1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 DEVMETHOD(device_probe, t4_probe),
107 DEVMETHOD(device_attach, t4_attach),
108 DEVMETHOD(device_detach, t4_detach),
109 DEVMETHOD(device_suspend, t4_suspend),
110 DEVMETHOD(device_resume, t4_resume),
111
112 DEVMETHOD(bus_child_location, t4_child_location),
113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
114 DEVMETHOD(bus_reset_post, t4_reset_post),
115
116 DEVMETHOD(t4_is_main_ready, t4_ready),
117 DEVMETHOD(t4_read_port_device, t4_read_port_device),
118
119 DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 "t4nex",
123 t4_methods,
124 sizeof(struct adapter)
125 };
126
127
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 DEVMETHOD(device_probe, cxgbe_probe),
134 DEVMETHOD(device_attach, cxgbe_attach),
135 DEVMETHOD(device_detach, cxgbe_detach),
136 { 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 "cxgbe",
140 cxgbe_methods,
141 sizeof(struct port_info)
142 };
143
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 DEVMETHOD(device_probe, vcxgbe_probe),
150 DEVMETHOD(device_attach, vcxgbe_attach),
151 DEVMETHOD(device_detach, vcxgbe_detach),
152 { 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 "vcxgbe",
156 vcxgbe_methods,
157 sizeof(struct vi_info)
158 };
159
160 static d_ioctl_t t4_ioctl;
161
162 static struct cdevsw t4_cdevsw = {
163 .d_version = D_VERSION,
164 .d_ioctl = t4_ioctl,
165 .d_name = "t4nex",
166 };
167
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 DEVMETHOD(device_probe, t5_probe),
172 DEVMETHOD(device_attach, t4_attach),
173 DEVMETHOD(device_detach, t4_detach),
174 DEVMETHOD(device_suspend, t4_suspend),
175 DEVMETHOD(device_resume, t4_resume),
176
177 DEVMETHOD(bus_child_location, t4_child_location),
178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
179 DEVMETHOD(bus_reset_post, t4_reset_post),
180
181 DEVMETHOD(t4_is_main_ready, t4_ready),
182 DEVMETHOD(t4_read_port_device, t4_read_port_device),
183
184 DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 "t5nex",
188 t5_methods,
189 sizeof(struct adapter)
190 };
191
192
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 "cxl",
196 cxgbe_methods,
197 sizeof(struct port_info)
198 };
199
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 "vcxl",
203 vcxgbe_methods,
204 sizeof(struct vi_info)
205 };
206
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 DEVMETHOD(device_probe, t6_probe),
211 DEVMETHOD(device_attach, t4_attach),
212 DEVMETHOD(device_detach, t4_detach),
213 DEVMETHOD(device_suspend, t4_suspend),
214 DEVMETHOD(device_resume, t4_resume),
215
216 DEVMETHOD(bus_child_location, t4_child_location),
217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
218 DEVMETHOD(bus_reset_post, t4_reset_post),
219
220 DEVMETHOD(t4_is_main_ready, t4_ready),
221 DEVMETHOD(t4_read_port_device, t4_read_port_device),
222
223 DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 "t6nex",
227 t6_methods,
228 sizeof(struct adapter)
229 };
230
231
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 "cc",
235 cxgbe_methods,
236 sizeof(struct port_info)
237 };
238
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 "vcc",
242 vcxgbe_methods,
243 sizeof(struct vi_info)
244 };
245
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253 struct m_snd_tag **);
254 #endif
255
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257
258 /*
259 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260 * then ADAPTER_LOCK, then t4_uld_list_lock.
261 */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 struct uld_info *t4_uld_list[ULD_MAX + 1];
267 #endif
268
269 /*
270 * Tunables. See tweak_tunables() too.
271 *
272 * Each tunable is set to a default value here if it's known at compile-time.
273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274 * provide a reasonable default (upto n) when the driver is loaded.
275 *
276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
277 * T5 are under hw.cxl.
278 */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280 "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282 "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284 "cxgbe(4) TOE parameters");
285
286 /*
287 * Number of queues for tx and rx, NIC and offload.
288 */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292 "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
294
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298 "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
300
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304 "Number of TX queues per VI");
305
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309 "Number of RX queues per VI");
310
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313 0, "Reserve TX queue 0 of each VI for non-flowid packets");
314
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319 "Number of offload TX queues per port");
320
321 #define NOFLDTXQ_VI 1
322 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
324 "Number of offload TX queues per VI");
325 #endif
326
327 #if defined(TCP_OFFLOAD)
328 #define NOFLDRXQ 2
329 static int t4_nofldrxq = -NOFLDRXQ;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
331 "Number of offload RX queues per port");
332
333 #define NOFLDRXQ_VI 1
334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
336 "Number of offload RX queues per VI");
337
338 #define TMR_IDX_OFLD 1
339 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
342
343 #define PKTC_IDX_OFLD (-1)
344 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
347
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_keepalive_idle = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
352
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_keepalive_interval = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
357
358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
359 static int t4_toe_keepalive_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
362
363 /* 0 means chip/fw default, non-zero number is value in microseconds */
364 static u_long t4_toe_rexmt_min = 0;
365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
367
368 /* 0 means chip/fw default, non-zero number is value in microseconds */
369 static u_long t4_toe_rexmt_max = 0;
370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
372
373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
374 static int t4_toe_rexmt_count = 0;
375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
377
378 /* -1 means chip/fw default, other values are raw backoff values to use */
379 static int t4_toe_rexmt_backoff[16] = {
380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
381 };
382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
384 "cxgbe(4) TOE retransmit backoff values");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
386 &t4_toe_rexmt_backoff[0], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
388 &t4_toe_rexmt_backoff[1], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
390 &t4_toe_rexmt_backoff[2], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
392 &t4_toe_rexmt_backoff[3], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
394 &t4_toe_rexmt_backoff[4], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
396 &t4_toe_rexmt_backoff[5], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
398 &t4_toe_rexmt_backoff[6], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_backoff[7], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_backoff[8], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
404 &t4_toe_rexmt_backoff[9], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
406 &t4_toe_rexmt_backoff[10], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
408 &t4_toe_rexmt_backoff[11], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_backoff[12], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_backoff[13], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
414 &t4_toe_rexmt_backoff[14], 0, "");
415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
416 &t4_toe_rexmt_backoff[15], 0, "");
417
418 int t4_ddp_rcvbuf_len = 256 * 1024;
419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
420 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
421
422 unsigned int t4_ddp_rcvbuf_cache = 4;
423 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
424 &t4_ddp_rcvbuf_cache, 0,
425 "maximum number of free DDP RX buffers to cache per connection");
426 #endif
427
428 #ifdef DEV_NETMAP
429 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
430 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
431 static int t4_native_netmap = NN_EXTRA_VI;
432 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
433 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
434
435 #define NNMTXQ 8
436 static int t4_nnmtxq = -NNMTXQ;
437 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
438 "Number of netmap TX queues");
439
440 #define NNMRXQ 8
441 static int t4_nnmrxq = -NNMRXQ;
442 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
443 "Number of netmap RX queues");
444
445 #define NNMTXQ_VI 2
446 static int t4_nnmtxq_vi = -NNMTXQ_VI;
447 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
448 "Number of netmap TX queues per VI");
449
450 #define NNMRXQ_VI 2
451 static int t4_nnmrxq_vi = -NNMRXQ_VI;
452 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
453 "Number of netmap RX queues per VI");
454 #endif
455
456 /*
457 * Holdoff parameters for ports.
458 */
459 #define TMR_IDX 1
460 int t4_tmr_idx = TMR_IDX;
461 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
462 0, "Holdoff timer index");
463 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
464
465 #define PKTC_IDX (-1)
466 int t4_pktc_idx = PKTC_IDX;
467 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
468 0, "Holdoff packet counter index");
469 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
470
471 /*
472 * Size (# of entries) of each tx and rx queue.
473 */
474 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
476 "Number of descriptors in each TX queue");
477
478 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
479 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
480 "Number of descriptors in each RX queue");
481
482 /*
483 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
484 */
485 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
487 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
488
489 /*
490 * Configuration file. All the _CF names here are special.
491 */
492 #define DEFAULT_CF "default"
493 #define BUILTIN_CF "built-in"
494 #define FLASH_CF "flash"
495 #define UWIRE_CF "uwire"
496 #define FPGA_CF "fpga"
497 static char t4_cfg_file[32] = DEFAULT_CF;
498 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
499 sizeof(t4_cfg_file), "Firmware configuration file");
500
501 /*
502 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
503 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
504 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
505 * mark or when signalled to do so, 0 to never emit PAUSE.
506 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
507 * negotiated settings will override rx_pause/tx_pause.
508 * Otherwise rx_pause/tx_pause are applied forcibly.
509 */
510 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
512 &t4_pause_settings, 0,
513 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
514
515 /*
516 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
517 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
518 * 0 to disable FEC.
519 */
520 static int t4_fec = -1;
521 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
522 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
523
524 /*
525 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
526 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
527 * driver runs as if this is set to 0.
528 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
529 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
530 * transceiver. Multiple FEC bits may not be okay but will be passed on to
531 * the firmware anyway (may result in l1cfg errors with old firmwares).
532 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
533 * means set all FEC bits that are valid for the speed.
534 */
535 static int t4_force_fec = -1;
536 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
537 "Controls the use of FORCE_FEC bit in L1 configuration.");
538
539 /*
540 * Link autonegotiation.
541 * -1 to run with the firmware default.
542 * 0 to disable.
543 * 1 to enable.
544 */
545 static int t4_autoneg = -1;
546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
547 "Link autonegotiation");
548
549 /*
550 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
551 * encouraged respectively). '-n' is the same as 'n' except the firmware
552 * version used in the checks is read from the firmware bundled with the driver.
553 */
554 static int t4_fw_install = 1;
555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
556 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
557
558 /*
559 * ASIC features that will be used. Disable the ones you don't want so that the
560 * chip resources aren't wasted on features that will not be used.
561 */
562 static int t4_nbmcaps_allowed = 0;
563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
564 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
565
566 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
567 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
568 &t4_linkcaps_allowed, 0, "Default link capabilities");
569
570 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
571 FW_CAPS_CONFIG_SWITCH_EGRESS;
572 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
573 &t4_switchcaps_allowed, 0, "Default switch capabilities");
574
575 #ifdef RATELIMIT
576 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
577 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
578 #else
579 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
580 FW_CAPS_CONFIG_NIC_HASHFILTER;
581 #endif
582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
583 &t4_niccaps_allowed, 0, "Default NIC capabilities");
584
585 static int t4_toecaps_allowed = -1;
586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
587 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
588
589 static int t4_rdmacaps_allowed = -1;
590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
591 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
592
593 static int t4_cryptocaps_allowed = -1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
595 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
596
597 static int t4_iscsicaps_allowed = -1;
598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
599 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
600
601 static int t4_fcoecaps_allowed = 0;
602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
603 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
604
605 static int t5_write_combine = 0;
606 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
607 0, "Use WC instead of UC for BAR2");
608
609 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
610 static int t4_doorbells_allowed = 0xf;
611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
612 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
613
614 static int t4_num_vis = 1;
615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
616 "Number of VIs per port");
617
618 /*
619 * PCIe Relaxed Ordering.
620 * -1: driver should figure out a good value.
621 * 0: disable RO.
622 * 1: enable RO.
623 * 2: leave RO alone.
624 */
625 static int pcie_relaxed_ordering = -1;
626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
627 &pcie_relaxed_ordering, 0,
628 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
629
630 static int t4_panic_on_fatal_err = 0;
631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
632 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
633
634 static int t4_reset_on_fatal_err = 0;
635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
636 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
637
638 static int t4_clock_gate_on_suspend = 0;
639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
640 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
641
642 static int t4_tx_vm_wr = 0;
643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
644 "Use VM work requests to transmit packets.");
645
646 /*
647 * Set to non-zero to enable the attack filter. A packet that matches any of
648 * these conditions will get dropped on ingress:
649 * 1) IP && source address == destination address.
650 * 2) TCP/IP && source address is not a unicast address.
651 * 3) TCP/IP && destination address is not a unicast address.
652 * 4) IP && source address is loopback (127.x.y.z).
653 * 5) IP && destination address is loopback (127.x.y.z).
654 * 6) IPv6 && source address == destination address.
655 * 7) IPv6 && source address is not a unicast address.
656 * 8) IPv6 && source address is loopback (::1/128).
657 * 9) IPv6 && destination address is loopback (::1/128).
658 * 10) IPv6 && source address is unspecified (::/128).
659 * 11) IPv6 && destination address is unspecified (::/128).
660 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
661 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
662 */
663 static int t4_attack_filter = 0;
664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
665 &t4_attack_filter, 0, "Drop suspicious traffic");
666
667 static int t4_drop_ip_fragments = 0;
668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
669 &t4_drop_ip_fragments, 0, "Drop IP fragments");
670
671 static int t4_drop_pkts_with_l2_errors = 1;
672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
673 &t4_drop_pkts_with_l2_errors, 0,
674 "Drop all frames with Layer 2 length or checksum errors");
675
676 static int t4_drop_pkts_with_l3_errors = 0;
677 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
678 &t4_drop_pkts_with_l3_errors, 0,
679 "Drop all frames with IP version, length, or checksum errors");
680
681 static int t4_drop_pkts_with_l4_errors = 0;
682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
683 &t4_drop_pkts_with_l4_errors, 0,
684 "Drop all frames with Layer 4 length, checksum, or other errors");
685
686 #ifdef TCP_OFFLOAD
687 /*
688 * TOE tunables.
689 */
690 static int t4_cop_managed_offloading = 0;
691 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
692 &t4_cop_managed_offloading, 0,
693 "COP (Connection Offload Policy) controls all TOE offload");
694 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
695 #endif
696
697 #ifdef KERN_TLS
698 /*
699 * This enables KERN_TLS for all adapters if set.
700 */
701 static int t4_kern_tls = 0;
702 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
703 "Enable KERN_TLS mode for T6 adapters");
704
705 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
706 "cxgbe(4) KERN_TLS parameters");
707
708 static int t4_tls_inline_keys = 0;
709 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
710 &t4_tls_inline_keys, 0,
711 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
712 "in card memory.");
713
714 static int t4_tls_combo_wrs = 0;
715 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
716 0, "Attempt to combine TCB field updates with TLS record work requests.");
717 #endif
718
719 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
720 static int vi_mac_funcs[] = {
721 FW_VI_FUNC_ETH,
722 FW_VI_FUNC_OFLD,
723 FW_VI_FUNC_IWARP,
724 FW_VI_FUNC_OPENISCSI,
725 FW_VI_FUNC_OPENFCOE,
726 FW_VI_FUNC_FOISCSI,
727 FW_VI_FUNC_FOFCOE,
728 };
729
730 struct intrs_and_queues {
731 uint16_t intr_type; /* INTx, MSI, or MSI-X */
732 uint16_t num_vis; /* number of VIs for each port */
733 uint16_t nirq; /* Total # of vectors */
734 uint16_t ntxq; /* # of NIC txq's for each port */
735 uint16_t nrxq; /* # of NIC rxq's for each port */
736 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
737 uint16_t nofldrxq; /* # of TOE rxq's for each port */
738 uint16_t nnmtxq; /* # of netmap txq's */
739 uint16_t nnmrxq; /* # of netmap rxq's */
740
741 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
742 uint16_t ntxq_vi; /* # of NIC txq's */
743 uint16_t nrxq_vi; /* # of NIC rxq's */
744 uint16_t nofldtxq_vi; /* # of TOE txq's */
745 uint16_t nofldrxq_vi; /* # of TOE rxq's */
746 uint16_t nnmtxq_vi; /* # of netmap txq's */
747 uint16_t nnmrxq_vi; /* # of netmap rxq's */
748 };
749
750 static void setup_memwin(struct adapter *);
751 static void position_memwin(struct adapter *, int, uint32_t);
752 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
753 static int fwmtype_to_hwmtype(int);
754 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
755 uint32_t *);
756 static int fixup_devlog_params(struct adapter *);
757 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
758 static int contact_firmware(struct adapter *);
759 static int partition_resources(struct adapter *);
760 static int get_params__pre_init(struct adapter *);
761 static int set_params__pre_init(struct adapter *);
762 static int get_params__post_init(struct adapter *);
763 static int set_params__post_init(struct adapter *);
764 static void t4_set_desc(struct adapter *);
765 static bool fixed_ifmedia(struct port_info *);
766 static void build_medialist(struct port_info *);
767 static void init_link_config(struct port_info *);
768 static int fixup_link_config(struct port_info *);
769 static int apply_link_config(struct port_info *);
770 static int cxgbe_init_synchronized(struct vi_info *);
771 static int cxgbe_uninit_synchronized(struct vi_info *);
772 static int adapter_full_init(struct adapter *);
773 static void adapter_full_uninit(struct adapter *);
774 static int vi_full_init(struct vi_info *);
775 static void vi_full_uninit(struct vi_info *);
776 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
777 static void quiesce_txq(struct sge_txq *);
778 static void quiesce_wrq(struct sge_wrq *);
779 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
780 static void quiesce_vi(struct vi_info *);
781 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
782 driver_intr_t *, void *, char *);
783 static int t4_free_irq(struct adapter *, struct irq *);
784 static void t4_init_atid_table(struct adapter *);
785 static void t4_free_atid_table(struct adapter *);
786 static void stop_atid_allocator(struct adapter *);
787 static void restart_atid_allocator(struct adapter *);
788 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
789 static void vi_refresh_stats(struct vi_info *);
790 static void cxgbe_refresh_stats(struct vi_info *);
791 static void cxgbe_tick(void *);
792 static void vi_tick(void *);
793 static void cxgbe_sysctls(struct port_info *);
794 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
795 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
796 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
797 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
798 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
799 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
800 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
801 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
802 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
803 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
804 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
805 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
806 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
807 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
808 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
809 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
810 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
811 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
812 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
813 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
814 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
819 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
820 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
821 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
825 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
827 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
829 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
830 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
831 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
832 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
833 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
840 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
841 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
842 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
843 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
844 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
845 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
846 #ifdef TCP_OFFLOAD
847 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
848 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
849 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
850 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
851 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
853 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
854 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
855 #endif
856 static int get_sge_context(struct adapter *, struct t4_sge_context *);
857 static int load_fw(struct adapter *, struct t4_data *);
858 static int load_cfg(struct adapter *, struct t4_data *);
859 static int load_boot(struct adapter *, struct t4_bootrom *);
860 static int load_bootcfg(struct adapter *, struct t4_data *);
861 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
862 static void free_offload_policy(struct t4_offload_policy *);
863 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
864 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
865 static int read_i2c(struct adapter *, struct t4_i2c_data *);
866 static int clear_stats(struct adapter *, u_int);
867 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
868 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
869 static inline int stop_adapter(struct adapter *);
870 static inline void set_adapter_hwstatus(struct adapter *, const bool);
871 static int stop_lld(struct adapter *);
872 static inline int restart_adapter(struct adapter *);
873 static int restart_lld(struct adapter *);
874 #ifdef TCP_OFFLOAD
875 static int deactivate_all_uld(struct adapter *);
876 static void stop_all_uld(struct adapter *);
877 static void restart_all_uld(struct adapter *);
878 #endif
879 #ifdef KERN_TLS
880 static int ktls_capability(struct adapter *, bool);
881 #endif
882 static int mod_event(module_t, int, void *);
883 static int notify_siblings(device_t, int);
884 static uint64_t vi_get_counter(if_t, ift_counter);
885 static uint64_t cxgbe_get_counter(if_t, ift_counter);
886 static void enable_vxlan_rx(struct adapter *);
887 static void reset_adapter_task(void *, int);
888 static void fatal_error_task(void *, int);
889 static void dump_devlog(struct adapter *);
890 static void dump_cim_regs(struct adapter *);
891 static void dump_cimla(struct adapter *);
892
893 struct {
894 uint16_t device;
895 char *desc;
896 } t4_pciids[] = {
897 {0xa000, "Chelsio Terminator 4 FPGA"},
898 {0x4400, "Chelsio T440-dbg"},
899 {0x4401, "Chelsio T420-CR"},
900 {0x4402, "Chelsio T422-CR"},
901 {0x4403, "Chelsio T440-CR"},
902 {0x4404, "Chelsio T420-BCH"},
903 {0x4405, "Chelsio T440-BCH"},
904 {0x4406, "Chelsio T440-CH"},
905 {0x4407, "Chelsio T420-SO"},
906 {0x4408, "Chelsio T420-CX"},
907 {0x4409, "Chelsio T420-BT"},
908 {0x440a, "Chelsio T404-BT"},
909 {0x440e, "Chelsio T440-LP-CR"},
910 }, t5_pciids[] = {
911 {0xb000, "Chelsio Terminator 5 FPGA"},
912 {0x5400, "Chelsio T580-dbg"},
913 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
914 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
915 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
916 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
917 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
918 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
919 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
920 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
921 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
922 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
923 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
924 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
925 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
926 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
927 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
928 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
929 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
930
931 /* Custom */
932 {0x5483, "Custom T540-CR"},
933 {0x5484, "Custom T540-BT"},
934 }, t6_pciids[] = {
935 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
936 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
937 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
938 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
939 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
940 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
941 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
942 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
943 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
944 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
945 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
946 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
947 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
948 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
949 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
950 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
951
952 /* Custom */
953 {0x6480, "Custom T6225-CR"},
954 {0x6481, "Custom T62100-CR"},
955 {0x6482, "Custom T6225-CR"},
956 {0x6483, "Custom T62100-CR"},
957 {0x6484, "Custom T64100-CR"},
958 {0x6485, "Custom T6240-SO"},
959 {0x6486, "Custom T6225-SO-CR"},
960 {0x6487, "Custom T6225-CR"},
961 };
962
963 #ifdef TCP_OFFLOAD
964 /*
965 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
966 * be exactly the same for both rxq and ofld_rxq.
967 */
968 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
969 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
970 #endif
971 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
972
973 static int
t4_probe(device_t dev)974 t4_probe(device_t dev)
975 {
976 int i;
977 uint16_t v = pci_get_vendor(dev);
978 uint16_t d = pci_get_device(dev);
979 uint8_t f = pci_get_function(dev);
980
981 if (v != PCI_VENDOR_ID_CHELSIO)
982 return (ENXIO);
983
984 /* Attach only to PF0 of the FPGA */
985 if (d == 0xa000 && f != 0)
986 return (ENXIO);
987
988 for (i = 0; i < nitems(t4_pciids); i++) {
989 if (d == t4_pciids[i].device) {
990 device_set_desc(dev, t4_pciids[i].desc);
991 return (BUS_PROBE_DEFAULT);
992 }
993 }
994
995 return (ENXIO);
996 }
997
998 static int
t5_probe(device_t dev)999 t5_probe(device_t dev)
1000 {
1001 int i;
1002 uint16_t v = pci_get_vendor(dev);
1003 uint16_t d = pci_get_device(dev);
1004 uint8_t f = pci_get_function(dev);
1005
1006 if (v != PCI_VENDOR_ID_CHELSIO)
1007 return (ENXIO);
1008
1009 /* Attach only to PF0 of the FPGA */
1010 if (d == 0xb000 && f != 0)
1011 return (ENXIO);
1012
1013 for (i = 0; i < nitems(t5_pciids); i++) {
1014 if (d == t5_pciids[i].device) {
1015 device_set_desc(dev, t5_pciids[i].desc);
1016 return (BUS_PROBE_DEFAULT);
1017 }
1018 }
1019
1020 return (ENXIO);
1021 }
1022
1023 static int
t6_probe(device_t dev)1024 t6_probe(device_t dev)
1025 {
1026 int i;
1027 uint16_t v = pci_get_vendor(dev);
1028 uint16_t d = pci_get_device(dev);
1029
1030 if (v != PCI_VENDOR_ID_CHELSIO)
1031 return (ENXIO);
1032
1033 for (i = 0; i < nitems(t6_pciids); i++) {
1034 if (d == t6_pciids[i].device) {
1035 device_set_desc(dev, t6_pciids[i].desc);
1036 return (BUS_PROBE_DEFAULT);
1037 }
1038 }
1039
1040 return (ENXIO);
1041 }
1042
1043 static void
t5_attribute_workaround(device_t dev)1044 t5_attribute_workaround(device_t dev)
1045 {
1046 device_t root_port;
1047 uint32_t v;
1048
1049 /*
1050 * The T5 chips do not properly echo the No Snoop and Relaxed
1051 * Ordering attributes when replying to a TLP from a Root
1052 * Port. As a workaround, find the parent Root Port and
1053 * disable No Snoop and Relaxed Ordering. Note that this
1054 * affects all devices under this root port.
1055 */
1056 root_port = pci_find_pcie_root_port(dev);
1057 if (root_port == NULL) {
1058 device_printf(dev, "Unable to find parent root port\n");
1059 return;
1060 }
1061
1062 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1063 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1064 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1065 0)
1066 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1067 device_get_nameunit(root_port));
1068 }
1069
1070 static const struct devnames devnames[] = {
1071 {
1072 .nexus_name = "t4nex",
1073 .ifnet_name = "cxgbe",
1074 .vi_ifnet_name = "vcxgbe",
1075 .pf03_drv_name = "t4iov",
1076 .vf_nexus_name = "t4vf",
1077 .vf_ifnet_name = "cxgbev"
1078 }, {
1079 .nexus_name = "t5nex",
1080 .ifnet_name = "cxl",
1081 .vi_ifnet_name = "vcxl",
1082 .pf03_drv_name = "t5iov",
1083 .vf_nexus_name = "t5vf",
1084 .vf_ifnet_name = "cxlv"
1085 }, {
1086 .nexus_name = "t6nex",
1087 .ifnet_name = "cc",
1088 .vi_ifnet_name = "vcc",
1089 .pf03_drv_name = "t6iov",
1090 .vf_nexus_name = "t6vf",
1091 .vf_ifnet_name = "ccv"
1092 }
1093 };
1094
1095 void
t4_init_devnames(struct adapter * sc)1096 t4_init_devnames(struct adapter *sc)
1097 {
1098 int id;
1099
1100 id = chip_id(sc);
1101 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1102 sc->names = &devnames[id - CHELSIO_T4];
1103 else {
1104 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1105 sc->names = NULL;
1106 }
1107 }
1108
1109 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1110 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1111 {
1112 const char *parent, *name;
1113 long value;
1114 int line, unit;
1115
1116 line = 0;
1117 parent = device_get_nameunit(sc->dev);
1118 name = sc->names->ifnet_name;
1119 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1120 if (resource_long_value(name, unit, "port", &value) == 0 &&
1121 value == pi->port_id)
1122 return (unit);
1123 }
1124 return (-1);
1125 }
1126
1127 static void
t4_calibration(void * arg)1128 t4_calibration(void *arg)
1129 {
1130 struct adapter *sc;
1131 struct clock_sync *cur, *nex;
1132 uint64_t hw;
1133 sbintime_t sbt;
1134 int next_up;
1135
1136 sc = (struct adapter *)arg;
1137
1138 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1139 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1140 sbt = sbinuptime();
1141
1142 cur = &sc->cal_info[sc->cal_current];
1143 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1144 nex = &sc->cal_info[next_up];
1145 if (__predict_false(sc->cal_count == 0)) {
1146 /* First time in, just get the values in */
1147 cur->hw_cur = hw;
1148 cur->sbt_cur = sbt;
1149 sc->cal_count++;
1150 goto done;
1151 }
1152
1153 if (cur->hw_cur == hw) {
1154 /* The clock is not advancing? */
1155 sc->cal_count = 0;
1156 atomic_store_rel_int(&cur->gen, 0);
1157 goto done;
1158 }
1159
1160 seqc_write_begin(&nex->gen);
1161 nex->hw_prev = cur->hw_cur;
1162 nex->sbt_prev = cur->sbt_cur;
1163 nex->hw_cur = hw;
1164 nex->sbt_cur = sbt;
1165 seqc_write_end(&nex->gen);
1166 sc->cal_current = next_up;
1167 done:
1168 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1169 sc, C_DIRECT_EXEC);
1170 }
1171
1172 static void
t4_calibration_start(struct adapter * sc)1173 t4_calibration_start(struct adapter *sc)
1174 {
1175 /*
1176 * Here if we have not done a calibration
1177 * then do so otherwise start the appropriate
1178 * timer.
1179 */
1180 int i;
1181
1182 for (i = 0; i < CNT_CAL_INFO; i++) {
1183 sc->cal_info[i].gen = 0;
1184 }
1185 sc->cal_current = 0;
1186 sc->cal_count = 0;
1187 sc->cal_gen = 0;
1188 t4_calibration(sc);
1189 }
1190
1191 static int
t4_attach(device_t dev)1192 t4_attach(device_t dev)
1193 {
1194 struct adapter *sc;
1195 int rc = 0, i, j, rqidx, tqidx, nports;
1196 struct make_dev_args mda;
1197 struct intrs_and_queues iaq;
1198 struct sge *s;
1199 uint32_t *buf;
1200 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1201 int ofld_tqidx;
1202 #endif
1203 #ifdef TCP_OFFLOAD
1204 int ofld_rqidx;
1205 #endif
1206 #ifdef DEV_NETMAP
1207 int nm_rqidx, nm_tqidx;
1208 #endif
1209 int num_vis;
1210
1211 sc = device_get_softc(dev);
1212 sc->dev = dev;
1213 sysctl_ctx_init(&sc->ctx);
1214 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1215
1216 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1217 t5_attribute_workaround(dev);
1218 pci_enable_busmaster(dev);
1219 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1220 uint32_t v;
1221
1222 pci_set_max_read_req(dev, 4096);
1223 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1224 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1225 if (pcie_relaxed_ordering == 0 &&
1226 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1227 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1228 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1229 } else if (pcie_relaxed_ordering == 1 &&
1230 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1231 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1232 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1233 }
1234 }
1235
1236 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1237 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1238 sc->traceq = -1;
1239 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1240 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1241 device_get_nameunit(dev));
1242
1243 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1244 device_get_nameunit(dev));
1245 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1246 t4_add_adapter(sc);
1247
1248 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1249 TAILQ_INIT(&sc->sfl);
1250 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1251
1252 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1253
1254 sc->policy = NULL;
1255 rw_init(&sc->policy_lock, "connection offload policy");
1256
1257 callout_init(&sc->ktls_tick, 1);
1258
1259 callout_init(&sc->cal_callout, 1);
1260
1261 refcount_init(&sc->vxlan_refcount, 0);
1262
1263 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1264 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1265
1266 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1267 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1268 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1269 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1270 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1271 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1272
1273 rc = t4_map_bars_0_and_4(sc);
1274 if (rc != 0)
1275 goto done; /* error message displayed already */
1276
1277 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1278
1279 /* Prepare the adapter for operation. */
1280 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1281 rc = -t4_prep_adapter(sc, buf);
1282 free(buf, M_CXGBE);
1283 if (rc != 0) {
1284 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1285 goto done;
1286 }
1287
1288 /*
1289 * This is the real PF# to which we're attaching. Works from within PCI
1290 * passthrough environments too, where pci_get_function() could return a
1291 * different PF# depending on the passthrough configuration. We need to
1292 * use the real PF# in all our communication with the firmware.
1293 */
1294 j = t4_read_reg(sc, A_PL_WHOAMI);
1295 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1296 sc->mbox = sc->pf;
1297
1298 t4_init_devnames(sc);
1299 if (sc->names == NULL) {
1300 rc = ENOTSUP;
1301 goto done; /* error message displayed already */
1302 }
1303
1304 /*
1305 * Do this really early, with the memory windows set up even before the
1306 * character device. The userland tool's register i/o and mem read
1307 * will work even in "recovery mode".
1308 */
1309 setup_memwin(sc);
1310 if (t4_init_devlog_params(sc, 0) == 0)
1311 fixup_devlog_params(sc);
1312 make_dev_args_init(&mda);
1313 mda.mda_devsw = &t4_cdevsw;
1314 mda.mda_uid = UID_ROOT;
1315 mda.mda_gid = GID_WHEEL;
1316 mda.mda_mode = 0600;
1317 mda.mda_si_drv1 = sc;
1318 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1319 if (rc != 0)
1320 device_printf(dev, "failed to create nexus char device: %d.\n",
1321 rc);
1322
1323 /* Go no further if recovery mode has been requested. */
1324 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1325 device_printf(dev, "recovery mode.\n");
1326 goto done;
1327 }
1328
1329 #if defined(__i386__)
1330 if ((cpu_feature & CPUID_CX8) == 0) {
1331 device_printf(dev, "64 bit atomics not available.\n");
1332 rc = ENOTSUP;
1333 goto done;
1334 }
1335 #endif
1336
1337 /* Contact the firmware and try to become the master driver. */
1338 rc = contact_firmware(sc);
1339 if (rc != 0)
1340 goto done; /* error message displayed already */
1341 MPASS(sc->flags & FW_OK);
1342
1343 rc = get_params__pre_init(sc);
1344 if (rc != 0)
1345 goto done; /* error message displayed already */
1346
1347 if (sc->flags & MASTER_PF) {
1348 rc = partition_resources(sc);
1349 if (rc != 0)
1350 goto done; /* error message displayed already */
1351 }
1352
1353 rc = get_params__post_init(sc);
1354 if (rc != 0)
1355 goto done; /* error message displayed already */
1356
1357 rc = set_params__post_init(sc);
1358 if (rc != 0)
1359 goto done; /* error message displayed already */
1360
1361 rc = t4_map_bar_2(sc);
1362 if (rc != 0)
1363 goto done; /* error message displayed already */
1364
1365 rc = t4_adj_doorbells(sc);
1366 if (rc != 0)
1367 goto done; /* error message displayed already */
1368
1369 rc = t4_create_dma_tag(sc);
1370 if (rc != 0)
1371 goto done; /* error message displayed already */
1372
1373 /*
1374 * First pass over all the ports - allocate VIs and initialize some
1375 * basic parameters like mac address, port type, etc.
1376 */
1377 for_each_port(sc, i) {
1378 struct port_info *pi;
1379
1380 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1381 sc->port[i] = pi;
1382
1383 /* These must be set before t4_port_init */
1384 pi->adapter = sc;
1385 pi->port_id = i;
1386 /*
1387 * XXX: vi[0] is special so we can't delay this allocation until
1388 * pi->nvi's final value is known.
1389 */
1390 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1391 M_ZERO | M_WAITOK);
1392
1393 /*
1394 * Allocate the "main" VI and initialize parameters
1395 * like mac addr.
1396 */
1397 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1398 if (rc != 0) {
1399 device_printf(dev, "unable to initialize port %d: %d\n",
1400 i, rc);
1401 free(pi->vi, M_CXGBE);
1402 free(pi, M_CXGBE);
1403 sc->port[i] = NULL;
1404 goto done;
1405 }
1406
1407 if (is_bt(pi->port_type))
1408 setbit(&sc->bt_map, pi->tx_chan);
1409 else
1410 MPASS(!isset(&sc->bt_map, pi->tx_chan));
1411
1412 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1413 device_get_nameunit(dev), i);
1414 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1415 sc->chan_map[pi->tx_chan] = i;
1416
1417 /*
1418 * The MPS counter for FCS errors doesn't work correctly on the
1419 * T6 so we use the MAC counter here. Which MAC is in use
1420 * depends on the link settings which will be known when the
1421 * link comes up.
1422 */
1423 if (is_t6(sc))
1424 pi->fcs_reg = -1;
1425 else {
1426 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1427 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1428 }
1429 pi->fcs_base = 0;
1430
1431 /* All VIs on this port share this media. */
1432 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1433 cxgbe_media_status);
1434
1435 PORT_LOCK(pi);
1436 init_link_config(pi);
1437 fixup_link_config(pi);
1438 build_medialist(pi);
1439 if (fixed_ifmedia(pi))
1440 pi->flags |= FIXED_IFMEDIA;
1441 PORT_UNLOCK(pi);
1442
1443 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1444 t4_ifnet_unit(sc, pi));
1445 if (pi->dev == NULL) {
1446 device_printf(dev,
1447 "failed to add device for port %d.\n", i);
1448 rc = ENXIO;
1449 goto done;
1450 }
1451 pi->vi[0].dev = pi->dev;
1452 device_set_softc(pi->dev, pi);
1453 }
1454
1455 /*
1456 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1457 */
1458 nports = sc->params.nports;
1459 rc = cfg_itype_and_nqueues(sc, &iaq);
1460 if (rc != 0)
1461 goto done; /* error message displayed already */
1462
1463 num_vis = iaq.num_vis;
1464 sc->intr_type = iaq.intr_type;
1465 sc->intr_count = iaq.nirq;
1466
1467 s = &sc->sge;
1468 s->nrxq = nports * iaq.nrxq;
1469 s->ntxq = nports * iaq.ntxq;
1470 if (num_vis > 1) {
1471 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1472 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1473 }
1474 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1475 s->neq += nports; /* ctrl queues: 1 per port */
1476 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1477 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1478 if (is_offload(sc) || is_ethoffload(sc)) {
1479 s->nofldtxq = nports * iaq.nofldtxq;
1480 if (num_vis > 1)
1481 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1482 s->neq += s->nofldtxq;
1483
1484 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1485 M_CXGBE, M_ZERO | M_WAITOK);
1486 }
1487 #endif
1488 #ifdef TCP_OFFLOAD
1489 if (is_offload(sc)) {
1490 s->nofldrxq = nports * iaq.nofldrxq;
1491 if (num_vis > 1)
1492 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1493 s->neq += s->nofldrxq; /* free list */
1494 s->niq += s->nofldrxq;
1495
1496 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1497 M_CXGBE, M_ZERO | M_WAITOK);
1498 }
1499 #endif
1500 #ifdef DEV_NETMAP
1501 s->nnmrxq = 0;
1502 s->nnmtxq = 0;
1503 if (t4_native_netmap & NN_MAIN_VI) {
1504 s->nnmrxq += nports * iaq.nnmrxq;
1505 s->nnmtxq += nports * iaq.nnmtxq;
1506 }
1507 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1508 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1509 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1510 }
1511 s->neq += s->nnmtxq + s->nnmrxq;
1512 s->niq += s->nnmrxq;
1513
1514 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1515 M_CXGBE, M_ZERO | M_WAITOK);
1516 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1517 M_CXGBE, M_ZERO | M_WAITOK);
1518 #endif
1519 MPASS(s->niq <= s->iqmap_sz);
1520 MPASS(s->neq <= s->eqmap_sz);
1521
1522 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1523 M_ZERO | M_WAITOK);
1524 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1525 M_ZERO | M_WAITOK);
1526 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1527 M_ZERO | M_WAITOK);
1528 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1529 M_ZERO | M_WAITOK);
1530 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1531 M_ZERO | M_WAITOK);
1532
1533 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1534 M_ZERO | M_WAITOK);
1535
1536 t4_init_l2t(sc, M_WAITOK);
1537 t4_init_smt(sc, M_WAITOK);
1538 t4_init_tx_sched(sc);
1539 t4_init_atid_table(sc);
1540 #ifdef RATELIMIT
1541 t4_init_etid_table(sc);
1542 #endif
1543 #ifdef INET6
1544 t4_init_clip_table(sc);
1545 #endif
1546 if (sc->vres.key.size != 0)
1547 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1548 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1549
1550 /*
1551 * Second pass over the ports. This time we know the number of rx and
1552 * tx queues that each port should get.
1553 */
1554 rqidx = tqidx = 0;
1555 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1556 ofld_tqidx = 0;
1557 #endif
1558 #ifdef TCP_OFFLOAD
1559 ofld_rqidx = 0;
1560 #endif
1561 #ifdef DEV_NETMAP
1562 nm_rqidx = nm_tqidx = 0;
1563 #endif
1564 for_each_port(sc, i) {
1565 struct port_info *pi = sc->port[i];
1566 struct vi_info *vi;
1567
1568 if (pi == NULL)
1569 continue;
1570
1571 pi->nvi = num_vis;
1572 for_each_vi(pi, j, vi) {
1573 vi->pi = pi;
1574 vi->adapter = sc;
1575 vi->first_intr = -1;
1576 vi->qsize_rxq = t4_qsize_rxq;
1577 vi->qsize_txq = t4_qsize_txq;
1578
1579 vi->first_rxq = rqidx;
1580 vi->first_txq = tqidx;
1581 vi->tmr_idx = t4_tmr_idx;
1582 vi->pktc_idx = t4_pktc_idx;
1583 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1584 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1585
1586 rqidx += vi->nrxq;
1587 tqidx += vi->ntxq;
1588
1589 if (j == 0 && vi->ntxq > 1)
1590 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1591 else
1592 vi->rsrv_noflowq = 0;
1593
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 vi->first_ofld_txq = ofld_tqidx;
1596 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1597 ofld_tqidx += vi->nofldtxq;
1598 #endif
1599 #ifdef TCP_OFFLOAD
1600 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1601 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1602 vi->first_ofld_rxq = ofld_rqidx;
1603 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1604
1605 ofld_rqidx += vi->nofldrxq;
1606 #endif
1607 #ifdef DEV_NETMAP
1608 vi->first_nm_rxq = nm_rqidx;
1609 vi->first_nm_txq = nm_tqidx;
1610 if (j == 0) {
1611 vi->nnmrxq = iaq.nnmrxq;
1612 vi->nnmtxq = iaq.nnmtxq;
1613 } else {
1614 vi->nnmrxq = iaq.nnmrxq_vi;
1615 vi->nnmtxq = iaq.nnmtxq_vi;
1616 }
1617 nm_rqidx += vi->nnmrxq;
1618 nm_tqidx += vi->nnmtxq;
1619 #endif
1620 }
1621 }
1622
1623 rc = t4_setup_intr_handlers(sc);
1624 if (rc != 0) {
1625 device_printf(dev,
1626 "failed to setup interrupt handlers: %d\n", rc);
1627 goto done;
1628 }
1629
1630 bus_identify_children(dev);
1631
1632 /*
1633 * Ensure thread-safe mailbox access (in debug builds).
1634 *
1635 * So far this was the only thread accessing the mailbox but various
1636 * ifnets and sysctls are about to be created and their handlers/ioctls
1637 * will access the mailbox from different threads.
1638 */
1639 sc->flags |= CHK_MBOX_ACCESS;
1640
1641 bus_attach_children(dev);
1642 t4_calibration_start(sc);
1643
1644 device_printf(dev,
1645 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1646 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1647 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1648 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1649 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1650
1651 t4_set_desc(sc);
1652
1653 notify_siblings(dev, 0);
1654
1655 done:
1656 if (rc != 0 && sc->cdev) {
1657 /* cdev was created and so cxgbetool works; recover that way. */
1658 device_printf(dev,
1659 "error during attach, adapter is now in recovery mode.\n");
1660 rc = 0;
1661 }
1662
1663 if (rc != 0)
1664 t4_detach_common(dev);
1665 else
1666 t4_sysctls(sc);
1667
1668 return (rc);
1669 }
1670
1671 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1672 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1673 {
1674 struct adapter *sc;
1675 struct port_info *pi;
1676 int i;
1677
1678 sc = device_get_softc(bus);
1679 for_each_port(sc, i) {
1680 pi = sc->port[i];
1681 if (pi != NULL && pi->dev == dev) {
1682 sbuf_printf(sb, "port=%d", pi->port_id);
1683 break;
1684 }
1685 }
1686 return (0);
1687 }
1688
1689 static int
t4_ready(device_t dev)1690 t4_ready(device_t dev)
1691 {
1692 struct adapter *sc;
1693
1694 sc = device_get_softc(dev);
1695 if (sc->flags & FW_OK)
1696 return (0);
1697 return (ENXIO);
1698 }
1699
1700 static int
t4_read_port_device(device_t dev,int port,device_t * child)1701 t4_read_port_device(device_t dev, int port, device_t *child)
1702 {
1703 struct adapter *sc;
1704 struct port_info *pi;
1705
1706 sc = device_get_softc(dev);
1707 if (port < 0 || port >= MAX_NPORTS)
1708 return (EINVAL);
1709 pi = sc->port[port];
1710 if (pi == NULL || pi->dev == NULL)
1711 return (ENXIO);
1712 *child = pi->dev;
1713 return (0);
1714 }
1715
1716 static int
notify_siblings(device_t dev,int detaching)1717 notify_siblings(device_t dev, int detaching)
1718 {
1719 device_t sibling;
1720 int error, i;
1721
1722 error = 0;
1723 for (i = 0; i < PCI_FUNCMAX; i++) {
1724 if (i == pci_get_function(dev))
1725 continue;
1726 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1727 pci_get_slot(dev), i);
1728 if (sibling == NULL || !device_is_attached(sibling))
1729 continue;
1730 if (detaching)
1731 error = T4_DETACH_CHILD(sibling);
1732 else
1733 (void)T4_ATTACH_CHILD(sibling);
1734 if (error)
1735 break;
1736 }
1737 return (error);
1738 }
1739
1740 /*
1741 * Idempotent
1742 */
1743 static int
t4_detach(device_t dev)1744 t4_detach(device_t dev)
1745 {
1746 int rc;
1747
1748 rc = notify_siblings(dev, 1);
1749 if (rc) {
1750 device_printf(dev,
1751 "failed to detach sibling devices: %d\n", rc);
1752 return (rc);
1753 }
1754
1755 return (t4_detach_common(dev));
1756 }
1757
1758 int
t4_detach_common(device_t dev)1759 t4_detach_common(device_t dev)
1760 {
1761 struct adapter *sc;
1762 struct port_info *pi;
1763 int i, rc;
1764
1765 sc = device_get_softc(dev);
1766
1767 #ifdef TCP_OFFLOAD
1768 rc = deactivate_all_uld(sc);
1769 if (rc) {
1770 device_printf(dev,
1771 "failed to detach upper layer drivers: %d\n", rc);
1772 return (rc);
1773 }
1774 #endif
1775
1776 if (sc->cdev) {
1777 destroy_dev(sc->cdev);
1778 sc->cdev = NULL;
1779 }
1780
1781 sx_xlock(&t4_list_lock);
1782 SLIST_REMOVE(&t4_list, sc, adapter, link);
1783 sx_xunlock(&t4_list_lock);
1784
1785 sc->flags &= ~CHK_MBOX_ACCESS;
1786 if (sc->flags & FULL_INIT_DONE) {
1787 if (!(sc->flags & IS_VF))
1788 t4_intr_disable(sc);
1789 }
1790
1791 if (device_is_attached(dev)) {
1792 rc = bus_generic_detach(dev);
1793 if (rc) {
1794 device_printf(dev,
1795 "failed to detach child devices: %d\n", rc);
1796 return (rc);
1797 }
1798 }
1799
1800 for (i = 0; i < sc->intr_count; i++)
1801 t4_free_irq(sc, &sc->irq[i]);
1802
1803 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1804 t4_free_tx_sched(sc);
1805
1806 for (i = 0; i < MAX_NPORTS; i++) {
1807 pi = sc->port[i];
1808 if (pi) {
1809 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1810 if (pi->dev)
1811 device_delete_child(dev, pi->dev);
1812
1813 mtx_destroy(&pi->pi_lock);
1814 free(pi->vi, M_CXGBE);
1815 free(pi, M_CXGBE);
1816 }
1817 }
1818 callout_stop(&sc->cal_callout);
1819 callout_drain(&sc->cal_callout);
1820 device_delete_children(dev);
1821 sysctl_ctx_free(&sc->ctx);
1822 adapter_full_uninit(sc);
1823
1824 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1825 t4_fw_bye(sc, sc->mbox);
1826
1827 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1828 pci_release_msi(dev);
1829
1830 if (sc->regs_res)
1831 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1832 sc->regs_res);
1833
1834 if (sc->udbs_res)
1835 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1836 sc->udbs_res);
1837
1838 if (sc->msix_res)
1839 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1840 sc->msix_res);
1841
1842 if (sc->l2t)
1843 t4_free_l2t(sc);
1844 if (sc->smt)
1845 t4_free_smt(sc->smt);
1846 t4_free_atid_table(sc);
1847 #ifdef RATELIMIT
1848 t4_free_etid_table(sc);
1849 #endif
1850 if (sc->key_map)
1851 vmem_destroy(sc->key_map);
1852 #ifdef INET6
1853 t4_destroy_clip_table(sc);
1854 #endif
1855
1856 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1857 free(sc->sge.ofld_txq, M_CXGBE);
1858 #endif
1859 #ifdef TCP_OFFLOAD
1860 free(sc->sge.ofld_rxq, M_CXGBE);
1861 #endif
1862 #ifdef DEV_NETMAP
1863 free(sc->sge.nm_rxq, M_CXGBE);
1864 free(sc->sge.nm_txq, M_CXGBE);
1865 #endif
1866 free(sc->irq, M_CXGBE);
1867 free(sc->sge.rxq, M_CXGBE);
1868 free(sc->sge.txq, M_CXGBE);
1869 free(sc->sge.ctrlq, M_CXGBE);
1870 free(sc->sge.iqmap, M_CXGBE);
1871 free(sc->sge.eqmap, M_CXGBE);
1872 free(sc->tids.ftid_tab, M_CXGBE);
1873 free(sc->tids.hpftid_tab, M_CXGBE);
1874 free_hftid_hash(&sc->tids);
1875 free(sc->tids.tid_tab, M_CXGBE);
1876 t4_destroy_dma_tag(sc);
1877
1878 callout_drain(&sc->ktls_tick);
1879 callout_drain(&sc->sfl_callout);
1880 if (mtx_initialized(&sc->tids.ftid_lock)) {
1881 mtx_destroy(&sc->tids.ftid_lock);
1882 cv_destroy(&sc->tids.ftid_cv);
1883 }
1884 if (mtx_initialized(&sc->tids.atid_lock))
1885 mtx_destroy(&sc->tids.atid_lock);
1886 if (mtx_initialized(&sc->ifp_lock))
1887 mtx_destroy(&sc->ifp_lock);
1888
1889 if (rw_initialized(&sc->policy_lock)) {
1890 rw_destroy(&sc->policy_lock);
1891 #ifdef TCP_OFFLOAD
1892 if (sc->policy != NULL)
1893 free_offload_policy(sc->policy);
1894 #endif
1895 }
1896
1897 for (i = 0; i < NUM_MEMWIN; i++) {
1898 struct memwin *mw = &sc->memwin[i];
1899
1900 if (rw_initialized(&mw->mw_lock))
1901 rw_destroy(&mw->mw_lock);
1902 }
1903
1904 mtx_destroy(&sc->sfl_lock);
1905 mtx_destroy(&sc->reg_lock);
1906 mtx_destroy(&sc->sc_lock);
1907
1908 bzero(sc, sizeof(*sc));
1909
1910 return (0);
1911 }
1912
1913 static inline int
stop_adapter(struct adapter * sc)1914 stop_adapter(struct adapter *sc)
1915 {
1916 struct port_info *pi;
1917 int i;
1918
1919 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1920 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1921 __func__, curthread, sc->flags, sc->error_flags);
1922 return (EALREADY);
1923 }
1924 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1925 sc->flags, sc->error_flags);
1926 t4_shutdown_adapter(sc);
1927 for_each_port(sc, i) {
1928 pi = sc->port[i];
1929 PORT_LOCK(pi);
1930 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1931 /*
1932 * t4_shutdown_adapter has already shut down all the
1933 * PHYs but it also disables interrupts and DMA so there
1934 * won't be a link interrupt. Update the state manually
1935 * if the link was up previously and inform the kernel.
1936 */
1937 pi->link_cfg.link_ok = false;
1938 t4_os_link_changed(pi);
1939 }
1940 PORT_UNLOCK(pi);
1941 }
1942
1943 return (0);
1944 }
1945
1946 static inline int
restart_adapter(struct adapter * sc)1947 restart_adapter(struct adapter *sc)
1948 {
1949 uint32_t val;
1950
1951 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1952 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1953 __func__, curthread, sc->flags, sc->error_flags);
1954 return (EALREADY);
1955 }
1956 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1957 sc->flags, sc->error_flags);
1958
1959 MPASS(hw_off_limits(sc));
1960 MPASS((sc->flags & FW_OK) == 0);
1961 MPASS((sc->flags & MASTER_PF) == 0);
1962 MPASS(sc->reset_thread == NULL);
1963
1964 /*
1965 * The adapter is supposed to be back on PCIE with its config space and
1966 * BARs restored to their state before reset. Register access via
1967 * t4_read_reg BAR0 should just work.
1968 */
1969 sc->reset_thread = curthread;
1970 val = t4_read_reg(sc, A_PL_WHOAMI);
1971 if (val == 0xffffffff || val == 0xeeeeeeee) {
1972 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1973 sc->reset_thread = NULL;
1974 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1975 return (ENXIO);
1976 }
1977 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1978 atomic_add_int(&sc->incarnation, 1);
1979 atomic_add_int(&sc->num_resets, 1);
1980
1981 return (0);
1982 }
1983
1984 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)1985 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1986 {
1987 if (usable) {
1988 /* Must be marked reusable by the designated thread. */
1989 ASSERT_SYNCHRONIZED_OP(sc);
1990 MPASS(sc->reset_thread == curthread);
1991 mtx_lock(&sc->reg_lock);
1992 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1993 mtx_unlock(&sc->reg_lock);
1994 } else {
1995 /* Mark the adapter totally off limits. */
1996 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
1997 mtx_lock(&sc->reg_lock);
1998 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
1999 mtx_unlock(&sc->reg_lock);
2000 sc->flags &= ~(FW_OK | MASTER_PF);
2001 sc->reset_thread = NULL;
2002 end_synchronized_op(sc, 0);
2003 }
2004 }
2005
2006 static int
stop_lld(struct adapter * sc)2007 stop_lld(struct adapter *sc)
2008 {
2009 struct port_info *pi;
2010 struct vi_info *vi;
2011 if_t ifp;
2012 struct sge_rxq *rxq;
2013 struct sge_txq *txq;
2014 struct sge_wrq *wrq;
2015 #ifdef TCP_OFFLOAD
2016 struct sge_ofld_rxq *ofld_rxq;
2017 #endif
2018 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2019 struct sge_ofld_txq *ofld_txq;
2020 #endif
2021 int rc, i, j, k;
2022
2023 /*
2024 * XXX: Can there be a synch_op in progress that will hang because
2025 * hardware has been stopped? We'll hang too and the solution will be
2026 * to use a version of begin_synch_op that wakes up existing synch_op
2027 * with errors. Maybe stop_adapter should do this wakeup?
2028 *
2029 * I don't think any synch_op could get stranded waiting for DMA or
2030 * interrupt so I think we're okay here. Remove this comment block
2031 * after testing.
2032 */
2033 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2034 if (rc != 0)
2035 return (ENXIO);
2036
2037 /* Quiesce all activity. */
2038 for_each_port(sc, i) {
2039 pi = sc->port[i];
2040 pi->vxlan_tcam_entry = false;
2041 for_each_vi(pi, j, vi) {
2042 vi->xact_addr_filt = -1;
2043 mtx_lock(&vi->tick_mtx);
2044 vi->flags |= VI_SKIP_STATS;
2045 mtx_unlock(&vi->tick_mtx);
2046 if (!(vi->flags & VI_INIT_DONE))
2047 continue;
2048
2049 ifp = vi->ifp;
2050 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2051 mtx_lock(&vi->tick_mtx);
2052 callout_stop(&vi->tick);
2053 mtx_unlock(&vi->tick_mtx);
2054 callout_drain(&vi->tick);
2055 }
2056
2057 /*
2058 * Note that the HW is not available.
2059 */
2060 for_each_txq(vi, k, txq) {
2061 TXQ_LOCK(txq);
2062 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2063 TXQ_UNLOCK(txq);
2064 }
2065 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2066 for_each_ofld_txq(vi, k, ofld_txq) {
2067 TXQ_LOCK(&ofld_txq->wrq);
2068 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2069 TXQ_UNLOCK(&ofld_txq->wrq);
2070 }
2071 #endif
2072 for_each_rxq(vi, k, rxq) {
2073 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2074 }
2075 #if defined(TCP_OFFLOAD)
2076 for_each_ofld_rxq(vi, k, ofld_rxq) {
2077 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2078 }
2079 #endif
2080
2081 quiesce_vi(vi);
2082 }
2083
2084 if (sc->flags & FULL_INIT_DONE) {
2085 /* Control queue */
2086 wrq = &sc->sge.ctrlq[i];
2087 TXQ_LOCK(wrq);
2088 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2089 TXQ_UNLOCK(wrq);
2090 quiesce_wrq(wrq);
2091 }
2092
2093 if (pi->flags & HAS_TRACEQ) {
2094 pi->flags &= ~HAS_TRACEQ;
2095 sc->traceq = -1;
2096 sc->tracer_valid = 0;
2097 sc->tracer_enabled = 0;
2098 }
2099 }
2100 if (sc->flags & FULL_INIT_DONE) {
2101 /* Firmware event queue */
2102 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2103 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2104 }
2105
2106 /* Stop calibration */
2107 callout_stop(&sc->cal_callout);
2108 callout_drain(&sc->cal_callout);
2109
2110 if (t4_clock_gate_on_suspend) {
2111 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2112 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2113 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2114 }
2115
2116 end_synchronized_op(sc, 0);
2117
2118 stop_atid_allocator(sc);
2119 t4_stop_l2t(sc);
2120
2121 return (rc);
2122 }
2123
2124 int
suspend_adapter(struct adapter * sc)2125 suspend_adapter(struct adapter *sc)
2126 {
2127 stop_adapter(sc);
2128 stop_lld(sc);
2129 #ifdef TCP_OFFLOAD
2130 stop_all_uld(sc);
2131 #endif
2132 set_adapter_hwstatus(sc, false);
2133
2134 return (0);
2135 }
2136
2137 static int
t4_suspend(device_t dev)2138 t4_suspend(device_t dev)
2139 {
2140 struct adapter *sc = device_get_softc(dev);
2141 int rc;
2142
2143 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2144 rc = suspend_adapter(sc);
2145 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2146
2147 return (rc);
2148 }
2149
2150 struct adapter_pre_reset_state {
2151 u_int flags;
2152 uint16_t nbmcaps;
2153 uint16_t linkcaps;
2154 uint16_t switchcaps;
2155 uint16_t niccaps;
2156 uint16_t toecaps;
2157 uint16_t rdmacaps;
2158 uint16_t cryptocaps;
2159 uint16_t iscsicaps;
2160 uint16_t fcoecaps;
2161
2162 u_int cfcsum;
2163 char cfg_file[32];
2164
2165 struct adapter_params params;
2166 struct t4_virt_res vres;
2167 struct tid_info tids;
2168 struct sge sge;
2169
2170 int rawf_base;
2171 int nrawf;
2172
2173 };
2174
2175 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2176 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2177 {
2178
2179 ASSERT_SYNCHRONIZED_OP(sc);
2180
2181 o->flags = sc->flags;
2182
2183 o->nbmcaps = sc->nbmcaps;
2184 o->linkcaps = sc->linkcaps;
2185 o->switchcaps = sc->switchcaps;
2186 o->niccaps = sc->niccaps;
2187 o->toecaps = sc->toecaps;
2188 o->rdmacaps = sc->rdmacaps;
2189 o->cryptocaps = sc->cryptocaps;
2190 o->iscsicaps = sc->iscsicaps;
2191 o->fcoecaps = sc->fcoecaps;
2192
2193 o->cfcsum = sc->cfcsum;
2194 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2195 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2196
2197 o->params = sc->params;
2198 o->vres = sc->vres;
2199 o->tids = sc->tids;
2200 o->sge = sc->sge;
2201
2202 o->rawf_base = sc->rawf_base;
2203 o->nrawf = sc->nrawf;
2204 }
2205
2206 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2207 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2208 {
2209 int rc = 0;
2210
2211 ASSERT_SYNCHRONIZED_OP(sc);
2212
2213 /* Capabilities */
2214 #define COMPARE_CAPS(c) do { \
2215 if (o->c##caps != sc->c##caps) { \
2216 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2217 sc->c##caps); \
2218 rc = EINVAL; \
2219 } \
2220 } while (0)
2221 COMPARE_CAPS(nbm);
2222 COMPARE_CAPS(link);
2223 COMPARE_CAPS(switch);
2224 COMPARE_CAPS(nic);
2225 COMPARE_CAPS(toe);
2226 COMPARE_CAPS(rdma);
2227 COMPARE_CAPS(crypto);
2228 COMPARE_CAPS(iscsi);
2229 COMPARE_CAPS(fcoe);
2230 #undef COMPARE_CAPS
2231
2232 /* Firmware config file */
2233 if (o->cfcsum != sc->cfcsum) {
2234 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2235 o->cfcsum, sc->cfg_file, sc->cfcsum);
2236 rc = EINVAL;
2237 }
2238
2239 #define COMPARE_PARAM(p, name) do { \
2240 if (o->p != sc->p) { \
2241 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2242 rc = EINVAL; \
2243 } \
2244 } while (0)
2245 COMPARE_PARAM(sge.iq_start, iq_start);
2246 COMPARE_PARAM(sge.eq_start, eq_start);
2247 COMPARE_PARAM(tids.ftid_base, ftid_base);
2248 COMPARE_PARAM(tids.ftid_end, ftid_end);
2249 COMPARE_PARAM(tids.nftids, nftids);
2250 COMPARE_PARAM(vres.l2t.start, l2t_start);
2251 COMPARE_PARAM(vres.l2t.size, l2t_size);
2252 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2253 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2254 COMPARE_PARAM(tids.tid_base, tid_base);
2255 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2256 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2257 COMPARE_PARAM(tids.nhpftids, nhpftids);
2258 COMPARE_PARAM(rawf_base, rawf_base);
2259 COMPARE_PARAM(nrawf, nrawf);
2260 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2261 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2262 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2263 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2264 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2265 COMPARE_PARAM(tids.ntids, ntids);
2266 COMPARE_PARAM(tids.etid_base, etid_base);
2267 COMPARE_PARAM(tids.etid_end, etid_end);
2268 COMPARE_PARAM(tids.netids, netids);
2269 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2270 COMPARE_PARAM(params.ethoffload, ethoffload);
2271 COMPARE_PARAM(tids.natids, natids);
2272 COMPARE_PARAM(tids.stid_base, stid_base);
2273 COMPARE_PARAM(vres.ddp.start, ddp_start);
2274 COMPARE_PARAM(vres.ddp.size, ddp_size);
2275 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2276 COMPARE_PARAM(vres.stag.start, stag_start);
2277 COMPARE_PARAM(vres.stag.size, stag_size);
2278 COMPARE_PARAM(vres.rq.start, rq_start);
2279 COMPARE_PARAM(vres.rq.size, rq_size);
2280 COMPARE_PARAM(vres.pbl.start, pbl_start);
2281 COMPARE_PARAM(vres.pbl.size, pbl_size);
2282 COMPARE_PARAM(vres.qp.start, qp_start);
2283 COMPARE_PARAM(vres.qp.size, qp_size);
2284 COMPARE_PARAM(vres.cq.start, cq_start);
2285 COMPARE_PARAM(vres.cq.size, cq_size);
2286 COMPARE_PARAM(vres.ocq.start, ocq_start);
2287 COMPARE_PARAM(vres.ocq.size, ocq_size);
2288 COMPARE_PARAM(vres.srq.start, srq_start);
2289 COMPARE_PARAM(vres.srq.size, srq_size);
2290 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2291 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2292 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2293 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2294 COMPARE_PARAM(vres.key.start, key_start);
2295 COMPARE_PARAM(vres.key.size, key_size);
2296 #undef COMPARE_PARAM
2297
2298 return (rc);
2299 }
2300
2301 static int
restart_lld(struct adapter * sc)2302 restart_lld(struct adapter *sc)
2303 {
2304 struct adapter_pre_reset_state *old_state = NULL;
2305 struct port_info *pi;
2306 struct vi_info *vi;
2307 if_t ifp;
2308 struct sge_txq *txq;
2309 int rc, i, j, k;
2310
2311 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2312 if (rc != 0)
2313 return (ENXIO);
2314
2315 /* Restore memory window. */
2316 setup_memwin(sc);
2317
2318 /* Go no further if recovery mode has been requested. */
2319 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2320 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2321 rc = 0;
2322 set_adapter_hwstatus(sc, true);
2323 goto done;
2324 }
2325
2326 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2327 save_caps_and_params(sc, old_state);
2328
2329 /* Reestablish contact with firmware and become the primary PF. */
2330 rc = contact_firmware(sc);
2331 if (rc != 0)
2332 goto done; /* error message displayed already */
2333 MPASS(sc->flags & FW_OK);
2334
2335 if (sc->flags & MASTER_PF) {
2336 rc = partition_resources(sc);
2337 if (rc != 0)
2338 goto done; /* error message displayed already */
2339 }
2340
2341 rc = get_params__post_init(sc);
2342 if (rc != 0)
2343 goto done; /* error message displayed already */
2344
2345 rc = set_params__post_init(sc);
2346 if (rc != 0)
2347 goto done; /* error message displayed already */
2348
2349 rc = compare_caps_and_params(sc, old_state);
2350 if (rc != 0)
2351 goto done; /* error message displayed already */
2352
2353 for_each_port(sc, i) {
2354 pi = sc->port[i];
2355 MPASS(pi != NULL);
2356 MPASS(pi->vi != NULL);
2357 MPASS(pi->vi[0].dev == pi->dev);
2358
2359 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2360 if (rc != 0) {
2361 CH_ERR(sc,
2362 "failed to re-initialize port %d: %d\n", i, rc);
2363 goto done;
2364 }
2365 MPASS(sc->chan_map[pi->tx_chan] == i);
2366
2367 PORT_LOCK(pi);
2368 fixup_link_config(pi);
2369 build_medialist(pi);
2370 PORT_UNLOCK(pi);
2371 for_each_vi(pi, j, vi) {
2372 if (IS_MAIN_VI(vi))
2373 continue;
2374 rc = alloc_extra_vi(sc, pi, vi);
2375 if (rc != 0) {
2376 CH_ERR(vi,
2377 "failed to re-allocate extra VI: %d\n", rc);
2378 goto done;
2379 }
2380 }
2381 }
2382
2383 /*
2384 * Interrupts and queues are about to be enabled and other threads will
2385 * want to access the hardware too. It is safe to do so. Note that
2386 * this thread is still in the middle of a synchronized_op.
2387 */
2388 set_adapter_hwstatus(sc, true);
2389
2390 if (sc->flags & FULL_INIT_DONE) {
2391 rc = adapter_full_init(sc);
2392 if (rc != 0) {
2393 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2394 goto done;
2395 }
2396
2397 if (sc->vxlan_refcount > 0)
2398 enable_vxlan_rx(sc);
2399
2400 for_each_port(sc, i) {
2401 pi = sc->port[i];
2402 for_each_vi(pi, j, vi) {
2403 mtx_lock(&vi->tick_mtx);
2404 vi->flags &= ~VI_SKIP_STATS;
2405 mtx_unlock(&vi->tick_mtx);
2406 if (!(vi->flags & VI_INIT_DONE))
2407 continue;
2408 rc = vi_full_init(vi);
2409 if (rc != 0) {
2410 CH_ERR(vi, "failed to re-initialize "
2411 "interface: %d\n", rc);
2412 goto done;
2413 }
2414 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2415 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2416 t4_write_reg(sc, is_t4(sc) ?
2417 A_MPS_TRC_RSS_CONTROL :
2418 A_MPS_T5_TRC_RSS_CONTROL,
2419 V_RSSCONTROL(pi->tx_chan) |
2420 V_QUEUENUMBER(sc->traceq));
2421 pi->flags |= HAS_TRACEQ;
2422 }
2423
2424 ifp = vi->ifp;
2425 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2426 continue;
2427 /*
2428 * Note that we do not setup multicast addresses
2429 * in the first pass. This ensures that the
2430 * unicast DMACs for all VIs on all ports get an
2431 * MPS TCAM entry.
2432 */
2433 rc = update_mac_settings(ifp, XGMAC_ALL &
2434 ~XGMAC_MCADDRS);
2435 if (rc != 0) {
2436 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2437 goto done;
2438 }
2439 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2440 true);
2441 if (rc != 0) {
2442 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2443 goto done;
2444 }
2445 for_each_txq(vi, k, txq) {
2446 TXQ_LOCK(txq);
2447 txq->eq.flags |= EQ_ENABLED;
2448 TXQ_UNLOCK(txq);
2449 }
2450 mtx_lock(&vi->tick_mtx);
2451 callout_schedule(&vi->tick, hz);
2452 mtx_unlock(&vi->tick_mtx);
2453 }
2454 PORT_LOCK(pi);
2455 if (pi->up_vis > 0) {
2456 t4_update_port_info(pi);
2457 fixup_link_config(pi);
2458 build_medialist(pi);
2459 apply_link_config(pi);
2460 if (pi->link_cfg.link_ok)
2461 t4_os_link_changed(pi);
2462 }
2463 PORT_UNLOCK(pi);
2464 }
2465
2466 /* Now reprogram the L2 multicast addresses. */
2467 for_each_port(sc, i) {
2468 pi = sc->port[i];
2469 for_each_vi(pi, j, vi) {
2470 if (!(vi->flags & VI_INIT_DONE))
2471 continue;
2472 ifp = vi->ifp;
2473 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2474 continue;
2475 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2476 if (rc != 0) {
2477 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2478 rc = 0; /* carry on */
2479 }
2480 }
2481 }
2482 }
2483
2484 /* Reset all calibration */
2485 t4_calibration_start(sc);
2486 done:
2487 end_synchronized_op(sc, 0);
2488 free(old_state, M_CXGBE);
2489
2490 restart_atid_allocator(sc);
2491 t4_restart_l2t(sc);
2492
2493 return (rc);
2494 }
2495
2496 int
resume_adapter(struct adapter * sc)2497 resume_adapter(struct adapter *sc)
2498 {
2499 restart_adapter(sc);
2500 restart_lld(sc);
2501 #ifdef TCP_OFFLOAD
2502 restart_all_uld(sc);
2503 #endif
2504 return (0);
2505 }
2506
2507 static int
t4_resume(device_t dev)2508 t4_resume(device_t dev)
2509 {
2510 struct adapter *sc = device_get_softc(dev);
2511 int rc;
2512
2513 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2514 rc = resume_adapter(sc);
2515 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2516
2517 return (rc);
2518 }
2519
2520 static int
t4_reset_prepare(device_t dev,device_t child)2521 t4_reset_prepare(device_t dev, device_t child)
2522 {
2523 struct adapter *sc = device_get_softc(dev);
2524
2525 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2526 return (0);
2527 }
2528
2529 static int
t4_reset_post(device_t dev,device_t child)2530 t4_reset_post(device_t dev, device_t child)
2531 {
2532 struct adapter *sc = device_get_softc(dev);
2533
2534 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2535 return (0);
2536 }
2537
2538 static int
reset_adapter_with_pci_bus_reset(struct adapter * sc)2539 reset_adapter_with_pci_bus_reset(struct adapter *sc)
2540 {
2541 int rc;
2542
2543 mtx_lock(&Giant);
2544 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2545 mtx_unlock(&Giant);
2546 return (rc);
2547 }
2548
2549 static int
reset_adapter_with_pl_rst(struct adapter * sc)2550 reset_adapter_with_pl_rst(struct adapter *sc)
2551 {
2552 suspend_adapter(sc);
2553
2554 /* This is a t4_write_reg without the hw_off_limits check. */
2555 MPASS(sc->error_flags & HW_OFF_LIMITS);
2556 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2557 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2558 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2559
2560 resume_adapter(sc);
2561
2562 return (0);
2563 }
2564
2565 static inline int
reset_adapter(struct adapter * sc)2566 reset_adapter(struct adapter *sc)
2567 {
2568 if (vm_guest == 0)
2569 return (reset_adapter_with_pci_bus_reset(sc));
2570 else
2571 return (reset_adapter_with_pl_rst(sc));
2572 }
2573
2574 static void
reset_adapter_task(void * arg,int pending)2575 reset_adapter_task(void *arg, int pending)
2576 {
2577 struct adapter *sc = arg;
2578 const int flags = sc->flags;
2579 const int eflags = sc->error_flags;
2580 int rc;
2581
2582 if (pending > 1)
2583 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2584 rc = reset_adapter(sc);
2585 if (rc != 0) {
2586 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2587 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2588 rc, flags, sc->flags, eflags, sc->error_flags);
2589 }
2590 }
2591
2592 static int
cxgbe_probe(device_t dev)2593 cxgbe_probe(device_t dev)
2594 {
2595 struct port_info *pi = device_get_softc(dev);
2596
2597 device_set_descf(dev, "port %d", pi->port_id);
2598
2599 return (BUS_PROBE_DEFAULT);
2600 }
2601
2602 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2603 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2604 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2605 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2606 #define T4_CAP_ENABLE (T4_CAP)
2607
2608 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2609 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2610 {
2611 if_t ifp;
2612 struct sbuf *sb;
2613 struct sysctl_ctx_list *ctx = &vi->ctx;
2614 struct sysctl_oid_list *children;
2615 struct pfil_head_args pa;
2616 struct adapter *sc = vi->adapter;
2617
2618 sysctl_ctx_init(ctx);
2619 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2620 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2621 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2622 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2623 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2624 #ifdef DEV_NETMAP
2625 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2626 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2627 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2628 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2629 #endif
2630 #ifdef TCP_OFFLOAD
2631 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2632 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2633 #endif
2634 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2635 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2636 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2637 #endif
2638
2639 vi->xact_addr_filt = -1;
2640 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2641 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2642 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2643 vi->flags |= TX_USES_VM_WR;
2644
2645 /* Allocate an ifnet and set it up */
2646 ifp = if_alloc_dev(IFT_ETHER, dev);
2647 vi->ifp = ifp;
2648 if_setsoftc(ifp, vi);
2649
2650 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2651 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2652
2653 if_setinitfn(ifp, cxgbe_init);
2654 if_setioctlfn(ifp, cxgbe_ioctl);
2655 if_settransmitfn(ifp, cxgbe_transmit);
2656 if_setqflushfn(ifp, cxgbe_qflush);
2657 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2658 if_setgetcounterfn(ifp, vi_get_counter);
2659 else
2660 if_setgetcounterfn(ifp, cxgbe_get_counter);
2661 #if defined(KERN_TLS) || defined(RATELIMIT)
2662 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2663 #endif
2664 #ifdef RATELIMIT
2665 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2666 #endif
2667
2668 if_setcapabilities(ifp, T4_CAP);
2669 if_setcapenable(ifp, T4_CAP_ENABLE);
2670 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2671 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2672 if (chip_id(sc) >= CHELSIO_T6) {
2673 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2674 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2675 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2676 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2677 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2678 }
2679
2680 #ifdef TCP_OFFLOAD
2681 if (vi->nofldrxq != 0)
2682 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2683 #endif
2684 #ifdef RATELIMIT
2685 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2686 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2687 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2688 }
2689 #endif
2690
2691 if_sethwtsomax(ifp, IP_MAXPACKET);
2692 if (vi->flags & TX_USES_VM_WR)
2693 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2694 else
2695 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2696 #ifdef RATELIMIT
2697 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2698 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2699 #endif
2700 if_sethwtsomaxsegsize(ifp, 65536);
2701 #ifdef KERN_TLS
2702 if (is_ktls(sc)) {
2703 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2704 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2705 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2706 }
2707 #endif
2708
2709 ether_ifattach(ifp, vi->hw_addr);
2710 #ifdef DEV_NETMAP
2711 if (vi->nnmrxq != 0)
2712 cxgbe_nm_attach(vi);
2713 #endif
2714 sb = sbuf_new_auto();
2715 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2716 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2717 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2718 case IFCAP_TOE:
2719 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2720 break;
2721 case IFCAP_TOE | IFCAP_TXRTLMT:
2722 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2723 break;
2724 case IFCAP_TXRTLMT:
2725 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2726 break;
2727 }
2728 #endif
2729 #ifdef TCP_OFFLOAD
2730 if (if_getcapabilities(ifp) & IFCAP_TOE)
2731 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2732 #endif
2733 #ifdef DEV_NETMAP
2734 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2735 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2736 vi->nnmtxq, vi->nnmrxq);
2737 #endif
2738 sbuf_finish(sb);
2739 device_printf(dev, "%s\n", sbuf_data(sb));
2740 sbuf_delete(sb);
2741
2742 vi_sysctls(vi);
2743
2744 pa.pa_version = PFIL_VERSION;
2745 pa.pa_flags = PFIL_IN;
2746 pa.pa_type = PFIL_TYPE_ETHERNET;
2747 pa.pa_headname = if_name(ifp);
2748 vi->pfil = pfil_head_register(&pa);
2749 }
2750
2751 static int
cxgbe_attach(device_t dev)2752 cxgbe_attach(device_t dev)
2753 {
2754 struct port_info *pi = device_get_softc(dev);
2755 struct adapter *sc = pi->adapter;
2756 struct vi_info *vi;
2757 int i;
2758
2759 sysctl_ctx_init(&pi->ctx);
2760
2761 cxgbe_vi_attach(dev, &pi->vi[0]);
2762
2763 for_each_vi(pi, i, vi) {
2764 if (i == 0)
2765 continue;
2766 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2767 if (vi->dev == NULL) {
2768 device_printf(dev, "failed to add VI %d\n", i);
2769 continue;
2770 }
2771 device_set_softc(vi->dev, vi);
2772 }
2773
2774 cxgbe_sysctls(pi);
2775
2776 bus_attach_children(dev);
2777
2778 return (0);
2779 }
2780
2781 static void
cxgbe_vi_detach(struct vi_info * vi)2782 cxgbe_vi_detach(struct vi_info *vi)
2783 {
2784 if_t ifp = vi->ifp;
2785
2786 if (vi->pfil != NULL) {
2787 pfil_head_unregister(vi->pfil);
2788 vi->pfil = NULL;
2789 }
2790
2791 ether_ifdetach(ifp);
2792
2793 /* Let detach proceed even if these fail. */
2794 #ifdef DEV_NETMAP
2795 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2796 cxgbe_nm_detach(vi);
2797 #endif
2798 cxgbe_uninit_synchronized(vi);
2799 callout_drain(&vi->tick);
2800 mtx_destroy(&vi->tick_mtx);
2801 sysctl_ctx_free(&vi->ctx);
2802 vi_full_uninit(vi);
2803
2804 if_free(vi->ifp);
2805 vi->ifp = NULL;
2806 }
2807
2808 static int
cxgbe_detach(device_t dev)2809 cxgbe_detach(device_t dev)
2810 {
2811 struct port_info *pi = device_get_softc(dev);
2812 struct adapter *sc = pi->adapter;
2813 int rc;
2814
2815 /* Detach the extra VIs first. */
2816 rc = bus_generic_detach(dev);
2817 if (rc)
2818 return (rc);
2819 device_delete_children(dev);
2820
2821 sysctl_ctx_free(&pi->ctx);
2822 begin_vi_detach(sc, &pi->vi[0]);
2823 if (pi->flags & HAS_TRACEQ) {
2824 sc->traceq = -1; /* cloner should not create ifnet */
2825 t4_tracer_port_detach(sc);
2826 }
2827 cxgbe_vi_detach(&pi->vi[0]);
2828 ifmedia_removeall(&pi->media);
2829 end_vi_detach(sc, &pi->vi[0]);
2830
2831 return (0);
2832 }
2833
2834 static void
cxgbe_init(void * arg)2835 cxgbe_init(void *arg)
2836 {
2837 struct vi_info *vi = arg;
2838 struct adapter *sc = vi->adapter;
2839
2840 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2841 return;
2842 cxgbe_init_synchronized(vi);
2843 end_synchronized_op(sc, 0);
2844 }
2845
2846 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)2847 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2848 {
2849 int rc = 0, mtu, flags;
2850 struct vi_info *vi = if_getsoftc(ifp);
2851 struct port_info *pi = vi->pi;
2852 struct adapter *sc = pi->adapter;
2853 struct ifreq *ifr = (struct ifreq *)data;
2854 uint32_t mask;
2855
2856 switch (cmd) {
2857 case SIOCSIFMTU:
2858 mtu = ifr->ifr_mtu;
2859 if (mtu < ETHERMIN || mtu > MAX_MTU)
2860 return (EINVAL);
2861
2862 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2863 if (rc)
2864 return (rc);
2865 if_setmtu(ifp, mtu);
2866 if (vi->flags & VI_INIT_DONE) {
2867 t4_update_fl_bufsize(ifp);
2868 if (!hw_off_limits(sc) &&
2869 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2870 rc = update_mac_settings(ifp, XGMAC_MTU);
2871 }
2872 end_synchronized_op(sc, 0);
2873 break;
2874
2875 case SIOCSIFFLAGS:
2876 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2877 if (rc)
2878 return (rc);
2879
2880 if (hw_off_limits(sc)) {
2881 rc = ENXIO;
2882 goto fail;
2883 }
2884
2885 if (if_getflags(ifp) & IFF_UP) {
2886 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2887 flags = vi->if_flags;
2888 if ((if_getflags(ifp) ^ flags) &
2889 (IFF_PROMISC | IFF_ALLMULTI)) {
2890 rc = update_mac_settings(ifp,
2891 XGMAC_PROMISC | XGMAC_ALLMULTI);
2892 }
2893 } else {
2894 rc = cxgbe_init_synchronized(vi);
2895 }
2896 vi->if_flags = if_getflags(ifp);
2897 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2898 rc = cxgbe_uninit_synchronized(vi);
2899 }
2900 end_synchronized_op(sc, 0);
2901 break;
2902
2903 case SIOCADDMULTI:
2904 case SIOCDELMULTI:
2905 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2906 if (rc)
2907 return (rc);
2908 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2909 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2910 end_synchronized_op(sc, 0);
2911 break;
2912
2913 case SIOCSIFCAP:
2914 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2915 if (rc)
2916 return (rc);
2917
2918 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2919 if (mask & IFCAP_TXCSUM) {
2920 if_togglecapenable(ifp, IFCAP_TXCSUM);
2921 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2922
2923 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2924 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2925 mask &= ~IFCAP_TSO4;
2926 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2927 if_printf(ifp,
2928 "tso4 disabled due to -txcsum.\n");
2929 }
2930 }
2931 if (mask & IFCAP_TXCSUM_IPV6) {
2932 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2933 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2934
2935 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2936 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2937 mask &= ~IFCAP_TSO6;
2938 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2939 if_printf(ifp,
2940 "tso6 disabled due to -txcsum6.\n");
2941 }
2942 }
2943 if (mask & IFCAP_RXCSUM)
2944 if_togglecapenable(ifp, IFCAP_RXCSUM);
2945 if (mask & IFCAP_RXCSUM_IPV6)
2946 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2947
2948 /*
2949 * Note that we leave CSUM_TSO alone (it is always set). The
2950 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2951 * sending a TSO request our way, so it's sufficient to toggle
2952 * IFCAP_TSOx only.
2953 */
2954 if (mask & IFCAP_TSO4) {
2955 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2956 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2957 if_printf(ifp, "enable txcsum first.\n");
2958 rc = EAGAIN;
2959 goto fail;
2960 }
2961 if_togglecapenable(ifp, IFCAP_TSO4);
2962 }
2963 if (mask & IFCAP_TSO6) {
2964 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2965 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2966 if_printf(ifp, "enable txcsum6 first.\n");
2967 rc = EAGAIN;
2968 goto fail;
2969 }
2970 if_togglecapenable(ifp, IFCAP_TSO6);
2971 }
2972 if (mask & IFCAP_LRO) {
2973 #if defined(INET) || defined(INET6)
2974 int i;
2975 struct sge_rxq *rxq;
2976
2977 if_togglecapenable(ifp, IFCAP_LRO);
2978 for_each_rxq(vi, i, rxq) {
2979 if (if_getcapenable(ifp) & IFCAP_LRO)
2980 rxq->iq.flags |= IQ_LRO_ENABLED;
2981 else
2982 rxq->iq.flags &= ~IQ_LRO_ENABLED;
2983 }
2984 #endif
2985 }
2986 #ifdef TCP_OFFLOAD
2987 if (mask & IFCAP_TOE) {
2988 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2989
2990 rc = toe_capability(vi, enable);
2991 if (rc != 0)
2992 goto fail;
2993
2994 if_togglecapenable(ifp, mask);
2995 }
2996 #endif
2997 if (mask & IFCAP_VLAN_HWTAGGING) {
2998 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2999 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3000 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3001 }
3002 if (mask & IFCAP_VLAN_MTU) {
3003 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3004
3005 /* Need to find out how to disable auto-mtu-inflation */
3006 }
3007 if (mask & IFCAP_VLAN_HWTSO)
3008 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3009 if (mask & IFCAP_VLAN_HWCSUM)
3010 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3011 #ifdef RATELIMIT
3012 if (mask & IFCAP_TXRTLMT)
3013 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3014 #endif
3015 if (mask & IFCAP_HWRXTSTMP) {
3016 int i;
3017 struct sge_rxq *rxq;
3018
3019 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3020 for_each_rxq(vi, i, rxq) {
3021 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3022 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3023 else
3024 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3025 }
3026 }
3027 if (mask & IFCAP_MEXTPG)
3028 if_togglecapenable(ifp, IFCAP_MEXTPG);
3029
3030 #ifdef KERN_TLS
3031 if (mask & IFCAP_TXTLS) {
3032 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3033
3034 rc = ktls_capability(sc, enable);
3035 if (rc != 0)
3036 goto fail;
3037
3038 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3039 }
3040 #endif
3041 if (mask & IFCAP_VXLAN_HWCSUM) {
3042 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3043 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3044 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3045 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3046 }
3047 if (mask & IFCAP_VXLAN_HWTSO) {
3048 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3049 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3050 CSUM_INNER_IP_TSO);
3051 }
3052
3053 #ifdef VLAN_CAPABILITIES
3054 VLAN_CAPABILITIES(ifp);
3055 #endif
3056 fail:
3057 end_synchronized_op(sc, 0);
3058 break;
3059
3060 case SIOCSIFMEDIA:
3061 case SIOCGIFMEDIA:
3062 case SIOCGIFXMEDIA:
3063 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3064 break;
3065
3066 case SIOCGI2C: {
3067 struct ifi2creq i2c;
3068
3069 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3070 if (rc != 0)
3071 break;
3072 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3073 rc = EPERM;
3074 break;
3075 }
3076 if (i2c.len > sizeof(i2c.data)) {
3077 rc = EINVAL;
3078 break;
3079 }
3080 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3081 if (rc)
3082 return (rc);
3083 if (hw_off_limits(sc))
3084 rc = ENXIO;
3085 else
3086 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3087 i2c.offset, i2c.len, &i2c.data[0]);
3088 end_synchronized_op(sc, 0);
3089 if (rc == 0)
3090 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3091 break;
3092 }
3093
3094 default:
3095 rc = ether_ioctl(ifp, cmd, data);
3096 }
3097
3098 return (rc);
3099 }
3100
3101 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3102 cxgbe_transmit(if_t ifp, struct mbuf *m)
3103 {
3104 struct vi_info *vi = if_getsoftc(ifp);
3105 struct port_info *pi = vi->pi;
3106 struct adapter *sc;
3107 struct sge_txq *txq;
3108 void *items[1];
3109 int rc;
3110
3111 M_ASSERTPKTHDR(m);
3112 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3113 #if defined(KERN_TLS) || defined(RATELIMIT)
3114 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3115 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3116 #endif
3117
3118 if (__predict_false(pi->link_cfg.link_ok == false)) {
3119 m_freem(m);
3120 return (ENETDOWN);
3121 }
3122
3123 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3124 if (__predict_false(rc != 0)) {
3125 if (__predict_true(rc == EINPROGRESS)) {
3126 /* queued by parse_pkt */
3127 MPASS(m != NULL);
3128 return (0);
3129 }
3130
3131 MPASS(m == NULL); /* was freed already */
3132 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3133 return (rc);
3134 }
3135
3136 /* Select a txq. */
3137 sc = vi->adapter;
3138 txq = &sc->sge.txq[vi->first_txq];
3139 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3140 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3141 vi->rsrv_noflowq);
3142
3143 items[0] = m;
3144 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3145 if (__predict_false(rc != 0))
3146 m_freem(m);
3147
3148 return (rc);
3149 }
3150
3151 static void
cxgbe_qflush(if_t ifp)3152 cxgbe_qflush(if_t ifp)
3153 {
3154 struct vi_info *vi = if_getsoftc(ifp);
3155 struct sge_txq *txq;
3156 int i;
3157
3158 /* queues do not exist if !VI_INIT_DONE. */
3159 if (vi->flags & VI_INIT_DONE) {
3160 for_each_txq(vi, i, txq) {
3161 TXQ_LOCK(txq);
3162 txq->eq.flags |= EQ_QFLUSH;
3163 TXQ_UNLOCK(txq);
3164 while (!mp_ring_is_idle(txq->r)) {
3165 mp_ring_check_drainage(txq->r, 4096);
3166 pause("qflush", 1);
3167 }
3168 TXQ_LOCK(txq);
3169 txq->eq.flags &= ~EQ_QFLUSH;
3170 TXQ_UNLOCK(txq);
3171 }
3172 }
3173 if_qflush(ifp);
3174 }
3175
3176 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3177 vi_get_counter(if_t ifp, ift_counter c)
3178 {
3179 struct vi_info *vi = if_getsoftc(ifp);
3180 struct fw_vi_stats_vf *s = &vi->stats;
3181
3182 mtx_lock(&vi->tick_mtx);
3183 vi_refresh_stats(vi);
3184 mtx_unlock(&vi->tick_mtx);
3185
3186 switch (c) {
3187 case IFCOUNTER_IPACKETS:
3188 return (s->rx_bcast_frames + s->rx_mcast_frames +
3189 s->rx_ucast_frames);
3190 case IFCOUNTER_IERRORS:
3191 return (s->rx_err_frames);
3192 case IFCOUNTER_OPACKETS:
3193 return (s->tx_bcast_frames + s->tx_mcast_frames +
3194 s->tx_ucast_frames + s->tx_offload_frames);
3195 case IFCOUNTER_OERRORS:
3196 return (s->tx_drop_frames);
3197 case IFCOUNTER_IBYTES:
3198 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3199 s->rx_ucast_bytes);
3200 case IFCOUNTER_OBYTES:
3201 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3202 s->tx_ucast_bytes + s->tx_offload_bytes);
3203 case IFCOUNTER_IMCASTS:
3204 return (s->rx_mcast_frames);
3205 case IFCOUNTER_OMCASTS:
3206 return (s->tx_mcast_frames);
3207 case IFCOUNTER_OQDROPS: {
3208 uint64_t drops;
3209
3210 drops = 0;
3211 if (vi->flags & VI_INIT_DONE) {
3212 int i;
3213 struct sge_txq *txq;
3214
3215 for_each_txq(vi, i, txq)
3216 drops += counter_u64_fetch(txq->r->dropped);
3217 }
3218
3219 return (drops);
3220
3221 }
3222
3223 default:
3224 return (if_get_counter_default(ifp, c));
3225 }
3226 }
3227
3228 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3229 cxgbe_get_counter(if_t ifp, ift_counter c)
3230 {
3231 struct vi_info *vi = if_getsoftc(ifp);
3232 struct port_info *pi = vi->pi;
3233 struct port_stats *s = &pi->stats;
3234
3235 mtx_lock(&vi->tick_mtx);
3236 cxgbe_refresh_stats(vi);
3237 mtx_unlock(&vi->tick_mtx);
3238
3239 switch (c) {
3240 case IFCOUNTER_IPACKETS:
3241 return (s->rx_frames);
3242
3243 case IFCOUNTER_IERRORS:
3244 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3245 s->rx_fcs_err + s->rx_len_err);
3246
3247 case IFCOUNTER_OPACKETS:
3248 return (s->tx_frames);
3249
3250 case IFCOUNTER_OERRORS:
3251 return (s->tx_error_frames);
3252
3253 case IFCOUNTER_IBYTES:
3254 return (s->rx_octets);
3255
3256 case IFCOUNTER_OBYTES:
3257 return (s->tx_octets);
3258
3259 case IFCOUNTER_IMCASTS:
3260 return (s->rx_mcast_frames);
3261
3262 case IFCOUNTER_OMCASTS:
3263 return (s->tx_mcast_frames);
3264
3265 case IFCOUNTER_IQDROPS:
3266 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3267 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3268 s->rx_trunc3 + pi->tnl_cong_drops);
3269
3270 case IFCOUNTER_OQDROPS: {
3271 uint64_t drops;
3272
3273 drops = s->tx_drop;
3274 if (vi->flags & VI_INIT_DONE) {
3275 int i;
3276 struct sge_txq *txq;
3277
3278 for_each_txq(vi, i, txq)
3279 drops += counter_u64_fetch(txq->r->dropped);
3280 }
3281
3282 return (drops);
3283
3284 }
3285
3286 default:
3287 return (if_get_counter_default(ifp, c));
3288 }
3289 }
3290
3291 #if defined(KERN_TLS) || defined(RATELIMIT)
3292 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3293 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3294 struct m_snd_tag **pt)
3295 {
3296 int error;
3297
3298 switch (params->hdr.type) {
3299 #ifdef RATELIMIT
3300 case IF_SND_TAG_TYPE_RATE_LIMIT:
3301 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3302 break;
3303 #endif
3304 #ifdef KERN_TLS
3305 case IF_SND_TAG_TYPE_TLS:
3306 {
3307 struct vi_info *vi = if_getsoftc(ifp);
3308
3309 if (is_t6(vi->pi->adapter))
3310 error = t6_tls_tag_alloc(ifp, params, pt);
3311 else
3312 error = EOPNOTSUPP;
3313 break;
3314 }
3315 #endif
3316 default:
3317 error = EOPNOTSUPP;
3318 }
3319 return (error);
3320 }
3321 #endif
3322
3323 /*
3324 * The kernel picks a media from the list we had provided but we still validate
3325 * the requeste.
3326 */
3327 int
cxgbe_media_change(if_t ifp)3328 cxgbe_media_change(if_t ifp)
3329 {
3330 struct vi_info *vi = if_getsoftc(ifp);
3331 struct port_info *pi = vi->pi;
3332 struct ifmedia *ifm = &pi->media;
3333 struct link_config *lc = &pi->link_cfg;
3334 struct adapter *sc = pi->adapter;
3335 int rc;
3336
3337 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3338 if (rc != 0)
3339 return (rc);
3340 PORT_LOCK(pi);
3341 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3342 /* ifconfig .. media autoselect */
3343 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3344 rc = ENOTSUP; /* AN not supported by transceiver */
3345 goto done;
3346 }
3347 lc->requested_aneg = AUTONEG_ENABLE;
3348 lc->requested_speed = 0;
3349 lc->requested_fc |= PAUSE_AUTONEG;
3350 } else {
3351 lc->requested_aneg = AUTONEG_DISABLE;
3352 lc->requested_speed =
3353 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3354 lc->requested_fc = 0;
3355 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3356 lc->requested_fc |= PAUSE_RX;
3357 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3358 lc->requested_fc |= PAUSE_TX;
3359 }
3360 if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3361 fixup_link_config(pi);
3362 rc = apply_link_config(pi);
3363 }
3364 done:
3365 PORT_UNLOCK(pi);
3366 end_synchronized_op(sc, 0);
3367 return (rc);
3368 }
3369
3370 /*
3371 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3372 * given speed.
3373 */
3374 static int
port_mword(struct port_info * pi,uint32_t speed)3375 port_mword(struct port_info *pi, uint32_t speed)
3376 {
3377
3378 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3379 MPASS(powerof2(speed));
3380
3381 switch(pi->port_type) {
3382 case FW_PORT_TYPE_BT_SGMII:
3383 case FW_PORT_TYPE_BT_XFI:
3384 case FW_PORT_TYPE_BT_XAUI:
3385 /* BaseT */
3386 switch (speed) {
3387 case FW_PORT_CAP32_SPEED_100M:
3388 return (IFM_100_T);
3389 case FW_PORT_CAP32_SPEED_1G:
3390 return (IFM_1000_T);
3391 case FW_PORT_CAP32_SPEED_10G:
3392 return (IFM_10G_T);
3393 }
3394 break;
3395 case FW_PORT_TYPE_KX4:
3396 if (speed == FW_PORT_CAP32_SPEED_10G)
3397 return (IFM_10G_KX4);
3398 break;
3399 case FW_PORT_TYPE_CX4:
3400 if (speed == FW_PORT_CAP32_SPEED_10G)
3401 return (IFM_10G_CX4);
3402 break;
3403 case FW_PORT_TYPE_KX:
3404 if (speed == FW_PORT_CAP32_SPEED_1G)
3405 return (IFM_1000_KX);
3406 break;
3407 case FW_PORT_TYPE_KR:
3408 case FW_PORT_TYPE_BP_AP:
3409 case FW_PORT_TYPE_BP4_AP:
3410 case FW_PORT_TYPE_BP40_BA:
3411 case FW_PORT_TYPE_KR4_100G:
3412 case FW_PORT_TYPE_KR_SFP28:
3413 case FW_PORT_TYPE_KR_XLAUI:
3414 switch (speed) {
3415 case FW_PORT_CAP32_SPEED_1G:
3416 return (IFM_1000_KX);
3417 case FW_PORT_CAP32_SPEED_10G:
3418 return (IFM_10G_KR);
3419 case FW_PORT_CAP32_SPEED_25G:
3420 return (IFM_25G_KR);
3421 case FW_PORT_CAP32_SPEED_40G:
3422 return (IFM_40G_KR4);
3423 case FW_PORT_CAP32_SPEED_50G:
3424 return (IFM_50G_KR2);
3425 case FW_PORT_CAP32_SPEED_100G:
3426 return (IFM_100G_KR4);
3427 }
3428 break;
3429 case FW_PORT_TYPE_FIBER_XFI:
3430 case FW_PORT_TYPE_FIBER_XAUI:
3431 case FW_PORT_TYPE_SFP:
3432 case FW_PORT_TYPE_QSFP_10G:
3433 case FW_PORT_TYPE_QSA:
3434 case FW_PORT_TYPE_QSFP:
3435 case FW_PORT_TYPE_CR4_QSFP:
3436 case FW_PORT_TYPE_CR_QSFP:
3437 case FW_PORT_TYPE_CR2_QSFP:
3438 case FW_PORT_TYPE_SFP28:
3439 /* Pluggable transceiver */
3440 switch (pi->mod_type) {
3441 case FW_PORT_MOD_TYPE_LR:
3442 switch (speed) {
3443 case FW_PORT_CAP32_SPEED_1G:
3444 return (IFM_1000_LX);
3445 case FW_PORT_CAP32_SPEED_10G:
3446 return (IFM_10G_LR);
3447 case FW_PORT_CAP32_SPEED_25G:
3448 return (IFM_25G_LR);
3449 case FW_PORT_CAP32_SPEED_40G:
3450 return (IFM_40G_LR4);
3451 case FW_PORT_CAP32_SPEED_50G:
3452 return (IFM_50G_LR2);
3453 case FW_PORT_CAP32_SPEED_100G:
3454 return (IFM_100G_LR4);
3455 }
3456 break;
3457 case FW_PORT_MOD_TYPE_SR:
3458 switch (speed) {
3459 case FW_PORT_CAP32_SPEED_1G:
3460 return (IFM_1000_SX);
3461 case FW_PORT_CAP32_SPEED_10G:
3462 return (IFM_10G_SR);
3463 case FW_PORT_CAP32_SPEED_25G:
3464 return (IFM_25G_SR);
3465 case FW_PORT_CAP32_SPEED_40G:
3466 return (IFM_40G_SR4);
3467 case FW_PORT_CAP32_SPEED_50G:
3468 return (IFM_50G_SR2);
3469 case FW_PORT_CAP32_SPEED_100G:
3470 return (IFM_100G_SR4);
3471 }
3472 break;
3473 case FW_PORT_MOD_TYPE_ER:
3474 if (speed == FW_PORT_CAP32_SPEED_10G)
3475 return (IFM_10G_ER);
3476 break;
3477 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3478 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3479 switch (speed) {
3480 case FW_PORT_CAP32_SPEED_1G:
3481 return (IFM_1000_CX);
3482 case FW_PORT_CAP32_SPEED_10G:
3483 return (IFM_10G_TWINAX);
3484 case FW_PORT_CAP32_SPEED_25G:
3485 return (IFM_25G_CR);
3486 case FW_PORT_CAP32_SPEED_40G:
3487 return (IFM_40G_CR4);
3488 case FW_PORT_CAP32_SPEED_50G:
3489 return (IFM_50G_CR2);
3490 case FW_PORT_CAP32_SPEED_100G:
3491 return (IFM_100G_CR4);
3492 }
3493 break;
3494 case FW_PORT_MOD_TYPE_LRM:
3495 if (speed == FW_PORT_CAP32_SPEED_10G)
3496 return (IFM_10G_LRM);
3497 break;
3498 case FW_PORT_MOD_TYPE_NA:
3499 MPASS(0); /* Not pluggable? */
3500 /* fall throough */
3501 case FW_PORT_MOD_TYPE_ERROR:
3502 case FW_PORT_MOD_TYPE_UNKNOWN:
3503 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3504 break;
3505 case FW_PORT_MOD_TYPE_NONE:
3506 return (IFM_NONE);
3507 }
3508 break;
3509 case FW_PORT_TYPE_NONE:
3510 return (IFM_NONE);
3511 }
3512
3513 return (IFM_UNKNOWN);
3514 }
3515
3516 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3517 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3518 {
3519 struct vi_info *vi = if_getsoftc(ifp);
3520 struct port_info *pi = vi->pi;
3521 struct adapter *sc = pi->adapter;
3522 struct link_config *lc = &pi->link_cfg;
3523
3524 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3525 return;
3526 PORT_LOCK(pi);
3527
3528 if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3529 /*
3530 * If all the interfaces are administratively down the firmware
3531 * does not report transceiver changes. Refresh port info here
3532 * so that ifconfig displays accurate ifmedia at all times.
3533 * This is the only reason we have a synchronized op in this
3534 * function. Just PORT_LOCK would have been enough otherwise.
3535 */
3536 t4_update_port_info(pi);
3537 build_medialist(pi);
3538 }
3539
3540 /* ifm_status */
3541 ifmr->ifm_status = IFM_AVALID;
3542 if (lc->link_ok == false)
3543 goto done;
3544 ifmr->ifm_status |= IFM_ACTIVE;
3545
3546 /* ifm_active */
3547 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3548 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3549 if (lc->fc & PAUSE_RX)
3550 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3551 if (lc->fc & PAUSE_TX)
3552 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3553 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3554 done:
3555 PORT_UNLOCK(pi);
3556 end_synchronized_op(sc, 0);
3557 }
3558
3559 static int
vcxgbe_probe(device_t dev)3560 vcxgbe_probe(device_t dev)
3561 {
3562 struct vi_info *vi = device_get_softc(dev);
3563
3564 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3565 vi - vi->pi->vi);
3566
3567 return (BUS_PROBE_DEFAULT);
3568 }
3569
3570 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3571 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3572 {
3573 int func, index, rc;
3574 uint32_t param, val;
3575
3576 ASSERT_SYNCHRONIZED_OP(sc);
3577
3578 index = vi - pi->vi;
3579 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3580 KASSERT(index < nitems(vi_mac_funcs),
3581 ("%s: VI %s doesn't have a MAC func", __func__,
3582 device_get_nameunit(vi->dev)));
3583 func = vi_mac_funcs[index];
3584 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3585 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3586 if (rc < 0) {
3587 CH_ERR(vi, "failed to allocate virtual interface %d"
3588 "for port %d: %d\n", index, pi->port_id, -rc);
3589 return (-rc);
3590 }
3591 vi->viid = rc;
3592
3593 if (vi->rss_size == 1) {
3594 /*
3595 * This VI didn't get a slice of the RSS table. Reduce the
3596 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3597 * configuration file (nvi, rssnvi for this PF) if this is a
3598 * problem.
3599 */
3600 device_printf(vi->dev, "RSS table not available.\n");
3601 vi->rss_base = 0xffff;
3602
3603 return (0);
3604 }
3605
3606 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3607 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3608 V_FW_PARAMS_PARAM_YZ(vi->viid);
3609 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3610 if (rc)
3611 vi->rss_base = 0xffff;
3612 else {
3613 MPASS((val >> 16) == vi->rss_size);
3614 vi->rss_base = val & 0xffff;
3615 }
3616
3617 return (0);
3618 }
3619
3620 static int
vcxgbe_attach(device_t dev)3621 vcxgbe_attach(device_t dev)
3622 {
3623 struct vi_info *vi;
3624 struct port_info *pi;
3625 struct adapter *sc;
3626 int rc;
3627
3628 vi = device_get_softc(dev);
3629 pi = vi->pi;
3630 sc = pi->adapter;
3631
3632 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3633 if (rc)
3634 return (rc);
3635 rc = alloc_extra_vi(sc, pi, vi);
3636 end_synchronized_op(sc, 0);
3637 if (rc)
3638 return (rc);
3639
3640 cxgbe_vi_attach(dev, vi);
3641
3642 return (0);
3643 }
3644
3645 static int
vcxgbe_detach(device_t dev)3646 vcxgbe_detach(device_t dev)
3647 {
3648 struct vi_info *vi;
3649 struct adapter *sc;
3650
3651 vi = device_get_softc(dev);
3652 sc = vi->adapter;
3653
3654 begin_vi_detach(sc, vi);
3655 cxgbe_vi_detach(vi);
3656 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3657 end_vi_detach(sc, vi);
3658
3659 return (0);
3660 }
3661
3662 static struct callout fatal_callout;
3663 static struct taskqueue *reset_tq;
3664
3665 static void
delayed_panic(void * arg)3666 delayed_panic(void *arg)
3667 {
3668 struct adapter *sc = arg;
3669
3670 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3671 }
3672
3673 static void
fatal_error_task(void * arg,int pending)3674 fatal_error_task(void *arg, int pending)
3675 {
3676 struct adapter *sc = arg;
3677 int rc;
3678
3679 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3680 dump_cim_regs(sc);
3681 dump_cimla(sc);
3682 dump_devlog(sc);
3683 }
3684
3685 if (t4_reset_on_fatal_err) {
3686 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3687 rc = reset_adapter(sc);
3688 if (rc == 0 && t4_panic_on_fatal_err) {
3689 CH_ALERT(sc, "reset was successful, "
3690 "system will NOT panic.\n");
3691 return;
3692 }
3693 }
3694
3695 if (t4_panic_on_fatal_err) {
3696 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3697 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3698 }
3699 }
3700
3701 void
t4_fatal_err(struct adapter * sc,bool fw_error)3702 t4_fatal_err(struct adapter *sc, bool fw_error)
3703 {
3704 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3705
3706 stop_adapter(sc);
3707 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3708 return;
3709 if (fw_error) {
3710 /*
3711 * We are here because of a firmware error/timeout and not
3712 * because of a hardware interrupt. It is possible (although
3713 * not very likely) that an error interrupt was also raised but
3714 * this thread ran first and inhibited t4_intr_err. We walk the
3715 * main INT_CAUSE registers here to make sure we haven't missed
3716 * anything interesting.
3717 */
3718 t4_slow_intr_handler(sc, verbose);
3719 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3720 }
3721 t4_report_fw_error(sc);
3722 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3723 device_get_nameunit(sc->dev), fw_error);
3724 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3725 }
3726
3727 void
t4_add_adapter(struct adapter * sc)3728 t4_add_adapter(struct adapter *sc)
3729 {
3730 sx_xlock(&t4_list_lock);
3731 SLIST_INSERT_HEAD(&t4_list, sc, link);
3732 sx_xunlock(&t4_list_lock);
3733 }
3734
3735 int
t4_map_bars_0_and_4(struct adapter * sc)3736 t4_map_bars_0_and_4(struct adapter *sc)
3737 {
3738 sc->regs_rid = PCIR_BAR(0);
3739 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3740 &sc->regs_rid, RF_ACTIVE);
3741 if (sc->regs_res == NULL) {
3742 device_printf(sc->dev, "cannot map registers.\n");
3743 return (ENXIO);
3744 }
3745 sc->bt = rman_get_bustag(sc->regs_res);
3746 sc->bh = rman_get_bushandle(sc->regs_res);
3747 sc->mmio_len = rman_get_size(sc->regs_res);
3748 setbit(&sc->doorbells, DOORBELL_KDB);
3749
3750 sc->msix_rid = PCIR_BAR(4);
3751 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3752 &sc->msix_rid, RF_ACTIVE);
3753 if (sc->msix_res == NULL) {
3754 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3755 return (ENXIO);
3756 }
3757
3758 return (0);
3759 }
3760
3761 int
t4_map_bar_2(struct adapter * sc)3762 t4_map_bar_2(struct adapter *sc)
3763 {
3764
3765 /*
3766 * T4: only iWARP driver uses the userspace doorbells. There is no need
3767 * to map it if RDMA is disabled.
3768 */
3769 if (is_t4(sc) && sc->rdmacaps == 0)
3770 return (0);
3771
3772 sc->udbs_rid = PCIR_BAR(2);
3773 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3774 &sc->udbs_rid, RF_ACTIVE);
3775 if (sc->udbs_res == NULL) {
3776 device_printf(sc->dev, "cannot map doorbell BAR.\n");
3777 return (ENXIO);
3778 }
3779 sc->udbs_base = rman_get_virtual(sc->udbs_res);
3780
3781 if (chip_id(sc) >= CHELSIO_T5) {
3782 setbit(&sc->doorbells, DOORBELL_UDB);
3783 #if defined(__i386__) || defined(__amd64__)
3784 if (t5_write_combine) {
3785 int rc, mode;
3786
3787 /*
3788 * Enable write combining on BAR2. This is the
3789 * userspace doorbell BAR and is split into 128B
3790 * (UDBS_SEG_SIZE) doorbell regions, each associated
3791 * with an egress queue. The first 64B has the doorbell
3792 * and the second 64B can be used to submit a tx work
3793 * request with an implicit doorbell.
3794 */
3795
3796 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3797 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3798 if (rc == 0) {
3799 clrbit(&sc->doorbells, DOORBELL_UDB);
3800 setbit(&sc->doorbells, DOORBELL_WCWR);
3801 setbit(&sc->doorbells, DOORBELL_UDBWC);
3802 } else {
3803 device_printf(sc->dev,
3804 "couldn't enable write combining: %d\n",
3805 rc);
3806 }
3807
3808 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3809 t4_write_reg(sc, A_SGE_STAT_CFG,
3810 V_STATSOURCE_T5(7) | mode);
3811 }
3812 #endif
3813 }
3814 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3815
3816 return (0);
3817 }
3818
3819 int
t4_adj_doorbells(struct adapter * sc)3820 t4_adj_doorbells(struct adapter *sc)
3821 {
3822 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3823 sc->doorbells &= t4_doorbells_allowed;
3824 return (0);
3825 }
3826 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3827 sc->doorbells, t4_doorbells_allowed);
3828 return (EINVAL);
3829 }
3830
3831 struct memwin_init {
3832 uint32_t base;
3833 uint32_t aperture;
3834 };
3835
3836 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3837 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3838 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3839 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3840 };
3841
3842 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3843 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3844 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3845 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3846 };
3847
3848 static void
setup_memwin(struct adapter * sc)3849 setup_memwin(struct adapter *sc)
3850 {
3851 const struct memwin_init *mw_init;
3852 struct memwin *mw;
3853 int i;
3854 uint32_t bar0;
3855
3856 if (is_t4(sc)) {
3857 /*
3858 * Read low 32b of bar0 indirectly via the hardware backdoor
3859 * mechanism. Works from within PCI passthrough environments
3860 * too, where rman_get_start() can return a different value. We
3861 * need to program the T4 memory window decoders with the actual
3862 * addresses that will be coming across the PCIe link.
3863 */
3864 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3865 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3866
3867 mw_init = &t4_memwin[0];
3868 } else {
3869 /* T5+ use the relative offset inside the PCIe BAR */
3870 bar0 = 0;
3871
3872 mw_init = &t5_memwin[0];
3873 }
3874
3875 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3876 if (!rw_initialized(&mw->mw_lock)) {
3877 rw_init(&mw->mw_lock, "memory window access");
3878 mw->mw_base = mw_init->base;
3879 mw->mw_aperture = mw_init->aperture;
3880 mw->mw_curpos = 0;
3881 }
3882 t4_write_reg(sc,
3883 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3884 (mw->mw_base + bar0) | V_BIR(0) |
3885 V_WINDOW(ilog2(mw->mw_aperture) - 10));
3886 rw_wlock(&mw->mw_lock);
3887 position_memwin(sc, i, mw->mw_curpos);
3888 rw_wunlock(&mw->mw_lock);
3889 }
3890
3891 /* flush */
3892 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3893 }
3894
3895 /*
3896 * Positions the memory window at the given address in the card's address space.
3897 * There are some alignment requirements and the actual position may be at an
3898 * address prior to the requested address. mw->mw_curpos always has the actual
3899 * position of the window.
3900 */
3901 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)3902 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3903 {
3904 struct memwin *mw;
3905 uint32_t pf;
3906 uint32_t reg;
3907
3908 MPASS(idx >= 0 && idx < NUM_MEMWIN);
3909 mw = &sc->memwin[idx];
3910 rw_assert(&mw->mw_lock, RA_WLOCKED);
3911
3912 if (is_t4(sc)) {
3913 pf = 0;
3914 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
3915 } else {
3916 pf = V_PFNUM(sc->pf);
3917 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
3918 }
3919 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3920 t4_write_reg(sc, reg, mw->mw_curpos | pf);
3921 t4_read_reg(sc, reg); /* flush */
3922 }
3923
3924 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)3925 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3926 int len, int rw)
3927 {
3928 struct memwin *mw;
3929 uint32_t mw_end, v;
3930
3931 MPASS(idx >= 0 && idx < NUM_MEMWIN);
3932
3933 /* Memory can only be accessed in naturally aligned 4 byte units */
3934 if (addr & 3 || len & 3 || len <= 0)
3935 return (EINVAL);
3936
3937 mw = &sc->memwin[idx];
3938 while (len > 0) {
3939 rw_rlock(&mw->mw_lock);
3940 mw_end = mw->mw_curpos + mw->mw_aperture;
3941 if (addr >= mw_end || addr < mw->mw_curpos) {
3942 /* Will need to reposition the window */
3943 if (!rw_try_upgrade(&mw->mw_lock)) {
3944 rw_runlock(&mw->mw_lock);
3945 rw_wlock(&mw->mw_lock);
3946 }
3947 rw_assert(&mw->mw_lock, RA_WLOCKED);
3948 position_memwin(sc, idx, addr);
3949 rw_downgrade(&mw->mw_lock);
3950 mw_end = mw->mw_curpos + mw->mw_aperture;
3951 }
3952 rw_assert(&mw->mw_lock, RA_RLOCKED);
3953 while (addr < mw_end && len > 0) {
3954 if (rw == 0) {
3955 v = t4_read_reg(sc, mw->mw_base + addr -
3956 mw->mw_curpos);
3957 *val++ = le32toh(v);
3958 } else {
3959 v = *val++;
3960 t4_write_reg(sc, mw->mw_base + addr -
3961 mw->mw_curpos, htole32(v));
3962 }
3963 addr += 4;
3964 len -= 4;
3965 }
3966 rw_runlock(&mw->mw_lock);
3967 }
3968
3969 return (0);
3970 }
3971
3972 CTASSERT(M_TID_COOKIE == M_COOKIE);
3973 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3974
3975 static void
t4_init_atid_table(struct adapter * sc)3976 t4_init_atid_table(struct adapter *sc)
3977 {
3978 struct tid_info *t;
3979 int i;
3980
3981 t = &sc->tids;
3982 if (t->natids == 0)
3983 return;
3984
3985 MPASS(t->atid_tab == NULL);
3986
3987 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3988 M_ZERO | M_WAITOK);
3989 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3990 t->afree = t->atid_tab;
3991 t->atids_in_use = 0;
3992 t->atid_alloc_stopped = false;
3993 for (i = 1; i < t->natids; i++)
3994 t->atid_tab[i - 1].next = &t->atid_tab[i];
3995 t->atid_tab[t->natids - 1].next = NULL;
3996 }
3997
3998 static void
t4_free_atid_table(struct adapter * sc)3999 t4_free_atid_table(struct adapter *sc)
4000 {
4001 struct tid_info *t;
4002
4003 t = &sc->tids;
4004
4005 KASSERT(t->atids_in_use == 0,
4006 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4007
4008 if (mtx_initialized(&t->atid_lock))
4009 mtx_destroy(&t->atid_lock);
4010 free(t->atid_tab, M_CXGBE);
4011 t->atid_tab = NULL;
4012 }
4013
4014 static void
stop_atid_allocator(struct adapter * sc)4015 stop_atid_allocator(struct adapter *sc)
4016 {
4017 struct tid_info *t = &sc->tids;
4018
4019 mtx_lock(&t->atid_lock);
4020 t->atid_alloc_stopped = true;
4021 mtx_unlock(&t->atid_lock);
4022 }
4023
4024 static void
restart_atid_allocator(struct adapter * sc)4025 restart_atid_allocator(struct adapter *sc)
4026 {
4027 struct tid_info *t = &sc->tids;
4028
4029 mtx_lock(&t->atid_lock);
4030 KASSERT(t->atids_in_use == 0,
4031 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4032 t->atid_alloc_stopped = false;
4033 mtx_unlock(&t->atid_lock);
4034 }
4035
4036 int
alloc_atid(struct adapter * sc,void * ctx)4037 alloc_atid(struct adapter *sc, void *ctx)
4038 {
4039 struct tid_info *t = &sc->tids;
4040 int atid = -1;
4041
4042 mtx_lock(&t->atid_lock);
4043 if (t->afree && !t->atid_alloc_stopped) {
4044 union aopen_entry *p = t->afree;
4045
4046 atid = p - t->atid_tab;
4047 MPASS(atid <= M_TID_TID);
4048 t->afree = p->next;
4049 p->data = ctx;
4050 t->atids_in_use++;
4051 }
4052 mtx_unlock(&t->atid_lock);
4053 return (atid);
4054 }
4055
4056 void *
lookup_atid(struct adapter * sc,int atid)4057 lookup_atid(struct adapter *sc, int atid)
4058 {
4059 struct tid_info *t = &sc->tids;
4060
4061 return (t->atid_tab[atid].data);
4062 }
4063
4064 void
free_atid(struct adapter * sc,int atid)4065 free_atid(struct adapter *sc, int atid)
4066 {
4067 struct tid_info *t = &sc->tids;
4068 union aopen_entry *p = &t->atid_tab[atid];
4069
4070 mtx_lock(&t->atid_lock);
4071 p->next = t->afree;
4072 t->afree = p;
4073 t->atids_in_use--;
4074 mtx_unlock(&t->atid_lock);
4075 }
4076
4077 static void
queue_tid_release(struct adapter * sc,int tid)4078 queue_tid_release(struct adapter *sc, int tid)
4079 {
4080
4081 CXGBE_UNIMPLEMENTED("deferred tid release");
4082 }
4083
4084 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4085 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4086 {
4087 struct wrqe *wr;
4088 struct cpl_tid_release *req;
4089
4090 wr = alloc_wrqe(sizeof(*req), ctrlq);
4091 if (wr == NULL) {
4092 queue_tid_release(sc, tid); /* defer */
4093 return;
4094 }
4095 req = wrtod(wr);
4096
4097 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4098
4099 t4_wrq_tx(sc, wr);
4100 }
4101
4102 static int
t4_range_cmp(const void * a,const void * b)4103 t4_range_cmp(const void *a, const void *b)
4104 {
4105 return ((const struct t4_range *)a)->start -
4106 ((const struct t4_range *)b)->start;
4107 }
4108
4109 /*
4110 * Verify that the memory range specified by the addr/len pair is valid within
4111 * the card's address space.
4112 */
4113 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4114 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4115 {
4116 struct t4_range mem_ranges[4], *r, *next;
4117 uint32_t em, addr_len;
4118 int i, n, remaining;
4119
4120 /* Memory can only be accessed in naturally aligned 4 byte units */
4121 if (addr & 3 || len & 3 || len == 0)
4122 return (EINVAL);
4123
4124 /* Enabled memories */
4125 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4126
4127 r = &mem_ranges[0];
4128 n = 0;
4129 bzero(r, sizeof(mem_ranges));
4130 if (em & F_EDRAM0_ENABLE) {
4131 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4132 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4133 if (r->size > 0) {
4134 r->start = G_EDRAM0_BASE(addr_len) << 20;
4135 if (addr >= r->start &&
4136 addr + len <= r->start + r->size)
4137 return (0);
4138 r++;
4139 n++;
4140 }
4141 }
4142 if (em & F_EDRAM1_ENABLE) {
4143 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4144 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4145 if (r->size > 0) {
4146 r->start = G_EDRAM1_BASE(addr_len) << 20;
4147 if (addr >= r->start &&
4148 addr + len <= r->start + r->size)
4149 return (0);
4150 r++;
4151 n++;
4152 }
4153 }
4154 if (em & F_EXT_MEM_ENABLE) {
4155 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4156 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4157 if (r->size > 0) {
4158 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4159 if (addr >= r->start &&
4160 addr + len <= r->start + r->size)
4161 return (0);
4162 r++;
4163 n++;
4164 }
4165 }
4166 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4167 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4168 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4169 if (r->size > 0) {
4170 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4171 if (addr >= r->start &&
4172 addr + len <= r->start + r->size)
4173 return (0);
4174 r++;
4175 n++;
4176 }
4177 }
4178 MPASS(n <= nitems(mem_ranges));
4179
4180 if (n > 1) {
4181 /* Sort and merge the ranges. */
4182 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4183
4184 /* Start from index 0 and examine the next n - 1 entries. */
4185 r = &mem_ranges[0];
4186 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4187
4188 MPASS(r->size > 0); /* r is a valid entry. */
4189 next = r + 1;
4190 MPASS(next->size > 0); /* and so is the next one. */
4191
4192 while (r->start + r->size >= next->start) {
4193 /* Merge the next one into the current entry. */
4194 r->size = max(r->start + r->size,
4195 next->start + next->size) - r->start;
4196 n--; /* One fewer entry in total. */
4197 if (--remaining == 0)
4198 goto done; /* short circuit */
4199 next++;
4200 }
4201 if (next != r + 1) {
4202 /*
4203 * Some entries were merged into r and next
4204 * points to the first valid entry that couldn't
4205 * be merged.
4206 */
4207 MPASS(next->size > 0); /* must be valid */
4208 memcpy(r + 1, next, remaining * sizeof(*r));
4209 #ifdef INVARIANTS
4210 /*
4211 * This so that the foo->size assertion in the
4212 * next iteration of the loop do the right
4213 * thing for entries that were pulled up and are
4214 * no longer valid.
4215 */
4216 MPASS(n < nitems(mem_ranges));
4217 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4218 sizeof(struct t4_range));
4219 #endif
4220 }
4221 }
4222 done:
4223 /* Done merging the ranges. */
4224 MPASS(n > 0);
4225 r = &mem_ranges[0];
4226 for (i = 0; i < n; i++, r++) {
4227 if (addr >= r->start &&
4228 addr + len <= r->start + r->size)
4229 return (0);
4230 }
4231 }
4232
4233 return (EFAULT);
4234 }
4235
4236 static int
fwmtype_to_hwmtype(int mtype)4237 fwmtype_to_hwmtype(int mtype)
4238 {
4239
4240 switch (mtype) {
4241 case FW_MEMTYPE_EDC0:
4242 return (MEM_EDC0);
4243 case FW_MEMTYPE_EDC1:
4244 return (MEM_EDC1);
4245 case FW_MEMTYPE_EXTMEM:
4246 return (MEM_MC0);
4247 case FW_MEMTYPE_EXTMEM1:
4248 return (MEM_MC1);
4249 default:
4250 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4251 }
4252 }
4253
4254 /*
4255 * Verify that the memory range specified by the memtype/offset/len pair is
4256 * valid and lies entirely within the memtype specified. The global address of
4257 * the start of the range is returned in addr.
4258 */
4259 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4260 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4261 uint32_t *addr)
4262 {
4263 uint32_t em, addr_len, maddr;
4264
4265 /* Memory can only be accessed in naturally aligned 4 byte units */
4266 if (off & 3 || len & 3 || len == 0)
4267 return (EINVAL);
4268
4269 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4270 switch (fwmtype_to_hwmtype(mtype)) {
4271 case MEM_EDC0:
4272 if (!(em & F_EDRAM0_ENABLE))
4273 return (EINVAL);
4274 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4275 maddr = G_EDRAM0_BASE(addr_len) << 20;
4276 break;
4277 case MEM_EDC1:
4278 if (!(em & F_EDRAM1_ENABLE))
4279 return (EINVAL);
4280 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4281 maddr = G_EDRAM1_BASE(addr_len) << 20;
4282 break;
4283 case MEM_MC:
4284 if (!(em & F_EXT_MEM_ENABLE))
4285 return (EINVAL);
4286 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4287 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4288 break;
4289 case MEM_MC1:
4290 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4291 return (EINVAL);
4292 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4293 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4294 break;
4295 default:
4296 return (EINVAL);
4297 }
4298
4299 *addr = maddr + off; /* global address */
4300 return (validate_mem_range(sc, *addr, len));
4301 }
4302
4303 static int
fixup_devlog_params(struct adapter * sc)4304 fixup_devlog_params(struct adapter *sc)
4305 {
4306 struct devlog_params *dparams = &sc->params.devlog;
4307 int rc;
4308
4309 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4310 dparams->size, &dparams->addr);
4311
4312 return (rc);
4313 }
4314
4315 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4316 update_nirq(struct intrs_and_queues *iaq, int nports)
4317 {
4318
4319 iaq->nirq = T4_EXTRA_INTR;
4320 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4321 iaq->nirq += nports * iaq->nofldrxq;
4322 iaq->nirq += nports * (iaq->num_vis - 1) *
4323 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4324 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4325 }
4326
4327 /*
4328 * Adjust requirements to fit the number of interrupts available.
4329 */
4330 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4331 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4332 int navail)
4333 {
4334 int old_nirq;
4335 const int nports = sc->params.nports;
4336
4337 MPASS(nports > 0);
4338 MPASS(navail > 0);
4339
4340 bzero(iaq, sizeof(*iaq));
4341 iaq->intr_type = itype;
4342 iaq->num_vis = t4_num_vis;
4343 iaq->ntxq = t4_ntxq;
4344 iaq->ntxq_vi = t4_ntxq_vi;
4345 iaq->nrxq = t4_nrxq;
4346 iaq->nrxq_vi = t4_nrxq_vi;
4347 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4348 if (is_offload(sc) || is_ethoffload(sc)) {
4349 iaq->nofldtxq = t4_nofldtxq;
4350 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4351 }
4352 #endif
4353 #ifdef TCP_OFFLOAD
4354 if (is_offload(sc)) {
4355 iaq->nofldrxq = t4_nofldrxq;
4356 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4357 }
4358 #endif
4359 #ifdef DEV_NETMAP
4360 if (t4_native_netmap & NN_MAIN_VI) {
4361 iaq->nnmtxq = t4_nnmtxq;
4362 iaq->nnmrxq = t4_nnmrxq;
4363 }
4364 if (t4_native_netmap & NN_EXTRA_VI) {
4365 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4366 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4367 }
4368 #endif
4369
4370 update_nirq(iaq, nports);
4371 if (iaq->nirq <= navail &&
4372 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4373 /*
4374 * This is the normal case -- there are enough interrupts for
4375 * everything.
4376 */
4377 goto done;
4378 }
4379
4380 /*
4381 * If extra VIs have been configured try reducing their count and see if
4382 * that works.
4383 */
4384 while (iaq->num_vis > 1) {
4385 iaq->num_vis--;
4386 update_nirq(iaq, nports);
4387 if (iaq->nirq <= navail &&
4388 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4389 device_printf(sc->dev, "virtual interfaces per port "
4390 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4391 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4392 "itype %d, navail %u, nirq %d.\n",
4393 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4394 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4395 itype, navail, iaq->nirq);
4396 goto done;
4397 }
4398 }
4399
4400 /*
4401 * Extra VIs will not be created. Log a message if they were requested.
4402 */
4403 MPASS(iaq->num_vis == 1);
4404 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4405 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4406 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4407 if (iaq->num_vis != t4_num_vis) {
4408 device_printf(sc->dev, "extra virtual interfaces disabled. "
4409 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4410 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4411 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4412 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4413 }
4414
4415 /*
4416 * Keep reducing the number of NIC rx queues to the next lower power of
4417 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4418 * if that works.
4419 */
4420 do {
4421 if (iaq->nrxq > 1) {
4422 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4423 if (iaq->nnmrxq > iaq->nrxq)
4424 iaq->nnmrxq = iaq->nrxq;
4425 }
4426 if (iaq->nofldrxq > 1)
4427 iaq->nofldrxq >>= 1;
4428
4429 old_nirq = iaq->nirq;
4430 update_nirq(iaq, nports);
4431 if (iaq->nirq <= navail &&
4432 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4433 device_printf(sc->dev, "running with reduced number of "
4434 "rx queues because of shortage of interrupts. "
4435 "nrxq=%u, nofldrxq=%u. "
4436 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4437 iaq->nofldrxq, itype, navail, iaq->nirq);
4438 goto done;
4439 }
4440 } while (old_nirq != iaq->nirq);
4441
4442 /* One interrupt for everything. Ugh. */
4443 device_printf(sc->dev, "running with minimal number of queues. "
4444 "itype %d, navail %u.\n", itype, navail);
4445 iaq->nirq = 1;
4446 iaq->nrxq = 1;
4447 iaq->ntxq = 1;
4448 if (iaq->nofldrxq > 0) {
4449 iaq->nofldrxq = 1;
4450 iaq->nofldtxq = 1;
4451 }
4452 iaq->nnmtxq = 0;
4453 iaq->nnmrxq = 0;
4454 done:
4455 MPASS(iaq->num_vis > 0);
4456 if (iaq->num_vis > 1) {
4457 MPASS(iaq->nrxq_vi > 0);
4458 MPASS(iaq->ntxq_vi > 0);
4459 }
4460 MPASS(iaq->nirq > 0);
4461 MPASS(iaq->nrxq > 0);
4462 MPASS(iaq->ntxq > 0);
4463 if (itype == INTR_MSI) {
4464 MPASS(powerof2(iaq->nirq));
4465 }
4466 }
4467
4468 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4469 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4470 {
4471 int rc, itype, navail, nalloc;
4472
4473 for (itype = INTR_MSIX; itype; itype >>= 1) {
4474
4475 if ((itype & t4_intr_types) == 0)
4476 continue; /* not allowed */
4477
4478 if (itype == INTR_MSIX)
4479 navail = pci_msix_count(sc->dev);
4480 else if (itype == INTR_MSI)
4481 navail = pci_msi_count(sc->dev);
4482 else
4483 navail = 1;
4484 restart:
4485 if (navail == 0)
4486 continue;
4487
4488 calculate_iaq(sc, iaq, itype, navail);
4489 nalloc = iaq->nirq;
4490 rc = 0;
4491 if (itype == INTR_MSIX)
4492 rc = pci_alloc_msix(sc->dev, &nalloc);
4493 else if (itype == INTR_MSI)
4494 rc = pci_alloc_msi(sc->dev, &nalloc);
4495
4496 if (rc == 0 && nalloc > 0) {
4497 if (nalloc == iaq->nirq)
4498 return (0);
4499
4500 /*
4501 * Didn't get the number requested. Use whatever number
4502 * the kernel is willing to allocate.
4503 */
4504 device_printf(sc->dev, "fewer vectors than requested, "
4505 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4506 itype, iaq->nirq, nalloc);
4507 pci_release_msi(sc->dev);
4508 navail = nalloc;
4509 goto restart;
4510 }
4511
4512 device_printf(sc->dev,
4513 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4514 itype, rc, iaq->nirq, nalloc);
4515 }
4516
4517 device_printf(sc->dev,
4518 "failed to find a usable interrupt type. "
4519 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4520 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4521
4522 return (ENXIO);
4523 }
4524
4525 #define FW_VERSION(chip) ( \
4526 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4527 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4528 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4529 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4530 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4531
4532 /* Just enough of fw_hdr to cover all version info. */
4533 struct fw_h {
4534 __u8 ver;
4535 __u8 chip;
4536 __be16 len512;
4537 __be32 fw_ver;
4538 __be32 tp_microcode_ver;
4539 __u8 intfver_nic;
4540 __u8 intfver_vnic;
4541 __u8 intfver_ofld;
4542 __u8 intfver_ri;
4543 __u8 intfver_iscsipdu;
4544 __u8 intfver_iscsi;
4545 __u8 intfver_fcoepdu;
4546 __u8 intfver_fcoe;
4547 };
4548 /* Spot check a couple of fields. */
4549 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4550 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4551 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4552
4553 struct fw_info {
4554 uint8_t chip;
4555 char *kld_name;
4556 char *fw_mod_name;
4557 struct fw_h fw_h;
4558 } fw_info[] = {
4559 {
4560 .chip = CHELSIO_T4,
4561 .kld_name = "t4fw_cfg",
4562 .fw_mod_name = "t4fw",
4563 .fw_h = {
4564 .chip = FW_HDR_CHIP_T4,
4565 .fw_ver = htobe32(FW_VERSION(T4)),
4566 .intfver_nic = FW_INTFVER(T4, NIC),
4567 .intfver_vnic = FW_INTFVER(T4, VNIC),
4568 .intfver_ofld = FW_INTFVER(T4, OFLD),
4569 .intfver_ri = FW_INTFVER(T4, RI),
4570 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4571 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4572 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4573 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4574 },
4575 }, {
4576 .chip = CHELSIO_T5,
4577 .kld_name = "t5fw_cfg",
4578 .fw_mod_name = "t5fw",
4579 .fw_h = {
4580 .chip = FW_HDR_CHIP_T5,
4581 .fw_ver = htobe32(FW_VERSION(T5)),
4582 .intfver_nic = FW_INTFVER(T5, NIC),
4583 .intfver_vnic = FW_INTFVER(T5, VNIC),
4584 .intfver_ofld = FW_INTFVER(T5, OFLD),
4585 .intfver_ri = FW_INTFVER(T5, RI),
4586 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4587 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4588 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4589 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4590 },
4591 }, {
4592 .chip = CHELSIO_T6,
4593 .kld_name = "t6fw_cfg",
4594 .fw_mod_name = "t6fw",
4595 .fw_h = {
4596 .chip = FW_HDR_CHIP_T6,
4597 .fw_ver = htobe32(FW_VERSION(T6)),
4598 .intfver_nic = FW_INTFVER(T6, NIC),
4599 .intfver_vnic = FW_INTFVER(T6, VNIC),
4600 .intfver_ofld = FW_INTFVER(T6, OFLD),
4601 .intfver_ri = FW_INTFVER(T6, RI),
4602 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4603 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4604 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4605 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4606 },
4607 }
4608 };
4609
4610 static struct fw_info *
find_fw_info(int chip)4611 find_fw_info(int chip)
4612 {
4613 int i;
4614
4615 for (i = 0; i < nitems(fw_info); i++) {
4616 if (fw_info[i].chip == chip)
4617 return (&fw_info[i]);
4618 }
4619 return (NULL);
4620 }
4621
4622 /*
4623 * Is the given firmware API compatible with the one the driver was compiled
4624 * with?
4625 */
4626 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4627 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4628 {
4629
4630 /* short circuit if it's the exact same firmware version */
4631 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4632 return (1);
4633
4634 /*
4635 * XXX: Is this too conservative? Perhaps I should limit this to the
4636 * features that are supported in the driver.
4637 */
4638 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4639 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4640 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4641 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4642 return (1);
4643 #undef SAME_INTF
4644
4645 return (0);
4646 }
4647
4648 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4649 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4650 const struct firmware **fw)
4651 {
4652 struct fw_info *fw_info;
4653
4654 *dcfg = NULL;
4655 if (fw != NULL)
4656 *fw = NULL;
4657
4658 fw_info = find_fw_info(chip_id(sc));
4659 if (fw_info == NULL) {
4660 device_printf(sc->dev,
4661 "unable to look up firmware information for chip %d.\n",
4662 chip_id(sc));
4663 return (EINVAL);
4664 }
4665
4666 *dcfg = firmware_get(fw_info->kld_name);
4667 if (*dcfg != NULL) {
4668 if (fw != NULL)
4669 *fw = firmware_get(fw_info->fw_mod_name);
4670 return (0);
4671 }
4672
4673 return (ENOENT);
4674 }
4675
4676 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4677 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4678 const struct firmware *fw)
4679 {
4680
4681 if (fw != NULL)
4682 firmware_put(fw, FIRMWARE_UNLOAD);
4683 if (dcfg != NULL)
4684 firmware_put(dcfg, FIRMWARE_UNLOAD);
4685 }
4686
4687 /*
4688 * Return values:
4689 * 0 means no firmware install attempted.
4690 * ERESTART means a firmware install was attempted and was successful.
4691 * +ve errno means a firmware install was attempted but failed.
4692 */
4693 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4694 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4695 const struct fw_h *drv_fw, const char *reason, int *already)
4696 {
4697 const struct firmware *cfg, *fw;
4698 const uint32_t c = be32toh(card_fw->fw_ver);
4699 uint32_t d, k;
4700 int rc, fw_install;
4701 struct fw_h bundled_fw;
4702 bool load_attempted;
4703
4704 cfg = fw = NULL;
4705 load_attempted = false;
4706 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4707
4708 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4709 if (t4_fw_install < 0) {
4710 rc = load_fw_module(sc, &cfg, &fw);
4711 if (rc != 0 || fw == NULL) {
4712 device_printf(sc->dev,
4713 "failed to load firmware module: %d. cfg %p, fw %p;"
4714 " will use compiled-in firmware version for"
4715 "hw.cxgbe.fw_install checks.\n",
4716 rc, cfg, fw);
4717 } else {
4718 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4719 }
4720 load_attempted = true;
4721 }
4722 d = be32toh(bundled_fw.fw_ver);
4723
4724 if (reason != NULL)
4725 goto install;
4726
4727 if ((sc->flags & FW_OK) == 0) {
4728
4729 if (c == 0xffffffff) {
4730 reason = "missing";
4731 goto install;
4732 }
4733
4734 rc = 0;
4735 goto done;
4736 }
4737
4738 if (!fw_compatible(card_fw, &bundled_fw)) {
4739 reason = "incompatible or unusable";
4740 goto install;
4741 }
4742
4743 if (d > c) {
4744 reason = "older than the version bundled with this driver";
4745 goto install;
4746 }
4747
4748 if (fw_install == 2 && d != c) {
4749 reason = "different than the version bundled with this driver";
4750 goto install;
4751 }
4752
4753 /* No reason to do anything to the firmware already on the card. */
4754 rc = 0;
4755 goto done;
4756
4757 install:
4758 rc = 0;
4759 if ((*already)++)
4760 goto done;
4761
4762 if (fw_install == 0) {
4763 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4764 "but the driver is prohibited from installing a firmware "
4765 "on the card.\n",
4766 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4767 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4768
4769 goto done;
4770 }
4771
4772 /*
4773 * We'll attempt to install a firmware. Load the module first (if it
4774 * hasn't been loaded already).
4775 */
4776 if (!load_attempted) {
4777 rc = load_fw_module(sc, &cfg, &fw);
4778 if (rc != 0 || fw == NULL) {
4779 device_printf(sc->dev,
4780 "failed to load firmware module: %d. cfg %p, fw %p\n",
4781 rc, cfg, fw);
4782 /* carry on */
4783 }
4784 }
4785 if (fw == NULL) {
4786 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4787 "but the driver cannot take corrective action because it "
4788 "is unable to load the firmware module.\n",
4789 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4790 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4791 rc = sc->flags & FW_OK ? 0 : ENOENT;
4792 goto done;
4793 }
4794 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4795 if (k != d) {
4796 MPASS(t4_fw_install > 0);
4797 device_printf(sc->dev,
4798 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4799 "expecting (%u.%u.%u.%u) and will not be used.\n",
4800 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4801 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4802 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4803 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4804 rc = sc->flags & FW_OK ? 0 : EINVAL;
4805 goto done;
4806 }
4807
4808 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4809 "installing firmware %u.%u.%u.%u on card.\n",
4810 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4811 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4812 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4813 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4814
4815 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4816 if (rc != 0) {
4817 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4818 } else {
4819 /* Installed successfully, update the cached header too. */
4820 rc = ERESTART;
4821 memcpy(card_fw, fw->data, sizeof(*card_fw));
4822 }
4823 done:
4824 unload_fw_module(sc, cfg, fw);
4825
4826 return (rc);
4827 }
4828
4829 /*
4830 * Establish contact with the firmware and attempt to become the master driver.
4831 *
4832 * A firmware will be installed to the card if needed (if the driver is allowed
4833 * to do so).
4834 */
4835 static int
contact_firmware(struct adapter * sc)4836 contact_firmware(struct adapter *sc)
4837 {
4838 int rc, already = 0;
4839 enum dev_state state;
4840 struct fw_info *fw_info;
4841 struct fw_hdr *card_fw; /* fw on the card */
4842 const struct fw_h *drv_fw;
4843
4844 fw_info = find_fw_info(chip_id(sc));
4845 if (fw_info == NULL) {
4846 device_printf(sc->dev,
4847 "unable to look up firmware information for chip %d.\n",
4848 chip_id(sc));
4849 return (EINVAL);
4850 }
4851 drv_fw = &fw_info->fw_h;
4852
4853 /* Read the header of the firmware on the card */
4854 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4855 restart:
4856 rc = -t4_get_fw_hdr(sc, card_fw);
4857 if (rc != 0) {
4858 device_printf(sc->dev,
4859 "unable to read firmware header from card's flash: %d\n",
4860 rc);
4861 goto done;
4862 }
4863
4864 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4865 &already);
4866 if (rc == ERESTART)
4867 goto restart;
4868 if (rc != 0)
4869 goto done;
4870
4871 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4872 if (rc < 0 || state == DEV_STATE_ERR) {
4873 rc = -rc;
4874 device_printf(sc->dev,
4875 "failed to connect to the firmware: %d, %d. "
4876 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4877 #if 0
4878 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4879 "not responding properly to HELLO", &already) == ERESTART)
4880 goto restart;
4881 #endif
4882 goto done;
4883 }
4884 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4885 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
4886
4887 if (rc == sc->pf) {
4888 sc->flags |= MASTER_PF;
4889 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4890 NULL, &already);
4891 if (rc == ERESTART)
4892 rc = 0;
4893 else if (rc != 0)
4894 goto done;
4895 } else if (state == DEV_STATE_UNINIT) {
4896 /*
4897 * We didn't get to be the master so we definitely won't be
4898 * configuring the chip. It's a bug if someone else hasn't
4899 * configured it already.
4900 */
4901 device_printf(sc->dev, "couldn't be master(%d), "
4902 "device not already initialized either(%d). "
4903 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4904 rc = EPROTO;
4905 goto done;
4906 } else {
4907 /*
4908 * Some other PF is the master and has configured the chip.
4909 * This is allowed but untested.
4910 */
4911 device_printf(sc->dev, "PF%d is master, device state %d. "
4912 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4913 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4914 sc->cfcsum = 0;
4915 rc = 0;
4916 }
4917 done:
4918 if (rc != 0 && sc->flags & FW_OK) {
4919 t4_fw_bye(sc, sc->mbox);
4920 sc->flags &= ~FW_OK;
4921 }
4922 free(card_fw, M_CXGBE);
4923 return (rc);
4924 }
4925
4926 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff)4927 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4928 uint32_t mtype, uint32_t moff)
4929 {
4930 struct fw_info *fw_info;
4931 const struct firmware *dcfg, *rcfg = NULL;
4932 const uint32_t *cfdata;
4933 uint32_t cflen, addr;
4934 int rc;
4935
4936 load_fw_module(sc, &dcfg, NULL);
4937
4938 /* Card specific interpretation of "default". */
4939 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4940 if (pci_get_device(sc->dev) == 0x440a)
4941 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4942 if (is_fpga(sc))
4943 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4944 }
4945
4946 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4947 if (dcfg == NULL) {
4948 device_printf(sc->dev,
4949 "KLD with default config is not available.\n");
4950 rc = ENOENT;
4951 goto done;
4952 }
4953 cfdata = dcfg->data;
4954 cflen = dcfg->datasize & ~3;
4955 } else {
4956 char s[32];
4957
4958 fw_info = find_fw_info(chip_id(sc));
4959 if (fw_info == NULL) {
4960 device_printf(sc->dev,
4961 "unable to look up firmware information for chip %d.\n",
4962 chip_id(sc));
4963 rc = EINVAL;
4964 goto done;
4965 }
4966 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4967
4968 rcfg = firmware_get(s);
4969 if (rcfg == NULL) {
4970 device_printf(sc->dev,
4971 "unable to load module \"%s\" for configuration "
4972 "profile \"%s\".\n", s, cfg_file);
4973 rc = ENOENT;
4974 goto done;
4975 }
4976 cfdata = rcfg->data;
4977 cflen = rcfg->datasize & ~3;
4978 }
4979
4980 if (cflen > FLASH_CFG_MAX_SIZE) {
4981 device_printf(sc->dev,
4982 "config file too long (%d, max allowed is %d).\n",
4983 cflen, FLASH_CFG_MAX_SIZE);
4984 rc = EINVAL;
4985 goto done;
4986 }
4987
4988 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4989 if (rc != 0) {
4990 device_printf(sc->dev,
4991 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4992 __func__, mtype, moff, cflen, rc);
4993 rc = EINVAL;
4994 goto done;
4995 }
4996 write_via_memwin(sc, 2, addr, cfdata, cflen);
4997 done:
4998 if (rcfg != NULL)
4999 firmware_put(rcfg, FIRMWARE_UNLOAD);
5000 unload_fw_module(sc, dcfg, NULL);
5001 return (rc);
5002 }
5003
5004 struct caps_allowed {
5005 uint16_t nbmcaps;
5006 uint16_t linkcaps;
5007 uint16_t switchcaps;
5008 uint16_t niccaps;
5009 uint16_t toecaps;
5010 uint16_t rdmacaps;
5011 uint16_t cryptocaps;
5012 uint16_t iscsicaps;
5013 uint16_t fcoecaps;
5014 };
5015
5016 #define FW_PARAM_DEV(param) \
5017 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5018 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5019 #define FW_PARAM_PFVF(param) \
5020 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5021 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5022
5023 /*
5024 * Provide a configuration profile to the firmware and have it initialize the
5025 * chip accordingly. This may involve uploading a configuration file to the
5026 * card.
5027 */
5028 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5029 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5030 const struct caps_allowed *caps_allowed)
5031 {
5032 int rc;
5033 struct fw_caps_config_cmd caps;
5034 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5035
5036 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5037 if (rc != 0) {
5038 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5039 return (rc);
5040 }
5041
5042 bzero(&caps, sizeof(caps));
5043 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5044 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5045 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5046 mtype = 0;
5047 moff = 0;
5048 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5049 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5050 mtype = FW_MEMTYPE_FLASH;
5051 moff = t4_flash_cfg_addr(sc);
5052 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5053 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5054 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5055 FW_LEN16(caps));
5056 } else {
5057 /*
5058 * Ask the firmware where it wants us to upload the config file.
5059 */
5060 param = FW_PARAM_DEV(CF);
5061 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5062 if (rc != 0) {
5063 /* No support for config file? Shouldn't happen. */
5064 device_printf(sc->dev,
5065 "failed to query config file location: %d.\n", rc);
5066 goto done;
5067 }
5068 mtype = G_FW_PARAMS_PARAM_Y(val);
5069 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5070 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5071 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5072 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5073 FW_LEN16(caps));
5074
5075 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5076 if (rc != 0) {
5077 device_printf(sc->dev,
5078 "failed to upload config file to card: %d.\n", rc);
5079 goto done;
5080 }
5081 }
5082 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5083 if (rc != 0) {
5084 device_printf(sc->dev, "failed to pre-process config file: %d "
5085 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5086 goto done;
5087 }
5088
5089 finicsum = be32toh(caps.finicsum);
5090 cfcsum = be32toh(caps.cfcsum); /* actual */
5091 if (finicsum != cfcsum) {
5092 device_printf(sc->dev,
5093 "WARNING: config file checksum mismatch: %08x %08x\n",
5094 finicsum, cfcsum);
5095 }
5096 sc->cfcsum = cfcsum;
5097 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5098
5099 /*
5100 * Let the firmware know what features will (not) be used so it can tune
5101 * things accordingly.
5102 */
5103 #define LIMIT_CAPS(x) do { \
5104 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5105 } while (0)
5106 LIMIT_CAPS(nbm);
5107 LIMIT_CAPS(link);
5108 LIMIT_CAPS(switch);
5109 LIMIT_CAPS(nic);
5110 LIMIT_CAPS(toe);
5111 LIMIT_CAPS(rdma);
5112 LIMIT_CAPS(crypto);
5113 LIMIT_CAPS(iscsi);
5114 LIMIT_CAPS(fcoe);
5115 #undef LIMIT_CAPS
5116 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5117 /*
5118 * TOE and hashfilters are mutually exclusive. It is a config
5119 * file or firmware bug if both are reported as available. Try
5120 * to cope with the situation in non-debug builds by disabling
5121 * TOE.
5122 */
5123 MPASS(caps.toecaps == 0);
5124
5125 caps.toecaps = 0;
5126 caps.rdmacaps = 0;
5127 caps.iscsicaps = 0;
5128 }
5129
5130 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5131 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5132 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5133 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5134 if (rc != 0) {
5135 device_printf(sc->dev,
5136 "failed to process config file: %d.\n", rc);
5137 goto done;
5138 }
5139
5140 t4_tweak_chip_settings(sc);
5141 set_params__pre_init(sc);
5142
5143 /* get basic stuff going */
5144 rc = -t4_fw_initialize(sc, sc->mbox);
5145 if (rc != 0) {
5146 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5147 goto done;
5148 }
5149 done:
5150 return (rc);
5151 }
5152
5153 /*
5154 * Partition chip resources for use between various PFs, VFs, etc.
5155 */
5156 static int
partition_resources(struct adapter * sc)5157 partition_resources(struct adapter *sc)
5158 {
5159 char cfg_file[sizeof(t4_cfg_file)];
5160 struct caps_allowed caps_allowed;
5161 int rc;
5162 bool fallback;
5163
5164 /* Only the master driver gets to configure the chip resources. */
5165 MPASS(sc->flags & MASTER_PF);
5166
5167 #define COPY_CAPS(x) do { \
5168 caps_allowed.x##caps = t4_##x##caps_allowed; \
5169 } while (0)
5170 bzero(&caps_allowed, sizeof(caps_allowed));
5171 COPY_CAPS(nbm);
5172 COPY_CAPS(link);
5173 COPY_CAPS(switch);
5174 COPY_CAPS(nic);
5175 COPY_CAPS(toe);
5176 COPY_CAPS(rdma);
5177 COPY_CAPS(crypto);
5178 COPY_CAPS(iscsi);
5179 COPY_CAPS(fcoe);
5180 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5181 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5182 retry:
5183 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5184 if (rc != 0 && fallback) {
5185 dump_devlog(sc);
5186 device_printf(sc->dev,
5187 "failed (%d) to configure card with \"%s\" profile, "
5188 "will fall back to a basic configuration and retry.\n",
5189 rc, cfg_file);
5190 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5191 bzero(&caps_allowed, sizeof(caps_allowed));
5192 COPY_CAPS(switch);
5193 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5194 fallback = false;
5195 goto retry;
5196 }
5197 #undef COPY_CAPS
5198 return (rc);
5199 }
5200
5201 /*
5202 * Retrieve parameters that are needed (or nice to have) very early.
5203 */
5204 static int
get_params__pre_init(struct adapter * sc)5205 get_params__pre_init(struct adapter *sc)
5206 {
5207 int rc;
5208 uint32_t param[2], val[2];
5209
5210 t4_get_version_info(sc);
5211
5212 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5213 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5214 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5215 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5216 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5217
5218 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5219 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5220 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5221 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5222 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5223
5224 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5225 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5226 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5227 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5228 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5229
5230 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5231 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5232 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5233 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5234 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5235
5236 param[0] = FW_PARAM_DEV(PORTVEC);
5237 param[1] = FW_PARAM_DEV(CCLK);
5238 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5239 if (rc != 0) {
5240 device_printf(sc->dev,
5241 "failed to query parameters (pre_init): %d.\n", rc);
5242 return (rc);
5243 }
5244
5245 sc->params.portvec = val[0];
5246 sc->params.nports = bitcount32(val[0]);
5247 sc->params.vpd.cclk = val[1];
5248
5249 /* Read device log parameters. */
5250 rc = -t4_init_devlog_params(sc, 1);
5251 if (rc == 0)
5252 fixup_devlog_params(sc);
5253 else {
5254 device_printf(sc->dev,
5255 "failed to get devlog parameters: %d.\n", rc);
5256 rc = 0; /* devlog isn't critical for device operation */
5257 }
5258
5259 return (rc);
5260 }
5261
5262 /*
5263 * Any params that need to be set before FW_INITIALIZE.
5264 */
5265 static int
set_params__pre_init(struct adapter * sc)5266 set_params__pre_init(struct adapter *sc)
5267 {
5268 int rc = 0;
5269 uint32_t param, val;
5270
5271 if (chip_id(sc) >= CHELSIO_T6) {
5272 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5273 val = 1;
5274 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5275 /* firmwares < 1.20.1.0 do not have this param. */
5276 if (rc == FW_EINVAL &&
5277 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5278 rc = 0;
5279 }
5280 if (rc != 0) {
5281 device_printf(sc->dev,
5282 "failed to enable high priority filters :%d.\n",
5283 rc);
5284 }
5285
5286 param = FW_PARAM_DEV(PPOD_EDRAM);
5287 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5288 if (rc == 0 && val == 1) {
5289 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5290 &val);
5291 if (rc != 0) {
5292 device_printf(sc->dev,
5293 "failed to set PPOD_EDRAM: %d.\n", rc);
5294 }
5295 }
5296 }
5297
5298 /* Enable opaque VIIDs with firmwares that support it. */
5299 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5300 val = 1;
5301 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5302 if (rc == 0 && val == 1)
5303 sc->params.viid_smt_extn_support = true;
5304 else
5305 sc->params.viid_smt_extn_support = false;
5306
5307 return (rc);
5308 }
5309
5310 /*
5311 * Retrieve various parameters that are of interest to the driver. The device
5312 * has been initialized by the firmware at this point.
5313 */
5314 static int
get_params__post_init(struct adapter * sc)5315 get_params__post_init(struct adapter *sc)
5316 {
5317 int rc;
5318 uint32_t param[7], val[7];
5319 struct fw_caps_config_cmd caps;
5320
5321 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5322 param[1] = FW_PARAM_PFVF(EQ_START);
5323 param[2] = FW_PARAM_PFVF(FILTER_START);
5324 param[3] = FW_PARAM_PFVF(FILTER_END);
5325 param[4] = FW_PARAM_PFVF(L2T_START);
5326 param[5] = FW_PARAM_PFVF(L2T_END);
5327 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5328 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5329 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5330 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5331 if (rc != 0) {
5332 device_printf(sc->dev,
5333 "failed to query parameters (post_init): %d.\n", rc);
5334 return (rc);
5335 }
5336
5337 sc->sge.iq_start = val[0];
5338 sc->sge.eq_start = val[1];
5339 if ((int)val[3] > (int)val[2]) {
5340 sc->tids.ftid_base = val[2];
5341 sc->tids.ftid_end = val[3];
5342 sc->tids.nftids = val[3] - val[2] + 1;
5343 }
5344 sc->vres.l2t.start = val[4];
5345 sc->vres.l2t.size = val[5] - val[4] + 1;
5346 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5347 if (sc->vres.l2t.size > 0)
5348 MPASS(fls(val[5]) <= S_SYNC_WR);
5349 sc->params.core_vdd = val[6];
5350
5351 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5352 param[1] = FW_PARAM_PFVF(EQ_END);
5353 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5354 if (rc != 0) {
5355 device_printf(sc->dev,
5356 "failed to query parameters (post_init2): %d.\n", rc);
5357 return (rc);
5358 }
5359 MPASS((int)val[0] >= sc->sge.iq_start);
5360 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5361 MPASS((int)val[1] >= sc->sge.eq_start);
5362 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5363
5364 if (chip_id(sc) >= CHELSIO_T6) {
5365
5366 sc->tids.tid_base = t4_read_reg(sc,
5367 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5368
5369 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5370 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5371 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5372 if (rc != 0) {
5373 device_printf(sc->dev,
5374 "failed to query hpfilter parameters: %d.\n", rc);
5375 return (rc);
5376 }
5377 if ((int)val[1] > (int)val[0]) {
5378 sc->tids.hpftid_base = val[0];
5379 sc->tids.hpftid_end = val[1];
5380 sc->tids.nhpftids = val[1] - val[0] + 1;
5381
5382 /*
5383 * These should go off if the layout changes and the
5384 * driver needs to catch up.
5385 */
5386 MPASS(sc->tids.hpftid_base == 0);
5387 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5388 }
5389
5390 param[0] = FW_PARAM_PFVF(RAWF_START);
5391 param[1] = FW_PARAM_PFVF(RAWF_END);
5392 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5393 if (rc != 0) {
5394 device_printf(sc->dev,
5395 "failed to query rawf parameters: %d.\n", rc);
5396 return (rc);
5397 }
5398 if ((int)val[1] > (int)val[0]) {
5399 sc->rawf_base = val[0];
5400 sc->nrawf = val[1] - val[0] + 1;
5401 }
5402 }
5403
5404 /*
5405 * The parameters that follow may not be available on all firmwares. We
5406 * query them individually rather than in a compound query because old
5407 * firmwares fail the entire query if an unknown parameter is queried.
5408 */
5409
5410 /*
5411 * MPS buffer group configuration.
5412 */
5413 param[0] = FW_PARAM_DEV(MPSBGMAP);
5414 val[0] = 0;
5415 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5416 if (rc == 0)
5417 sc->params.mps_bg_map = val[0];
5418 else
5419 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5420
5421 param[0] = FW_PARAM_DEV(TPCHMAP);
5422 val[0] = 0;
5423 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5424 if (rc == 0)
5425 sc->params.tp_ch_map = val[0];
5426 else
5427 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5428
5429 /*
5430 * Determine whether the firmware supports the filter2 work request.
5431 */
5432 param[0] = FW_PARAM_DEV(FILTER2_WR);
5433 val[0] = 0;
5434 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5435 if (rc == 0)
5436 sc->params.filter2_wr_support = val[0] != 0;
5437 else
5438 sc->params.filter2_wr_support = 0;
5439
5440 /*
5441 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5442 */
5443 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5444 val[0] = 0;
5445 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5446 if (rc == 0)
5447 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5448 else
5449 sc->params.ulptx_memwrite_dsgl = false;
5450
5451 /* FW_RI_FR_NSMR_TPTE_WR support */
5452 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5453 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5454 if (rc == 0)
5455 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5456 else
5457 sc->params.fr_nsmr_tpte_wr_support = false;
5458
5459 /* Support for 512 SGL entries per FR MR. */
5460 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5461 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5462 if (rc == 0)
5463 sc->params.dev_512sgl_mr = val[0] != 0;
5464 else
5465 sc->params.dev_512sgl_mr = false;
5466
5467 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5468 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5469 if (rc == 0)
5470 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5471 else
5472 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5473
5474 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5475 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5476 if (rc == 0) {
5477 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5478 sc->params.nsched_cls = val[0];
5479 } else
5480 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5481
5482 /* get capabilites */
5483 bzero(&caps, sizeof(caps));
5484 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5485 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5486 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5487 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5488 if (rc != 0) {
5489 device_printf(sc->dev,
5490 "failed to get card capabilities: %d.\n", rc);
5491 return (rc);
5492 }
5493
5494 #define READ_CAPS(x) do { \
5495 sc->x = htobe16(caps.x); \
5496 } while (0)
5497 READ_CAPS(nbmcaps);
5498 READ_CAPS(linkcaps);
5499 READ_CAPS(switchcaps);
5500 READ_CAPS(niccaps);
5501 READ_CAPS(toecaps);
5502 READ_CAPS(rdmacaps);
5503 READ_CAPS(cryptocaps);
5504 READ_CAPS(iscsicaps);
5505 READ_CAPS(fcoecaps);
5506
5507 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5508 MPASS(chip_id(sc) > CHELSIO_T4);
5509 MPASS(sc->toecaps == 0);
5510 sc->toecaps = 0;
5511
5512 param[0] = FW_PARAM_DEV(NTID);
5513 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5514 if (rc != 0) {
5515 device_printf(sc->dev,
5516 "failed to query HASHFILTER parameters: %d.\n", rc);
5517 return (rc);
5518 }
5519 sc->tids.ntids = val[0];
5520 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5521 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5522 sc->tids.ntids -= sc->tids.nhpftids;
5523 }
5524 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5525 sc->params.hash_filter = 1;
5526 }
5527 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5528 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5529 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5530 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5531 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5532 if (rc != 0) {
5533 device_printf(sc->dev,
5534 "failed to query NIC parameters: %d.\n", rc);
5535 return (rc);
5536 }
5537 if ((int)val[1] > (int)val[0]) {
5538 sc->tids.etid_base = val[0];
5539 sc->tids.etid_end = val[1];
5540 sc->tids.netids = val[1] - val[0] + 1;
5541 sc->params.eo_wr_cred = val[2];
5542 sc->params.ethoffload = 1;
5543 }
5544 }
5545 if (sc->toecaps) {
5546 /* query offload-related parameters */
5547 param[0] = FW_PARAM_DEV(NTID);
5548 param[1] = FW_PARAM_PFVF(SERVER_START);
5549 param[2] = FW_PARAM_PFVF(SERVER_END);
5550 param[3] = FW_PARAM_PFVF(TDDP_START);
5551 param[4] = FW_PARAM_PFVF(TDDP_END);
5552 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5553 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5554 if (rc != 0) {
5555 device_printf(sc->dev,
5556 "failed to query TOE parameters: %d.\n", rc);
5557 return (rc);
5558 }
5559 sc->tids.ntids = val[0];
5560 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5561 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5562 sc->tids.ntids -= sc->tids.nhpftids;
5563 }
5564 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5565 if ((int)val[2] > (int)val[1]) {
5566 sc->tids.stid_base = val[1];
5567 sc->tids.nstids = val[2] - val[1] + 1;
5568 }
5569 sc->vres.ddp.start = val[3];
5570 sc->vres.ddp.size = val[4] - val[3] + 1;
5571 sc->params.ofldq_wr_cred = val[5];
5572 sc->params.offload = 1;
5573 } else {
5574 /*
5575 * The firmware attempts memfree TOE configuration for -SO cards
5576 * and will report toecaps=0 if it runs out of resources (this
5577 * depends on the config file). It may not report 0 for other
5578 * capabilities dependent on the TOE in this case. Set them to
5579 * 0 here so that the driver doesn't bother tracking resources
5580 * that will never be used.
5581 */
5582 sc->iscsicaps = 0;
5583 sc->rdmacaps = 0;
5584 }
5585 if (sc->rdmacaps) {
5586 param[0] = FW_PARAM_PFVF(STAG_START);
5587 param[1] = FW_PARAM_PFVF(STAG_END);
5588 param[2] = FW_PARAM_PFVF(RQ_START);
5589 param[3] = FW_PARAM_PFVF(RQ_END);
5590 param[4] = FW_PARAM_PFVF(PBL_START);
5591 param[5] = FW_PARAM_PFVF(PBL_END);
5592 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5593 if (rc != 0) {
5594 device_printf(sc->dev,
5595 "failed to query RDMA parameters(1): %d.\n", rc);
5596 return (rc);
5597 }
5598 sc->vres.stag.start = val[0];
5599 sc->vres.stag.size = val[1] - val[0] + 1;
5600 sc->vres.rq.start = val[2];
5601 sc->vres.rq.size = val[3] - val[2] + 1;
5602 sc->vres.pbl.start = val[4];
5603 sc->vres.pbl.size = val[5] - val[4] + 1;
5604
5605 param[0] = FW_PARAM_PFVF(SQRQ_START);
5606 param[1] = FW_PARAM_PFVF(SQRQ_END);
5607 param[2] = FW_PARAM_PFVF(CQ_START);
5608 param[3] = FW_PARAM_PFVF(CQ_END);
5609 param[4] = FW_PARAM_PFVF(OCQ_START);
5610 param[5] = FW_PARAM_PFVF(OCQ_END);
5611 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5612 if (rc != 0) {
5613 device_printf(sc->dev,
5614 "failed to query RDMA parameters(2): %d.\n", rc);
5615 return (rc);
5616 }
5617 sc->vres.qp.start = val[0];
5618 sc->vres.qp.size = val[1] - val[0] + 1;
5619 sc->vres.cq.start = val[2];
5620 sc->vres.cq.size = val[3] - val[2] + 1;
5621 sc->vres.ocq.start = val[4];
5622 sc->vres.ocq.size = val[5] - val[4] + 1;
5623
5624 param[0] = FW_PARAM_PFVF(SRQ_START);
5625 param[1] = FW_PARAM_PFVF(SRQ_END);
5626 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5627 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5628 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5629 if (rc != 0) {
5630 device_printf(sc->dev,
5631 "failed to query RDMA parameters(3): %d.\n", rc);
5632 return (rc);
5633 }
5634 sc->vres.srq.start = val[0];
5635 sc->vres.srq.size = val[1] - val[0] + 1;
5636 sc->params.max_ordird_qp = val[2];
5637 sc->params.max_ird_adapter = val[3];
5638 }
5639 if (sc->iscsicaps) {
5640 param[0] = FW_PARAM_PFVF(ISCSI_START);
5641 param[1] = FW_PARAM_PFVF(ISCSI_END);
5642 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5643 if (rc != 0) {
5644 device_printf(sc->dev,
5645 "failed to query iSCSI parameters: %d.\n", rc);
5646 return (rc);
5647 }
5648 sc->vres.iscsi.start = val[0];
5649 sc->vres.iscsi.size = val[1] - val[0] + 1;
5650 }
5651 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5652 param[0] = FW_PARAM_PFVF(TLS_START);
5653 param[1] = FW_PARAM_PFVF(TLS_END);
5654 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5655 if (rc != 0) {
5656 device_printf(sc->dev,
5657 "failed to query TLS parameters: %d.\n", rc);
5658 return (rc);
5659 }
5660 sc->vres.key.start = val[0];
5661 sc->vres.key.size = val[1] - val[0] + 1;
5662 }
5663
5664 /*
5665 * We've got the params we wanted to query directly from the firmware.
5666 * Grab some others via other means.
5667 */
5668 t4_init_sge_params(sc);
5669 t4_init_tp_params(sc);
5670 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5671 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5672
5673 rc = t4_verify_chip_settings(sc);
5674 if (rc != 0)
5675 return (rc);
5676 t4_init_rx_buf_info(sc);
5677
5678 return (rc);
5679 }
5680
5681 #ifdef KERN_TLS
5682 static void
ktls_tick(void * arg)5683 ktls_tick(void *arg)
5684 {
5685 struct adapter *sc;
5686 uint32_t tstamp;
5687
5688 sc = arg;
5689 tstamp = tcp_ts_getticks();
5690 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5691 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5692 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5693 }
5694
5695 static int
t6_config_kern_tls(struct adapter * sc,bool enable)5696 t6_config_kern_tls(struct adapter *sc, bool enable)
5697 {
5698 int rc;
5699 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5700 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5701 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5702 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5703
5704 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
5705 if (rc != 0) {
5706 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5707 enable ? "enable" : "disable", rc);
5708 return (rc);
5709 }
5710
5711 if (enable) {
5712 sc->flags |= KERN_TLS_ON;
5713 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5714 C_HARDCLOCK);
5715 } else {
5716 sc->flags &= ~KERN_TLS_ON;
5717 callout_stop(&sc->ktls_tick);
5718 }
5719
5720 return (rc);
5721 }
5722 #endif
5723
5724 static int
set_params__post_init(struct adapter * sc)5725 set_params__post_init(struct adapter *sc)
5726 {
5727 uint32_t mask, param, val;
5728 #ifdef TCP_OFFLOAD
5729 int i, v, shift;
5730 #endif
5731
5732 /* ask for encapsulated CPLs */
5733 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5734 val = 1;
5735 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5736
5737 /* Enable 32b port caps if the firmware supports it. */
5738 param = FW_PARAM_PFVF(PORT_CAPS32);
5739 val = 1;
5740 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
5741 sc->params.port_caps32 = 1;
5742
5743 /* Let filter + maskhash steer to a part of the VI's RSS region. */
5744 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5745 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5746 V_MASKFILTER(val - 1));
5747
5748 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5749 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5750 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5751 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5752 val = 0;
5753 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5754 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5755 F_ATTACKFILTERENABLE);
5756 val |= F_DROPERRORATTACK;
5757 }
5758 if (t4_drop_ip_fragments != 0) {
5759 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5760 F_FRAGMENTDROP);
5761 val |= F_DROPERRORFRAG;
5762 }
5763 if (t4_drop_pkts_with_l2_errors != 0)
5764 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5765 if (t4_drop_pkts_with_l3_errors != 0) {
5766 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5767 F_DROPERRORCSUMIP;
5768 }
5769 if (t4_drop_pkts_with_l4_errors != 0) {
5770 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5771 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5772 }
5773 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5774
5775 #ifdef TCP_OFFLOAD
5776 /*
5777 * Override the TOE timers with user provided tunables. This is not the
5778 * recommended way to change the timers (the firmware config file is) so
5779 * these tunables are not documented.
5780 *
5781 * All the timer tunables are in microseconds.
5782 */
5783 if (t4_toe_keepalive_idle != 0) {
5784 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5785 v &= M_KEEPALIVEIDLE;
5786 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5787 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5788 }
5789 if (t4_toe_keepalive_interval != 0) {
5790 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5791 v &= M_KEEPALIVEINTVL;
5792 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5793 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5794 }
5795 if (t4_toe_keepalive_count != 0) {
5796 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5797 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5798 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5799 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5800 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5801 }
5802 if (t4_toe_rexmt_min != 0) {
5803 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5804 v &= M_RXTMIN;
5805 t4_set_reg_field(sc, A_TP_RXT_MIN,
5806 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5807 }
5808 if (t4_toe_rexmt_max != 0) {
5809 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5810 v &= M_RXTMAX;
5811 t4_set_reg_field(sc, A_TP_RXT_MAX,
5812 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5813 }
5814 if (t4_toe_rexmt_count != 0) {
5815 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5816 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5817 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5818 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5819 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5820 }
5821 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5822 if (t4_toe_rexmt_backoff[i] != -1) {
5823 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5824 shift = (i & 3) << 3;
5825 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5826 M_TIMERBACKOFFINDEX0 << shift, v << shift);
5827 }
5828 }
5829 #endif
5830
5831 /*
5832 * Limit TOE connections to 2 reassembly "islands". This is
5833 * required to permit migrating TOE connections to either
5834 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5835 */
5836 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5837 V_PASSMODE(2));
5838
5839 #ifdef KERN_TLS
5840 if (is_ktls(sc)) {
5841 sc->tlst.inline_keys = t4_tls_inline_keys;
5842 sc->tlst.combo_wrs = t4_tls_combo_wrs;
5843 if (t4_kern_tls != 0 && is_t6(sc))
5844 t6_config_kern_tls(sc, true);
5845 }
5846 #endif
5847 return (0);
5848 }
5849
5850 #undef FW_PARAM_PFVF
5851 #undef FW_PARAM_DEV
5852
5853 static void
t4_set_desc(struct adapter * sc)5854 t4_set_desc(struct adapter *sc)
5855 {
5856 struct adapter_params *p = &sc->params;
5857
5858 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5859 }
5860
5861 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)5862 ifmedia_add4(struct ifmedia *ifm, int m)
5863 {
5864
5865 ifmedia_add(ifm, m, 0, NULL);
5866 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5867 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5868 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5869 }
5870
5871 /*
5872 * This is the selected media, which is not quite the same as the active media.
5873 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5874 * and active are not the same, and "media: Ethernet selected" otherwise.
5875 */
5876 static void
set_current_media(struct port_info * pi)5877 set_current_media(struct port_info *pi)
5878 {
5879 struct link_config *lc;
5880 struct ifmedia *ifm;
5881 int mword;
5882 u_int speed;
5883
5884 PORT_LOCK_ASSERT_OWNED(pi);
5885
5886 /* Leave current media alone if it's already set to IFM_NONE. */
5887 ifm = &pi->media;
5888 if (ifm->ifm_cur != NULL &&
5889 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5890 return;
5891
5892 lc = &pi->link_cfg;
5893 if (lc->requested_aneg != AUTONEG_DISABLE &&
5894 lc->pcaps & FW_PORT_CAP32_ANEG) {
5895 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5896 return;
5897 }
5898 mword = IFM_ETHER | IFM_FDX;
5899 if (lc->requested_fc & PAUSE_TX)
5900 mword |= IFM_ETH_TXPAUSE;
5901 if (lc->requested_fc & PAUSE_RX)
5902 mword |= IFM_ETH_RXPAUSE;
5903 if (lc->requested_speed == 0)
5904 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
5905 else
5906 speed = lc->requested_speed;
5907 mword |= port_mword(pi, speed_to_fwcap(speed));
5908 ifmedia_set(ifm, mword);
5909 }
5910
5911 /*
5912 * Returns true if the ifmedia list for the port cannot change.
5913 */
5914 static bool
fixed_ifmedia(struct port_info * pi)5915 fixed_ifmedia(struct port_info *pi)
5916 {
5917
5918 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5919 pi->port_type == FW_PORT_TYPE_BT_XFI ||
5920 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5921 pi->port_type == FW_PORT_TYPE_KX4 ||
5922 pi->port_type == FW_PORT_TYPE_KX ||
5923 pi->port_type == FW_PORT_TYPE_KR ||
5924 pi->port_type == FW_PORT_TYPE_BP_AP ||
5925 pi->port_type == FW_PORT_TYPE_BP4_AP ||
5926 pi->port_type == FW_PORT_TYPE_BP40_BA ||
5927 pi->port_type == FW_PORT_TYPE_KR4_100G ||
5928 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5929 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5930 }
5931
5932 static void
build_medialist(struct port_info * pi)5933 build_medialist(struct port_info *pi)
5934 {
5935 uint32_t ss, speed;
5936 int unknown, mword, bit;
5937 struct link_config *lc;
5938 struct ifmedia *ifm;
5939
5940 PORT_LOCK_ASSERT_OWNED(pi);
5941
5942 if (pi->flags & FIXED_IFMEDIA)
5943 return;
5944
5945 /*
5946 * Rebuild the ifmedia list.
5947 */
5948 ifm = &pi->media;
5949 ifmedia_removeall(ifm);
5950 lc = &pi->link_cfg;
5951 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5952 if (__predict_false(ss == 0)) { /* not supposed to happen. */
5953 MPASS(ss != 0);
5954 no_media:
5955 MPASS(LIST_EMPTY(&ifm->ifm_list));
5956 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5957 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5958 return;
5959 }
5960
5961 unknown = 0;
5962 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5963 speed = 1 << bit;
5964 MPASS(speed & M_FW_PORT_CAP32_SPEED);
5965 if (ss & speed) {
5966 mword = port_mword(pi, speed);
5967 if (mword == IFM_NONE) {
5968 goto no_media;
5969 } else if (mword == IFM_UNKNOWN)
5970 unknown++;
5971 else
5972 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5973 }
5974 }
5975 if (unknown > 0) /* Add one unknown for all unknown media types. */
5976 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5977 if (lc->pcaps & FW_PORT_CAP32_ANEG)
5978 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5979
5980 set_current_media(pi);
5981 }
5982
5983 /*
5984 * Initialize the requested fields in the link config based on driver tunables.
5985 */
5986 static void
init_link_config(struct port_info * pi)5987 init_link_config(struct port_info *pi)
5988 {
5989 struct link_config *lc = &pi->link_cfg;
5990
5991 PORT_LOCK_ASSERT_OWNED(pi);
5992
5993 lc->requested_caps = 0;
5994 lc->requested_speed = 0;
5995
5996 if (t4_autoneg == 0)
5997 lc->requested_aneg = AUTONEG_DISABLE;
5998 else if (t4_autoneg == 1)
5999 lc->requested_aneg = AUTONEG_ENABLE;
6000 else
6001 lc->requested_aneg = AUTONEG_AUTO;
6002
6003 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6004 PAUSE_AUTONEG);
6005
6006 if (t4_fec & FEC_AUTO)
6007 lc->requested_fec = FEC_AUTO;
6008 else if (t4_fec == 0)
6009 lc->requested_fec = FEC_NONE;
6010 else {
6011 /* -1 is handled by the FEC_AUTO block above and not here. */
6012 lc->requested_fec = t4_fec &
6013 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6014 if (lc->requested_fec == 0)
6015 lc->requested_fec = FEC_AUTO;
6016 }
6017 if (t4_force_fec < 0)
6018 lc->force_fec = -1;
6019 else if (t4_force_fec > 0)
6020 lc->force_fec = 1;
6021 else
6022 lc->force_fec = 0;
6023 }
6024
6025 /*
6026 * Makes sure that all requested settings comply with what's supported by the
6027 * port. Returns the number of settings that were invalid and had to be fixed.
6028 */
6029 static int
fixup_link_config(struct port_info * pi)6030 fixup_link_config(struct port_info *pi)
6031 {
6032 int n = 0;
6033 struct link_config *lc = &pi->link_cfg;
6034 uint32_t fwspeed;
6035
6036 PORT_LOCK_ASSERT_OWNED(pi);
6037
6038 /* Speed (when not autonegotiating) */
6039 if (lc->requested_speed != 0) {
6040 fwspeed = speed_to_fwcap(lc->requested_speed);
6041 if ((fwspeed & lc->pcaps) == 0) {
6042 n++;
6043 lc->requested_speed = 0;
6044 }
6045 }
6046
6047 /* Link autonegotiation */
6048 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6049 lc->requested_aneg == AUTONEG_DISABLE ||
6050 lc->requested_aneg == AUTONEG_AUTO);
6051 if (lc->requested_aneg == AUTONEG_ENABLE &&
6052 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6053 n++;
6054 lc->requested_aneg = AUTONEG_AUTO;
6055 }
6056
6057 /* Flow control */
6058 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6059 if (lc->requested_fc & PAUSE_TX &&
6060 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6061 n++;
6062 lc->requested_fc &= ~PAUSE_TX;
6063 }
6064 if (lc->requested_fc & PAUSE_RX &&
6065 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6066 n++;
6067 lc->requested_fc &= ~PAUSE_RX;
6068 }
6069 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6070 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6071 n++;
6072 lc->requested_fc |= PAUSE_AUTONEG;
6073 }
6074
6075 /* FEC */
6076 if ((lc->requested_fec & FEC_RS &&
6077 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6078 (lc->requested_fec & FEC_BASER_RS &&
6079 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6080 n++;
6081 lc->requested_fec = FEC_AUTO;
6082 }
6083
6084 return (n);
6085 }
6086
6087 /*
6088 * Apply the requested L1 settings, which are expected to be valid, to the
6089 * hardware.
6090 */
6091 static int
apply_link_config(struct port_info * pi)6092 apply_link_config(struct port_info *pi)
6093 {
6094 struct adapter *sc = pi->adapter;
6095 struct link_config *lc = &pi->link_cfg;
6096 int rc;
6097
6098 #ifdef INVARIANTS
6099 ASSERT_SYNCHRONIZED_OP(sc);
6100 PORT_LOCK_ASSERT_OWNED(pi);
6101
6102 if (lc->requested_aneg == AUTONEG_ENABLE)
6103 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6104 if (!(lc->requested_fc & PAUSE_AUTONEG))
6105 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6106 if (lc->requested_fc & PAUSE_TX)
6107 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6108 if (lc->requested_fc & PAUSE_RX)
6109 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6110 if (lc->requested_fec & FEC_RS)
6111 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6112 if (lc->requested_fec & FEC_BASER_RS)
6113 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6114 #endif
6115 if (!(sc->flags & IS_VF)) {
6116 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6117 if (rc != 0) {
6118 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6119 return (rc);
6120 }
6121 }
6122
6123 /*
6124 * An L1_CFG will almost always result in a link-change event if the
6125 * link is up, and the driver will refresh the actual fec/fc/etc. when
6126 * the notification is processed. If the link is down then the actual
6127 * settings are meaningless.
6128 *
6129 * This takes care of the case where a change in the L1 settings may not
6130 * result in a notification.
6131 */
6132 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6133 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6134
6135 return (0);
6136 }
6137
6138 #define FW_MAC_EXACT_CHUNK 7
6139 struct mcaddr_ctx {
6140 if_t ifp;
6141 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6142 uint64_t hash;
6143 int i;
6144 int del;
6145 int rc;
6146 };
6147
6148 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6149 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6150 {
6151 struct mcaddr_ctx *ctx = arg;
6152 struct vi_info *vi = if_getsoftc(ctx->ifp);
6153 struct port_info *pi = vi->pi;
6154 struct adapter *sc = pi->adapter;
6155
6156 if (ctx->rc < 0)
6157 return (0);
6158
6159 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6160 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6161 ctx->i++;
6162
6163 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6164 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6165 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6166 if (ctx->rc < 0) {
6167 int j;
6168
6169 for (j = 0; j < ctx->i; j++) {
6170 if_printf(ctx->ifp,
6171 "failed to add mc address"
6172 " %02x:%02x:%02x:"
6173 "%02x:%02x:%02x rc=%d\n",
6174 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6175 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6176 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6177 -ctx->rc);
6178 }
6179 return (0);
6180 }
6181 ctx->del = 0;
6182 ctx->i = 0;
6183 }
6184
6185 return (1);
6186 }
6187
6188 /*
6189 * Program the port's XGMAC based on parameters in ifnet. The caller also
6190 * indicates which parameters should be programmed (the rest are left alone).
6191 */
6192 int
update_mac_settings(if_t ifp,int flags)6193 update_mac_settings(if_t ifp, int flags)
6194 {
6195 int rc = 0;
6196 struct vi_info *vi = if_getsoftc(ifp);
6197 struct port_info *pi = vi->pi;
6198 struct adapter *sc = pi->adapter;
6199 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6200 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6201
6202 ASSERT_SYNCHRONIZED_OP(sc);
6203 KASSERT(flags, ("%s: not told what to update.", __func__));
6204
6205 if (flags & XGMAC_MTU)
6206 mtu = if_getmtu(ifp);
6207
6208 if (flags & XGMAC_PROMISC)
6209 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6210
6211 if (flags & XGMAC_ALLMULTI)
6212 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6213
6214 if (flags & XGMAC_VLANEX)
6215 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6216
6217 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6218 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6219 allmulti, 1, vlanex, false);
6220 if (rc) {
6221 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6222 rc);
6223 return (rc);
6224 }
6225 }
6226
6227 if (flags & XGMAC_UCADDR) {
6228 uint8_t ucaddr[ETHER_ADDR_LEN];
6229
6230 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6231 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6232 ucaddr, true, &vi->smt_idx);
6233 if (rc < 0) {
6234 rc = -rc;
6235 if_printf(ifp, "change_mac failed: %d\n", rc);
6236 return (rc);
6237 } else {
6238 vi->xact_addr_filt = rc;
6239 rc = 0;
6240 }
6241 }
6242
6243 if (flags & XGMAC_MCADDRS) {
6244 struct epoch_tracker et;
6245 struct mcaddr_ctx ctx;
6246 int j;
6247
6248 ctx.ifp = ifp;
6249 ctx.hash = 0;
6250 ctx.i = 0;
6251 ctx.del = 1;
6252 ctx.rc = 0;
6253 /*
6254 * Unlike other drivers, we accumulate list of pointers into
6255 * interface address lists and we need to keep it safe even
6256 * after if_foreach_llmaddr() returns, thus we must enter the
6257 * network epoch.
6258 */
6259 NET_EPOCH_ENTER(et);
6260 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6261 if (ctx.rc < 0) {
6262 NET_EPOCH_EXIT(et);
6263 rc = -ctx.rc;
6264 return (rc);
6265 }
6266 if (ctx.i > 0) {
6267 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6268 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6269 NET_EPOCH_EXIT(et);
6270 if (rc < 0) {
6271 rc = -rc;
6272 for (j = 0; j < ctx.i; j++) {
6273 if_printf(ifp,
6274 "failed to add mcast address"
6275 " %02x:%02x:%02x:"
6276 "%02x:%02x:%02x rc=%d\n",
6277 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6278 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6279 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6280 rc);
6281 }
6282 return (rc);
6283 }
6284 ctx.del = 0;
6285 } else
6286 NET_EPOCH_EXIT(et);
6287
6288 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6289 if (rc != 0)
6290 if_printf(ifp, "failed to set mcast address hash: %d\n",
6291 rc);
6292 if (ctx.del == 0) {
6293 /* We clobbered the VXLAN entry if there was one. */
6294 pi->vxlan_tcam_entry = false;
6295 }
6296 }
6297
6298 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6299 pi->vxlan_tcam_entry == false) {
6300 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6301 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6302 true);
6303 if (rc < 0) {
6304 rc = -rc;
6305 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6306 rc);
6307 } else {
6308 MPASS(rc == sc->rawf_base + pi->port_id);
6309 rc = 0;
6310 pi->vxlan_tcam_entry = true;
6311 }
6312 }
6313
6314 return (rc);
6315 }
6316
6317 /*
6318 * {begin|end}_synchronized_op must be called from the same thread.
6319 */
6320 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6321 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6322 char *wmesg)
6323 {
6324 int rc, pri;
6325
6326 #ifdef WITNESS
6327 /* the caller thinks it's ok to sleep, but is it really? */
6328 if (flags & SLEEP_OK)
6329 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6330 "begin_synchronized_op");
6331 #endif
6332
6333 if (INTR_OK)
6334 pri = PCATCH;
6335 else
6336 pri = 0;
6337
6338 ADAPTER_LOCK(sc);
6339 for (;;) {
6340
6341 if (vi && IS_DETACHING(vi)) {
6342 rc = ENXIO;
6343 goto done;
6344 }
6345
6346 if (!IS_BUSY(sc)) {
6347 rc = 0;
6348 break;
6349 }
6350
6351 if (!(flags & SLEEP_OK)) {
6352 rc = EBUSY;
6353 goto done;
6354 }
6355
6356 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6357 rc = EINTR;
6358 goto done;
6359 }
6360 }
6361
6362 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6363 SET_BUSY(sc);
6364 #ifdef INVARIANTS
6365 sc->last_op = wmesg;
6366 sc->last_op_thr = curthread;
6367 sc->last_op_flags = flags;
6368 #endif
6369
6370 done:
6371 if (!(flags & HOLD_LOCK) || rc)
6372 ADAPTER_UNLOCK(sc);
6373
6374 return (rc);
6375 }
6376
6377 /*
6378 * Tell if_ioctl and if_init that the VI is going away. This is
6379 * special variant of begin_synchronized_op and must be paired with a
6380 * call to end_vi_detach.
6381 */
6382 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6383 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6384 {
6385 ADAPTER_LOCK(sc);
6386 SET_DETACHING(vi);
6387 wakeup(&sc->flags);
6388 while (IS_BUSY(sc))
6389 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6390 SET_BUSY(sc);
6391 #ifdef INVARIANTS
6392 sc->last_op = "t4detach";
6393 sc->last_op_thr = curthread;
6394 sc->last_op_flags = 0;
6395 #endif
6396 ADAPTER_UNLOCK(sc);
6397 }
6398
6399 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6400 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6401 {
6402 ADAPTER_LOCK(sc);
6403 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6404 CLR_BUSY(sc);
6405 CLR_DETACHING(vi);
6406 wakeup(&sc->flags);
6407 ADAPTER_UNLOCK(sc);
6408 }
6409
6410 /*
6411 * {begin|end}_synchronized_op must be called from the same thread.
6412 */
6413 void
end_synchronized_op(struct adapter * sc,int flags)6414 end_synchronized_op(struct adapter *sc, int flags)
6415 {
6416
6417 if (flags & LOCK_HELD)
6418 ADAPTER_LOCK_ASSERT_OWNED(sc);
6419 else
6420 ADAPTER_LOCK(sc);
6421
6422 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6423 CLR_BUSY(sc);
6424 wakeup(&sc->flags);
6425 ADAPTER_UNLOCK(sc);
6426 }
6427
6428 static int
cxgbe_init_synchronized(struct vi_info * vi)6429 cxgbe_init_synchronized(struct vi_info *vi)
6430 {
6431 struct port_info *pi = vi->pi;
6432 struct adapter *sc = pi->adapter;
6433 if_t ifp = vi->ifp;
6434 int rc = 0, i;
6435 struct sge_txq *txq;
6436
6437 ASSERT_SYNCHRONIZED_OP(sc);
6438
6439 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6440 return (0); /* already running */
6441
6442 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6443 return (rc); /* error message displayed already */
6444
6445 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6446 return (rc); /* error message displayed already */
6447
6448 rc = update_mac_settings(ifp, XGMAC_ALL);
6449 if (rc)
6450 goto done; /* error message displayed already */
6451
6452 PORT_LOCK(pi);
6453 if (pi->up_vis == 0) {
6454 t4_update_port_info(pi);
6455 fixup_link_config(pi);
6456 build_medialist(pi);
6457 apply_link_config(pi);
6458 }
6459
6460 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6461 if (rc != 0) {
6462 if_printf(ifp, "enable_vi failed: %d\n", rc);
6463 PORT_UNLOCK(pi);
6464 goto done;
6465 }
6466
6467 /*
6468 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6469 * if this changes.
6470 */
6471
6472 for_each_txq(vi, i, txq) {
6473 TXQ_LOCK(txq);
6474 txq->eq.flags |= EQ_ENABLED;
6475 TXQ_UNLOCK(txq);
6476 }
6477
6478 /*
6479 * The first iq of the first port to come up is used for tracing.
6480 */
6481 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6482 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6483 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL :
6484 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6485 V_QUEUENUMBER(sc->traceq));
6486 pi->flags |= HAS_TRACEQ;
6487 }
6488
6489 /* all ok */
6490 pi->up_vis++;
6491 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6492 if (pi->link_cfg.link_ok)
6493 t4_os_link_changed(pi);
6494 PORT_UNLOCK(pi);
6495
6496 mtx_lock(&vi->tick_mtx);
6497 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6498 callout_reset(&vi->tick, hz, vi_tick, vi);
6499 else
6500 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6501 mtx_unlock(&vi->tick_mtx);
6502 done:
6503 if (rc != 0)
6504 cxgbe_uninit_synchronized(vi);
6505
6506 return (rc);
6507 }
6508
6509 /*
6510 * Idempotent.
6511 */
6512 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6513 cxgbe_uninit_synchronized(struct vi_info *vi)
6514 {
6515 struct port_info *pi = vi->pi;
6516 struct adapter *sc = pi->adapter;
6517 if_t ifp = vi->ifp;
6518 int rc, i;
6519 struct sge_txq *txq;
6520
6521 ASSERT_SYNCHRONIZED_OP(sc);
6522
6523 if (!(vi->flags & VI_INIT_DONE)) {
6524 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6525 KASSERT(0, ("uninited VI is running"));
6526 if_printf(ifp, "uninited VI with running ifnet. "
6527 "vi->flags 0x%016lx, if_flags 0x%08x, "
6528 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6529 if_getdrvflags(ifp));
6530 }
6531 return (0);
6532 }
6533
6534 /*
6535 * Disable the VI so that all its data in either direction is discarded
6536 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6537 * tick) intact as the TP can deliver negative advice or data that it's
6538 * holding in its RAM (for an offloaded connection) even after the VI is
6539 * disabled.
6540 */
6541 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6542 if (rc) {
6543 if_printf(ifp, "disable_vi failed: %d\n", rc);
6544 return (rc);
6545 }
6546
6547 for_each_txq(vi, i, txq) {
6548 TXQ_LOCK(txq);
6549 txq->eq.flags &= ~EQ_ENABLED;
6550 TXQ_UNLOCK(txq);
6551 }
6552
6553 mtx_lock(&vi->tick_mtx);
6554 callout_stop(&vi->tick);
6555 mtx_unlock(&vi->tick_mtx);
6556
6557 PORT_LOCK(pi);
6558 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6559 PORT_UNLOCK(pi);
6560 return (0);
6561 }
6562 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6563 pi->up_vis--;
6564 if (pi->up_vis > 0) {
6565 PORT_UNLOCK(pi);
6566 return (0);
6567 }
6568
6569 pi->link_cfg.link_ok = false;
6570 pi->link_cfg.speed = 0;
6571 pi->link_cfg.link_down_rc = 255;
6572 t4_os_link_changed(pi);
6573 PORT_UNLOCK(pi);
6574
6575 return (0);
6576 }
6577
6578 /*
6579 * It is ok for this function to fail midway and return right away. t4_detach
6580 * will walk the entire sc->irq list and clean up whatever is valid.
6581 */
6582 int
t4_setup_intr_handlers(struct adapter * sc)6583 t4_setup_intr_handlers(struct adapter *sc)
6584 {
6585 int rc, rid, p, q, v;
6586 char s[8];
6587 struct irq *irq;
6588 struct port_info *pi;
6589 struct vi_info *vi;
6590 struct sge *sge = &sc->sge;
6591 struct sge_rxq *rxq;
6592 #ifdef TCP_OFFLOAD
6593 struct sge_ofld_rxq *ofld_rxq;
6594 #endif
6595 #ifdef DEV_NETMAP
6596 struct sge_nm_rxq *nm_rxq;
6597 #endif
6598 #ifdef RSS
6599 int nbuckets = rss_getnumbuckets();
6600 #endif
6601
6602 /*
6603 * Setup interrupts.
6604 */
6605 irq = &sc->irq[0];
6606 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6607 if (forwarding_intr_to_fwq(sc))
6608 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6609
6610 /* Multiple interrupts. */
6611 if (sc->flags & IS_VF)
6612 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6613 ("%s: too few intr.", __func__));
6614 else
6615 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6616 ("%s: too few intr.", __func__));
6617
6618 /* The first one is always error intr on PFs */
6619 if (!(sc->flags & IS_VF)) {
6620 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6621 if (rc != 0)
6622 return (rc);
6623 irq++;
6624 rid++;
6625 }
6626
6627 /* The second one is always the firmware event queue (first on VFs) */
6628 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6629 if (rc != 0)
6630 return (rc);
6631 irq++;
6632 rid++;
6633
6634 for_each_port(sc, p) {
6635 pi = sc->port[p];
6636 for_each_vi(pi, v, vi) {
6637 vi->first_intr = rid - 1;
6638
6639 if (vi->nnmrxq > 0) {
6640 int n = max(vi->nrxq, vi->nnmrxq);
6641
6642 rxq = &sge->rxq[vi->first_rxq];
6643 #ifdef DEV_NETMAP
6644 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6645 #endif
6646 for (q = 0; q < n; q++) {
6647 snprintf(s, sizeof(s), "%x%c%x", p,
6648 'a' + v, q);
6649 if (q < vi->nrxq)
6650 irq->rxq = rxq++;
6651 #ifdef DEV_NETMAP
6652 if (q < vi->nnmrxq)
6653 irq->nm_rxq = nm_rxq++;
6654
6655 if (irq->nm_rxq != NULL &&
6656 irq->rxq == NULL) {
6657 /* Netmap rx only */
6658 rc = t4_alloc_irq(sc, irq, rid,
6659 t4_nm_intr, irq->nm_rxq, s);
6660 }
6661 if (irq->nm_rxq != NULL &&
6662 irq->rxq != NULL) {
6663 /* NIC and Netmap rx */
6664 rc = t4_alloc_irq(sc, irq, rid,
6665 t4_vi_intr, irq, s);
6666 }
6667 #endif
6668 if (irq->rxq != NULL &&
6669 irq->nm_rxq == NULL) {
6670 /* NIC rx only */
6671 rc = t4_alloc_irq(sc, irq, rid,
6672 t4_intr, irq->rxq, s);
6673 }
6674 if (rc != 0)
6675 return (rc);
6676 #ifdef RSS
6677 if (q < vi->nrxq) {
6678 bus_bind_intr(sc->dev, irq->res,
6679 rss_getcpu(q % nbuckets));
6680 }
6681 #endif
6682 irq++;
6683 rid++;
6684 vi->nintr++;
6685 }
6686 } else {
6687 for_each_rxq(vi, q, rxq) {
6688 snprintf(s, sizeof(s), "%x%c%x", p,
6689 'a' + v, q);
6690 rc = t4_alloc_irq(sc, irq, rid,
6691 t4_intr, rxq, s);
6692 if (rc != 0)
6693 return (rc);
6694 #ifdef RSS
6695 bus_bind_intr(sc->dev, irq->res,
6696 rss_getcpu(q % nbuckets));
6697 #endif
6698 irq++;
6699 rid++;
6700 vi->nintr++;
6701 }
6702 }
6703 #ifdef TCP_OFFLOAD
6704 for_each_ofld_rxq(vi, q, ofld_rxq) {
6705 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6706 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6707 ofld_rxq, s);
6708 if (rc != 0)
6709 return (rc);
6710 irq++;
6711 rid++;
6712 vi->nintr++;
6713 }
6714 #endif
6715 }
6716 }
6717 MPASS(irq == &sc->irq[sc->intr_count]);
6718
6719 return (0);
6720 }
6721
6722 static void
write_global_rss_key(struct adapter * sc)6723 write_global_rss_key(struct adapter *sc)
6724 {
6725 #ifdef RSS
6726 int i;
6727 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6728 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6729
6730 CTASSERT(RSS_KEYSIZE == 40);
6731
6732 rss_getkey((void *)&raw_rss_key[0]);
6733 for (i = 0; i < nitems(rss_key); i++) {
6734 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6735 }
6736 t4_write_rss_key(sc, &rss_key[0], -1, 1);
6737 #endif
6738 }
6739
6740 /*
6741 * Idempotent.
6742 */
6743 static int
adapter_full_init(struct adapter * sc)6744 adapter_full_init(struct adapter *sc)
6745 {
6746 int rc, i;
6747
6748 ASSERT_SYNCHRONIZED_OP(sc);
6749
6750 /*
6751 * queues that belong to the adapter (not any particular port).
6752 */
6753 rc = t4_setup_adapter_queues(sc);
6754 if (rc != 0)
6755 return (rc);
6756
6757 MPASS(sc->params.nports <= nitems(sc->tq));
6758 for (i = 0; i < sc->params.nports; i++) {
6759 if (sc->tq[i] != NULL)
6760 continue;
6761 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6762 taskqueue_thread_enqueue, &sc->tq[i]);
6763 if (sc->tq[i] == NULL) {
6764 CH_ERR(sc, "failed to allocate task queue %d\n", i);
6765 return (ENOMEM);
6766 }
6767 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6768 device_get_nameunit(sc->dev), i);
6769 }
6770
6771 if (!(sc->flags & IS_VF)) {
6772 write_global_rss_key(sc);
6773 t4_intr_enable(sc);
6774 }
6775 return (0);
6776 }
6777
6778 int
adapter_init(struct adapter * sc)6779 adapter_init(struct adapter *sc)
6780 {
6781 int rc;
6782
6783 ASSERT_SYNCHRONIZED_OP(sc);
6784 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6785 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6786 ("%s: FULL_INIT_DONE already", __func__));
6787
6788 rc = adapter_full_init(sc);
6789 if (rc != 0)
6790 adapter_full_uninit(sc);
6791 else
6792 sc->flags |= FULL_INIT_DONE;
6793
6794 return (rc);
6795 }
6796
6797 /*
6798 * Idempotent.
6799 */
6800 static void
adapter_full_uninit(struct adapter * sc)6801 adapter_full_uninit(struct adapter *sc)
6802 {
6803 int i;
6804
6805 t4_teardown_adapter_queues(sc);
6806
6807 for (i = 0; i < nitems(sc->tq); i++) {
6808 if (sc->tq[i] == NULL)
6809 continue;
6810 taskqueue_free(sc->tq[i]);
6811 sc->tq[i] = NULL;
6812 }
6813
6814 sc->flags &= ~FULL_INIT_DONE;
6815 }
6816
6817 #ifdef RSS
6818 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6819 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6820 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6821 RSS_HASHTYPE_RSS_UDP_IPV6)
6822
6823 /* Translates kernel hash types to hardware. */
6824 static int
hashconfig_to_hashen(int hashconfig)6825 hashconfig_to_hashen(int hashconfig)
6826 {
6827 int hashen = 0;
6828
6829 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6830 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6831 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6832 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6833 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6834 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6835 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6836 }
6837 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6838 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6839 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6840 }
6841 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6842 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6843 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6844 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6845
6846 return (hashen);
6847 }
6848
6849 /* Translates hardware hash types to kernel. */
6850 static int
hashen_to_hashconfig(int hashen)6851 hashen_to_hashconfig(int hashen)
6852 {
6853 int hashconfig = 0;
6854
6855 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6856 /*
6857 * If UDP hashing was enabled it must have been enabled for
6858 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
6859 * enabling any 4-tuple hash is nonsense configuration.
6860 */
6861 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6862 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6863
6864 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6865 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6866 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6867 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6868 }
6869 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6870 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6871 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6872 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6873 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6874 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6875 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6876 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6877
6878 return (hashconfig);
6879 }
6880 #endif
6881
6882 /*
6883 * Idempotent.
6884 */
6885 static int
vi_full_init(struct vi_info * vi)6886 vi_full_init(struct vi_info *vi)
6887 {
6888 struct adapter *sc = vi->adapter;
6889 struct sge_rxq *rxq;
6890 int rc, i, j;
6891 #ifdef RSS
6892 int nbuckets = rss_getnumbuckets();
6893 int hashconfig = rss_gethashconfig();
6894 int extra;
6895 #endif
6896
6897 ASSERT_SYNCHRONIZED_OP(sc);
6898
6899 /*
6900 * Allocate tx/rx/fl queues for this VI.
6901 */
6902 rc = t4_setup_vi_queues(vi);
6903 if (rc != 0)
6904 return (rc);
6905
6906 /*
6907 * Setup RSS for this VI. Save a copy of the RSS table for later use.
6908 */
6909 if (vi->nrxq > vi->rss_size) {
6910 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6911 "some queues will never receive traffic.\n", vi->nrxq,
6912 vi->rss_size);
6913 } else if (vi->rss_size % vi->nrxq) {
6914 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6915 "expect uneven traffic distribution.\n", vi->nrxq,
6916 vi->rss_size);
6917 }
6918 #ifdef RSS
6919 if (vi->nrxq != nbuckets) {
6920 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6921 "performance will be impacted.\n", vi->nrxq, nbuckets);
6922 }
6923 #endif
6924 if (vi->rss == NULL)
6925 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6926 M_ZERO | M_WAITOK);
6927 for (i = 0; i < vi->rss_size;) {
6928 #ifdef RSS
6929 j = rss_get_indirection_to_bucket(i);
6930 j %= vi->nrxq;
6931 rxq = &sc->sge.rxq[vi->first_rxq + j];
6932 vi->rss[i++] = rxq->iq.abs_id;
6933 #else
6934 for_each_rxq(vi, j, rxq) {
6935 vi->rss[i++] = rxq->iq.abs_id;
6936 if (i == vi->rss_size)
6937 break;
6938 }
6939 #endif
6940 }
6941
6942 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6943 vi->rss, vi->rss_size);
6944 if (rc != 0) {
6945 CH_ERR(vi, "rss_config failed: %d\n", rc);
6946 return (rc);
6947 }
6948
6949 #ifdef RSS
6950 vi->hashen = hashconfig_to_hashen(hashconfig);
6951
6952 /*
6953 * We may have had to enable some hashes even though the global config
6954 * wants them disabled. This is a potential problem that must be
6955 * reported to the user.
6956 */
6957 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6958
6959 /*
6960 * If we consider only the supported hash types, then the enabled hashes
6961 * are a superset of the requested hashes. In other words, there cannot
6962 * be any supported hash that was requested but not enabled, but there
6963 * can be hashes that were not requested but had to be enabled.
6964 */
6965 extra &= SUPPORTED_RSS_HASHTYPES;
6966 MPASS((extra & hashconfig) == 0);
6967
6968 if (extra) {
6969 CH_ALERT(vi,
6970 "global RSS config (0x%x) cannot be accommodated.\n",
6971 hashconfig);
6972 }
6973 if (extra & RSS_HASHTYPE_RSS_IPV4)
6974 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6975 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6976 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6977 if (extra & RSS_HASHTYPE_RSS_IPV6)
6978 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6979 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6980 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6981 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6982 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6983 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6984 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6985 #else
6986 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6987 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6988 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6989 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6990 #endif
6991 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6992 0, 0);
6993 if (rc != 0) {
6994 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6995 return (rc);
6996 }
6997
6998 return (0);
6999 }
7000
7001 int
vi_init(struct vi_info * vi)7002 vi_init(struct vi_info *vi)
7003 {
7004 int rc;
7005
7006 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7007 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7008 ("%s: VI_INIT_DONE already", __func__));
7009
7010 rc = vi_full_init(vi);
7011 if (rc != 0)
7012 vi_full_uninit(vi);
7013 else
7014 vi->flags |= VI_INIT_DONE;
7015
7016 return (rc);
7017 }
7018
7019 /*
7020 * Idempotent.
7021 */
7022 static void
vi_full_uninit(struct vi_info * vi)7023 vi_full_uninit(struct vi_info *vi)
7024 {
7025
7026 if (vi->flags & VI_INIT_DONE) {
7027 quiesce_vi(vi);
7028 free(vi->rss, M_CXGBE);
7029 free(vi->nm_rss, M_CXGBE);
7030 }
7031
7032 t4_teardown_vi_queues(vi);
7033 vi->flags &= ~VI_INIT_DONE;
7034 }
7035
7036 static void
quiesce_txq(struct sge_txq * txq)7037 quiesce_txq(struct sge_txq *txq)
7038 {
7039 struct sge_eq *eq = &txq->eq;
7040 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7041
7042 MPASS(eq->flags & EQ_SW_ALLOCATED);
7043 MPASS(!(eq->flags & EQ_ENABLED));
7044
7045 /* Wait for the mp_ring to empty. */
7046 while (!mp_ring_is_idle(txq->r)) {
7047 mp_ring_check_drainage(txq->r, 4096);
7048 pause("rquiesce", 1);
7049 }
7050 MPASS(txq->txp.npkt == 0);
7051
7052 if (eq->flags & EQ_HW_ALLOCATED) {
7053 /*
7054 * Hardware is alive and working normally. Wait for it to
7055 * finish and then wait for the driver to catch up and reclaim
7056 * all descriptors.
7057 */
7058 while (spg->cidx != htobe16(eq->pidx))
7059 pause("equiesce", 1);
7060 while (eq->cidx != eq->pidx)
7061 pause("dquiesce", 1);
7062 } else {
7063 /*
7064 * Hardware is unavailable. Discard all pending tx and reclaim
7065 * descriptors directly.
7066 */
7067 TXQ_LOCK(txq);
7068 while (eq->cidx != eq->pidx) {
7069 struct mbuf *m, *nextpkt;
7070 struct tx_sdesc *txsd;
7071
7072 txsd = &txq->sdesc[eq->cidx];
7073 for (m = txsd->m; m != NULL; m = nextpkt) {
7074 nextpkt = m->m_nextpkt;
7075 m->m_nextpkt = NULL;
7076 m_freem(m);
7077 }
7078 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7079 }
7080 spg->pidx = spg->cidx = htobe16(eq->cidx);
7081 TXQ_UNLOCK(txq);
7082 }
7083 }
7084
7085 static void
quiesce_wrq(struct sge_wrq * wrq)7086 quiesce_wrq(struct sge_wrq *wrq)
7087 {
7088 struct wrqe *wr;
7089
7090 TXQ_LOCK(wrq);
7091 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7092 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7093 #ifdef INVARIANTS
7094 wrq->nwr_pending--;
7095 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7096 #endif
7097 free(wr, M_CXGBE);
7098 }
7099 MPASS(wrq->nwr_pending == 0);
7100 MPASS(wrq->ndesc_needed == 0);
7101 wrq->nwr_pending = 0;
7102 wrq->ndesc_needed = 0;
7103 TXQ_UNLOCK(wrq);
7104 }
7105
7106 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7107 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7108 {
7109 /* Synchronize with the interrupt handler */
7110 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7111 pause("iqfree", 1);
7112
7113 if (fl != NULL) {
7114 MPASS(iq->flags & IQ_HAS_FL);
7115
7116 mtx_lock(&sc->sfl_lock);
7117 FL_LOCK(fl);
7118 fl->flags |= FL_DOOMED;
7119 FL_UNLOCK(fl);
7120 callout_stop(&sc->sfl_callout);
7121 mtx_unlock(&sc->sfl_lock);
7122
7123 KASSERT((fl->flags & FL_STARVING) == 0,
7124 ("%s: still starving", __func__));
7125
7126 /* Release all buffers if hardware is no longer available. */
7127 if (!(iq->flags & IQ_HW_ALLOCATED))
7128 free_fl_buffers(sc, fl);
7129 }
7130 }
7131
7132 /*
7133 * Wait for all activity on all the queues of the VI to complete. It is assumed
7134 * that no new work is being enqueued by the hardware or the driver. That part
7135 * should be arranged before calling this function.
7136 */
7137 static void
quiesce_vi(struct vi_info * vi)7138 quiesce_vi(struct vi_info *vi)
7139 {
7140 int i;
7141 struct adapter *sc = vi->adapter;
7142 struct sge_rxq *rxq;
7143 struct sge_txq *txq;
7144 #ifdef TCP_OFFLOAD
7145 struct sge_ofld_rxq *ofld_rxq;
7146 #endif
7147 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7148 struct sge_ofld_txq *ofld_txq;
7149 #endif
7150
7151 if (!(vi->flags & VI_INIT_DONE))
7152 return;
7153
7154 for_each_txq(vi, i, txq) {
7155 quiesce_txq(txq);
7156 }
7157
7158 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7159 for_each_ofld_txq(vi, i, ofld_txq) {
7160 quiesce_wrq(&ofld_txq->wrq);
7161 }
7162 #endif
7163
7164 for_each_rxq(vi, i, rxq) {
7165 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7166 }
7167
7168 #ifdef TCP_OFFLOAD
7169 for_each_ofld_rxq(vi, i, ofld_rxq) {
7170 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7171 }
7172 #endif
7173 }
7174
7175 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7176 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7177 driver_intr_t *handler, void *arg, char *name)
7178 {
7179 int rc;
7180
7181 irq->rid = rid;
7182 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7183 RF_SHAREABLE | RF_ACTIVE);
7184 if (irq->res == NULL) {
7185 device_printf(sc->dev,
7186 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7187 return (ENOMEM);
7188 }
7189
7190 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7191 NULL, handler, arg, &irq->tag);
7192 if (rc != 0) {
7193 device_printf(sc->dev,
7194 "failed to setup interrupt for rid %d, name %s: %d\n",
7195 rid, name, rc);
7196 } else if (name)
7197 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7198
7199 return (rc);
7200 }
7201
7202 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7203 t4_free_irq(struct adapter *sc, struct irq *irq)
7204 {
7205 if (irq->tag)
7206 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7207 if (irq->res)
7208 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7209
7210 bzero(irq, sizeof(*irq));
7211
7212 return (0);
7213 }
7214
7215 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7216 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7217 {
7218
7219 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7220 t4_get_regs(sc, buf, regs->len);
7221 }
7222
7223 #define A_PL_INDIR_CMD 0x1f8
7224
7225 #define S_PL_AUTOINC 31
7226 #define M_PL_AUTOINC 0x1U
7227 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7228 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7229
7230 #define S_PL_VFID 20
7231 #define M_PL_VFID 0xffU
7232 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7233 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7234
7235 #define S_PL_ADDR 0
7236 #define M_PL_ADDR 0xfffffU
7237 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7238 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7239
7240 #define A_PL_INDIR_DATA 0x1fc
7241
7242 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7243 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7244 {
7245 u32 stats[2];
7246
7247 if (sc->flags & IS_VF) {
7248 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7249 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7250 } else {
7251 mtx_assert(&sc->reg_lock, MA_OWNED);
7252 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7253 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7254 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7255 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7256 }
7257 return (((uint64_t)stats[1]) << 32 | stats[0]);
7258 }
7259
7260 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7261 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7262 {
7263
7264 #define GET_STAT(name) \
7265 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7266
7267 if (!(sc->flags & IS_VF))
7268 mtx_lock(&sc->reg_lock);
7269 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7270 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7271 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7272 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7273 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7274 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7275 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7276 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7277 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7278 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7279 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7280 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7281 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7282 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7283 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7284 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7285 if (!(sc->flags & IS_VF))
7286 mtx_unlock(&sc->reg_lock);
7287
7288 #undef GET_STAT
7289 }
7290
7291 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7292 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7293 {
7294 int reg;
7295
7296 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7297 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7298 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7299 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7300 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7301 }
7302
7303 static void
vi_refresh_stats(struct vi_info * vi)7304 vi_refresh_stats(struct vi_info *vi)
7305 {
7306 struct timeval tv;
7307 const struct timeval interval = {0, 250000}; /* 250ms */
7308
7309 mtx_assert(&vi->tick_mtx, MA_OWNED);
7310
7311 if (vi->flags & VI_SKIP_STATS)
7312 return;
7313
7314 getmicrotime(&tv);
7315 timevalsub(&tv, &interval);
7316 if (timevalcmp(&tv, &vi->last_refreshed, <))
7317 return;
7318
7319 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7320 getmicrotime(&vi->last_refreshed);
7321 }
7322
7323 static void
cxgbe_refresh_stats(struct vi_info * vi)7324 cxgbe_refresh_stats(struct vi_info *vi)
7325 {
7326 u_int i, v, tnl_cong_drops, chan_map;
7327 struct timeval tv;
7328 const struct timeval interval = {0, 250000}; /* 250ms */
7329 struct port_info *pi;
7330 struct adapter *sc;
7331
7332 mtx_assert(&vi->tick_mtx, MA_OWNED);
7333
7334 if (vi->flags & VI_SKIP_STATS)
7335 return;
7336
7337 getmicrotime(&tv);
7338 timevalsub(&tv, &interval);
7339 if (timevalcmp(&tv, &vi->last_refreshed, <))
7340 return;
7341
7342 pi = vi->pi;
7343 sc = vi->adapter;
7344 tnl_cong_drops = 0;
7345 t4_get_port_stats(sc, pi->port_id, &pi->stats);
7346 chan_map = pi->rx_e_chan_map;
7347 while (chan_map) {
7348 i = ffs(chan_map) - 1;
7349 mtx_lock(&sc->reg_lock);
7350 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7351 A_TP_MIB_TNL_CNG_DROP_0 + i);
7352 mtx_unlock(&sc->reg_lock);
7353 tnl_cong_drops += v;
7354 chan_map &= ~(1 << i);
7355 }
7356 pi->tnl_cong_drops = tnl_cong_drops;
7357 getmicrotime(&vi->last_refreshed);
7358 }
7359
7360 static void
cxgbe_tick(void * arg)7361 cxgbe_tick(void *arg)
7362 {
7363 struct vi_info *vi = arg;
7364
7365 MPASS(IS_MAIN_VI(vi));
7366 mtx_assert(&vi->tick_mtx, MA_OWNED);
7367
7368 cxgbe_refresh_stats(vi);
7369 callout_schedule(&vi->tick, hz);
7370 }
7371
7372 static void
vi_tick(void * arg)7373 vi_tick(void *arg)
7374 {
7375 struct vi_info *vi = arg;
7376
7377 mtx_assert(&vi->tick_mtx, MA_OWNED);
7378
7379 vi_refresh_stats(vi);
7380 callout_schedule(&vi->tick, hz);
7381 }
7382
7383 /*
7384 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7385 */
7386 static char *caps_decoder[] = {
7387 "\20\001IPMI\002NCSI", /* 0: NBM */
7388 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7389 "\20\001INGRESS\002EGRESS", /* 2: switch */
7390 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7391 "\006HASHFILTER\007ETHOFLD",
7392 "\20\001TOE", /* 4: TOE */
7393 "\20\001RDDP\002RDMAC", /* 5: RDMA */
7394 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7395 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7396 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7397 "\007T10DIF"
7398 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7399 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7400 "\004TLS_HW",
7401 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7402 "\004PO_INITIATOR\005PO_TARGET",
7403 };
7404
7405 void
t4_sysctls(struct adapter * sc)7406 t4_sysctls(struct adapter *sc)
7407 {
7408 struct sysctl_ctx_list *ctx = &sc->ctx;
7409 struct sysctl_oid *oid;
7410 struct sysctl_oid_list *children, *c0;
7411 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7412
7413 /*
7414 * dev.t4nex.X.
7415 */
7416 oid = device_get_sysctl_tree(sc->dev);
7417 c0 = children = SYSCTL_CHILDREN(oid);
7418
7419 sc->sc_do_rxcopy = 1;
7420 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7421 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7422
7423 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7424 sc->params.nports, "# of ports");
7425
7426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7427 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7428 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7429 "available doorbells");
7430
7431 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7432 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7433
7434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7435 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7436 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7437 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7438
7439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7440 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7441 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7442 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7443
7444 t4_sge_sysctls(sc, ctx, children);
7445
7446 sc->lro_timeout = 100;
7447 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7448 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7449
7450 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7451 &sc->debug_flags, 0, "flags to enable runtime debugging");
7452
7453 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7454 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7455
7456 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7457 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7458
7459 if (sc->flags & IS_VF)
7460 return;
7461
7462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7463 NULL, chip_rev(sc), "chip hardware revision");
7464
7465 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7466 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7467
7468 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7469 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7470
7471 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7472 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7473
7474 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7475 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7476
7477 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7478 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7479
7480 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7481 sc->er_version, 0, "expansion ROM version");
7482
7483 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7484 sc->bs_version, 0, "bootstrap firmware version");
7485
7486 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7487 NULL, sc->params.scfg_vers, "serial config version");
7488
7489 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7490 NULL, sc->params.vpd_vers, "VPD version");
7491
7492 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7493 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7494
7495 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7496 sc->cfcsum, "config file checksum");
7497
7498 #define SYSCTL_CAP(name, n, text) \
7499 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7500 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7501 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7502 "available " text " capabilities")
7503
7504 SYSCTL_CAP(nbmcaps, 0, "NBM");
7505 SYSCTL_CAP(linkcaps, 1, "link");
7506 SYSCTL_CAP(switchcaps, 2, "switch");
7507 SYSCTL_CAP(niccaps, 3, "NIC");
7508 SYSCTL_CAP(toecaps, 4, "TCP offload");
7509 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7510 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7511 SYSCTL_CAP(cryptocaps, 7, "crypto");
7512 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7513 #undef SYSCTL_CAP
7514
7515 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7516 NULL, sc->tids.nftids, "number of filters");
7517
7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7519 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7520 sysctl_temperature, "I", "chip temperature (in Celsius)");
7521 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7522 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7523 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7524
7525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7526 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7527 sysctl_loadavg, "A",
7528 "microprocessor load averages (debug firmwares only)");
7529
7530 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7531 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7532 "I", "core Vdd (in mV)");
7533
7534 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7535 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7536 sysctl_cpus, "A", "local CPUs");
7537
7538 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7539 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7540 sysctl_cpus, "A", "preferred CPUs for interrupts");
7541
7542 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7543 &sc->swintr, 0, "software triggered interrupts");
7544
7545 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7546 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7547 "1 = reset adapter, 0 = zero reset counter");
7548
7549 /*
7550 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7551 */
7552 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7553 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7554 "logs and miscellaneous information");
7555 children = SYSCTL_CHILDREN(oid);
7556
7557 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7558 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7559 sysctl_cctrl, "A", "congestion control");
7560
7561 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7562 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7563 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7564
7565 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7566 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7567 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7568
7569 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7570 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7571 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7572
7573 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7574 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7575 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7576
7577 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7578 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7579 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7580
7581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7582 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7583 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7584
7585 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7586 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7587 sysctl_cim_la, "A", "CIM logic analyzer");
7588
7589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7590 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7591 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7592
7593 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7594 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7595 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7596
7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7599 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7600
7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7603 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7604
7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7606 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7607 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7608
7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7610 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7611 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7612
7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7614 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7615 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7616
7617 if (chip_id(sc) > CHELSIO_T4) {
7618 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7619 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7620 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7621 "CIM OBQ 6 (SGE0-RX)");
7622
7623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7624 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7625 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7626 "CIM OBQ 7 (SGE1-RX)");
7627 }
7628
7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7630 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7631 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7632
7633 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7634 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7635 sysctl_cim_qcfg, "A", "CIM queue configuration");
7636
7637 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7638 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7639 sysctl_cpl_stats, "A", "CPL statistics");
7640
7641 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7642 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7643 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7644
7645 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7646 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7647 sysctl_tid_stats, "A", "tid stats");
7648
7649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7650 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7651 sysctl_devlog, "A", "firmware's device log");
7652
7653 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7654 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7655 sysctl_fcoe_stats, "A", "FCoE statistics");
7656
7657 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7658 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7659 sysctl_hw_sched, "A", "hardware scheduler ");
7660
7661 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7662 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7663 sysctl_l2t, "A", "hardware L2 table");
7664
7665 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7666 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7667 sysctl_smt, "A", "hardware source MAC table");
7668
7669 #ifdef INET6
7670 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7671 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7672 sysctl_clip, "A", "active CLIP table entries");
7673 #endif
7674
7675 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7676 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7677 sysctl_lb_stats, "A", "loopback statistics");
7678
7679 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7680 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7681 sysctl_meminfo, "A", "memory regions");
7682
7683 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7684 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7685 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7686 "A", "MPS TCAM entries");
7687
7688 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7689 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7690 sysctl_path_mtus, "A", "path MTUs");
7691
7692 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7693 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7694 sysctl_pm_stats, "A", "PM statistics");
7695
7696 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7697 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7698 sysctl_rdma_stats, "A", "RDMA statistics");
7699
7700 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7701 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7702 sysctl_tcp_stats, "A", "TCP statistics");
7703
7704 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7705 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7706 sysctl_tids, "A", "TID information");
7707
7708 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7709 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7710 sysctl_tp_err_stats, "A", "TP error statistics");
7711
7712 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7713 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7714 sysctl_tnl_stats, "A", "TP tunnel statistics");
7715
7716 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7717 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7718 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7719
7720 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7721 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7722 sysctl_tp_la, "A", "TP logic analyzer");
7723
7724 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7725 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7726 sysctl_tx_rate, "A", "Tx rate");
7727
7728 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7729 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7730 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7731
7732 if (chip_id(sc) >= CHELSIO_T5) {
7733 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7734 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7735 sysctl_wcwr_stats, "A", "write combined work requests");
7736 }
7737
7738 #ifdef KERN_TLS
7739 if (is_ktls(sc)) {
7740 /*
7741 * dev.t4nex.0.tls.
7742 */
7743 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7744 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7745 children = SYSCTL_CHILDREN(oid);
7746
7747 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7748 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7749 "keys in work requests (1) or attempt to store TLS keys "
7750 "in card memory.");
7751
7752 if (is_t6(sc))
7753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7754 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7755 "combine TCB field updates with TLS record work "
7756 "requests.");
7757 }
7758 #endif
7759
7760 #ifdef TCP_OFFLOAD
7761 if (is_offload(sc)) {
7762 int i;
7763 char s[4];
7764
7765 /*
7766 * dev.t4nex.X.toe.
7767 */
7768 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7769 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7770 children = SYSCTL_CHILDREN(oid);
7771
7772 sc->tt.cong_algorithm = -1;
7773 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7774 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7775 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7776 "3 = highspeed)");
7777
7778 sc->tt.sndbuf = -1;
7779 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7780 &sc->tt.sndbuf, 0, "hardware send buffer");
7781
7782 sc->tt.ddp = 0;
7783 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7784 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7785 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7786 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7787
7788 sc->tt.rx_coalesce = -1;
7789 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7790 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7791
7792 sc->tt.tls = 1;
7793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7794 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7795 "Inline TLS allowed");
7796
7797 sc->tt.tx_align = -1;
7798 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7799 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7800
7801 sc->tt.tx_zcopy = 0;
7802 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7803 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7804 "Enable zero-copy aio_write(2)");
7805
7806 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7807 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7808 "cop_managed_offloading", CTLFLAG_RW,
7809 &sc->tt.cop_managed_offloading, 0,
7810 "COP (Connection Offload Policy) controls all TOE offload");
7811
7812 sc->tt.autorcvbuf_inc = 16 * 1024;
7813 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7814 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7815 "autorcvbuf increment");
7816
7817 sc->tt.update_hc_on_pmtu_change = 1;
7818 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7819 "update_hc_on_pmtu_change", CTLFLAG_RW,
7820 &sc->tt.update_hc_on_pmtu_change, 0,
7821 "Update hostcache entry if the PMTU changes");
7822
7823 sc->tt.iso = 1;
7824 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7825 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7826
7827 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7828 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7829 sysctl_tp_tick, "A", "TP timer tick (us)");
7830
7831 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7832 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7833 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7834
7835 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7836 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7837 sysctl_tp_tick, "A", "DACK tick (us)");
7838
7839 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7840 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7841 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7842
7843 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7844 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7845 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7846 "Minimum retransmit interval (us)");
7847
7848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7849 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7850 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7851 "Maximum retransmit interval (us)");
7852
7853 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7854 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7855 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7856 "Persist timer min (us)");
7857
7858 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7859 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7860 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7861 "Persist timer max (us)");
7862
7863 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7864 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7865 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7866 "Keepalive idle timer (us)");
7867
7868 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7869 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7870 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7871 "Keepalive interval timer (us)");
7872
7873 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7874 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7875 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7876
7877 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7878 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7879 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7880 "FINWAIT2 timer (us)");
7881
7882 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7883 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7884 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7885 "Number of SYN retransmissions before abort");
7886
7887 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7888 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7889 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7890 "Number of retransmissions before abort");
7891
7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7893 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7894 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7895 "Number of keepalive probes before abort");
7896
7897 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7898 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7899 "TOE retransmit backoffs");
7900 children = SYSCTL_CHILDREN(oid);
7901 for (i = 0; i < 16; i++) {
7902 snprintf(s, sizeof(s), "%u", i);
7903 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7904 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7905 i, sysctl_tp_backoff, "IU",
7906 "TOE retransmit backoff");
7907 }
7908 }
7909 #endif
7910 }
7911
7912 void
vi_sysctls(struct vi_info * vi)7913 vi_sysctls(struct vi_info *vi)
7914 {
7915 struct sysctl_ctx_list *ctx = &vi->ctx;
7916 struct sysctl_oid *oid;
7917 struct sysctl_oid_list *children;
7918
7919 /*
7920 * dev.v?(cxgbe|cxl).X.
7921 */
7922 oid = device_get_sysctl_tree(vi->dev);
7923 children = SYSCTL_CHILDREN(oid);
7924
7925 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7926 vi->viid, "VI identifer");
7927 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7928 &vi->nrxq, 0, "# of rx queues");
7929 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7930 &vi->ntxq, 0, "# of tx queues");
7931 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7932 &vi->first_rxq, 0, "index of first rx queue");
7933 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7934 &vi->first_txq, 0, "index of first tx queue");
7935 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7936 vi->rss_base, "start of RSS indirection table");
7937 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7938 vi->rss_size, "size of RSS indirection table");
7939
7940 if (IS_MAIN_VI(vi)) {
7941 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7942 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7943 sysctl_noflowq, "IU",
7944 "Reserve queue 0 for non-flowid packets");
7945 }
7946
7947 if (vi->adapter->flags & IS_VF) {
7948 MPASS(vi->flags & TX_USES_VM_WR);
7949 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7950 NULL, 1, "use VM work requests for transmit");
7951 } else {
7952 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7953 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7954 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7955 }
7956
7957 #ifdef TCP_OFFLOAD
7958 if (vi->nofldrxq != 0) {
7959 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7960 &vi->nofldrxq, 0,
7961 "# of rx queues for offloaded TCP connections");
7962 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7963 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7964 "index of first TOE rx queue");
7965 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7966 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7967 sysctl_holdoff_tmr_idx_ofld, "I",
7968 "holdoff timer index for TOE queues");
7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7970 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7971 sysctl_holdoff_pktc_idx_ofld, "I",
7972 "holdoff packet counter index for TOE queues");
7973 }
7974 #endif
7975 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7976 if (vi->nofldtxq != 0) {
7977 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7978 &vi->nofldtxq, 0,
7979 "# of tx queues for TOE/ETHOFLD");
7980 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7981 CTLFLAG_RD, &vi->first_ofld_txq, 0,
7982 "index of first TOE/ETHOFLD tx queue");
7983 }
7984 #endif
7985 #ifdef DEV_NETMAP
7986 if (vi->nnmrxq != 0) {
7987 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7988 &vi->nnmrxq, 0, "# of netmap rx queues");
7989 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7990 &vi->nnmtxq, 0, "# of netmap tx queues");
7991 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7992 CTLFLAG_RD, &vi->first_nm_rxq, 0,
7993 "index of first netmap rx queue");
7994 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7995 CTLFLAG_RD, &vi->first_nm_txq, 0,
7996 "index of first netmap tx queue");
7997 }
7998 #endif
7999
8000 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8002 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8003 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8004 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8005 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8006
8007 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8008 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8009 sysctl_qsize_rxq, "I", "rx queue size");
8010 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8011 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8012 sysctl_qsize_txq, "I", "tx queue size");
8013 }
8014
8015 static void
cxgbe_sysctls(struct port_info * pi)8016 cxgbe_sysctls(struct port_info *pi)
8017 {
8018 struct sysctl_ctx_list *ctx = &pi->ctx;
8019 struct sysctl_oid *oid;
8020 struct sysctl_oid_list *children, *children2;
8021 struct adapter *sc = pi->adapter;
8022 int i;
8023 char name[16];
8024 static char *tc_flags = {"\20\1USER"};
8025
8026 /*
8027 * dev.cxgbe.X.
8028 */
8029 oid = device_get_sysctl_tree(pi->dev);
8030 children = SYSCTL_CHILDREN(oid);
8031
8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8034 sysctl_linkdnrc, "A", "reason why link is down");
8035 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8036 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8037 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8038 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8039 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8040 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8041 sysctl_btphy, "I", "PHY firmware version");
8042 }
8043
8044 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8045 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8046 sysctl_pause_settings, "A",
8047 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8048 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8049 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8050 "FEC in use on the link");
8051 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8052 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8053 sysctl_requested_fec, "A",
8054 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8056 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8057 "FEC recommended by the cable/transceiver");
8058 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8059 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8060 sysctl_autoneg, "I",
8061 "autonegotiation (-1 = not supported)");
8062 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8063 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8064 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8065
8066 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8067 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8068 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8069 &pi->link_cfg.pcaps, 0, "port capabilities");
8070 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8071 &pi->link_cfg.acaps, 0, "advertised capabilities");
8072 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8073 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8074
8075 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8076 port_top_speed(pi), "max speed (in Gbps)");
8077 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8078 pi->mps_bg_map, "MPS buffer group map");
8079 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8080 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8081 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8082 pi->tx_chan, "TP tx c-channel");
8083 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8084 pi->rx_chan, "TP rx c-channel");
8085
8086 if (sc->flags & IS_VF)
8087 return;
8088
8089 /*
8090 * dev.(cxgbe|cxl).X.tc.
8091 */
8092 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8093 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8094 "Tx scheduler traffic classes (cl_rl)");
8095 children2 = SYSCTL_CHILDREN(oid);
8096 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8097 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8098 "pktsize for per-flow cl-rl (0 means up to the driver )");
8099 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8100 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8101 "burstsize for per-flow cl-rl (0 means up to the driver)");
8102 for (i = 0; i < sc->params.nsched_cls; i++) {
8103 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8104
8105 snprintf(name, sizeof(name), "%d", i);
8106 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8107 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8108 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8109 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8110 CTLFLAG_RD, &tc->state, 0, "current state");
8111 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8112 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8113 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8114 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8115 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8116 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8117 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8118 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8119 "traffic class parameters");
8120 }
8121
8122 /*
8123 * dev.cxgbe.X.stats.
8124 */
8125 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8126 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8127 children = SYSCTL_CHILDREN(oid);
8128 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8129 &pi->tx_parse_error, 0,
8130 "# of tx packets with invalid length or # of segments");
8131
8132 #define T4_REGSTAT(name, stat, desc) \
8133 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8134 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8135 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8136 sysctl_handle_t4_reg64, "QU", desc)
8137
8138 /* We get these from port_stats and they may be stale by up to 1s */
8139 #define T4_PORTSTAT(name, desc) \
8140 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8141 &pi->stats.name, desc)
8142
8143 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8144 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8145 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8146 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8147 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8148 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8149 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8150 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8151 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8152 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8153 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8154 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8155 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8156 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8157 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8158 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8159 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8160 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8161 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8162 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8163 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8164 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8165 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8166
8167 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8168 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8169 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8170 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8171 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8172 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8173 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8174 if (is_t6(sc)) {
8175 T4_PORTSTAT(rx_fcs_err,
8176 "# of frames received with bad FCS since last link up");
8177 } else {
8178 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8179 "# of frames received with bad FCS");
8180 }
8181 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8182 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8183 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8184 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8185 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8186 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8187 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8188 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8189 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8190 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8191 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8192 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8193 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8194 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8195 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8196 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8197 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8198 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8199 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8200
8201 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8202 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8203 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8204 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8205 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8206 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8207 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8208 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8209
8210 #undef T4_REGSTAT
8211 #undef T4_PORTSTAT
8212 }
8213
8214 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8215 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8216 {
8217 int rc, *i, space = 0;
8218 struct sbuf sb;
8219
8220 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8221 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8222 if (space)
8223 sbuf_printf(&sb, " ");
8224 sbuf_printf(&sb, "%d", *i);
8225 space = 1;
8226 }
8227 rc = sbuf_finish(&sb);
8228 sbuf_delete(&sb);
8229 return (rc);
8230 }
8231
8232 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8233 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8234 {
8235 int rc;
8236 struct sbuf *sb;
8237
8238 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8239 if (sb == NULL)
8240 return (ENOMEM);
8241
8242 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8243 rc = sbuf_finish(sb);
8244 sbuf_delete(sb);
8245
8246 return (rc);
8247 }
8248
8249 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8250 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8251 {
8252 int rc;
8253 struct sbuf *sb;
8254
8255 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8256 if (sb == NULL)
8257 return (ENOMEM);
8258
8259 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8260 rc = sbuf_finish(sb);
8261 sbuf_delete(sb);
8262
8263 return (rc);
8264 }
8265
8266 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8267 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8268 {
8269 struct port_info *pi = arg1;
8270 int op = arg2;
8271 struct adapter *sc = pi->adapter;
8272 u_int v;
8273 int rc;
8274
8275 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8276 if (rc)
8277 return (rc);
8278 if (hw_off_limits(sc))
8279 rc = ENXIO;
8280 else {
8281 /* XXX: magic numbers */
8282 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8283 op ? 0x20 : 0xc820, &v);
8284 }
8285 end_synchronized_op(sc, 0);
8286 if (rc)
8287 return (rc);
8288 if (op == 0)
8289 v /= 256;
8290
8291 rc = sysctl_handle_int(oidp, &v, 0, req);
8292 return (rc);
8293 }
8294
8295 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8296 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8297 {
8298 struct vi_info *vi = arg1;
8299 int rc, val;
8300
8301 val = vi->rsrv_noflowq;
8302 rc = sysctl_handle_int(oidp, &val, 0, req);
8303 if (rc != 0 || req->newptr == NULL)
8304 return (rc);
8305
8306 if ((val >= 1) && (vi->ntxq > 1))
8307 vi->rsrv_noflowq = 1;
8308 else
8309 vi->rsrv_noflowq = 0;
8310
8311 return (rc);
8312 }
8313
8314 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8315 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8316 {
8317 struct vi_info *vi = arg1;
8318 struct adapter *sc = vi->adapter;
8319 int rc, val, i;
8320
8321 MPASS(!(sc->flags & IS_VF));
8322
8323 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8324 rc = sysctl_handle_int(oidp, &val, 0, req);
8325 if (rc != 0 || req->newptr == NULL)
8326 return (rc);
8327
8328 if (val != 0 && val != 1)
8329 return (EINVAL);
8330
8331 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8332 "t4txvm");
8333 if (rc)
8334 return (rc);
8335 if (hw_off_limits(sc))
8336 rc = ENXIO;
8337 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8338 /*
8339 * We don't want parse_pkt to run with one setting (VF or PF)
8340 * and then eth_tx to see a different setting but still use
8341 * stale information calculated by parse_pkt.
8342 */
8343 rc = EBUSY;
8344 } else {
8345 struct port_info *pi = vi->pi;
8346 struct sge_txq *txq;
8347 uint32_t ctrl0;
8348 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8349
8350 if (val) {
8351 vi->flags |= TX_USES_VM_WR;
8352 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8353 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8354 V_TXPKT_INTF(pi->tx_chan));
8355 if (!(sc->flags & IS_VF))
8356 npkt--;
8357 } else {
8358 vi->flags &= ~TX_USES_VM_WR;
8359 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8360 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8361 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8362 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8363 }
8364 for_each_txq(vi, i, txq) {
8365 txq->cpl_ctrl0 = ctrl0;
8366 txq->txp.max_npkt = npkt;
8367 }
8368 }
8369 end_synchronized_op(sc, LOCK_HELD);
8370 return (rc);
8371 }
8372
8373 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8374 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8375 {
8376 struct vi_info *vi = arg1;
8377 struct adapter *sc = vi->adapter;
8378 int idx, rc, i;
8379 struct sge_rxq *rxq;
8380 uint8_t v;
8381
8382 idx = vi->tmr_idx;
8383
8384 rc = sysctl_handle_int(oidp, &idx, 0, req);
8385 if (rc != 0 || req->newptr == NULL)
8386 return (rc);
8387
8388 if (idx < 0 || idx >= SGE_NTIMERS)
8389 return (EINVAL);
8390
8391 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8392 "t4tmr");
8393 if (rc)
8394 return (rc);
8395
8396 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8397 for_each_rxq(vi, i, rxq) {
8398 #ifdef atomic_store_rel_8
8399 atomic_store_rel_8(&rxq->iq.intr_params, v);
8400 #else
8401 rxq->iq.intr_params = v;
8402 #endif
8403 }
8404 vi->tmr_idx = idx;
8405
8406 end_synchronized_op(sc, LOCK_HELD);
8407 return (0);
8408 }
8409
8410 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8411 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8412 {
8413 struct vi_info *vi = arg1;
8414 struct adapter *sc = vi->adapter;
8415 int idx, rc;
8416
8417 idx = vi->pktc_idx;
8418
8419 rc = sysctl_handle_int(oidp, &idx, 0, req);
8420 if (rc != 0 || req->newptr == NULL)
8421 return (rc);
8422
8423 if (idx < -1 || idx >= SGE_NCOUNTERS)
8424 return (EINVAL);
8425
8426 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8427 "t4pktc");
8428 if (rc)
8429 return (rc);
8430
8431 if (vi->flags & VI_INIT_DONE)
8432 rc = EBUSY; /* cannot be changed once the queues are created */
8433 else
8434 vi->pktc_idx = idx;
8435
8436 end_synchronized_op(sc, LOCK_HELD);
8437 return (rc);
8438 }
8439
8440 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8441 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8442 {
8443 struct vi_info *vi = arg1;
8444 struct adapter *sc = vi->adapter;
8445 int qsize, rc;
8446
8447 qsize = vi->qsize_rxq;
8448
8449 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8450 if (rc != 0 || req->newptr == NULL)
8451 return (rc);
8452
8453 if (qsize < 128 || (qsize & 7))
8454 return (EINVAL);
8455
8456 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8457 "t4rxqs");
8458 if (rc)
8459 return (rc);
8460
8461 if (vi->flags & VI_INIT_DONE)
8462 rc = EBUSY; /* cannot be changed once the queues are created */
8463 else
8464 vi->qsize_rxq = qsize;
8465
8466 end_synchronized_op(sc, LOCK_HELD);
8467 return (rc);
8468 }
8469
8470 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8471 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8472 {
8473 struct vi_info *vi = arg1;
8474 struct adapter *sc = vi->adapter;
8475 int qsize, rc;
8476
8477 qsize = vi->qsize_txq;
8478
8479 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8480 if (rc != 0 || req->newptr == NULL)
8481 return (rc);
8482
8483 if (qsize < 128 || qsize > 65536)
8484 return (EINVAL);
8485
8486 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8487 "t4txqs");
8488 if (rc)
8489 return (rc);
8490
8491 if (vi->flags & VI_INIT_DONE)
8492 rc = EBUSY; /* cannot be changed once the queues are created */
8493 else
8494 vi->qsize_txq = qsize;
8495
8496 end_synchronized_op(sc, LOCK_HELD);
8497 return (rc);
8498 }
8499
8500 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8501 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8502 {
8503 struct port_info *pi = arg1;
8504 struct adapter *sc = pi->adapter;
8505 struct link_config *lc = &pi->link_cfg;
8506 int rc;
8507
8508 if (req->newptr == NULL) {
8509 struct sbuf *sb;
8510 static char *bits = "\20\1RX\2TX\3AUTO";
8511
8512 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8513 if (sb == NULL)
8514 return (ENOMEM);
8515
8516 if (lc->link_ok) {
8517 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8518 (lc->requested_fc & PAUSE_AUTONEG), bits);
8519 } else {
8520 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8521 PAUSE_RX | PAUSE_AUTONEG), bits);
8522 }
8523 rc = sbuf_finish(sb);
8524 sbuf_delete(sb);
8525 } else {
8526 char s[2];
8527 int n;
8528
8529 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8530 PAUSE_AUTONEG));
8531 s[1] = 0;
8532
8533 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8534 if (rc != 0)
8535 return(rc);
8536
8537 if (s[1] != 0)
8538 return (EINVAL);
8539 if (s[0] < '0' || s[0] > '9')
8540 return (EINVAL); /* not a number */
8541 n = s[0] - '0';
8542 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8543 return (EINVAL); /* some other bit is set too */
8544
8545 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8546 "t4PAUSE");
8547 if (rc)
8548 return (rc);
8549 if (!hw_off_limits(sc)) {
8550 PORT_LOCK(pi);
8551 lc->requested_fc = n;
8552 fixup_link_config(pi);
8553 if (pi->up_vis > 0)
8554 rc = apply_link_config(pi);
8555 set_current_media(pi);
8556 PORT_UNLOCK(pi);
8557 }
8558 end_synchronized_op(sc, 0);
8559 }
8560
8561 return (rc);
8562 }
8563
8564 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8565 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8566 {
8567 struct port_info *pi = arg1;
8568 struct link_config *lc = &pi->link_cfg;
8569 int rc;
8570 struct sbuf *sb;
8571 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8572
8573 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8574 if (sb == NULL)
8575 return (ENOMEM);
8576 if (lc->link_ok)
8577 sbuf_printf(sb, "%b", lc->fec, bits);
8578 else
8579 sbuf_printf(sb, "no link");
8580 rc = sbuf_finish(sb);
8581 sbuf_delete(sb);
8582
8583 return (rc);
8584 }
8585
8586 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8587 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8588 {
8589 struct port_info *pi = arg1;
8590 struct adapter *sc = pi->adapter;
8591 struct link_config *lc = &pi->link_cfg;
8592 int rc;
8593 int8_t old;
8594
8595 if (req->newptr == NULL) {
8596 struct sbuf *sb;
8597 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8598 "\5RSVD3\6auto\7module";
8599
8600 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8601 if (sb == NULL)
8602 return (ENOMEM);
8603
8604 sbuf_printf(sb, "%b", lc->requested_fec, bits);
8605 rc = sbuf_finish(sb);
8606 sbuf_delete(sb);
8607 } else {
8608 char s[8];
8609 int n;
8610
8611 snprintf(s, sizeof(s), "%d",
8612 lc->requested_fec == FEC_AUTO ? -1 :
8613 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8614
8615 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8616 if (rc != 0)
8617 return(rc);
8618
8619 n = strtol(&s[0], NULL, 0);
8620 if (n < 0 || n & FEC_AUTO)
8621 n = FEC_AUTO;
8622 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8623 return (EINVAL);/* some other bit is set too */
8624
8625 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8626 "t4reqf");
8627 if (rc)
8628 return (rc);
8629 PORT_LOCK(pi);
8630 old = lc->requested_fec;
8631 if (n == FEC_AUTO)
8632 lc->requested_fec = FEC_AUTO;
8633 else if (n == 0 || n == FEC_NONE)
8634 lc->requested_fec = FEC_NONE;
8635 else {
8636 if ((lc->pcaps |
8637 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8638 lc->pcaps) {
8639 rc = ENOTSUP;
8640 goto done;
8641 }
8642 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8643 FEC_MODULE);
8644 }
8645 if (!hw_off_limits(sc)) {
8646 fixup_link_config(pi);
8647 if (pi->up_vis > 0) {
8648 rc = apply_link_config(pi);
8649 if (rc != 0) {
8650 lc->requested_fec = old;
8651 if (rc == FW_EPROTO)
8652 rc = ENOTSUP;
8653 }
8654 }
8655 }
8656 done:
8657 PORT_UNLOCK(pi);
8658 end_synchronized_op(sc, 0);
8659 }
8660
8661 return (rc);
8662 }
8663
8664 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)8665 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8666 {
8667 struct port_info *pi = arg1;
8668 struct adapter *sc = pi->adapter;
8669 struct link_config *lc = &pi->link_cfg;
8670 int rc;
8671 int8_t fec;
8672 struct sbuf *sb;
8673 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8674
8675 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8676 if (sb == NULL)
8677 return (ENOMEM);
8678
8679 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8680 rc = EBUSY;
8681 goto done;
8682 }
8683 if (hw_off_limits(sc)) {
8684 rc = ENXIO;
8685 goto done;
8686 }
8687 PORT_LOCK(pi);
8688 if (pi->up_vis == 0) {
8689 /*
8690 * If all the interfaces are administratively down the firmware
8691 * does not report transceiver changes. Refresh port info here.
8692 * This is the only reason we have a synchronized op in this
8693 * function. Just PORT_LOCK would have been enough otherwise.
8694 */
8695 t4_update_port_info(pi);
8696 }
8697
8698 fec = lc->fec_hint;
8699 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8700 !fec_supported(lc->pcaps)) {
8701 PORT_UNLOCK(pi);
8702 sbuf_printf(sb, "n/a");
8703 } else {
8704 if (fec == 0)
8705 fec = FEC_NONE;
8706 PORT_UNLOCK(pi);
8707 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8708 }
8709 rc = sbuf_finish(sb);
8710 done:
8711 sbuf_delete(sb);
8712 end_synchronized_op(sc, 0);
8713
8714 return (rc);
8715 }
8716
8717 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)8718 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8719 {
8720 struct port_info *pi = arg1;
8721 struct adapter *sc = pi->adapter;
8722 struct link_config *lc = &pi->link_cfg;
8723 int rc, val;
8724
8725 if (lc->pcaps & FW_PORT_CAP32_ANEG)
8726 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8727 else
8728 val = -1;
8729 rc = sysctl_handle_int(oidp, &val, 0, req);
8730 if (rc != 0 || req->newptr == NULL)
8731 return (rc);
8732 if (val == 0)
8733 val = AUTONEG_DISABLE;
8734 else if (val == 1)
8735 val = AUTONEG_ENABLE;
8736 else
8737 val = AUTONEG_AUTO;
8738
8739 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8740 "t4aneg");
8741 if (rc)
8742 return (rc);
8743 PORT_LOCK(pi);
8744 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8745 rc = ENOTSUP;
8746 goto done;
8747 }
8748 lc->requested_aneg = val;
8749 if (!hw_off_limits(sc)) {
8750 fixup_link_config(pi);
8751 if (pi->up_vis > 0)
8752 rc = apply_link_config(pi);
8753 set_current_media(pi);
8754 }
8755 done:
8756 PORT_UNLOCK(pi);
8757 end_synchronized_op(sc, 0);
8758 return (rc);
8759 }
8760
8761 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)8762 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8763 {
8764 struct port_info *pi = arg1;
8765 struct adapter *sc = pi->adapter;
8766 struct link_config *lc = &pi->link_cfg;
8767 int rc, val;
8768
8769 val = lc->force_fec;
8770 MPASS(val >= -1 && val <= 1);
8771 rc = sysctl_handle_int(oidp, &val, 0, req);
8772 if (rc != 0 || req->newptr == NULL)
8773 return (rc);
8774 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8775 return (ENOTSUP);
8776 if (val < -1 || val > 1)
8777 return (EINVAL);
8778
8779 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8780 if (rc)
8781 return (rc);
8782 PORT_LOCK(pi);
8783 lc->force_fec = val;
8784 if (!hw_off_limits(sc)) {
8785 fixup_link_config(pi);
8786 if (pi->up_vis > 0)
8787 rc = apply_link_config(pi);
8788 }
8789 PORT_UNLOCK(pi);
8790 end_synchronized_op(sc, 0);
8791 return (rc);
8792 }
8793
8794 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)8795 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8796 {
8797 struct adapter *sc = arg1;
8798 int rc, reg = arg2;
8799 uint64_t val;
8800
8801 mtx_lock(&sc->reg_lock);
8802 if (hw_off_limits(sc))
8803 rc = ENXIO;
8804 else {
8805 rc = 0;
8806 val = t4_read_reg64(sc, reg);
8807 }
8808 mtx_unlock(&sc->reg_lock);
8809 if (rc == 0)
8810 rc = sysctl_handle_64(oidp, &val, 0, req);
8811 return (rc);
8812 }
8813
8814 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)8815 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8816 {
8817 struct adapter *sc = arg1;
8818 int rc, t;
8819 uint32_t param, val;
8820
8821 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8822 if (rc)
8823 return (rc);
8824 if (hw_off_limits(sc))
8825 rc = ENXIO;
8826 else {
8827 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8828 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8829 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8830 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8831 }
8832 end_synchronized_op(sc, 0);
8833 if (rc)
8834 return (rc);
8835
8836 /* unknown is returned as 0 but we display -1 in that case */
8837 t = val == 0 ? -1 : val;
8838
8839 rc = sysctl_handle_int(oidp, &t, 0, req);
8840 return (rc);
8841 }
8842
8843 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)8844 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8845 {
8846 struct adapter *sc = arg1;
8847 int rc;
8848 uint32_t param, val;
8849
8850 if (sc->params.core_vdd == 0) {
8851 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8852 "t4vdd");
8853 if (rc)
8854 return (rc);
8855 if (hw_off_limits(sc))
8856 rc = ENXIO;
8857 else {
8858 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8859 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8860 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8861 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8862 ¶m, &val);
8863 }
8864 end_synchronized_op(sc, 0);
8865 if (rc)
8866 return (rc);
8867 sc->params.core_vdd = val;
8868 }
8869
8870 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8871 }
8872
8873 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)8874 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8875 {
8876 struct adapter *sc = arg1;
8877 int rc, v;
8878 uint32_t param, val;
8879
8880 v = sc->sensor_resets;
8881 rc = sysctl_handle_int(oidp, &v, 0, req);
8882 if (rc != 0 || req->newptr == NULL || v <= 0)
8883 return (rc);
8884
8885 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8886 chip_id(sc) < CHELSIO_T5)
8887 return (ENOTSUP);
8888
8889 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8890 if (rc)
8891 return (rc);
8892 if (hw_off_limits(sc))
8893 rc = ENXIO;
8894 else {
8895 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8896 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8897 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8898 val = 1;
8899 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8900 }
8901 end_synchronized_op(sc, 0);
8902 if (rc == 0)
8903 sc->sensor_resets++;
8904 return (rc);
8905 }
8906
8907 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)8908 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8909 {
8910 struct adapter *sc = arg1;
8911 struct sbuf *sb;
8912 int rc;
8913 uint32_t param, val;
8914
8915 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8916 if (rc)
8917 return (rc);
8918 if (hw_off_limits(sc))
8919 rc = ENXIO;
8920 else {
8921 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8922 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8923 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8924 }
8925 end_synchronized_op(sc, 0);
8926 if (rc)
8927 return (rc);
8928
8929 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8930 if (sb == NULL)
8931 return (ENOMEM);
8932
8933 if (val == 0xffffffff) {
8934 /* Only debug and custom firmwares report load averages. */
8935 sbuf_printf(sb, "not available");
8936 } else {
8937 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8938 (val >> 16) & 0xff);
8939 }
8940 rc = sbuf_finish(sb);
8941 sbuf_delete(sb);
8942
8943 return (rc);
8944 }
8945
8946 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)8947 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8948 {
8949 struct adapter *sc = arg1;
8950 struct sbuf *sb;
8951 int rc, i;
8952 uint16_t incr[NMTUS][NCCTRL_WIN];
8953 static const char *dec_fac[] = {
8954 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8955 "0.9375"
8956 };
8957
8958 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8959 if (sb == NULL)
8960 return (ENOMEM);
8961
8962 rc = 0;
8963 mtx_lock(&sc->reg_lock);
8964 if (hw_off_limits(sc))
8965 rc = ENXIO;
8966 else
8967 t4_read_cong_tbl(sc, incr);
8968 mtx_unlock(&sc->reg_lock);
8969 if (rc)
8970 goto done;
8971
8972 for (i = 0; i < NCCTRL_WIN; ++i) {
8973 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8974 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8975 incr[5][i], incr[6][i], incr[7][i]);
8976 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8977 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8978 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8979 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8980 }
8981
8982 rc = sbuf_finish(sb);
8983 done:
8984 sbuf_delete(sb);
8985 return (rc);
8986 }
8987
8988 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8989 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
8990 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
8991 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
8992 };
8993
8994 static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)8995 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8996 {
8997 struct adapter *sc = arg1;
8998 struct sbuf *sb;
8999 int rc, i, n, qid = arg2;
9000 uint32_t *buf, *p;
9001 char *qtype;
9002 u_int cim_num_obq = sc->chip_params->cim_num_obq;
9003
9004 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
9005 ("%s: bad qid %d\n", __func__, qid));
9006
9007 if (qid < CIM_NUM_IBQ) {
9008 /* inbound queue */
9009 qtype = "IBQ";
9010 n = 4 * CIM_IBQ_SIZE;
9011 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9012 mtx_lock(&sc->reg_lock);
9013 if (hw_off_limits(sc))
9014 rc = -ENXIO;
9015 else
9016 rc = t4_read_cim_ibq(sc, qid, buf, n);
9017 mtx_unlock(&sc->reg_lock);
9018 } else {
9019 /* outbound queue */
9020 qtype = "OBQ";
9021 qid -= CIM_NUM_IBQ;
9022 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9023 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9024 mtx_lock(&sc->reg_lock);
9025 if (hw_off_limits(sc))
9026 rc = -ENXIO;
9027 else
9028 rc = t4_read_cim_obq(sc, qid, buf, n);
9029 mtx_unlock(&sc->reg_lock);
9030 }
9031
9032 if (rc < 0) {
9033 rc = -rc;
9034 goto done;
9035 }
9036 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9037
9038 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9039 if (sb == NULL) {
9040 rc = ENOMEM;
9041 goto done;
9042 }
9043
9044 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9045 for (i = 0, p = buf; i < n; i += 16, p += 4)
9046 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9047 p[2], p[3]);
9048
9049 rc = sbuf_finish(sb);
9050 sbuf_delete(sb);
9051 done:
9052 free(buf, M_CXGBE);
9053 return (rc);
9054 }
9055
9056 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9057 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9058 {
9059 uint32_t *p;
9060
9061 sbuf_printf(sb, "Status Data PC%s",
9062 cfg & F_UPDBGLACAPTPCONLY ? "" :
9063 " LS0Stat LS0Addr LS0Data");
9064
9065 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9066 if (cfg & F_UPDBGLACAPTPCONLY) {
9067 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9068 p[6], p[7]);
9069 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9070 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9071 p[4] & 0xff, p[5] >> 8);
9072 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9073 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9074 p[1] & 0xf, p[2] >> 4);
9075 } else {
9076 sbuf_printf(sb,
9077 "\n %02x %x%07x %x%07x %08x %08x "
9078 "%08x%08x%08x%08x",
9079 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9080 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9081 p[6], p[7]);
9082 }
9083 }
9084 }
9085
9086 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9087 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9088 {
9089 uint32_t *p;
9090
9091 sbuf_printf(sb, "Status Inst Data PC%s",
9092 cfg & F_UPDBGLACAPTPCONLY ? "" :
9093 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9094
9095 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9096 if (cfg & F_UPDBGLACAPTPCONLY) {
9097 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9098 p[3] & 0xff, p[2], p[1], p[0]);
9099 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9100 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9101 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9102 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9103 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9104 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9105 p[6] >> 16);
9106 } else {
9107 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9108 "%08x %08x %08x %08x %08x %08x",
9109 (p[9] >> 16) & 0xff,
9110 p[9] & 0xffff, p[8] >> 16,
9111 p[8] & 0xffff, p[7] >> 16,
9112 p[7] & 0xffff, p[6] >> 16,
9113 p[2], p[1], p[0], p[5], p[4], p[3]);
9114 }
9115 }
9116 }
9117
9118 static int
sbuf_cim_la(struct adapter * sc,struct sbuf * sb,int flags)9119 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9120 {
9121 uint32_t cfg, *buf;
9122 int rc;
9123
9124 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9125 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9126 M_ZERO | flags);
9127 if (buf == NULL)
9128 return (ENOMEM);
9129
9130 mtx_lock(&sc->reg_lock);
9131 if (hw_off_limits(sc))
9132 rc = ENXIO;
9133 else {
9134 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9135 if (rc == 0)
9136 rc = -t4_cim_read_la(sc, buf, NULL);
9137 }
9138 mtx_unlock(&sc->reg_lock);
9139 if (rc == 0) {
9140 if (chip_id(sc) < CHELSIO_T6)
9141 sbuf_cim_la4(sc, sb, buf, cfg);
9142 else
9143 sbuf_cim_la6(sc, sb, buf, cfg);
9144 }
9145 free(buf, M_CXGBE);
9146 return (rc);
9147 }
9148
9149 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9150 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9151 {
9152 struct adapter *sc = arg1;
9153 struct sbuf *sb;
9154 int rc;
9155
9156 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9157 if (sb == NULL)
9158 return (ENOMEM);
9159
9160 rc = sbuf_cim_la(sc, sb, M_WAITOK);
9161 if (rc == 0)
9162 rc = sbuf_finish(sb);
9163 sbuf_delete(sb);
9164 return (rc);
9165 }
9166
9167 static void
dump_cim_regs(struct adapter * sc)9168 dump_cim_regs(struct adapter *sc)
9169 {
9170 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9171 device_get_nameunit(sc->dev),
9172 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9173 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9174 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9175 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9176 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9177 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9178 device_get_nameunit(sc->dev),
9179 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9180 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9181 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9182 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9183 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9184 }
9185
9186 static void
dump_cimla(struct adapter * sc)9187 dump_cimla(struct adapter *sc)
9188 {
9189 struct sbuf sb;
9190 int rc;
9191
9192 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9193 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9194 device_get_nameunit(sc->dev));
9195 return;
9196 }
9197 rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9198 if (rc == 0) {
9199 rc = sbuf_finish(&sb);
9200 if (rc == 0) {
9201 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9202 device_get_nameunit(sc->dev), sbuf_data(&sb));
9203 }
9204 }
9205 sbuf_delete(&sb);
9206 }
9207
9208 void
t4_os_cim_err(struct adapter * sc)9209 t4_os_cim_err(struct adapter *sc)
9210 {
9211 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9212 }
9213
9214 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9215 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9216 {
9217 struct adapter *sc = arg1;
9218 u_int i;
9219 struct sbuf *sb;
9220 uint32_t *buf, *p;
9221 int rc;
9222
9223 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9224 if (sb == NULL)
9225 return (ENOMEM);
9226
9227 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9228 M_ZERO | M_WAITOK);
9229
9230 rc = 0;
9231 mtx_lock(&sc->reg_lock);
9232 if (hw_off_limits(sc))
9233 rc = ENXIO;
9234 else
9235 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9236 mtx_unlock(&sc->reg_lock);
9237 if (rc)
9238 goto done;
9239
9240 p = buf;
9241 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9242 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9243 p[1], p[0]);
9244 }
9245
9246 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9247 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9248 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9249 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9250 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9251 (p[1] >> 2) | ((p[2] & 3) << 30),
9252 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9253 p[0] & 1);
9254 }
9255 rc = sbuf_finish(sb);
9256 done:
9257 sbuf_delete(sb);
9258 free(buf, M_CXGBE);
9259 return (rc);
9260 }
9261
9262 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9263 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9264 {
9265 struct adapter *sc = arg1;
9266 u_int i;
9267 struct sbuf *sb;
9268 uint32_t *buf, *p;
9269 int rc;
9270
9271 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9272 if (sb == NULL)
9273 return (ENOMEM);
9274
9275 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9276 M_ZERO | M_WAITOK);
9277
9278 rc = 0;
9279 mtx_lock(&sc->reg_lock);
9280 if (hw_off_limits(sc))
9281 rc = ENXIO;
9282 else
9283 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9284 mtx_unlock(&sc->reg_lock);
9285 if (rc)
9286 goto done;
9287
9288 p = buf;
9289 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9290 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9291 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9292 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9293 p[4], p[3], p[2], p[1], p[0]);
9294 }
9295
9296 sbuf_printf(sb, "\n\nCntl ID Data");
9297 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9298 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9299 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9300 }
9301
9302 rc = sbuf_finish(sb);
9303 done:
9304 sbuf_delete(sb);
9305 free(buf, M_CXGBE);
9306 return (rc);
9307 }
9308
9309 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9310 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9311 {
9312 struct adapter *sc = arg1;
9313 struct sbuf *sb;
9314 int rc, i;
9315 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9316 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9317 uint16_t thres[CIM_NUM_IBQ];
9318 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9319 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9320 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9321
9322 cim_num_obq = sc->chip_params->cim_num_obq;
9323 if (is_t4(sc)) {
9324 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9325 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9326 } else {
9327 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9328 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9329 }
9330 nq = CIM_NUM_IBQ + cim_num_obq;
9331
9332 mtx_lock(&sc->reg_lock);
9333 if (hw_off_limits(sc))
9334 rc = ENXIO;
9335 else {
9336 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9337 if (rc == 0) {
9338 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9339 obq_wr);
9340 if (rc == 0)
9341 t4_read_cimq_cfg(sc, base, size, thres);
9342 }
9343 }
9344 mtx_unlock(&sc->reg_lock);
9345 if (rc)
9346 return (rc);
9347
9348 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9349 if (sb == NULL)
9350 return (ENOMEM);
9351
9352 sbuf_printf(sb,
9353 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9354
9355 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9356 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9357 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9358 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9359 G_QUEREMFLITS(p[2]) * 16);
9360 for ( ; i < nq; i++, p += 4, wr += 2)
9361 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9362 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9363 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9364 G_QUEREMFLITS(p[2]) * 16);
9365
9366 rc = sbuf_finish(sb);
9367 sbuf_delete(sb);
9368
9369 return (rc);
9370 }
9371
9372 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9373 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9374 {
9375 struct adapter *sc = arg1;
9376 struct sbuf *sb;
9377 int rc;
9378 struct tp_cpl_stats stats;
9379
9380 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9381 if (sb == NULL)
9382 return (ENOMEM);
9383
9384 rc = 0;
9385 mtx_lock(&sc->reg_lock);
9386 if (hw_off_limits(sc))
9387 rc = ENXIO;
9388 else
9389 t4_tp_get_cpl_stats(sc, &stats, 0);
9390 mtx_unlock(&sc->reg_lock);
9391 if (rc)
9392 goto done;
9393
9394 if (sc->chip_params->nchan > 2) {
9395 sbuf_printf(sb, " channel 0 channel 1"
9396 " channel 2 channel 3");
9397 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9398 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9399 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9400 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9401 } else {
9402 sbuf_printf(sb, " channel 0 channel 1");
9403 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9404 stats.req[0], stats.req[1]);
9405 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9406 stats.rsp[0], stats.rsp[1]);
9407 }
9408
9409 rc = sbuf_finish(sb);
9410 done:
9411 sbuf_delete(sb);
9412 return (rc);
9413 }
9414
9415 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9416 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9417 {
9418 struct adapter *sc = arg1;
9419 struct sbuf *sb;
9420 int rc;
9421 struct tp_usm_stats stats;
9422
9423 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9424 if (sb == NULL)
9425 return (ENOMEM);
9426
9427 rc = 0;
9428 mtx_lock(&sc->reg_lock);
9429 if (hw_off_limits(sc))
9430 rc = ENXIO;
9431 else
9432 t4_get_usm_stats(sc, &stats, 1);
9433 mtx_unlock(&sc->reg_lock);
9434 if (rc == 0) {
9435 sbuf_printf(sb, "Frames: %u\n", stats.frames);
9436 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9437 sbuf_printf(sb, "Drops: %u", stats.drops);
9438 rc = sbuf_finish(sb);
9439 }
9440 sbuf_delete(sb);
9441
9442 return (rc);
9443 }
9444
9445 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)9446 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9447 {
9448 struct adapter *sc = arg1;
9449 struct sbuf *sb;
9450 int rc;
9451 struct tp_tid_stats stats;
9452
9453 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9454 if (sb == NULL)
9455 return (ENOMEM);
9456
9457 rc = 0;
9458 mtx_lock(&sc->reg_lock);
9459 if (hw_off_limits(sc))
9460 rc = ENXIO;
9461 else
9462 t4_tp_get_tid_stats(sc, &stats, 1);
9463 mtx_unlock(&sc->reg_lock);
9464 if (rc == 0) {
9465 sbuf_printf(sb, "Delete: %u\n", stats.del);
9466 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9467 sbuf_printf(sb, "Active: %u\n", stats.act);
9468 sbuf_printf(sb, "Passive: %u", stats.pas);
9469 rc = sbuf_finish(sb);
9470 }
9471 sbuf_delete(sb);
9472
9473 return (rc);
9474 }
9475
9476 static const char * const devlog_level_strings[] = {
9477 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
9478 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
9479 [FW_DEVLOG_LEVEL_ERR] = "ERR",
9480 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
9481 [FW_DEVLOG_LEVEL_INFO] = "INFO",
9482 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
9483 };
9484
9485 static const char * const devlog_facility_strings[] = {
9486 [FW_DEVLOG_FACILITY_CORE] = "CORE",
9487 [FW_DEVLOG_FACILITY_CF] = "CF",
9488 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
9489 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
9490 [FW_DEVLOG_FACILITY_RES] = "RES",
9491 [FW_DEVLOG_FACILITY_HW] = "HW",
9492 [FW_DEVLOG_FACILITY_FLR] = "FLR",
9493 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
9494 [FW_DEVLOG_FACILITY_PHY] = "PHY",
9495 [FW_DEVLOG_FACILITY_MAC] = "MAC",
9496 [FW_DEVLOG_FACILITY_PORT] = "PORT",
9497 [FW_DEVLOG_FACILITY_VI] = "VI",
9498 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
9499 [FW_DEVLOG_FACILITY_ACL] = "ACL",
9500 [FW_DEVLOG_FACILITY_TM] = "TM",
9501 [FW_DEVLOG_FACILITY_QFC] = "QFC",
9502 [FW_DEVLOG_FACILITY_DCB] = "DCB",
9503 [FW_DEVLOG_FACILITY_ETH] = "ETH",
9504 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
9505 [FW_DEVLOG_FACILITY_RI] = "RI",
9506 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
9507 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
9508 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
9509 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
9510 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
9511 };
9512
9513 static int
sbuf_devlog(struct adapter * sc,struct sbuf * sb,int flags)9514 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9515 {
9516 int i, j, rc, nentries, first = 0;
9517 struct devlog_params *dparams = &sc->params.devlog;
9518 struct fw_devlog_e *buf, *e;
9519 uint64_t ftstamp = UINT64_MAX;
9520
9521 if (dparams->addr == 0)
9522 return (ENXIO);
9523
9524 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9525 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9526 if (buf == NULL)
9527 return (ENOMEM);
9528
9529 mtx_lock(&sc->reg_lock);
9530 if (hw_off_limits(sc))
9531 rc = ENXIO;
9532 else
9533 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9534 dparams->size);
9535 mtx_unlock(&sc->reg_lock);
9536 if (rc != 0)
9537 goto done;
9538
9539 nentries = dparams->size / sizeof(struct fw_devlog_e);
9540 for (i = 0; i < nentries; i++) {
9541 e = &buf[i];
9542
9543 if (e->timestamp == 0)
9544 break; /* end */
9545
9546 e->timestamp = be64toh(e->timestamp);
9547 e->seqno = be32toh(e->seqno);
9548 for (j = 0; j < 8; j++)
9549 e->params[j] = be32toh(e->params[j]);
9550
9551 if (e->timestamp < ftstamp) {
9552 ftstamp = e->timestamp;
9553 first = i;
9554 }
9555 }
9556
9557 if (buf[first].timestamp == 0)
9558 goto done; /* nothing in the log */
9559
9560 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
9561 "Seq#", "Tstamp", "Level", "Facility", "Message");
9562
9563 i = first;
9564 do {
9565 e = &buf[i];
9566 if (e->timestamp == 0)
9567 break; /* end */
9568
9569 sbuf_printf(sb, "%10d %15ju %8s %8s ",
9570 e->seqno, e->timestamp,
9571 (e->level < nitems(devlog_level_strings) ?
9572 devlog_level_strings[e->level] : "UNKNOWN"),
9573 (e->facility < nitems(devlog_facility_strings) ?
9574 devlog_facility_strings[e->facility] : "UNKNOWN"));
9575 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9576 e->params[2], e->params[3], e->params[4],
9577 e->params[5], e->params[6], e->params[7]);
9578
9579 if (++i == nentries)
9580 i = 0;
9581 } while (i != first);
9582 done:
9583 free(buf, M_CXGBE);
9584 return (rc);
9585 }
9586
9587 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)9588 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9589 {
9590 struct adapter *sc = arg1;
9591 int rc;
9592 struct sbuf *sb;
9593
9594 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9595 if (sb == NULL)
9596 return (ENOMEM);
9597
9598 rc = sbuf_devlog(sc, sb, M_WAITOK);
9599 if (rc == 0)
9600 rc = sbuf_finish(sb);
9601 sbuf_delete(sb);
9602 return (rc);
9603 }
9604
9605 static void
dump_devlog(struct adapter * sc)9606 dump_devlog(struct adapter *sc)
9607 {
9608 int rc;
9609 struct sbuf sb;
9610
9611 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9612 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9613 device_get_nameunit(sc->dev));
9614 return;
9615 }
9616 rc = sbuf_devlog(sc, &sb, M_WAITOK);
9617 if (rc == 0) {
9618 rc = sbuf_finish(&sb);
9619 if (rc == 0) {
9620 log(LOG_DEBUG, "%s: device log follows.\n%s",
9621 device_get_nameunit(sc->dev), sbuf_data(&sb));
9622 }
9623 }
9624 sbuf_delete(&sb);
9625 }
9626
9627 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)9628 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9629 {
9630 struct adapter *sc = arg1;
9631 struct sbuf *sb;
9632 int rc;
9633 struct tp_fcoe_stats stats[MAX_NCHAN];
9634 int i, nchan = sc->chip_params->nchan;
9635
9636 rc = 0;
9637 mtx_lock(&sc->reg_lock);
9638 if (hw_off_limits(sc))
9639 rc = ENXIO;
9640 else {
9641 for (i = 0; i < nchan; i++)
9642 t4_get_fcoe_stats(sc, i, &stats[i], 1);
9643 }
9644 mtx_unlock(&sc->reg_lock);
9645 if (rc != 0)
9646 return (rc);
9647
9648 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9649 if (sb == NULL)
9650 return (ENOMEM);
9651
9652 if (nchan > 2) {
9653 sbuf_printf(sb, " channel 0 channel 1"
9654 " channel 2 channel 3");
9655 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
9656 stats[0].octets_ddp, stats[1].octets_ddp,
9657 stats[2].octets_ddp, stats[3].octets_ddp);
9658 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
9659 stats[0].frames_ddp, stats[1].frames_ddp,
9660 stats[2].frames_ddp, stats[3].frames_ddp);
9661 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9662 stats[0].frames_drop, stats[1].frames_drop,
9663 stats[2].frames_drop, stats[3].frames_drop);
9664 } else {
9665 sbuf_printf(sb, " channel 0 channel 1");
9666 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
9667 stats[0].octets_ddp, stats[1].octets_ddp);
9668 sbuf_printf(sb, "\nframesDDP: %16u %16u",
9669 stats[0].frames_ddp, stats[1].frames_ddp);
9670 sbuf_printf(sb, "\nframesDrop: %16u %16u",
9671 stats[0].frames_drop, stats[1].frames_drop);
9672 }
9673
9674 rc = sbuf_finish(sb);
9675 sbuf_delete(sb);
9676
9677 return (rc);
9678 }
9679
9680 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)9681 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9682 {
9683 struct adapter *sc = arg1;
9684 struct sbuf *sb;
9685 int rc, i;
9686 unsigned int map, kbps, ipg, mode;
9687 unsigned int pace_tab[NTX_SCHED];
9688
9689 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9690 if (sb == NULL)
9691 return (ENOMEM);
9692
9693 mtx_lock(&sc->reg_lock);
9694 if (hw_off_limits(sc)) {
9695 mtx_unlock(&sc->reg_lock);
9696 rc = ENXIO;
9697 goto done;
9698 }
9699
9700 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9701 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9702 t4_read_pace_tbl(sc, pace_tab);
9703 mtx_unlock(&sc->reg_lock);
9704
9705 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
9706 "Class IPG (0.1 ns) Flow IPG (us)");
9707
9708 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9709 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9710 sbuf_printf(sb, "\n %u %-5s %u ", i,
9711 (mode & (1 << i)) ? "flow" : "class", map & 3);
9712 if (kbps)
9713 sbuf_printf(sb, "%9u ", kbps);
9714 else
9715 sbuf_printf(sb, " disabled ");
9716
9717 if (ipg)
9718 sbuf_printf(sb, "%13u ", ipg);
9719 else
9720 sbuf_printf(sb, " disabled ");
9721
9722 if (pace_tab[i])
9723 sbuf_printf(sb, "%10u", pace_tab[i]);
9724 else
9725 sbuf_printf(sb, " disabled");
9726 }
9727 rc = sbuf_finish(sb);
9728 done:
9729 sbuf_delete(sb);
9730 return (rc);
9731 }
9732
9733 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)9734 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9735 {
9736 struct adapter *sc = arg1;
9737 struct sbuf *sb;
9738 int rc, i, j;
9739 uint64_t *p0, *p1;
9740 struct lb_port_stats s[2];
9741 static const char *stat_name[] = {
9742 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9743 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9744 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
9745 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9746 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9747 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9748 "BG2FramesTrunc:", "BG3FramesTrunc:"
9749 };
9750
9751 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9752 if (sb == NULL)
9753 return (ENOMEM);
9754
9755 memset(s, 0, sizeof(s));
9756
9757 rc = 0;
9758 for (i = 0; i < sc->chip_params->nchan; i += 2) {
9759 mtx_lock(&sc->reg_lock);
9760 if (hw_off_limits(sc))
9761 rc = ENXIO;
9762 else {
9763 t4_get_lb_stats(sc, i, &s[0]);
9764 t4_get_lb_stats(sc, i + 1, &s[1]);
9765 }
9766 mtx_unlock(&sc->reg_lock);
9767 if (rc != 0)
9768 break;
9769
9770 p0 = &s[0].octets;
9771 p1 = &s[1].octets;
9772 sbuf_printf(sb, "%s Loopback %u"
9773 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9774
9775 for (j = 0; j < nitems(stat_name); j++)
9776 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9777 *p0++, *p1++);
9778 }
9779
9780 if (rc == 0)
9781 rc = sbuf_finish(sb);
9782 sbuf_delete(sb);
9783
9784 return (rc);
9785 }
9786
9787 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)9788 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9789 {
9790 int rc = 0;
9791 struct port_info *pi = arg1;
9792 struct link_config *lc = &pi->link_cfg;
9793 struct sbuf *sb;
9794
9795 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9796 if (sb == NULL)
9797 return (ENOMEM);
9798
9799 if (lc->link_ok || lc->link_down_rc == 255)
9800 sbuf_printf(sb, "n/a");
9801 else
9802 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9803
9804 rc = sbuf_finish(sb);
9805 sbuf_delete(sb);
9806
9807 return (rc);
9808 }
9809
9810 struct mem_desc {
9811 u_int base;
9812 u_int limit;
9813 u_int idx;
9814 };
9815
9816 static int
mem_desc_cmp(const void * a,const void * b)9817 mem_desc_cmp(const void *a, const void *b)
9818 {
9819 const u_int v1 = ((const struct mem_desc *)a)->base;
9820 const u_int v2 = ((const struct mem_desc *)b)->base;
9821
9822 if (v1 < v2)
9823 return (-1);
9824 else if (v1 > v2)
9825 return (1);
9826
9827 return (0);
9828 }
9829
9830 static void
mem_region_show(struct sbuf * sb,const char * name,unsigned int from,unsigned int to)9831 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9832 unsigned int to)
9833 {
9834 unsigned int size;
9835
9836 if (from == to)
9837 return;
9838
9839 size = to - from + 1;
9840 if (size == 0)
9841 return;
9842
9843 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9844 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9845 }
9846
9847 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)9848 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9849 {
9850 struct adapter *sc = arg1;
9851 struct sbuf *sb;
9852 int rc, i, n;
9853 uint32_t lo, hi, used, free, alloc;
9854 static const char *memory[] = {
9855 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9856 };
9857 static const char *region[] = {
9858 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9859 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9860 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9861 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9862 "RQUDP region:", "PBL region:", "TXPBL region:",
9863 "TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9864 "ULPTX state:", "On-chip queues:",
9865 };
9866 struct mem_desc avail[4];
9867 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
9868 struct mem_desc *md = mem;
9869
9870 rc = sysctl_wire_old_buffer(req, 0);
9871 if (rc != 0)
9872 return (rc);
9873
9874 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9875 if (sb == NULL)
9876 return (ENOMEM);
9877
9878 for (i = 0; i < nitems(mem); i++) {
9879 mem[i].limit = 0;
9880 mem[i].idx = i;
9881 }
9882
9883 mtx_lock(&sc->reg_lock);
9884 if (hw_off_limits(sc)) {
9885 rc = ENXIO;
9886 goto done;
9887 }
9888
9889 /* Find and sort the populated memory ranges */
9890 i = 0;
9891 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9892 if (lo & F_EDRAM0_ENABLE) {
9893 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9894 avail[i].base = G_EDRAM0_BASE(hi) << 20;
9895 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9896 avail[i].idx = 0;
9897 i++;
9898 }
9899 if (lo & F_EDRAM1_ENABLE) {
9900 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9901 avail[i].base = G_EDRAM1_BASE(hi) << 20;
9902 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9903 avail[i].idx = 1;
9904 i++;
9905 }
9906 if (lo & F_EXT_MEM_ENABLE) {
9907 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9908 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9909 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9910 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */
9911 i++;
9912 }
9913 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9914 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9915 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9916 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9917 avail[i].idx = 4;
9918 i++;
9919 }
9920 if (is_t6(sc) && lo & F_HMA_MUX) {
9921 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9922 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9923 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9924 avail[i].idx = 5;
9925 i++;
9926 }
9927 MPASS(i <= nitems(avail));
9928 if (!i) /* no memory available */
9929 goto done;
9930 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9931
9932 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9933 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9934 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9935 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9936 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9937 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9938 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9939 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9940 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9941
9942 /* the next few have explicit upper bounds */
9943 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9944 md->limit = md->base - 1 +
9945 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9946 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9947 md++;
9948
9949 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9950 md->limit = md->base - 1 +
9951 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9952 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9953 md++;
9954
9955 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9956 if (chip_id(sc) <= CHELSIO_T5)
9957 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9958 else
9959 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9960 md->limit = 0;
9961 } else {
9962 md->base = 0;
9963 md->idx = nitems(region); /* hide it */
9964 }
9965 md++;
9966
9967 #define ulp_region(reg) \
9968 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9969 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9970
9971 ulp_region(RX_ISCSI);
9972 ulp_region(RX_TDDP);
9973 ulp_region(TX_TPT);
9974 ulp_region(RX_STAG);
9975 ulp_region(RX_RQ);
9976 ulp_region(RX_RQUDP);
9977 ulp_region(RX_PBL);
9978 ulp_region(TX_PBL);
9979 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9980 ulp_region(RX_TLS_KEY);
9981 }
9982 #undef ulp_region
9983
9984 md->base = 0;
9985 if (is_t4(sc))
9986 md->idx = nitems(region);
9987 else {
9988 uint32_t size = 0;
9989 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9990 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9991
9992 if (is_t5(sc)) {
9993 if (sge_ctrl & F_VFIFO_ENABLE)
9994 size = fifo_size << 2;
9995 } else
9996 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9997
9998 if (size) {
9999 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10000 md->limit = md->base + size - 1;
10001 } else
10002 md->idx = nitems(region);
10003 }
10004 md++;
10005
10006 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10007 md->limit = 0;
10008 md++;
10009 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10010 md->limit = 0;
10011 md++;
10012
10013 md->base = sc->vres.ocq.start;
10014 if (sc->vres.ocq.size)
10015 md->limit = md->base + sc->vres.ocq.size - 1;
10016 else
10017 md->idx = nitems(region); /* hide it */
10018 md++;
10019
10020 /* add any address-space holes, there can be up to 3 */
10021 for (n = 0; n < i - 1; n++)
10022 if (avail[n].limit < avail[n + 1].base)
10023 (md++)->base = avail[n].limit;
10024 if (avail[n].limit)
10025 (md++)->base = avail[n].limit;
10026
10027 n = md - mem;
10028 MPASS(n <= nitems(mem));
10029 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10030
10031 for (lo = 0; lo < i; lo++)
10032 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10033 avail[lo].limit - 1);
10034
10035 sbuf_printf(sb, "\n");
10036 for (i = 0; i < n; i++) {
10037 if (mem[i].idx >= nitems(region))
10038 continue; /* skip holes */
10039 if (!mem[i].limit)
10040 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10041 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10042 mem[i].limit);
10043 }
10044
10045 sbuf_printf(sb, "\n");
10046 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10047 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10048 mem_region_show(sb, "uP RAM:", lo, hi);
10049
10050 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10051 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10052 mem_region_show(sb, "uP Extmem2:", lo, hi);
10053
10054 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10055 for (i = 0, free = 0; i < 2; i++)
10056 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10057 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10058 G_PMRXMAXPAGE(lo), free,
10059 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10060 (lo & F_PMRXNUMCHN) ? 2 : 1);
10061
10062 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10063 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10064 for (i = 0, free = 0; i < 4; i++)
10065 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10066 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10067 G_PMTXMAXPAGE(lo), free,
10068 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10069 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10070 sbuf_printf(sb, "%u p-structs (%u free)\n",
10071 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10072 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10073
10074 for (i = 0; i < 4; i++) {
10075 if (chip_id(sc) > CHELSIO_T5)
10076 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10077 else
10078 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10079 if (is_t5(sc)) {
10080 used = G_T5_USED(lo);
10081 alloc = G_T5_ALLOC(lo);
10082 } else {
10083 used = G_USED(lo);
10084 alloc = G_ALLOC(lo);
10085 }
10086 /* For T6 these are MAC buffer groups */
10087 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10088 i, used, alloc);
10089 }
10090 for (i = 0; i < sc->chip_params->nchan; i++) {
10091 if (chip_id(sc) > CHELSIO_T5)
10092 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10093 else
10094 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10095 if (is_t5(sc)) {
10096 used = G_T5_USED(lo);
10097 alloc = G_T5_ALLOC(lo);
10098 } else {
10099 used = G_USED(lo);
10100 alloc = G_ALLOC(lo);
10101 }
10102 /* For T6 these are MAC buffer groups */
10103 sbuf_printf(sb,
10104 "\nLoopback %d using %u pages out of %u allocated",
10105 i, used, alloc);
10106 }
10107 done:
10108 mtx_unlock(&sc->reg_lock);
10109 if (rc == 0)
10110 rc = sbuf_finish(sb);
10111 sbuf_delete(sb);
10112 return (rc);
10113 }
10114
10115 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10116 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10117 {
10118 *mask = x | y;
10119 y = htobe64(y);
10120 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10121 }
10122
10123 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10124 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10125 {
10126 struct adapter *sc = arg1;
10127 struct sbuf *sb;
10128 int rc, i;
10129
10130 MPASS(chip_id(sc) <= CHELSIO_T5);
10131
10132 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10133 if (sb == NULL)
10134 return (ENOMEM);
10135
10136 sbuf_printf(sb,
10137 "Idx Ethernet address Mask Vld Ports PF"
10138 " VF Replication P0 P1 P2 P3 ML");
10139 rc = 0;
10140 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10141 uint64_t tcamx, tcamy, mask;
10142 uint32_t cls_lo, cls_hi;
10143 uint8_t addr[ETHER_ADDR_LEN];
10144
10145 mtx_lock(&sc->reg_lock);
10146 if (hw_off_limits(sc))
10147 rc = ENXIO;
10148 else {
10149 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10150 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10151 }
10152 mtx_unlock(&sc->reg_lock);
10153 if (rc != 0)
10154 break;
10155 if (tcamx & tcamy)
10156 continue;
10157 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10158 mtx_lock(&sc->reg_lock);
10159 if (hw_off_limits(sc))
10160 rc = ENXIO;
10161 else {
10162 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10163 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10164 }
10165 mtx_unlock(&sc->reg_lock);
10166 if (rc != 0)
10167 break;
10168 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10169 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10170 addr[3], addr[4], addr[5], (uintmax_t)mask,
10171 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10172 G_PORTMAP(cls_hi), G_PF(cls_lo),
10173 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10174
10175 if (cls_lo & F_REPLICATE) {
10176 struct fw_ldst_cmd ldst_cmd;
10177
10178 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10179 ldst_cmd.op_to_addrspace =
10180 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10181 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10182 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10183 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10184 ldst_cmd.u.mps.rplc.fid_idx =
10185 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10186 V_FW_LDST_CMD_IDX(i));
10187
10188 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10189 "t4mps");
10190 if (rc)
10191 break;
10192 if (hw_off_limits(sc))
10193 rc = ENXIO;
10194 else
10195 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10196 sizeof(ldst_cmd), &ldst_cmd);
10197 end_synchronized_op(sc, 0);
10198 if (rc != 0)
10199 break;
10200 else {
10201 sbuf_printf(sb, " %08x %08x %08x %08x",
10202 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10203 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10204 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10205 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10206 }
10207 } else
10208 sbuf_printf(sb, "%36s", "");
10209
10210 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10211 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10212 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10213 }
10214
10215 if (rc)
10216 (void) sbuf_finish(sb);
10217 else
10218 rc = sbuf_finish(sb);
10219 sbuf_delete(sb);
10220
10221 return (rc);
10222 }
10223
10224 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10225 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10226 {
10227 struct adapter *sc = arg1;
10228 struct sbuf *sb;
10229 int rc, i;
10230
10231 MPASS(chip_id(sc) > CHELSIO_T5);
10232
10233 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10234 if (sb == NULL)
10235 return (ENOMEM);
10236
10237 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10238 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10239 " Replication"
10240 " P0 P1 P2 P3 ML\n");
10241
10242 rc = 0;
10243 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10244 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10245 uint16_t ivlan;
10246 uint64_t tcamx, tcamy, val, mask;
10247 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10248 uint8_t addr[ETHER_ADDR_LEN];
10249
10250 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10251 if (i < 256)
10252 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10253 else
10254 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10255 mtx_lock(&sc->reg_lock);
10256 if (hw_off_limits(sc))
10257 rc = ENXIO;
10258 else {
10259 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10260 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10261 tcamy = G_DMACH(val) << 32;
10262 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10263 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10264 }
10265 mtx_unlock(&sc->reg_lock);
10266 if (rc != 0)
10267 break;
10268
10269 lookup_type = G_DATALKPTYPE(data2);
10270 port_num = G_DATAPORTNUM(data2);
10271 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10272 /* Inner header VNI */
10273 vniy = ((data2 & F_DATAVIDH2) << 23) |
10274 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10275 dip_hit = data2 & F_DATADIPHIT;
10276 vlan_vld = 0;
10277 } else {
10278 vniy = 0;
10279 dip_hit = 0;
10280 vlan_vld = data2 & F_DATAVIDH2;
10281 ivlan = G_VIDL(val);
10282 }
10283
10284 ctl |= V_CTLXYBITSEL(1);
10285 mtx_lock(&sc->reg_lock);
10286 if (hw_off_limits(sc))
10287 rc = ENXIO;
10288 else {
10289 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10290 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10291 tcamx = G_DMACH(val) << 32;
10292 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10293 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10294 }
10295 mtx_unlock(&sc->reg_lock);
10296 if (rc != 0)
10297 break;
10298
10299 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10300 /* Inner header VNI mask */
10301 vnix = ((data2 & F_DATAVIDH2) << 23) |
10302 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10303 } else
10304 vnix = 0;
10305
10306 if (tcamx & tcamy)
10307 continue;
10308 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10309
10310 mtx_lock(&sc->reg_lock);
10311 if (hw_off_limits(sc))
10312 rc = ENXIO;
10313 else {
10314 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10315 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10316 }
10317 mtx_unlock(&sc->reg_lock);
10318 if (rc != 0)
10319 break;
10320
10321 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10322 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10323 "%012jx %06x %06x - - %3c"
10324 " I %4x %3c %#x%4u%4d", i, addr[0],
10325 addr[1], addr[2], addr[3], addr[4], addr[5],
10326 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10327 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10328 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10329 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10330 } else {
10331 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10332 "%012jx - - ", i, addr[0], addr[1],
10333 addr[2], addr[3], addr[4], addr[5],
10334 (uintmax_t)mask);
10335
10336 if (vlan_vld)
10337 sbuf_printf(sb, "%4u Y ", ivlan);
10338 else
10339 sbuf_printf(sb, " - N ");
10340
10341 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
10342 lookup_type ? 'I' : 'O', port_num,
10343 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10344 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10345 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10346 }
10347
10348
10349 if (cls_lo & F_T6_REPLICATE) {
10350 struct fw_ldst_cmd ldst_cmd;
10351
10352 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10353 ldst_cmd.op_to_addrspace =
10354 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10355 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10356 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10357 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10358 ldst_cmd.u.mps.rplc.fid_idx =
10359 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10360 V_FW_LDST_CMD_IDX(i));
10361
10362 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10363 "t6mps");
10364 if (rc)
10365 break;
10366 if (hw_off_limits(sc))
10367 rc = ENXIO;
10368 else
10369 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10370 sizeof(ldst_cmd), &ldst_cmd);
10371 end_synchronized_op(sc, 0);
10372 if (rc != 0)
10373 break;
10374 else {
10375 sbuf_printf(sb, " %08x %08x %08x %08x"
10376 " %08x %08x %08x %08x",
10377 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10378 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10379 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10380 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10381 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10382 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10383 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10384 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10385 }
10386 } else
10387 sbuf_printf(sb, "%72s", "");
10388
10389 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10390 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10391 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10392 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10393 }
10394
10395 if (rc)
10396 (void) sbuf_finish(sb);
10397 else
10398 rc = sbuf_finish(sb);
10399 sbuf_delete(sb);
10400
10401 return (rc);
10402 }
10403
10404 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)10405 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10406 {
10407 struct adapter *sc = arg1;
10408 struct sbuf *sb;
10409 int rc;
10410 uint16_t mtus[NMTUS];
10411
10412 rc = 0;
10413 mtx_lock(&sc->reg_lock);
10414 if (hw_off_limits(sc))
10415 rc = ENXIO;
10416 else
10417 t4_read_mtu_tbl(sc, mtus, NULL);
10418 mtx_unlock(&sc->reg_lock);
10419 if (rc != 0)
10420 return (rc);
10421
10422 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10423 if (sb == NULL)
10424 return (ENOMEM);
10425
10426 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10427 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10428 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10429 mtus[14], mtus[15]);
10430
10431 rc = sbuf_finish(sb);
10432 sbuf_delete(sb);
10433
10434 return (rc);
10435 }
10436
10437 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)10438 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10439 {
10440 struct adapter *sc = arg1;
10441 struct sbuf *sb;
10442 int rc, i;
10443 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10444 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10445 static const char *tx_stats[MAX_PM_NSTATS] = {
10446 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10447 "Tx FIFO wait", NULL, "Tx latency"
10448 };
10449 static const char *rx_stats[MAX_PM_NSTATS] = {
10450 "Read:", "Write bypass:", "Write mem:", "Flush:",
10451 "Rx FIFO wait", NULL, "Rx latency"
10452 };
10453
10454 rc = 0;
10455 mtx_lock(&sc->reg_lock);
10456 if (hw_off_limits(sc))
10457 rc = ENXIO;
10458 else {
10459 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10460 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10461 }
10462 mtx_unlock(&sc->reg_lock);
10463 if (rc != 0)
10464 return (rc);
10465
10466 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10467 if (sb == NULL)
10468 return (ENOMEM);
10469
10470 sbuf_printf(sb, " Tx pcmds Tx bytes");
10471 for (i = 0; i < 4; i++) {
10472 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10473 tx_cyc[i]);
10474 }
10475
10476 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
10477 for (i = 0; i < 4; i++) {
10478 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10479 rx_cyc[i]);
10480 }
10481
10482 if (chip_id(sc) > CHELSIO_T5) {
10483 sbuf_printf(sb,
10484 "\n Total wait Total occupancy");
10485 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10486 tx_cyc[i]);
10487 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10488 rx_cyc[i]);
10489
10490 i += 2;
10491 MPASS(i < nitems(tx_stats));
10492
10493 sbuf_printf(sb,
10494 "\n Reads Total wait");
10495 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10496 tx_cyc[i]);
10497 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10498 rx_cyc[i]);
10499 }
10500
10501 rc = sbuf_finish(sb);
10502 sbuf_delete(sb);
10503
10504 return (rc);
10505 }
10506
10507 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)10508 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10509 {
10510 struct adapter *sc = arg1;
10511 struct sbuf *sb;
10512 int rc;
10513 struct tp_rdma_stats stats;
10514
10515 rc = 0;
10516 mtx_lock(&sc->reg_lock);
10517 if (hw_off_limits(sc))
10518 rc = ENXIO;
10519 else
10520 t4_tp_get_rdma_stats(sc, &stats, 0);
10521 mtx_unlock(&sc->reg_lock);
10522 if (rc != 0)
10523 return (rc);
10524
10525 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10526 if (sb == NULL)
10527 return (ENOMEM);
10528
10529 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10530 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10531
10532 rc = sbuf_finish(sb);
10533 sbuf_delete(sb);
10534
10535 return (rc);
10536 }
10537
10538 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)10539 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10540 {
10541 struct adapter *sc = arg1;
10542 struct sbuf *sb;
10543 int rc;
10544 struct tp_tcp_stats v4, v6;
10545
10546 rc = 0;
10547 mtx_lock(&sc->reg_lock);
10548 if (hw_off_limits(sc))
10549 rc = ENXIO;
10550 else
10551 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10552 mtx_unlock(&sc->reg_lock);
10553 if (rc != 0)
10554 return (rc);
10555
10556 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10557 if (sb == NULL)
10558 return (ENOMEM);
10559
10560 sbuf_printf(sb,
10561 " IP IPv6\n");
10562 sbuf_printf(sb, "OutRsts: %20u %20u\n",
10563 v4.tcp_out_rsts, v6.tcp_out_rsts);
10564 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
10565 v4.tcp_in_segs, v6.tcp_in_segs);
10566 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
10567 v4.tcp_out_segs, v6.tcp_out_segs);
10568 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
10569 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10570
10571 rc = sbuf_finish(sb);
10572 sbuf_delete(sb);
10573
10574 return (rc);
10575 }
10576
10577 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)10578 sysctl_tids(SYSCTL_HANDLER_ARGS)
10579 {
10580 struct adapter *sc = arg1;
10581 struct sbuf *sb;
10582 int rc;
10583 uint32_t x, y;
10584 struct tid_info *t = &sc->tids;
10585
10586 rc = 0;
10587 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10588 if (sb == NULL)
10589 return (ENOMEM);
10590
10591 if (t->natids) {
10592 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10593 t->atids_in_use);
10594 }
10595
10596 if (t->nhpftids) {
10597 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10598 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10599 }
10600
10601 if (t->ntids) {
10602 bool hashen = false;
10603
10604 mtx_lock(&sc->reg_lock);
10605 if (hw_off_limits(sc))
10606 rc = ENXIO;
10607 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10608 hashen = true;
10609 if (chip_id(sc) <= CHELSIO_T5) {
10610 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10611 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10612 } else {
10613 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10614 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10615 }
10616 }
10617 mtx_unlock(&sc->reg_lock);
10618 if (rc != 0)
10619 goto done;
10620
10621 sbuf_printf(sb, "TID range: ");
10622 if (hashen) {
10623 if (x)
10624 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10625 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10626 } else {
10627 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10628 t->ntids - 1);
10629 }
10630 sbuf_printf(sb, ", in use: %u\n",
10631 atomic_load_acq_int(&t->tids_in_use));
10632 }
10633
10634 if (t->nstids) {
10635 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10636 t->stid_base + t->nstids - 1, t->stids_in_use);
10637 }
10638
10639 if (t->nftids) {
10640 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10641 t->ftid_end, t->ftids_in_use);
10642 }
10643
10644 if (t->netids) {
10645 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10646 t->etid_base + t->netids - 1, t->etids_in_use);
10647 }
10648
10649 mtx_lock(&sc->reg_lock);
10650 if (hw_off_limits(sc))
10651 rc = ENXIO;
10652 else {
10653 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10654 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10655 }
10656 mtx_unlock(&sc->reg_lock);
10657 if (rc != 0)
10658 goto done;
10659 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10660 done:
10661 if (rc == 0)
10662 rc = sbuf_finish(sb);
10663 else
10664 (void)sbuf_finish(sb);
10665 sbuf_delete(sb);
10666
10667 return (rc);
10668 }
10669
10670 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)10671 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10672 {
10673 struct adapter *sc = arg1;
10674 struct sbuf *sb;
10675 int rc;
10676 struct tp_err_stats stats;
10677
10678 rc = 0;
10679 mtx_lock(&sc->reg_lock);
10680 if (hw_off_limits(sc))
10681 rc = ENXIO;
10682 else
10683 t4_tp_get_err_stats(sc, &stats, 0);
10684 mtx_unlock(&sc->reg_lock);
10685 if (rc != 0)
10686 return (rc);
10687
10688 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10689 if (sb == NULL)
10690 return (ENOMEM);
10691
10692 if (sc->chip_params->nchan > 2) {
10693 sbuf_printf(sb, " channel 0 channel 1"
10694 " channel 2 channel 3\n");
10695 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
10696 stats.mac_in_errs[0], stats.mac_in_errs[1],
10697 stats.mac_in_errs[2], stats.mac_in_errs[3]);
10698 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
10699 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10700 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10701 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
10702 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10703 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10704 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
10705 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10706 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10707 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
10708 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10709 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10710 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
10711 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10712 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10713 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
10714 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10715 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10716 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
10717 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10718 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10719 } else {
10720 sbuf_printf(sb, " channel 0 channel 1\n");
10721 sbuf_printf(sb, "macInErrs: %10u %10u\n",
10722 stats.mac_in_errs[0], stats.mac_in_errs[1]);
10723 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
10724 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10725 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
10726 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10727 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
10728 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10729 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
10730 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10731 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
10732 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10733 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
10734 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10735 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
10736 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10737 }
10738
10739 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
10740 stats.ofld_no_neigh, stats.ofld_cong_defer);
10741
10742 rc = sbuf_finish(sb);
10743 sbuf_delete(sb);
10744
10745 return (rc);
10746 }
10747
10748 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)10749 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10750 {
10751 struct adapter *sc = arg1;
10752 struct sbuf *sb;
10753 int rc;
10754 struct tp_tnl_stats stats;
10755
10756 rc = 0;
10757 mtx_lock(&sc->reg_lock);
10758 if (hw_off_limits(sc))
10759 rc = ENXIO;
10760 else
10761 t4_tp_get_tnl_stats(sc, &stats, 1);
10762 mtx_unlock(&sc->reg_lock);
10763 if (rc != 0)
10764 return (rc);
10765
10766 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10767 if (sb == NULL)
10768 return (ENOMEM);
10769
10770 if (sc->chip_params->nchan > 2) {
10771 sbuf_printf(sb, " channel 0 channel 1"
10772 " channel 2 channel 3\n");
10773 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
10774 stats.out_pkt[0], stats.out_pkt[1],
10775 stats.out_pkt[2], stats.out_pkt[3]);
10776 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
10777 stats.in_pkt[0], stats.in_pkt[1],
10778 stats.in_pkt[2], stats.in_pkt[3]);
10779 } else {
10780 sbuf_printf(sb, " channel 0 channel 1\n");
10781 sbuf_printf(sb, "OutPkts: %10u %10u\n",
10782 stats.out_pkt[0], stats.out_pkt[1]);
10783 sbuf_printf(sb, "InPkts: %10u %10u",
10784 stats.in_pkt[0], stats.in_pkt[1]);
10785 }
10786
10787 rc = sbuf_finish(sb);
10788 sbuf_delete(sb);
10789
10790 return (rc);
10791 }
10792
10793 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)10794 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10795 {
10796 struct adapter *sc = arg1;
10797 struct tp_params *tpp = &sc->params.tp;
10798 u_int mask;
10799 int rc;
10800
10801 mask = tpp->la_mask >> 16;
10802 rc = sysctl_handle_int(oidp, &mask, 0, req);
10803 if (rc != 0 || req->newptr == NULL)
10804 return (rc);
10805 if (mask > 0xffff)
10806 return (EINVAL);
10807 mtx_lock(&sc->reg_lock);
10808 if (hw_off_limits(sc))
10809 rc = ENXIO;
10810 else {
10811 tpp->la_mask = mask << 16;
10812 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10813 tpp->la_mask);
10814 }
10815 mtx_unlock(&sc->reg_lock);
10816
10817 return (rc);
10818 }
10819
10820 struct field_desc {
10821 const char *name;
10822 u_int start;
10823 u_int width;
10824 };
10825
10826 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)10827 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10828 {
10829 char buf[32];
10830 int line_size = 0;
10831
10832 while (f->name) {
10833 uint64_t mask = (1ULL << f->width) - 1;
10834 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10835 ((uintmax_t)v >> f->start) & mask);
10836
10837 if (line_size + len >= 79) {
10838 line_size = 8;
10839 sbuf_printf(sb, "\n ");
10840 }
10841 sbuf_printf(sb, "%s ", buf);
10842 line_size += len + 1;
10843 f++;
10844 }
10845 sbuf_printf(sb, "\n");
10846 }
10847
10848 static const struct field_desc tp_la0[] = {
10849 { "RcfOpCodeOut", 60, 4 },
10850 { "State", 56, 4 },
10851 { "WcfState", 52, 4 },
10852 { "RcfOpcSrcOut", 50, 2 },
10853 { "CRxError", 49, 1 },
10854 { "ERxError", 48, 1 },
10855 { "SanityFailed", 47, 1 },
10856 { "SpuriousMsg", 46, 1 },
10857 { "FlushInputMsg", 45, 1 },
10858 { "FlushInputCpl", 44, 1 },
10859 { "RssUpBit", 43, 1 },
10860 { "RssFilterHit", 42, 1 },
10861 { "Tid", 32, 10 },
10862 { "InitTcb", 31, 1 },
10863 { "LineNumber", 24, 7 },
10864 { "Emsg", 23, 1 },
10865 { "EdataOut", 22, 1 },
10866 { "Cmsg", 21, 1 },
10867 { "CdataOut", 20, 1 },
10868 { "EreadPdu", 19, 1 },
10869 { "CreadPdu", 18, 1 },
10870 { "TunnelPkt", 17, 1 },
10871 { "RcfPeerFin", 16, 1 },
10872 { "RcfReasonOut", 12, 4 },
10873 { "TxCchannel", 10, 2 },
10874 { "RcfTxChannel", 8, 2 },
10875 { "RxEchannel", 6, 2 },
10876 { "RcfRxChannel", 5, 1 },
10877 { "RcfDataOutSrdy", 4, 1 },
10878 { "RxDvld", 3, 1 },
10879 { "RxOoDvld", 2, 1 },
10880 { "RxCongestion", 1, 1 },
10881 { "TxCongestion", 0, 1 },
10882 { NULL }
10883 };
10884
10885 static const struct field_desc tp_la1[] = {
10886 { "CplCmdIn", 56, 8 },
10887 { "CplCmdOut", 48, 8 },
10888 { "ESynOut", 47, 1 },
10889 { "EAckOut", 46, 1 },
10890 { "EFinOut", 45, 1 },
10891 { "ERstOut", 44, 1 },
10892 { "SynIn", 43, 1 },
10893 { "AckIn", 42, 1 },
10894 { "FinIn", 41, 1 },
10895 { "RstIn", 40, 1 },
10896 { "DataIn", 39, 1 },
10897 { "DataInVld", 38, 1 },
10898 { "PadIn", 37, 1 },
10899 { "RxBufEmpty", 36, 1 },
10900 { "RxDdp", 35, 1 },
10901 { "RxFbCongestion", 34, 1 },
10902 { "TxFbCongestion", 33, 1 },
10903 { "TxPktSumSrdy", 32, 1 },
10904 { "RcfUlpType", 28, 4 },
10905 { "Eread", 27, 1 },
10906 { "Ebypass", 26, 1 },
10907 { "Esave", 25, 1 },
10908 { "Static0", 24, 1 },
10909 { "Cread", 23, 1 },
10910 { "Cbypass", 22, 1 },
10911 { "Csave", 21, 1 },
10912 { "CPktOut", 20, 1 },
10913 { "RxPagePoolFull", 18, 2 },
10914 { "RxLpbkPkt", 17, 1 },
10915 { "TxLpbkPkt", 16, 1 },
10916 { "RxVfValid", 15, 1 },
10917 { "SynLearned", 14, 1 },
10918 { "SetDelEntry", 13, 1 },
10919 { "SetInvEntry", 12, 1 },
10920 { "CpcmdDvld", 11, 1 },
10921 { "CpcmdSave", 10, 1 },
10922 { "RxPstructsFull", 8, 2 },
10923 { "EpcmdDvld", 7, 1 },
10924 { "EpcmdFlush", 6, 1 },
10925 { "EpcmdTrimPrefix", 5, 1 },
10926 { "EpcmdTrimPostfix", 4, 1 },
10927 { "ERssIp4Pkt", 3, 1 },
10928 { "ERssIp6Pkt", 2, 1 },
10929 { "ERssTcpUdpPkt", 1, 1 },
10930 { "ERssFceFipPkt", 0, 1 },
10931 { NULL }
10932 };
10933
10934 static const struct field_desc tp_la2[] = {
10935 { "CplCmdIn", 56, 8 },
10936 { "MpsVfVld", 55, 1 },
10937 { "MpsPf", 52, 3 },
10938 { "MpsVf", 44, 8 },
10939 { "SynIn", 43, 1 },
10940 { "AckIn", 42, 1 },
10941 { "FinIn", 41, 1 },
10942 { "RstIn", 40, 1 },
10943 { "DataIn", 39, 1 },
10944 { "DataInVld", 38, 1 },
10945 { "PadIn", 37, 1 },
10946 { "RxBufEmpty", 36, 1 },
10947 { "RxDdp", 35, 1 },
10948 { "RxFbCongestion", 34, 1 },
10949 { "TxFbCongestion", 33, 1 },
10950 { "TxPktSumSrdy", 32, 1 },
10951 { "RcfUlpType", 28, 4 },
10952 { "Eread", 27, 1 },
10953 { "Ebypass", 26, 1 },
10954 { "Esave", 25, 1 },
10955 { "Static0", 24, 1 },
10956 { "Cread", 23, 1 },
10957 { "Cbypass", 22, 1 },
10958 { "Csave", 21, 1 },
10959 { "CPktOut", 20, 1 },
10960 { "RxPagePoolFull", 18, 2 },
10961 { "RxLpbkPkt", 17, 1 },
10962 { "TxLpbkPkt", 16, 1 },
10963 { "RxVfValid", 15, 1 },
10964 { "SynLearned", 14, 1 },
10965 { "SetDelEntry", 13, 1 },
10966 { "SetInvEntry", 12, 1 },
10967 { "CpcmdDvld", 11, 1 },
10968 { "CpcmdSave", 10, 1 },
10969 { "RxPstructsFull", 8, 2 },
10970 { "EpcmdDvld", 7, 1 },
10971 { "EpcmdFlush", 6, 1 },
10972 { "EpcmdTrimPrefix", 5, 1 },
10973 { "EpcmdTrimPostfix", 4, 1 },
10974 { "ERssIp4Pkt", 3, 1 },
10975 { "ERssIp6Pkt", 2, 1 },
10976 { "ERssTcpUdpPkt", 1, 1 },
10977 { "ERssFceFipPkt", 0, 1 },
10978 { NULL }
10979 };
10980
10981 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)10982 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10983 {
10984
10985 field_desc_show(sb, *p, tp_la0);
10986 }
10987
10988 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)10989 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10990 {
10991
10992 if (idx)
10993 sbuf_printf(sb, "\n");
10994 field_desc_show(sb, p[0], tp_la0);
10995 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10996 field_desc_show(sb, p[1], tp_la0);
10997 }
10998
10999 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11000 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11001 {
11002
11003 if (idx)
11004 sbuf_printf(sb, "\n");
11005 field_desc_show(sb, p[0], tp_la0);
11006 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11007 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11008 }
11009
11010 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11011 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11012 {
11013 struct adapter *sc = arg1;
11014 struct sbuf *sb;
11015 uint64_t *buf, *p;
11016 int rc;
11017 u_int i, inc;
11018 void (*show_func)(struct sbuf *, uint64_t *, int);
11019
11020 rc = 0;
11021 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11022 if (sb == NULL)
11023 return (ENOMEM);
11024
11025 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11026
11027 mtx_lock(&sc->reg_lock);
11028 if (hw_off_limits(sc))
11029 rc = ENXIO;
11030 else {
11031 t4_tp_read_la(sc, buf, NULL);
11032 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11033 case 2:
11034 inc = 2;
11035 show_func = tp_la_show2;
11036 break;
11037 case 3:
11038 inc = 2;
11039 show_func = tp_la_show3;
11040 break;
11041 default:
11042 inc = 1;
11043 show_func = tp_la_show;
11044 }
11045 }
11046 mtx_unlock(&sc->reg_lock);
11047 if (rc != 0)
11048 goto done;
11049
11050 p = buf;
11051 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11052 (*show_func)(sb, p, i);
11053 rc = sbuf_finish(sb);
11054 done:
11055 sbuf_delete(sb);
11056 free(buf, M_CXGBE);
11057 return (rc);
11058 }
11059
11060 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)11061 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11062 {
11063 struct adapter *sc = arg1;
11064 struct sbuf *sb;
11065 int rc;
11066 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11067
11068 rc = 0;
11069 mtx_lock(&sc->reg_lock);
11070 if (hw_off_limits(sc))
11071 rc = ENXIO;
11072 else
11073 t4_get_chan_txrate(sc, nrate, orate);
11074 mtx_unlock(&sc->reg_lock);
11075 if (rc != 0)
11076 return (rc);
11077
11078 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11079 if (sb == NULL)
11080 return (ENOMEM);
11081
11082 if (sc->chip_params->nchan > 2) {
11083 sbuf_printf(sb, " channel 0 channel 1"
11084 " channel 2 channel 3\n");
11085 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
11086 nrate[0], nrate[1], nrate[2], nrate[3]);
11087 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
11088 orate[0], orate[1], orate[2], orate[3]);
11089 } else {
11090 sbuf_printf(sb, " channel 0 channel 1\n");
11091 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
11092 nrate[0], nrate[1]);
11093 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
11094 orate[0], orate[1]);
11095 }
11096
11097 rc = sbuf_finish(sb);
11098 sbuf_delete(sb);
11099
11100 return (rc);
11101 }
11102
11103 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)11104 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11105 {
11106 struct adapter *sc = arg1;
11107 struct sbuf *sb;
11108 uint32_t *buf, *p;
11109 int rc, i;
11110
11111 rc = 0;
11112 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11113 if (sb == NULL)
11114 return (ENOMEM);
11115
11116 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11117 M_ZERO | M_WAITOK);
11118
11119 mtx_lock(&sc->reg_lock);
11120 if (hw_off_limits(sc))
11121 rc = ENXIO;
11122 else
11123 t4_ulprx_read_la(sc, buf);
11124 mtx_unlock(&sc->reg_lock);
11125 if (rc != 0)
11126 goto done;
11127
11128 p = buf;
11129 sbuf_printf(sb, " Pcmd Type Message"
11130 " Data");
11131 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11132 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
11133 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11134 }
11135 rc = sbuf_finish(sb);
11136 done:
11137 sbuf_delete(sb);
11138 free(buf, M_CXGBE);
11139 return (rc);
11140 }
11141
11142 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)11143 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11144 {
11145 struct adapter *sc = arg1;
11146 struct sbuf *sb;
11147 int rc;
11148 uint32_t cfg, s1, s2;
11149
11150 MPASS(chip_id(sc) >= CHELSIO_T5);
11151
11152 rc = 0;
11153 mtx_lock(&sc->reg_lock);
11154 if (hw_off_limits(sc))
11155 rc = ENXIO;
11156 else {
11157 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11158 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11159 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11160 }
11161 mtx_unlock(&sc->reg_lock);
11162 if (rc != 0)
11163 return (rc);
11164
11165 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11166 if (sb == NULL)
11167 return (ENOMEM);
11168
11169 if (G_STATSOURCE_T5(cfg) == 7) {
11170 int mode;
11171
11172 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11173 if (mode == 0)
11174 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11175 else if (mode == 1)
11176 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11177 else
11178 sbuf_printf(sb, "unknown mode %d", mode);
11179 }
11180 rc = sbuf_finish(sb);
11181 sbuf_delete(sb);
11182
11183 return (rc);
11184 }
11185
11186 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)11187 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11188 {
11189 struct adapter *sc = arg1;
11190 enum cpu_sets op = arg2;
11191 cpuset_t cpuset;
11192 struct sbuf *sb;
11193 int i, rc;
11194
11195 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11196
11197 CPU_ZERO(&cpuset);
11198 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11199 if (rc != 0)
11200 return (rc);
11201
11202 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11203 if (sb == NULL)
11204 return (ENOMEM);
11205
11206 CPU_FOREACH(i)
11207 sbuf_printf(sb, "%d ", i);
11208 rc = sbuf_finish(sb);
11209 sbuf_delete(sb);
11210
11211 return (rc);
11212 }
11213
11214 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)11215 sysctl_reset(SYSCTL_HANDLER_ARGS)
11216 {
11217 struct adapter *sc = arg1;
11218 u_int val;
11219 int rc;
11220
11221 val = atomic_load_int(&sc->num_resets);
11222 rc = sysctl_handle_int(oidp, &val, 0, req);
11223 if (rc != 0 || req->newptr == NULL)
11224 return (rc);
11225
11226 if (val == 0) {
11227 /* Zero out the counter that tracks reset. */
11228 atomic_store_int(&sc->num_resets, 0);
11229 return (0);
11230 }
11231
11232 if (val != 1)
11233 return (EINVAL); /* 0 or 1 are the only legal values */
11234
11235 if (hw_off_limits(sc)) /* harmless race */
11236 return (EALREADY);
11237
11238 taskqueue_enqueue(reset_tq, &sc->reset_task);
11239 return (0);
11240 }
11241
11242 #ifdef TCP_OFFLOAD
11243 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)11244 sysctl_tls(SYSCTL_HANDLER_ARGS)
11245 {
11246 struct adapter *sc = arg1;
11247 int i, j, v, rc;
11248 struct vi_info *vi;
11249
11250 v = sc->tt.tls;
11251 rc = sysctl_handle_int(oidp, &v, 0, req);
11252 if (rc != 0 || req->newptr == NULL)
11253 return (rc);
11254
11255 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11256 return (ENOTSUP);
11257
11258 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11259 if (rc)
11260 return (rc);
11261 if (hw_off_limits(sc))
11262 rc = ENXIO;
11263 else {
11264 sc->tt.tls = !!v;
11265 for_each_port(sc, i) {
11266 for_each_vi(sc->port[i], j, vi) {
11267 if (vi->flags & VI_INIT_DONE)
11268 t4_update_fl_bufsize(vi->ifp);
11269 }
11270 }
11271 }
11272 end_synchronized_op(sc, 0);
11273
11274 return (rc);
11275
11276 }
11277
11278 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)11279 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11280 {
11281 u_int rem = val % factor;
11282
11283 if (rem == 0)
11284 snprintf(buf, len, "%u", val / factor);
11285 else {
11286 while (rem % 10 == 0)
11287 rem /= 10;
11288 snprintf(buf, len, "%u.%u", val / factor, rem);
11289 }
11290 }
11291
11292 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)11293 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11294 {
11295 struct adapter *sc = arg1;
11296 char buf[16];
11297 u_int res, re;
11298 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11299
11300 mtx_lock(&sc->reg_lock);
11301 if (hw_off_limits(sc))
11302 res = (u_int)-1;
11303 else
11304 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11305 mtx_unlock(&sc->reg_lock);
11306 if (res == (u_int)-1)
11307 return (ENXIO);
11308
11309 switch (arg2) {
11310 case 0:
11311 /* timer_tick */
11312 re = G_TIMERRESOLUTION(res);
11313 break;
11314 case 1:
11315 /* TCP timestamp tick */
11316 re = G_TIMESTAMPRESOLUTION(res);
11317 break;
11318 case 2:
11319 /* DACK tick */
11320 re = G_DELAYEDACKRESOLUTION(res);
11321 break;
11322 default:
11323 return (EDOOFUS);
11324 }
11325
11326 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11327
11328 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11329 }
11330
11331 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)11332 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11333 {
11334 struct adapter *sc = arg1;
11335 int rc;
11336 u_int dack_tmr, dack_re, v;
11337 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11338
11339 mtx_lock(&sc->reg_lock);
11340 if (hw_off_limits(sc))
11341 rc = ENXIO;
11342 else {
11343 rc = 0;
11344 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11345 A_TP_TIMER_RESOLUTION));
11346 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11347 }
11348 mtx_unlock(&sc->reg_lock);
11349 if (rc != 0)
11350 return (rc);
11351
11352 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11353
11354 return (sysctl_handle_int(oidp, &v, 0, req));
11355 }
11356
11357 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)11358 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11359 {
11360 struct adapter *sc = arg1;
11361 int rc, reg = arg2;
11362 u_int tre;
11363 u_long tp_tick_us, v;
11364 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11365
11366 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11367 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
11368 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11369 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11370
11371 mtx_lock(&sc->reg_lock);
11372 if (hw_off_limits(sc))
11373 rc = ENXIO;
11374 else {
11375 rc = 0;
11376 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11377 tp_tick_us = (cclk_ps << tre) / 1000000;
11378 if (reg == A_TP_INIT_SRTT)
11379 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11380 else
11381 v = tp_tick_us * t4_read_reg(sc, reg);
11382 }
11383 mtx_unlock(&sc->reg_lock);
11384 if (rc != 0)
11385 return (rc);
11386 else
11387 return (sysctl_handle_long(oidp, &v, 0, req));
11388 }
11389
11390 /*
11391 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11392 * passed to this function.
11393 */
11394 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)11395 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11396 {
11397 struct adapter *sc = arg1;
11398 int rc, idx = arg2;
11399 u_int v;
11400
11401 MPASS(idx >= 0 && idx <= 24);
11402
11403 mtx_lock(&sc->reg_lock);
11404 if (hw_off_limits(sc))
11405 rc = ENXIO;
11406 else {
11407 rc = 0;
11408 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11409 }
11410 mtx_unlock(&sc->reg_lock);
11411 if (rc != 0)
11412 return (rc);
11413 else
11414 return (sysctl_handle_int(oidp, &v, 0, req));
11415 }
11416
11417 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)11418 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11419 {
11420 struct adapter *sc = arg1;
11421 int rc, idx = arg2;
11422 u_int shift, v, r;
11423
11424 MPASS(idx >= 0 && idx < 16);
11425
11426 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11427 shift = (idx & 3) << 3;
11428 mtx_lock(&sc->reg_lock);
11429 if (hw_off_limits(sc))
11430 rc = ENXIO;
11431 else {
11432 rc = 0;
11433 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11434 }
11435 mtx_unlock(&sc->reg_lock);
11436 if (rc != 0)
11437 return (rc);
11438 else
11439 return (sysctl_handle_int(oidp, &v, 0, req));
11440 }
11441
11442 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)11443 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11444 {
11445 struct vi_info *vi = arg1;
11446 struct adapter *sc = vi->adapter;
11447 int idx, rc, i;
11448 struct sge_ofld_rxq *ofld_rxq;
11449 uint8_t v;
11450
11451 idx = vi->ofld_tmr_idx;
11452
11453 rc = sysctl_handle_int(oidp, &idx, 0, req);
11454 if (rc != 0 || req->newptr == NULL)
11455 return (rc);
11456
11457 if (idx < 0 || idx >= SGE_NTIMERS)
11458 return (EINVAL);
11459
11460 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11461 "t4otmr");
11462 if (rc)
11463 return (rc);
11464
11465 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11466 for_each_ofld_rxq(vi, i, ofld_rxq) {
11467 #ifdef atomic_store_rel_8
11468 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11469 #else
11470 ofld_rxq->iq.intr_params = v;
11471 #endif
11472 }
11473 vi->ofld_tmr_idx = idx;
11474
11475 end_synchronized_op(sc, LOCK_HELD);
11476 return (0);
11477 }
11478
11479 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)11480 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11481 {
11482 struct vi_info *vi = arg1;
11483 struct adapter *sc = vi->adapter;
11484 int idx, rc;
11485
11486 idx = vi->ofld_pktc_idx;
11487
11488 rc = sysctl_handle_int(oidp, &idx, 0, req);
11489 if (rc != 0 || req->newptr == NULL)
11490 return (rc);
11491
11492 if (idx < -1 || idx >= SGE_NCOUNTERS)
11493 return (EINVAL);
11494
11495 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11496 "t4opktc");
11497 if (rc)
11498 return (rc);
11499
11500 if (vi->flags & VI_INIT_DONE)
11501 rc = EBUSY; /* cannot be changed once the queues are created */
11502 else
11503 vi->ofld_pktc_idx = idx;
11504
11505 end_synchronized_op(sc, LOCK_HELD);
11506 return (rc);
11507 }
11508 #endif
11509
11510 static int
get_sge_context(struct adapter * sc,struct t4_sge_context * cntxt)11511 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11512 {
11513 int rc;
11514
11515 if (cntxt->cid > M_CTXTQID)
11516 return (EINVAL);
11517
11518 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11519 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11520 return (EINVAL);
11521
11522 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11523 if (rc)
11524 return (rc);
11525
11526 if (hw_off_limits(sc)) {
11527 rc = ENXIO;
11528 goto done;
11529 }
11530
11531 if (sc->flags & FW_OK) {
11532 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11533 &cntxt->data[0]);
11534 if (rc == 0)
11535 goto done;
11536 }
11537
11538 /*
11539 * Read via firmware failed or wasn't even attempted. Read directly via
11540 * the backdoor.
11541 */
11542 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11543 done:
11544 end_synchronized_op(sc, 0);
11545 return (rc);
11546 }
11547
11548 static int
load_fw(struct adapter * sc,struct t4_data * fw)11549 load_fw(struct adapter *sc, struct t4_data *fw)
11550 {
11551 int rc;
11552 uint8_t *fw_data;
11553
11554 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11555 if (rc)
11556 return (rc);
11557
11558 if (hw_off_limits(sc)) {
11559 rc = ENXIO;
11560 goto done;
11561 }
11562
11563 /*
11564 * The firmware, with the sole exception of the memory parity error
11565 * handler, runs from memory and not flash. It is almost always safe to
11566 * install a new firmware on a running system. Just set bit 1 in
11567 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11568 */
11569 if (sc->flags & FULL_INIT_DONE &&
11570 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11571 rc = EBUSY;
11572 goto done;
11573 }
11574
11575 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11576
11577 rc = copyin(fw->data, fw_data, fw->len);
11578 if (rc == 0)
11579 rc = -t4_load_fw(sc, fw_data, fw->len);
11580
11581 free(fw_data, M_CXGBE);
11582 done:
11583 end_synchronized_op(sc, 0);
11584 return (rc);
11585 }
11586
11587 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)11588 load_cfg(struct adapter *sc, struct t4_data *cfg)
11589 {
11590 int rc;
11591 uint8_t *cfg_data = NULL;
11592
11593 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11594 if (rc)
11595 return (rc);
11596
11597 if (hw_off_limits(sc)) {
11598 rc = ENXIO;
11599 goto done;
11600 }
11601
11602 if (cfg->len == 0) {
11603 /* clear */
11604 rc = -t4_load_cfg(sc, NULL, 0);
11605 goto done;
11606 }
11607
11608 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11609
11610 rc = copyin(cfg->data, cfg_data, cfg->len);
11611 if (rc == 0)
11612 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11613
11614 free(cfg_data, M_CXGBE);
11615 done:
11616 end_synchronized_op(sc, 0);
11617 return (rc);
11618 }
11619
11620 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)11621 load_boot(struct adapter *sc, struct t4_bootrom *br)
11622 {
11623 int rc;
11624 uint8_t *br_data = NULL;
11625 u_int offset;
11626
11627 if (br->len > 1024 * 1024)
11628 return (EFBIG);
11629
11630 if (br->pf_offset == 0) {
11631 /* pfidx */
11632 if (br->pfidx_addr > 7)
11633 return (EINVAL);
11634 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11635 A_PCIE_PF_EXPROM_OFST)));
11636 } else if (br->pf_offset == 1) {
11637 /* offset */
11638 offset = G_OFFSET(br->pfidx_addr);
11639 } else {
11640 return (EINVAL);
11641 }
11642
11643 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11644 if (rc)
11645 return (rc);
11646
11647 if (hw_off_limits(sc)) {
11648 rc = ENXIO;
11649 goto done;
11650 }
11651
11652 if (br->len == 0) {
11653 /* clear */
11654 rc = -t4_load_boot(sc, NULL, offset, 0);
11655 goto done;
11656 }
11657
11658 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11659
11660 rc = copyin(br->data, br_data, br->len);
11661 if (rc == 0)
11662 rc = -t4_load_boot(sc, br_data, offset, br->len);
11663
11664 free(br_data, M_CXGBE);
11665 done:
11666 end_synchronized_op(sc, 0);
11667 return (rc);
11668 }
11669
11670 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)11671 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11672 {
11673 int rc;
11674 uint8_t *bc_data = NULL;
11675
11676 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11677 if (rc)
11678 return (rc);
11679
11680 if (hw_off_limits(sc)) {
11681 rc = ENXIO;
11682 goto done;
11683 }
11684
11685 if (bc->len == 0) {
11686 /* clear */
11687 rc = -t4_load_bootcfg(sc, NULL, 0);
11688 goto done;
11689 }
11690
11691 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11692
11693 rc = copyin(bc->data, bc_data, bc->len);
11694 if (rc == 0)
11695 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11696
11697 free(bc_data, M_CXGBE);
11698 done:
11699 end_synchronized_op(sc, 0);
11700 return (rc);
11701 }
11702
11703 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)11704 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11705 {
11706 int rc;
11707 struct cudbg_init *cudbg;
11708 void *handle, *buf;
11709
11710 /* buf is large, don't block if no memory is available */
11711 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11712 if (buf == NULL)
11713 return (ENOMEM);
11714
11715 handle = cudbg_alloc_handle();
11716 if (handle == NULL) {
11717 rc = ENOMEM;
11718 goto done;
11719 }
11720
11721 cudbg = cudbg_get_init(handle);
11722 cudbg->adap = sc;
11723 cudbg->print = (cudbg_print_cb)printf;
11724
11725 #ifndef notyet
11726 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11727 __func__, dump->wr_flash, dump->len, dump->data);
11728 #endif
11729
11730 if (dump->wr_flash)
11731 cudbg->use_flash = 1;
11732 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11733 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11734
11735 rc = cudbg_collect(handle, buf, &dump->len);
11736 if (rc != 0)
11737 goto done;
11738
11739 rc = copyout(buf, dump->data, dump->len);
11740 done:
11741 cudbg_free_handle(handle);
11742 free(buf, M_CXGBE);
11743 return (rc);
11744 }
11745
11746 static void
free_offload_policy(struct t4_offload_policy * op)11747 free_offload_policy(struct t4_offload_policy *op)
11748 {
11749 struct offload_rule *r;
11750 int i;
11751
11752 if (op == NULL)
11753 return;
11754
11755 r = &op->rule[0];
11756 for (i = 0; i < op->nrules; i++, r++) {
11757 free(r->bpf_prog.bf_insns, M_CXGBE);
11758 }
11759 free(op->rule, M_CXGBE);
11760 free(op, M_CXGBE);
11761 }
11762
11763 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)11764 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11765 {
11766 int i, rc, len;
11767 struct t4_offload_policy *op, *old;
11768 struct bpf_program *bf;
11769 const struct offload_settings *s;
11770 struct offload_rule *r;
11771 void *u;
11772
11773 if (!is_offload(sc))
11774 return (ENODEV);
11775
11776 if (uop->nrules == 0) {
11777 /* Delete installed policies. */
11778 op = NULL;
11779 goto set_policy;
11780 } else if (uop->nrules > 256) { /* arbitrary */
11781 return (E2BIG);
11782 }
11783
11784 /* Copy userspace offload policy to kernel */
11785 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11786 op->nrules = uop->nrules;
11787 len = op->nrules * sizeof(struct offload_rule);
11788 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11789 rc = copyin(uop->rule, op->rule, len);
11790 if (rc) {
11791 free(op->rule, M_CXGBE);
11792 free(op, M_CXGBE);
11793 return (rc);
11794 }
11795
11796 r = &op->rule[0];
11797 for (i = 0; i < op->nrules; i++, r++) {
11798
11799 /* Validate open_type */
11800 if (r->open_type != OPEN_TYPE_LISTEN &&
11801 r->open_type != OPEN_TYPE_ACTIVE &&
11802 r->open_type != OPEN_TYPE_PASSIVE &&
11803 r->open_type != OPEN_TYPE_DONTCARE) {
11804 error:
11805 /*
11806 * Rules 0 to i have malloc'd filters that need to be
11807 * freed. Rules i+1 to nrules have userspace pointers
11808 * and should be left alone.
11809 */
11810 op->nrules = i;
11811 free_offload_policy(op);
11812 return (rc);
11813 }
11814
11815 /* Validate settings */
11816 s = &r->settings;
11817 if ((s->offload != 0 && s->offload != 1) ||
11818 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11819 s->sched_class < -1 ||
11820 s->sched_class >= sc->params.nsched_cls) {
11821 rc = EINVAL;
11822 goto error;
11823 }
11824
11825 bf = &r->bpf_prog;
11826 u = bf->bf_insns; /* userspace ptr */
11827 bf->bf_insns = NULL;
11828 if (bf->bf_len == 0) {
11829 /* legal, matches everything */
11830 continue;
11831 }
11832 len = bf->bf_len * sizeof(*bf->bf_insns);
11833 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11834 rc = copyin(u, bf->bf_insns, len);
11835 if (rc != 0)
11836 goto error;
11837
11838 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11839 rc = EINVAL;
11840 goto error;
11841 }
11842 }
11843 set_policy:
11844 rw_wlock(&sc->policy_lock);
11845 old = sc->policy;
11846 sc->policy = op;
11847 rw_wunlock(&sc->policy_lock);
11848 free_offload_policy(old);
11849
11850 return (0);
11851 }
11852
11853 #define MAX_READ_BUF_SIZE (128 * 1024)
11854 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)11855 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11856 {
11857 uint32_t addr, remaining, n;
11858 uint32_t *buf;
11859 int rc;
11860 uint8_t *dst;
11861
11862 mtx_lock(&sc->reg_lock);
11863 if (hw_off_limits(sc))
11864 rc = ENXIO;
11865 else
11866 rc = validate_mem_range(sc, mr->addr, mr->len);
11867 mtx_unlock(&sc->reg_lock);
11868 if (rc != 0)
11869 return (rc);
11870
11871 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11872 addr = mr->addr;
11873 remaining = mr->len;
11874 dst = (void *)mr->data;
11875
11876 while (remaining) {
11877 n = min(remaining, MAX_READ_BUF_SIZE);
11878 mtx_lock(&sc->reg_lock);
11879 if (hw_off_limits(sc))
11880 rc = ENXIO;
11881 else
11882 read_via_memwin(sc, 2, addr, buf, n);
11883 mtx_unlock(&sc->reg_lock);
11884 if (rc != 0)
11885 break;
11886
11887 rc = copyout(buf, dst, n);
11888 if (rc != 0)
11889 break;
11890
11891 dst += n;
11892 remaining -= n;
11893 addr += n;
11894 }
11895
11896 free(buf, M_CXGBE);
11897 return (rc);
11898 }
11899 #undef MAX_READ_BUF_SIZE
11900
11901 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)11902 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11903 {
11904 int rc;
11905
11906 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11907 return (EINVAL);
11908
11909 if (i2cd->len > sizeof(i2cd->data))
11910 return (EFBIG);
11911
11912 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11913 if (rc)
11914 return (rc);
11915 if (hw_off_limits(sc))
11916 rc = ENXIO;
11917 else
11918 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11919 i2cd->offset, i2cd->len, &i2cd->data[0]);
11920 end_synchronized_op(sc, 0);
11921
11922 return (rc);
11923 }
11924
11925 static int
clear_stats(struct adapter * sc,u_int port_id)11926 clear_stats(struct adapter *sc, u_int port_id)
11927 {
11928 int i, v, chan_map;
11929 struct port_info *pi;
11930 struct vi_info *vi;
11931 struct sge_rxq *rxq;
11932 struct sge_txq *txq;
11933 struct sge_wrq *wrq;
11934 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11935 struct sge_ofld_txq *ofld_txq;
11936 #endif
11937 #ifdef TCP_OFFLOAD
11938 struct sge_ofld_rxq *ofld_rxq;
11939 #endif
11940
11941 if (port_id >= sc->params.nports)
11942 return (EINVAL);
11943 pi = sc->port[port_id];
11944 if (pi == NULL)
11945 return (EIO);
11946
11947 mtx_lock(&sc->reg_lock);
11948 if (!hw_off_limits(sc)) {
11949 /* MAC stats */
11950 t4_clr_port_stats(sc, pi->tx_chan);
11951 if (is_t6(sc)) {
11952 if (pi->fcs_reg != -1)
11953 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11954 else
11955 pi->stats.rx_fcs_err = 0;
11956 }
11957 for_each_vi(pi, v, vi) {
11958 if (vi->flags & VI_INIT_DONE)
11959 t4_clr_vi_stats(sc, vi->vin);
11960 }
11961 chan_map = pi->rx_e_chan_map;
11962 v = 0; /* reuse */
11963 while (chan_map) {
11964 i = ffs(chan_map) - 1;
11965 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11966 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11967 chan_map &= ~(1 << i);
11968 }
11969 }
11970 mtx_unlock(&sc->reg_lock);
11971 pi->tx_parse_error = 0;
11972 pi->tnl_cong_drops = 0;
11973
11974 /*
11975 * Since this command accepts a port, clear stats for
11976 * all VIs on this port.
11977 */
11978 for_each_vi(pi, v, vi) {
11979 if (vi->flags & VI_INIT_DONE) {
11980
11981 for_each_rxq(vi, i, rxq) {
11982 #if defined(INET) || defined(INET6)
11983 rxq->lro.lro_queued = 0;
11984 rxq->lro.lro_flushed = 0;
11985 #endif
11986 rxq->rxcsum = 0;
11987 rxq->vlan_extraction = 0;
11988 rxq->vxlan_rxcsum = 0;
11989
11990 rxq->fl.cl_allocated = 0;
11991 rxq->fl.cl_recycled = 0;
11992 rxq->fl.cl_fast_recycled = 0;
11993 }
11994
11995 for_each_txq(vi, i, txq) {
11996 txq->txcsum = 0;
11997 txq->tso_wrs = 0;
11998 txq->vlan_insertion = 0;
11999 txq->imm_wrs = 0;
12000 txq->sgl_wrs = 0;
12001 txq->txpkt_wrs = 0;
12002 txq->txpkts0_wrs = 0;
12003 txq->txpkts1_wrs = 0;
12004 txq->txpkts0_pkts = 0;
12005 txq->txpkts1_pkts = 0;
12006 txq->txpkts_flush = 0;
12007 txq->raw_wrs = 0;
12008 txq->vxlan_tso_wrs = 0;
12009 txq->vxlan_txcsum = 0;
12010 txq->kern_tls_records = 0;
12011 txq->kern_tls_short = 0;
12012 txq->kern_tls_partial = 0;
12013 txq->kern_tls_full = 0;
12014 txq->kern_tls_octets = 0;
12015 txq->kern_tls_waste = 0;
12016 txq->kern_tls_options = 0;
12017 txq->kern_tls_header = 0;
12018 txq->kern_tls_fin = 0;
12019 txq->kern_tls_fin_short = 0;
12020 txq->kern_tls_cbc = 0;
12021 txq->kern_tls_gcm = 0;
12022 mp_ring_reset_stats(txq->r);
12023 }
12024
12025 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12026 for_each_ofld_txq(vi, i, ofld_txq) {
12027 ofld_txq->wrq.tx_wrs_direct = 0;
12028 ofld_txq->wrq.tx_wrs_copied = 0;
12029 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12030 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12031 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12032 counter_u64_zero(ofld_txq->tx_aio_jobs);
12033 counter_u64_zero(ofld_txq->tx_aio_octets);
12034 counter_u64_zero(ofld_txq->tx_toe_tls_records);
12035 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12036 }
12037 #endif
12038 #ifdef TCP_OFFLOAD
12039 for_each_ofld_rxq(vi, i, ofld_rxq) {
12040 ofld_rxq->fl.cl_allocated = 0;
12041 ofld_rxq->fl.cl_recycled = 0;
12042 ofld_rxq->fl.cl_fast_recycled = 0;
12043 counter_u64_zero(
12044 ofld_rxq->rx_iscsi_ddp_setup_ok);
12045 counter_u64_zero(
12046 ofld_rxq->rx_iscsi_ddp_setup_error);
12047 ofld_rxq->rx_iscsi_ddp_pdus = 0;
12048 ofld_rxq->rx_iscsi_ddp_octets = 0;
12049 ofld_rxq->rx_iscsi_fl_pdus = 0;
12050 ofld_rxq->rx_iscsi_fl_octets = 0;
12051 ofld_rxq->rx_aio_ddp_jobs = 0;
12052 ofld_rxq->rx_aio_ddp_octets = 0;
12053 ofld_rxq->rx_toe_tls_records = 0;
12054 ofld_rxq->rx_toe_tls_octets = 0;
12055 ofld_rxq->rx_toe_ddp_octets = 0;
12056 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12057 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12058 counter_u64_zero(ofld_rxq->ddp_buffer_free);
12059 }
12060 #endif
12061
12062 if (IS_MAIN_VI(vi)) {
12063 wrq = &sc->sge.ctrlq[pi->port_id];
12064 wrq->tx_wrs_direct = 0;
12065 wrq->tx_wrs_copied = 0;
12066 }
12067 }
12068 }
12069
12070 return (0);
12071 }
12072
12073 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12074 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12075 {
12076 #ifdef INET6
12077 struct in6_addr in6;
12078
12079 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12080 if (t4_get_clip_entry(sc, &in6, true) != NULL)
12081 return (0);
12082 else
12083 return (EIO);
12084 #else
12085 return (ENOTSUP);
12086 #endif
12087 }
12088
12089 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12090 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12091 {
12092 #ifdef INET6
12093 struct in6_addr in6;
12094
12095 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12096 return (t4_release_clip_addr(sc, &in6));
12097 #else
12098 return (ENOTSUP);
12099 #endif
12100 }
12101
12102 int
t4_os_find_pci_capability(struct adapter * sc,int cap)12103 t4_os_find_pci_capability(struct adapter *sc, int cap)
12104 {
12105 int i;
12106
12107 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12108 }
12109
12110 int
t4_os_pci_save_state(struct adapter * sc)12111 t4_os_pci_save_state(struct adapter *sc)
12112 {
12113 device_t dev;
12114 struct pci_devinfo *dinfo;
12115
12116 dev = sc->dev;
12117 dinfo = device_get_ivars(dev);
12118
12119 pci_cfg_save(dev, dinfo, 0);
12120 return (0);
12121 }
12122
12123 int
t4_os_pci_restore_state(struct adapter * sc)12124 t4_os_pci_restore_state(struct adapter *sc)
12125 {
12126 device_t dev;
12127 struct pci_devinfo *dinfo;
12128
12129 dev = sc->dev;
12130 dinfo = device_get_ivars(dev);
12131
12132 pci_cfg_restore(dev, dinfo);
12133 return (0);
12134 }
12135
12136 void
t4_os_portmod_changed(struct port_info * pi)12137 t4_os_portmod_changed(struct port_info *pi)
12138 {
12139 struct adapter *sc = pi->adapter;
12140 struct vi_info *vi;
12141 if_t ifp;
12142 static const char *mod_str[] = {
12143 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12144 };
12145
12146 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12147 ("%s: port_type %u", __func__, pi->port_type));
12148
12149 vi = &pi->vi[0];
12150 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12151 PORT_LOCK(pi);
12152 build_medialist(pi);
12153 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12154 fixup_link_config(pi);
12155 apply_link_config(pi);
12156 }
12157 PORT_UNLOCK(pi);
12158 end_synchronized_op(sc, LOCK_HELD);
12159 }
12160
12161 ifp = vi->ifp;
12162 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12163 if_printf(ifp, "transceiver unplugged.\n");
12164 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12165 if_printf(ifp, "unknown transceiver inserted.\n");
12166 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12167 if_printf(ifp, "unsupported transceiver inserted.\n");
12168 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12169 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12170 port_top_speed(pi), mod_str[pi->mod_type]);
12171 } else {
12172 if_printf(ifp, "transceiver (type %d) inserted.\n",
12173 pi->mod_type);
12174 }
12175 }
12176
12177 void
t4_os_link_changed(struct port_info * pi)12178 t4_os_link_changed(struct port_info *pi)
12179 {
12180 struct vi_info *vi;
12181 if_t ifp;
12182 struct link_config *lc = &pi->link_cfg;
12183 struct adapter *sc = pi->adapter;
12184 int v;
12185
12186 PORT_LOCK_ASSERT_OWNED(pi);
12187
12188 if (is_t6(sc)) {
12189 if (lc->link_ok) {
12190 if (lc->speed > 25000 ||
12191 (lc->speed == 25000 && lc->fec == FEC_RS)) {
12192 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12193 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12194 } else {
12195 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12196 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12197 }
12198 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12199 pi->stats.rx_fcs_err = 0;
12200 } else {
12201 pi->fcs_reg = -1;
12202 }
12203 } else {
12204 MPASS(pi->fcs_reg != -1);
12205 MPASS(pi->fcs_base == 0);
12206 }
12207
12208 for_each_vi(pi, v, vi) {
12209 ifp = vi->ifp;
12210 if (ifp == NULL || IS_DETACHING(vi))
12211 continue;
12212
12213 if (lc->link_ok) {
12214 if_setbaudrate(ifp, IF_Mbps(lc->speed));
12215 if_link_state_change(ifp, LINK_STATE_UP);
12216 } else {
12217 if_link_state_change(ifp, LINK_STATE_DOWN);
12218 }
12219 }
12220 }
12221
12222 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)12223 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12224 {
12225 struct adapter *sc;
12226
12227 sx_slock(&t4_list_lock);
12228 SLIST_FOREACH(sc, &t4_list, link) {
12229 /*
12230 * func should not make any assumptions about what state sc is
12231 * in - the only guarantee is that sc->sc_lock is a valid lock.
12232 */
12233 func(sc, arg);
12234 }
12235 sx_sunlock(&t4_list_lock);
12236 }
12237
12238 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)12239 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12240 struct thread *td)
12241 {
12242 int rc;
12243 struct adapter *sc = dev->si_drv1;
12244
12245 rc = priv_check(td, PRIV_DRIVER);
12246 if (rc != 0)
12247 return (rc);
12248
12249 switch (cmd) {
12250 case CHELSIO_T4_GETREG: {
12251 struct t4_reg *edata = (struct t4_reg *)data;
12252
12253 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12254 return (EFAULT);
12255
12256 mtx_lock(&sc->reg_lock);
12257 if (hw_off_limits(sc))
12258 rc = ENXIO;
12259 else if (edata->size == 4)
12260 edata->val = t4_read_reg(sc, edata->addr);
12261 else if (edata->size == 8)
12262 edata->val = t4_read_reg64(sc, edata->addr);
12263 else
12264 rc = EINVAL;
12265 mtx_unlock(&sc->reg_lock);
12266
12267 break;
12268 }
12269 case CHELSIO_T4_SETREG: {
12270 struct t4_reg *edata = (struct t4_reg *)data;
12271
12272 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12273 return (EFAULT);
12274
12275 mtx_lock(&sc->reg_lock);
12276 if (hw_off_limits(sc))
12277 rc = ENXIO;
12278 else if (edata->size == 4) {
12279 if (edata->val & 0xffffffff00000000)
12280 rc = EINVAL;
12281 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12282 } else if (edata->size == 8)
12283 t4_write_reg64(sc, edata->addr, edata->val);
12284 else
12285 rc = EINVAL;
12286 mtx_unlock(&sc->reg_lock);
12287
12288 break;
12289 }
12290 case CHELSIO_T4_REGDUMP: {
12291 struct t4_regdump *regs = (struct t4_regdump *)data;
12292 int reglen = t4_get_regs_len(sc);
12293 uint8_t *buf;
12294
12295 if (regs->len < reglen) {
12296 regs->len = reglen; /* hint to the caller */
12297 return (ENOBUFS);
12298 }
12299
12300 regs->len = reglen;
12301 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12302 mtx_lock(&sc->reg_lock);
12303 if (hw_off_limits(sc))
12304 rc = ENXIO;
12305 else
12306 get_regs(sc, regs, buf);
12307 mtx_unlock(&sc->reg_lock);
12308 if (rc == 0)
12309 rc = copyout(buf, regs->data, reglen);
12310 free(buf, M_CXGBE);
12311 break;
12312 }
12313 case CHELSIO_T4_GET_FILTER_MODE:
12314 rc = get_filter_mode(sc, (uint32_t *)data);
12315 break;
12316 case CHELSIO_T4_SET_FILTER_MODE:
12317 rc = set_filter_mode(sc, *(uint32_t *)data);
12318 break;
12319 case CHELSIO_T4_SET_FILTER_MASK:
12320 rc = set_filter_mask(sc, *(uint32_t *)data);
12321 break;
12322 case CHELSIO_T4_GET_FILTER:
12323 rc = get_filter(sc, (struct t4_filter *)data);
12324 break;
12325 case CHELSIO_T4_SET_FILTER:
12326 rc = set_filter(sc, (struct t4_filter *)data);
12327 break;
12328 case CHELSIO_T4_DEL_FILTER:
12329 rc = del_filter(sc, (struct t4_filter *)data);
12330 break;
12331 case CHELSIO_T4_GET_SGE_CONTEXT:
12332 rc = get_sge_context(sc, (struct t4_sge_context *)data);
12333 break;
12334 case CHELSIO_T4_LOAD_FW:
12335 rc = load_fw(sc, (struct t4_data *)data);
12336 break;
12337 case CHELSIO_T4_GET_MEM:
12338 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12339 break;
12340 case CHELSIO_T4_GET_I2C:
12341 rc = read_i2c(sc, (struct t4_i2c_data *)data);
12342 break;
12343 case CHELSIO_T4_CLEAR_STATS:
12344 rc = clear_stats(sc, *(uint32_t *)data);
12345 break;
12346 case CHELSIO_T4_SCHED_CLASS:
12347 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12348 break;
12349 case CHELSIO_T4_SCHED_QUEUE:
12350 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12351 break;
12352 case CHELSIO_T4_GET_TRACER:
12353 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12354 break;
12355 case CHELSIO_T4_SET_TRACER:
12356 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12357 break;
12358 case CHELSIO_T4_LOAD_CFG:
12359 rc = load_cfg(sc, (struct t4_data *)data);
12360 break;
12361 case CHELSIO_T4_LOAD_BOOT:
12362 rc = load_boot(sc, (struct t4_bootrom *)data);
12363 break;
12364 case CHELSIO_T4_LOAD_BOOTCFG:
12365 rc = load_bootcfg(sc, (struct t4_data *)data);
12366 break;
12367 case CHELSIO_T4_CUDBG_DUMP:
12368 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12369 break;
12370 case CHELSIO_T4_SET_OFLD_POLICY:
12371 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12372 break;
12373 case CHELSIO_T4_HOLD_CLIP_ADDR:
12374 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12375 break;
12376 case CHELSIO_T4_RELEASE_CLIP_ADDR:
12377 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12378 break;
12379 default:
12380 rc = ENOTTY;
12381 }
12382
12383 return (rc);
12384 }
12385
12386 #ifdef TCP_OFFLOAD
12387 int
toe_capability(struct vi_info * vi,bool enable)12388 toe_capability(struct vi_info *vi, bool enable)
12389 {
12390 int rc;
12391 struct port_info *pi = vi->pi;
12392 struct adapter *sc = pi->adapter;
12393
12394 ASSERT_SYNCHRONIZED_OP(sc);
12395
12396 if (!is_offload(sc))
12397 return (ENODEV);
12398 if (hw_off_limits(sc))
12399 return (ENXIO);
12400
12401 if (enable) {
12402 #ifdef KERN_TLS
12403 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12404 int i, j, n;
12405 struct port_info *p;
12406 struct vi_info *v;
12407
12408 /*
12409 * Reconfigure hardware for TOE if TXTLS is not enabled
12410 * on any ifnet.
12411 */
12412 n = 0;
12413 for_each_port(sc, i) {
12414 p = sc->port[i];
12415 for_each_vi(p, j, v) {
12416 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12417 CH_WARN(sc,
12418 "%s has NIC TLS enabled.\n",
12419 device_get_nameunit(v->dev));
12420 n++;
12421 }
12422 }
12423 }
12424 if (n > 0) {
12425 CH_WARN(sc, "Disable NIC TLS on all interfaces "
12426 "associated with this adapter before "
12427 "trying to enable TOE.\n");
12428 return (EAGAIN);
12429 }
12430 rc = t6_config_kern_tls(sc, false);
12431 if (rc)
12432 return (rc);
12433 }
12434 #endif
12435 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12436 /* TOE is already enabled. */
12437 return (0);
12438 }
12439
12440 /*
12441 * We need the port's queues around so that we're able to send
12442 * and receive CPLs to/from the TOE even if the ifnet for this
12443 * port has never been UP'd administratively.
12444 */
12445 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12446 return (rc);
12447 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12448 ((rc = vi_init(&pi->vi[0])) != 0))
12449 return (rc);
12450
12451 if (isset(&sc->offload_map, pi->port_id)) {
12452 /* TOE is enabled on another VI of this port. */
12453 MPASS(pi->uld_vis > 0);
12454 pi->uld_vis++;
12455 return (0);
12456 }
12457
12458 if (!uld_active(sc, ULD_TOM)) {
12459 rc = t4_activate_uld(sc, ULD_TOM);
12460 if (rc == EAGAIN) {
12461 log(LOG_WARNING,
12462 "You must kldload t4_tom.ko before trying "
12463 "to enable TOE on a cxgbe interface.\n");
12464 }
12465 if (rc != 0)
12466 return (rc);
12467 KASSERT(sc->tom_softc != NULL,
12468 ("%s: TOM activated but softc NULL", __func__));
12469 KASSERT(uld_active(sc, ULD_TOM),
12470 ("%s: TOM activated but flag not set", __func__));
12471 }
12472
12473 /* Activate iWARP and iSCSI too, if the modules are loaded. */
12474 if (!uld_active(sc, ULD_IWARP))
12475 (void) t4_activate_uld(sc, ULD_IWARP);
12476 if (!uld_active(sc, ULD_ISCSI))
12477 (void) t4_activate_uld(sc, ULD_ISCSI);
12478
12479 if (pi->uld_vis++ == 0)
12480 setbit(&sc->offload_map, pi->port_id);
12481 } else {
12482 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
12483 /* TOE is already disabled. */
12484 return (0);
12485 }
12486 MPASS(isset(&sc->offload_map, pi->port_id));
12487 MPASS(pi->uld_vis > 0);
12488 if (--pi->uld_vis == 0)
12489 clrbit(&sc->offload_map, pi->port_id);
12490 }
12491
12492 return (0);
12493 }
12494
12495 /*
12496 * Add an upper layer driver to the global list.
12497 */
12498 int
t4_register_uld(struct uld_info * ui,int id)12499 t4_register_uld(struct uld_info *ui, int id)
12500 {
12501 int rc;
12502
12503 if (id < 0 || id > ULD_MAX)
12504 return (EINVAL);
12505 sx_xlock(&t4_uld_list_lock);
12506 if (t4_uld_list[id] != NULL)
12507 rc = EEXIST;
12508 else {
12509 t4_uld_list[id] = ui;
12510 rc = 0;
12511 }
12512 sx_xunlock(&t4_uld_list_lock);
12513 return (rc);
12514 }
12515
12516 int
t4_unregister_uld(struct uld_info * ui,int id)12517 t4_unregister_uld(struct uld_info *ui, int id)
12518 {
12519
12520 if (id < 0 || id > ULD_MAX)
12521 return (EINVAL);
12522 sx_xlock(&t4_uld_list_lock);
12523 MPASS(t4_uld_list[id] == ui);
12524 t4_uld_list[id] = NULL;
12525 sx_xunlock(&t4_uld_list_lock);
12526 return (0);
12527 }
12528
12529 int
t4_activate_uld(struct adapter * sc,int id)12530 t4_activate_uld(struct adapter *sc, int id)
12531 {
12532 int rc;
12533
12534 ASSERT_SYNCHRONIZED_OP(sc);
12535
12536 if (id < 0 || id > ULD_MAX)
12537 return (EINVAL);
12538
12539 /* Adapter needs to be initialized before any ULD can be activated. */
12540 if (!(sc->flags & FULL_INIT_DONE)) {
12541 rc = adapter_init(sc);
12542 if (rc != 0)
12543 return (rc);
12544 }
12545
12546 sx_slock(&t4_uld_list_lock);
12547 if (t4_uld_list[id] == NULL)
12548 rc = EAGAIN; /* load the KLD with this ULD and try again. */
12549 else {
12550 rc = t4_uld_list[id]->uld_activate(sc);
12551 if (rc == 0)
12552 setbit(&sc->active_ulds, id);
12553 }
12554 sx_sunlock(&t4_uld_list_lock);
12555
12556 return (rc);
12557 }
12558
12559 int
t4_deactivate_uld(struct adapter * sc,int id)12560 t4_deactivate_uld(struct adapter *sc, int id)
12561 {
12562 int rc;
12563
12564 ASSERT_SYNCHRONIZED_OP(sc);
12565
12566 if (id < 0 || id > ULD_MAX)
12567 return (EINVAL);
12568
12569 sx_slock(&t4_uld_list_lock);
12570 if (t4_uld_list[id] == NULL)
12571 rc = ENXIO;
12572 else {
12573 rc = t4_uld_list[id]->uld_deactivate(sc);
12574 if (rc == 0)
12575 clrbit(&sc->active_ulds, id);
12576 }
12577 sx_sunlock(&t4_uld_list_lock);
12578
12579 return (rc);
12580 }
12581
12582 static int
deactivate_all_uld(struct adapter * sc)12583 deactivate_all_uld(struct adapter *sc)
12584 {
12585 int i, rc;
12586
12587 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12588 if (rc != 0)
12589 return (ENXIO);
12590 sx_slock(&t4_uld_list_lock);
12591 for (i = 0; i <= ULD_MAX; i++) {
12592 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12593 continue;
12594 rc = t4_uld_list[i]->uld_deactivate(sc);
12595 if (rc != 0)
12596 break;
12597 clrbit(&sc->active_ulds, i);
12598 }
12599 sx_sunlock(&t4_uld_list_lock);
12600 end_synchronized_op(sc, 0);
12601
12602 return (rc);
12603 }
12604
12605 static void
stop_all_uld(struct adapter * sc)12606 stop_all_uld(struct adapter *sc)
12607 {
12608 int i;
12609
12610 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12611 return;
12612 sx_slock(&t4_uld_list_lock);
12613 for (i = 0; i <= ULD_MAX; i++) {
12614 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12615 t4_uld_list[i]->uld_stop == NULL)
12616 continue;
12617 (void) t4_uld_list[i]->uld_stop(sc);
12618 }
12619 sx_sunlock(&t4_uld_list_lock);
12620 end_synchronized_op(sc, 0);
12621 }
12622
12623 static void
restart_all_uld(struct adapter * sc)12624 restart_all_uld(struct adapter *sc)
12625 {
12626 int i;
12627
12628 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12629 return;
12630 sx_slock(&t4_uld_list_lock);
12631 for (i = 0; i <= ULD_MAX; i++) {
12632 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12633 t4_uld_list[i]->uld_restart == NULL)
12634 continue;
12635 (void) t4_uld_list[i]->uld_restart(sc);
12636 }
12637 sx_sunlock(&t4_uld_list_lock);
12638 end_synchronized_op(sc, 0);
12639 }
12640
12641 int
uld_active(struct adapter * sc,int id)12642 uld_active(struct adapter *sc, int id)
12643 {
12644
12645 MPASS(id >= 0 && id <= ULD_MAX);
12646
12647 return (isset(&sc->active_ulds, id));
12648 }
12649 #endif
12650
12651 #ifdef KERN_TLS
12652 static int
ktls_capability(struct adapter * sc,bool enable)12653 ktls_capability(struct adapter *sc, bool enable)
12654 {
12655 ASSERT_SYNCHRONIZED_OP(sc);
12656
12657 if (!is_ktls(sc))
12658 return (ENODEV);
12659 if (!is_t6(sc))
12660 return (0);
12661 if (hw_off_limits(sc))
12662 return (ENXIO);
12663
12664 if (enable) {
12665 if (sc->flags & KERN_TLS_ON)
12666 return (0); /* already on */
12667 if (sc->offload_map != 0) {
12668 CH_WARN(sc,
12669 "Disable TOE on all interfaces associated with "
12670 "this adapter before trying to enable NIC TLS.\n");
12671 return (EAGAIN);
12672 }
12673 return (t6_config_kern_tls(sc, true));
12674 } else {
12675 /*
12676 * Nothing to do for disable. If TOE is enabled sometime later
12677 * then toe_capability will reconfigure the hardware.
12678 */
12679 return (0);
12680 }
12681 }
12682 #endif
12683
12684 /*
12685 * t = ptr to tunable.
12686 * nc = number of CPUs.
12687 * c = compiled in default for that tunable.
12688 */
12689 static void
calculate_nqueues(int * t,int nc,const int c)12690 calculate_nqueues(int *t, int nc, const int c)
12691 {
12692 int nq;
12693
12694 if (*t > 0)
12695 return;
12696 nq = *t < 0 ? -*t : c;
12697 *t = min(nc, nq);
12698 }
12699
12700 /*
12701 * Come up with reasonable defaults for some of the tunables, provided they're
12702 * not set by the user (in which case we'll use the values as is).
12703 */
12704 static void
tweak_tunables(void)12705 tweak_tunables(void)
12706 {
12707 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
12708
12709 if (t4_ntxq < 1) {
12710 #ifdef RSS
12711 t4_ntxq = rss_getnumbuckets();
12712 #else
12713 calculate_nqueues(&t4_ntxq, nc, NTXQ);
12714 #endif
12715 }
12716
12717 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12718
12719 if (t4_nrxq < 1) {
12720 #ifdef RSS
12721 t4_nrxq = rss_getnumbuckets();
12722 #else
12723 calculate_nqueues(&t4_nrxq, nc, NRXQ);
12724 #endif
12725 }
12726
12727 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12728
12729 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12730 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12731 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12732 #endif
12733 #ifdef TCP_OFFLOAD
12734 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12735 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12736 #endif
12737
12738 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12739 if (t4_toecaps_allowed == -1)
12740 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12741 #else
12742 if (t4_toecaps_allowed == -1)
12743 t4_toecaps_allowed = 0;
12744 #endif
12745
12746 #ifdef TCP_OFFLOAD
12747 if (t4_rdmacaps_allowed == -1) {
12748 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12749 FW_CAPS_CONFIG_RDMA_RDMAC;
12750 }
12751
12752 if (t4_iscsicaps_allowed == -1) {
12753 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12754 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12755 FW_CAPS_CONFIG_ISCSI_T10DIF;
12756 }
12757
12758 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12759 t4_tmr_idx_ofld = TMR_IDX_OFLD;
12760
12761 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12762 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12763 #else
12764 if (t4_rdmacaps_allowed == -1)
12765 t4_rdmacaps_allowed = 0;
12766
12767 if (t4_iscsicaps_allowed == -1)
12768 t4_iscsicaps_allowed = 0;
12769 #endif
12770
12771 #ifdef DEV_NETMAP
12772 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12773 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12774 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12775 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12776 #endif
12777
12778 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12779 t4_tmr_idx = TMR_IDX;
12780
12781 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12782 t4_pktc_idx = PKTC_IDX;
12783
12784 if (t4_qsize_txq < 128)
12785 t4_qsize_txq = 128;
12786
12787 if (t4_qsize_rxq < 128)
12788 t4_qsize_rxq = 128;
12789 while (t4_qsize_rxq & 7)
12790 t4_qsize_rxq++;
12791
12792 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12793
12794 /*
12795 * Number of VIs to create per-port. The first VI is the "main" regular
12796 * VI for the port. The rest are additional virtual interfaces on the
12797 * same physical port. Note that the main VI does not have native
12798 * netmap support but the extra VIs do.
12799 *
12800 * Limit the number of VIs per port to the number of available
12801 * MAC addresses per port.
12802 */
12803 if (t4_num_vis < 1)
12804 t4_num_vis = 1;
12805 if (t4_num_vis > nitems(vi_mac_funcs)) {
12806 t4_num_vis = nitems(vi_mac_funcs);
12807 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12808 }
12809
12810 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12811 pcie_relaxed_ordering = 1;
12812 #if defined(__i386__) || defined(__amd64__)
12813 if (cpu_vendor_id == CPU_VENDOR_INTEL)
12814 pcie_relaxed_ordering = 0;
12815 #endif
12816 }
12817 }
12818
12819 #ifdef DDB
12820 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)12821 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12822 {
12823 uint32_t base, j, off, pf, reg, save, win_pos;
12824
12825 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12826 save = t4_read_reg(sc, reg);
12827 base = sc->memwin[2].mw_base;
12828
12829 if (is_t4(sc)) {
12830 pf = 0;
12831 win_pos = addr & ~0xf; /* start must be 16B aligned */
12832 } else {
12833 pf = V_PFNUM(sc->pf);
12834 win_pos = addr & ~0x7f; /* start must be 128B aligned */
12835 }
12836 off = addr - win_pos;
12837 t4_write_reg(sc, reg, win_pos | pf);
12838 t4_read_reg(sc, reg);
12839
12840 while (len > 0 && !db_pager_quit) {
12841 uint32_t buf[8];
12842 for (j = 0; j < 8; j++, off += 4)
12843 buf[j] = htonl(t4_read_reg(sc, base + off));
12844
12845 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12846 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12847 buf[7]);
12848 if (len <= sizeof(buf))
12849 len = 0;
12850 else
12851 len -= sizeof(buf);
12852 }
12853
12854 t4_write_reg(sc, reg, save);
12855 t4_read_reg(sc, reg);
12856 }
12857
12858 static void
t4_dump_tcb(struct adapter * sc,int tid)12859 t4_dump_tcb(struct adapter *sc, int tid)
12860 {
12861 uint32_t tcb_addr;
12862
12863 /* Dump TCB for the tid */
12864 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12865 tcb_addr += tid * TCB_SIZE;
12866 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12867 }
12868
12869 static void
t4_dump_devlog(struct adapter * sc)12870 t4_dump_devlog(struct adapter *sc)
12871 {
12872 struct devlog_params *dparams = &sc->params.devlog;
12873 struct fw_devlog_e e;
12874 int i, first, j, m, nentries, rc;
12875 uint64_t ftstamp = UINT64_MAX;
12876
12877 if (dparams->start == 0) {
12878 db_printf("devlog params not valid\n");
12879 return;
12880 }
12881
12882 nentries = dparams->size / sizeof(struct fw_devlog_e);
12883 m = fwmtype_to_hwmtype(dparams->memtype);
12884
12885 /* Find the first entry. */
12886 first = -1;
12887 for (i = 0; i < nentries && !db_pager_quit; i++) {
12888 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12889 sizeof(e), (void *)&e);
12890 if (rc != 0)
12891 break;
12892
12893 if (e.timestamp == 0)
12894 break;
12895
12896 e.timestamp = be64toh(e.timestamp);
12897 if (e.timestamp < ftstamp) {
12898 ftstamp = e.timestamp;
12899 first = i;
12900 }
12901 }
12902
12903 if (first == -1)
12904 return;
12905
12906 i = first;
12907 do {
12908 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12909 sizeof(e), (void *)&e);
12910 if (rc != 0)
12911 return;
12912
12913 if (e.timestamp == 0)
12914 return;
12915
12916 e.timestamp = be64toh(e.timestamp);
12917 e.seqno = be32toh(e.seqno);
12918 for (j = 0; j < 8; j++)
12919 e.params[j] = be32toh(e.params[j]);
12920
12921 db_printf("%10d %15ju %8s %8s ",
12922 e.seqno, e.timestamp,
12923 (e.level < nitems(devlog_level_strings) ?
12924 devlog_level_strings[e.level] : "UNKNOWN"),
12925 (e.facility < nitems(devlog_facility_strings) ?
12926 devlog_facility_strings[e.facility] : "UNKNOWN"));
12927 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12928 e.params[3], e.params[4], e.params[5], e.params[6],
12929 e.params[7]);
12930
12931 if (++i == nentries)
12932 i = 0;
12933 } while (i != first && !db_pager_quit);
12934 }
12935
12936 static DB_DEFINE_TABLE(show, t4, show_t4);
12937
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)12938 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12939 {
12940 device_t dev;
12941 int t;
12942 bool valid;
12943
12944 valid = false;
12945 t = db_read_token();
12946 if (t == tIDENT) {
12947 dev = device_lookup_by_name(db_tok_string);
12948 valid = true;
12949 }
12950 db_skip_to_eol();
12951 if (!valid) {
12952 db_printf("usage: show t4 devlog <nexus>\n");
12953 return;
12954 }
12955
12956 if (dev == NULL) {
12957 db_printf("device not found\n");
12958 return;
12959 }
12960
12961 t4_dump_devlog(device_get_softc(dev));
12962 }
12963
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)12964 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12965 {
12966 device_t dev;
12967 int radix, tid, t;
12968 bool valid;
12969
12970 valid = false;
12971 radix = db_radix;
12972 db_radix = 10;
12973 t = db_read_token();
12974 if (t == tIDENT) {
12975 dev = device_lookup_by_name(db_tok_string);
12976 t = db_read_token();
12977 if (t == tNUMBER) {
12978 tid = db_tok_number;
12979 valid = true;
12980 }
12981 }
12982 db_radix = radix;
12983 db_skip_to_eol();
12984 if (!valid) {
12985 db_printf("usage: show t4 tcb <nexus> <tid>\n");
12986 return;
12987 }
12988
12989 if (dev == NULL) {
12990 db_printf("device not found\n");
12991 return;
12992 }
12993 if (tid < 0) {
12994 db_printf("invalid tid\n");
12995 return;
12996 }
12997
12998 t4_dump_tcb(device_get_softc(dev), tid);
12999 }
13000
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13001 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13002 {
13003 device_t dev;
13004 int radix, t;
13005 bool valid;
13006
13007 valid = false;
13008 radix = db_radix;
13009 db_radix = 10;
13010 t = db_read_token();
13011 if (t == tIDENT) {
13012 dev = device_lookup_by_name(db_tok_string);
13013 t = db_read_token();
13014 if (t == tNUMBER) {
13015 addr = db_tok_number;
13016 t = db_read_token();
13017 if (t == tNUMBER) {
13018 count = db_tok_number;
13019 valid = true;
13020 }
13021 }
13022 }
13023 db_radix = radix;
13024 db_skip_to_eol();
13025 if (!valid) {
13026 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
13027 return;
13028 }
13029
13030 if (dev == NULL) {
13031 db_printf("device not found\n");
13032 return;
13033 }
13034 if (addr < 0) {
13035 db_printf("invalid address\n");
13036 return;
13037 }
13038 if (count <= 0) {
13039 db_printf("invalid length\n");
13040 return;
13041 }
13042
13043 t4_dump_mem(device_get_softc(dev), addr, count);
13044 }
13045 #endif
13046
13047 static eventhandler_tag vxlan_start_evtag;
13048 static eventhandler_tag vxlan_stop_evtag;
13049
13050 struct vxlan_evargs {
13051 if_t ifp;
13052 uint16_t port;
13053 };
13054
13055 static void
enable_vxlan_rx(struct adapter * sc)13056 enable_vxlan_rx(struct adapter *sc)
13057 {
13058 int i, rc;
13059 struct port_info *pi;
13060 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13061
13062 ASSERT_SYNCHRONIZED_OP(sc);
13063
13064 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13065 F_VXLAN_EN);
13066 for_each_port(sc, i) {
13067 pi = sc->port[i];
13068 if (pi->vxlan_tcam_entry == true)
13069 continue;
13070 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13071 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13072 true);
13073 if (rc < 0) {
13074 rc = -rc;
13075 CH_ERR(&pi->vi[0],
13076 "failed to add VXLAN TCAM entry: %d.\n", rc);
13077 } else {
13078 MPASS(rc == sc->rawf_base + pi->port_id);
13079 pi->vxlan_tcam_entry = true;
13080 }
13081 }
13082 }
13083
13084 static void
t4_vxlan_start(struct adapter * sc,void * arg)13085 t4_vxlan_start(struct adapter *sc, void *arg)
13086 {
13087 struct vxlan_evargs *v = arg;
13088
13089 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13090 return;
13091 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13092 return;
13093
13094 if (sc->vxlan_refcount == 0) {
13095 sc->vxlan_port = v->port;
13096 sc->vxlan_refcount = 1;
13097 if (!hw_off_limits(sc))
13098 enable_vxlan_rx(sc);
13099 } else if (sc->vxlan_port == v->port) {
13100 sc->vxlan_refcount++;
13101 } else {
13102 CH_ERR(sc, "VXLAN already configured on port %d; "
13103 "ignoring attempt to configure it on port %d\n",
13104 sc->vxlan_port, v->port);
13105 }
13106 end_synchronized_op(sc, 0);
13107 }
13108
13109 static void
t4_vxlan_stop(struct adapter * sc,void * arg)13110 t4_vxlan_stop(struct adapter *sc, void *arg)
13111 {
13112 struct vxlan_evargs *v = arg;
13113
13114 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13115 return;
13116 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13117 return;
13118
13119 /*
13120 * VXLANs may have been configured before the driver was loaded so we
13121 * may see more stops than starts. This is not handled cleanly but at
13122 * least we keep the refcount sane.
13123 */
13124 if (sc->vxlan_port != v->port)
13125 goto done;
13126 if (sc->vxlan_refcount == 0) {
13127 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13128 "ignoring attempt to stop it again.\n", sc->vxlan_port);
13129 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13130 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13131 done:
13132 end_synchronized_op(sc, 0);
13133 }
13134
13135 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13136 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13137 sa_family_t family, u_int port)
13138 {
13139 struct vxlan_evargs v;
13140
13141 MPASS(family == AF_INET || family == AF_INET6);
13142 v.ifp = ifp;
13143 v.port = port;
13144
13145 t4_iterate(t4_vxlan_start, &v);
13146 }
13147
13148 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13149 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13150 u_int port)
13151 {
13152 struct vxlan_evargs v;
13153
13154 MPASS(family == AF_INET || family == AF_INET6);
13155 v.ifp = ifp;
13156 v.port = port;
13157
13158 t4_iterate(t4_vxlan_stop, &v);
13159 }
13160
13161
13162 static struct sx mlu; /* mod load unload */
13163 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13164
13165 static int
mod_event(module_t mod,int cmd,void * arg)13166 mod_event(module_t mod, int cmd, void *arg)
13167 {
13168 int rc = 0;
13169 static int loaded = 0;
13170
13171 switch (cmd) {
13172 case MOD_LOAD:
13173 sx_xlock(&mlu);
13174 if (loaded++ == 0) {
13175 t4_sge_modload();
13176 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13177 t4_filter_rpl, CPL_COOKIE_FILTER);
13178 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13179 do_l2t_write_rpl, CPL_COOKIE_FILTER);
13180 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13181 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13182 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13183 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13184 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13185 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13186 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13187 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13188 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13189 do_smt_write_rpl);
13190 sx_init(&t4_list_lock, "T4/T5 adapters");
13191 SLIST_INIT(&t4_list);
13192 callout_init(&fatal_callout, 1);
13193 #ifdef TCP_OFFLOAD
13194 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13195 #endif
13196 #ifdef INET6
13197 t4_clip_modload();
13198 #endif
13199 #ifdef KERN_TLS
13200 t6_ktls_modload();
13201 #endif
13202 t4_tracer_modload();
13203 tweak_tunables();
13204 vxlan_start_evtag =
13205 EVENTHANDLER_REGISTER(vxlan_start,
13206 t4_vxlan_start_handler, NULL,
13207 EVENTHANDLER_PRI_ANY);
13208 vxlan_stop_evtag =
13209 EVENTHANDLER_REGISTER(vxlan_stop,
13210 t4_vxlan_stop_handler, NULL,
13211 EVENTHANDLER_PRI_ANY);
13212 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13213 taskqueue_thread_enqueue, &reset_tq);
13214 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13215 "t4_rst_thr");
13216 }
13217 sx_xunlock(&mlu);
13218 break;
13219
13220 case MOD_UNLOAD:
13221 sx_xlock(&mlu);
13222 if (--loaded == 0) {
13223 #ifdef TCP_OFFLOAD
13224 int i;
13225 #endif
13226 int tries;
13227
13228 taskqueue_free(reset_tq);
13229
13230 tries = 0;
13231 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13232 uprintf("%ju clusters with custom free routine "
13233 "still is use.\n", t4_sge_extfree_refs());
13234 pause("t4unload", 2 * hz);
13235 }
13236
13237 sx_slock(&t4_list_lock);
13238 if (!SLIST_EMPTY(&t4_list)) {
13239 rc = EBUSY;
13240 sx_sunlock(&t4_list_lock);
13241 goto done_unload;
13242 }
13243 #ifdef TCP_OFFLOAD
13244 sx_slock(&t4_uld_list_lock);
13245 for (i = 0; i <= ULD_MAX; i++) {
13246 if (t4_uld_list[i] != NULL) {
13247 rc = EBUSY;
13248 sx_sunlock(&t4_uld_list_lock);
13249 sx_sunlock(&t4_list_lock);
13250 goto done_unload;
13251 }
13252 }
13253 sx_sunlock(&t4_uld_list_lock);
13254 #endif
13255 sx_sunlock(&t4_list_lock);
13256
13257 if (t4_sge_extfree_refs() == 0) {
13258 EVENTHANDLER_DEREGISTER(vxlan_start,
13259 vxlan_start_evtag);
13260 EVENTHANDLER_DEREGISTER(vxlan_stop,
13261 vxlan_stop_evtag);
13262 t4_tracer_modunload();
13263 #ifdef KERN_TLS
13264 t6_ktls_modunload();
13265 #endif
13266 #ifdef INET6
13267 t4_clip_modunload();
13268 #endif
13269 #ifdef TCP_OFFLOAD
13270 sx_destroy(&t4_uld_list_lock);
13271 #endif
13272 sx_destroy(&t4_list_lock);
13273 t4_sge_modunload();
13274 loaded = 0;
13275 } else {
13276 rc = EBUSY;
13277 loaded++; /* undo earlier decrement */
13278 }
13279 }
13280 done_unload:
13281 sx_xunlock(&mlu);
13282 break;
13283 }
13284
13285 return (rc);
13286 }
13287
13288 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13289 MODULE_VERSION(t4nex, 1);
13290 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13291 #ifdef DEV_NETMAP
13292 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13293 #endif /* DEV_NETMAP */
13294
13295 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13296 MODULE_VERSION(t5nex, 1);
13297 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13298 #ifdef DEV_NETMAP
13299 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13300 #endif /* DEV_NETMAP */
13301
13302 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13303 MODULE_VERSION(t6nex, 1);
13304 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13305 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13306 #ifdef DEV_NETMAP
13307 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13308 #endif /* DEV_NETMAP */
13309
13310 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13311 MODULE_VERSION(cxgbe, 1);
13312
13313 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13314 MODULE_VERSION(cxl, 1);
13315
13316 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13317 MODULE_VERSION(cc, 1);
13318
13319 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13320 MODULE_VERSION(vcxgbe, 1);
13321
13322 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13323 MODULE_VERSION(vcxl, 1);
13324
13325 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13326 MODULE_VERSION(vcc, 1);
13327