail[i].limit = avail[i].base +
10498 (G_EDRAM0_SIZE(hi) << 20);
10499 }
10500 avail[i].idx = 0;
10501 i++;
10502 }
10503 if (lo & F_EDRAM1_ENABLE) {
10504 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10505 if (chip_id(sc) >= CHELSIO_T7) {
10506 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20;
10507 avail[i].limit = avail[i].base +
10508 (G_T7_EDRAM1_SIZE(hi) << 20);
10509 } else {
10510 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20;
10511 avail[i].limit = avail[i].base +
10512 (G_EDRAM1_SIZE(hi) << 20);
10513 }
10514 avail[i].idx = 1;
10515 i++;
10516 }
10517 if (lo & F_EXT_MEM_ENABLE) {
10518 switch (chip_id(sc)) {
10519 case CHELSIO_T4:
10520 case CHELSIO_T6:
10521 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10522 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20;
10523 avail[i].limit = avail[i].base +
10524 (G_EXT_MEM_SIZE(hi) << 20);
10525 avail[i].idx = 2;
10526 break;
10527 case CHELSIO_T5:
10528 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10529 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20;
10530 avail[i].limit = avail[i].base +
10531 (G_EXT_MEM0_SIZE(hi) << 20);
10532 avail[i].idx = 3; /* Call it MC0 for T5 */
10533 break;
10534 default:
10535 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10536 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20;
10537 avail[i].limit = avail[i].base +
10538 (G_T7_EXT_MEM0_SIZE(hi) << 20);
10539 avail[i].idx = 3; /* Call it MC0 for T7+ */
10540 break;
10541 }
10542 i++;
10543 }
10544 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) {
10545 /* Only T5 and T7+ have 2 MCs. */
10546 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7);
10547
10548 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10549 if (chip_id(sc) >= CHELSIO_T7) {
10550 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20;
10551 avail[i].limit = avail[i].base +
10552 (G_T7_EXT_MEM1_SIZE(hi) << 20);
10553 } else {
10554 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20;
10555 avail[i].limit = avail[i].base +
10556 (G_EXT_MEM1_SIZE(hi) << 20);
10557 }
10558 avail[i].idx = 4;
10559 i++;
10560 }
10561 if (lo & F_HMA_MUX) {
10562 /* Only T6+ have HMA. */
10563 MPASS(chip_id(sc) >= CHELSIO_T6);
10564
10565 if (chip_id(sc) >= CHELSIO_T7) {
10566 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR);
10567 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20;
10568 avail[i].limit = avail[i].base +
10569 (G_T7_HMA_SIZE(hi) << 20);
10570 } else {
10571 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10572 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10573 avail[i].limit = avail[i].base +
10574 (G_EXT_MEM1_SIZE(hi) << 20);
10575 }
10576 avail[i].idx = 5;
10577 i++;
10578 }
10579 MPASS(i <= nitems(avail));
10580 if (!i) /* no memory available */
10581 goto done;
10582 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10583
10584 md = &mem[0];
10585 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10586 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10587 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10588 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10589 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10590 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10591 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10592 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10593 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10594
10595 /* the next few have explicit upper bounds */
10596 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10597 md->limit = md->base - 1 +
10598 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10599 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10600 md++;
10601
10602 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10603 md->limit = md->base - 1 +
10604 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10605 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10606 md++;
10607
10608 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10609 if (chip_id(sc) <= CHELSIO_T5)
10610 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10611 else
10612 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10613 md->limit = 0;
10614 } else {
10615 md->base = 0;
10616 md->idx = nitems(region); /* hide it */
10617 }
10618 md++;
10619
10620 #define ulp_region(reg) do {\
10621 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \
10622 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \
10623 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \
10624 md->limit += (1 << shift) - 1; \
10625 md++; \
10626 } while (0)
10627
10628 #define hide_ulp_region() do { \
10629 md->base = 0; \
10630 md->idx = nitems(region); \
10631 md++; \
10632 } while (0)
10633
10634 ulp_region(RX_ISCSI);
10635 ulp_region(RX_TDDP);
10636 ulp_region(TX_TPT);
10637 ulp_region(RX_STAG);
10638 ulp_region(RX_RQ);
10639 if (chip_id(sc) < CHELSIO_T7)
10640 ulp_region(RX_RQUDP);
10641 else
10642 hide_ulp_region();
10643 ulp_region(RX_PBL);
10644 ulp_region(TX_PBL);
10645 if (chip_id(sc) >= CHELSIO_T6)
10646 ulp_region(RX_TLS_KEY);
10647 else
10648 hide_ulp_region();
10649 if (chip_id(sc) >= CHELSIO_T7) {
10650 ulp_region(RX_RRQ);
10651 ulp_region(RX_NVME_TCP_STAG);
10652 ulp_region(RX_NVME_TCP_RQ);
10653 ulp_region(RX_NVME_TCP_PBL);
10654 ulp_region(TX_NVME_TCP_TPT);
10655 ulp_region(TX_NVME_TCP_PBL);
10656 } else {
10657 hide_ulp_region();
10658 hide_ulp_region();
10659 hide_ulp_region();
10660 hide_ulp_region();
10661 hide_ulp_region();
10662 hide_ulp_region();
10663 }
10664 #undef ulp_region
10665 #undef hide_ulp_region
10666
10667 md->base = 0;
10668 if (is_t4(sc))
10669 md->idx = nitems(region);
10670 else {
10671 uint32_t size = 0;
10672 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10673 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10674
10675 if (is_t5(sc)) {
10676 if (sge_ctrl & F_VFIFO_ENABLE)
10677 size = fifo_size << 2;
10678 } else
10679 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10680
10681 if (size) {
10682 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10683 md->limit = md->base + size - 1;
10684 } else
10685 md->idx = nitems(region);
10686 }
10687 md++;
10688
10689 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10690 md->limit = 0;
10691 md++;
10692 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10693 md->limit = 0;
10694 md++;
10695
10696 if (chip_id(sc) >= CHELSIO_T7) {
10697 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false);
10698 md->base = lo;
10699 } else {
10700 md->base = 0;
10701 md->idx = nitems(region);
10702 }
10703 md++;
10704
10705 md->base = sc->vres.ocq.start;
10706 if (sc->vres.ocq.size)
10707 md->limit = md->base + sc->vres.ocq.size - 1;
10708 else
10709 md->idx = nitems(region); /* hide it */
10710 md++;
10711
10712 /* add any address-space holes, there can be up to 3 */
10713 for (n = 0; n < i - 1; n++)
10714 if (avail[n].limit < avail[n + 1].base)
10715 (md++)->base = avail[n].limit;
10716 if (avail[n].limit)
10717 (md++)->base = avail[n].limit;
10718
10719 n = md - mem;
10720 MPASS(n <= nitems(mem));
10721 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10722
10723 for (lo = 0; lo < i; lo++)
10724 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10725 avail[lo].limit - 1);
10726
10727 sbuf_printf(sb, "\n");
10728 for (i = 0; i < n; i++) {
10729 if (mem[i].idx >= nitems(region))
10730 continue; /* skip holes */
10731 if (!mem[i].limit)
10732 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10733 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10734 mem[i].limit);
10735 }
10736
10737 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10738 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10739 if (hi != lo - 1) {
10740 sbuf_printf(sb, "\n");
10741 mem_region_show(sb, "uP RAM:", lo, hi);
10742 }
10743
10744 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10745 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10746 if (hi != lo - 1)
10747 mem_region_show(sb, "uP Extmem2:", lo, hi);
10748
10749 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10750 if (chip_id(sc) >= CHELSIO_T7)
10751 nchan = 1 << G_T7_PMRXNUMCHN(lo);
10752 else
10753 nchan = lo & F_PMRXNUMCHN ? 2 : 1;
10754 for (i = 0, free = 0; i < nchan; i++)
10755 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10756 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10757 G_PMRXMAXPAGE(lo), free,
10758 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan);
10759
10760 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10761 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10762 if (chip_id(sc) >= CHELSIO_T7)
10763 nchan = 1 << G_T7_PMTXNUMCHN(lo);
10764 else
10765 nchan = 1 << G_PMTXNUMCHN(lo);
10766 for (i = 0, free = 0; i < nchan; i++)
10767 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10768 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10769 G_PMTXMAXPAGE(lo), free,
10770 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10771 hi >= (1 << 20) ? 'M' : 'K', nchan);
10772 sbuf_printf(sb, "%u p-structs (%u free)\n",
10773 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10774 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10775
10776 for (i = 0; i < 4; i++) {
10777 if (chip_id(sc) > CHELSIO_T5)
10778 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10779 else
10780 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10781 if (is_t5(sc)) {
10782 used = G_T5_USED(lo);
10783 alloc = G_T5_ALLOC(lo);
10784 } else {
10785 used = G_USED(lo);
10786 alloc = G_ALLOC(lo);
10787 }
10788 /* For T6+ these are MAC buffer groups */
10789 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10790 i, used, alloc);
10791 }
10792 for (i = 0; i < sc->chip_params->nchan; i++) {
10793 if (chip_id(sc) > CHELSIO_T5)
10794 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10795 else
10796 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10797 if (is_t5(sc)) {
10798 used = G_T5_USED(lo);
10799 alloc = G_T5_ALLOC(lo);
10800 } else {
10801 used = G_USED(lo);
10802 alloc = G_ALLOC(lo);
10803 }
10804 /* For T6+ these are MAC buffer groups */
10805 sbuf_printf(sb,
10806 "\nLoopback %d using %u pages out of %u allocated",
10807 i, used, alloc);
10808 }
10809 done:
10810 mtx_unlock(&sc->reg_lock);
10811 if (rc == 0)
10812 rc = sbuf_finish(sb);
10813 sbuf_delete(sb);
10814 return (rc);
10815 }
10816
10817 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10818 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10819 {
10820 *mask = x | y;
10821 y = htobe64(y);
10822 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10823 }
10824
10825 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10826 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10827 {
10828 struct adapter *sc = arg1;
10829 struct sbuf *sb;
10830 int rc, i;
10831
10832 MPASS(chip_id(sc) <= CHELSIO_T5);
10833
10834 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10835 if (sb == NULL)
10836 return (ENOMEM);
10837
10838 sbuf_printf(sb,
10839 "Idx Ethernet address Mask Vld Ports PF"
10840 " VF Replication P0 P1 P2 P3 ML");
10841 rc = 0;
10842 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10843 uint64_t tcamx, tcamy, mask;
10844 uint32_t cls_lo, cls_hi;
10845 uint8_t addr[ETHER_ADDR_LEN];
10846
10847 mtx_lock(&sc->reg_lock);
10848 if (hw_off_limits(sc))
10849 rc = ENXIO;
10850 else {
10851 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10852 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10853 }
10854 mtx_unlock(&sc->reg_lock);
10855 if (rc != 0)
10856 break;
10857 if (tcamx & tcamy)
10858 continue;
10859 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10860 mtx_lock(&sc->reg_lock);
10861 if (hw_off_limits(sc))
10862 rc = ENXIO;
10863 else {
10864 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10865 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10866 }
10867 mtx_unlock(&sc->reg_lock);
10868 if (rc != 0)
10869 break;
10870 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10871 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10872 addr[3], addr[4], addr[5], (uintmax_t)mask,
10873 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10874 G_PORTMAP(cls_hi), G_PF(cls_lo),
10875 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10876
10877 if (cls_lo & F_REPLICATE) {
10878 struct fw_ldst_cmd ldst_cmd;
10879
10880 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10881 ldst_cmd.op_to_addrspace =
10882 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10883 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10884 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10885 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10886 ldst_cmd.u.mps.rplc.fid_idx =
10887 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10888 V_FW_LDST_CMD_IDX(i));
10889
10890 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10891 "t4mps");
10892 if (rc)
10893 break;
10894 if (hw_off_limits(sc))
10895 rc = ENXIO;
10896 else
10897 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10898 sizeof(ldst_cmd), &ldst_cmd);
10899 end_synchronized_op(sc, 0);
10900 if (rc != 0)
10901 break;
10902 else {
10903 sbuf_printf(sb, " %08x %08x %08x %08x",
10904 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10905 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10906 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10907 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10908 }
10909 } else
10910 sbuf_printf(sb, "%36s", "");
10911
10912 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10913 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10914 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10915 }
10916
10917 if (rc)
10918 (void) sbuf_finish(sb);
10919 else
10920 rc = sbuf_finish(sb);
10921 sbuf_delete(sb);
10922
10923 return (rc);
10924 }
10925
10926 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10927 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10928 {
10929 struct adapter *sc = arg1;
10930 struct sbuf *sb;
10931 int rc, i;
10932
10933 MPASS(chip_id(sc) == CHELSIO_T6);
10934
10935 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10936 if (sb == NULL)
10937 return (ENOMEM);
10938
10939 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10940 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10941 " Replication"
10942 " P0 P1 P2 P3 ML");
10943
10944 rc = 0;
10945 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10946 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10947 uint16_t ivlan;
10948 uint64_t tcamx, tcamy, val, mask;
10949 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10950 uint8_t addr[ETHER_ADDR_LEN];
10951
10952 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10953 if (i < 256)
10954 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10955 else
10956 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10957 mtx_lock(&sc->reg_lock);
10958 if (hw_off_limits(sc))
10959 rc = ENXIO;
10960 else {
10961 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10962 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10963 tcamy = G_DMACH(val) << 32;
10964 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10965 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10966 }
10967 mtx_unlock(&sc->reg_lock);
10968 if (rc != 0)
10969 break;
10970
10971 lookup_type = G_DATALKPTYPE(data2);
10972 port_num = G_DATAPORTNUM(data2);
10973 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10974 /* Inner header VNI */
10975 vniy = ((data2 & F_DATAVIDH2) << 23) |
10976 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10977 dip_hit = data2 & F_DATADIPHIT;
10978 vlan_vld = 0;
10979 } else {
10980 vniy = 0;
10981 dip_hit = 0;
10982 vlan_vld = data2 & F_DATAVIDH2;
10983 ivlan = G_VIDL(val);
10984 }
10985
10986 ctl |= V_CTLXYBITSEL(1);
10987 mtx_lock(&sc->reg_lock);
10988 if (hw_off_limits(sc))
10989 rc = ENXIO;
10990 else {
10991 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10992 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10993 tcamx = G_DMACH(val) << 32;
10994 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10995 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10996 }
10997 mtx_unlock(&sc->reg_lock);
10998 if (rc != 0)
10999 break;
11000
11001 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11002 /* Inner header VNI mask */
11003 vnix = ((data2 & F_DATAVIDH2) << 23) |
11004 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
11005 } else
11006 vnix = 0;
11007
11008 if (tcamx & tcamy)
11009 continue;
11010 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11011
11012 mtx_lock(&sc->reg_lock);
11013 if (hw_off_limits(sc))
11014 rc = ENXIO;
11015 else {
11016 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11017 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11018 }
11019 mtx_unlock(&sc->reg_lock);
11020 if (rc != 0)
11021 break;
11022
11023 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11024 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11025 "%012jx %06x %06x - - %3c"
11026 " I %4x %3c %#x%4u%4d", i, addr[0],
11027 addr[1], addr[2], addr[3], addr[4], addr[5],
11028 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11029 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11030 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11031 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11032 } else {
11033 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11034 "%012jx - - ", i, addr[0], addr[1],
11035 addr[2], addr[3], addr[4], addr[5],
11036 (uintmax_t)mask);
11037
11038 if (vlan_vld)
11039 sbuf_printf(sb, "%4u Y ", ivlan);
11040 else
11041 sbuf_printf(sb, " - N ");
11042
11043 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11044 lookup_type ? 'I' : 'O', port_num,
11045 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11046 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11047 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11048 }
11049
11050
11051 if (cls_lo & F_T6_REPLICATE) {
11052 struct fw_ldst_cmd ldst_cmd;
11053
11054 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11055 ldst_cmd.op_to_addrspace =
11056 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11057 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11058 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11059 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11060 ldst_cmd.u.mps.rplc.fid_idx =
11061 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11062 V_FW_LDST_CMD_IDX(i));
11063
11064 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11065 "t6mps");
11066 if (rc)
11067 break;
11068 if (hw_off_limits(sc))
11069 rc = ENXIO;
11070 else
11071 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11072 sizeof(ldst_cmd), &ldst_cmd);
11073 end_synchronized_op(sc, 0);
11074 if (rc != 0)
11075 break;
11076 else {
11077 sbuf_printf(sb, " %08x %08x %08x %08x"
11078 " %08x %08x %08x %08x",
11079 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11080 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11081 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11082 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11083 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11084 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11085 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11086 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11087 }
11088 } else
11089 sbuf_printf(sb, "%72s", "");
11090
11091 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11092 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11093 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11094 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11095 }
11096
11097 if (rc)
11098 (void) sbuf_finish(sb);
11099 else
11100 rc = sbuf_finish(sb);
11101 sbuf_delete(sb);
11102
11103 return (rc);
11104 }
11105
11106 static int
sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)11107 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)
11108 {
11109 struct adapter *sc = arg1;
11110 struct sbuf *sb;
11111 int rc, i;
11112
11113 MPASS(chip_id(sc) >= CHELSIO_T7);
11114
11115 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11116 if (sb == NULL)
11117 return (ENOMEM);
11118
11119 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
11120 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
11121 " Replication"
11122 " P0 P1 P2 P3 ML");
11123
11124 rc = 0;
11125 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
11126 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
11127 uint16_t ivlan;
11128 uint64_t tcamx, tcamy, val, mask;
11129 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
11130 uint8_t addr[ETHER_ADDR_LEN];
11131
11132 /* Read tcamy */
11133 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11134 if (chip_rev(sc) == 0) {
11135 if (i < 256)
11136 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11137 else
11138 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1);
11139 } else {
11140 #if 0
11141 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11142 #endif
11143 if (i < 512)
11144 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11145 else if (i < 1024)
11146 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1);
11147 else
11148 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2);
11149 }
11150
11151 mtx_lock(&sc->reg_lock);
11152 if (hw_off_limits(sc))
11153 rc = ENXIO;
11154 else {
11155 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11156 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11157 tcamy = G_DMACH(val) << 32;
11158 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11159 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11160 }
11161 mtx_unlock(&sc->reg_lock);
11162 if (rc != 0)
11163 break;
11164
11165 lookup_type = G_DATALKPTYPE(data2);
11166 port_num = G_DATAPORTNUM(data2);
11167 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11168 /* Inner header VNI */
11169 vniy = (((data2 & F_DATAVIDH2) |
11170 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11171 dip_hit = data2 & F_DATADIPHIT;
11172 vlan_vld = 0;
11173 } else {
11174 vniy = 0;
11175 dip_hit = 0;
11176 vlan_vld = data2 & F_DATAVIDH2;
11177 ivlan = G_VIDL(val);
11178 }
11179
11180 ctl |= V_CTLXYBITSEL(1);
11181 mtx_lock(&sc->reg_lock);
11182 if (hw_off_limits(sc))
11183 rc = ENXIO;
11184 else {
11185 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11186 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11187 tcamx = G_DMACH(val) << 32;
11188 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11189 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11190 }
11191 mtx_unlock(&sc->reg_lock);
11192 if (rc != 0)
11193 break;
11194
11195 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11196 /* Inner header VNI mask */
11197 vnix = (((data2 & F_DATAVIDH2) |
11198 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11199 } else
11200 vnix = 0;
11201
11202 if (tcamx & tcamy)
11203 continue;
11204 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11205
11206 mtx_lock(&sc->reg_lock);
11207 if (hw_off_limits(sc))
11208 rc = ENXIO;
11209 else {
11210 if (chip_rev(sc) == 0) {
11211 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11212 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11213 } else {
11214 t4_write_reg(sc, A_MPS_CLS_SRAM_H,
11215 V_SRAMWRN(0) | V_SRAMINDEX(i));
11216 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L);
11217 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H);
11218 }
11219 }
11220 mtx_unlock(&sc->reg_lock);
11221 if (rc != 0)
11222 break;
11223
11224 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11225 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11226 "%012jx %06x %06x - - %3c"
11227 " I %4x %3c %#x%4u%4d", i, addr[0],
11228 addr[1], addr[2], addr[3], addr[4], addr[5],
11229 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11230 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11231 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11232 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11233 } else {
11234 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11235 "%012jx - - ", i, addr[0], addr[1],
11236 addr[2], addr[3], addr[4], addr[5],
11237 (uintmax_t)mask);
11238
11239 if (vlan_vld)
11240 sbuf_printf(sb, "%4u Y ", ivlan);
11241 else
11242 sbuf_printf(sb, " - N ");
11243
11244 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11245 lookup_type ? 'I' : 'O', port_num,
11246 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11247 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11248 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11249 }
11250
11251 if (cls_lo & F_T6_REPLICATE) {
11252 struct fw_ldst_cmd ldst_cmd;
11253
11254 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11255 ldst_cmd.op_to_addrspace =
11256 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11257 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11258 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11259 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11260 ldst_cmd.u.mps.rplc.fid_idx =
11261 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11262 V_FW_LDST_CMD_IDX(i));
11263
11264 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11265 "t6mps");
11266 if (rc)
11267 break;
11268 if (hw_off_limits(sc))
11269 rc = ENXIO;
11270 else
11271 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11272 sizeof(ldst_cmd), &ldst_cmd);
11273 end_synchronized_op(sc, 0);
11274 if (rc != 0)
11275 break;
11276 else {
11277 sbuf_printf(sb, " %08x %08x %08x %08x"
11278 " %08x %08x %08x %08x",
11279 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11280 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11281 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11282 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11283 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11284 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11285 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11286 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11287 }
11288 } else
11289 sbuf_printf(sb, "%72s", "");
11290
11291 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11292 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11293 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11294 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11295 }
11296
11297 if (rc)
11298 (void) sbuf_finish(sb);
11299 else
11300 rc = sbuf_finish(sb);
11301 sbuf_delete(sb);
11302
11303 return (rc);
11304 }
11305
11306 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)11307 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
11308 {
11309 struct adapter *sc = arg1;
11310 struct sbuf *sb;
11311 int rc;
11312 uint16_t mtus[NMTUS];
11313
11314 rc = 0;
11315 mtx_lock(&sc->reg_lock);
11316 if (hw_off_limits(sc))
11317 rc = ENXIO;
11318 else
11319 t4_read_mtu_tbl(sc, mtus, NULL);
11320 mtx_unlock(&sc->reg_lock);
11321 if (rc != 0)
11322 return (rc);
11323
11324 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11325 if (sb == NULL)
11326 return (ENOMEM);
11327
11328 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
11329 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
11330 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
11331 mtus[14], mtus[15]);
11332
11333 rc = sbuf_finish(sb);
11334 sbuf_delete(sb);
11335
11336 return (rc);
11337 }
11338
11339 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)11340 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
11341 {
11342 struct adapter *sc = arg1;
11343 struct sbuf *sb;
11344 int rc, i;
11345 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
11346 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
11347 uint32_t stats[T7_PM_RX_CACHE_NSTATS];
11348 static const char *tx_stats[MAX_PM_NSTATS] = {
11349 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
11350 "Tx FIFO wait", NULL, "Tx latency"
11351 };
11352 static const char *rx_stats[MAX_PM_NSTATS] = {
11353 "Read:", "Write bypass:", "Write mem:", "Flush:",
11354 "Rx FIFO wait", NULL, "Rx latency"
11355 };
11356
11357 rc = 0;
11358 mtx_lock(&sc->reg_lock);
11359 if (hw_off_limits(sc))
11360 rc = ENXIO;
11361 else {
11362 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
11363 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
11364 if (chip_id(sc) >= CHELSIO_T7)
11365 t4_pmrx_cache_get_stats(sc, stats);
11366 }
11367 mtx_unlock(&sc->reg_lock);
11368 if (rc != 0)
11369 return (rc);
11370
11371 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11372 if (sb == NULL)
11373 return (ENOMEM);
11374
11375 sbuf_printf(sb, " Tx pcmds Tx bytes");
11376 for (i = 0; i < 4; i++) {
11377 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11378 tx_cyc[i]);
11379 }
11380
11381 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
11382 for (i = 0; i < 4; i++) {
11383 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11384 rx_cyc[i]);
11385 }
11386
11387 if (chip_id(sc) > CHELSIO_T5) {
11388 sbuf_printf(sb,
11389 "\n Total wait Total occupancy");
11390 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11391 tx_cyc[i]);
11392 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11393 rx_cyc[i]);
11394
11395 i += 2;
11396 MPASS(i < nitems(tx_stats));
11397
11398 sbuf_printf(sb,
11399 "\n Reads Total wait");
11400 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11401 tx_cyc[i]);
11402 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11403 rx_cyc[i]);
11404 }
11405
11406 if (chip_id(sc) >= CHELSIO_T7) {
11407 i = 0;
11408 sbuf_printf(sb, "\n\nPM RX Cache Stats\n");
11409 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]);
11410 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]);
11411 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]);
11412 sbuf_printf(sb, "%-40s %u\n", "Write Split Request",
11413 stats[i++]);
11414 sbuf_printf(sb, "%-40s %u\n",
11415 "Normal Read Split (Read Invalidate)", stats[i++]);
11416 sbuf_printf(sb, "%-40s %u\n",
11417 "Feedback Read Split (Read NoInvalidate)",
11418 stats[i++]);
11419 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]);
11420 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit",
11421 stats[i++]);
11422 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit",
11423 stats[i++]);
11424 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail",
11425 stats[i++]);
11426 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail",
11427 stats[i++]);
11428 sbuf_printf(sb, "%-40s %u\n",
11429 "Normal Read Hit Partial Avail",
11430 stats[i++]);
11431 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail",
11432 stats[i++]);
11433 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail",
11434 stats[i++]);
11435 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail",
11436 stats[i++]);
11437 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free",
11438 stats[i++]);
11439 sbuf_printf(sb, "%-40s %u\n",
11440 "Normal Read Part-avail Mul-Regions",
11441 stats[i++]);
11442 sbuf_printf(sb, "%-40s %u\n",
11443 "FB Read Part-avail Mul-Regions",
11444 stats[i++]);
11445 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used",
11446 stats[i++]);
11447 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used",
11448 stats[i++]);
11449 sbuf_printf(sb, "%-40s %u\n",
11450 "Write Miss LRU-Multiple Evict", stats[i++]);
11451 sbuf_printf(sb, "%-40s %u\n",
11452 "Write Hit Increasing Islands", stats[i++]);
11453 sbuf_printf(sb, "%-40s %u\n",
11454 "Normal Read Island Read split", stats[i++]);
11455 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction",
11456 stats[i++]);
11457 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction",
11458 stats[i++]);
11459 }
11460
11461 rc = sbuf_finish(sb);
11462 sbuf_delete(sb);
11463
11464 return (rc);
11465 }
11466
11467 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)11468 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
11469 {
11470 struct adapter *sc = arg1;
11471 struct sbuf *sb;
11472 int rc;
11473 struct tp_rdma_stats stats;
11474
11475 rc = 0;
11476 mtx_lock(&sc->reg_lock);
11477 if (hw_off_limits(sc))
11478 rc = ENXIO;
11479 else
11480 t4_tp_get_rdma_stats(sc, &stats, 0);
11481 mtx_unlock(&sc->reg_lock);
11482 if (rc != 0)
11483 return (rc);
11484
11485 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11486 if (sb == NULL)
11487 return (ENOMEM);
11488
11489 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
11490 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
11491
11492 rc = sbuf_finish(sb);
11493 sbuf_delete(sb);
11494
11495 return (rc);
11496 }
11497
11498 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)11499 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
11500 {
11501 struct adapter *sc = arg1;
11502 struct sbuf *sb;
11503 int rc;
11504 struct tp_tcp_stats v4, v6;
11505
11506 rc = 0;
11507 mtx_lock(&sc->reg_lock);
11508 if (hw_off_limits(sc))
11509 rc = ENXIO;
11510 else
11511 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
11512 mtx_unlock(&sc->reg_lock);
11513 if (rc != 0)
11514 return (rc);
11515
11516 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11517 if (sb == NULL)
11518 return (ENOMEM);
11519
11520 sbuf_printf(sb,
11521 " IP IPv6\n");
11522 sbuf_printf(sb, "OutRsts: %20u %20u\n",
11523 v4.tcp_out_rsts, v6.tcp_out_rsts);
11524 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
11525 v4.tcp_in_segs, v6.tcp_in_segs);
11526 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
11527 v4.tcp_out_segs, v6.tcp_out_segs);
11528 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
11529 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
11530
11531 rc = sbuf_finish(sb);
11532 sbuf_delete(sb);
11533
11534 return (rc);
11535 }
11536
11537 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)11538 sysctl_tids(SYSCTL_HANDLER_ARGS)
11539 {
11540 struct adapter *sc = arg1;
11541 struct sbuf *sb;
11542 int rc;
11543 uint32_t x, y;
11544 struct tid_info *t = &sc->tids;
11545
11546 rc = 0;
11547 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11548 if (sb == NULL)
11549 return (ENOMEM);
11550
11551 if (t->natids) {
11552 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
11553 t->atids_in_use);
11554 }
11555
11556 if (t->nhpftids) {
11557 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
11558 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
11559 }
11560
11561 if (t->ntids) {
11562 bool hashen = false;
11563
11564 mtx_lock(&sc->reg_lock);
11565 if (hw_off_limits(sc))
11566 rc = ENXIO;
11567 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
11568 hashen = true;
11569 if (chip_id(sc) <= CHELSIO_T5) {
11570 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
11571 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
11572 } else {
11573 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
11574 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
11575 }
11576 }
11577 mtx_unlock(&sc->reg_lock);
11578 if (rc != 0)
11579 goto done;
11580
11581 sbuf_printf(sb, "TID range: ");
11582 if (hashen) {
11583 if (x)
11584 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
11585 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
11586 } else {
11587 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
11588 t->ntids - 1);
11589 }
11590 sbuf_printf(sb, ", in use: %u\n",
11591 atomic_load_acq_int(&t->tids_in_use));
11592 }
11593
11594 if (t->nstids) {
11595 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
11596 t->stid_base + t->nstids - 1, t->stids_in_use);
11597 }
11598
11599 if (t->nftids) {
11600 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
11601 t->ftid_end, t->ftids_in_use);
11602 }
11603
11604 if (t->netids) {
11605 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
11606 t->etid_base + t->netids - 1, t->etids_in_use);
11607 }
11608
11609 mtx_lock(&sc->reg_lock);
11610 if (hw_off_limits(sc))
11611 rc = ENXIO;
11612 else {
11613 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
11614 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
11615 }
11616 mtx_unlock(&sc->reg_lock);
11617 if (rc != 0)
11618 goto done;
11619 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
11620 done:
11621 if (rc == 0)
11622 rc = sbuf_finish(sb);
11623 else
11624 (void)sbuf_finish(sb);
11625 sbuf_delete(sb);
11626
11627 return (rc);
11628 }
11629
11630 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)11631 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
11632 {
11633 struct adapter *sc = arg1;
11634 struct sbuf *sb;
11635 int rc;
11636 struct tp_err_stats stats;
11637
11638 rc = 0;
11639 mtx_lock(&sc->reg_lock);
11640 if (hw_off_limits(sc))
11641 rc = ENXIO;
11642 else
11643 t4_tp_get_err_stats(sc, &stats, 0);
11644 mtx_unlock(&sc->reg_lock);
11645 if (rc != 0)
11646 return (rc);
11647
11648 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11649 if (sb == NULL)
11650 return (ENOMEM);
11651
11652 if (sc->chip_params->nchan > 2) {
11653 sbuf_printf(sb, " channel 0 channel 1"
11654 " channel 2 channel 3\n");
11655 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
11656 stats.mac_in_errs[0], stats.mac_in_errs[1],
11657 stats.mac_in_errs[2], stats.mac_in_errs[3]);
11658 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
11659 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
11660 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
11661 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
11662 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
11663 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
11664 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
11665 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
11666 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
11667 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
11668 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
11669 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
11670 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
11671 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
11672 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
11673 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
11674 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
11675 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
11676 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
11677 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
11678 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
11679 } else {
11680 sbuf_printf(sb, " channel 0 channel 1\n");
11681 sbuf_printf(sb, "macInErrs: %10u %10u\n",
11682 stats.mac_in_errs[0], stats.mac_in_errs[1]);
11683 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
11684 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
11685 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
11686 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
11687 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
11688 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
11689 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
11690 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
11691 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
11692 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
11693 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
11694 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
11695 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
11696 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
11697 }
11698
11699 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
11700 stats.ofld_no_neigh, stats.ofld_cong_defer);
11701
11702 rc = sbuf_finish(sb);
11703 sbuf_delete(sb);
11704
11705 return (rc);
11706 }
11707
11708 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)11709 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
11710 {
11711 struct adapter *sc = arg1;
11712 struct sbuf *sb;
11713 int rc;
11714 struct tp_tnl_stats stats;
11715
11716 rc = 0;
11717 mtx_lock(&sc->reg_lock);
11718 if (hw_off_limits(sc))
11719 rc = ENXIO;
11720 else
11721 t4_tp_get_tnl_stats(sc, &stats, 1);
11722 mtx_unlock(&sc->reg_lock);
11723 if (rc != 0)
11724 return (rc);
11725
11726 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11727 if (sb == NULL)
11728 return (ENOMEM);
11729
11730 if (sc->chip_params->nchan > 2) {
11731 sbuf_printf(sb, " channel 0 channel 1"
11732 " channel 2 channel 3\n");
11733 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
11734 stats.out_pkt[0], stats.out_pkt[1],
11735 stats.out_pkt[2], stats.out_pkt[3]);
11736 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
11737 stats.in_pkt[0], stats.in_pkt[1],
11738 stats.in_pkt[2], stats.in_pkt[3]);
11739 } else {
11740 sbuf_printf(sb, " channel 0 channel 1\n");
11741 sbuf_printf(sb, "OutPkts: %10u %10u\n",
11742 stats.out_pkt[0], stats.out_pkt[1]);
11743 sbuf_printf(sb, "InPkts: %10u %10u",
11744 stats.in_pkt[0], stats.in_pkt[1]);
11745 }
11746
11747 rc = sbuf_finish(sb);
11748 sbuf_delete(sb);
11749
11750 return (rc);
11751 }
11752
11753 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)11754 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
11755 {
11756 struct adapter *sc = arg1;
11757 struct tp_params *tpp = &sc->params.tp;
11758 u_int mask;
11759 int rc;
11760
11761 mask = tpp->la_mask >> 16;
11762 rc = sysctl_handle_int(oidp, &mask, 0, req);
11763 if (rc != 0 || req->newptr == NULL)
11764 return (rc);
11765 if (mask > 0xffff)
11766 return (EINVAL);
11767 mtx_lock(&sc->reg_lock);
11768 if (hw_off_limits(sc))
11769 rc = ENXIO;
11770 else {
11771 tpp->la_mask = mask << 16;
11772 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
11773 tpp->la_mask);
11774 }
11775 mtx_unlock(&sc->reg_lock);
11776
11777 return (rc);
11778 }
11779
11780 struct field_desc {
11781 const char *name;
11782 u_int start;
11783 u_int width;
11784 };
11785
11786 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)11787 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
11788 {
11789 char buf[32];
11790 int line_size = 0;
11791
11792 while (f->name) {
11793 uint64_t mask = (1ULL << f->width) - 1;
11794 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
11795 ((uintmax_t)v >> f->start) & mask);
11796
11797 if (line_size + len >= 79) {
11798 line_size = 8;
11799 sbuf_printf(sb, "\n ");
11800 }
11801 sbuf_printf(sb, "%s ", buf);
11802 line_size += len + 1;
11803 f++;
11804 }
11805 sbuf_printf(sb, "\n");
11806 }
11807
11808 static const struct field_desc tp_la0[] = {
11809 { "RcfOpCodeOut", 60, 4 },
11810 { "State", 56, 4 },
11811 { "WcfState", 52, 4 },
11812 { "RcfOpcSrcOut", 50, 2 },
11813 { "CRxError", 49, 1 },
11814 { "ERxError", 48, 1 },
11815 { "SanityFailed", 47, 1 },
11816 { "SpuriousMsg", 46, 1 },
11817 { "FlushInputMsg", 45, 1 },
11818 { "FlushInputCpl", 44, 1 },
11819 { "RssUpBit", 43, 1 },
11820 { "RssFilterHit", 42, 1 },
11821 { "Tid", 32, 10 },
11822 { "InitTcb", 31, 1 },
11823 { "LineNumber", 24, 7 },
11824 { "Emsg", 23, 1 },
11825 { "EdataOut", 22, 1 },
11826 { "Cmsg", 21, 1 },
11827 { "CdataOut", 20, 1 },
11828 { "EreadPdu", 19, 1 },
11829 { "CreadPdu", 18, 1 },
11830 { "TunnelPkt", 17, 1 },
11831 { "RcfPeerFin", 16, 1 },
11832 { "RcfReasonOut", 12, 4 },
11833 { "TxCchannel", 10, 2 },
11834 { "RcfTxChannel", 8, 2 },
11835 { "RxEchannel", 6, 2 },
11836 { "RcfRxChannel", 5, 1 },
11837 { "RcfDataOutSrdy", 4, 1 },
11838 { "RxDvld", 3, 1 },
11839 { "RxOoDvld", 2, 1 },
11840 { "RxCongestion", 1, 1 },
11841 { "TxCongestion", 0, 1 },
11842 { NULL }
11843 };
11844
11845 static const struct field_desc tp_la1[] = {
11846 { "CplCmdIn", 56, 8 },
11847 { "CplCmdOut", 48, 8 },
11848 { "ESynOut", 47, 1 },
11849 { "EAckOut", 46, 1 },
11850 { "EFinOut", 45, 1 },
11851 { "ERstOut", 44, 1 },
11852 { "SynIn", 43, 1 },
11853 { "AckIn", 42, 1 },
11854 { "FinIn", 41, 1 },
11855 { "RstIn", 40, 1 },
11856 { "DataIn", 39, 1 },
11857 { "DataInVld", 38, 1 },
11858 { "PadIn", 37, 1 },
11859 { "RxBufEmpty", 36, 1 },
11860 { "RxDdp", 35, 1 },
11861 { "RxFbCongestion", 34, 1 },
11862 { "TxFbCongestion", 33, 1 },
11863 { "TxPktSumSrdy", 32, 1 },
11864 { "RcfUlpType", 28, 4 },
11865 { "Eread", 27, 1 },
11866 { "Ebypass", 26, 1 },
11867 { "Esave", 25, 1 },
11868 { "Static0", 24, 1 },
11869 { "Cread", 23, 1 },
11870 { "Cbypass", 22, 1 },
11871 { "Csave", 21, 1 },
11872 { "CPktOut", 20, 1 },
11873 { "RxPagePoolFull", 18, 2 },
11874 { "RxLpbkPkt", 17, 1 },
11875 { "TxLpbkPkt", 16, 1 },
11876 { "RxVfValid", 15, 1 },
11877 { "SynLearned", 14, 1 },
11878 { "SetDelEntry", 13, 1 },
11879 { "SetInvEntry", 12, 1 },
11880 { "CpcmdDvld", 11, 1 },
11881 { "CpcmdSave", 10, 1 },
11882 { "RxPstructsFull", 8, 2 },
11883 { "EpcmdDvld", 7, 1 },
11884 { "EpcmdFlush", 6, 1 },
11885 { "EpcmdTrimPrefix", 5, 1 },
11886 { "EpcmdTrimPostfix", 4, 1 },
11887 { "ERssIp4Pkt", 3, 1 },
11888 { "ERssIp6Pkt", 2, 1 },
11889 { "ERssTcpUdpPkt", 1, 1 },
11890 { "ERssFceFipPkt", 0, 1 },
11891 { NULL }
11892 };
11893
11894 static const struct field_desc tp_la2[] = {
11895 { "CplCmdIn", 56, 8 },
11896 { "MpsVfVld", 55, 1 },
11897 { "MpsPf", 52, 3 },
11898 { "MpsVf", 44, 8 },
11899 { "SynIn", 43, 1 },
11900 { "AckIn", 42, 1 },
11901 { "FinIn", 41, 1 },
11902 { "RstIn", 40, 1 },
11903 { "DataIn", 39, 1 },
11904 { "DataInVld", 38, 1 },
11905 { "PadIn", 37, 1 },
11906 { "RxBufEmpty", 36, 1 },
11907 { "RxDdp", 35, 1 },
11908 { "RxFbCongestion", 34, 1 },
11909 { "TxFbCongestion", 33, 1 },
11910 { "TxPktSumSrdy", 32, 1 },
11911 { "RcfUlpType", 28, 4 },
11912 { "Eread", 27, 1 },
11913 { "Ebypass", 26, 1 },
11914 { "Esave", 25, 1 },
11915 { "Static0", 24, 1 },
11916 { "Cread", 23, 1 },
11917 { "Cbypass", 22, 1 },
11918 { "Csave", 21, 1 },
11919 { "CPktOut", 20, 1 },
11920 { "RxPagePoolFull", 18, 2 },
11921 { "RxLpbkPkt", 17, 1 },
11922 { "TxLpbkPkt", 16, 1 },
11923 { "RxVfValid", 15, 1 },
11924 { "SynLearned", 14, 1 },
11925 { "SetDelEntry", 13, 1 },
11926 { "SetInvEntry", 12, 1 },
11927 { "CpcmdDvld", 11, 1 },
11928 { "CpcmdSave", 10, 1 },
11929 { "RxPstructsFull", 8, 2 },
11930 { "EpcmdDvld", 7, 1 },
11931 { "EpcmdFlush", 6, 1 },
11932 { "EpcmdTrimPrefix", 5, 1 },
11933 { "EpcmdTrimPostfix", 4, 1 },
11934 { "ERssIp4Pkt", 3, 1 },
11935 { "ERssIp6Pkt", 2, 1 },
11936 { "ERssTcpUdpPkt", 1, 1 },
11937 { "ERssFceFipPkt", 0, 1 },
11938 { NULL }
11939 };
11940
11941 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11942 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11943 {
11944
11945 field_desc_show(sb, *p, tp_la0);
11946 }
11947
11948 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11949 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11950 {
11951
11952 if (idx)
11953 sbuf_printf(sb, "\n");
11954 field_desc_show(sb, p[0], tp_la0);
11955 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11956 field_desc_show(sb, p[1], tp_la0);
11957 }
11958
11959 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11960 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11961 {
11962
11963 if (idx)
11964 sbuf_printf(sb, "\n");
11965 field_desc_show(sb, p[0], tp_la0);
11966 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11967 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11968 }
11969
11970 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11971 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11972 {
11973 struct adapter *sc = arg1;
11974 struct sbuf *sb;
11975 uint64_t *buf, *p;
11976 int rc;
11977 u_int i, inc;
11978 void (*show_func)(struct sbuf *, uint64_t *, int);
11979
11980 rc = 0;
11981 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11982 if (sb == NULL)
11983 return (ENOMEM);
11984
11985 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11986
11987 mtx_lock(&sc->reg_lock);
11988 if (hw_off_limits(sc))
11989 rc = ENXIO;
11990 else {
11991 t4_tp_read_la(sc, buf, NULL);
11992 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11993 case 2:
11994 inc = 2;
11995 show_func = tp_la_show2;
11996 break;
11997 case 3:
11998 inc = 2;
11999 show_func = tp_la_show3;
12000 break;
12001 default:
12002 inc = 1;
12003 show_func = tp_la_show;
12004 }
12005 }
12006 mtx_unlock(&sc->reg_lock);
12007 if (rc != 0)
12008 goto done;
12009
12010 p = buf;
12011 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
12012 (*show_func)(sb, p, i);
12013 rc = sbuf_finish(sb);
12014 done:
12015 sbuf_delete(sb);
12016 free(buf, M_CXGBE);
12017 return (rc);
12018 }
12019
12020 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)12021 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
12022 {
12023 struct adapter *sc = arg1;
12024 struct sbuf *sb;
12025 int rc;
12026 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
12027
12028 rc = 0;
12029 mtx_lock(&sc->reg_lock);
12030 if (hw_off_limits(sc))
12031 rc = ENXIO;
12032 else
12033 t4_get_chan_txrate(sc, nrate, orate);
12034 mtx_unlock(&sc->reg_lock);
12035 if (rc != 0)
12036 return (rc);
12037
12038 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
12039 if (sb == NULL)
12040 return (ENOMEM);
12041
12042 if (sc->chip_params->nchan > 2) {
12043 sbuf_printf(sb, " channel 0 channel 1"
12044 " channel 2 channel 3\n");
12045 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
12046 nrate[0], nrate[1], nrate[2], nrate[3]);
12047 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
12048 orate[0], orate[1], orate[2], orate[3]);
12049 } else {
12050 sbuf_printf(sb, " channel 0 channel 1\n");
12051 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
12052 nrate[0], nrate[1]);
12053 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
12054 orate[0], orate[1]);
12055 }
12056
12057 rc = sbuf_finish(sb);
12058 sbuf_delete(sb);
12059
12060 return (rc);
12061 }
12062
12063 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)12064 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
12065 {
12066 struct adapter *sc = arg1;
12067 struct sbuf *sb;
12068 uint32_t *buf, *p;
12069 int rc, i;
12070
12071 rc = 0;
12072 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12073 if (sb == NULL)
12074 return (ENOMEM);
12075
12076 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
12077 M_ZERO | M_WAITOK);
12078
12079 mtx_lock(&sc->reg_lock);
12080 if (hw_off_limits(sc))
12081 rc = ENXIO;
12082 else
12083 t4_ulprx_read_la(sc, buf);
12084 mtx_unlock(&sc->reg_lock);
12085 if (rc != 0)
12086 goto done;
12087
12088 p = buf;
12089 sbuf_printf(sb, " Pcmd Type Message"
12090 " Data");
12091 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
12092 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
12093 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
12094 }
12095 rc = sbuf_finish(sb);
12096 done:
12097 sbuf_delete(sb);
12098 free(buf, M_CXGBE);
12099 return (rc);
12100 }
12101
12102 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)12103 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
12104 {
12105 struct adapter *sc = arg1;
12106 struct sbuf *sb;
12107 int rc;
12108 uint32_t cfg, s1, s2;
12109
12110 MPASS(chip_id(sc) >= CHELSIO_T5);
12111
12112 rc = 0;
12113 mtx_lock(&sc->reg_lock);
12114 if (hw_off_limits(sc))
12115 rc = ENXIO;
12116 else {
12117 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
12118 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
12119 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
12120 }
12121 mtx_unlock(&sc->reg_lock);
12122 if (rc != 0)
12123 return (rc);
12124
12125 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12126 if (sb == NULL)
12127 return (ENOMEM);
12128
12129 if (G_STATSOURCE_T5(cfg) == 7) {
12130 int mode;
12131
12132 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
12133 if (mode == 0)
12134 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
12135 else if (mode == 1)
12136 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
12137 else
12138 sbuf_printf(sb, "unknown mode %d", mode);
12139 }
12140 rc = sbuf_finish(sb);
12141 sbuf_delete(sb);
12142
12143 return (rc);
12144 }
12145
12146 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)12147 sysctl_cpus(SYSCTL_HANDLER_ARGS)
12148 {
12149 struct adapter *sc = arg1;
12150 enum cpu_sets op = arg2;
12151 cpuset_t cpuset;
12152 struct sbuf *sb;
12153 int i, rc;
12154
12155 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
12156
12157 CPU_ZERO(&cpuset);
12158 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
12159 if (rc != 0)
12160 return (rc);
12161
12162 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12163 if (sb == NULL)
12164 return (ENOMEM);
12165
12166 CPU_FOREACH(i)
12167 sbuf_printf(sb, "%d ", i);
12168 rc = sbuf_finish(sb);
12169 sbuf_delete(sb);
12170
12171 return (rc);
12172 }
12173
12174 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)12175 sysctl_reset(SYSCTL_HANDLER_ARGS)
12176 {
12177 struct adapter *sc = arg1;
12178 u_int val;
12179 int rc;
12180
12181 val = atomic_load_int(&sc->num_resets);
12182 rc = sysctl_handle_int(oidp, &val, 0, req);
12183 if (rc != 0 || req->newptr == NULL)
12184 return (rc);
12185
12186 if (val == 0) {
12187 /* Zero out the counter that tracks reset. */
12188 atomic_store_int(&sc->num_resets, 0);
12189 return (0);
12190 }
12191
12192 if (val != 1)
12193 return (EINVAL); /* 0 or 1 are the only legal values */
12194
12195 if (hw_off_limits(sc)) /* harmless race */
12196 return (EALREADY);
12197
12198 taskqueue_enqueue(reset_tq, &sc->reset_task);
12199 return (0);
12200 }
12201
12202 #ifdef TCP_OFFLOAD
12203 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)12204 sysctl_tls(SYSCTL_HANDLER_ARGS)
12205 {
12206 struct adapter *sc = arg1;
12207 int i, j, v, rc;
12208 struct vi_info *vi;
12209
12210 v = sc->tt.tls;
12211 rc = sysctl_handle_int(oidp, &v, 0, req);
12212 if (rc != 0 || req->newptr == NULL)
12213 return (rc);
12214
12215 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
12216 return (ENOTSUP);
12217
12218 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
12219 if (rc)
12220 return (rc);
12221 if (hw_off_limits(sc))
12222 rc = ENXIO;
12223 else {
12224 sc->tt.tls = !!v;
12225 for_each_port(sc, i) {
12226 for_each_vi(sc->port[i], j, vi) {
12227 if (vi->flags & VI_INIT_DONE)
12228 t4_update_fl_bufsize(vi->ifp);
12229 }
12230 }
12231 }
12232 end_synchronized_op(sc, 0);
12233
12234 return (rc);
12235
12236 }
12237
12238 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)12239 unit_conv(char *buf, size_t len, u_int val, u_int factor)
12240 {
12241 u_int rem = val % factor;
12242
12243 if (rem == 0)
12244 snprintf(buf, len, "%u", val / factor);
12245 else {
12246 while (rem % 10 == 0)
12247 rem /= 10;
12248 snprintf(buf, len, "%u.%u", val / factor, rem);
12249 }
12250 }
12251
12252 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)12253 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
12254 {
12255 struct adapter *sc = arg1;
12256 char buf[16];
12257 u_int res, re;
12258 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12259
12260 mtx_lock(&sc->reg_lock);
12261 if (hw_off_limits(sc))
12262 res = (u_int)-1;
12263 else
12264 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
12265 mtx_unlock(&sc->reg_lock);
12266 if (res == (u_int)-1)
12267 return (ENXIO);
12268
12269 switch (arg2) {
12270 case 0:
12271 /* timer_tick */
12272 re = G_TIMERRESOLUTION(res);
12273 break;
12274 case 1:
12275 /* TCP timestamp tick */
12276 re = G_TIMESTAMPRESOLUTION(res);
12277 break;
12278 case 2:
12279 /* DACK tick */
12280 re = G_DELAYEDACKRESOLUTION(res);
12281 break;
12282 default:
12283 return (EDOOFUS);
12284 }
12285
12286 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
12287
12288 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
12289 }
12290
12291 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)12292 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
12293 {
12294 struct adapter *sc = arg1;
12295 int rc;
12296 u_int dack_tmr, dack_re, v;
12297 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12298
12299 mtx_lock(&sc->reg_lock);
12300 if (hw_off_limits(sc))
12301 rc = ENXIO;
12302 else {
12303 rc = 0;
12304 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
12305 A_TP_TIMER_RESOLUTION));
12306 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
12307 }
12308 mtx_unlock(&sc->reg_lock);
12309 if (rc != 0)
12310 return (rc);
12311
12312 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
12313
12314 return (sysctl_handle_int(oidp, &v, 0, req));
12315 }
12316
12317 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)12318 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
12319 {
12320 struct adapter *sc = arg1;
12321 int rc, reg = arg2;
12322 u_int tre;
12323 u_long tp_tick_us, v;
12324 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12325
12326 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
12327 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
12328 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
12329 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
12330
12331 mtx_lock(&sc->reg_lock);
12332 if (hw_off_limits(sc))
12333 rc = ENXIO;
12334 else {
12335 rc = 0;
12336 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
12337 tp_tick_us = (cclk_ps << tre) / 1000000;
12338 if (reg == A_TP_INIT_SRTT)
12339 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
12340 else
12341 v = tp_tick_us * t4_read_reg(sc, reg);
12342 }
12343 mtx_unlock(&sc->reg_lock);
12344 if (rc != 0)
12345 return (rc);
12346 else
12347 return (sysctl_handle_long(oidp, &v, 0, req));
12348 }
12349
12350 /*
12351 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
12352 * passed to this function.
12353 */
12354 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)12355 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
12356 {
12357 struct adapter *sc = arg1;
12358 int rc, idx = arg2;
12359 u_int v;
12360
12361 MPASS(idx >= 0 && idx <= 24);
12362
12363 mtx_lock(&sc->reg_lock);
12364 if (hw_off_limits(sc))
12365 rc = ENXIO;
12366 else {
12367 rc = 0;
12368 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
12369 }
12370 mtx_unlock(&sc->reg_lock);
12371 if (rc != 0)
12372 return (rc);
12373 else
12374 return (sysctl_handle_int(oidp, &v, 0, req));
12375 }
12376
12377 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)12378 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
12379 {
12380 struct adapter *sc = arg1;
12381 int rc, idx = arg2;
12382 u_int shift, v, r;
12383
12384 MPASS(idx >= 0 && idx < 16);
12385
12386 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
12387 shift = (idx & 3) << 3;
12388 mtx_lock(&sc->reg_lock);
12389 if (hw_off_limits(sc))
12390 rc = ENXIO;
12391 else {
12392 rc = 0;
12393 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
12394 }
12395 mtx_unlock(&sc->reg_lock);
12396 if (rc != 0)
12397 return (rc);
12398 else
12399 return (sysctl_handle_int(oidp, &v, 0, req));
12400 }
12401
12402 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)12403 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
12404 {
12405 struct vi_info *vi = arg1;
12406 struct adapter *sc = vi->adapter;
12407 int idx, rc, i;
12408 struct sge_ofld_rxq *ofld_rxq;
12409 uint8_t v;
12410
12411 idx = vi->ofld_tmr_idx;
12412
12413 rc = sysctl_handle_int(oidp, &idx, 0, req);
12414 if (rc != 0 || req->newptr == NULL)
12415 return (rc);
12416
12417 if (idx < 0 || idx >= SGE_NTIMERS)
12418 return (EINVAL);
12419
12420 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12421 "t4otmr");
12422 if (rc)
12423 return (rc);
12424
12425 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
12426 for_each_ofld_rxq(vi, i, ofld_rxq) {
12427 #ifdef atomic_store_rel_8
12428 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
12429 #else
12430 ofld_rxq->iq.intr_params = v;
12431 #endif
12432 }
12433 vi->ofld_tmr_idx = idx;
12434
12435 end_synchronized_op(sc, LOCK_HELD);
12436 return (0);
12437 }
12438
12439 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)12440 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
12441 {
12442 struct vi_info *vi = arg1;
12443 struct adapter *sc = vi->adapter;
12444 int idx, rc;
12445
12446 idx = vi->ofld_pktc_idx;
12447
12448 rc = sysctl_handle_int(oidp, &idx, 0, req);
12449 if (rc != 0 || req->newptr == NULL)
12450 return (rc);
12451
12452 if (idx < -1 || idx >= SGE_NCOUNTERS)
12453 return (EINVAL);
12454
12455 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12456 "t4opktc");
12457 if (rc)
12458 return (rc);
12459
12460 if (vi->flags & VI_INIT_DONE)
12461 rc = EBUSY; /* cannot be changed once the queues are created */
12462 else
12463 vi->ofld_pktc_idx = idx;
12464
12465 end_synchronized_op(sc, LOCK_HELD);
12466 return (rc);
12467 }
12468 #endif
12469
12470 static int
get_sge_context(struct adapter * sc,int mem_id,uint32_t cid,int len,uint32_t * data)12471 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len,
12472 uint32_t *data)
12473 {
12474 int rc;
12475
12476 if (len < sc->chip_params->sge_ctxt_size)
12477 return (ENOBUFS);
12478 if (cid > M_CTXTQID)
12479 return (EINVAL);
12480 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS &&
12481 mem_id != CTXT_FLM && mem_id != CTXT_CNM)
12482 return (EINVAL);
12483
12484 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
12485 if (rc)
12486 return (rc);
12487
12488 if (hw_off_limits(sc)) {
12489 rc = ENXIO;
12490 goto done;
12491 }
12492
12493 if (sc->flags & FW_OK) {
12494 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data);
12495 if (rc == 0)
12496 goto done;
12497 }
12498
12499 /*
12500 * Read via firmware failed or wasn't even attempted. Read directly via
12501 * the backdoor.
12502 */
12503 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data);
12504 done:
12505 end_synchronized_op(sc, 0);
12506 return (rc);
12507 }
12508
12509 static int
load_fw(struct adapter * sc,struct t4_data * fw)12510 load_fw(struct adapter *sc, struct t4_data *fw)
12511 {
12512 int rc;
12513 uint8_t *fw_data;
12514
12515 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
12516 if (rc)
12517 return (rc);
12518
12519 if (hw_off_limits(sc)) {
12520 rc = ENXIO;
12521 goto done;
12522 }
12523
12524 /*
12525 * The firmware, with the sole exception of the memory parity error
12526 * handler, runs from memory and not flash. It is almost always safe to
12527 * install a new firmware on a running system. Just set bit 1 in
12528 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
12529 */
12530 if (sc->flags & FULL_INIT_DONE &&
12531 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
12532 rc = EBUSY;
12533 goto done;
12534 }
12535
12536 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
12537
12538 rc = copyin(fw->data, fw_data, fw->len);
12539 if (rc == 0)
12540 rc = -t4_load_fw(sc, fw_data, fw->len);
12541
12542 free(fw_data, M_CXGBE);
12543 done:
12544 end_synchronized_op(sc, 0);
12545 return (rc);
12546 }
12547
12548 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)12549 load_cfg(struct adapter *sc, struct t4_data *cfg)
12550 {
12551 int rc;
12552 uint8_t *cfg_data = NULL;
12553
12554 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12555 if (rc)
12556 return (rc);
12557
12558 if (hw_off_limits(sc)) {
12559 rc = ENXIO;
12560 goto done;
12561 }
12562
12563 if (cfg->len == 0) {
12564 /* clear */
12565 rc = -t4_load_cfg(sc, NULL, 0);
12566 goto done;
12567 }
12568
12569 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
12570
12571 rc = copyin(cfg->data, cfg_data, cfg->len);
12572 if (rc == 0)
12573 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
12574
12575 free(cfg_data, M_CXGBE);
12576 done:
12577 end_synchronized_op(sc, 0);
12578 return (rc);
12579 }
12580
12581 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)12582 load_boot(struct adapter *sc, struct t4_bootrom *br)
12583 {
12584 int rc;
12585 uint8_t *br_data = NULL;
12586 u_int offset;
12587
12588 if (br->len > 1024 * 1024)
12589 return (EFBIG);
12590
12591 if (br->pf_offset == 0) {
12592 /* pfidx */
12593 if (br->pfidx_addr > 7)
12594 return (EINVAL);
12595 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
12596 A_PCIE_PF_EXPROM_OFST)));
12597 } else if (br->pf_offset == 1) {
12598 /* offset */
12599 offset = G_OFFSET(br->pfidx_addr);
12600 } else {
12601 return (EINVAL);
12602 }
12603
12604 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
12605 if (rc)
12606 return (rc);
12607
12608 if (hw_off_limits(sc)) {
12609 rc = ENXIO;
12610 goto done;
12611 }
12612
12613 if (br->len == 0) {
12614 /* clear */
12615 rc = -t4_load_boot(sc, NULL, offset, 0);
12616 goto done;
12617 }
12618
12619 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
12620
12621 rc = copyin(br->data, br_data, br->len);
12622 if (rc == 0)
12623 rc = -t4_load_boot(sc, br_data, offset, br->len);
12624
12625 free(br_data, M_CXGBE);
12626 done:
12627 end_synchronized_op(sc, 0);
12628 return (rc);
12629 }
12630
12631 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)12632 load_bootcfg(struct adapter *sc, struct t4_data *bc)
12633 {
12634 int rc;
12635 uint8_t *bc_data = NULL;
12636
12637 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12638 if (rc)
12639 return (rc);
12640
12641 if (hw_off_limits(sc)) {
12642 rc = ENXIO;
12643 goto done;
12644 }
12645
12646 if (bc->len == 0) {
12647 /* clear */
12648 rc = -t4_load_bootcfg(sc, NULL, 0);
12649 goto done;
12650 }
12651
12652 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
12653
12654 rc = copyin(bc->data, bc_data, bc->len);
12655 if (rc == 0)
12656 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
12657
12658 free(bc_data, M_CXGBE);
12659 done:
12660 end_synchronized_op(sc, 0);
12661 return (rc);
12662 }
12663
12664 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)12665 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
12666 {
12667 int rc;
12668 struct cudbg_init *cudbg;
12669 void *handle, *buf;
12670
12671 /* buf is large, don't block if no memory is available */
12672 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
12673 if (buf == NULL)
12674 return (ENOMEM);
12675
12676 handle = cudbg_alloc_handle();
12677 if (handle == NULL) {
12678 rc = ENOMEM;
12679 goto done;
12680 }
12681
12682 cudbg = cudbg_get_init(handle);
12683 cudbg->adap = sc;
12684 cudbg->print = (cudbg_print_cb)printf;
12685
12686 #ifndef notyet
12687 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
12688 __func__, dump->wr_flash, dump->len, dump->data);
12689 #endif
12690
12691 if (dump->wr_flash)
12692 cudbg->use_flash = 1;
12693 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
12694 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
12695
12696 rc = cudbg_collect(handle, buf, &dump->len);
12697 if (rc != 0)
12698 goto done;
12699
12700 rc = copyout(buf, dump->data, dump->len);
12701 done:
12702 cudbg_free_handle(handle);
12703 free(buf, M_CXGBE);
12704 return (rc);
12705 }
12706
12707 static void
free_offload_policy(struct t4_offload_policy * op)12708 free_offload_policy(struct t4_offload_policy *op)
12709 {
12710 struct offload_rule *r;
12711 int i;
12712
12713 if (op == NULL)
12714 return;
12715
12716 r = &op->rule[0];
12717 for (i = 0; i < op->nrules; i++, r++) {
12718 free(r->bpf_prog.bf_insns, M_CXGBE);
12719 }
12720 free(op->rule, M_CXGBE);
12721 free(op, M_CXGBE);
12722 }
12723
12724 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)12725 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
12726 {
12727 int i, rc, len;
12728 struct t4_offload_policy *op, *old;
12729 struct bpf_program *bf;
12730 const struct offload_settings *s;
12731 struct offload_rule *r;
12732 void *u;
12733
12734 if (!is_offload(sc))
12735 return (ENODEV);
12736
12737 if (uop->nrules == 0) {
12738 /* Delete installed policies. */
12739 op = NULL;
12740 goto set_policy;
12741 } else if (uop->nrules > 256) { /* arbitrary */
12742 return (E2BIG);
12743 }
12744
12745 /* Copy userspace offload policy to kernel */
12746 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
12747 op->nrules = uop->nrules;
12748 len = op->nrules * sizeof(struct offload_rule);
12749 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12750 rc = copyin(uop->rule, op->rule, len);
12751 if (rc) {
12752 free(op->rule, M_CXGBE);
12753 free(op, M_CXGBE);
12754 return (rc);
12755 }
12756
12757 r = &op->rule[0];
12758 for (i = 0; i < op->nrules; i++, r++) {
12759
12760 /* Validate open_type */
12761 if (r->open_type != OPEN_TYPE_LISTEN &&
12762 r->open_type != OPEN_TYPE_ACTIVE &&
12763 r->open_type != OPEN_TYPE_PASSIVE &&
12764 r->open_type != OPEN_TYPE_DONTCARE) {
12765 error:
12766 /*
12767 * Rules 0 to i have malloc'd filters that need to be
12768 * freed. Rules i+1 to nrules have userspace pointers
12769 * and should be left alone.
12770 */
12771 op->nrules = i;
12772 free_offload_policy(op);
12773 return (rc);
12774 }
12775
12776 /* Validate settings */
12777 s = &r->settings;
12778 if ((s->offload != 0 && s->offload != 1) ||
12779 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
12780 s->sched_class < -1 ||
12781 s->sched_class >= sc->params.nsched_cls) {
12782 rc = EINVAL;
12783 goto error;
12784 }
12785
12786 bf = &r->bpf_prog;
12787 u = bf->bf_insns; /* userspace ptr */
12788 bf->bf_insns = NULL;
12789 if (bf->bf_len == 0) {
12790 /* legal, matches everything */
12791 continue;
12792 }
12793 len = bf->bf_len * sizeof(*bf->bf_insns);
12794 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12795 rc = copyin(u, bf->bf_insns, len);
12796 if (rc != 0)
12797 goto error;
12798
12799 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
12800 rc = EINVAL;
12801 goto error;
12802 }
12803 }
12804 set_policy:
12805 rw_wlock(&sc->policy_lock);
12806 old = sc->policy;
12807 sc->policy = op;
12808 rw_wunlock(&sc->policy_lock);
12809 free_offload_policy(old);
12810
12811 return (0);
12812 }
12813
12814 #define MAX_READ_BUF_SIZE (128 * 1024)
12815 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)12816 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
12817 {
12818 uint32_t addr, remaining, n;
12819 uint32_t *buf;
12820 int rc;
12821 uint8_t *dst;
12822
12823 mtx_lock(&sc->reg_lock);
12824 if (hw_off_limits(sc))
12825 rc = ENXIO;
12826 else
12827 rc = validate_mem_range(sc, mr->addr, mr->len);
12828 mtx_unlock(&sc->reg_lock);
12829 if (rc != 0)
12830 return (rc);
12831
12832 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
12833 addr = mr->addr;
12834 remaining = mr->len;
12835 dst = (void *)mr->data;
12836
12837 while (remaining) {
12838 n = min(remaining, MAX_READ_BUF_SIZE);
12839 mtx_lock(&sc->reg_lock);
12840 if (hw_off_limits(sc))
12841 rc = ENXIO;
12842 else
12843 read_via_memwin(sc, 2, addr, buf, n);
12844 mtx_unlock(&sc->reg_lock);
12845 if (rc != 0)
12846 break;
12847
12848 rc = copyout(buf, dst, n);
12849 if (rc != 0)
12850 break;
12851
12852 dst += n;
12853 remaining -= n;
12854 addr += n;
12855 }
12856
12857 free(buf, M_CXGBE);
12858 return (rc);
12859 }
12860 #undef MAX_READ_BUF_SIZE
12861
12862 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12863 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12864 {
12865 int rc;
12866
12867 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12868 return (EINVAL);
12869
12870 if (i2cd->len > sizeof(i2cd->data))
12871 return (EFBIG);
12872
12873 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12874 if (rc)
12875 return (rc);
12876 if (hw_off_limits(sc))
12877 rc = ENXIO;
12878 else
12879 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12880 i2cd->offset, i2cd->len, &i2cd->data[0]);
12881 end_synchronized_op(sc, 0);
12882
12883 return (rc);
12884 }
12885
12886 static int
clear_stats(struct adapter * sc,u_int port_id)12887 clear_stats(struct adapter *sc, u_int port_id)
12888 {
12889 int i, v, chan_map;
12890 struct port_info *pi;
12891 struct vi_info *vi;
12892 struct sge_rxq *rxq;
12893 struct sge_txq *txq;
12894 struct sge_wrq *wrq;
12895 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12896 struct sge_ofld_txq *ofld_txq;
12897 #endif
12898 #ifdef TCP_OFFLOAD
12899 struct sge_ofld_rxq *ofld_rxq;
12900 #endif
12901
12902 if (port_id >= sc->params.nports)
12903 return (EINVAL);
12904 pi = sc->port[port_id];
12905 if (pi == NULL)
12906 return (EIO);
12907
12908 mtx_lock(&sc->reg_lock);
12909 if (!hw_off_limits(sc)) {
12910 /* MAC stats */
12911 t4_clr_port_stats(sc, pi->hw_port);
12912 if (is_t6(sc)) {
12913 if (pi->fcs_reg != -1)
12914 pi->fcs_base = t4_read_reg64(sc,
12915 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
12916 else
12917 pi->stats.rx_fcs_err = 0;
12918 }
12919 for_each_vi(pi, v, vi) {
12920 if (vi->flags & VI_INIT_DONE)
12921 t4_clr_vi_stats(sc, vi->vin);
12922 }
12923 chan_map = pi->rx_e_chan_map;
12924 v = 0; /* reuse */
12925 while (chan_map) {
12926 i = ffs(chan_map) - 1;
12927 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12928 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12929 chan_map &= ~(1 << i);
12930 }
12931 }
12932 mtx_unlock(&sc->reg_lock);
12933 pi->tx_parse_error = 0;
12934 pi->tnl_cong_drops = 0;
12935
12936 /*
12937 * Since this command accepts a port, clear stats for
12938 * all VIs on this port.
12939 */
12940 for_each_vi(pi, v, vi) {
12941 if (vi->flags & VI_INIT_DONE) {
12942
12943 for_each_rxq(vi, i, rxq) {
12944 #if defined(INET) || defined(INET6)
12945 rxq->lro.lro_queued = 0;
12946 rxq->lro.lro_flushed = 0;
12947 #endif
12948 rxq->rxcsum = 0;
12949 rxq->vlan_extraction = 0;
12950 rxq->vxlan_rxcsum = 0;
12951
12952 rxq->fl.cl_allocated = 0;
12953 rxq->fl.cl_recycled = 0;
12954 rxq->fl.cl_fast_recycled = 0;
12955 }
12956
12957 for_each_txq(vi, i, txq) {
12958 txq->txcsum = 0;
12959 txq->tso_wrs = 0;
12960 txq->vlan_insertion = 0;
12961 txq->imm_wrs = 0;
12962 txq->sgl_wrs = 0;
12963 txq->txpkt_wrs = 0;
12964 txq->txpkts0_wrs = 0;
12965 txq->txpkts1_wrs = 0;
12966 txq->txpkts0_pkts = 0;
12967 txq->txpkts1_pkts = 0;
12968 txq->txpkts_flush = 0;
12969 txq->raw_wrs = 0;
12970 txq->vxlan_tso_wrs = 0;
12971 txq->vxlan_txcsum = 0;
12972 txq->kern_tls_records = 0;
12973 txq->kern_tls_short = 0;
12974 txq->kern_tls_partial = 0;
12975 txq->kern_tls_full = 0;
12976 txq->kern_tls_octets = 0;
12977 txq->kern_tls_waste = 0;
12978 txq->kern_tls_header = 0;
12979 txq->kern_tls_fin_short = 0;
12980 txq->kern_tls_cbc = 0;
12981 txq->kern_tls_gcm = 0;
12982 if (is_t6(sc)) {
12983 txq->kern_tls_options = 0;
12984 txq->kern_tls_fin = 0;
12985 } else {
12986 txq->kern_tls_ghash_received = 0;
12987 txq->kern_tls_ghash_requested = 0;
12988 txq->kern_tls_lso = 0;
12989 txq->kern_tls_partial_ghash = 0;
12990 txq->kern_tls_splitmode = 0;
12991 txq->kern_tls_trailer = 0;
12992 }
12993 mp_ring_reset_stats(txq->r);
12994 }
12995
12996 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12997 for_each_ofld_txq(vi, i, ofld_txq) {
12998 ofld_txq->wrq.tx_wrs_direct = 0;
12999 ofld_txq->wrq.tx_wrs_copied = 0;
13000 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
13001 counter_u64_zero(ofld_txq->tx_iscsi_octets);
13002 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
13003 counter_u64_zero(ofld_txq->tx_nvme_pdus);
13004 counter_u64_zero(ofld_txq->tx_nvme_octets);
13005 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs);
13006 counter_u64_zero(ofld_txq->tx_aio_jobs);
13007 counter_u64_zero(ofld_txq->tx_aio_octets);
13008 counter_u64_zero(ofld_txq->tx_toe_tls_records);
13009 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
13010 }
13011 #endif
13012 #ifdef TCP_OFFLOAD
13013 for_each_ofld_rxq(vi, i, ofld_rxq) {
13014 ofld_rxq->fl.cl_allocated = 0;
13015 ofld_rxq->fl.cl_recycled = 0;
13016 ofld_rxq->fl.cl_fast_recycled = 0;
13017 counter_u64_zero(
13018 ofld_rxq->rx_iscsi_ddp_setup_ok);
13019 counter_u64_zero(
13020 ofld_rxq->rx_iscsi_ddp_setup_error);
13021 ofld_rxq->rx_iscsi_ddp_pdus = 0;
13022 ofld_rxq->rx_iscsi_ddp_octets = 0;
13023 ofld_rxq->rx_iscsi_fl_pdus = 0;
13024 ofld_rxq->rx_iscsi_fl_octets = 0;
13025 counter_u64_zero(
13026 ofld_rxq->rx_nvme_ddp_setup_ok);
13027 counter_u64_zero(
13028 ofld_rxq->rx_nvme_ddp_setup_no_stag);
13029 counter_u64_zero(
13030 ofld_rxq->rx_nvme_ddp_setup_error);
13031 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus);
13032 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets);
13033 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus);
13034 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets);
13035 counter_u64_zero(
13036 ofld_rxq->rx_nvme_invalid_headers);
13037 counter_u64_zero(
13038 ofld_rxq->rx_nvme_header_digest_errors);
13039 counter_u64_zero(
13040 ofld_rxq->rx_nvme_data_digest_errors);
13041 ofld_rxq->rx_aio_ddp_jobs = 0;
13042 ofld_rxq->rx_aio_ddp_octets = 0;
13043 ofld_rxq->rx_toe_tls_records = 0;
13044 ofld_rxq->rx_toe_tls_octets = 0;
13045 ofld_rxq->rx_toe_ddp_octets = 0;
13046 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
13047 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
13048 counter_u64_zero(ofld_rxq->ddp_buffer_free);
13049 }
13050 #endif
13051
13052 if (IS_MAIN_VI(vi)) {
13053 wrq = &sc->sge.ctrlq[pi->port_id];
13054 wrq->tx_wrs_direct = 0;
13055 wrq->tx_wrs_copied = 0;
13056 }
13057 }
13058 }
13059
13060 return (0);
13061 }
13062
13063 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13064 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13065 {
13066 #ifdef INET6
13067 struct in6_addr in6;
13068
13069 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13070 if (t4_get_clip_entry(sc, &in6, true) != NULL)
13071 return (0);
13072 else
13073 return (EIO);
13074 #else
13075 return (ENOTSUP);
13076 #endif
13077 }
13078
13079 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13080 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13081 {
13082 #ifdef INET6
13083 struct in6_addr in6;
13084
13085 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13086 return (t4_release_clip_addr(sc, &in6));
13087 #else
13088 return (ENOTSUP);
13089 #endif
13090 }
13091
13092 int
t4_os_find_pci_capability(struct adapter * sc,int cap)13093 t4_os_find_pci_capability(struct adapter *sc, int cap)
13094 {
13095 int i;
13096
13097 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
13098 }
13099
13100 void
t4_os_portmod_changed(struct port_info * pi)13101 t4_os_portmod_changed(struct port_info *pi)
13102 {
13103 struct adapter *sc = pi->adapter;
13104 struct vi_info *vi;
13105 if_t ifp;
13106 static const char *mod_str[] = {
13107 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
13108 "LR_SIMPLEX", "DR"
13109 };
13110
13111 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
13112 ("%s: port_type %u", __func__, pi->port_type));
13113
13114 vi = &pi->vi[0];
13115 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
13116 PORT_LOCK(pi);
13117 build_medialist(pi);
13118 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
13119 fixup_link_config(pi);
13120 apply_link_config(pi);
13121 }
13122 PORT_UNLOCK(pi);
13123 end_synchronized_op(sc, LOCK_HELD);
13124 }
13125
13126 ifp = vi->ifp;
13127 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
13128 if_printf(ifp, "transceiver unplugged.\n");
13129 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
13130 if_printf(ifp, "unknown transceiver inserted.\n");
13131 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
13132 if_printf(ifp, "unsupported transceiver inserted.\n");
13133 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
13134 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
13135 port_top_speed(pi), mod_str[pi->mod_type]);
13136 } else {
13137 if_printf(ifp, "transceiver (type %d) inserted.\n",
13138 pi->mod_type);
13139 }
13140 }
13141
13142 void
t4_os_link_changed(struct port_info * pi)13143 t4_os_link_changed(struct port_info *pi)
13144 {
13145 struct vi_info *vi;
13146 if_t ifp;
13147 struct link_config *lc = &pi->link_cfg;
13148 struct adapter *sc = pi->adapter;
13149 int v;
13150
13151 PORT_LOCK_ASSERT_OWNED(pi);
13152
13153 if (is_t6(sc)) {
13154 if (lc->link_ok) {
13155 if (lc->speed > 25000 ||
13156 (lc->speed == 25000 && lc->fec == FEC_RS))
13157 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS;
13158 else
13159 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS;
13160 pi->fcs_base = t4_read_reg64(sc,
13161 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
13162 pi->stats.rx_fcs_err = 0;
13163 } else {
13164 pi->fcs_reg = -1;
13165 }
13166 } else {
13167 MPASS(pi->fcs_reg != -1);
13168 MPASS(pi->fcs_base == 0);
13169 }
13170
13171 for_each_vi(pi, v, vi) {
13172 ifp = vi->ifp;
13173 if (ifp == NULL || IS_DETACHING(vi))
13174 continue;
13175
13176 if (lc->link_ok) {
13177 if_setbaudrate(ifp, IF_Mbps(lc->speed));
13178 if_link_state_change(ifp, LINK_STATE_UP);
13179 } else {
13180 if_link_state_change(ifp, LINK_STATE_DOWN);
13181 }
13182 }
13183 }
13184
13185 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)13186 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
13187 {
13188 struct adapter *sc;
13189
13190 sx_slock(&t4_list_lock);
13191 SLIST_FOREACH(sc, &t4_list, link) {
13192 /*
13193 * func should not make any assumptions about what state sc is
13194 * in - the only guarantee is that sc->sc_lock is a valid lock.
13195 */
13196 func(sc, arg);
13197 }
13198 sx_sunlock(&t4_list_lock);
13199 }
13200
13201 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)13202 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
13203 struct thread *td)
13204 {
13205 int rc;
13206 struct adapter *sc = dev->si_drv1;
13207
13208 rc = priv_check(td, PRIV_DRIVER);
13209 if (rc != 0)
13210 return (rc);
13211
13212 switch (cmd) {
13213 case CHELSIO_T4_GETREG: {
13214 struct t4_reg *edata = (struct t4_reg *)data;
13215
13216 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13217 return (EFAULT);
13218
13219 mtx_lock(&sc->reg_lock);
13220 if (hw_off_limits(sc))
13221 rc = ENXIO;
13222 else if (edata->size == 4)
13223 edata->val = t4_read_reg(sc, edata->addr);
13224 else if (edata->size == 8)
13225 edata->val = t4_read_reg64(sc, edata->addr);
13226 else
13227 rc = EINVAL;
13228 mtx_unlock(&sc->reg_lock);
13229
13230 break;
13231 }
13232 case CHELSIO_T4_SETREG: {
13233 struct t4_reg *edata = (struct t4_reg *)data;
13234
13235 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13236 return (EFAULT);
13237
13238 mtx_lock(&sc->reg_lock);
13239 if (hw_off_limits(sc))
13240 rc = ENXIO;
13241 else if (edata->size == 4) {
13242 if (edata->val & 0xffffffff00000000)
13243 rc = EINVAL;
13244 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
13245 } else if (edata->size == 8)
13246 t4_write_reg64(sc, edata->addr, edata->val);
13247 else
13248 rc = EINVAL;
13249 mtx_unlock(&sc->reg_lock);
13250
13251 break;
13252 }
13253 case CHELSIO_T4_REGDUMP: {
13254 struct t4_regdump *regs = (struct t4_regdump *)data;
13255 int reglen = t4_get_regs_len(sc);
13256 uint8_t *buf;
13257
13258 if (regs->len < reglen) {
13259 regs->len = reglen; /* hint to the caller */
13260 return (ENOBUFS);
13261 }
13262
13263 regs->len = reglen;
13264 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
13265 mtx_lock(&sc->reg_lock);
13266 if (hw_off_limits(sc))
13267 rc = ENXIO;
13268 else
13269 get_regs(sc, regs, buf);
13270 mtx_unlock(&sc->reg_lock);
13271 if (rc == 0)
13272 rc = copyout(buf, regs->data, reglen);
13273 free(buf, M_CXGBE);
13274 break;
13275 }
13276 case CHELSIO_T4_GET_FILTER_MODE:
13277 rc = get_filter_mode(sc, (uint32_t *)data);
13278 break;
13279 case CHELSIO_T4_SET_FILTER_MODE:
13280 rc = set_filter_mode(sc, *(uint32_t *)data);
13281 break;
13282 case CHELSIO_T4_SET_FILTER_MASK:
13283 rc = set_filter_mask(sc, *(uint32_t *)data);
13284 break;
13285 case CHELSIO_T4_GET_FILTER:
13286 rc = get_filter(sc, (struct t4_filter *)data);
13287 break;
13288 case CHELSIO_T4_SET_FILTER:
13289 rc = set_filter(sc, (struct t4_filter *)data);
13290 break;
13291 case CHELSIO_T4_DEL_FILTER:
13292 rc = del_filter(sc, (struct t4_filter *)data);
13293 break;
13294 case CHELSIO_T4_GET_SGE_CONTEXT: {
13295 struct t4_sge_context *ctxt = (struct t4_sge_context *)data;
13296
13297 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13298 sizeof(ctxt->data), &ctxt->data[0]);
13299 break;
13300 }
13301 case CHELSIO_T4_LOAD_FW:
13302 rc = load_fw(sc, (struct t4_data *)data);
13303 break;
13304 case CHELSIO_T4_GET_MEM:
13305 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
13306 break;
13307 case CHELSIO_T4_GET_I2C:
13308 rc = read_i2c(sc, (struct t4_i2c_data *)data);
13309 break;
13310 case CHELSIO_T4_CLEAR_STATS:
13311 rc = clear_stats(sc, *(uint32_t *)data);
13312 break;
13313 case CHELSIO_T4_SCHED_CLASS:
13314 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
13315 break;
13316 case CHELSIO_T4_SCHED_QUEUE:
13317 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
13318 break;
13319 case CHELSIO_T4_GET_TRACER:
13320 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
13321 break;
13322 case CHELSIO_T4_SET_TRACER:
13323 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
13324 break;
13325 case CHELSIO_T4_LOAD_CFG:
13326 rc = load_cfg(sc, (struct t4_data *)data);
13327 break;
13328 case CHELSIO_T4_LOAD_BOOT:
13329 rc = load_boot(sc, (struct t4_bootrom *)data);
13330 break;
13331 case CHELSIO_T4_LOAD_BOOTCFG:
13332 rc = load_bootcfg(sc, (struct t4_data *)data);
13333 break;
13334 case CHELSIO_T4_CUDBG_DUMP:
13335 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
13336 break;
13337 case CHELSIO_T4_SET_OFLD_POLICY:
13338 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
13339 break;
13340 case CHELSIO_T4_HOLD_CLIP_ADDR:
13341 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
13342 break;
13343 case CHELSIO_T4_RELEASE_CLIP_ADDR:
13344 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
13345 break;
13346 case CHELSIO_T4_GET_SGE_CTXT: {
13347 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data;
13348
13349 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13350 sizeof(ctxt->data), &ctxt->data[0]);
13351 break;
13352 }
13353 default:
13354 rc = ENOTTY;
13355 }
13356
13357 return (rc);
13358 }
13359
13360 #ifdef TCP_OFFLOAD
13361 int
toe_capability(struct vi_info * vi,bool enable)13362 toe_capability(struct vi_info *vi, bool enable)
13363 {
13364 int rc;
13365 struct port_info *pi = vi->pi;
13366 struct adapter *sc = pi->adapter;
13367
13368 ASSERT_SYNCHRONIZED_OP(sc);
13369
13370 if (!is_offload(sc))
13371 return (ENODEV);
13372 if (!hw_all_ok(sc))
13373 return (ENXIO);
13374
13375 if (enable) {
13376 #ifdef KERN_TLS
13377 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
13378 int i, j, n;
13379 struct port_info *p;
13380 struct vi_info *v;
13381
13382 /*
13383 * Reconfigure hardware for TOE if TXTLS is not enabled
13384 * on any ifnet.
13385 */
13386 n = 0;
13387 for_each_port(sc, i) {
13388 p = sc->port[i];
13389 for_each_vi(p, j, v) {
13390 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
13391 CH_WARN(sc,
13392 "%s has NIC TLS enabled.\n",
13393 device_get_nameunit(v->dev));
13394 n++;
13395 }
13396 }
13397 }
13398 if (n > 0) {
13399 CH_WARN(sc, "Disable NIC TLS on all interfaces "
13400 "associated with this adapter before "
13401 "trying to enable TOE.\n");
13402 return (EAGAIN);
13403 }
13404 rc = t6_config_kern_tls(sc, false);
13405 if (rc)
13406 return (rc);
13407 }
13408 #endif
13409 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
13410 /* TOE is already enabled. */
13411 return (0);
13412 }
13413
13414 /*
13415 * We need the port's queues around so that we're able to send
13416 * and receive CPLs to/from the TOE even if the ifnet for this
13417 * port has never been UP'd administratively.
13418 */
13419 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
13420 return (rc);
13421 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
13422 ((rc = vi_init(&pi->vi[0])) != 0))
13423 return (rc);
13424
13425 if (isset(&sc->offload_map, pi->port_id)) {
13426 /* TOE is enabled on another VI of this port. */
13427 MPASS(pi->uld_vis > 0);
13428 pi->uld_vis++;
13429 return (0);
13430 }
13431
13432 if (!uld_active(sc, ULD_TOM)) {
13433 rc = t4_activate_uld(sc, ULD_TOM);
13434 if (rc == EAGAIN) {
13435 log(LOG_WARNING,
13436 "You must kldload t4_tom.ko before trying "
13437 "to enable TOE on a cxgbe interface.\n");
13438 }
13439 if (rc != 0)
13440 return (rc);
13441 KASSERT(sc->tom_softc != NULL,
13442 ("%s: TOM activated but softc NULL", __func__));
13443 KASSERT(uld_active(sc, ULD_TOM),
13444 ("%s: TOM activated but flag not set", __func__));
13445 }
13446
13447 /*
13448 * Activate iWARP, iSCSI, and NVMe too, if the modules
13449 * are loaded.
13450 */
13451 if (!uld_active(sc, ULD_IWARP))
13452 (void) t4_activate_uld(sc, ULD_IWARP);
13453 if (!uld_active(sc, ULD_ISCSI))
13454 (void) t4_activate_uld(sc, ULD_ISCSI);
13455 if (!uld_active(sc, ULD_NVME))
13456 (void) t4_activate_uld(sc, ULD_NVME);
13457
13458 if (pi->uld_vis++ == 0)
13459 setbit(&sc->offload_map, pi->port_id);
13460 } else {
13461 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
13462 /* TOE is already disabled. */
13463 return (0);
13464 }
13465 MPASS(isset(&sc->offload_map, pi->port_id));
13466 MPASS(pi->uld_vis > 0);
13467 if (--pi->uld_vis == 0)
13468 clrbit(&sc->offload_map, pi->port_id);
13469 }
13470
13471 return (0);
13472 }
13473
13474 /*
13475 * Add an upper layer driver to the global list.
13476 */
13477 int
t4_register_uld(struct uld_info * ui,int id)13478 t4_register_uld(struct uld_info *ui, int id)
13479 {
13480 int rc;
13481
13482 if (id < 0 || id > ULD_MAX)
13483 return (EINVAL);
13484 sx_xlock(&t4_uld_list_lock);
13485 if (t4_uld_list[id] != NULL)
13486 rc = EEXIST;
13487 else {
13488 t4_uld_list[id] = ui;
13489 rc = 0;
13490 }
13491 sx_xunlock(&t4_uld_list_lock);
13492 return (rc);
13493 }
13494
13495 int
t4_unregister_uld(struct uld_info * ui,int id)13496 t4_unregister_uld(struct uld_info *ui, int id)
13497 {
13498
13499 if (id < 0 || id > ULD_MAX)
13500 return (EINVAL);
13501 sx_xlock(&t4_uld_list_lock);
13502 MPASS(t4_uld_list[id] == ui);
13503 t4_uld_list[id] = NULL;
13504 sx_xunlock(&t4_uld_list_lock);
13505 return (0);
13506 }
13507
13508 int
t4_activate_uld(struct adapter * sc,int id)13509 t4_activate_uld(struct adapter *sc, int id)
13510 {
13511 int rc;
13512
13513 ASSERT_SYNCHRONIZED_OP(sc);
13514
13515 if (id < 0 || id > ULD_MAX)
13516 return (EINVAL);
13517
13518 /* Adapter needs to be initialized before any ULD can be activated. */
13519 if (!(sc->flags & FULL_INIT_DONE)) {
13520 rc = adapter_init(sc);
13521 if (rc != 0)
13522 return (rc);
13523 }
13524
13525 sx_slock(&t4_uld_list_lock);
13526 if (t4_uld_list[id] == NULL)
13527 rc = EAGAIN; /* load the KLD with this ULD and try again. */
13528 else {
13529 rc = t4_uld_list[id]->uld_activate(sc);
13530 if (rc == 0)
13531 setbit(&sc->active_ulds, id);
13532 }
13533 sx_sunlock(&t4_uld_list_lock);
13534
13535 return (rc);
13536 }
13537
13538 int
t4_deactivate_uld(struct adapter * sc,int id)13539 t4_deactivate_uld(struct adapter *sc, int id)
13540 {
13541 int rc;
13542
13543 ASSERT_SYNCHRONIZED_OP(sc);
13544
13545 if (id < 0 || id > ULD_MAX)
13546 return (EINVAL);
13547
13548 sx_slock(&t4_uld_list_lock);
13549 if (t4_uld_list[id] == NULL)
13550 rc = ENXIO;
13551 else {
13552 rc = t4_uld_list[id]->uld_deactivate(sc);
13553 if (rc == 0)
13554 clrbit(&sc->active_ulds, id);
13555 }
13556 sx_sunlock(&t4_uld_list_lock);
13557
13558 return (rc);
13559 }
13560
13561 static int
deactivate_all_uld(struct adapter * sc)13562 deactivate_all_uld(struct adapter *sc)
13563 {
13564 int i, rc;
13565
13566 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
13567 if (rc != 0)
13568 return (ENXIO);
13569 sx_slock(&t4_uld_list_lock);
13570 for (i = 0; i <= ULD_MAX; i++) {
13571 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
13572 continue;
13573 rc = t4_uld_list[i]->uld_deactivate(sc);
13574 if (rc != 0)
13575 break;
13576 clrbit(&sc->active_ulds, i);
13577 }
13578 sx_sunlock(&t4_uld_list_lock);
13579 end_synchronized_op(sc, 0);
13580
13581 return (rc);
13582 }
13583
13584 static void
stop_all_uld(struct adapter * sc)13585 stop_all_uld(struct adapter *sc)
13586 {
13587 int i;
13588
13589 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
13590 return;
13591 sx_slock(&t4_uld_list_lock);
13592 for (i = 0; i <= ULD_MAX; i++) {
13593 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13594 t4_uld_list[i]->uld_stop == NULL)
13595 continue;
13596 (void) t4_uld_list[i]->uld_stop(sc);
13597 }
13598 sx_sunlock(&t4_uld_list_lock);
13599 end_synchronized_op(sc, 0);
13600 }
13601
13602 static void
restart_all_uld(struct adapter * sc)13603 restart_all_uld(struct adapter *sc)
13604 {
13605 int i;
13606
13607 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
13608 return;
13609 sx_slock(&t4_uld_list_lock);
13610 for (i = 0; i <= ULD_MAX; i++) {
13611 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13612 t4_uld_list[i]->uld_restart == NULL)
13613 continue;
13614 (void) t4_uld_list[i]->uld_restart(sc);
13615 }
13616 sx_sunlock(&t4_uld_list_lock);
13617 end_synchronized_op(sc, 0);
13618 }
13619
13620 int
uld_active(struct adapter * sc,int id)13621 uld_active(struct adapter *sc, int id)
13622 {
13623
13624 MPASS(id >= 0 && id <= ULD_MAX);
13625
13626 return (isset(&sc->active_ulds, id));
13627 }
13628 #endif
13629
13630 #ifdef KERN_TLS
13631 static int
ktls_capability(struct adapter * sc,bool enable)13632 ktls_capability(struct adapter *sc, bool enable)
13633 {
13634 ASSERT_SYNCHRONIZED_OP(sc);
13635
13636 if (!is_ktls(sc))
13637 return (ENODEV);
13638 if (!is_t6(sc))
13639 return (0);
13640 if (!hw_all_ok(sc))
13641 return (ENXIO);
13642
13643 if (enable) {
13644 if (sc->flags & KERN_TLS_ON)
13645 return (0); /* already on */
13646 if (sc->offload_map != 0) {
13647 CH_WARN(sc,
13648 "Disable TOE on all interfaces associated with "
13649 "this adapter before trying to enable NIC TLS.\n");
13650 return (EAGAIN);
13651 }
13652 return (t6_config_kern_tls(sc, true));
13653 } else {
13654 /*
13655 * Nothing to do for disable. If TOE is enabled sometime later
13656 * then toe_capability will reconfigure the hardware.
13657 */
13658 return (0);
13659 }
13660 }
13661 #endif
13662
13663 /*
13664 * t = ptr to tunable.
13665 * nc = number of CPUs.
13666 * c = compiled in default for that tunable.
13667 */
13668 static void
calculate_nqueues(int * t,int nc,const int c)13669 calculate_nqueues(int *t, int nc, const int c)
13670 {
13671 int nq;
13672
13673 if (*t > 0)
13674 return;
13675 nq = *t < 0 ? -*t : c;
13676 *t = min(nc, nq);
13677 }
13678
13679 /*
13680 * Come up with reasonable defaults for some of the tunables, provided they're
13681 * not set by the user (in which case we'll use the values as is).
13682 */
13683 static void
tweak_tunables(void)13684 tweak_tunables(void)
13685 {
13686 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
13687
13688 if (t4_ntxq < 1) {
13689 #ifdef RSS
13690 t4_ntxq = rss_getnumbuckets();
13691 #else
13692 calculate_nqueues(&t4_ntxq, nc, NTXQ);
13693 #endif
13694 }
13695
13696 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
13697
13698 if (t4_nrxq < 1) {
13699 #ifdef RSS
13700 t4_nrxq = rss_getnumbuckets();
13701 #else
13702 calculate_nqueues(&t4_nrxq, nc, NRXQ);
13703 #endif
13704 }
13705
13706 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
13707
13708 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13709 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
13710 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
13711 #endif
13712 #ifdef TCP_OFFLOAD
13713 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
13714 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
13715 #endif
13716
13717 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
13718 if (t4_toecaps_allowed == -1)
13719 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
13720 #else
13721 if (t4_toecaps_allowed == -1)
13722 t4_toecaps_allowed = 0;
13723 #endif
13724
13725 #ifdef TCP_OFFLOAD
13726 if (t4_rdmacaps_allowed == -1) {
13727 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
13728 FW_CAPS_CONFIG_RDMA_RDMAC;
13729 }
13730
13731 if (t4_iscsicaps_allowed == -1) {
13732 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
13733 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
13734 FW_CAPS_CONFIG_ISCSI_T10DIF;
13735 }
13736
13737 if (t4_nvmecaps_allowed == -1)
13738 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP;
13739
13740 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
13741 t4_tmr_idx_ofld = TMR_IDX_OFLD;
13742
13743 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
13744 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
13745 #else
13746 if (t4_rdmacaps_allowed == -1)
13747 t4_rdmacaps_allowed = 0;
13748
13749 if (t4_iscsicaps_allowed == -1)
13750 t4_iscsicaps_allowed = 0;
13751
13752 if (t4_nvmecaps_allowed == -1)
13753 t4_nvmecaps_allowed = 0;
13754 #endif
13755
13756 #ifdef DEV_NETMAP
13757 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
13758 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
13759 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
13760 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
13761 #endif
13762
13763 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
13764 t4_tmr_idx = TMR_IDX;
13765
13766 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
13767 t4_pktc_idx = PKTC_IDX;
13768
13769 if (t4_qsize_txq < 128)
13770 t4_qsize_txq = 128;
13771
13772 if (t4_qsize_rxq < 128)
13773 t4_qsize_rxq = 128;
13774 while (t4_qsize_rxq & 7)
13775 t4_qsize_rxq++;
13776
13777 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
13778
13779 /*
13780 * Number of VIs to create per-port. The first VI is the "main" regular
13781 * VI for the port. The rest are additional virtual interfaces on the
13782 * same physical port. Note that the main VI does not have native
13783 * netmap support but the extra VIs do.
13784 *
13785 * Limit the number of VIs per port to the number of available
13786 * MAC addresses per port.
13787 */
13788 if (t4_num_vis < 1)
13789 t4_num_vis = 1;
13790 if (t4_num_vis > nitems(vi_mac_funcs)) {
13791 t4_num_vis = nitems(vi_mac_funcs);
13792 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
13793 }
13794
13795 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
13796 pcie_relaxed_ordering = 1;
13797 #if defined(__i386__) || defined(__amd64__)
13798 if (cpu_vendor_id == CPU_VENDOR_INTEL)
13799 pcie_relaxed_ordering = 0;
13800 #endif
13801 }
13802 }
13803
13804 #ifdef DDB
13805 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)13806 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
13807 {
13808 uint32_t base, j, off, pf, reg, save, win_pos;
13809
13810 reg = chip_id(sc) > CHELSIO_T6 ?
13811 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) :
13812 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
13813 save = t4_read_reg(sc, reg);
13814 base = sc->memwin[2].mw_base;
13815
13816 if (is_t4(sc)) {
13817 pf = 0;
13818 win_pos = addr & ~0xf; /* start must be 16B aligned */
13819 } else {
13820 pf = V_PFNUM(sc->pf);
13821 win_pos = addr & ~0x7f; /* start must be 128B aligned */
13822 }
13823 off = addr - win_pos;
13824 if (chip_id(sc) > CHELSIO_T6)
13825 win_pos >>= X_T7_MEMOFST_SHIFT;
13826 t4_write_reg(sc, reg, win_pos | pf);
13827 t4_read_reg(sc, reg);
13828
13829 while (len > 0 && !db_pager_quit) {
13830 uint32_t buf[8];
13831 for (j = 0; j < 8; j++, off += 4)
13832 buf[j] = htonl(t4_read_reg(sc, base + off));
13833
13834 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
13835 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
13836 buf[7]);
13837 if (len <= sizeof(buf))
13838 len = 0;
13839 else
13840 len -= sizeof(buf);
13841 }
13842
13843 t4_write_reg(sc, reg, save);
13844 t4_read_reg(sc, reg);
13845 }
13846
13847 static void
t4_dump_tcb(struct adapter * sc,int tid)13848 t4_dump_tcb(struct adapter *sc, int tid)
13849 {
13850 uint32_t tcb_addr;
13851
13852 /* Dump TCB for the tid */
13853 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
13854 tcb_addr += tid * TCB_SIZE;
13855 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
13856 }
13857
13858 static void
t4_dump_devlog(struct adapter * sc)13859 t4_dump_devlog(struct adapter *sc)
13860 {
13861 struct devlog_params *dparams = &sc->params.devlog;
13862 struct fw_devlog_e e;
13863 int i, first, j, m, nentries, rc;
13864 uint64_t ftstamp = UINT64_MAX;
13865
13866 if (dparams->start == 0) {
13867 db_printf("devlog params not valid\n");
13868 return;
13869 }
13870
13871 nentries = dparams->size / sizeof(struct fw_devlog_e);
13872 m = fwmtype_to_hwmtype(dparams->memtype);
13873
13874 /* Find the first entry. */
13875 first = -1;
13876 for (i = 0; i < nentries && !db_pager_quit; i++) {
13877 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13878 sizeof(e), (void *)&e);
13879 if (rc != 0)
13880 break;
13881
13882 if (e.timestamp == 0)
13883 break;
13884
13885 e.timestamp = be64toh(e.timestamp);
13886 if (e.timestamp < ftstamp) {
13887 ftstamp = e.timestamp;
13888 first = i;
13889 }
13890 }
13891
13892 if (first == -1)
13893 return;
13894
13895 i = first;
13896 do {
13897 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13898 sizeof(e), (void *)&e);
13899 if (rc != 0)
13900 return;
13901
13902 if (e.timestamp == 0)
13903 return;
13904
13905 e.timestamp = be64toh(e.timestamp);
13906 e.seqno = be32toh(e.seqno);
13907 for (j = 0; j < 8; j++)
13908 e.params[j] = be32toh(e.params[j]);
13909
13910 db_printf("%10d %15ju %8s %8s ",
13911 e.seqno, e.timestamp,
13912 (e.level < nitems(devlog_level_strings) ?
13913 devlog_level_strings[e.level] : "UNKNOWN"),
13914 (e.facility < nitems(devlog_facility_strings) ?
13915 devlog_facility_strings[e.facility] : "UNKNOWN"));
13916 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13917 e.params[3], e.params[4], e.params[5], e.params[6],
13918 e.params[7]);
13919
13920 if (++i == nentries)
13921 i = 0;
13922 } while (i != first && !db_pager_quit);
13923 }
13924
13925 static DB_DEFINE_TABLE(show, t4, show_t4);
13926
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13927 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13928 {
13929 device_t dev;
13930 int t;
13931 bool valid;
13932
13933 valid = false;
13934 t = db_read_token();
13935 if (t == tIDENT) {
13936 dev = device_lookup_by_name(db_tok_string);
13937 valid = true;
13938 }
13939 db_skip_to_eol();
13940 if (!valid) {
13941 db_printf("usage: show t4 devlog <nexus>\n");
13942 return;
13943 }
13944
13945 if (dev == NULL) {
13946 db_printf("device not found\n");
13947 return;
13948 }
13949
13950 t4_dump_devlog(device_get_softc(dev));
13951 }
13952
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13953 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
13954 {
13955 device_t dev;
13956 int radix, tid, t;
13957 bool valid;
13958
13959 valid = false;
13960 radix = db_radix;
13961 db_radix = 10;
13962 t = db_read_token();
13963 if (t == tIDENT) {
13964 dev = device_lookup_by_name(db_tok_string);
13965 t = db_read_token();
13966 if (t == tNUMBER) {
13967 tid = db_tok_number;
13968 valid = true;
13969 }
13970 }
13971 db_radix = radix;
13972 db_skip_to_eol();
13973 if (!valid) {
13974 db_printf("usage: show t4 tcb <nexus> <tid>\n");
13975 return;
13976 }
13977
13978 if (dev == NULL) {
13979 db_printf("device not found\n");
13980 return;
13981 }
13982 if (tid < 0) {
13983 db_printf("invalid tid\n");
13984 return;
13985 }
13986
13987 t4_dump_tcb(device_get_softc(dev), tid);
13988 }
13989
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13990 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13991 {
13992 device_t dev;
13993 int radix, t;
13994 bool valid;
13995
13996 valid = false;
13997 radix = db_radix;
13998 db_radix = 10;
13999 t = db_read_token();
14000 if (t == tIDENT) {
14001 dev = device_lookup_by_name(db_tok_string);
14002 t = db_read_token();
14003 if (t == tNUMBER) {
14004 addr = db_tok_number;
14005 t = db_read_token();
14006 if (t == tNUMBER) {
14007 count = db_tok_number;
14008 valid = true;
14009 }
14010 }
14011 }
14012 db_radix = radix;
14013 db_skip_to_eol();
14014 if (!valid) {
14015 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
14016 return;
14017 }
14018
14019 if (dev == NULL) {
14020 db_printf("device not found\n");
14021 return;
14022 }
14023 if (addr < 0) {
14024 db_printf("invalid address\n");
14025 return;
14026 }
14027 if (count <= 0) {
14028 db_printf("invalid length\n");
14029 return;
14030 }
14031
14032 t4_dump_mem(device_get_softc(dev), addr, count);
14033 }
14034 #endif
14035
14036 static eventhandler_tag vxlan_start_evtag;
14037 static eventhandler_tag vxlan_stop_evtag;
14038
14039 struct vxlan_evargs {
14040 if_t ifp;
14041 uint16_t port;
14042 };
14043
14044 static void
enable_vxlan_rx(struct adapter * sc)14045 enable_vxlan_rx(struct adapter *sc)
14046 {
14047 int i, rc;
14048 struct port_info *pi;
14049 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
14050
14051 ASSERT_SYNCHRONIZED_OP(sc);
14052
14053 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
14054 F_VXLAN_EN);
14055 for_each_port(sc, i) {
14056 pi = sc->port[i];
14057 if (pi->vxlan_tcam_entry == true)
14058 continue;
14059 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
14060 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
14061 true);
14062 if (rc < 0) {
14063 rc = -rc;
14064 CH_ERR(&pi->vi[0],
14065 "failed to add VXLAN TCAM entry: %d.\n", rc);
14066 } else {
14067 MPASS(rc == sc->rawf_base + pi->port_id);
14068 pi->vxlan_tcam_entry = true;
14069 }
14070 }
14071 }
14072
14073 static void
t4_vxlan_start(struct adapter * sc,void * arg)14074 t4_vxlan_start(struct adapter *sc, void *arg)
14075 {
14076 struct vxlan_evargs *v = arg;
14077
14078 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14079 return;
14080 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
14081 return;
14082
14083 if (sc->vxlan_refcount == 0) {
14084 sc->vxlan_port = v->port;
14085 sc->vxlan_refcount = 1;
14086 if (!hw_off_limits(sc))
14087 enable_vxlan_rx(sc);
14088 } else if (sc->vxlan_port == v->port) {
14089 sc->vxlan_refcount++;
14090 } else {
14091 CH_ERR(sc, "VXLAN already configured on port %d; "
14092 "ignoring attempt to configure it on port %d\n",
14093 sc->vxlan_port, v->port);
14094 }
14095 end_synchronized_op(sc, 0);
14096 }
14097
14098 static void
t4_vxlan_stop(struct adapter * sc,void * arg)14099 t4_vxlan_stop(struct adapter *sc, void *arg)
14100 {
14101 struct vxlan_evargs *v = arg;
14102
14103 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14104 return;
14105 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
14106 return;
14107
14108 /*
14109 * VXLANs may have been configured before the driver was loaded so we
14110 * may see more stops than starts. This is not handled cleanly but at
14111 * least we keep the refcount sane.
14112 */
14113 if (sc->vxlan_port != v->port)
14114 goto done;
14115 if (sc->vxlan_refcount == 0) {
14116 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
14117 "ignoring attempt to stop it again.\n", sc->vxlan_port);
14118 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
14119 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
14120 done:
14121 end_synchronized_op(sc, 0);
14122 }
14123
14124 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14125 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
14126 sa_family_t family, u_int port)
14127 {
14128 struct vxlan_evargs v;
14129
14130 MPASS(family == AF_INET || family == AF_INET6);
14131 v.ifp = ifp;
14132 v.port = port;
14133
14134 t4_iterate(t4_vxlan_start, &v);
14135 }
14136
14137 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14138 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
14139 u_int port)
14140 {
14141 struct vxlan_evargs v;
14142
14143 MPASS(family == AF_INET || family == AF_INET6);
14144 v.ifp = ifp;
14145 v.port = port;
14146
14147 t4_iterate(t4_vxlan_stop, &v);
14148 }
14149
14150
14151 static struct sx mlu; /* mod load unload */
14152 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
14153
14154 static int
mod_event(module_t mod,int cmd,void * arg)14155 mod_event(module_t mod, int cmd, void *arg)
14156 {
14157 int rc = 0;
14158 static int loaded = 0;
14159
14160 switch (cmd) {
14161 case MOD_LOAD:
14162 sx_xlock(&mlu);
14163 if (loaded++ == 0) {
14164 t4_sge_modload();
14165 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14166 t4_filter_rpl, CPL_COOKIE_FILTER);
14167 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
14168 do_l2t_write_rpl, CPL_COOKIE_FILTER);
14169 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
14170 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
14171 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14172 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
14173 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
14174 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
14175 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
14176 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
14177 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
14178 do_smt_write_rpl);
14179 sx_init(&t4_list_lock, "T4/T5 adapters");
14180 SLIST_INIT(&t4_list);
14181 callout_init(&fatal_callout, 1);
14182 #ifdef TCP_OFFLOAD
14183 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
14184 #endif
14185 #ifdef INET6
14186 t4_clip_modload();
14187 #endif
14188 #ifdef KERN_TLS
14189 t6_ktls_modload();
14190 t7_ktls_modload();
14191 #endif
14192 t4_tracer_modload();
14193 tweak_tunables();
14194 vxlan_start_evtag =
14195 EVENTHANDLER_REGISTER(vxlan_start,
14196 t4_vxlan_start_handler, NULL,
14197 EVENTHANDLER_PRI_ANY);
14198 vxlan_stop_evtag =
14199 EVENTHANDLER_REGISTER(vxlan_stop,
14200 t4_vxlan_stop_handler, NULL,
14201 EVENTHANDLER_PRI_ANY);
14202 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
14203 taskqueue_thread_enqueue, &reset_tq);
14204 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
14205 "t4_rst_thr");
14206 }
14207 sx_xunlock(&mlu);
14208 break;
14209
14210 case MOD_UNLOAD:
14211 sx_xlock(&mlu);
14212 if (--loaded == 0) {
14213 #ifdef TCP_OFFLOAD
14214 int i;
14215 #endif
14216 int tries;
14217
14218 taskqueue_free(reset_tq);
14219
14220 tries = 0;
14221 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
14222 uprintf("%ju clusters with custom free routine "
14223 "still is use.\n", t4_sge_extfree_refs());
14224 pause("t4unload", 2 * hz);
14225 }
14226
14227 sx_slock(&t4_list_lock);
14228 if (!SLIST_EMPTY(&t4_list)) {
14229 rc = EBUSY;
14230 sx_sunlock(&t4_list_lock);
14231 goto done_unload;
14232 }
14233 #ifdef TCP_OFFLOAD
14234 sx_slock(&t4_uld_list_lock);
14235 for (i = 0; i <= ULD_MAX; i++) {
14236 if (t4_uld_list[i] != NULL) {
14237 rc = EBUSY;
14238 sx_sunlock(&t4_uld_list_lock);
14239 sx_sunlock(&t4_list_lock);
14240 goto done_unload;
14241 }
14242 }
14243 sx_sunlock(&t4_uld_list_lock);
14244 #endif
14245 sx_sunlock(&t4_list_lock);
14246
14247 if (t4_sge_extfree_refs() == 0) {
14248 EVENTHANDLER_DEREGISTER(vxlan_start,
14249 vxlan_start_evtag);
14250 EVENTHANDLER_DEREGISTER(vxlan_stop,
14251 vxlan_stop_evtag);
14252 t4_tracer_modunload();
14253 #ifdef KERN_TLS
14254 t7_ktls_modunload();
14255 t6_ktls_modunload();
14256 #endif
14257 #ifdef INET6
14258 t4_clip_modunload();
14259 #endif
14260 #ifdef TCP_OFFLOAD
14261 sx_destroy(&t4_uld_list_lock);
14262 #endif
14263 sx_destroy(&t4_list_lock);
14264 t4_sge_modunload();
14265 loaded = 0;
14266 } else {
14267 rc = EBUSY;
14268 loaded++; /* undo earlier decrement */
14269 }
14270 }
14271 done_unload:
14272 sx_xunlock(&mlu);
14273 break;
14274 }
14275
14276 return (rc);
14277 }
14278
14279 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
14280 MODULE_VERSION(t4nex, 1);
14281 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
14282 #ifdef DEV_NETMAP
14283 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
14284 #endif /* DEV_NETMAP */
14285
14286 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
14287 MODULE_VERSION(t5nex, 1);
14288 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
14289 #ifdef DEV_NETMAP
14290 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
14291 #endif /* DEV_NETMAP */
14292
14293 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
14294 MODULE_VERSION(t6nex, 1);
14295 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
14296 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
14297 #ifdef DEV_NETMAP
14298 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
14299 #endif /* DEV_NETMAP */
14300
14301 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0);
14302 MODULE_VERSION(chnex, 1);
14303 MODULE_DEPEND(chnex, crypto, 1, 1, 1);
14304 MODULE_DEPEND(chnex, firmware, 1, 1, 1);
14305 #ifdef DEV_NETMAP
14306 MODULE_DEPEND(chnex, netmap, 1, 1, 1);
14307 #endif /* DEV_NETMAP */
14308
14309 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
14310 MODULE_VERSION(cxgbe, 1);
14311
14312 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
14313 MODULE_VERSION(cxl, 1);
14314
14315 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
14316 MODULE_VERSION(cc, 1);
14317
14318 DRIVER_MODULE(che, chnex, che_driver, 0, 0);
14319 MODULE_VERSION(che, 1);
14320
14321 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
14322 MODULE_VERSION(vcxgbe, 1);
14323
14324 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
14325 MODULE_VERSION(vcxl, 1);
14326
14327 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
14328 MODULE_VERSION(vcc, 1);
14329
14330 DRIVER_MODULE(vche, che, vche_driver, 0, 0);
14331 MODULE_VERSION(vche, 1);
14332