1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011, 2025 Chelsio Communications. 5 * Written by: Navdeep Parhar <np@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ddb.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/conf.h> 39 #include <sys/priv.h> 40 #include <sys/kernel.h> 41 #include <sys/bus.h> 42 #include <sys/eventhandler.h> 43 #include <sys/module.h> 44 #include <sys/malloc.h> 45 #include <sys/queue.h> 46 #include <sys/taskqueue.h> 47 #include <dev/pci/pcireg.h> 48 #include <dev/pci/pcivar.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #include <net/rss_config.h> 61 #include <netinet/in.h> 62 #include <netinet/ip.h> 63 #ifdef KERN_TLS 64 #include <netinet/tcp_seq.h> 65 #endif 66 #if defined(__i386__) || defined(__amd64__) 67 #include <machine/md_var.h> 68 #include <machine/cputypes.h> 69 #include <vm/vm.h> 70 #include <vm/pmap.h> 71 #endif 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #include <ddb/db_lex.h> 75 #endif 76 77 #include "common/common.h" 78 #include "common/t4_msg.h" 79 #include "common/t4_regs.h" 80 #include "common/t4_regs_values.h" 81 #include "cudbg/cudbg.h" 82 #include "t4_clip.h" 83 #include "t4_ioctl.h" 84 #include "t4_l2t.h" 85 #include "t4_mp_ring.h" 86 #include "t4_if.h" 87 #include "t4_smt.h" 88 89 /* T4 bus driver interface */ 90 static int t4_probe(device_t); 91 static int t4_attach(device_t); 92 static int t4_detach(device_t); 93 static int t4_child_location(device_t, device_t, struct sbuf *); 94 static int t4_ready(device_t); 95 static int t4_read_port_device(device_t, int, device_t *); 96 static int t4_suspend(device_t); 97 static int t4_resume(device_t); 98 static int t4_reset_prepare(device_t, device_t); 99 static int t4_reset_post(device_t, device_t); 100 static device_method_t t4_methods[] = { 101 DEVMETHOD(device_probe, t4_probe), 102 DEVMETHOD(device_attach, t4_attach), 103 DEVMETHOD(device_detach, t4_detach), 104 DEVMETHOD(device_suspend, t4_suspend), 105 DEVMETHOD(device_resume, t4_resume), 106 107 DEVMETHOD(bus_child_location, t4_child_location), 108 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 109 DEVMETHOD(bus_reset_post, t4_reset_post), 110 111 DEVMETHOD(t4_is_main_ready, t4_ready), 112 DEVMETHOD(t4_read_port_device, t4_read_port_device), 113 114 DEVMETHOD_END 115 }; 116 static driver_t t4_driver = { 117 "t4nex", 118 t4_methods, 119 sizeof(struct adapter) 120 }; 121 122 123 /* T4 port (cxgbe) interface */ 124 static int cxgbe_probe(device_t); 125 static int cxgbe_attach(device_t); 126 static int cxgbe_detach(device_t); 127 device_method_t cxgbe_methods[] = { 128 DEVMETHOD(device_probe, cxgbe_probe), 129 DEVMETHOD(device_attach, cxgbe_attach), 130 DEVMETHOD(device_detach, cxgbe_detach), 131 { 0, 0 } 132 }; 133 static driver_t cxgbe_driver = { 134 "cxgbe", 135 cxgbe_methods, 136 sizeof(struct port_info) 137 }; 138 139 /* T4 VI (vcxgbe) interface */ 140 static int vcxgbe_probe(device_t); 141 static int vcxgbe_attach(device_t); 142 static int vcxgbe_detach(device_t); 143 static device_method_t vcxgbe_methods[] = { 144 DEVMETHOD(device_probe, vcxgbe_probe), 145 DEVMETHOD(device_attach, vcxgbe_attach), 146 DEVMETHOD(device_detach, vcxgbe_detach), 147 { 0, 0 } 148 }; 149 static driver_t vcxgbe_driver = { 150 "vcxgbe", 151 vcxgbe_methods, 152 sizeof(struct vi_info) 153 }; 154 155 static d_ioctl_t t4_ioctl; 156 157 static struct cdevsw t4_cdevsw = { 158 .d_version = D_VERSION, 159 .d_ioctl = t4_ioctl, 160 .d_name = "t4nex", 161 }; 162 163 /* T5 bus driver interface */ 164 static int t5_probe(device_t); 165 static device_method_t t5_methods[] = { 166 DEVMETHOD(device_probe, t5_probe), 167 DEVMETHOD(device_attach, t4_attach), 168 DEVMETHOD(device_detach, t4_detach), 169 DEVMETHOD(device_suspend, t4_suspend), 170 DEVMETHOD(device_resume, t4_resume), 171 172 DEVMETHOD(bus_child_location, t4_child_location), 173 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 174 DEVMETHOD(bus_reset_post, t4_reset_post), 175 176 DEVMETHOD(t4_is_main_ready, t4_ready), 177 DEVMETHOD(t4_read_port_device, t4_read_port_device), 178 179 DEVMETHOD_END 180 }; 181 static driver_t t5_driver = { 182 "t5nex", 183 t5_methods, 184 sizeof(struct adapter) 185 }; 186 187 188 /* T5 port (cxl) interface */ 189 static driver_t cxl_driver = { 190 "cxl", 191 cxgbe_methods, 192 sizeof(struct port_info) 193 }; 194 195 /* T5 VI (vcxl) interface */ 196 static driver_t vcxl_driver = { 197 "vcxl", 198 vcxgbe_methods, 199 sizeof(struct vi_info) 200 }; 201 202 /* T6 bus driver interface */ 203 static int t6_probe(device_t); 204 static device_method_t t6_methods[] = { 205 DEVMETHOD(device_probe, t6_probe), 206 DEVMETHOD(device_attach, t4_attach), 207 DEVMETHOD(device_detach, t4_detach), 208 DEVMETHOD(device_suspend, t4_suspend), 209 DEVMETHOD(device_resume, t4_resume), 210 211 DEVMETHOD(bus_child_location, t4_child_location), 212 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 213 DEVMETHOD(bus_reset_post, t4_reset_post), 214 215 DEVMETHOD(t4_is_main_ready, t4_ready), 216 DEVMETHOD(t4_read_port_device, t4_read_port_device), 217 218 DEVMETHOD_END 219 }; 220 static driver_t t6_driver = { 221 "t6nex", 222 t6_methods, 223 sizeof(struct adapter) 224 }; 225 226 227 /* T6 port (cc) interface */ 228 static driver_t cc_driver = { 229 "cc", 230 cxgbe_methods, 231 sizeof(struct port_info) 232 }; 233 234 /* T6 VI (vcc) interface */ 235 static driver_t vcc_driver = { 236 "vcc", 237 vcxgbe_methods, 238 sizeof(struct vi_info) 239 }; 240 241 /* T7+ bus driver interface */ 242 static int ch_probe(device_t); 243 static device_method_t ch_methods[] = { 244 DEVMETHOD(device_probe, ch_probe), 245 DEVMETHOD(device_attach, t4_attach), 246 DEVMETHOD(device_detach, t4_detach), 247 DEVMETHOD(device_suspend, t4_suspend), 248 DEVMETHOD(device_resume, t4_resume), 249 250 DEVMETHOD(bus_child_location, t4_child_location), 251 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 252 DEVMETHOD(bus_reset_post, t4_reset_post), 253 254 DEVMETHOD(t4_is_main_ready, t4_ready), 255 DEVMETHOD(t4_read_port_device, t4_read_port_device), 256 257 DEVMETHOD_END 258 }; 259 static driver_t ch_driver = { 260 "chnex", 261 ch_methods, 262 sizeof(struct adapter) 263 }; 264 265 266 /* T7+ port (che) interface */ 267 static driver_t che_driver = { 268 "che", 269 cxgbe_methods, 270 sizeof(struct port_info) 271 }; 272 273 /* T7+ VI (vche) interface */ 274 static driver_t vche_driver = { 275 "vche", 276 vcxgbe_methods, 277 sizeof(struct vi_info) 278 }; 279 280 /* ifnet interface */ 281 static void cxgbe_init(void *); 282 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 283 static int cxgbe_transmit(if_t, struct mbuf *); 284 static void cxgbe_qflush(if_t); 285 #if defined(KERN_TLS) || defined(RATELIMIT) 286 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 287 struct m_snd_tag **); 288 #endif 289 290 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 291 292 /* 293 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 294 * then ADAPTER_LOCK, then t4_uld_list_lock. 295 */ 296 static struct sx t4_list_lock; 297 SLIST_HEAD(, adapter) t4_list; 298 #ifdef TCP_OFFLOAD 299 static struct sx t4_uld_list_lock; 300 struct uld_info *t4_uld_list[ULD_MAX + 1]; 301 #endif 302 303 /* 304 * Tunables. See tweak_tunables() too. 305 * 306 * Each tunable is set to a default value here if it's known at compile-time. 307 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 308 * provide a reasonable default (upto n) when the driver is loaded. 309 * 310 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 311 * T5 are under hw.cxl. 312 */ 313 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 314 "cxgbe(4) parameters"); 315 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 316 "cxgbe(4) T5+ parameters"); 317 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 318 "cxgbe(4) TOE parameters"); 319 320 /* 321 * Number of queues for tx and rx, NIC and offload. 322 */ 323 #define NTXQ 16 324 int t4_ntxq = -NTXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 326 "Number of TX queues per port"); 327 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 328 329 #define NRXQ 8 330 int t4_nrxq = -NRXQ; 331 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 332 "Number of RX queues per port"); 333 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 334 335 #define NTXQ_VI 1 336 static int t4_ntxq_vi = -NTXQ_VI; 337 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 338 "Number of TX queues per VI"); 339 340 #define NRXQ_VI 1 341 static int t4_nrxq_vi = -NRXQ_VI; 342 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 343 "Number of RX queues per VI"); 344 345 static int t4_rsrv_noflowq = 0; 346 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 347 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 348 349 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 350 #define NOFLDTXQ 8 351 static int t4_nofldtxq = -NOFLDTXQ; 352 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 353 "Number of offload TX queues per port"); 354 355 #define NOFLDTXQ_VI 1 356 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 357 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 358 "Number of offload TX queues per VI"); 359 #endif 360 361 #if defined(TCP_OFFLOAD) 362 #define NOFLDRXQ 2 363 static int t4_nofldrxq = -NOFLDRXQ; 364 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 365 "Number of offload RX queues per port"); 366 367 #define NOFLDRXQ_VI 1 368 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 369 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 370 "Number of offload RX queues per VI"); 371 372 #define TMR_IDX_OFLD 1 373 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 374 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 375 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 376 377 #define PKTC_IDX_OFLD (-1) 378 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 379 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 380 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 381 382 /* 0 means chip/fw default, non-zero number is value in microseconds */ 383 static u_long t4_toe_keepalive_idle = 0; 384 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 385 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 386 387 /* 0 means chip/fw default, non-zero number is value in microseconds */ 388 static u_long t4_toe_keepalive_interval = 0; 389 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 390 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 391 392 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 393 static int t4_toe_keepalive_count = 0; 394 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 395 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 396 397 /* 0 means chip/fw default, non-zero number is value in microseconds */ 398 static u_long t4_toe_rexmt_min = 0; 399 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 401 402 /* 0 means chip/fw default, non-zero number is value in microseconds */ 403 static u_long t4_toe_rexmt_max = 0; 404 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 405 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 406 407 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 408 static int t4_toe_rexmt_count = 0; 409 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 411 412 /* -1 means chip/fw default, other values are raw backoff values to use */ 413 static int t4_toe_rexmt_backoff[16] = { 414 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 415 }; 416 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 417 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 418 "cxgbe(4) TOE retransmit backoff values"); 419 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 420 &t4_toe_rexmt_backoff[0], 0, ""); 421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 422 &t4_toe_rexmt_backoff[1], 0, ""); 423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 424 &t4_toe_rexmt_backoff[2], 0, ""); 425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 426 &t4_toe_rexmt_backoff[3], 0, ""); 427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 428 &t4_toe_rexmt_backoff[4], 0, ""); 429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 430 &t4_toe_rexmt_backoff[5], 0, ""); 431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 432 &t4_toe_rexmt_backoff[6], 0, ""); 433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 434 &t4_toe_rexmt_backoff[7], 0, ""); 435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 436 &t4_toe_rexmt_backoff[8], 0, ""); 437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 438 &t4_toe_rexmt_backoff[9], 0, ""); 439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 440 &t4_toe_rexmt_backoff[10], 0, ""); 441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 442 &t4_toe_rexmt_backoff[11], 0, ""); 443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 444 &t4_toe_rexmt_backoff[12], 0, ""); 445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 446 &t4_toe_rexmt_backoff[13], 0, ""); 447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 448 &t4_toe_rexmt_backoff[14], 0, ""); 449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 450 &t4_toe_rexmt_backoff[15], 0, ""); 451 452 int t4_ddp_rcvbuf_len = 256 * 1024; 453 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 454 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 455 456 unsigned int t4_ddp_rcvbuf_cache = 4; 457 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 458 &t4_ddp_rcvbuf_cache, 0, 459 "maximum number of free DDP RX buffers to cache per connection"); 460 #endif 461 462 #ifdef DEV_NETMAP 463 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 464 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 465 static int t4_native_netmap = NN_EXTRA_VI; 466 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 467 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 468 469 #define NNMTXQ 8 470 static int t4_nnmtxq = -NNMTXQ; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 472 "Number of netmap TX queues"); 473 474 #define NNMRXQ 8 475 static int t4_nnmrxq = -NNMRXQ; 476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 477 "Number of netmap RX queues"); 478 479 #define NNMTXQ_VI 2 480 static int t4_nnmtxq_vi = -NNMTXQ_VI; 481 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 482 "Number of netmap TX queues per VI"); 483 484 #define NNMRXQ_VI 2 485 static int t4_nnmrxq_vi = -NNMRXQ_VI; 486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 487 "Number of netmap RX queues per VI"); 488 #endif 489 490 /* 491 * Holdoff parameters for ports. 492 */ 493 #define TMR_IDX 1 494 int t4_tmr_idx = TMR_IDX; 495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 496 0, "Holdoff timer index"); 497 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 498 499 #define PKTC_IDX (-1) 500 int t4_pktc_idx = PKTC_IDX; 501 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 502 0, "Holdoff packet counter index"); 503 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 504 505 /* 506 * Size (# of entries) of each tx and rx queue. 507 */ 508 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 510 "Number of descriptors in each TX queue"); 511 512 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 513 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 514 "Number of descriptors in each RX queue"); 515 516 /* 517 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 518 */ 519 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 520 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 521 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 522 523 /* 524 * Configuration file. All the _CF names here are special. 525 */ 526 #define DEFAULT_CF "default" 527 #define BUILTIN_CF "built-in" 528 #define FLASH_CF "flash" 529 #define UWIRE_CF "uwire" 530 #define FPGA_CF "fpga" 531 static char t4_cfg_file[32] = DEFAULT_CF; 532 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 533 sizeof(t4_cfg_file), "Firmware configuration file"); 534 535 /* 536 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 537 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 538 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 539 * mark or when signalled to do so, 0 to never emit PAUSE. 540 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 541 * negotiated settings will override rx_pause/tx_pause. 542 * Otherwise rx_pause/tx_pause are applied forcibly. 543 */ 544 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 545 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 546 &t4_pause_settings, 0, 547 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 548 549 /* 550 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 551 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 552 * 0 to disable FEC. 553 */ 554 static int t4_fec = -1; 555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 556 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 557 558 static const char * 559 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module"; 560 561 /* 562 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 563 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 564 * driver runs as if this is set to 0. 565 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 566 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 567 * transceiver. Multiple FEC bits may not be okay but will be passed on to 568 * the firmware anyway (may result in l1cfg errors with old firmwares). 569 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 570 * means set all FEC bits that are valid for the speed. 571 */ 572 static int t4_force_fec = -1; 573 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 574 "Controls the use of FORCE_FEC bit in L1 configuration."); 575 576 /* 577 * Link autonegotiation. 578 * -1 to run with the firmware default. 579 * 0 to disable. 580 * 1 to enable. 581 */ 582 static int t4_autoneg = -1; 583 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 584 "Link autonegotiation"); 585 586 /* 587 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 588 * encouraged respectively). '-n' is the same as 'n' except the firmware 589 * version used in the checks is read from the firmware bundled with the driver. 590 */ 591 static int t4_fw_install = 1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 593 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 594 595 /* 596 * ASIC features that will be used. Disable the ones you don't want so that the 597 * chip resources aren't wasted on features that will not be used. 598 */ 599 static int t4_nbmcaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 601 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 602 603 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 604 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 605 &t4_linkcaps_allowed, 0, "Default link capabilities"); 606 607 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 608 FW_CAPS_CONFIG_SWITCH_EGRESS; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 610 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 611 612 static int t4_nvmecaps_allowed = -1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN, 614 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities"); 615 616 #ifdef RATELIMIT 617 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 618 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 619 #else 620 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 621 FW_CAPS_CONFIG_NIC_HASHFILTER; 622 #endif 623 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 624 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 625 626 static int t4_toecaps_allowed = -1; 627 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 628 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 629 630 static int t4_rdmacaps_allowed = -1; 631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 632 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 633 634 static int t4_cryptocaps_allowed = -1; 635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 636 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 637 638 static int t4_iscsicaps_allowed = -1; 639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 640 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 641 642 static int t4_fcoecaps_allowed = 0; 643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 644 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 645 646 static int t5_write_combine = 0; 647 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 648 0, "Use WC instead of UC for BAR2"); 649 650 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 651 static int t4_doorbells_allowed = 0xf; 652 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 653 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 654 655 static int t4_num_vis = 1; 656 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 657 "Number of VIs per port"); 658 659 /* 660 * PCIe Relaxed Ordering. 661 * -1: driver should figure out a good value. 662 * 0: disable RO. 663 * 1: enable RO. 664 * 2: leave RO alone. 665 */ 666 static int pcie_relaxed_ordering = -1; 667 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 668 &pcie_relaxed_ordering, 0, 669 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 670 671 static int t4_panic_on_fatal_err = 0; 672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 673 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 674 675 static int t4_reset_on_fatal_err = 0; 676 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 677 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 678 679 static int t4_reset_method = 1; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method, 681 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce"); 682 683 static int t4_clock_gate_on_suspend = 0; 684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 685 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 686 687 static int t4_tx_vm_wr = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 689 "Use VM work requests to transmit packets."); 690 691 /* 692 * Set to non-zero to enable the attack filter. A packet that matches any of 693 * these conditions will get dropped on ingress: 694 * 1) IP && source address == destination address. 695 * 2) TCP/IP && source address is not a unicast address. 696 * 3) TCP/IP && destination address is not a unicast address. 697 * 4) IP && source address is loopback (127.x.y.z). 698 * 5) IP && destination address is loopback (127.x.y.z). 699 * 6) IPv6 && source address == destination address. 700 * 7) IPv6 && source address is not a unicast address. 701 * 8) IPv6 && source address is loopback (::1/128). 702 * 9) IPv6 && destination address is loopback (::1/128). 703 * 10) IPv6 && source address is unspecified (::/128). 704 * 11) IPv6 && destination address is unspecified (::/128). 705 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 706 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 707 */ 708 static int t4_attack_filter = 0; 709 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 710 &t4_attack_filter, 0, "Drop suspicious traffic"); 711 712 static int t4_drop_ip_fragments = 0; 713 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 714 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 715 716 static int t4_drop_pkts_with_l2_errors = 1; 717 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 718 &t4_drop_pkts_with_l2_errors, 0, 719 "Drop all frames with Layer 2 length or checksum errors"); 720 721 static int t4_drop_pkts_with_l3_errors = 0; 722 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 723 &t4_drop_pkts_with_l3_errors, 0, 724 "Drop all frames with IP version, length, or checksum errors"); 725 726 static int t4_drop_pkts_with_l4_errors = 0; 727 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 728 &t4_drop_pkts_with_l4_errors, 0, 729 "Drop all frames with Layer 4 length, checksum, or other errors"); 730 731 #ifdef TCP_OFFLOAD 732 /* 733 * TOE tunables. 734 */ 735 static int t4_cop_managed_offloading = 0; 736 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 737 &t4_cop_managed_offloading, 0, 738 "COP (Connection Offload Policy) controls all TOE offload"); 739 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 740 #endif 741 742 #ifdef KERN_TLS 743 /* 744 * This enables KERN_TLS for all adapters if set. 745 */ 746 static int t4_kern_tls = 0; 747 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 748 "Enable KERN_TLS mode for T6 adapters"); 749 750 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 751 "cxgbe(4) KERN_TLS parameters"); 752 753 static int t4_tls_inline_keys = 0; 754 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 755 &t4_tls_inline_keys, 0, 756 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 757 "in card memory."); 758 759 static int t4_tls_combo_wrs = 0; 760 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 761 0, "Attempt to combine TCB field updates with TLS record work requests."); 762 763 static int t4_tls_short_records = 1; 764 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN, 765 &t4_tls_short_records, 0, "Use cipher-only mode for short records."); 766 767 static int t4_tls_partial_ghash = 1; 768 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN, 769 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records."); 770 #endif 771 772 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 773 static int vi_mac_funcs[] = { 774 FW_VI_FUNC_ETH, 775 FW_VI_FUNC_OFLD, 776 FW_VI_FUNC_IWARP, 777 FW_VI_FUNC_OPENISCSI, 778 FW_VI_FUNC_OPENFCOE, 779 FW_VI_FUNC_FOISCSI, 780 FW_VI_FUNC_FOFCOE, 781 }; 782 783 struct intrs_and_queues { 784 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 785 uint16_t num_vis; /* number of VIs for each port */ 786 uint16_t nirq; /* Total # of vectors */ 787 uint16_t ntxq; /* # of NIC txq's for each port */ 788 uint16_t nrxq; /* # of NIC rxq's for each port */ 789 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 790 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 791 uint16_t nnmtxq; /* # of netmap txq's */ 792 uint16_t nnmrxq; /* # of netmap rxq's */ 793 794 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 795 uint16_t ntxq_vi; /* # of NIC txq's */ 796 uint16_t nrxq_vi; /* # of NIC rxq's */ 797 uint16_t nofldtxq_vi; /* # of TOE txq's */ 798 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 799 uint16_t nnmtxq_vi; /* # of netmap txq's */ 800 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 801 }; 802 803 static void setup_memwin(struct adapter *); 804 static void position_memwin(struct adapter *, int, uint32_t); 805 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 806 static int fwmtype_to_hwmtype(int); 807 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 808 uint32_t *); 809 static int fixup_devlog_params(struct adapter *); 810 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 811 static int contact_firmware(struct adapter *); 812 static int partition_resources(struct adapter *); 813 static int get_params__pre_init(struct adapter *); 814 static int set_params__pre_init(struct adapter *); 815 static int get_params__post_init(struct adapter *); 816 static int set_params__post_init(struct adapter *); 817 static void t4_set_desc(struct adapter *); 818 static bool fixed_ifmedia(struct port_info *); 819 static void build_medialist(struct port_info *); 820 static void init_link_config(struct port_info *); 821 static int fixup_link_config(struct port_info *); 822 static int apply_link_config(struct port_info *); 823 static int cxgbe_init_synchronized(struct vi_info *); 824 static int cxgbe_uninit_synchronized(struct vi_info *); 825 static int adapter_full_init(struct adapter *); 826 static void adapter_full_uninit(struct adapter *); 827 static int vi_full_init(struct vi_info *); 828 static void vi_full_uninit(struct vi_info *); 829 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 830 static void quiesce_txq(struct sge_txq *); 831 static void quiesce_wrq(struct sge_wrq *); 832 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 833 static void quiesce_vi(struct vi_info *); 834 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 835 driver_intr_t *, void *, char *); 836 static int t4_free_irq(struct adapter *, struct irq *); 837 static void t4_init_atid_table(struct adapter *); 838 static void t4_free_atid_table(struct adapter *); 839 static void stop_atid_allocator(struct adapter *); 840 static void restart_atid_allocator(struct adapter *); 841 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 842 static void vi_refresh_stats(struct vi_info *); 843 static void cxgbe_refresh_stats(struct vi_info *); 844 static void cxgbe_tick(void *); 845 static void vi_tick(void *); 846 static void cxgbe_sysctls(struct port_info *); 847 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 848 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 849 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 850 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 851 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 852 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 853 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 854 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 855 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 856 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 857 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 858 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 859 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 860 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 861 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 862 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 863 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS); 864 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 865 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 866 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 867 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 868 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 869 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 870 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS); 871 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS); 872 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 873 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 874 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 875 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 876 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS); 877 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 878 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 879 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 880 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 881 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 882 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 883 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 884 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 885 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 886 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 887 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 888 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS); 889 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 890 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 891 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 892 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 893 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 894 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 895 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 896 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 897 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 898 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 899 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 900 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 901 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 902 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 903 #ifdef TCP_OFFLOAD 904 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 905 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 906 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 907 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 908 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 909 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 910 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 911 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 912 #endif 913 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *); 914 static int load_fw(struct adapter *, struct t4_data *); 915 static int load_cfg(struct adapter *, struct t4_data *); 916 static int load_boot(struct adapter *, struct t4_bootrom *); 917 static int load_bootcfg(struct adapter *, struct t4_data *); 918 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 919 static void free_offload_policy(struct t4_offload_policy *); 920 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 921 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 922 static int read_i2c(struct adapter *, struct t4_i2c_data *); 923 static int clear_stats(struct adapter *, u_int); 924 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 925 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 926 static inline int stop_adapter(struct adapter *); 927 static inline void set_adapter_hwstatus(struct adapter *, const bool); 928 static int stop_lld(struct adapter *); 929 static inline int restart_adapter(struct adapter *); 930 static int restart_lld(struct adapter *); 931 #ifdef TCP_OFFLOAD 932 static int deactivate_all_uld(struct adapter *); 933 static void stop_all_uld(struct adapter *); 934 static void restart_all_uld(struct adapter *); 935 #endif 936 #ifdef KERN_TLS 937 static int ktls_capability(struct adapter *, bool); 938 #endif 939 static int mod_event(module_t, int, void *); 940 static int notify_siblings(device_t, int); 941 static uint64_t vi_get_counter(if_t, ift_counter); 942 static uint64_t cxgbe_get_counter(if_t, ift_counter); 943 static void enable_vxlan_rx(struct adapter *); 944 static void reset_adapter_task(void *, int); 945 static void fatal_error_task(void *, int); 946 static void dump_devlog(struct adapter *); 947 static void dump_cim_regs(struct adapter *); 948 static void dump_cimla(struct adapter *); 949 950 struct { 951 uint16_t device; 952 char *desc; 953 } t4_pciids[] = { 954 {0xa000, "Chelsio Terminator 4 FPGA"}, 955 {0x4400, "Chelsio T440-dbg"}, 956 {0x4401, "Chelsio T420-CR"}, 957 {0x4402, "Chelsio T422-CR"}, 958 {0x4403, "Chelsio T440-CR"}, 959 {0x4404, "Chelsio T420-BCH"}, 960 {0x4405, "Chelsio T440-BCH"}, 961 {0x4406, "Chelsio T440-CH"}, 962 {0x4407, "Chelsio T420-SO"}, 963 {0x4408, "Chelsio T420-CX"}, 964 {0x4409, "Chelsio T420-BT"}, 965 {0x440a, "Chelsio T404-BT"}, 966 {0x440e, "Chelsio T440-LP-CR"}, 967 }, t5_pciids[] = { 968 {0xb000, "Chelsio Terminator 5 FPGA"}, 969 {0x5400, "Chelsio T580-dbg"}, 970 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 971 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 972 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 973 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 974 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 975 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 976 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 977 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 978 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 979 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 980 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 981 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 982 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 983 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 984 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 985 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 986 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 987 988 /* Custom */ 989 {0x5483, "Custom T540-CR"}, 990 {0x5484, "Custom T540-BT"}, 991 }, t6_pciids[] = { 992 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 993 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 994 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 995 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 996 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 997 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 998 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 999 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 1000 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 1001 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 1002 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 1003 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 1004 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 1005 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 1006 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 1007 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 1008 1009 /* Custom */ 1010 {0x6480, "Custom T6225-CR"}, 1011 {0x6481, "Custom T62100-CR"}, 1012 {0x6482, "Custom T6225-CR"}, 1013 {0x6483, "Custom T62100-CR"}, 1014 {0x6484, "Custom T64100-CR"}, 1015 {0x6485, "Custom T6240-SO"}, 1016 {0x6486, "Custom T6225-SO-CR"}, 1017 {0x6487, "Custom T6225-CR"}, 1018 }, t7_pciids[] = { 1019 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */ 1020 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */ 1021 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */ 1022 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */ 1023 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */ 1024 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */ 1025 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */ 1026 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */ 1027 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */ 1028 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */ 1029 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */ 1030 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */ 1031 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */ 1032 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */ 1033 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */ 1034 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */ 1035 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */ 1036 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */ 1037 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */ 1038 1039 /* Custom */ 1040 {0x7480, "Custom T7"}, 1041 }; 1042 1043 #ifdef TCP_OFFLOAD 1044 /* 1045 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 1046 * be exactly the same for both rxq and ofld_rxq. 1047 */ 1048 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 1049 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 1050 #endif 1051 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 1052 1053 static int 1054 t4_probe(device_t dev) 1055 { 1056 int i; 1057 uint16_t v = pci_get_vendor(dev); 1058 uint16_t d = pci_get_device(dev); 1059 uint8_t f = pci_get_function(dev); 1060 1061 if (v != PCI_VENDOR_ID_CHELSIO) 1062 return (ENXIO); 1063 1064 /* Attach only to PF0 of the FPGA */ 1065 if (d == 0xa000 && f != 0) 1066 return (ENXIO); 1067 1068 for (i = 0; i < nitems(t4_pciids); i++) { 1069 if (d == t4_pciids[i].device) { 1070 device_set_desc(dev, t4_pciids[i].desc); 1071 return (BUS_PROBE_DEFAULT); 1072 } 1073 } 1074 1075 return (ENXIO); 1076 } 1077 1078 static int 1079 t5_probe(device_t dev) 1080 { 1081 int i; 1082 uint16_t v = pci_get_vendor(dev); 1083 uint16_t d = pci_get_device(dev); 1084 uint8_t f = pci_get_function(dev); 1085 1086 if (v != PCI_VENDOR_ID_CHELSIO) 1087 return (ENXIO); 1088 1089 /* Attach only to PF0 of the FPGA */ 1090 if (d == 0xb000 && f != 0) 1091 return (ENXIO); 1092 1093 for (i = 0; i < nitems(t5_pciids); i++) { 1094 if (d == t5_pciids[i].device) { 1095 device_set_desc(dev, t5_pciids[i].desc); 1096 return (BUS_PROBE_DEFAULT); 1097 } 1098 } 1099 1100 return (ENXIO); 1101 } 1102 1103 static int 1104 t6_probe(device_t dev) 1105 { 1106 int i; 1107 uint16_t v = pci_get_vendor(dev); 1108 uint16_t d = pci_get_device(dev); 1109 1110 if (v != PCI_VENDOR_ID_CHELSIO) 1111 return (ENXIO); 1112 1113 for (i = 0; i < nitems(t6_pciids); i++) { 1114 if (d == t6_pciids[i].device) { 1115 device_set_desc(dev, t6_pciids[i].desc); 1116 return (BUS_PROBE_DEFAULT); 1117 } 1118 } 1119 1120 return (ENXIO); 1121 } 1122 1123 static int 1124 ch_probe(device_t dev) 1125 { 1126 int i; 1127 uint16_t v = pci_get_vendor(dev); 1128 uint16_t d = pci_get_device(dev); 1129 uint8_t f = pci_get_function(dev); 1130 1131 if (v != PCI_VENDOR_ID_CHELSIO) 1132 return (ENXIO); 1133 1134 /* Attach only to PF0 of the FPGA */ 1135 if (d == 0xd000 && f != 0) 1136 return (ENXIO); 1137 1138 for (i = 0; i < nitems(t7_pciids); i++) { 1139 if (d == t7_pciids[i].device) { 1140 device_set_desc(dev, t7_pciids[i].desc); 1141 return (BUS_PROBE_DEFAULT); 1142 } 1143 } 1144 1145 return (ENXIO); 1146 } 1147 1148 static void 1149 t5_attribute_workaround(device_t dev) 1150 { 1151 device_t root_port; 1152 uint32_t v; 1153 1154 /* 1155 * The T5 chips do not properly echo the No Snoop and Relaxed 1156 * Ordering attributes when replying to a TLP from a Root 1157 * Port. As a workaround, find the parent Root Port and 1158 * disable No Snoop and Relaxed Ordering. Note that this 1159 * affects all devices under this root port. 1160 */ 1161 root_port = pci_find_pcie_root_port(dev); 1162 if (root_port == NULL) { 1163 device_printf(dev, "Unable to find parent root port\n"); 1164 return; 1165 } 1166 1167 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1168 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1169 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1170 0) 1171 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1172 device_get_nameunit(root_port)); 1173 } 1174 1175 static const struct devnames devnames[] = { 1176 { 1177 .nexus_name = "t4nex", 1178 .ifnet_name = "cxgbe", 1179 .vi_ifnet_name = "vcxgbe", 1180 .pf03_drv_name = "t4iov", 1181 .vf_nexus_name = "t4vf", 1182 .vf_ifnet_name = "cxgbev" 1183 }, { 1184 .nexus_name = "t5nex", 1185 .ifnet_name = "cxl", 1186 .vi_ifnet_name = "vcxl", 1187 .pf03_drv_name = "t5iov", 1188 .vf_nexus_name = "t5vf", 1189 .vf_ifnet_name = "cxlv" 1190 }, { 1191 .nexus_name = "t6nex", 1192 .ifnet_name = "cc", 1193 .vi_ifnet_name = "vcc", 1194 .pf03_drv_name = "t6iov", 1195 .vf_nexus_name = "t6vf", 1196 .vf_ifnet_name = "ccv" 1197 }, { 1198 .nexus_name = "chnex", 1199 .ifnet_name = "che", 1200 .vi_ifnet_name = "vche", 1201 .pf03_drv_name = "chiov", 1202 .vf_nexus_name = "chvf", 1203 .vf_ifnet_name = "chev" 1204 } 1205 }; 1206 1207 void 1208 t4_init_devnames(struct adapter *sc) 1209 { 1210 int id; 1211 1212 id = chip_id(sc); 1213 if (id < CHELSIO_T4) { 1214 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1215 sc->names = NULL; 1216 } else if (id - CHELSIO_T4 < nitems(devnames)) 1217 sc->names = &devnames[id - CHELSIO_T4]; 1218 else 1219 sc->names = &devnames[nitems(devnames) - 1]; 1220 } 1221 1222 static int 1223 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1224 { 1225 const char *parent, *name; 1226 long value; 1227 int line, unit; 1228 1229 line = 0; 1230 parent = device_get_nameunit(sc->dev); 1231 name = sc->names->ifnet_name; 1232 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1233 if (resource_long_value(name, unit, "port", &value) == 0 && 1234 value == pi->port_id) 1235 return (unit); 1236 } 1237 return (-1); 1238 } 1239 1240 static void 1241 t4_calibration(void *arg) 1242 { 1243 struct adapter *sc; 1244 struct clock_sync *cur, *nex; 1245 uint64_t hw; 1246 sbintime_t sbt; 1247 int next_up; 1248 1249 sc = (struct adapter *)arg; 1250 1251 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration")); 1252 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1253 sbt = sbinuptime(); 1254 1255 cur = &sc->cal_info[sc->cal_current]; 1256 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1257 nex = &sc->cal_info[next_up]; 1258 if (__predict_false(sc->cal_count == 0)) { 1259 /* First time in, just get the values in */ 1260 cur->hw_cur = hw; 1261 cur->sbt_cur = sbt; 1262 sc->cal_count++; 1263 goto done; 1264 } 1265 1266 if (cur->hw_cur == hw) { 1267 /* The clock is not advancing? */ 1268 sc->cal_count = 0; 1269 atomic_store_rel_int(&cur->gen, 0); 1270 goto done; 1271 } 1272 1273 seqc_write_begin(&nex->gen); 1274 nex->hw_prev = cur->hw_cur; 1275 nex->sbt_prev = cur->sbt_cur; 1276 nex->hw_cur = hw; 1277 nex->sbt_cur = sbt; 1278 seqc_write_end(&nex->gen); 1279 sc->cal_current = next_up; 1280 done: 1281 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1282 sc, C_DIRECT_EXEC); 1283 } 1284 1285 static void 1286 t4_calibration_start(struct adapter *sc) 1287 { 1288 /* 1289 * Here if we have not done a calibration 1290 * then do so otherwise start the appropriate 1291 * timer. 1292 */ 1293 int i; 1294 1295 for (i = 0; i < CNT_CAL_INFO; i++) { 1296 sc->cal_info[i].gen = 0; 1297 } 1298 sc->cal_current = 0; 1299 sc->cal_count = 0; 1300 sc->cal_gen = 0; 1301 t4_calibration(sc); 1302 } 1303 1304 static int 1305 t4_attach(device_t dev) 1306 { 1307 struct adapter *sc; 1308 int rc = 0, i, j, rqidx, tqidx, nports; 1309 struct make_dev_args mda; 1310 struct intrs_and_queues iaq; 1311 struct sge *s; 1312 uint32_t *buf; 1313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1314 int ofld_tqidx; 1315 #endif 1316 #ifdef TCP_OFFLOAD 1317 int ofld_rqidx; 1318 #endif 1319 #ifdef DEV_NETMAP 1320 int nm_rqidx, nm_tqidx; 1321 #endif 1322 int num_vis; 1323 1324 sc = device_get_softc(dev); 1325 sc->dev = dev; 1326 sysctl_ctx_init(&sc->ctx); 1327 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1328 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0) 1329 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED; 1330 1331 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1332 t5_attribute_workaround(dev); 1333 pci_enable_busmaster(dev); 1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1335 uint32_t v; 1336 1337 pci_set_max_read_req(dev, 4096); 1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1340 if (pcie_relaxed_ordering == 0 && 1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1344 } else if (pcie_relaxed_ordering == 1 && 1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1348 } 1349 } 1350 1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1353 sc->traceq = -1; 1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1356 device_get_nameunit(dev)); 1357 1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1359 device_get_nameunit(dev)); 1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1361 t4_add_adapter(sc); 1362 1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1364 TAILQ_INIT(&sc->sfl); 1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1366 1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1368 1369 sc->policy = NULL; 1370 rw_init(&sc->policy_lock, "connection offload policy"); 1371 1372 callout_init(&sc->ktls_tick, 1); 1373 1374 callout_init(&sc->cal_callout, 1); 1375 1376 refcount_init(&sc->vxlan_refcount, 0); 1377 1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1380 1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1387 1388 rc = t4_map_bars_0_and_4(sc); 1389 if (rc != 0) 1390 goto done; /* error message displayed already */ 1391 1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1393 memset(sc->port_map, 0xff, sizeof(sc->port_map)); 1394 1395 /* Prepare the adapter for operation. */ 1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1397 rc = -t4_prep_adapter(sc, buf); 1398 free(buf, M_CXGBE); 1399 if (rc != 0) { 1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1401 goto done; 1402 } 1403 1404 /* 1405 * This is the real PF# to which we're attaching. Works from within PCI 1406 * passthrough environments too, where pci_get_function() could return a 1407 * different PF# depending on the passthrough configuration. We need to 1408 * use the real PF# in all our communication with the firmware. 1409 */ 1410 j = t4_read_reg(sc, A_PL_WHOAMI); 1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1412 sc->mbox = sc->pf; 1413 1414 t4_init_devnames(sc); 1415 if (sc->names == NULL) { 1416 rc = ENOTSUP; 1417 goto done; /* error message displayed already */ 1418 } 1419 1420 /* 1421 * Do this really early, with the memory windows set up even before the 1422 * character device. The userland tool's register i/o and mem read 1423 * will work even in "recovery mode". 1424 */ 1425 setup_memwin(sc); 1426 if (t4_init_devlog_ncores_params(sc, 0) == 0) 1427 fixup_devlog_params(sc); 1428 make_dev_args_init(&mda); 1429 mda.mda_devsw = &t4_cdevsw; 1430 mda.mda_uid = UID_ROOT; 1431 mda.mda_gid = GID_WHEEL; 1432 mda.mda_mode = 0600; 1433 mda.mda_si_drv1 = sc; 1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1435 if (rc != 0) 1436 device_printf(dev, "failed to create nexus char device: %d.\n", 1437 rc); 1438 1439 /* Go no further if recovery mode has been requested. */ 1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1441 device_printf(dev, "recovery mode.\n"); 1442 goto done; 1443 } 1444 1445 #if defined(__i386__) 1446 if ((cpu_feature & CPUID_CX8) == 0) { 1447 device_printf(dev, "64 bit atomics not available.\n"); 1448 rc = ENOTSUP; 1449 goto done; 1450 } 1451 #endif 1452 1453 /* Contact the firmware and try to become the master driver. */ 1454 rc = contact_firmware(sc); 1455 if (rc != 0) 1456 goto done; /* error message displayed already */ 1457 MPASS(sc->flags & FW_OK); 1458 1459 rc = get_params__pre_init(sc); 1460 if (rc != 0) 1461 goto done; /* error message displayed already */ 1462 1463 if (sc->flags & MASTER_PF) { 1464 rc = partition_resources(sc); 1465 if (rc != 0) 1466 goto done; /* error message displayed already */ 1467 } 1468 1469 rc = get_params__post_init(sc); 1470 if (rc != 0) 1471 goto done; /* error message displayed already */ 1472 1473 rc = set_params__post_init(sc); 1474 if (rc != 0) 1475 goto done; /* error message displayed already */ 1476 1477 rc = t4_map_bar_2(sc); 1478 if (rc != 0) 1479 goto done; /* error message displayed already */ 1480 1481 rc = t4_adj_doorbells(sc); 1482 if (rc != 0) 1483 goto done; /* error message displayed already */ 1484 1485 rc = t4_create_dma_tag(sc); 1486 if (rc != 0) 1487 goto done; /* error message displayed already */ 1488 1489 /* 1490 * First pass over all the ports - allocate VIs and initialize some 1491 * basic parameters like mac address, port type, etc. 1492 */ 1493 for_each_port(sc, i) { 1494 struct port_info *pi; 1495 1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1497 sc->port[i] = pi; 1498 1499 /* These must be set before t4_port_init */ 1500 pi->adapter = sc; 1501 pi->port_id = i; 1502 /* 1503 * XXX: vi[0] is special so we can't delay this allocation until 1504 * pi->nvi's final value is known. 1505 */ 1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1507 M_ZERO | M_WAITOK); 1508 1509 /* 1510 * Allocate the "main" VI and initialize parameters 1511 * like mac addr. 1512 */ 1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1514 if (rc != 0) { 1515 device_printf(dev, "unable to initialize port %d: %d\n", 1516 i, rc); 1517 free(pi->vi, M_CXGBE); 1518 free(pi, M_CXGBE); 1519 sc->port[i] = NULL; 1520 goto done; 1521 } 1522 1523 if (is_bt(pi->port_type)) 1524 setbit(&sc->bt_map, pi->hw_port); 1525 else 1526 MPASS(!isset(&sc->bt_map, pi->hw_port)); 1527 1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1529 device_get_nameunit(dev), i); 1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1531 for (j = 0; j < sc->params.tp.lb_nchan; j++) 1532 sc->chan_map[pi->tx_chan + j] = i; 1533 sc->port_map[pi->hw_port] = i; 1534 1535 /* 1536 * The MPS counter for FCS errors doesn't work correctly on the 1537 * T6 so we use the MAC counter here. Which MAC is in use 1538 * depends on the link settings which will be known when the 1539 * link comes up. 1540 */ 1541 if (is_t6(sc)) 1542 pi->fcs_reg = -1; 1543 else 1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L; 1545 pi->fcs_base = 0; 1546 1547 /* All VIs on this port share this media. */ 1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1549 cxgbe_media_status); 1550 1551 PORT_LOCK(pi); 1552 init_link_config(pi); 1553 fixup_link_config(pi); 1554 build_medialist(pi); 1555 if (fixed_ifmedia(pi)) 1556 pi->flags |= FIXED_IFMEDIA; 1557 PORT_UNLOCK(pi); 1558 1559 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1560 t4_ifnet_unit(sc, pi)); 1561 if (pi->dev == NULL) { 1562 device_printf(dev, 1563 "failed to add device for port %d.\n", i); 1564 rc = ENXIO; 1565 goto done; 1566 } 1567 pi->vi[0].dev = pi->dev; 1568 device_set_softc(pi->dev, pi); 1569 } 1570 1571 /* 1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1573 */ 1574 nports = sc->params.nports; 1575 rc = cfg_itype_and_nqueues(sc, &iaq); 1576 if (rc != 0) 1577 goto done; /* error message displayed already */ 1578 1579 num_vis = iaq.num_vis; 1580 sc->intr_type = iaq.intr_type; 1581 sc->intr_count = iaq.nirq; 1582 1583 s = &sc->sge; 1584 s->nctrlq = max(sc->params.nports, sc->params.ncores); 1585 s->nrxq = nports * iaq.nrxq; 1586 s->ntxq = nports * iaq.ntxq; 1587 if (num_vis > 1) { 1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1590 } 1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1592 s->neq += nports; /* ctrl queues: 1 per port */ 1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1595 if (is_offload(sc) || is_ethoffload(sc)) { 1596 s->nofldtxq = nports * iaq.nofldtxq; 1597 if (num_vis > 1) 1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1599 s->neq += s->nofldtxq; 1600 1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1602 M_CXGBE, M_ZERO | M_WAITOK); 1603 } 1604 #endif 1605 #ifdef TCP_OFFLOAD 1606 if (is_offload(sc)) { 1607 s->nofldrxq = nports * iaq.nofldrxq; 1608 if (num_vis > 1) 1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1610 s->neq += s->nofldrxq; /* free list */ 1611 s->niq += s->nofldrxq; 1612 1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1614 M_CXGBE, M_ZERO | M_WAITOK); 1615 } 1616 #endif 1617 #ifdef DEV_NETMAP 1618 s->nnmrxq = 0; 1619 s->nnmtxq = 0; 1620 if (t4_native_netmap & NN_MAIN_VI) { 1621 s->nnmrxq += nports * iaq.nnmrxq; 1622 s->nnmtxq += nports * iaq.nnmtxq; 1623 } 1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1627 } 1628 s->neq += s->nnmtxq + s->nnmrxq; 1629 s->niq += s->nnmrxq; 1630 1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1632 M_CXGBE, M_ZERO | M_WAITOK); 1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1634 M_CXGBE, M_ZERO | M_WAITOK); 1635 #endif 1636 MPASS(s->niq <= s->iqmap_sz); 1637 MPASS(s->neq <= s->eqmap_sz); 1638 1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE, 1640 M_ZERO | M_WAITOK); 1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1642 M_ZERO | M_WAITOK); 1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1644 M_ZERO | M_WAITOK); 1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1646 M_ZERO | M_WAITOK); 1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1648 M_ZERO | M_WAITOK); 1649 1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1651 M_ZERO | M_WAITOK); 1652 1653 t4_init_l2t(sc, M_WAITOK); 1654 t4_init_smt(sc, M_WAITOK); 1655 t4_init_tx_sched(sc); 1656 t4_init_atid_table(sc); 1657 #ifdef RATELIMIT 1658 t4_init_etid_table(sc); 1659 #endif 1660 #ifdef INET6 1661 t4_init_clip_table(sc); 1662 #endif 1663 if (sc->vres.key.size != 0) 1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1666 t4_init_tpt(sc); 1667 1668 /* 1669 * Second pass over the ports. This time we know the number of rx and 1670 * tx queues that each port should get. 1671 */ 1672 rqidx = tqidx = 0; 1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1674 ofld_tqidx = 0; 1675 #endif 1676 #ifdef TCP_OFFLOAD 1677 ofld_rqidx = 0; 1678 #endif 1679 #ifdef DEV_NETMAP 1680 nm_rqidx = nm_tqidx = 0; 1681 #endif 1682 for_each_port(sc, i) { 1683 struct port_info *pi = sc->port[i]; 1684 struct vi_info *vi; 1685 1686 if (pi == NULL) 1687 continue; 1688 1689 pi->nvi = num_vis; 1690 for_each_vi(pi, j, vi) { 1691 vi->pi = pi; 1692 vi->adapter = sc; 1693 vi->first_intr = -1; 1694 vi->qsize_rxq = t4_qsize_rxq; 1695 vi->qsize_txq = t4_qsize_txq; 1696 1697 vi->first_rxq = rqidx; 1698 vi->first_txq = tqidx; 1699 vi->tmr_idx = t4_tmr_idx; 1700 vi->pktc_idx = t4_pktc_idx; 1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1703 1704 rqidx += vi->nrxq; 1705 tqidx += vi->ntxq; 1706 1707 if (j == 0 && vi->ntxq > 1) 1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1709 else 1710 vi->rsrv_noflowq = 0; 1711 1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1713 vi->first_ofld_txq = ofld_tqidx; 1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1715 ofld_tqidx += vi->nofldtxq; 1716 #endif 1717 #ifdef TCP_OFFLOAD 1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1720 vi->first_ofld_rxq = ofld_rqidx; 1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1722 1723 ofld_rqidx += vi->nofldrxq; 1724 #endif 1725 #ifdef DEV_NETMAP 1726 vi->first_nm_rxq = nm_rqidx; 1727 vi->first_nm_txq = nm_tqidx; 1728 if (j == 0) { 1729 vi->nnmrxq = iaq.nnmrxq; 1730 vi->nnmtxq = iaq.nnmtxq; 1731 } else { 1732 vi->nnmrxq = iaq.nnmrxq_vi; 1733 vi->nnmtxq = iaq.nnmtxq_vi; 1734 } 1735 nm_rqidx += vi->nnmrxq; 1736 nm_tqidx += vi->nnmtxq; 1737 #endif 1738 } 1739 } 1740 1741 rc = t4_setup_intr_handlers(sc); 1742 if (rc != 0) { 1743 device_printf(dev, 1744 "failed to setup interrupt handlers: %d\n", rc); 1745 goto done; 1746 } 1747 1748 bus_identify_children(dev); 1749 1750 /* 1751 * Ensure thread-safe mailbox access (in debug builds). 1752 * 1753 * So far this was the only thread accessing the mailbox but various 1754 * ifnets and sysctls are about to be created and their handlers/ioctls 1755 * will access the mailbox from different threads. 1756 */ 1757 sc->flags |= CHK_MBOX_ACCESS; 1758 1759 bus_attach_children(dev); 1760 t4_calibration_start(sc); 1761 1762 device_printf(dev, 1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1768 1769 t4_set_desc(sc); 1770 1771 notify_siblings(dev, 0); 1772 1773 done: 1774 if (rc != 0 && sc->cdev) { 1775 /* cdev was created and so cxgbetool works; recover that way. */ 1776 device_printf(dev, 1777 "error during attach, adapter is now in recovery mode.\n"); 1778 rc = 0; 1779 } 1780 1781 if (rc != 0) 1782 t4_detach_common(dev); 1783 else 1784 t4_sysctls(sc); 1785 1786 return (rc); 1787 } 1788 1789 static int 1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1791 { 1792 struct adapter *sc; 1793 struct port_info *pi; 1794 int i; 1795 1796 sc = device_get_softc(bus); 1797 for_each_port(sc, i) { 1798 pi = sc->port[i]; 1799 if (pi != NULL && pi->dev == dev) { 1800 sbuf_printf(sb, "port=%d", pi->port_id); 1801 break; 1802 } 1803 } 1804 return (0); 1805 } 1806 1807 static int 1808 t4_ready(device_t dev) 1809 { 1810 struct adapter *sc; 1811 1812 sc = device_get_softc(dev); 1813 if (sc->flags & FW_OK) 1814 return (0); 1815 return (ENXIO); 1816 } 1817 1818 static int 1819 t4_read_port_device(device_t dev, int port, device_t *child) 1820 { 1821 struct adapter *sc; 1822 struct port_info *pi; 1823 1824 sc = device_get_softc(dev); 1825 if (port < 0 || port >= MAX_NPORTS) 1826 return (EINVAL); 1827 pi = sc->port[port]; 1828 if (pi == NULL || pi->dev == NULL) 1829 return (ENXIO); 1830 *child = pi->dev; 1831 return (0); 1832 } 1833 1834 static int 1835 notify_siblings(device_t dev, int detaching) 1836 { 1837 device_t sibling; 1838 int error, i; 1839 1840 error = 0; 1841 for (i = 0; i < PCI_FUNCMAX; i++) { 1842 if (i == pci_get_function(dev)) 1843 continue; 1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1845 pci_get_slot(dev), i); 1846 if (sibling == NULL || !device_is_attached(sibling)) 1847 continue; 1848 if (detaching) 1849 error = T4_DETACH_CHILD(sibling); 1850 else 1851 (void)T4_ATTACH_CHILD(sibling); 1852 if (error) 1853 break; 1854 } 1855 return (error); 1856 } 1857 1858 /* 1859 * Idempotent 1860 */ 1861 static int 1862 t4_detach(device_t dev) 1863 { 1864 int rc; 1865 1866 rc = notify_siblings(dev, 1); 1867 if (rc) { 1868 device_printf(dev, 1869 "failed to detach sibling devices: %d\n", rc); 1870 return (rc); 1871 } 1872 1873 return (t4_detach_common(dev)); 1874 } 1875 1876 int 1877 t4_detach_common(device_t dev) 1878 { 1879 struct adapter *sc; 1880 struct port_info *pi; 1881 int i, rc; 1882 1883 sc = device_get_softc(dev); 1884 1885 #ifdef TCP_OFFLOAD 1886 rc = deactivate_all_uld(sc); 1887 if (rc) { 1888 device_printf(dev, 1889 "failed to detach upper layer drivers: %d\n", rc); 1890 return (rc); 1891 } 1892 #endif 1893 1894 if (sc->cdev) { 1895 destroy_dev(sc->cdev); 1896 sc->cdev = NULL; 1897 } 1898 1899 sx_xlock(&t4_list_lock); 1900 SLIST_REMOVE(&t4_list, sc, adapter, link); 1901 sx_xunlock(&t4_list_lock); 1902 1903 sc->flags &= ~CHK_MBOX_ACCESS; 1904 if (sc->flags & FULL_INIT_DONE) { 1905 if (!(sc->flags & IS_VF)) 1906 t4_intr_disable(sc); 1907 } 1908 1909 if (device_is_attached(dev)) { 1910 rc = bus_detach_children(dev); 1911 if (rc) { 1912 device_printf(dev, 1913 "failed to detach child devices: %d\n", rc); 1914 return (rc); 1915 } 1916 } 1917 1918 for (i = 0; i < sc->intr_count; i++) 1919 t4_free_irq(sc, &sc->irq[i]); 1920 1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1922 t4_free_tx_sched(sc); 1923 1924 for (i = 0; i < MAX_NPORTS; i++) { 1925 pi = sc->port[i]; 1926 if (pi) { 1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1928 1929 mtx_destroy(&pi->pi_lock); 1930 free(pi->vi, M_CXGBE); 1931 free(pi, M_CXGBE); 1932 } 1933 } 1934 callout_stop(&sc->cal_callout); 1935 callout_drain(&sc->cal_callout); 1936 device_delete_children(dev); 1937 sysctl_ctx_free(&sc->ctx); 1938 adapter_full_uninit(sc); 1939 1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1941 t4_fw_bye(sc, sc->mbox); 1942 1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1944 pci_release_msi(dev); 1945 1946 if (sc->regs_res) 1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1948 sc->regs_res); 1949 1950 if (sc->udbs_res) 1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1952 sc->udbs_res); 1953 1954 if (sc->msix_res) 1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1956 sc->msix_res); 1957 1958 if (sc->l2t) 1959 t4_free_l2t(sc); 1960 if (sc->smt) 1961 t4_free_smt(sc->smt); 1962 t4_free_atid_table(sc); 1963 #ifdef RATELIMIT 1964 t4_free_etid_table(sc); 1965 #endif 1966 if (sc->key_map) 1967 vmem_destroy(sc->key_map); 1968 t4_free_tpt(sc); 1969 #ifdef INET6 1970 t4_destroy_clip_table(sc); 1971 #endif 1972 1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1974 free(sc->sge.ofld_txq, M_CXGBE); 1975 #endif 1976 #ifdef TCP_OFFLOAD 1977 free(sc->sge.ofld_rxq, M_CXGBE); 1978 #endif 1979 #ifdef DEV_NETMAP 1980 free(sc->sge.nm_rxq, M_CXGBE); 1981 free(sc->sge.nm_txq, M_CXGBE); 1982 #endif 1983 free(sc->irq, M_CXGBE); 1984 free(sc->sge.rxq, M_CXGBE); 1985 free(sc->sge.txq, M_CXGBE); 1986 free(sc->sge.ctrlq, M_CXGBE); 1987 free(sc->sge.iqmap, M_CXGBE); 1988 free(sc->sge.eqmap, M_CXGBE); 1989 free(sc->tids.ftid_tab, M_CXGBE); 1990 free(sc->tids.hpftid_tab, M_CXGBE); 1991 free_hftid_hash(&sc->tids); 1992 free(sc->tids.tid_tab, M_CXGBE); 1993 t4_destroy_dma_tag(sc); 1994 1995 callout_drain(&sc->ktls_tick); 1996 callout_drain(&sc->sfl_callout); 1997 if (mtx_initialized(&sc->tids.ftid_lock)) { 1998 mtx_destroy(&sc->tids.ftid_lock); 1999 cv_destroy(&sc->tids.ftid_cv); 2000 } 2001 if (mtx_initialized(&sc->tids.atid_lock)) 2002 mtx_destroy(&sc->tids.atid_lock); 2003 if (mtx_initialized(&sc->ifp_lock)) 2004 mtx_destroy(&sc->ifp_lock); 2005 2006 if (rw_initialized(&sc->policy_lock)) { 2007 rw_destroy(&sc->policy_lock); 2008 #ifdef TCP_OFFLOAD 2009 if (sc->policy != NULL) 2010 free_offload_policy(sc->policy); 2011 #endif 2012 } 2013 2014 for (i = 0; i < NUM_MEMWIN; i++) { 2015 struct memwin *mw = &sc->memwin[i]; 2016 2017 if (rw_initialized(&mw->mw_lock)) 2018 rw_destroy(&mw->mw_lock); 2019 } 2020 2021 mtx_destroy(&sc->sfl_lock); 2022 mtx_destroy(&sc->reg_lock); 2023 mtx_destroy(&sc->sc_lock); 2024 2025 bzero(sc, sizeof(*sc)); 2026 2027 return (0); 2028 } 2029 2030 static inline int 2031 stop_adapter(struct adapter *sc) 2032 { 2033 struct port_info *pi; 2034 int i; 2035 2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2038 __func__, curthread, sc->flags, sc->error_flags); 2039 return (EALREADY); 2040 } 2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2042 sc->flags, sc->error_flags); 2043 t4_shutdown_adapter(sc); 2044 for_each_port(sc, i) { 2045 pi = sc->port[i]; 2046 if (pi == NULL) 2047 continue; 2048 PORT_LOCK(pi); 2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 2050 /* 2051 * t4_shutdown_adapter has already shut down all the 2052 * PHYs but it also disables interrupts and DMA so there 2053 * won't be a link interrupt. Update the state manually 2054 * if the link was up previously and inform the kernel. 2055 */ 2056 pi->link_cfg.link_ok = false; 2057 t4_os_link_changed(pi); 2058 } 2059 PORT_UNLOCK(pi); 2060 } 2061 2062 return (0); 2063 } 2064 2065 static inline int 2066 restart_adapter(struct adapter *sc) 2067 { 2068 uint32_t val; 2069 2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2072 __func__, curthread, sc->flags, sc->error_flags); 2073 return (EALREADY); 2074 } 2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2076 sc->flags, sc->error_flags); 2077 2078 MPASS(hw_off_limits(sc)); 2079 MPASS((sc->flags & FW_OK) == 0); 2080 MPASS((sc->flags & MASTER_PF) == 0); 2081 MPASS(sc->reset_thread == NULL); 2082 2083 /* 2084 * The adapter is supposed to be back on PCIE with its config space and 2085 * BARs restored to their state before reset. Register access via 2086 * t4_read_reg BAR0 should just work. 2087 */ 2088 sc->reset_thread = curthread; 2089 val = t4_read_reg(sc, A_PL_WHOAMI); 2090 if (val == 0xffffffff || val == 0xeeeeeeee) { 2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 2092 sc->reset_thread = NULL; 2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 2094 return (ENXIO); 2095 } 2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 2097 atomic_add_int(&sc->incarnation, 1); 2098 atomic_add_int(&sc->num_resets, 1); 2099 2100 return (0); 2101 } 2102 2103 static inline void 2104 set_adapter_hwstatus(struct adapter *sc, const bool usable) 2105 { 2106 if (usable) { 2107 /* Must be marked reusable by the designated thread. */ 2108 ASSERT_SYNCHRONIZED_OP(sc); 2109 MPASS(sc->reset_thread == curthread); 2110 mtx_lock(&sc->reg_lock); 2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2112 mtx_unlock(&sc->reg_lock); 2113 } else { 2114 /* Mark the adapter totally off limits. */ 2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 2116 mtx_lock(&sc->reg_lock); 2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2118 mtx_unlock(&sc->reg_lock); 2119 sc->flags &= ~(FW_OK | MASTER_PF); 2120 sc->reset_thread = NULL; 2121 end_synchronized_op(sc, 0); 2122 } 2123 } 2124 2125 static int 2126 stop_lld(struct adapter *sc) 2127 { 2128 struct port_info *pi; 2129 struct vi_info *vi; 2130 if_t ifp; 2131 struct sge_rxq *rxq; 2132 struct sge_txq *txq; 2133 struct sge_wrq *wrq; 2134 #ifdef TCP_OFFLOAD 2135 struct sge_ofld_rxq *ofld_rxq; 2136 #endif 2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2138 struct sge_ofld_txq *ofld_txq; 2139 #endif 2140 int rc, i, j, k; 2141 2142 /* 2143 * XXX: Can there be a synch_op in progress that will hang because 2144 * hardware has been stopped? We'll hang too and the solution will be 2145 * to use a version of begin_synch_op that wakes up existing synch_op 2146 * with errors. Maybe stop_adapter should do this wakeup? 2147 * 2148 * I don't think any synch_op could get stranded waiting for DMA or 2149 * interrupt so I think we're okay here. Remove this comment block 2150 * after testing. 2151 */ 2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2153 if (rc != 0) 2154 return (ENXIO); 2155 2156 /* Quiesce all activity. */ 2157 for_each_port(sc, i) { 2158 pi = sc->port[i]; 2159 if (pi == NULL) 2160 continue; 2161 pi->vxlan_tcam_entry = false; 2162 for_each_vi(pi, j, vi) { 2163 vi->xact_addr_filt = -1; 2164 mtx_lock(&vi->tick_mtx); 2165 vi->flags |= VI_SKIP_STATS; 2166 mtx_unlock(&vi->tick_mtx); 2167 if (!(vi->flags & VI_INIT_DONE)) 2168 continue; 2169 2170 ifp = vi->ifp; 2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2172 mtx_lock(&vi->tick_mtx); 2173 callout_stop(&vi->tick); 2174 mtx_unlock(&vi->tick_mtx); 2175 callout_drain(&vi->tick); 2176 } 2177 2178 /* 2179 * Note that the HW is not available. 2180 */ 2181 for_each_txq(vi, k, txq) { 2182 TXQ_LOCK(txq); 2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2184 TXQ_UNLOCK(txq); 2185 } 2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2187 for_each_ofld_txq(vi, k, ofld_txq) { 2188 TXQ_LOCK(&ofld_txq->wrq); 2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2190 TXQ_UNLOCK(&ofld_txq->wrq); 2191 } 2192 #endif 2193 for_each_rxq(vi, k, rxq) { 2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2195 } 2196 #if defined(TCP_OFFLOAD) 2197 for_each_ofld_rxq(vi, k, ofld_rxq) { 2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2199 } 2200 #endif 2201 2202 quiesce_vi(vi); 2203 } 2204 2205 if (sc->flags & FULL_INIT_DONE) { 2206 /* Control queue */ 2207 wrq = &sc->sge.ctrlq[i]; 2208 TXQ_LOCK(wrq); 2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2210 TXQ_UNLOCK(wrq); 2211 quiesce_wrq(wrq); 2212 } 2213 2214 if (pi->flags & HAS_TRACEQ) { 2215 pi->flags &= ~HAS_TRACEQ; 2216 sc->traceq = -1; 2217 sc->tracer_valid = 0; 2218 sc->tracer_enabled = 0; 2219 } 2220 } 2221 if (sc->flags & FULL_INIT_DONE) { 2222 /* Firmware event queue */ 2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2225 } 2226 2227 /* Stop calibration */ 2228 callout_stop(&sc->cal_callout); 2229 callout_drain(&sc->cal_callout); 2230 2231 if (t4_clock_gate_on_suspend) { 2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2235 } 2236 2237 end_synchronized_op(sc, 0); 2238 2239 stop_atid_allocator(sc); 2240 t4_stop_l2t(sc); 2241 2242 return (rc); 2243 } 2244 2245 int 2246 suspend_adapter(struct adapter *sc) 2247 { 2248 stop_adapter(sc); 2249 stop_lld(sc); 2250 #ifdef TCP_OFFLOAD 2251 stop_all_uld(sc); 2252 #endif 2253 set_adapter_hwstatus(sc, false); 2254 2255 return (0); 2256 } 2257 2258 static int 2259 t4_suspend(device_t dev) 2260 { 2261 struct adapter *sc = device_get_softc(dev); 2262 int rc; 2263 2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2265 rc = suspend_adapter(sc); 2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2267 2268 return (rc); 2269 } 2270 2271 struct adapter_pre_reset_state { 2272 u_int flags; 2273 uint16_t nbmcaps; 2274 uint16_t linkcaps; 2275 uint16_t switchcaps; 2276 uint16_t nvmecaps; 2277 uint16_t niccaps; 2278 uint16_t toecaps; 2279 uint16_t rdmacaps; 2280 uint16_t cryptocaps; 2281 uint16_t iscsicaps; 2282 uint16_t fcoecaps; 2283 2284 u_int cfcsum; 2285 char cfg_file[32]; 2286 2287 struct adapter_params params; 2288 struct t4_virt_res vres; 2289 struct tid_info tids; 2290 struct sge sge; 2291 2292 int rawf_base; 2293 int nrawf; 2294 2295 }; 2296 2297 static void 2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2299 { 2300 2301 ASSERT_SYNCHRONIZED_OP(sc); 2302 2303 o->flags = sc->flags; 2304 2305 o->nbmcaps = sc->nbmcaps; 2306 o->linkcaps = sc->linkcaps; 2307 o->switchcaps = sc->switchcaps; 2308 o->nvmecaps = sc->nvmecaps; 2309 o->niccaps = sc->niccaps; 2310 o->toecaps = sc->toecaps; 2311 o->rdmacaps = sc->rdmacaps; 2312 o->cryptocaps = sc->cryptocaps; 2313 o->iscsicaps = sc->iscsicaps; 2314 o->fcoecaps = sc->fcoecaps; 2315 2316 o->cfcsum = sc->cfcsum; 2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2319 2320 o->params = sc->params; 2321 o->vres = sc->vres; 2322 o->tids = sc->tids; 2323 o->sge = sc->sge; 2324 2325 o->rawf_base = sc->rawf_base; 2326 o->nrawf = sc->nrawf; 2327 } 2328 2329 static int 2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2331 { 2332 int rc = 0; 2333 2334 ASSERT_SYNCHRONIZED_OP(sc); 2335 2336 /* Capabilities */ 2337 #define COMPARE_CAPS(c) do { \ 2338 if (o->c##caps != sc->c##caps) { \ 2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2340 sc->c##caps); \ 2341 rc = EINVAL; \ 2342 } \ 2343 } while (0) 2344 COMPARE_CAPS(nbm); 2345 COMPARE_CAPS(link); 2346 COMPARE_CAPS(switch); 2347 COMPARE_CAPS(nvme); 2348 COMPARE_CAPS(nic); 2349 COMPARE_CAPS(toe); 2350 COMPARE_CAPS(rdma); 2351 COMPARE_CAPS(crypto); 2352 COMPARE_CAPS(iscsi); 2353 COMPARE_CAPS(fcoe); 2354 #undef COMPARE_CAPS 2355 2356 /* Firmware config file */ 2357 if (o->cfcsum != sc->cfcsum) { 2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2359 o->cfcsum, sc->cfg_file, sc->cfcsum); 2360 rc = EINVAL; 2361 } 2362 2363 #define COMPARE_PARAM(p, name) do { \ 2364 if (o->p != sc->p) { \ 2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2366 rc = EINVAL; \ 2367 } \ 2368 } while (0) 2369 COMPARE_PARAM(sge.iq_start, iq_start); 2370 COMPARE_PARAM(sge.eq_start, eq_start); 2371 COMPARE_PARAM(tids.ftid_base, ftid_base); 2372 COMPARE_PARAM(tids.ftid_end, ftid_end); 2373 COMPARE_PARAM(tids.nftids, nftids); 2374 COMPARE_PARAM(vres.l2t.start, l2t_start); 2375 COMPARE_PARAM(vres.l2t.size, l2t_size); 2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2378 COMPARE_PARAM(tids.tid_base, tid_base); 2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2381 COMPARE_PARAM(tids.nhpftids, nhpftids); 2382 COMPARE_PARAM(rawf_base, rawf_base); 2383 COMPARE_PARAM(nrawf, nrawf); 2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2389 COMPARE_PARAM(tids.ntids, ntids); 2390 COMPARE_PARAM(tids.etid_base, etid_base); 2391 COMPARE_PARAM(tids.etid_end, etid_end); 2392 COMPARE_PARAM(tids.netids, netids); 2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2394 COMPARE_PARAM(params.ethoffload, ethoffload); 2395 COMPARE_PARAM(tids.natids, natids); 2396 COMPARE_PARAM(tids.stid_base, stid_base); 2397 COMPARE_PARAM(vres.ddp.start, ddp_start); 2398 COMPARE_PARAM(vres.ddp.size, ddp_size); 2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2400 COMPARE_PARAM(vres.stag.start, stag_start); 2401 COMPARE_PARAM(vres.stag.size, stag_size); 2402 COMPARE_PARAM(vres.rq.start, rq_start); 2403 COMPARE_PARAM(vres.rq.size, rq_size); 2404 COMPARE_PARAM(vres.pbl.start, pbl_start); 2405 COMPARE_PARAM(vres.pbl.size, pbl_size); 2406 COMPARE_PARAM(vres.qp.start, qp_start); 2407 COMPARE_PARAM(vres.qp.size, qp_size); 2408 COMPARE_PARAM(vres.cq.start, cq_start); 2409 COMPARE_PARAM(vres.cq.size, cq_size); 2410 COMPARE_PARAM(vres.ocq.start, ocq_start); 2411 COMPARE_PARAM(vres.ocq.size, ocq_size); 2412 COMPARE_PARAM(vres.srq.start, srq_start); 2413 COMPARE_PARAM(vres.srq.size, srq_size); 2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2418 COMPARE_PARAM(vres.key.start, key_start); 2419 COMPARE_PARAM(vres.key.size, key_size); 2420 #undef COMPARE_PARAM 2421 2422 return (rc); 2423 } 2424 2425 static int 2426 restart_lld(struct adapter *sc) 2427 { 2428 struct adapter_pre_reset_state *old_state = NULL; 2429 struct port_info *pi; 2430 struct vi_info *vi; 2431 if_t ifp; 2432 struct sge_txq *txq; 2433 int rc, i, j, k; 2434 2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2436 if (rc != 0) 2437 return (ENXIO); 2438 2439 /* Restore memory window. */ 2440 setup_memwin(sc); 2441 2442 /* Go no further if recovery mode has been requested. */ 2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2445 rc = 0; 2446 set_adapter_hwstatus(sc, true); 2447 goto done; 2448 } 2449 2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2451 save_caps_and_params(sc, old_state); 2452 2453 /* Reestablish contact with firmware and become the primary PF. */ 2454 rc = contact_firmware(sc); 2455 if (rc != 0) 2456 goto done; /* error message displayed already */ 2457 MPASS(sc->flags & FW_OK); 2458 2459 if (sc->flags & MASTER_PF) { 2460 rc = partition_resources(sc); 2461 if (rc != 0) 2462 goto done; /* error message displayed already */ 2463 } 2464 2465 rc = get_params__post_init(sc); 2466 if (rc != 0) 2467 goto done; /* error message displayed already */ 2468 2469 rc = set_params__post_init(sc); 2470 if (rc != 0) 2471 goto done; /* error message displayed already */ 2472 2473 rc = compare_caps_and_params(sc, old_state); 2474 if (rc != 0) 2475 goto done; /* error message displayed already */ 2476 2477 for_each_port(sc, i) { 2478 pi = sc->port[i]; 2479 MPASS(pi != NULL); 2480 MPASS(pi->vi != NULL); 2481 MPASS(pi->vi[0].dev == pi->dev); 2482 2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2484 if (rc != 0) { 2485 CH_ERR(sc, 2486 "failed to re-initialize port %d: %d\n", i, rc); 2487 goto done; 2488 } 2489 MPASS(sc->chan_map[pi->tx_chan] == i); 2490 2491 PORT_LOCK(pi); 2492 fixup_link_config(pi); 2493 build_medialist(pi); 2494 PORT_UNLOCK(pi); 2495 for_each_vi(pi, j, vi) { 2496 if (IS_MAIN_VI(vi)) 2497 continue; 2498 rc = alloc_extra_vi(sc, pi, vi); 2499 if (rc != 0) { 2500 CH_ERR(vi, 2501 "failed to re-allocate extra VI: %d\n", rc); 2502 goto done; 2503 } 2504 } 2505 } 2506 2507 /* 2508 * Interrupts and queues are about to be enabled and other threads will 2509 * want to access the hardware too. It is safe to do so. Note that 2510 * this thread is still in the middle of a synchronized_op. 2511 */ 2512 set_adapter_hwstatus(sc, true); 2513 2514 if (sc->flags & FULL_INIT_DONE) { 2515 rc = adapter_full_init(sc); 2516 if (rc != 0) { 2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2518 goto done; 2519 } 2520 2521 if (sc->vxlan_refcount > 0) 2522 enable_vxlan_rx(sc); 2523 2524 for_each_port(sc, i) { 2525 pi = sc->port[i]; 2526 for_each_vi(pi, j, vi) { 2527 mtx_lock(&vi->tick_mtx); 2528 vi->flags &= ~VI_SKIP_STATS; 2529 mtx_unlock(&vi->tick_mtx); 2530 if (!(vi->flags & VI_INIT_DONE)) 2531 continue; 2532 rc = vi_full_init(vi); 2533 if (rc != 0) { 2534 CH_ERR(vi, "failed to re-initialize " 2535 "interface: %d\n", rc); 2536 goto done; 2537 } 2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 2541 pi->flags |= HAS_TRACEQ; 2542 } 2543 2544 ifp = vi->ifp; 2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2546 continue; 2547 /* 2548 * Note that we do not setup multicast addresses 2549 * in the first pass. This ensures that the 2550 * unicast DMACs for all VIs on all ports get an 2551 * MPS TCAM entry. 2552 */ 2553 rc = update_mac_settings(ifp, XGMAC_ALL & 2554 ~XGMAC_MCADDRS); 2555 if (rc != 0) { 2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2557 goto done; 2558 } 2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2560 true); 2561 if (rc != 0) { 2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2563 goto done; 2564 } 2565 for_each_txq(vi, k, txq) { 2566 TXQ_LOCK(txq); 2567 txq->eq.flags |= EQ_ENABLED; 2568 TXQ_UNLOCK(txq); 2569 } 2570 mtx_lock(&vi->tick_mtx); 2571 callout_schedule(&vi->tick, hz); 2572 mtx_unlock(&vi->tick_mtx); 2573 } 2574 PORT_LOCK(pi); 2575 if (pi->up_vis > 0) { 2576 t4_update_port_info(pi); 2577 fixup_link_config(pi); 2578 build_medialist(pi); 2579 apply_link_config(pi); 2580 if (pi->link_cfg.link_ok) 2581 t4_os_link_changed(pi); 2582 } 2583 PORT_UNLOCK(pi); 2584 } 2585 2586 /* Now reprogram the L2 multicast addresses. */ 2587 for_each_port(sc, i) { 2588 pi = sc->port[i]; 2589 for_each_vi(pi, j, vi) { 2590 if (!(vi->flags & VI_INIT_DONE)) 2591 continue; 2592 ifp = vi->ifp; 2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2594 continue; 2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2596 if (rc != 0) { 2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2598 rc = 0; /* carry on */ 2599 } 2600 } 2601 } 2602 } 2603 2604 /* Reset all calibration */ 2605 t4_calibration_start(sc); 2606 done: 2607 end_synchronized_op(sc, 0); 2608 free(old_state, M_CXGBE); 2609 2610 restart_atid_allocator(sc); 2611 t4_restart_l2t(sc); 2612 2613 return (rc); 2614 } 2615 2616 int 2617 resume_adapter(struct adapter *sc) 2618 { 2619 restart_adapter(sc); 2620 restart_lld(sc); 2621 #ifdef TCP_OFFLOAD 2622 restart_all_uld(sc); 2623 #endif 2624 return (0); 2625 } 2626 2627 static int 2628 t4_resume(device_t dev) 2629 { 2630 struct adapter *sc = device_get_softc(dev); 2631 int rc; 2632 2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2634 rc = resume_adapter(sc); 2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2636 2637 return (rc); 2638 } 2639 2640 static int 2641 t4_reset_prepare(device_t dev, device_t child) 2642 { 2643 struct adapter *sc = device_get_softc(dev); 2644 2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2646 return (0); 2647 } 2648 2649 static int 2650 t4_reset_post(device_t dev, device_t child) 2651 { 2652 struct adapter *sc = device_get_softc(dev); 2653 2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2655 return (0); 2656 } 2657 2658 static int 2659 reset_adapter_with_pl_rst(struct adapter *sc) 2660 { 2661 /* This is a t4_write_reg without the hw_off_limits check. */ 2662 MPASS(sc->error_flags & HW_OFF_LIMITS); 2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2666 return (0); 2667 } 2668 2669 static int 2670 reset_adapter_with_pcie_sbr(struct adapter *sc) 2671 { 2672 device_t pdev = device_get_parent(sc->dev); 2673 device_t gpdev = device_get_parent(pdev); 2674 device_t *children; 2675 int rc, i, lcap, lsta, nchildren; 2676 uint32_t v; 2677 2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2679 if (rc != 0) { 2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2681 device_get_nameunit(gpdev), rc); 2682 return (ENOTSUP); 2683 } 2684 lcap = v + PCIER_LINK_CAP; 2685 lsta = v + PCIER_LINK_STA; 2686 2687 nchildren = 0; 2688 device_get_children(pdev, &children, &nchildren); 2689 for (i = 0; i < nchildren; i++) 2690 pci_save_state(children[i]); 2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2); 2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2); 2693 pause("pcie_sbr1", hz / 10); /* 100ms */ 2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2); 2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */ 2696 v = pci_read_config(gpdev, lsta, 2); 2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2700 rc = ETIMEDOUT; 2701 else 2702 rc = 0; 2703 if (rc != 0) 2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2705 __func__, v); 2706 else { 2707 for (i = 0; i < nchildren; i++) 2708 pci_restore_state(children[i]); 2709 } 2710 free(children, M_TEMP); 2711 2712 return (rc); 2713 } 2714 2715 static int 2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc) 2717 { 2718 device_t pdev = device_get_parent(sc->dev); 2719 device_t gpdev = device_get_parent(pdev); 2720 device_t *children; 2721 int rc, i, lcap, lctl, lsta, nchildren; 2722 uint32_t v; 2723 2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2725 if (rc != 0) { 2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2727 device_get_nameunit(gpdev), rc); 2728 return (ENOTSUP); 2729 } 2730 lcap = v + PCIER_LINK_CAP; 2731 lctl = v + PCIER_LINK_CTL; 2732 lsta = v + PCIER_LINK_STA; 2733 2734 nchildren = 0; 2735 device_get_children(pdev, &children, &nchildren); 2736 for (i = 0; i < nchildren; i++) 2737 pci_save_state(children[i]); 2738 v = pci_read_config(gpdev, lctl, 2); 2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2); 2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */ 2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2); 2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */ 2743 v = pci_read_config(gpdev, lsta, 2); 2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2747 rc = ETIMEDOUT; 2748 else 2749 rc = 0; 2750 if (rc != 0) 2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2752 __func__, v); 2753 else { 2754 for (i = 0; i < nchildren; i++) 2755 pci_restore_state(children[i]); 2756 } 2757 free(children, M_TEMP); 2758 2759 return (rc); 2760 } 2761 2762 static inline int 2763 reset_adapter(struct adapter *sc) 2764 { 2765 int rc; 2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0; 2767 2768 rc = suspend_adapter(sc); 2769 if (rc != 0) 2770 return (rc); 2771 2772 switch (reset_method) { 2773 case 1: 2774 rc = reset_adapter_with_pcie_sbr(sc); 2775 break; 2776 case 2: 2777 rc = reset_adapter_with_pcie_link_bounce(sc); 2778 break; 2779 case 0: 2780 default: 2781 rc = reset_adapter_with_pl_rst(sc); 2782 break; 2783 } 2784 if (rc == 0) 2785 rc = resume_adapter(sc); 2786 return (rc); 2787 } 2788 2789 static void 2790 reset_adapter_task(void *arg, int pending) 2791 { 2792 struct adapter *sc = arg; 2793 const int flags = sc->flags; 2794 const int eflags = sc->error_flags; 2795 int rc; 2796 2797 if (pending > 1) 2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2799 rc = reset_adapter(sc); 2800 if (rc != 0) { 2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2803 rc, flags, sc->flags, eflags, sc->error_flags); 2804 } 2805 } 2806 2807 static int 2808 cxgbe_probe(device_t dev) 2809 { 2810 struct port_info *pi = device_get_softc(dev); 2811 2812 device_set_descf(dev, "port %d", pi->port_id); 2813 2814 return (BUS_PROBE_DEFAULT); 2815 } 2816 2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG | IFCAP_NV) 2821 #define T4_CAP_ENABLE (T4_CAP) 2822 2823 static void 2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2825 { 2826 if_t ifp; 2827 struct sbuf *sb; 2828 struct sysctl_ctx_list *ctx = &vi->ctx; 2829 struct sysctl_oid_list *children; 2830 struct pfil_head_args pa; 2831 struct adapter *sc = vi->adapter; 2832 2833 sysctl_ctx_init(ctx); 2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2839 #ifdef DEV_NETMAP 2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2844 #endif 2845 #ifdef TCP_OFFLOAD 2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2848 #endif 2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2852 #endif 2853 2854 vi->xact_addr_filt = -1; 2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2858 vi->flags |= TX_USES_VM_WR; 2859 2860 /* Allocate an ifnet and set it up */ 2861 ifp = if_alloc_dev(IFT_ETHER, dev); 2862 vi->ifp = ifp; 2863 if_setsoftc(ifp, vi); 2864 2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2867 2868 if_setinitfn(ifp, cxgbe_init); 2869 if_setioctlfn(ifp, cxgbe_ioctl); 2870 if_settransmitfn(ifp, cxgbe_transmit); 2871 if_setqflushfn(ifp, cxgbe_qflush); 2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2873 if_setgetcounterfn(ifp, vi_get_counter); 2874 else 2875 if_setgetcounterfn(ifp, cxgbe_get_counter); 2876 #if defined(KERN_TLS) || defined(RATELIMIT) 2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2878 #endif 2879 #ifdef RATELIMIT 2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2881 #endif 2882 2883 if_setcapabilities(ifp, T4_CAP); 2884 if_setcapenable(ifp, T4_CAP_ENABLE); 2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2887 if (chip_id(sc) >= CHELSIO_T6) { 2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2893 } 2894 2895 #ifdef TCP_OFFLOAD 2896 if (vi->nofldrxq != 0) 2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2898 #endif 2899 #ifdef RATELIMIT 2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2903 } 2904 #endif 2905 2906 if_sethwtsomax(ifp, IP_MAXPACKET); 2907 if (vi->flags & TX_USES_VM_WR) 2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2909 else 2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2911 #ifdef RATELIMIT 2912 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2914 #endif 2915 if_sethwtsomaxsegsize(ifp, 65536); 2916 #ifdef KERN_TLS 2917 if (is_ktls(sc)) { 2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2921 } 2922 #endif 2923 2924 ether_ifattach(ifp, vi->hw_addr); 2925 #ifdef DEV_NETMAP 2926 if (vi->nnmrxq != 0) 2927 cxgbe_nm_attach(vi); 2928 #endif 2929 sb = sbuf_new_auto(); 2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2933 case IFCAP_TOE: 2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2935 break; 2936 case IFCAP_TOE | IFCAP_TXRTLMT: 2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2938 break; 2939 case IFCAP_TXRTLMT: 2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2941 break; 2942 } 2943 #endif 2944 #ifdef TCP_OFFLOAD 2945 if (if_getcapabilities(ifp) & IFCAP_TOE) 2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2947 #endif 2948 #ifdef DEV_NETMAP 2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2951 vi->nnmtxq, vi->nnmrxq); 2952 #endif 2953 sbuf_finish(sb); 2954 device_printf(dev, "%s\n", sbuf_data(sb)); 2955 sbuf_delete(sb); 2956 2957 vi_sysctls(vi); 2958 2959 pa.pa_version = PFIL_VERSION; 2960 pa.pa_flags = PFIL_IN; 2961 pa.pa_type = PFIL_TYPE_ETHERNET; 2962 pa.pa_headname = if_name(ifp); 2963 vi->pfil = pfil_head_register(&pa); 2964 } 2965 2966 static int 2967 cxgbe_attach(device_t dev) 2968 { 2969 struct port_info *pi = device_get_softc(dev); 2970 struct adapter *sc = pi->adapter; 2971 struct vi_info *vi; 2972 int i; 2973 2974 sysctl_ctx_init(&pi->ctx); 2975 2976 cxgbe_vi_attach(dev, &pi->vi[0]); 2977 2978 for_each_vi(pi, i, vi) { 2979 if (i == 0) 2980 continue; 2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2982 if (vi->dev == NULL) { 2983 device_printf(dev, "failed to add VI %d\n", i); 2984 continue; 2985 } 2986 device_set_softc(vi->dev, vi); 2987 } 2988 2989 cxgbe_sysctls(pi); 2990 2991 bus_attach_children(dev); 2992 2993 return (0); 2994 } 2995 2996 static void 2997 cxgbe_vi_detach(struct vi_info *vi) 2998 { 2999 if_t ifp = vi->ifp; 3000 3001 if (vi->pfil != NULL) { 3002 pfil_head_unregister(vi->pfil); 3003 vi->pfil = NULL; 3004 } 3005 3006 ether_ifdetach(ifp); 3007 3008 /* Let detach proceed even if these fail. */ 3009 #ifdef DEV_NETMAP 3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 3011 cxgbe_nm_detach(vi); 3012 #endif 3013 cxgbe_uninit_synchronized(vi); 3014 callout_drain(&vi->tick); 3015 mtx_destroy(&vi->tick_mtx); 3016 sysctl_ctx_free(&vi->ctx); 3017 vi_full_uninit(vi); 3018 3019 if_free(vi->ifp); 3020 vi->ifp = NULL; 3021 } 3022 3023 static int 3024 cxgbe_detach(device_t dev) 3025 { 3026 struct port_info *pi = device_get_softc(dev); 3027 struct adapter *sc = pi->adapter; 3028 int rc; 3029 3030 /* Detach the extra VIs first. */ 3031 rc = bus_generic_detach(dev); 3032 if (rc) 3033 return (rc); 3034 3035 sysctl_ctx_free(&pi->ctx); 3036 begin_vi_detach(sc, &pi->vi[0]); 3037 if (pi->flags & HAS_TRACEQ) { 3038 sc->traceq = -1; /* cloner should not create ifnet */ 3039 t4_tracer_port_detach(sc); 3040 } 3041 cxgbe_vi_detach(&pi->vi[0]); 3042 ifmedia_removeall(&pi->media); 3043 end_vi_detach(sc, &pi->vi[0]); 3044 3045 return (0); 3046 } 3047 3048 static void 3049 cxgbe_init(void *arg) 3050 { 3051 struct vi_info *vi = arg; 3052 struct adapter *sc = vi->adapter; 3053 3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 3055 return; 3056 cxgbe_init_synchronized(vi); 3057 end_synchronized_op(sc, 0); 3058 } 3059 3060 static int 3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 3062 { 3063 int rc = 0, mtu, flags; 3064 struct vi_info *vi = if_getsoftc(ifp); 3065 struct port_info *pi = vi->pi; 3066 struct adapter *sc = pi->adapter; 3067 struct ifreq *ifr = (struct ifreq *)data; 3068 uint32_t mask, mask2; 3069 3070 switch (cmd) { 3071 case SIOCSIFMTU: 3072 mtu = ifr->ifr_mtu; 3073 if (mtu < ETHERMIN || mtu > MAX_MTU) 3074 return (EINVAL); 3075 3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 3077 if (rc) 3078 return (rc); 3079 if_setmtu(ifp, mtu); 3080 if (vi->flags & VI_INIT_DONE) { 3081 t4_update_fl_bufsize(ifp); 3082 if (hw_all_ok(sc) && 3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3084 rc = update_mac_settings(ifp, XGMAC_MTU); 3085 } 3086 end_synchronized_op(sc, 0); 3087 break; 3088 3089 case SIOCSIFFLAGS: 3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 3091 if (rc) 3092 return (rc); 3093 3094 if (!hw_all_ok(sc)) { 3095 rc = ENXIO; 3096 goto fail; 3097 } 3098 3099 if (if_getflags(ifp) & IFF_UP) { 3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3101 flags = vi->if_flags; 3102 if ((if_getflags(ifp) ^ flags) & 3103 (IFF_PROMISC | IFF_ALLMULTI)) { 3104 rc = update_mac_settings(ifp, 3105 XGMAC_PROMISC | XGMAC_ALLMULTI); 3106 } 3107 } else { 3108 rc = cxgbe_init_synchronized(vi); 3109 } 3110 vi->if_flags = if_getflags(ifp); 3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3112 rc = cxgbe_uninit_synchronized(vi); 3113 } 3114 end_synchronized_op(sc, 0); 3115 break; 3116 3117 case SIOCADDMULTI: 3118 case SIOCDELMULTI: 3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 3120 if (rc) 3121 return (rc); 3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 3124 end_synchronized_op(sc, 0); 3125 break; 3126 3127 case SIOCGIFCAPNV: 3128 break; 3129 case SIOCSIFCAPNV: 3130 case SIOCSIFCAP: 3131 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 3132 if (rc) 3133 return (rc); 3134 3135 if (cmd == SIOCSIFCAPNV) { 3136 const struct siocsifcapnv_driver_data *ifr_nv = 3137 (struct siocsifcapnv_driver_data *)data; 3138 3139 mask = ifr_nv->reqcap ^ if_getcapenable(ifp); 3140 mask2 = ifr_nv->reqcap2 ^ if_getcapenable2(ifp); 3141 } else { 3142 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3143 mask2 = 0; 3144 } 3145 if (mask & IFCAP_TXCSUM) { 3146 if_togglecapenable(ifp, IFCAP_TXCSUM); 3147 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 3148 3149 if (IFCAP_TSO4 & if_getcapenable(ifp) && 3150 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3151 mask &= ~IFCAP_TSO4; 3152 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3153 if_printf(ifp, 3154 "tso4 disabled due to -txcsum.\n"); 3155 } 3156 } 3157 if (mask & IFCAP_TXCSUM_IPV6) { 3158 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 3159 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 3160 3161 if (IFCAP_TSO6 & if_getcapenable(ifp) && 3162 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3163 mask &= ~IFCAP_TSO6; 3164 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 3165 if_printf(ifp, 3166 "tso6 disabled due to -txcsum6.\n"); 3167 } 3168 } 3169 if (mask & IFCAP_RXCSUM) 3170 if_togglecapenable(ifp, IFCAP_RXCSUM); 3171 if (mask & IFCAP_RXCSUM_IPV6) 3172 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 3173 3174 /* 3175 * Note that we leave CSUM_TSO alone (it is always set). The 3176 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 3177 * sending a TSO request our way, so it's sufficient to toggle 3178 * IFCAP_TSOx only. 3179 */ 3180 if (mask & IFCAP_TSO4) { 3181 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 3182 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3183 if_printf(ifp, "enable txcsum first.\n"); 3184 rc = EAGAIN; 3185 goto fail; 3186 } 3187 if_togglecapenable(ifp, IFCAP_TSO4); 3188 } 3189 if (mask & IFCAP_TSO6) { 3190 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 3191 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3192 if_printf(ifp, "enable txcsum6 first.\n"); 3193 rc = EAGAIN; 3194 goto fail; 3195 } 3196 if_togglecapenable(ifp, IFCAP_TSO6); 3197 } 3198 if (mask & IFCAP_LRO) { 3199 #if defined(INET) || defined(INET6) 3200 int i; 3201 struct sge_rxq *rxq; 3202 3203 if_togglecapenable(ifp, IFCAP_LRO); 3204 for_each_rxq(vi, i, rxq) { 3205 if (if_getcapenable(ifp) & IFCAP_LRO) 3206 rxq->iq.flags |= IQ_LRO_ENABLED; 3207 else 3208 rxq->iq.flags &= ~IQ_LRO_ENABLED; 3209 } 3210 #endif 3211 } 3212 #ifdef TCP_OFFLOAD 3213 if (mask & IFCAP_TOE) { 3214 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 3215 3216 rc = toe_capability(vi, enable); 3217 if (rc != 0) 3218 goto fail; 3219 3220 if_togglecapenable(ifp, mask); 3221 } 3222 #endif 3223 if (mask & IFCAP_VLAN_HWTAGGING) { 3224 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3225 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3226 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3227 } 3228 if (mask & IFCAP_VLAN_MTU) { 3229 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3230 3231 /* Need to find out how to disable auto-mtu-inflation */ 3232 } 3233 if (mask & IFCAP_VLAN_HWTSO) 3234 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3235 if (mask & IFCAP_VLAN_HWCSUM) 3236 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3237 #ifdef RATELIMIT 3238 if (mask & IFCAP_TXRTLMT) 3239 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3240 #endif 3241 if (mask & IFCAP_HWRXTSTMP) { 3242 int i; 3243 struct sge_rxq *rxq; 3244 3245 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3246 for_each_rxq(vi, i, rxq) { 3247 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3248 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3249 else 3250 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3251 } 3252 } 3253 if (mask & IFCAP_MEXTPG) 3254 if_togglecapenable(ifp, IFCAP_MEXTPG); 3255 3256 #ifdef KERN_TLS 3257 if (mask & IFCAP_TXTLS) { 3258 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3259 3260 rc = ktls_capability(sc, enable); 3261 if (rc != 0) 3262 goto fail; 3263 3264 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3265 } 3266 #endif 3267 if (mask & IFCAP_VXLAN_HWCSUM) { 3268 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3269 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3270 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3271 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3272 } 3273 if (mask & IFCAP_VXLAN_HWTSO) { 3274 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3275 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3276 CSUM_INNER_IP_TSO); 3277 } 3278 3279 MPASS(mask2 == 0); 3280 (void)mask2; 3281 3282 #ifdef VLAN_CAPABILITIES 3283 VLAN_CAPABILITIES(ifp); 3284 #endif 3285 fail: 3286 end_synchronized_op(sc, 0); 3287 break; 3288 3289 case SIOCSIFMEDIA: 3290 case SIOCGIFMEDIA: 3291 case SIOCGIFXMEDIA: 3292 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3293 break; 3294 3295 case SIOCGI2C: { 3296 struct ifi2creq i2c; 3297 3298 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3299 if (rc != 0) 3300 break; 3301 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3302 rc = EPERM; 3303 break; 3304 } 3305 if (i2c.len > sizeof(i2c.data)) { 3306 rc = EINVAL; 3307 break; 3308 } 3309 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3310 if (rc) 3311 return (rc); 3312 if (!hw_all_ok(sc)) 3313 rc = ENXIO; 3314 else 3315 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3316 i2c.offset, i2c.len, &i2c.data[0]); 3317 end_synchronized_op(sc, 0); 3318 if (rc == 0) 3319 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3320 break; 3321 } 3322 3323 default: 3324 rc = ether_ioctl(ifp, cmd, data); 3325 } 3326 3327 return (rc); 3328 } 3329 3330 static int 3331 cxgbe_transmit(if_t ifp, struct mbuf *m) 3332 { 3333 struct vi_info *vi = if_getsoftc(ifp); 3334 struct port_info *pi = vi->pi; 3335 struct adapter *sc; 3336 struct sge_txq *txq; 3337 void *items[1]; 3338 int rc; 3339 3340 M_ASSERTPKTHDR(m); 3341 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3342 #if defined(KERN_TLS) || defined(RATELIMIT) 3343 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3344 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3345 #endif 3346 3347 if (__predict_false(pi->link_cfg.link_ok == false)) { 3348 m_freem(m); 3349 return (ENETDOWN); 3350 } 3351 3352 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3353 if (__predict_false(rc != 0)) { 3354 if (__predict_true(rc == EINPROGRESS)) { 3355 /* queued by parse_pkt */ 3356 MPASS(m != NULL); 3357 return (0); 3358 } 3359 3360 MPASS(m == NULL); /* was freed already */ 3361 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3362 return (rc); 3363 } 3364 3365 /* Select a txq. */ 3366 sc = vi->adapter; 3367 txq = &sc->sge.txq[vi->first_txq]; 3368 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3369 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3370 vi->rsrv_noflowq); 3371 3372 items[0] = m; 3373 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3374 if (__predict_false(rc != 0)) 3375 m_freem(m); 3376 3377 return (rc); 3378 } 3379 3380 static void 3381 cxgbe_qflush(if_t ifp) 3382 { 3383 struct vi_info *vi = if_getsoftc(ifp); 3384 struct sge_txq *txq; 3385 int i; 3386 3387 /* queues do not exist if !VI_INIT_DONE. */ 3388 if (vi->flags & VI_INIT_DONE) { 3389 for_each_txq(vi, i, txq) { 3390 TXQ_LOCK(txq); 3391 txq->eq.flags |= EQ_QFLUSH; 3392 TXQ_UNLOCK(txq); 3393 while (!mp_ring_is_idle(txq->r)) { 3394 mp_ring_check_drainage(txq->r, 4096); 3395 pause("qflush", 1); 3396 } 3397 TXQ_LOCK(txq); 3398 txq->eq.flags &= ~EQ_QFLUSH; 3399 TXQ_UNLOCK(txq); 3400 } 3401 } 3402 if_qflush(ifp); 3403 } 3404 3405 static uint64_t 3406 vi_get_counter(if_t ifp, ift_counter c) 3407 { 3408 struct vi_info *vi = if_getsoftc(ifp); 3409 struct fw_vi_stats_vf *s = &vi->stats; 3410 3411 mtx_lock(&vi->tick_mtx); 3412 vi_refresh_stats(vi); 3413 mtx_unlock(&vi->tick_mtx); 3414 3415 switch (c) { 3416 case IFCOUNTER_IPACKETS: 3417 return (s->rx_bcast_frames + s->rx_mcast_frames + 3418 s->rx_ucast_frames); 3419 case IFCOUNTER_IERRORS: 3420 return (s->rx_err_frames); 3421 case IFCOUNTER_OPACKETS: 3422 return (s->tx_bcast_frames + s->tx_mcast_frames + 3423 s->tx_ucast_frames + s->tx_offload_frames); 3424 case IFCOUNTER_OERRORS: 3425 return (s->tx_drop_frames); 3426 case IFCOUNTER_IBYTES: 3427 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3428 s->rx_ucast_bytes); 3429 case IFCOUNTER_OBYTES: 3430 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3431 s->tx_ucast_bytes + s->tx_offload_bytes); 3432 case IFCOUNTER_IMCASTS: 3433 return (s->rx_mcast_frames); 3434 case IFCOUNTER_OMCASTS: 3435 return (s->tx_mcast_frames); 3436 case IFCOUNTER_OQDROPS: { 3437 uint64_t drops; 3438 3439 drops = 0; 3440 if (vi->flags & VI_INIT_DONE) { 3441 int i; 3442 struct sge_txq *txq; 3443 3444 for_each_txq(vi, i, txq) 3445 drops += counter_u64_fetch(txq->r->dropped); 3446 } 3447 3448 return (drops); 3449 3450 } 3451 3452 default: 3453 return (if_get_counter_default(ifp, c)); 3454 } 3455 } 3456 3457 static uint64_t 3458 cxgbe_get_counter(if_t ifp, ift_counter c) 3459 { 3460 struct vi_info *vi = if_getsoftc(ifp); 3461 struct port_info *pi = vi->pi; 3462 struct port_stats *s = &pi->stats; 3463 3464 mtx_lock(&vi->tick_mtx); 3465 cxgbe_refresh_stats(vi); 3466 mtx_unlock(&vi->tick_mtx); 3467 3468 switch (c) { 3469 case IFCOUNTER_IPACKETS: 3470 return (s->rx_frames); 3471 3472 case IFCOUNTER_IERRORS: 3473 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3474 s->rx_fcs_err + s->rx_len_err); 3475 3476 case IFCOUNTER_OPACKETS: 3477 return (s->tx_frames); 3478 3479 case IFCOUNTER_OERRORS: 3480 return (s->tx_error_frames); 3481 3482 case IFCOUNTER_IBYTES: 3483 return (s->rx_octets); 3484 3485 case IFCOUNTER_OBYTES: 3486 return (s->tx_octets); 3487 3488 case IFCOUNTER_IMCASTS: 3489 return (s->rx_mcast_frames); 3490 3491 case IFCOUNTER_OMCASTS: 3492 return (s->tx_mcast_frames); 3493 3494 case IFCOUNTER_IQDROPS: 3495 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3496 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3497 s->rx_trunc3 + pi->tnl_cong_drops); 3498 3499 case IFCOUNTER_OQDROPS: { 3500 uint64_t drops; 3501 3502 drops = s->tx_drop; 3503 if (vi->flags & VI_INIT_DONE) { 3504 int i; 3505 struct sge_txq *txq; 3506 3507 for_each_txq(vi, i, txq) 3508 drops += counter_u64_fetch(txq->r->dropped); 3509 } 3510 3511 return (drops); 3512 3513 } 3514 3515 default: 3516 return (if_get_counter_default(ifp, c)); 3517 } 3518 } 3519 3520 #if defined(KERN_TLS) || defined(RATELIMIT) 3521 static int 3522 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3523 struct m_snd_tag **pt) 3524 { 3525 int error; 3526 3527 switch (params->hdr.type) { 3528 #ifdef RATELIMIT 3529 case IF_SND_TAG_TYPE_RATE_LIMIT: 3530 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3531 break; 3532 #endif 3533 #ifdef KERN_TLS 3534 case IF_SND_TAG_TYPE_TLS: 3535 { 3536 struct vi_info *vi = if_getsoftc(ifp); 3537 3538 if (is_t6(vi->pi->adapter)) 3539 error = t6_tls_tag_alloc(ifp, params, pt); 3540 else 3541 error = t7_tls_tag_alloc(ifp, params, pt); 3542 break; 3543 } 3544 #endif 3545 default: 3546 error = EOPNOTSUPP; 3547 } 3548 return (error); 3549 } 3550 #endif 3551 3552 /* 3553 * The kernel picks a media from the list we had provided but we still validate 3554 * the requeste. 3555 */ 3556 int 3557 cxgbe_media_change(if_t ifp) 3558 { 3559 struct vi_info *vi = if_getsoftc(ifp); 3560 struct port_info *pi = vi->pi; 3561 struct ifmedia *ifm = &pi->media; 3562 struct link_config *lc = &pi->link_cfg; 3563 struct adapter *sc = pi->adapter; 3564 int rc; 3565 3566 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3567 if (rc != 0) 3568 return (rc); 3569 PORT_LOCK(pi); 3570 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3571 /* ifconfig .. media autoselect */ 3572 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3573 rc = ENOTSUP; /* AN not supported by transceiver */ 3574 goto done; 3575 } 3576 lc->requested_aneg = AUTONEG_ENABLE; 3577 lc->requested_speed = 0; 3578 lc->requested_fc |= PAUSE_AUTONEG; 3579 } else { 3580 lc->requested_aneg = AUTONEG_DISABLE; 3581 lc->requested_speed = 3582 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3583 lc->requested_fc = 0; 3584 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3585 lc->requested_fc |= PAUSE_RX; 3586 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3587 lc->requested_fc |= PAUSE_TX; 3588 } 3589 if (pi->up_vis > 0 && hw_all_ok(sc)) { 3590 fixup_link_config(pi); 3591 rc = apply_link_config(pi); 3592 } 3593 done: 3594 PORT_UNLOCK(pi); 3595 end_synchronized_op(sc, 0); 3596 return (rc); 3597 } 3598 3599 /* 3600 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3601 * given speed. 3602 */ 3603 static int 3604 port_mword(struct port_info *pi, uint32_t speed) 3605 { 3606 3607 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3608 MPASS(powerof2(speed)); 3609 3610 switch(pi->port_type) { 3611 case FW_PORT_TYPE_BT_SGMII: 3612 case FW_PORT_TYPE_BT_XFI: 3613 case FW_PORT_TYPE_BT_XAUI: 3614 /* BaseT */ 3615 switch (speed) { 3616 case FW_PORT_CAP32_SPEED_100M: 3617 return (IFM_100_T); 3618 case FW_PORT_CAP32_SPEED_1G: 3619 return (IFM_1000_T); 3620 case FW_PORT_CAP32_SPEED_10G: 3621 return (IFM_10G_T); 3622 } 3623 break; 3624 case FW_PORT_TYPE_KX4: 3625 if (speed == FW_PORT_CAP32_SPEED_10G) 3626 return (IFM_10G_KX4); 3627 break; 3628 case FW_PORT_TYPE_CX4: 3629 if (speed == FW_PORT_CAP32_SPEED_10G) 3630 return (IFM_10G_CX4); 3631 break; 3632 case FW_PORT_TYPE_KX: 3633 if (speed == FW_PORT_CAP32_SPEED_1G) 3634 return (IFM_1000_KX); 3635 break; 3636 case FW_PORT_TYPE_KR: 3637 case FW_PORT_TYPE_BP_AP: 3638 case FW_PORT_TYPE_BP4_AP: 3639 case FW_PORT_TYPE_BP40_BA: 3640 case FW_PORT_TYPE_KR4_100G: 3641 case FW_PORT_TYPE_KR_SFP28: 3642 case FW_PORT_TYPE_KR_XLAUI: 3643 switch (speed) { 3644 case FW_PORT_CAP32_SPEED_1G: 3645 return (IFM_1000_KX); 3646 case FW_PORT_CAP32_SPEED_10G: 3647 return (IFM_10G_KR); 3648 case FW_PORT_CAP32_SPEED_25G: 3649 return (IFM_25G_KR); 3650 case FW_PORT_CAP32_SPEED_40G: 3651 return (IFM_40G_KR4); 3652 case FW_PORT_CAP32_SPEED_50G: 3653 return (IFM_50G_KR2); 3654 case FW_PORT_CAP32_SPEED_100G: 3655 return (IFM_100G_KR4); 3656 } 3657 break; 3658 case FW_PORT_TYPE_FIBER_XFI: 3659 case FW_PORT_TYPE_FIBER_XAUI: 3660 case FW_PORT_TYPE_SFP: 3661 case FW_PORT_TYPE_QSFP_10G: 3662 case FW_PORT_TYPE_QSA: 3663 case FW_PORT_TYPE_QSFP: 3664 case FW_PORT_TYPE_CR4_QSFP: 3665 case FW_PORT_TYPE_CR_QSFP: 3666 case FW_PORT_TYPE_CR2_QSFP: 3667 case FW_PORT_TYPE_SFP28: 3668 case FW_PORT_TYPE_SFP56: 3669 case FW_PORT_TYPE_QSFP56: 3670 case FW_PORT_TYPE_QSFPDD: 3671 /* Pluggable transceiver */ 3672 switch (pi->mod_type) { 3673 case FW_PORT_MOD_TYPE_LR: 3674 case FW_PORT_MOD_TYPE_LR_SIMPLEX: 3675 switch (speed) { 3676 case FW_PORT_CAP32_SPEED_1G: 3677 return (IFM_1000_LX); 3678 case FW_PORT_CAP32_SPEED_10G: 3679 return (IFM_10G_LR); 3680 case FW_PORT_CAP32_SPEED_25G: 3681 return (IFM_25G_LR); 3682 case FW_PORT_CAP32_SPEED_40G: 3683 return (IFM_40G_LR4); 3684 case FW_PORT_CAP32_SPEED_50G: 3685 return (IFM_50G_LR2); 3686 case FW_PORT_CAP32_SPEED_100G: 3687 return (IFM_100G_LR4); 3688 case FW_PORT_CAP32_SPEED_200G: 3689 return (IFM_200G_LR4); 3690 case FW_PORT_CAP32_SPEED_400G: 3691 return (IFM_400G_LR8); 3692 } 3693 break; 3694 case FW_PORT_MOD_TYPE_SR: 3695 switch (speed) { 3696 case FW_PORT_CAP32_SPEED_1G: 3697 return (IFM_1000_SX); 3698 case FW_PORT_CAP32_SPEED_10G: 3699 return (IFM_10G_SR); 3700 case FW_PORT_CAP32_SPEED_25G: 3701 return (IFM_25G_SR); 3702 case FW_PORT_CAP32_SPEED_40G: 3703 return (IFM_40G_SR4); 3704 case FW_PORT_CAP32_SPEED_50G: 3705 return (IFM_50G_SR2); 3706 case FW_PORT_CAP32_SPEED_100G: 3707 return (IFM_100G_SR4); 3708 case FW_PORT_CAP32_SPEED_200G: 3709 return (IFM_200G_SR4); 3710 case FW_PORT_CAP32_SPEED_400G: 3711 return (IFM_400G_SR8); 3712 } 3713 break; 3714 case FW_PORT_MOD_TYPE_ER: 3715 if (speed == FW_PORT_CAP32_SPEED_10G) 3716 return (IFM_10G_ER); 3717 break; 3718 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3719 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3720 switch (speed) { 3721 case FW_PORT_CAP32_SPEED_1G: 3722 return (IFM_1000_CX); 3723 case FW_PORT_CAP32_SPEED_10G: 3724 return (IFM_10G_TWINAX); 3725 case FW_PORT_CAP32_SPEED_25G: 3726 return (IFM_25G_CR); 3727 case FW_PORT_CAP32_SPEED_40G: 3728 return (IFM_40G_CR4); 3729 case FW_PORT_CAP32_SPEED_50G: 3730 return (IFM_50G_CR2); 3731 case FW_PORT_CAP32_SPEED_100G: 3732 return (IFM_100G_CR4); 3733 case FW_PORT_CAP32_SPEED_200G: 3734 return (IFM_200G_CR4_PAM4); 3735 case FW_PORT_CAP32_SPEED_400G: 3736 return (IFM_400G_CR8); 3737 } 3738 break; 3739 case FW_PORT_MOD_TYPE_LRM: 3740 if (speed == FW_PORT_CAP32_SPEED_10G) 3741 return (IFM_10G_LRM); 3742 break; 3743 case FW_PORT_MOD_TYPE_DR: 3744 if (speed == FW_PORT_CAP32_SPEED_100G) 3745 return (IFM_100G_DR); 3746 if (speed == FW_PORT_CAP32_SPEED_200G) 3747 return (IFM_200G_DR4); 3748 if (speed == FW_PORT_CAP32_SPEED_400G) 3749 return (IFM_400G_DR4); 3750 break; 3751 case FW_PORT_MOD_TYPE_NA: 3752 MPASS(0); /* Not pluggable? */ 3753 /* fall through */ 3754 case FW_PORT_MOD_TYPE_ERROR: 3755 case FW_PORT_MOD_TYPE_UNKNOWN: 3756 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3757 break; 3758 case FW_PORT_MOD_TYPE_NONE: 3759 return (IFM_NONE); 3760 } 3761 break; 3762 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */ 3763 if (chip_id(pi->adapter) >= CHELSIO_T7) 3764 return (IFM_UNKNOWN); 3765 /* fall through */ 3766 case FW_PORT_TYPE_NONE: 3767 return (IFM_NONE); 3768 } 3769 3770 return (IFM_UNKNOWN); 3771 } 3772 3773 void 3774 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3775 { 3776 struct vi_info *vi = if_getsoftc(ifp); 3777 struct port_info *pi = vi->pi; 3778 struct adapter *sc = pi->adapter; 3779 struct link_config *lc = &pi->link_cfg; 3780 3781 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3782 return; 3783 PORT_LOCK(pi); 3784 3785 if (pi->up_vis == 0 && hw_all_ok(sc)) { 3786 /* 3787 * If all the interfaces are administratively down the firmware 3788 * does not report transceiver changes. Refresh port info here 3789 * so that ifconfig displays accurate ifmedia at all times. 3790 * This is the only reason we have a synchronized op in this 3791 * function. Just PORT_LOCK would have been enough otherwise. 3792 */ 3793 t4_update_port_info(pi); 3794 build_medialist(pi); 3795 } 3796 3797 /* ifm_status */ 3798 ifmr->ifm_status = IFM_AVALID; 3799 if (lc->link_ok == false) 3800 goto done; 3801 ifmr->ifm_status |= IFM_ACTIVE; 3802 3803 /* ifm_active */ 3804 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3805 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3806 if (lc->fc & PAUSE_RX) 3807 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3808 if (lc->fc & PAUSE_TX) 3809 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3810 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3811 done: 3812 PORT_UNLOCK(pi); 3813 end_synchronized_op(sc, 0); 3814 } 3815 3816 static int 3817 vcxgbe_probe(device_t dev) 3818 { 3819 struct vi_info *vi = device_get_softc(dev); 3820 3821 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3822 vi - vi->pi->vi); 3823 3824 return (BUS_PROBE_DEFAULT); 3825 } 3826 3827 static int 3828 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3829 { 3830 int func, index, rc; 3831 uint32_t param, val; 3832 3833 ASSERT_SYNCHRONIZED_OP(sc); 3834 3835 index = vi - pi->vi; 3836 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3837 KASSERT(index < nitems(vi_mac_funcs), 3838 ("%s: VI %s doesn't have a MAC func", __func__, 3839 device_get_nameunit(vi->dev))); 3840 func = vi_mac_funcs[index]; 3841 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1, 3842 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3843 if (rc < 0) { 3844 CH_ERR(vi, "failed to allocate virtual interface %d" 3845 "for port %d: %d\n", index, pi->port_id, -rc); 3846 return (-rc); 3847 } 3848 vi->viid = rc; 3849 3850 if (vi->rss_size == 1) { 3851 /* 3852 * This VI didn't get a slice of the RSS table. Reduce the 3853 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3854 * configuration file (nvi, rssnvi for this PF) if this is a 3855 * problem. 3856 */ 3857 device_printf(vi->dev, "RSS table not available.\n"); 3858 vi->rss_base = 0xffff; 3859 3860 return (0); 3861 } 3862 3863 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3864 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3865 V_FW_PARAMS_PARAM_YZ(vi->viid); 3866 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3867 if (rc) 3868 vi->rss_base = 0xffff; 3869 else { 3870 MPASS((val >> 16) == vi->rss_size); 3871 vi->rss_base = val & 0xffff; 3872 } 3873 3874 return (0); 3875 } 3876 3877 static int 3878 vcxgbe_attach(device_t dev) 3879 { 3880 struct vi_info *vi; 3881 struct port_info *pi; 3882 struct adapter *sc; 3883 int rc; 3884 3885 vi = device_get_softc(dev); 3886 pi = vi->pi; 3887 sc = pi->adapter; 3888 3889 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3890 if (rc) 3891 return (rc); 3892 rc = alloc_extra_vi(sc, pi, vi); 3893 end_synchronized_op(sc, 0); 3894 if (rc) 3895 return (rc); 3896 3897 cxgbe_vi_attach(dev, vi); 3898 3899 return (0); 3900 } 3901 3902 static int 3903 vcxgbe_detach(device_t dev) 3904 { 3905 struct vi_info *vi; 3906 struct adapter *sc; 3907 3908 vi = device_get_softc(dev); 3909 sc = vi->adapter; 3910 3911 begin_vi_detach(sc, vi); 3912 cxgbe_vi_detach(vi); 3913 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3914 end_vi_detach(sc, vi); 3915 3916 return (0); 3917 } 3918 3919 static struct callout fatal_callout; 3920 static struct taskqueue *reset_tq; 3921 3922 static void 3923 delayed_panic(void *arg) 3924 { 3925 struct adapter *sc = arg; 3926 3927 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3928 } 3929 3930 static void 3931 fatal_error_task(void *arg, int pending) 3932 { 3933 struct adapter *sc = arg; 3934 int rc; 3935 3936 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3937 dump_cim_regs(sc); 3938 dump_cimla(sc); 3939 dump_devlog(sc); 3940 } 3941 3942 if (t4_reset_on_fatal_err) { 3943 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3944 rc = reset_adapter(sc); 3945 if (rc == 0 && t4_panic_on_fatal_err) { 3946 CH_ALERT(sc, "reset was successful, " 3947 "system will NOT panic.\n"); 3948 return; 3949 } 3950 } 3951 3952 if (t4_panic_on_fatal_err) { 3953 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3954 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3955 } 3956 } 3957 3958 void 3959 t4_fatal_err(struct adapter *sc, bool fw_error) 3960 { 3961 stop_adapter(sc); 3962 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3963 return; 3964 if (fw_error) { 3965 /* 3966 * We are here because of a firmware error/timeout and not 3967 * because of a hardware interrupt. It is possible (although 3968 * not very likely) that an error interrupt was also raised but 3969 * this thread ran first and inhibited t4_intr_err. We walk the 3970 * main INT_CAUSE registers here to make sure we haven't missed 3971 * anything interesting. 3972 */ 3973 t4_slow_intr_handler(sc, sc->intr_flags); 3974 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3975 } 3976 t4_report_fw_error(sc); 3977 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3978 device_get_nameunit(sc->dev), fw_error); 3979 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3980 } 3981 3982 void 3983 t4_add_adapter(struct adapter *sc) 3984 { 3985 sx_xlock(&t4_list_lock); 3986 SLIST_INSERT_HEAD(&t4_list, sc, link); 3987 sx_xunlock(&t4_list_lock); 3988 } 3989 3990 int 3991 t4_map_bars_0_and_4(struct adapter *sc) 3992 { 3993 sc->regs_rid = PCIR_BAR(0); 3994 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3995 &sc->regs_rid, RF_ACTIVE); 3996 if (sc->regs_res == NULL) { 3997 device_printf(sc->dev, "cannot map registers.\n"); 3998 return (ENXIO); 3999 } 4000 sc->bt = rman_get_bustag(sc->regs_res); 4001 sc->bh = rman_get_bushandle(sc->regs_res); 4002 sc->mmio_len = rman_get_size(sc->regs_res); 4003 setbit(&sc->doorbells, DOORBELL_KDB); 4004 4005 sc->msix_rid = PCIR_BAR(4); 4006 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4007 &sc->msix_rid, RF_ACTIVE); 4008 if (sc->msix_res == NULL) { 4009 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 4010 return (ENXIO); 4011 } 4012 4013 return (0); 4014 } 4015 4016 int 4017 t4_map_bar_2(struct adapter *sc) 4018 { 4019 4020 /* 4021 * T4: only iWARP driver uses the userspace doorbells. There is no need 4022 * to map it if RDMA is disabled. 4023 */ 4024 if (is_t4(sc) && sc->rdmacaps == 0) 4025 return (0); 4026 4027 sc->udbs_rid = PCIR_BAR(2); 4028 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4029 &sc->udbs_rid, RF_ACTIVE); 4030 if (sc->udbs_res == NULL) { 4031 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 4032 return (ENXIO); 4033 } 4034 sc->udbs_base = rman_get_virtual(sc->udbs_res); 4035 4036 if (chip_id(sc) >= CHELSIO_T5) { 4037 setbit(&sc->doorbells, DOORBELL_UDB); 4038 #if defined(__i386__) || defined(__amd64__) 4039 if (t5_write_combine) { 4040 int rc, mode; 4041 4042 /* 4043 * Enable write combining on BAR2. This is the 4044 * userspace doorbell BAR and is split into 128B 4045 * (UDBS_SEG_SIZE) doorbell regions, each associated 4046 * with an egress queue. The first 64B has the doorbell 4047 * and the second 64B can be used to submit a tx work 4048 * request with an implicit doorbell. 4049 */ 4050 4051 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 4052 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 4053 if (rc == 0) { 4054 clrbit(&sc->doorbells, DOORBELL_UDB); 4055 setbit(&sc->doorbells, DOORBELL_WCWR); 4056 setbit(&sc->doorbells, DOORBELL_UDBWC); 4057 } else { 4058 device_printf(sc->dev, 4059 "couldn't enable write combining: %d\n", 4060 rc); 4061 } 4062 4063 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 4064 t4_write_reg(sc, A_SGE_STAT_CFG, 4065 V_STATSOURCE_T5(7) | mode); 4066 } 4067 #endif 4068 } 4069 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 4070 4071 return (0); 4072 } 4073 4074 int 4075 t4_adj_doorbells(struct adapter *sc) 4076 { 4077 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 4078 sc->doorbells &= t4_doorbells_allowed; 4079 return (0); 4080 } 4081 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 4082 sc->doorbells, t4_doorbells_allowed); 4083 return (EINVAL); 4084 } 4085 4086 struct memwin_init { 4087 uint32_t base; 4088 uint32_t aperture; 4089 }; 4090 4091 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 4092 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4093 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4094 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 4095 }; 4096 4097 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 4098 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4099 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4100 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 4101 }; 4102 4103 static void 4104 setup_memwin(struct adapter *sc) 4105 { 4106 const struct memwin_init *mw_init; 4107 struct memwin *mw; 4108 int i; 4109 uint32_t bar0, reg; 4110 4111 if (is_t4(sc)) { 4112 /* 4113 * Read low 32b of bar0 indirectly via the hardware backdoor 4114 * mechanism. Works from within PCI passthrough environments 4115 * too, where rman_get_start() can return a different value. We 4116 * need to program the T4 memory window decoders with the actual 4117 * addresses that will be coming across the PCIe link. 4118 */ 4119 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 4120 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 4121 4122 mw_init = &t4_memwin[0]; 4123 } else { 4124 /* T5+ use the relative offset inside the PCIe BAR */ 4125 bar0 = 0; 4126 4127 mw_init = &t5_memwin[0]; 4128 } 4129 4130 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 4131 if (!rw_initialized(&mw->mw_lock)) { 4132 rw_init(&mw->mw_lock, "memory window access"); 4133 mw->mw_base = mw_init->base; 4134 mw->mw_aperture = mw_init->aperture; 4135 mw->mw_curpos = 0; 4136 } 4137 reg = chip_id(sc) > CHELSIO_T6 ? 4138 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) : 4139 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i); 4140 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) | 4141 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 4142 rw_wlock(&mw->mw_lock); 4143 position_memwin(sc, i, mw->mw_curpos); 4144 rw_wunlock(&mw->mw_lock); 4145 } 4146 4147 /* flush */ 4148 t4_read_reg(sc, reg); 4149 } 4150 4151 /* 4152 * Positions the memory window at the given address in the card's address space. 4153 * There are some alignment requirements and the actual position may be at an 4154 * address prior to the requested address. mw->mw_curpos always has the actual 4155 * position of the window. 4156 */ 4157 static void 4158 position_memwin(struct adapter *sc, int idx, uint32_t addr) 4159 { 4160 struct memwin *mw; 4161 uint32_t pf, reg, val; 4162 4163 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4164 mw = &sc->memwin[idx]; 4165 rw_assert(&mw->mw_lock, RA_WLOCKED); 4166 4167 if (is_t4(sc)) { 4168 pf = 0; 4169 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 4170 } else { 4171 pf = V_PFNUM(sc->pf); 4172 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 4173 } 4174 if (chip_id(sc) > CHELSIO_T6) { 4175 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx); 4176 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf; 4177 } else { 4178 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 4179 val = mw->mw_curpos | pf; 4180 } 4181 t4_write_reg(sc, reg, val); 4182 t4_read_reg(sc, reg); /* flush */ 4183 } 4184 4185 int 4186 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 4187 int len, int rw) 4188 { 4189 struct memwin *mw; 4190 uint32_t mw_end, v; 4191 4192 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4193 4194 /* Memory can only be accessed in naturally aligned 4 byte units */ 4195 if (addr & 3 || len & 3 || len <= 0) 4196 return (EINVAL); 4197 4198 mw = &sc->memwin[idx]; 4199 while (len > 0) { 4200 rw_rlock(&mw->mw_lock); 4201 mw_end = mw->mw_curpos + mw->mw_aperture; 4202 if (addr >= mw_end || addr < mw->mw_curpos) { 4203 /* Will need to reposition the window */ 4204 if (!rw_try_upgrade(&mw->mw_lock)) { 4205 rw_runlock(&mw->mw_lock); 4206 rw_wlock(&mw->mw_lock); 4207 } 4208 rw_assert(&mw->mw_lock, RA_WLOCKED); 4209 position_memwin(sc, idx, addr); 4210 rw_downgrade(&mw->mw_lock); 4211 mw_end = mw->mw_curpos + mw->mw_aperture; 4212 } 4213 rw_assert(&mw->mw_lock, RA_RLOCKED); 4214 while (addr < mw_end && len > 0) { 4215 if (rw == 0) { 4216 v = t4_read_reg(sc, mw->mw_base + addr - 4217 mw->mw_curpos); 4218 *val++ = le32toh(v); 4219 } else { 4220 v = *val++; 4221 t4_write_reg(sc, mw->mw_base + addr - 4222 mw->mw_curpos, htole32(v)); 4223 } 4224 addr += 4; 4225 len -= 4; 4226 } 4227 rw_runlock(&mw->mw_lock); 4228 } 4229 4230 return (0); 4231 } 4232 4233 CTASSERT(M_TID_COOKIE == M_COOKIE); 4234 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 4235 4236 static void 4237 t4_init_atid_table(struct adapter *sc) 4238 { 4239 struct tid_info *t; 4240 int i; 4241 4242 t = &sc->tids; 4243 if (t->natids == 0) 4244 return; 4245 4246 MPASS(t->atid_tab == NULL); 4247 4248 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 4249 M_ZERO | M_WAITOK); 4250 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 4251 t->afree = t->atid_tab; 4252 t->atids_in_use = 0; 4253 t->atid_alloc_stopped = false; 4254 for (i = 1; i < t->natids; i++) 4255 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4256 t->atid_tab[t->natids - 1].next = NULL; 4257 } 4258 4259 static void 4260 t4_free_atid_table(struct adapter *sc) 4261 { 4262 struct tid_info *t; 4263 4264 t = &sc->tids; 4265 4266 KASSERT(t->atids_in_use == 0, 4267 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4268 4269 if (mtx_initialized(&t->atid_lock)) 4270 mtx_destroy(&t->atid_lock); 4271 free(t->atid_tab, M_CXGBE); 4272 t->atid_tab = NULL; 4273 } 4274 4275 static void 4276 stop_atid_allocator(struct adapter *sc) 4277 { 4278 struct tid_info *t = &sc->tids; 4279 4280 if (t->natids == 0) 4281 return; 4282 mtx_lock(&t->atid_lock); 4283 t->atid_alloc_stopped = true; 4284 mtx_unlock(&t->atid_lock); 4285 } 4286 4287 static void 4288 restart_atid_allocator(struct adapter *sc) 4289 { 4290 struct tid_info *t = &sc->tids; 4291 4292 if (t->natids == 0) 4293 return; 4294 mtx_lock(&t->atid_lock); 4295 KASSERT(t->atids_in_use == 0, 4296 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4297 t->atid_alloc_stopped = false; 4298 mtx_unlock(&t->atid_lock); 4299 } 4300 4301 int 4302 alloc_atid(struct adapter *sc, void *ctx) 4303 { 4304 struct tid_info *t = &sc->tids; 4305 int atid = -1; 4306 4307 mtx_lock(&t->atid_lock); 4308 if (t->afree && !t->atid_alloc_stopped) { 4309 union aopen_entry *p = t->afree; 4310 4311 atid = p - t->atid_tab; 4312 MPASS(atid <= M_TID_TID); 4313 t->afree = p->next; 4314 p->data = ctx; 4315 t->atids_in_use++; 4316 } 4317 mtx_unlock(&t->atid_lock); 4318 return (atid); 4319 } 4320 4321 void * 4322 lookup_atid(struct adapter *sc, int atid) 4323 { 4324 struct tid_info *t = &sc->tids; 4325 4326 return (t->atid_tab[atid].data); 4327 } 4328 4329 void 4330 free_atid(struct adapter *sc, int atid) 4331 { 4332 struct tid_info *t = &sc->tids; 4333 union aopen_entry *p = &t->atid_tab[atid]; 4334 4335 mtx_lock(&t->atid_lock); 4336 p->next = t->afree; 4337 t->afree = p; 4338 t->atids_in_use--; 4339 mtx_unlock(&t->atid_lock); 4340 } 4341 4342 static void 4343 queue_tid_release(struct adapter *sc, int tid) 4344 { 4345 4346 CXGBE_UNIMPLEMENTED("deferred tid release"); 4347 } 4348 4349 void 4350 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4351 { 4352 struct wrqe *wr; 4353 struct cpl_tid_release *req; 4354 4355 wr = alloc_wrqe(sizeof(*req), ctrlq); 4356 if (wr == NULL) { 4357 queue_tid_release(sc, tid); /* defer */ 4358 return; 4359 } 4360 req = wrtod(wr); 4361 4362 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4363 4364 t4_wrq_tx(sc, wr); 4365 } 4366 4367 static int 4368 t4_range_cmp(const void *a, const void *b) 4369 { 4370 return ((const struct t4_range *)a)->start - 4371 ((const struct t4_range *)b)->start; 4372 } 4373 4374 /* 4375 * Verify that the memory range specified by the addr/len pair is valid within 4376 * the card's address space. 4377 */ 4378 static int 4379 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4380 { 4381 struct t4_range mem_ranges[4], *r, *next; 4382 uint32_t em, addr_len; 4383 int i, n, remaining; 4384 4385 /* Memory can only be accessed in naturally aligned 4 byte units */ 4386 if (addr & 3 || len & 3 || len == 0) 4387 return (EINVAL); 4388 4389 /* Enabled memories */ 4390 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4391 4392 r = &mem_ranges[0]; 4393 n = 0; 4394 bzero(r, sizeof(mem_ranges)); 4395 if (em & F_EDRAM0_ENABLE) { 4396 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4397 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4398 if (r->size > 0) { 4399 r->start = G_EDRAM0_BASE(addr_len) << 20; 4400 if (addr >= r->start && 4401 addr + len <= r->start + r->size) 4402 return (0); 4403 r++; 4404 n++; 4405 } 4406 } 4407 if (em & F_EDRAM1_ENABLE) { 4408 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4409 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4410 if (r->size > 0) { 4411 r->start = G_EDRAM1_BASE(addr_len) << 20; 4412 if (addr >= r->start && 4413 addr + len <= r->start + r->size) 4414 return (0); 4415 r++; 4416 n++; 4417 } 4418 } 4419 if (em & F_EXT_MEM_ENABLE) { 4420 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4421 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4422 if (r->size > 0) { 4423 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4424 if (addr >= r->start && 4425 addr + len <= r->start + r->size) 4426 return (0); 4427 r++; 4428 n++; 4429 } 4430 } 4431 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4432 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4433 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4434 if (r->size > 0) { 4435 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4436 if (addr >= r->start && 4437 addr + len <= r->start + r->size) 4438 return (0); 4439 r++; 4440 n++; 4441 } 4442 } 4443 MPASS(n <= nitems(mem_ranges)); 4444 4445 if (n > 1) { 4446 /* Sort and merge the ranges. */ 4447 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4448 4449 /* Start from index 0 and examine the next n - 1 entries. */ 4450 r = &mem_ranges[0]; 4451 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4452 4453 MPASS(r->size > 0); /* r is a valid entry. */ 4454 next = r + 1; 4455 MPASS(next->size > 0); /* and so is the next one. */ 4456 4457 while (r->start + r->size >= next->start) { 4458 /* Merge the next one into the current entry. */ 4459 r->size = max(r->start + r->size, 4460 next->start + next->size) - r->start; 4461 n--; /* One fewer entry in total. */ 4462 if (--remaining == 0) 4463 goto done; /* short circuit */ 4464 next++; 4465 } 4466 if (next != r + 1) { 4467 /* 4468 * Some entries were merged into r and next 4469 * points to the first valid entry that couldn't 4470 * be merged. 4471 */ 4472 MPASS(next->size > 0); /* must be valid */ 4473 memcpy(r + 1, next, remaining * sizeof(*r)); 4474 #ifdef INVARIANTS 4475 /* 4476 * This so that the foo->size assertion in the 4477 * next iteration of the loop do the right 4478 * thing for entries that were pulled up and are 4479 * no longer valid. 4480 */ 4481 MPASS(n < nitems(mem_ranges)); 4482 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4483 sizeof(struct t4_range)); 4484 #endif 4485 } 4486 } 4487 done: 4488 /* Done merging the ranges. */ 4489 MPASS(n > 0); 4490 r = &mem_ranges[0]; 4491 for (i = 0; i < n; i++, r++) { 4492 if (addr >= r->start && 4493 addr + len <= r->start + r->size) 4494 return (0); 4495 } 4496 } 4497 4498 return (EFAULT); 4499 } 4500 4501 static int 4502 fwmtype_to_hwmtype(int mtype) 4503 { 4504 4505 switch (mtype) { 4506 case FW_MEMTYPE_EDC0: 4507 return (MEM_EDC0); 4508 case FW_MEMTYPE_EDC1: 4509 return (MEM_EDC1); 4510 case FW_MEMTYPE_EXTMEM: 4511 return (MEM_MC0); 4512 case FW_MEMTYPE_EXTMEM1: 4513 return (MEM_MC1); 4514 default: 4515 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4516 } 4517 } 4518 4519 /* 4520 * Verify that the memory range specified by the memtype/offset/len pair is 4521 * valid and lies entirely within the memtype specified. The global address of 4522 * the start of the range is returned in addr. 4523 */ 4524 static int 4525 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4526 uint32_t *addr) 4527 { 4528 uint32_t em, addr_len, maddr; 4529 4530 /* Memory can only be accessed in naturally aligned 4 byte units */ 4531 if (off & 3 || len & 3 || len == 0) 4532 return (EINVAL); 4533 4534 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4535 switch (fwmtype_to_hwmtype(mtype)) { 4536 case MEM_EDC0: 4537 if (!(em & F_EDRAM0_ENABLE)) 4538 return (EINVAL); 4539 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4540 maddr = G_EDRAM0_BASE(addr_len) << 20; 4541 break; 4542 case MEM_EDC1: 4543 if (!(em & F_EDRAM1_ENABLE)) 4544 return (EINVAL); 4545 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4546 maddr = G_EDRAM1_BASE(addr_len) << 20; 4547 break; 4548 case MEM_MC: 4549 if (!(em & F_EXT_MEM_ENABLE)) 4550 return (EINVAL); 4551 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4552 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4553 break; 4554 case MEM_MC1: 4555 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4556 return (EINVAL); 4557 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4558 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4559 break; 4560 default: 4561 return (EINVAL); 4562 } 4563 4564 *addr = maddr + off; /* global address */ 4565 return (validate_mem_range(sc, *addr, len)); 4566 } 4567 4568 static int 4569 fixup_devlog_params(struct adapter *sc) 4570 { 4571 struct devlog_params *dparams = &sc->params.devlog; 4572 int rc; 4573 4574 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4575 dparams->size, &dparams->addr); 4576 4577 return (rc); 4578 } 4579 4580 static void 4581 update_nirq(struct intrs_and_queues *iaq, int nports) 4582 { 4583 4584 iaq->nirq = T4_EXTRA_INTR; 4585 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4586 iaq->nirq += nports * iaq->nofldrxq; 4587 iaq->nirq += nports * (iaq->num_vis - 1) * 4588 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4589 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4590 } 4591 4592 /* 4593 * Adjust requirements to fit the number of interrupts available. 4594 */ 4595 static void 4596 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4597 int navail) 4598 { 4599 int old_nirq; 4600 const int nports = sc->params.nports; 4601 4602 MPASS(nports > 0); 4603 MPASS(navail > 0); 4604 4605 bzero(iaq, sizeof(*iaq)); 4606 iaq->intr_type = itype; 4607 iaq->num_vis = t4_num_vis; 4608 iaq->ntxq = t4_ntxq; 4609 iaq->ntxq_vi = t4_ntxq_vi; 4610 iaq->nrxq = t4_nrxq; 4611 iaq->nrxq_vi = t4_nrxq_vi; 4612 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4613 if (is_offload(sc) || is_ethoffload(sc)) { 4614 if (sc->params.tid_qid_sel_mask == 0) { 4615 iaq->nofldtxq = t4_nofldtxq; 4616 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4617 } else { 4618 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores); 4619 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi, 4620 sc->params.ncores); 4621 if (iaq->nofldtxq != t4_nofldtxq) 4622 device_printf(sc->dev, 4623 "nofldtxq updated (%d -> %d) for correct" 4624 " operation with %d firmware cores.\n", 4625 t4_nofldtxq, iaq->nofldtxq, 4626 sc->params.ncores); 4627 if (iaq->num_vis > 1 && 4628 iaq->nofldtxq_vi != t4_nofldtxq_vi) 4629 device_printf(sc->dev, 4630 "nofldtxq_vi updated (%d -> %d) for correct" 4631 " operation with %d firmware cores.\n", 4632 t4_nofldtxq_vi, iaq->nofldtxq_vi, 4633 sc->params.ncores); 4634 } 4635 } 4636 #endif 4637 #ifdef TCP_OFFLOAD 4638 if (is_offload(sc)) { 4639 iaq->nofldrxq = t4_nofldrxq; 4640 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4641 } 4642 #endif 4643 #ifdef DEV_NETMAP 4644 if (t4_native_netmap & NN_MAIN_VI) { 4645 iaq->nnmtxq = t4_nnmtxq; 4646 iaq->nnmrxq = t4_nnmrxq; 4647 } 4648 if (t4_native_netmap & NN_EXTRA_VI) { 4649 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4650 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4651 } 4652 #endif 4653 4654 update_nirq(iaq, nports); 4655 if (iaq->nirq <= navail && 4656 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4657 /* 4658 * This is the normal case -- there are enough interrupts for 4659 * everything. 4660 */ 4661 goto done; 4662 } 4663 4664 /* 4665 * If extra VIs have been configured try reducing their count and see if 4666 * that works. 4667 */ 4668 while (iaq->num_vis > 1) { 4669 iaq->num_vis--; 4670 update_nirq(iaq, nports); 4671 if (iaq->nirq <= navail && 4672 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4673 device_printf(sc->dev, "virtual interfaces per port " 4674 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4675 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4676 "itype %d, navail %u, nirq %d.\n", 4677 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4678 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4679 itype, navail, iaq->nirq); 4680 goto done; 4681 } 4682 } 4683 4684 /* 4685 * Extra VIs will not be created. Log a message if they were requested. 4686 */ 4687 MPASS(iaq->num_vis == 1); 4688 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4689 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4690 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4691 if (iaq->num_vis != t4_num_vis) { 4692 device_printf(sc->dev, "extra virtual interfaces disabled. " 4693 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4694 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4695 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4696 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4697 } 4698 4699 /* 4700 * Keep reducing the number of NIC rx queues to the next lower power of 4701 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4702 * if that works. 4703 */ 4704 do { 4705 if (iaq->nrxq > 1) { 4706 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4707 if (iaq->nnmrxq > iaq->nrxq) 4708 iaq->nnmrxq = iaq->nrxq; 4709 } 4710 if (iaq->nofldrxq > 1) 4711 iaq->nofldrxq >>= 1; 4712 4713 old_nirq = iaq->nirq; 4714 update_nirq(iaq, nports); 4715 if (iaq->nirq <= navail && 4716 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4717 device_printf(sc->dev, "running with reduced number of " 4718 "rx queues because of shortage of interrupts. " 4719 "nrxq=%u, nofldrxq=%u. " 4720 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4721 iaq->nofldrxq, itype, navail, iaq->nirq); 4722 goto done; 4723 } 4724 } while (old_nirq != iaq->nirq); 4725 4726 /* One interrupt for everything. Ugh. */ 4727 device_printf(sc->dev, "running with minimal number of queues. " 4728 "itype %d, navail %u.\n", itype, navail); 4729 iaq->nirq = 1; 4730 iaq->nrxq = 1; 4731 iaq->ntxq = 1; 4732 if (iaq->nofldrxq > 0) { 4733 iaq->nofldrxq = 1; 4734 iaq->nofldtxq = 1; 4735 if (sc->params.tid_qid_sel_mask == 0) 4736 iaq->nofldtxq = 1; 4737 else 4738 iaq->nofldtxq = sc->params.ncores; 4739 } 4740 iaq->nnmtxq = 0; 4741 iaq->nnmrxq = 0; 4742 done: 4743 MPASS(iaq->num_vis > 0); 4744 if (iaq->num_vis > 1) { 4745 MPASS(iaq->nrxq_vi > 0); 4746 MPASS(iaq->ntxq_vi > 0); 4747 } 4748 MPASS(iaq->nirq > 0); 4749 MPASS(iaq->nrxq > 0); 4750 MPASS(iaq->ntxq > 0); 4751 if (itype == INTR_MSI) 4752 MPASS(powerof2(iaq->nirq)); 4753 if (sc->params.tid_qid_sel_mask != 0) 4754 MPASS(iaq->nofldtxq % sc->params.ncores == 0); 4755 } 4756 4757 static int 4758 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4759 { 4760 int rc, itype, navail, nalloc; 4761 4762 for (itype = INTR_MSIX; itype; itype >>= 1) { 4763 4764 if ((itype & t4_intr_types) == 0) 4765 continue; /* not allowed */ 4766 4767 if (itype == INTR_MSIX) 4768 navail = pci_msix_count(sc->dev); 4769 else if (itype == INTR_MSI) 4770 navail = pci_msi_count(sc->dev); 4771 else 4772 navail = 1; 4773 restart: 4774 if (navail == 0) 4775 continue; 4776 4777 calculate_iaq(sc, iaq, itype, navail); 4778 nalloc = iaq->nirq; 4779 rc = 0; 4780 if (itype == INTR_MSIX) 4781 rc = pci_alloc_msix(sc->dev, &nalloc); 4782 else if (itype == INTR_MSI) 4783 rc = pci_alloc_msi(sc->dev, &nalloc); 4784 4785 if (rc == 0 && nalloc > 0) { 4786 if (nalloc == iaq->nirq) 4787 return (0); 4788 4789 /* 4790 * Didn't get the number requested. Use whatever number 4791 * the kernel is willing to allocate. 4792 */ 4793 device_printf(sc->dev, "fewer vectors than requested, " 4794 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4795 itype, iaq->nirq, nalloc); 4796 pci_release_msi(sc->dev); 4797 navail = nalloc; 4798 goto restart; 4799 } 4800 4801 device_printf(sc->dev, 4802 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4803 itype, rc, iaq->nirq, nalloc); 4804 } 4805 4806 device_printf(sc->dev, 4807 "failed to find a usable interrupt type. " 4808 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4809 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4810 4811 return (ENXIO); 4812 } 4813 4814 #define FW_VERSION(chip) ( \ 4815 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4816 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4817 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4818 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4819 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4820 4821 /* Just enough of fw_hdr to cover all version info. */ 4822 struct fw_h { 4823 __u8 ver; 4824 __u8 chip; 4825 __be16 len512; 4826 __be32 fw_ver; 4827 __be32 tp_microcode_ver; 4828 __u8 intfver_nic; 4829 __u8 intfver_vnic; 4830 __u8 intfver_ofld; 4831 __u8 intfver_ri; 4832 __u8 intfver_iscsipdu; 4833 __u8 intfver_iscsi; 4834 __u8 intfver_fcoepdu; 4835 __u8 intfver_fcoe; 4836 }; 4837 /* Spot check a couple of fields. */ 4838 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4839 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4840 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4841 4842 struct fw_info { 4843 uint8_t chip; 4844 char *kld_name; 4845 char *fw_mod_name; 4846 struct fw_h fw_h; 4847 } fw_info[] = { 4848 { 4849 .chip = CHELSIO_T4, 4850 .kld_name = "t4fw_cfg", 4851 .fw_mod_name = "t4fw", 4852 .fw_h = { 4853 .chip = FW_HDR_CHIP_T4, 4854 .fw_ver = htobe32(FW_VERSION(T4)), 4855 .intfver_nic = FW_INTFVER(T4, NIC), 4856 .intfver_vnic = FW_INTFVER(T4, VNIC), 4857 .intfver_ofld = FW_INTFVER(T4, OFLD), 4858 .intfver_ri = FW_INTFVER(T4, RI), 4859 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4860 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4861 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4862 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4863 }, 4864 }, { 4865 .chip = CHELSIO_T5, 4866 .kld_name = "t5fw_cfg", 4867 .fw_mod_name = "t5fw", 4868 .fw_h = { 4869 .chip = FW_HDR_CHIP_T5, 4870 .fw_ver = htobe32(FW_VERSION(T5)), 4871 .intfver_nic = FW_INTFVER(T5, NIC), 4872 .intfver_vnic = FW_INTFVER(T5, VNIC), 4873 .intfver_ofld = FW_INTFVER(T5, OFLD), 4874 .intfver_ri = FW_INTFVER(T5, RI), 4875 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4876 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4877 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4878 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4879 }, 4880 }, { 4881 .chip = CHELSIO_T6, 4882 .kld_name = "t6fw_cfg", 4883 .fw_mod_name = "t6fw", 4884 .fw_h = { 4885 .chip = FW_HDR_CHIP_T6, 4886 .fw_ver = htobe32(FW_VERSION(T6)), 4887 .intfver_nic = FW_INTFVER(T6, NIC), 4888 .intfver_vnic = FW_INTFVER(T6, VNIC), 4889 .intfver_ofld = FW_INTFVER(T6, OFLD), 4890 .intfver_ri = FW_INTFVER(T6, RI), 4891 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4892 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4893 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4894 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4895 }, 4896 }, { 4897 .chip = CHELSIO_T7, 4898 .kld_name = "t7fw_cfg", 4899 .fw_mod_name = "t7fw", 4900 .fw_h = { 4901 .chip = FW_HDR_CHIP_T7, 4902 .fw_ver = htobe32(FW_VERSION(T7)), 4903 .intfver_nic = FW_INTFVER(T7, NIC), 4904 .intfver_vnic = FW_INTFVER(T7, VNIC), 4905 .intfver_ofld = FW_INTFVER(T7, OFLD), 4906 .intfver_ri = FW_INTFVER(T7, RI), 4907 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU), 4908 .intfver_iscsi = FW_INTFVER(T7, ISCSI), 4909 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU), 4910 .intfver_fcoe = FW_INTFVER(T7, FCOE), 4911 }, 4912 } 4913 }; 4914 4915 static struct fw_info * 4916 find_fw_info(int chip) 4917 { 4918 int i; 4919 4920 for (i = 0; i < nitems(fw_info); i++) { 4921 if (fw_info[i].chip == chip) 4922 return (&fw_info[i]); 4923 } 4924 return (NULL); 4925 } 4926 4927 /* 4928 * Is the given firmware API compatible with the one the driver was compiled 4929 * with? 4930 */ 4931 static int 4932 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4933 { 4934 4935 /* short circuit if it's the exact same firmware version */ 4936 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4937 return (1); 4938 4939 /* 4940 * XXX: Is this too conservative? Perhaps I should limit this to the 4941 * features that are supported in the driver. 4942 */ 4943 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4944 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4945 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4946 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4947 return (1); 4948 #undef SAME_INTF 4949 4950 return (0); 4951 } 4952 4953 static int 4954 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4955 const struct firmware **fw) 4956 { 4957 struct fw_info *fw_info; 4958 4959 *dcfg = NULL; 4960 if (fw != NULL) 4961 *fw = NULL; 4962 4963 fw_info = find_fw_info(chip_id(sc)); 4964 if (fw_info == NULL) { 4965 device_printf(sc->dev, 4966 "unable to look up firmware information for chip %d.\n", 4967 chip_id(sc)); 4968 return (EINVAL); 4969 } 4970 4971 *dcfg = firmware_get(fw_info->kld_name); 4972 if (*dcfg != NULL) { 4973 if (fw != NULL) 4974 *fw = firmware_get(fw_info->fw_mod_name); 4975 return (0); 4976 } 4977 4978 return (ENOENT); 4979 } 4980 4981 static void 4982 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4983 const struct firmware *fw) 4984 { 4985 4986 if (fw != NULL) 4987 firmware_put(fw, FIRMWARE_UNLOAD); 4988 if (dcfg != NULL) 4989 firmware_put(dcfg, FIRMWARE_UNLOAD); 4990 } 4991 4992 /* 4993 * Return values: 4994 * 0 means no firmware install attempted. 4995 * ERESTART means a firmware install was attempted and was successful. 4996 * +ve errno means a firmware install was attempted but failed. 4997 */ 4998 static int 4999 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 5000 const struct fw_h *drv_fw, const char *reason, int *already) 5001 { 5002 const struct firmware *cfg, *fw; 5003 const uint32_t c = be32toh(card_fw->fw_ver); 5004 uint32_t d, k; 5005 int rc, fw_install; 5006 struct fw_h bundled_fw; 5007 bool load_attempted; 5008 5009 cfg = fw = NULL; 5010 load_attempted = false; 5011 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 5012 5013 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 5014 if (t4_fw_install < 0) { 5015 rc = load_fw_module(sc, &cfg, &fw); 5016 if (rc != 0 || fw == NULL) { 5017 device_printf(sc->dev, 5018 "failed to load firmware module: %d. cfg %p, fw %p;" 5019 " will use compiled-in firmware version for" 5020 "hw.cxgbe.fw_install checks.\n", 5021 rc, cfg, fw); 5022 } else { 5023 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 5024 } 5025 load_attempted = true; 5026 } 5027 d = be32toh(bundled_fw.fw_ver); 5028 5029 if (reason != NULL) 5030 goto install; 5031 5032 if ((sc->flags & FW_OK) == 0) { 5033 5034 if (c == 0xffffffff) { 5035 reason = "missing"; 5036 goto install; 5037 } 5038 5039 rc = 0; 5040 goto done; 5041 } 5042 5043 if (!fw_compatible(card_fw, &bundled_fw)) { 5044 reason = "incompatible or unusable"; 5045 goto install; 5046 } 5047 5048 if (d > c) { 5049 reason = "older than the version bundled with this driver"; 5050 goto install; 5051 } 5052 5053 if (fw_install == 2 && d != c) { 5054 reason = "different than the version bundled with this driver"; 5055 goto install; 5056 } 5057 5058 /* No reason to do anything to the firmware already on the card. */ 5059 rc = 0; 5060 goto done; 5061 5062 install: 5063 rc = 0; 5064 if ((*already)++) 5065 goto done; 5066 5067 if (fw_install == 0) { 5068 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5069 "but the driver is prohibited from installing a firmware " 5070 "on the card.\n", 5071 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5072 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5073 5074 goto done; 5075 } 5076 5077 /* 5078 * We'll attempt to install a firmware. Load the module first (if it 5079 * hasn't been loaded already). 5080 */ 5081 if (!load_attempted) { 5082 rc = load_fw_module(sc, &cfg, &fw); 5083 if (rc != 0 || fw == NULL) { 5084 device_printf(sc->dev, 5085 "failed to load firmware module: %d. cfg %p, fw %p\n", 5086 rc, cfg, fw); 5087 /* carry on */ 5088 } 5089 } 5090 if (fw == NULL) { 5091 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5092 "but the driver cannot take corrective action because it " 5093 "is unable to load the firmware module.\n", 5094 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5095 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5096 rc = sc->flags & FW_OK ? 0 : ENOENT; 5097 goto done; 5098 } 5099 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 5100 if (k != d) { 5101 MPASS(t4_fw_install > 0); 5102 device_printf(sc->dev, 5103 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 5104 "expecting (%u.%u.%u.%u) and will not be used.\n", 5105 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 5106 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 5107 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5108 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5109 rc = sc->flags & FW_OK ? 0 : EINVAL; 5110 goto done; 5111 } 5112 5113 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5114 "installing firmware %u.%u.%u.%u on card.\n", 5115 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5116 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 5117 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5118 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5119 5120 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 5121 if (rc != 0) { 5122 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 5123 } else { 5124 /* Installed successfully, update the cached header too. */ 5125 rc = ERESTART; 5126 memcpy(card_fw, fw->data, sizeof(*card_fw)); 5127 } 5128 done: 5129 unload_fw_module(sc, cfg, fw); 5130 5131 return (rc); 5132 } 5133 5134 /* 5135 * Establish contact with the firmware and attempt to become the master driver. 5136 * 5137 * A firmware will be installed to the card if needed (if the driver is allowed 5138 * to do so). 5139 */ 5140 static int 5141 contact_firmware(struct adapter *sc) 5142 { 5143 int rc, already = 0; 5144 enum dev_state state; 5145 struct fw_info *fw_info; 5146 struct fw_hdr *card_fw; /* fw on the card */ 5147 const struct fw_h *drv_fw; 5148 5149 fw_info = find_fw_info(chip_id(sc)); 5150 if (fw_info == NULL) { 5151 device_printf(sc->dev, 5152 "unable to look up firmware information for chip %d.\n", 5153 chip_id(sc)); 5154 return (EINVAL); 5155 } 5156 drv_fw = &fw_info->fw_h; 5157 5158 /* Read the header of the firmware on the card */ 5159 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 5160 restart: 5161 rc = -t4_get_fw_hdr(sc, card_fw); 5162 if (rc != 0) { 5163 device_printf(sc->dev, 5164 "unable to read firmware header from card's flash: %d\n", 5165 rc); 5166 goto done; 5167 } 5168 5169 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 5170 &already); 5171 if (rc == ERESTART) 5172 goto restart; 5173 if (rc != 0) 5174 goto done; 5175 5176 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 5177 if (rc < 0 || state == DEV_STATE_ERR) { 5178 rc = -rc; 5179 device_printf(sc->dev, 5180 "failed to connect to the firmware: %d, %d. " 5181 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5182 #if 0 5183 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5184 "not responding properly to HELLO", &already) == ERESTART) 5185 goto restart; 5186 #endif 5187 goto done; 5188 } 5189 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 5190 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 5191 5192 if (rc == sc->pf) { 5193 sc->flags |= MASTER_PF; 5194 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5195 NULL, &already); 5196 if (rc == ERESTART) 5197 rc = 0; 5198 else if (rc != 0) 5199 goto done; 5200 } else if (state == DEV_STATE_UNINIT) { 5201 /* 5202 * We didn't get to be the master so we definitely won't be 5203 * configuring the chip. It's a bug if someone else hasn't 5204 * configured it already. 5205 */ 5206 device_printf(sc->dev, "couldn't be master(%d), " 5207 "device not already initialized either(%d). " 5208 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5209 rc = EPROTO; 5210 goto done; 5211 } else { 5212 /* 5213 * Some other PF is the master and has configured the chip. 5214 * This is allowed but untested. 5215 */ 5216 device_printf(sc->dev, "PF%d is master, device state %d. " 5217 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5218 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 5219 sc->cfcsum = 0; 5220 rc = 0; 5221 } 5222 done: 5223 if (rc != 0 && sc->flags & FW_OK) { 5224 t4_fw_bye(sc, sc->mbox); 5225 sc->flags &= ~FW_OK; 5226 } 5227 free(card_fw, M_CXGBE); 5228 return (rc); 5229 } 5230 5231 static int 5232 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 5233 uint32_t mtype, uint32_t moff, u_int maxlen) 5234 { 5235 struct fw_info *fw_info; 5236 const struct firmware *dcfg, *rcfg = NULL; 5237 const uint32_t *cfdata; 5238 uint32_t cflen, addr; 5239 int rc; 5240 5241 load_fw_module(sc, &dcfg, NULL); 5242 5243 /* Card specific interpretation of "default". */ 5244 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5245 if (pci_get_device(sc->dev) == 0x440a) 5246 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 5247 if (is_fpga(sc)) 5248 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 5249 } 5250 5251 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5252 if (dcfg == NULL) { 5253 device_printf(sc->dev, 5254 "KLD with default config is not available.\n"); 5255 rc = ENOENT; 5256 goto done; 5257 } 5258 cfdata = dcfg->data; 5259 cflen = dcfg->datasize & ~3; 5260 } else { 5261 char s[32]; 5262 5263 fw_info = find_fw_info(chip_id(sc)); 5264 if (fw_info == NULL) { 5265 device_printf(sc->dev, 5266 "unable to look up firmware information for chip %d.\n", 5267 chip_id(sc)); 5268 rc = EINVAL; 5269 goto done; 5270 } 5271 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 5272 5273 rcfg = firmware_get(s); 5274 if (rcfg == NULL) { 5275 device_printf(sc->dev, 5276 "unable to load module \"%s\" for configuration " 5277 "profile \"%s\".\n", s, cfg_file); 5278 rc = ENOENT; 5279 goto done; 5280 } 5281 cfdata = rcfg->data; 5282 cflen = rcfg->datasize & ~3; 5283 } 5284 5285 if (cflen > maxlen) { 5286 device_printf(sc->dev, 5287 "config file too long (%d, max allowed is %d).\n", 5288 cflen, maxlen); 5289 rc = EINVAL; 5290 goto done; 5291 } 5292 5293 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 5294 if (rc != 0) { 5295 device_printf(sc->dev, 5296 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 5297 __func__, mtype, moff, cflen, rc); 5298 rc = EINVAL; 5299 goto done; 5300 } 5301 write_via_memwin(sc, 2, addr, cfdata, cflen); 5302 done: 5303 if (rcfg != NULL) 5304 firmware_put(rcfg, FIRMWARE_UNLOAD); 5305 unload_fw_module(sc, dcfg, NULL); 5306 return (rc); 5307 } 5308 5309 struct caps_allowed { 5310 uint16_t nbmcaps; 5311 uint16_t linkcaps; 5312 uint16_t switchcaps; 5313 uint16_t nvmecaps; 5314 uint16_t niccaps; 5315 uint16_t toecaps; 5316 uint16_t rdmacaps; 5317 uint16_t cryptocaps; 5318 uint16_t iscsicaps; 5319 uint16_t fcoecaps; 5320 }; 5321 5322 #define FW_PARAM_DEV(param) \ 5323 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5324 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5325 #define FW_PARAM_PFVF(param) \ 5326 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5327 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5328 5329 /* 5330 * Provide a configuration profile to the firmware and have it initialize the 5331 * chip accordingly. This may involve uploading a configuration file to the 5332 * card. 5333 */ 5334 static int 5335 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5336 const struct caps_allowed *caps_allowed) 5337 { 5338 int rc; 5339 struct fw_caps_config_cmd caps; 5340 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5341 unsigned int maxlen = 0; 5342 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen); 5343 5344 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5345 if (rc != 0) { 5346 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5347 return (rc); 5348 } 5349 5350 bzero(&caps, sizeof(caps)); 5351 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5352 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5353 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5354 mtype = 0; 5355 moff = 0; 5356 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5357 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5358 mtype = FW_MEMTYPE_FLASH; 5359 moff = cfg_addr; 5360 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5361 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5362 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5363 FW_LEN16(caps)); 5364 } else { 5365 /* 5366 * Ask the firmware where it wants us to upload the config file. 5367 */ 5368 param = FW_PARAM_DEV(CF); 5369 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5370 if (rc != 0) { 5371 /* No support for config file? Shouldn't happen. */ 5372 device_printf(sc->dev, 5373 "failed to query config file location: %d.\n", rc); 5374 goto done; 5375 } 5376 mtype = G_FW_PARAMS_PARAM_Y(val); 5377 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5378 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5379 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5380 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5381 FW_LEN16(caps)); 5382 5383 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen); 5384 if (rc != 0) { 5385 device_printf(sc->dev, 5386 "failed to upload config file to card: %d.\n", rc); 5387 goto done; 5388 } 5389 } 5390 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5391 if (rc != 0) { 5392 device_printf(sc->dev, "failed to pre-process config file: %d " 5393 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5394 goto done; 5395 } 5396 5397 finicsum = be32toh(caps.finicsum); 5398 cfcsum = be32toh(caps.cfcsum); /* actual */ 5399 if (finicsum != cfcsum) { 5400 device_printf(sc->dev, 5401 "WARNING: config file checksum mismatch: %08x %08x\n", 5402 finicsum, cfcsum); 5403 } 5404 sc->cfcsum = cfcsum; 5405 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5406 5407 /* 5408 * Let the firmware know what features will (not) be used so it can tune 5409 * things accordingly. 5410 */ 5411 #define LIMIT_CAPS(x) do { \ 5412 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5413 } while (0) 5414 LIMIT_CAPS(nbm); 5415 LIMIT_CAPS(link); 5416 LIMIT_CAPS(switch); 5417 LIMIT_CAPS(nvme); 5418 LIMIT_CAPS(nic); 5419 LIMIT_CAPS(toe); 5420 LIMIT_CAPS(rdma); 5421 LIMIT_CAPS(crypto); 5422 LIMIT_CAPS(iscsi); 5423 LIMIT_CAPS(fcoe); 5424 #undef LIMIT_CAPS 5425 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5426 /* 5427 * TOE and hashfilters are mutually exclusive. It is a config 5428 * file or firmware bug if both are reported as available. Try 5429 * to cope with the situation in non-debug builds by disabling 5430 * TOE. 5431 */ 5432 MPASS(caps.toecaps == 0); 5433 5434 caps.toecaps = 0; 5435 caps.rdmacaps = 0; 5436 caps.iscsicaps = 0; 5437 caps.nvmecaps = 0; 5438 } 5439 5440 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5441 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5442 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5443 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5444 if (rc != 0) { 5445 device_printf(sc->dev, 5446 "failed to process config file: %d.\n", rc); 5447 goto done; 5448 } 5449 5450 t4_tweak_chip_settings(sc); 5451 set_params__pre_init(sc); 5452 5453 /* get basic stuff going */ 5454 rc = -t4_fw_initialize(sc, sc->mbox); 5455 if (rc != 0) { 5456 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5457 goto done; 5458 } 5459 done: 5460 return (rc); 5461 } 5462 5463 /* 5464 * Partition chip resources for use between various PFs, VFs, etc. 5465 */ 5466 static int 5467 partition_resources(struct adapter *sc) 5468 { 5469 char cfg_file[sizeof(t4_cfg_file)]; 5470 struct caps_allowed caps_allowed; 5471 int rc; 5472 bool fallback; 5473 5474 /* Only the master driver gets to configure the chip resources. */ 5475 MPASS(sc->flags & MASTER_PF); 5476 5477 #define COPY_CAPS(x) do { \ 5478 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5479 } while (0) 5480 bzero(&caps_allowed, sizeof(caps_allowed)); 5481 COPY_CAPS(nbm); 5482 COPY_CAPS(link); 5483 COPY_CAPS(switch); 5484 COPY_CAPS(nvme); 5485 COPY_CAPS(nic); 5486 COPY_CAPS(toe); 5487 COPY_CAPS(rdma); 5488 COPY_CAPS(crypto); 5489 COPY_CAPS(iscsi); 5490 COPY_CAPS(fcoe); 5491 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5492 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5493 retry: 5494 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5495 if (rc != 0 && fallback) { 5496 dump_devlog(sc); 5497 device_printf(sc->dev, 5498 "failed (%d) to configure card with \"%s\" profile, " 5499 "will fall back to a basic configuration and retry.\n", 5500 rc, cfg_file); 5501 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5502 bzero(&caps_allowed, sizeof(caps_allowed)); 5503 COPY_CAPS(switch); 5504 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5505 fallback = false; 5506 goto retry; 5507 } 5508 #undef COPY_CAPS 5509 return (rc); 5510 } 5511 5512 /* 5513 * Retrieve parameters that are needed (or nice to have) very early. 5514 */ 5515 static int 5516 get_params__pre_init(struct adapter *sc) 5517 { 5518 int rc; 5519 uint32_t param[2], val[2]; 5520 5521 t4_get_version_info(sc); 5522 5523 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5524 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5525 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5526 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5527 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5528 5529 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5530 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5531 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5532 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5533 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5534 5535 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5536 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5537 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5538 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5539 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5540 5541 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5542 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5543 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5544 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5545 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5546 5547 param[0] = FW_PARAM_DEV(PORTVEC); 5548 param[1] = FW_PARAM_DEV(CCLK); 5549 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5550 if (rc != 0) { 5551 device_printf(sc->dev, 5552 "failed to query parameters (pre_init): %d.\n", rc); 5553 return (rc); 5554 } 5555 5556 sc->params.portvec = val[0]; 5557 sc->params.nports = bitcount32(val[0]); 5558 sc->params.vpd.cclk = val[1]; 5559 5560 /* Read device log parameters. */ 5561 rc = -t4_init_devlog_ncores_params(sc, 1); 5562 if (rc == 0) 5563 fixup_devlog_params(sc); 5564 else { 5565 device_printf(sc->dev, 5566 "failed to get devlog parameters: %d.\n", rc); 5567 rc = 0; /* devlog isn't critical for device operation */ 5568 } 5569 5570 return (rc); 5571 } 5572 5573 /* 5574 * Any params that need to be set before FW_INITIALIZE. 5575 */ 5576 static int 5577 set_params__pre_init(struct adapter *sc) 5578 { 5579 int rc = 0; 5580 uint32_t param, val; 5581 5582 if (chip_id(sc) >= CHELSIO_T6) { 5583 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5584 val = 1; 5585 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5586 /* firmwares < 1.20.1.0 do not have this param. */ 5587 if (rc == FW_EINVAL && 5588 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5589 rc = 0; 5590 } 5591 if (rc != 0) { 5592 device_printf(sc->dev, 5593 "failed to enable high priority filters :%d.\n", 5594 rc); 5595 } 5596 5597 param = FW_PARAM_DEV(PPOD_EDRAM); 5598 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5599 if (rc == 0 && val == 1) { 5600 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5601 &val); 5602 if (rc != 0) { 5603 device_printf(sc->dev, 5604 "failed to set PPOD_EDRAM: %d.\n", rc); 5605 } 5606 } 5607 } 5608 5609 /* Enable opaque VIIDs with firmwares that support it. */ 5610 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5611 val = 1; 5612 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5613 if (rc == 0 && val == 1) 5614 sc->params.viid_smt_extn_support = true; 5615 else 5616 sc->params.viid_smt_extn_support = false; 5617 5618 return (rc); 5619 } 5620 5621 /* 5622 * Retrieve various parameters that are of interest to the driver. The device 5623 * has been initialized by the firmware at this point. 5624 */ 5625 static int 5626 get_params__post_init(struct adapter *sc) 5627 { 5628 int rc; 5629 uint32_t param[7], val[7]; 5630 struct fw_caps_config_cmd caps; 5631 5632 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5633 param[1] = FW_PARAM_PFVF(EQ_START); 5634 param[2] = FW_PARAM_PFVF(FILTER_START); 5635 param[3] = FW_PARAM_PFVF(FILTER_END); 5636 param[4] = FW_PARAM_PFVF(L2T_START); 5637 param[5] = FW_PARAM_PFVF(L2T_END); 5638 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5639 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5640 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5641 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5642 if (rc != 0) { 5643 device_printf(sc->dev, 5644 "failed to query parameters (post_init): %d.\n", rc); 5645 return (rc); 5646 } 5647 5648 sc->sge.iq_start = val[0]; 5649 sc->sge.eq_start = val[1]; 5650 if ((int)val[3] > (int)val[2]) { 5651 sc->tids.ftid_base = val[2]; 5652 sc->tids.ftid_end = val[3]; 5653 sc->tids.nftids = val[3] - val[2] + 1; 5654 } 5655 sc->vres.l2t.start = val[4]; 5656 sc->vres.l2t.size = val[5] - val[4] + 1; 5657 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5658 if (sc->vres.l2t.size > 0) 5659 MPASS(fls(val[5]) <= S_SYNC_WR); 5660 sc->params.core_vdd = val[6]; 5661 5662 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5663 param[1] = FW_PARAM_PFVF(EQ_END); 5664 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5665 if (rc != 0) { 5666 device_printf(sc->dev, 5667 "failed to query parameters (post_init2): %d.\n", rc); 5668 return (rc); 5669 } 5670 MPASS((int)val[0] >= sc->sge.iq_start); 5671 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5672 MPASS((int)val[1] >= sc->sge.eq_start); 5673 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5674 5675 if (chip_id(sc) >= CHELSIO_T6) { 5676 5677 sc->tids.tid_base = t4_read_reg(sc, 5678 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5679 5680 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5681 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5682 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5683 if (rc != 0) { 5684 device_printf(sc->dev, 5685 "failed to query hpfilter parameters: %d.\n", rc); 5686 return (rc); 5687 } 5688 if ((int)val[1] > (int)val[0]) { 5689 sc->tids.hpftid_base = val[0]; 5690 sc->tids.hpftid_end = val[1]; 5691 sc->tids.nhpftids = val[1] - val[0] + 1; 5692 5693 /* 5694 * These should go off if the layout changes and the 5695 * driver needs to catch up. 5696 */ 5697 MPASS(sc->tids.hpftid_base == 0); 5698 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5699 } 5700 5701 param[0] = FW_PARAM_PFVF(RAWF_START); 5702 param[1] = FW_PARAM_PFVF(RAWF_END); 5703 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5704 if (rc != 0) { 5705 device_printf(sc->dev, 5706 "failed to query rawf parameters: %d.\n", rc); 5707 return (rc); 5708 } 5709 if ((int)val[1] > (int)val[0]) { 5710 sc->rawf_base = val[0]; 5711 sc->nrawf = val[1] - val[0] + 1; 5712 } 5713 } 5714 5715 if (sc->params.ncores > 1) { 5716 MPASS(chip_id(sc) >= CHELSIO_T7); 5717 5718 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK); 5719 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5720 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0; 5721 } 5722 5723 /* 5724 * The parameters that follow may not be available on all firmwares. We 5725 * query them individually rather than in a compound query because old 5726 * firmwares fail the entire query if an unknown parameter is queried. 5727 */ 5728 5729 /* 5730 * MPS buffer group configuration. 5731 */ 5732 param[0] = FW_PARAM_DEV(MPSBGMAP); 5733 val[0] = 0; 5734 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5735 if (rc == 0) 5736 sc->params.mps_bg_map = val[0]; 5737 else 5738 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5739 5740 param[0] = FW_PARAM_DEV(TPCHMAP); 5741 val[0] = 0; 5742 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5743 if (rc == 0) 5744 sc->params.tp_ch_map = val[0]; 5745 else 5746 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5747 5748 param[0] = FW_PARAM_DEV(TX_TPCHMAP); 5749 val[0] = 0; 5750 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5751 if (rc == 0) 5752 sc->params.tx_tp_ch_map = val[0]; 5753 else 5754 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5755 5756 /* 5757 * Determine whether the firmware supports the filter2 work request. 5758 */ 5759 param[0] = FW_PARAM_DEV(FILTER2_WR); 5760 val[0] = 0; 5761 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5762 if (rc == 0) 5763 sc->params.filter2_wr_support = val[0] != 0; 5764 else 5765 sc->params.filter2_wr_support = 0; 5766 5767 /* 5768 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5769 */ 5770 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5771 val[0] = 0; 5772 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5773 if (rc == 0) 5774 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5775 else 5776 sc->params.ulptx_memwrite_dsgl = false; 5777 5778 /* FW_RI_FR_NSMR_TPTE_WR support */ 5779 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5780 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5781 if (rc == 0) 5782 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5783 else 5784 sc->params.fr_nsmr_tpte_wr_support = false; 5785 5786 /* Support for 512 SGL entries per FR MR. */ 5787 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5788 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5789 if (rc == 0) 5790 sc->params.dev_512sgl_mr = val[0] != 0; 5791 else 5792 sc->params.dev_512sgl_mr = false; 5793 5794 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5795 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5796 if (rc == 0) 5797 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5798 else 5799 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5800 5801 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5802 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5803 if (rc == 0) { 5804 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5805 sc->params.nsched_cls = val[0]; 5806 } else 5807 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5808 5809 /* get capabilites */ 5810 bzero(&caps, sizeof(caps)); 5811 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5812 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5813 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5814 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5815 if (rc != 0) { 5816 device_printf(sc->dev, 5817 "failed to get card capabilities: %d.\n", rc); 5818 return (rc); 5819 } 5820 5821 #define READ_CAPS(x) do { \ 5822 sc->x = htobe16(caps.x); \ 5823 } while (0) 5824 READ_CAPS(nbmcaps); 5825 READ_CAPS(linkcaps); 5826 READ_CAPS(switchcaps); 5827 READ_CAPS(nvmecaps); 5828 READ_CAPS(niccaps); 5829 READ_CAPS(toecaps); 5830 READ_CAPS(rdmacaps); 5831 READ_CAPS(cryptocaps); 5832 READ_CAPS(iscsicaps); 5833 READ_CAPS(fcoecaps); 5834 5835 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5836 MPASS(chip_id(sc) > CHELSIO_T4); 5837 MPASS(sc->toecaps == 0); 5838 sc->toecaps = 0; 5839 5840 param[0] = FW_PARAM_DEV(NTID); 5841 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5842 if (rc != 0) { 5843 device_printf(sc->dev, 5844 "failed to query HASHFILTER parameters: %d.\n", rc); 5845 return (rc); 5846 } 5847 sc->tids.ntids = val[0]; 5848 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5849 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5850 sc->tids.ntids -= sc->tids.nhpftids; 5851 } 5852 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5853 sc->params.hash_filter = 1; 5854 } 5855 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5856 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5857 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5858 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5859 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5860 if (rc != 0) { 5861 device_printf(sc->dev, 5862 "failed to query NIC parameters: %d.\n", rc); 5863 return (rc); 5864 } 5865 if ((int)val[1] > (int)val[0]) { 5866 sc->tids.etid_base = val[0]; 5867 sc->tids.etid_end = val[1]; 5868 sc->tids.netids = val[1] - val[0] + 1; 5869 sc->params.eo_wr_cred = val[2]; 5870 sc->params.ethoffload = 1; 5871 } 5872 } 5873 if (sc->toecaps) { 5874 /* query offload-related parameters */ 5875 param[0] = FW_PARAM_DEV(NTID); 5876 param[1] = FW_PARAM_PFVF(SERVER_START); 5877 param[2] = FW_PARAM_PFVF(SERVER_END); 5878 param[3] = FW_PARAM_PFVF(TDDP_START); 5879 param[4] = FW_PARAM_PFVF(TDDP_END); 5880 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5881 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5882 if (rc != 0) { 5883 device_printf(sc->dev, 5884 "failed to query TOE parameters: %d.\n", rc); 5885 return (rc); 5886 } 5887 sc->tids.ntids = val[0]; 5888 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5889 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5890 sc->tids.ntids -= sc->tids.nhpftids; 5891 } 5892 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5893 if ((int)val[2] > (int)val[1]) { 5894 sc->tids.stid_base = val[1]; 5895 sc->tids.nstids = val[2] - val[1] + 1; 5896 } 5897 sc->vres.ddp.start = val[3]; 5898 sc->vres.ddp.size = val[4] - val[3] + 1; 5899 sc->params.ofldq_wr_cred = val[5]; 5900 sc->params.offload = 1; 5901 } else { 5902 /* 5903 * The firmware attempts memfree TOE configuration for -SO cards 5904 * and will report toecaps=0 if it runs out of resources (this 5905 * depends on the config file). It may not report 0 for other 5906 * capabilities dependent on the TOE in this case. Set them to 5907 * 0 here so that the driver doesn't bother tracking resources 5908 * that will never be used. 5909 */ 5910 sc->iscsicaps = 0; 5911 sc->nvmecaps = 0; 5912 sc->rdmacaps = 0; 5913 } 5914 if (sc->nvmecaps || sc->rdmacaps) { 5915 param[0] = FW_PARAM_PFVF(STAG_START); 5916 param[1] = FW_PARAM_PFVF(STAG_END); 5917 param[2] = FW_PARAM_PFVF(PBL_START); 5918 param[3] = FW_PARAM_PFVF(PBL_END); 5919 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5920 if (rc != 0) { 5921 device_printf(sc->dev, 5922 "failed to query NVMe/RDMA parameters: %d.\n", rc); 5923 return (rc); 5924 } 5925 sc->vres.stag.start = val[0]; 5926 sc->vres.stag.size = val[1] - val[0] + 1; 5927 sc->vres.pbl.start = val[2]; 5928 sc->vres.pbl.size = val[3] - val[2] + 1; 5929 } 5930 if (sc->rdmacaps) { 5931 param[0] = FW_PARAM_PFVF(RQ_START); 5932 param[1] = FW_PARAM_PFVF(RQ_END); 5933 param[2] = FW_PARAM_PFVF(SQRQ_START); 5934 param[3] = FW_PARAM_PFVF(SQRQ_END); 5935 param[4] = FW_PARAM_PFVF(CQ_START); 5936 param[5] = FW_PARAM_PFVF(CQ_END); 5937 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5938 if (rc != 0) { 5939 device_printf(sc->dev, 5940 "failed to query RDMA parameters(1): %d.\n", rc); 5941 return (rc); 5942 } 5943 sc->vres.rq.start = val[0]; 5944 sc->vres.rq.size = val[1] - val[0] + 1; 5945 sc->vres.qp.start = val[2]; 5946 sc->vres.qp.size = val[3] - val[2] + 1; 5947 sc->vres.cq.start = val[4]; 5948 sc->vres.cq.size = val[5] - val[4] + 1; 5949 5950 param[0] = FW_PARAM_PFVF(OCQ_START); 5951 param[1] = FW_PARAM_PFVF(OCQ_END); 5952 param[2] = FW_PARAM_PFVF(SRQ_START); 5953 param[3] = FW_PARAM_PFVF(SRQ_END); 5954 param[4] = FW_PARAM_DEV(MAXORDIRD_QP); 5955 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5956 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5957 if (rc != 0) { 5958 device_printf(sc->dev, 5959 "failed to query RDMA parameters(2): %d.\n", rc); 5960 return (rc); 5961 } 5962 sc->vres.ocq.start = val[0]; 5963 sc->vres.ocq.size = val[1] - val[0] + 1; 5964 sc->vres.srq.start = val[2]; 5965 sc->vres.srq.size = val[3] - val[2] + 1; 5966 sc->params.max_ordird_qp = val[4]; 5967 sc->params.max_ird_adapter = val[5]; 5968 } 5969 if (sc->iscsicaps) { 5970 param[0] = FW_PARAM_PFVF(ISCSI_START); 5971 param[1] = FW_PARAM_PFVF(ISCSI_END); 5972 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5973 if (rc != 0) { 5974 device_printf(sc->dev, 5975 "failed to query iSCSI parameters: %d.\n", rc); 5976 return (rc); 5977 } 5978 sc->vres.iscsi.start = val[0]; 5979 sc->vres.iscsi.size = val[1] - val[0] + 1; 5980 } 5981 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5982 param[0] = FW_PARAM_PFVF(TLS_START); 5983 param[1] = FW_PARAM_PFVF(TLS_END); 5984 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5985 if (rc != 0) { 5986 device_printf(sc->dev, 5987 "failed to query TLS parameters: %d.\n", rc); 5988 return (rc); 5989 } 5990 sc->vres.key.start = val[0]; 5991 sc->vres.key.size = val[1] - val[0] + 1; 5992 } 5993 5994 /* 5995 * We've got the params we wanted to query directly from the firmware. 5996 * Grab some others via other means. 5997 */ 5998 t4_init_sge_params(sc); 5999 t4_init_tp_params(sc); 6000 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 6001 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 6002 6003 rc = t4_verify_chip_settings(sc); 6004 if (rc != 0) 6005 return (rc); 6006 t4_init_rx_buf_info(sc); 6007 6008 return (rc); 6009 } 6010 6011 #ifdef KERN_TLS 6012 static void 6013 ktls_tick(void *arg) 6014 { 6015 struct adapter *sc; 6016 uint32_t tstamp; 6017 6018 sc = arg; 6019 tstamp = tcp_ts_getticks(); 6020 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 6021 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 6022 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 6023 } 6024 6025 static int 6026 t6_config_kern_tls(struct adapter *sc, bool enable) 6027 { 6028 int rc; 6029 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6030 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 6031 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 6032 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 6033 6034 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 6035 if (rc != 0) { 6036 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 6037 enable ? "enable" : "disable", rc); 6038 return (rc); 6039 } 6040 6041 if (enable) { 6042 sc->flags |= KERN_TLS_ON; 6043 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6044 C_HARDCLOCK); 6045 } else { 6046 sc->flags &= ~KERN_TLS_ON; 6047 callout_stop(&sc->ktls_tick); 6048 } 6049 6050 return (rc); 6051 } 6052 #endif 6053 6054 static int 6055 set_params__post_init(struct adapter *sc) 6056 { 6057 uint32_t mask, param, val; 6058 #ifdef TCP_OFFLOAD 6059 int i, v, shift; 6060 #endif 6061 6062 /* ask for encapsulated CPLs */ 6063 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 6064 val = 1; 6065 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6066 6067 /* Enable 32b port caps if the firmware supports it. */ 6068 param = FW_PARAM_PFVF(PORT_CAPS32); 6069 val = 1; 6070 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 6071 sc->params.port_caps32 = 1; 6072 6073 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 6074 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 6075 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 6076 V_MASKFILTER(val - 1)); 6077 6078 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 6079 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 6080 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6081 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 6082 val = 0; 6083 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 6084 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 6085 F_ATTACKFILTERENABLE); 6086 val |= F_DROPERRORATTACK; 6087 } 6088 if (t4_drop_ip_fragments != 0) { 6089 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 6090 F_FRAGMENTDROP); 6091 val |= F_DROPERRORFRAG; 6092 } 6093 if (t4_drop_pkts_with_l2_errors != 0) 6094 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 6095 if (t4_drop_pkts_with_l3_errors != 0) { 6096 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 6097 F_DROPERRORCSUMIP; 6098 } 6099 if (t4_drop_pkts_with_l4_errors != 0) { 6100 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6101 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 6102 } 6103 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 6104 6105 #ifdef TCP_OFFLOAD 6106 /* 6107 * Override the TOE timers with user provided tunables. This is not the 6108 * recommended way to change the timers (the firmware config file is) so 6109 * these tunables are not documented. 6110 * 6111 * All the timer tunables are in microseconds. 6112 */ 6113 if (t4_toe_keepalive_idle != 0) { 6114 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 6115 v &= M_KEEPALIVEIDLE; 6116 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 6117 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 6118 } 6119 if (t4_toe_keepalive_interval != 0) { 6120 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 6121 v &= M_KEEPALIVEINTVL; 6122 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 6123 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 6124 } 6125 if (t4_toe_keepalive_count != 0) { 6126 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 6127 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6128 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 6129 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 6130 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 6131 } 6132 if (t4_toe_rexmt_min != 0) { 6133 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 6134 v &= M_RXTMIN; 6135 t4_set_reg_field(sc, A_TP_RXT_MIN, 6136 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 6137 } 6138 if (t4_toe_rexmt_max != 0) { 6139 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 6140 v &= M_RXTMAX; 6141 t4_set_reg_field(sc, A_TP_RXT_MAX, 6142 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 6143 } 6144 if (t4_toe_rexmt_count != 0) { 6145 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 6146 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6147 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 6148 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 6149 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 6150 } 6151 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 6152 if (t4_toe_rexmt_backoff[i] != -1) { 6153 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 6154 shift = (i & 3) << 3; 6155 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 6156 M_TIMERBACKOFFINDEX0 << shift, v << shift); 6157 } 6158 } 6159 #endif 6160 6161 /* 6162 * Limit TOE connections to 2 reassembly "islands". This is 6163 * required to permit migrating TOE connections to either 6164 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 6165 */ 6166 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 6167 V_PASSMODE(2)); 6168 6169 #ifdef KERN_TLS 6170 if (is_ktls(sc)) { 6171 sc->tlst.inline_keys = t4_tls_inline_keys; 6172 if (t4_kern_tls != 0 && is_t6(sc)) { 6173 sc->tlst.combo_wrs = t4_tls_combo_wrs; 6174 t6_config_kern_tls(sc, true); 6175 } else { 6176 sc->tlst.short_records = t4_tls_short_records; 6177 sc->tlst.partial_ghash = t4_tls_partial_ghash; 6178 } 6179 } 6180 #endif 6181 return (0); 6182 } 6183 6184 #undef FW_PARAM_PFVF 6185 #undef FW_PARAM_DEV 6186 6187 static void 6188 t4_set_desc(struct adapter *sc) 6189 { 6190 struct adapter_params *p = &sc->params; 6191 6192 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 6193 } 6194 6195 static inline void 6196 ifmedia_add4(struct ifmedia *ifm, int m) 6197 { 6198 6199 ifmedia_add(ifm, m, 0, NULL); 6200 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 6201 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 6202 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 6203 } 6204 6205 /* 6206 * This is the selected media, which is not quite the same as the active media. 6207 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 6208 * and active are not the same, and "media: Ethernet selected" otherwise. 6209 */ 6210 static void 6211 set_current_media(struct port_info *pi) 6212 { 6213 struct link_config *lc; 6214 struct ifmedia *ifm; 6215 int mword; 6216 u_int speed; 6217 6218 PORT_LOCK_ASSERT_OWNED(pi); 6219 6220 /* Leave current media alone if it's already set to IFM_NONE. */ 6221 ifm = &pi->media; 6222 if (ifm->ifm_cur != NULL && 6223 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 6224 return; 6225 6226 lc = &pi->link_cfg; 6227 if (lc->requested_aneg != AUTONEG_DISABLE && 6228 lc->pcaps & FW_PORT_CAP32_ANEG) { 6229 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 6230 return; 6231 } 6232 mword = IFM_ETHER | IFM_FDX; 6233 if (lc->requested_fc & PAUSE_TX) 6234 mword |= IFM_ETH_TXPAUSE; 6235 if (lc->requested_fc & PAUSE_RX) 6236 mword |= IFM_ETH_RXPAUSE; 6237 if (lc->requested_speed == 0) 6238 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 6239 else 6240 speed = lc->requested_speed; 6241 mword |= port_mword(pi, speed_to_fwcap(speed)); 6242 ifmedia_set(ifm, mword); 6243 } 6244 6245 /* 6246 * Returns true if the ifmedia list for the port cannot change. 6247 */ 6248 static bool 6249 fixed_ifmedia(struct port_info *pi) 6250 { 6251 6252 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 6253 pi->port_type == FW_PORT_TYPE_BT_XFI || 6254 pi->port_type == FW_PORT_TYPE_BT_XAUI || 6255 pi->port_type == FW_PORT_TYPE_KX4 || 6256 pi->port_type == FW_PORT_TYPE_KX || 6257 pi->port_type == FW_PORT_TYPE_KR || 6258 pi->port_type == FW_PORT_TYPE_BP_AP || 6259 pi->port_type == FW_PORT_TYPE_BP4_AP || 6260 pi->port_type == FW_PORT_TYPE_BP40_BA || 6261 pi->port_type == FW_PORT_TYPE_KR4_100G || 6262 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 6263 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 6264 } 6265 6266 static void 6267 build_medialist(struct port_info *pi) 6268 { 6269 uint32_t ss, speed; 6270 int unknown, mword, bit; 6271 struct link_config *lc; 6272 struct ifmedia *ifm; 6273 6274 PORT_LOCK_ASSERT_OWNED(pi); 6275 6276 if (pi->flags & FIXED_IFMEDIA) 6277 return; 6278 6279 /* 6280 * Rebuild the ifmedia list. 6281 */ 6282 ifm = &pi->media; 6283 ifmedia_removeall(ifm); 6284 lc = &pi->link_cfg; 6285 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 6286 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 6287 MPASS(ss != 0); 6288 no_media: 6289 MPASS(LIST_EMPTY(&ifm->ifm_list)); 6290 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 6291 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 6292 return; 6293 } 6294 6295 unknown = 0; 6296 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 6297 speed = 1 << bit; 6298 MPASS(speed & M_FW_PORT_CAP32_SPEED); 6299 if (ss & speed) { 6300 mword = port_mword(pi, speed); 6301 if (mword == IFM_NONE) { 6302 goto no_media; 6303 } else if (mword == IFM_UNKNOWN) 6304 unknown++; 6305 else 6306 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 6307 } 6308 } 6309 if (unknown > 0) /* Add one unknown for all unknown media types. */ 6310 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 6311 if (lc->pcaps & FW_PORT_CAP32_ANEG) 6312 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 6313 6314 set_current_media(pi); 6315 } 6316 6317 /* 6318 * Initialize the requested fields in the link config based on driver tunables. 6319 */ 6320 static void 6321 init_link_config(struct port_info *pi) 6322 { 6323 struct link_config *lc = &pi->link_cfg; 6324 6325 PORT_LOCK_ASSERT_OWNED(pi); 6326 6327 lc->requested_caps = 0; 6328 lc->requested_speed = 0; 6329 6330 if (t4_autoneg == 0) 6331 lc->requested_aneg = AUTONEG_DISABLE; 6332 else if (t4_autoneg == 1) 6333 lc->requested_aneg = AUTONEG_ENABLE; 6334 else 6335 lc->requested_aneg = AUTONEG_AUTO; 6336 6337 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6338 PAUSE_AUTONEG); 6339 6340 if (t4_fec & FEC_AUTO) 6341 lc->requested_fec = FEC_AUTO; 6342 else if (t4_fec == 0) 6343 lc->requested_fec = FEC_NONE; 6344 else { 6345 /* -1 is handled by the FEC_AUTO block above and not here. */ 6346 lc->requested_fec = t4_fec & 6347 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6348 if (lc->requested_fec == 0) 6349 lc->requested_fec = FEC_AUTO; 6350 } 6351 if (t4_force_fec < 0) 6352 lc->force_fec = -1; 6353 else if (t4_force_fec > 0) 6354 lc->force_fec = 1; 6355 else 6356 lc->force_fec = 0; 6357 } 6358 6359 /* 6360 * Makes sure that all requested settings comply with what's supported by the 6361 * port. Returns the number of settings that were invalid and had to be fixed. 6362 */ 6363 static int 6364 fixup_link_config(struct port_info *pi) 6365 { 6366 int n = 0; 6367 struct link_config *lc = &pi->link_cfg; 6368 uint32_t fwspeed; 6369 6370 PORT_LOCK_ASSERT_OWNED(pi); 6371 6372 /* Speed (when not autonegotiating) */ 6373 if (lc->requested_speed != 0) { 6374 fwspeed = speed_to_fwcap(lc->requested_speed); 6375 if ((fwspeed & lc->pcaps) == 0) { 6376 n++; 6377 lc->requested_speed = 0; 6378 } 6379 } 6380 6381 /* Link autonegotiation */ 6382 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6383 lc->requested_aneg == AUTONEG_DISABLE || 6384 lc->requested_aneg == AUTONEG_AUTO); 6385 if (lc->requested_aneg == AUTONEG_ENABLE && 6386 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6387 n++; 6388 lc->requested_aneg = AUTONEG_AUTO; 6389 } 6390 6391 /* Flow control */ 6392 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6393 if (lc->requested_fc & PAUSE_TX && 6394 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6395 n++; 6396 lc->requested_fc &= ~PAUSE_TX; 6397 } 6398 if (lc->requested_fc & PAUSE_RX && 6399 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6400 n++; 6401 lc->requested_fc &= ~PAUSE_RX; 6402 } 6403 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6404 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6405 n++; 6406 lc->requested_fc |= PAUSE_AUTONEG; 6407 } 6408 6409 /* FEC */ 6410 if ((lc->requested_fec & FEC_RS && 6411 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6412 (lc->requested_fec & FEC_BASER_RS && 6413 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6414 n++; 6415 lc->requested_fec = FEC_AUTO; 6416 } 6417 6418 return (n); 6419 } 6420 6421 /* 6422 * Apply the requested L1 settings, which are expected to be valid, to the 6423 * hardware. 6424 */ 6425 static int 6426 apply_link_config(struct port_info *pi) 6427 { 6428 struct adapter *sc = pi->adapter; 6429 struct link_config *lc = &pi->link_cfg; 6430 int rc; 6431 6432 #ifdef INVARIANTS 6433 ASSERT_SYNCHRONIZED_OP(sc); 6434 PORT_LOCK_ASSERT_OWNED(pi); 6435 6436 if (lc->requested_aneg == AUTONEG_ENABLE) 6437 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6438 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6439 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6440 if (lc->requested_fc & PAUSE_TX) 6441 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6442 if (lc->requested_fc & PAUSE_RX) 6443 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6444 if (lc->requested_fec & FEC_RS) 6445 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6446 if (lc->requested_fec & FEC_BASER_RS) 6447 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6448 #endif 6449 if (!(sc->flags & IS_VF)) { 6450 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc); 6451 if (rc != 0) { 6452 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6453 return (rc); 6454 } 6455 } 6456 6457 /* 6458 * An L1_CFG will almost always result in a link-change event if the 6459 * link is up, and the driver will refresh the actual fec/fc/etc. when 6460 * the notification is processed. If the link is down then the actual 6461 * settings are meaningless. 6462 * 6463 * This takes care of the case where a change in the L1 settings may not 6464 * result in a notification. 6465 */ 6466 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6467 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6468 6469 return (0); 6470 } 6471 6472 #define FW_MAC_EXACT_CHUNK 7 6473 struct mcaddr_ctx { 6474 if_t ifp; 6475 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6476 uint64_t hash; 6477 int i; 6478 int del; 6479 int rc; 6480 }; 6481 6482 static u_int 6483 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6484 { 6485 struct mcaddr_ctx *ctx = arg; 6486 struct vi_info *vi = if_getsoftc(ctx->ifp); 6487 struct port_info *pi = vi->pi; 6488 struct adapter *sc = pi->adapter; 6489 6490 if (ctx->rc < 0) 6491 return (0); 6492 6493 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6494 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6495 ctx->i++; 6496 6497 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6498 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6499 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6500 if (ctx->rc < 0) { 6501 int j; 6502 6503 for (j = 0; j < ctx->i; j++) { 6504 if_printf(ctx->ifp, 6505 "failed to add mc address" 6506 " %02x:%02x:%02x:" 6507 "%02x:%02x:%02x rc=%d\n", 6508 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6509 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6510 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6511 -ctx->rc); 6512 } 6513 return (0); 6514 } 6515 ctx->del = 0; 6516 ctx->i = 0; 6517 } 6518 6519 return (1); 6520 } 6521 6522 /* 6523 * Program the port's XGMAC based on parameters in ifnet. The caller also 6524 * indicates which parameters should be programmed (the rest are left alone). 6525 */ 6526 int 6527 update_mac_settings(if_t ifp, int flags) 6528 { 6529 int rc = 0; 6530 struct vi_info *vi = if_getsoftc(ifp); 6531 struct port_info *pi = vi->pi; 6532 struct adapter *sc = pi->adapter; 6533 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6534 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6535 6536 ASSERT_SYNCHRONIZED_OP(sc); 6537 KASSERT(flags, ("%s: not told what to update.", __func__)); 6538 6539 if (flags & XGMAC_MTU) 6540 mtu = if_getmtu(ifp); 6541 6542 if (flags & XGMAC_PROMISC) 6543 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6544 6545 if (flags & XGMAC_ALLMULTI) 6546 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6547 6548 if (flags & XGMAC_VLANEX) 6549 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6550 6551 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6552 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6553 allmulti, 1, vlanex, false); 6554 if (rc) { 6555 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6556 rc); 6557 return (rc); 6558 } 6559 } 6560 6561 if (flags & XGMAC_UCADDR) { 6562 uint8_t ucaddr[ETHER_ADDR_LEN]; 6563 6564 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6565 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6566 ucaddr, true, &vi->smt_idx); 6567 if (rc < 0) { 6568 rc = -rc; 6569 if_printf(ifp, "change_mac failed: %d\n", rc); 6570 return (rc); 6571 } else { 6572 vi->xact_addr_filt = rc; 6573 rc = 0; 6574 } 6575 } 6576 6577 if (flags & XGMAC_MCADDRS) { 6578 struct epoch_tracker et; 6579 struct mcaddr_ctx ctx; 6580 int j; 6581 6582 ctx.ifp = ifp; 6583 ctx.hash = 0; 6584 ctx.i = 0; 6585 ctx.del = 1; 6586 ctx.rc = 0; 6587 /* 6588 * Unlike other drivers, we accumulate list of pointers into 6589 * interface address lists and we need to keep it safe even 6590 * after if_foreach_llmaddr() returns, thus we must enter the 6591 * network epoch. 6592 */ 6593 NET_EPOCH_ENTER(et); 6594 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6595 if (ctx.rc < 0) { 6596 NET_EPOCH_EXIT(et); 6597 rc = -ctx.rc; 6598 return (rc); 6599 } 6600 if (ctx.i > 0) { 6601 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6602 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6603 NET_EPOCH_EXIT(et); 6604 if (rc < 0) { 6605 rc = -rc; 6606 for (j = 0; j < ctx.i; j++) { 6607 if_printf(ifp, 6608 "failed to add mcast address" 6609 " %02x:%02x:%02x:" 6610 "%02x:%02x:%02x rc=%d\n", 6611 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6612 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6613 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6614 rc); 6615 } 6616 return (rc); 6617 } 6618 ctx.del = 0; 6619 } else 6620 NET_EPOCH_EXIT(et); 6621 6622 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6623 if (rc != 0) 6624 if_printf(ifp, "failed to set mcast address hash: %d\n", 6625 rc); 6626 if (ctx.del == 0) { 6627 /* We clobbered the VXLAN entry if there was one. */ 6628 pi->vxlan_tcam_entry = false; 6629 } 6630 } 6631 6632 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6633 pi->vxlan_tcam_entry == false) { 6634 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6635 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6636 true); 6637 if (rc < 0) { 6638 rc = -rc; 6639 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6640 rc); 6641 } else { 6642 MPASS(rc == sc->rawf_base + pi->port_id); 6643 rc = 0; 6644 pi->vxlan_tcam_entry = true; 6645 } 6646 } 6647 6648 return (rc); 6649 } 6650 6651 /* 6652 * {begin|end}_synchronized_op must be called from the same thread. 6653 */ 6654 int 6655 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6656 char *wmesg) 6657 { 6658 int rc; 6659 6660 #ifdef WITNESS 6661 /* the caller thinks it's ok to sleep, but is it really? */ 6662 if (flags & SLEEP_OK) 6663 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 6664 #endif 6665 ADAPTER_LOCK(sc); 6666 for (;;) { 6667 6668 if (vi && IS_DETACHING(vi)) { 6669 rc = ENXIO; 6670 goto done; 6671 } 6672 6673 if (!IS_BUSY(sc)) { 6674 rc = 0; 6675 break; 6676 } 6677 6678 if (!(flags & SLEEP_OK)) { 6679 rc = EBUSY; 6680 goto done; 6681 } 6682 6683 if (mtx_sleep(&sc->flags, &sc->sc_lock, 6684 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) { 6685 rc = EINTR; 6686 goto done; 6687 } 6688 } 6689 6690 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6691 SET_BUSY(sc); 6692 #ifdef INVARIANTS 6693 sc->last_op = wmesg; 6694 sc->last_op_thr = curthread; 6695 sc->last_op_flags = flags; 6696 #endif 6697 6698 done: 6699 if (!(flags & HOLD_LOCK) || rc) 6700 ADAPTER_UNLOCK(sc); 6701 6702 return (rc); 6703 } 6704 6705 /* 6706 * Tell if_ioctl and if_init that the VI is going away. This is 6707 * special variant of begin_synchronized_op and must be paired with a 6708 * call to end_vi_detach. 6709 */ 6710 void 6711 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6712 { 6713 ADAPTER_LOCK(sc); 6714 SET_DETACHING(vi); 6715 wakeup(&sc->flags); 6716 while (IS_BUSY(sc)) 6717 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6718 SET_BUSY(sc); 6719 #ifdef INVARIANTS 6720 sc->last_op = "t4detach"; 6721 sc->last_op_thr = curthread; 6722 sc->last_op_flags = 0; 6723 #endif 6724 ADAPTER_UNLOCK(sc); 6725 } 6726 6727 void 6728 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6729 { 6730 ADAPTER_LOCK(sc); 6731 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6732 CLR_BUSY(sc); 6733 CLR_DETACHING(vi); 6734 wakeup(&sc->flags); 6735 ADAPTER_UNLOCK(sc); 6736 } 6737 6738 /* 6739 * {begin|end}_synchronized_op must be called from the same thread. 6740 */ 6741 void 6742 end_synchronized_op(struct adapter *sc, int flags) 6743 { 6744 6745 if (flags & LOCK_HELD) 6746 ADAPTER_LOCK_ASSERT_OWNED(sc); 6747 else 6748 ADAPTER_LOCK(sc); 6749 6750 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6751 CLR_BUSY(sc); 6752 wakeup(&sc->flags); 6753 ADAPTER_UNLOCK(sc); 6754 } 6755 6756 static int 6757 cxgbe_init_synchronized(struct vi_info *vi) 6758 { 6759 struct port_info *pi = vi->pi; 6760 struct adapter *sc = pi->adapter; 6761 if_t ifp = vi->ifp; 6762 int rc = 0, i; 6763 struct sge_txq *txq; 6764 6765 ASSERT_SYNCHRONIZED_OP(sc); 6766 6767 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6768 return (0); /* already running */ 6769 6770 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6771 return (rc); /* error message displayed already */ 6772 6773 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6774 return (rc); /* error message displayed already */ 6775 6776 rc = update_mac_settings(ifp, XGMAC_ALL); 6777 if (rc) 6778 goto done; /* error message displayed already */ 6779 6780 PORT_LOCK(pi); 6781 if (pi->up_vis == 0) { 6782 t4_update_port_info(pi); 6783 fixup_link_config(pi); 6784 build_medialist(pi); 6785 apply_link_config(pi); 6786 } 6787 6788 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6789 if (rc != 0) { 6790 if_printf(ifp, "enable_vi failed: %d\n", rc); 6791 PORT_UNLOCK(pi); 6792 goto done; 6793 } 6794 6795 /* 6796 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6797 * if this changes. 6798 */ 6799 6800 for_each_txq(vi, i, txq) { 6801 TXQ_LOCK(txq); 6802 txq->eq.flags |= EQ_ENABLED; 6803 TXQ_UNLOCK(txq); 6804 } 6805 6806 /* 6807 * The first iq of the first port to come up is used for tracing. 6808 */ 6809 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6810 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6811 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 6812 pi->flags |= HAS_TRACEQ; 6813 } 6814 6815 /* all ok */ 6816 pi->up_vis++; 6817 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6818 if (pi->link_cfg.link_ok) 6819 t4_os_link_changed(pi); 6820 PORT_UNLOCK(pi); 6821 6822 mtx_lock(&vi->tick_mtx); 6823 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6824 callout_reset(&vi->tick, hz, vi_tick, vi); 6825 else 6826 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6827 mtx_unlock(&vi->tick_mtx); 6828 done: 6829 if (rc != 0) 6830 cxgbe_uninit_synchronized(vi); 6831 6832 return (rc); 6833 } 6834 6835 /* 6836 * Idempotent. 6837 */ 6838 static int 6839 cxgbe_uninit_synchronized(struct vi_info *vi) 6840 { 6841 struct port_info *pi = vi->pi; 6842 struct adapter *sc = pi->adapter; 6843 if_t ifp = vi->ifp; 6844 int rc, i; 6845 struct sge_txq *txq; 6846 6847 ASSERT_SYNCHRONIZED_OP(sc); 6848 6849 if (!(vi->flags & VI_INIT_DONE)) { 6850 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6851 KASSERT(0, ("uninited VI is running")); 6852 if_printf(ifp, "uninited VI with running ifnet. " 6853 "vi->flags 0x%016lx, if_flags 0x%08x, " 6854 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6855 if_getdrvflags(ifp)); 6856 } 6857 return (0); 6858 } 6859 6860 /* 6861 * Disable the VI so that all its data in either direction is discarded 6862 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6863 * tick) intact as the TP can deliver negative advice or data that it's 6864 * holding in its RAM (for an offloaded connection) even after the VI is 6865 * disabled. 6866 */ 6867 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6868 if (rc) { 6869 if_printf(ifp, "disable_vi failed: %d\n", rc); 6870 return (rc); 6871 } 6872 6873 for_each_txq(vi, i, txq) { 6874 TXQ_LOCK(txq); 6875 txq->eq.flags &= ~EQ_ENABLED; 6876 TXQ_UNLOCK(txq); 6877 } 6878 6879 mtx_lock(&vi->tick_mtx); 6880 callout_stop(&vi->tick); 6881 mtx_unlock(&vi->tick_mtx); 6882 6883 PORT_LOCK(pi); 6884 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6885 PORT_UNLOCK(pi); 6886 return (0); 6887 } 6888 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6889 pi->up_vis--; 6890 if (pi->up_vis > 0) { 6891 PORT_UNLOCK(pi); 6892 return (0); 6893 } 6894 6895 pi->link_cfg.link_ok = false; 6896 pi->link_cfg.speed = 0; 6897 pi->link_cfg.link_down_rc = 255; 6898 t4_os_link_changed(pi); 6899 PORT_UNLOCK(pi); 6900 6901 return (0); 6902 } 6903 6904 /* 6905 * It is ok for this function to fail midway and return right away. t4_detach 6906 * will walk the entire sc->irq list and clean up whatever is valid. 6907 */ 6908 int 6909 t4_setup_intr_handlers(struct adapter *sc) 6910 { 6911 int rc, rid, p, q, v; 6912 char s[8]; 6913 struct irq *irq; 6914 struct port_info *pi; 6915 struct vi_info *vi; 6916 struct sge *sge = &sc->sge; 6917 struct sge_rxq *rxq; 6918 #ifdef TCP_OFFLOAD 6919 struct sge_ofld_rxq *ofld_rxq; 6920 #endif 6921 #ifdef DEV_NETMAP 6922 struct sge_nm_rxq *nm_rxq; 6923 #endif 6924 #ifdef RSS 6925 int nbuckets = rss_getnumbuckets(); 6926 #endif 6927 6928 /* 6929 * Setup interrupts. 6930 */ 6931 irq = &sc->irq[0]; 6932 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6933 if (forwarding_intr_to_fwq(sc)) 6934 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6935 6936 /* Multiple interrupts. */ 6937 if (sc->flags & IS_VF) 6938 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6939 ("%s: too few intr.", __func__)); 6940 else 6941 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6942 ("%s: too few intr.", __func__)); 6943 6944 /* The first one is always error intr on PFs */ 6945 if (!(sc->flags & IS_VF)) { 6946 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6947 if (rc != 0) 6948 return (rc); 6949 irq++; 6950 rid++; 6951 } 6952 6953 /* The second one is always the firmware event queue (first on VFs) */ 6954 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6955 if (rc != 0) 6956 return (rc); 6957 irq++; 6958 rid++; 6959 6960 for_each_port(sc, p) { 6961 pi = sc->port[p]; 6962 for_each_vi(pi, v, vi) { 6963 vi->first_intr = rid - 1; 6964 6965 if (vi->nnmrxq > 0) { 6966 int n = max(vi->nrxq, vi->nnmrxq); 6967 6968 rxq = &sge->rxq[vi->first_rxq]; 6969 #ifdef DEV_NETMAP 6970 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6971 #endif 6972 for (q = 0; q < n; q++) { 6973 snprintf(s, sizeof(s), "%x%c%x", p, 6974 'a' + v, q); 6975 if (q < vi->nrxq) 6976 irq->rxq = rxq++; 6977 #ifdef DEV_NETMAP 6978 if (q < vi->nnmrxq) 6979 irq->nm_rxq = nm_rxq++; 6980 6981 if (irq->nm_rxq != NULL && 6982 irq->rxq == NULL) { 6983 /* Netmap rx only */ 6984 rc = t4_alloc_irq(sc, irq, rid, 6985 t4_nm_intr, irq->nm_rxq, s); 6986 } 6987 if (irq->nm_rxq != NULL && 6988 irq->rxq != NULL) { 6989 /* NIC and Netmap rx */ 6990 rc = t4_alloc_irq(sc, irq, rid, 6991 t4_vi_intr, irq, s); 6992 } 6993 #endif 6994 if (irq->rxq != NULL && 6995 irq->nm_rxq == NULL) { 6996 /* NIC rx only */ 6997 rc = t4_alloc_irq(sc, irq, rid, 6998 t4_intr, irq->rxq, s); 6999 } 7000 if (rc != 0) 7001 return (rc); 7002 #ifdef RSS 7003 if (q < vi->nrxq) { 7004 bus_bind_intr(sc->dev, irq->res, 7005 rss_getcpu(q % nbuckets)); 7006 } 7007 #endif 7008 irq++; 7009 rid++; 7010 vi->nintr++; 7011 } 7012 } else { 7013 for_each_rxq(vi, q, rxq) { 7014 snprintf(s, sizeof(s), "%x%c%x", p, 7015 'a' + v, q); 7016 rc = t4_alloc_irq(sc, irq, rid, 7017 t4_intr, rxq, s); 7018 if (rc != 0) 7019 return (rc); 7020 #ifdef RSS 7021 bus_bind_intr(sc->dev, irq->res, 7022 rss_getcpu(q % nbuckets)); 7023 #endif 7024 irq++; 7025 rid++; 7026 vi->nintr++; 7027 } 7028 } 7029 #ifdef TCP_OFFLOAD 7030 for_each_ofld_rxq(vi, q, ofld_rxq) { 7031 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 7032 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 7033 ofld_rxq, s); 7034 if (rc != 0) 7035 return (rc); 7036 irq++; 7037 rid++; 7038 vi->nintr++; 7039 } 7040 #endif 7041 } 7042 } 7043 MPASS(irq == &sc->irq[sc->intr_count]); 7044 7045 return (0); 7046 } 7047 7048 static void 7049 write_global_rss_key(struct adapter *sc) 7050 { 7051 int i; 7052 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7053 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7054 7055 CTASSERT(RSS_KEYSIZE == 40); 7056 7057 rss_getkey((void *)&raw_rss_key[0]); 7058 for (i = 0; i < nitems(rss_key); i++) { 7059 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 7060 } 7061 t4_write_rss_key(sc, &rss_key[0], -1, 1); 7062 } 7063 7064 /* 7065 * Idempotent. 7066 */ 7067 static int 7068 adapter_full_init(struct adapter *sc) 7069 { 7070 int rc, i; 7071 7072 ASSERT_SYNCHRONIZED_OP(sc); 7073 7074 /* 7075 * queues that belong to the adapter (not any particular port). 7076 */ 7077 rc = t4_setup_adapter_queues(sc); 7078 if (rc != 0) 7079 return (rc); 7080 7081 MPASS(sc->params.nports <= nitems(sc->tq)); 7082 for (i = 0; i < sc->params.nports; i++) { 7083 if (sc->tq[i] != NULL) 7084 continue; 7085 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 7086 taskqueue_thread_enqueue, &sc->tq[i]); 7087 if (sc->tq[i] == NULL) { 7088 CH_ERR(sc, "failed to allocate task queue %d\n", i); 7089 return (ENOMEM); 7090 } 7091 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 7092 device_get_nameunit(sc->dev), i); 7093 } 7094 7095 if (!(sc->flags & IS_VF)) { 7096 write_global_rss_key(sc); 7097 t4_intr_enable(sc); 7098 } 7099 return (0); 7100 } 7101 7102 int 7103 adapter_init(struct adapter *sc) 7104 { 7105 int rc; 7106 7107 ASSERT_SYNCHRONIZED_OP(sc); 7108 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 7109 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 7110 ("%s: FULL_INIT_DONE already", __func__)); 7111 7112 rc = adapter_full_init(sc); 7113 if (rc != 0) 7114 adapter_full_uninit(sc); 7115 else 7116 sc->flags |= FULL_INIT_DONE; 7117 7118 return (rc); 7119 } 7120 7121 /* 7122 * Idempotent. 7123 */ 7124 static void 7125 adapter_full_uninit(struct adapter *sc) 7126 { 7127 int i; 7128 7129 t4_teardown_adapter_queues(sc); 7130 7131 for (i = 0; i < nitems(sc->tq); i++) { 7132 if (sc->tq[i] == NULL) 7133 continue; 7134 taskqueue_free(sc->tq[i]); 7135 sc->tq[i] = NULL; 7136 } 7137 7138 sc->flags &= ~FULL_INIT_DONE; 7139 } 7140 7141 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 7142 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 7143 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 7144 RSS_HASHTYPE_RSS_UDP_IPV6) 7145 7146 /* Translates kernel hash types to hardware. */ 7147 static int 7148 hashconfig_to_hashen(int hashconfig) 7149 { 7150 int hashen = 0; 7151 7152 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 7153 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 7154 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 7155 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 7156 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 7157 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7158 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7159 } 7160 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 7161 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7162 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7163 } 7164 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 7165 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7166 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 7167 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7168 7169 return (hashen); 7170 } 7171 7172 /* Translates hardware hash types to kernel. */ 7173 static int 7174 hashen_to_hashconfig(int hashen) 7175 { 7176 int hashconfig = 0; 7177 7178 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 7179 /* 7180 * If UDP hashing was enabled it must have been enabled for 7181 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 7182 * enabling any 4-tuple hash is nonsense configuration. 7183 */ 7184 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7185 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 7186 7187 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7188 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 7189 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7190 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 7191 } 7192 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7193 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 7194 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7195 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 7196 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 7197 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 7198 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 7199 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 7200 7201 return (hashconfig); 7202 } 7203 7204 /* 7205 * Idempotent. 7206 */ 7207 static int 7208 vi_full_init(struct vi_info *vi) 7209 { 7210 struct adapter *sc = vi->adapter; 7211 struct sge_rxq *rxq; 7212 int rc, i, j, extra; 7213 int hashconfig = rss_gethashconfig(); 7214 #ifdef RSS 7215 int nbuckets = rss_getnumbuckets(); 7216 #endif 7217 7218 ASSERT_SYNCHRONIZED_OP(sc); 7219 7220 /* 7221 * Allocate tx/rx/fl queues for this VI. 7222 */ 7223 rc = t4_setup_vi_queues(vi); 7224 if (rc != 0) 7225 return (rc); 7226 7227 /* 7228 * Setup RSS for this VI. Save a copy of the RSS table for later use. 7229 */ 7230 if (vi->nrxq > vi->rss_size) { 7231 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 7232 "some queues will never receive traffic.\n", vi->nrxq, 7233 vi->rss_size); 7234 } else if (vi->rss_size % vi->nrxq) { 7235 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 7236 "expect uneven traffic distribution.\n", vi->nrxq, 7237 vi->rss_size); 7238 } 7239 #ifdef RSS 7240 if (vi->nrxq != nbuckets) { 7241 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 7242 "performance will be impacted.\n", vi->nrxq, nbuckets); 7243 } 7244 #endif 7245 if (vi->rss == NULL) 7246 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 7247 M_ZERO | M_WAITOK); 7248 for (i = 0; i < vi->rss_size;) { 7249 #ifdef RSS 7250 j = rss_get_indirection_to_bucket(i); 7251 j %= vi->nrxq; 7252 rxq = &sc->sge.rxq[vi->first_rxq + j]; 7253 vi->rss[i++] = rxq->iq.abs_id; 7254 #else 7255 for_each_rxq(vi, j, rxq) { 7256 vi->rss[i++] = rxq->iq.abs_id; 7257 if (i == vi->rss_size) 7258 break; 7259 } 7260 #endif 7261 } 7262 7263 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 7264 vi->rss, vi->rss_size); 7265 if (rc != 0) { 7266 CH_ERR(vi, "rss_config failed: %d\n", rc); 7267 return (rc); 7268 } 7269 7270 vi->hashen = hashconfig_to_hashen(hashconfig); 7271 7272 /* 7273 * We may have had to enable some hashes even though the global config 7274 * wants them disabled. This is a potential problem that must be 7275 * reported to the user. 7276 */ 7277 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 7278 7279 /* 7280 * If we consider only the supported hash types, then the enabled hashes 7281 * are a superset of the requested hashes. In other words, there cannot 7282 * be any supported hash that was requested but not enabled, but there 7283 * can be hashes that were not requested but had to be enabled. 7284 */ 7285 extra &= SUPPORTED_RSS_HASHTYPES; 7286 MPASS((extra & hashconfig) == 0); 7287 7288 if (extra) { 7289 CH_ALERT(vi, 7290 "global RSS config (0x%x) cannot be accommodated.\n", 7291 hashconfig); 7292 } 7293 if (extra & RSS_HASHTYPE_RSS_IPV4) 7294 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 7295 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 7296 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 7297 if (extra & RSS_HASHTYPE_RSS_IPV6) 7298 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 7299 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 7300 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 7301 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 7302 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 7303 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 7304 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 7305 7306 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 7307 0, 0); 7308 if (rc != 0) { 7309 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7310 return (rc); 7311 } 7312 7313 return (0); 7314 } 7315 7316 int 7317 vi_init(struct vi_info *vi) 7318 { 7319 int rc; 7320 7321 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7322 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7323 ("%s: VI_INIT_DONE already", __func__)); 7324 7325 rc = vi_full_init(vi); 7326 if (rc != 0) 7327 vi_full_uninit(vi); 7328 else 7329 vi->flags |= VI_INIT_DONE; 7330 7331 return (rc); 7332 } 7333 7334 /* 7335 * Idempotent. 7336 */ 7337 static void 7338 vi_full_uninit(struct vi_info *vi) 7339 { 7340 7341 if (vi->flags & VI_INIT_DONE) { 7342 quiesce_vi(vi); 7343 free(vi->rss, M_CXGBE); 7344 free(vi->nm_rss, M_CXGBE); 7345 } 7346 7347 t4_teardown_vi_queues(vi); 7348 vi->flags &= ~VI_INIT_DONE; 7349 } 7350 7351 static void 7352 quiesce_txq(struct sge_txq *txq) 7353 { 7354 struct sge_eq *eq = &txq->eq; 7355 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7356 7357 MPASS(eq->flags & EQ_SW_ALLOCATED); 7358 MPASS(!(eq->flags & EQ_ENABLED)); 7359 7360 /* Wait for the mp_ring to empty. */ 7361 while (!mp_ring_is_idle(txq->r)) { 7362 mp_ring_check_drainage(txq->r, 4096); 7363 pause("rquiesce", 1); 7364 } 7365 MPASS(txq->txp.npkt == 0); 7366 7367 if (eq->flags & EQ_HW_ALLOCATED) { 7368 /* 7369 * Hardware is alive and working normally. Wait for it to 7370 * finish and then wait for the driver to catch up and reclaim 7371 * all descriptors. 7372 */ 7373 while (spg->cidx != htobe16(eq->pidx)) 7374 pause("equiesce", 1); 7375 while (eq->cidx != eq->pidx) 7376 pause("dquiesce", 1); 7377 } else { 7378 /* 7379 * Hardware is unavailable. Discard all pending tx and reclaim 7380 * descriptors directly. 7381 */ 7382 TXQ_LOCK(txq); 7383 while (eq->cidx != eq->pidx) { 7384 struct mbuf *m, *nextpkt; 7385 struct tx_sdesc *txsd; 7386 7387 txsd = &txq->sdesc[eq->cidx]; 7388 for (m = txsd->m; m != NULL; m = nextpkt) { 7389 nextpkt = m->m_nextpkt; 7390 m->m_nextpkt = NULL; 7391 m_freem(m); 7392 } 7393 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7394 } 7395 spg->pidx = spg->cidx = htobe16(eq->cidx); 7396 TXQ_UNLOCK(txq); 7397 } 7398 } 7399 7400 static void 7401 quiesce_wrq(struct sge_wrq *wrq) 7402 { 7403 struct wrqe *wr; 7404 7405 TXQ_LOCK(wrq); 7406 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7407 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7408 #ifdef INVARIANTS 7409 wrq->nwr_pending--; 7410 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7411 #endif 7412 free(wr, M_CXGBE); 7413 } 7414 MPASS(wrq->nwr_pending == 0); 7415 MPASS(wrq->ndesc_needed == 0); 7416 wrq->nwr_pending = 0; 7417 wrq->ndesc_needed = 0; 7418 TXQ_UNLOCK(wrq); 7419 } 7420 7421 static void 7422 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7423 { 7424 /* Synchronize with the interrupt handler */ 7425 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7426 pause("iqfree", 1); 7427 7428 if (fl != NULL) { 7429 MPASS(iq->flags & IQ_HAS_FL); 7430 7431 mtx_lock(&sc->sfl_lock); 7432 FL_LOCK(fl); 7433 fl->flags |= FL_DOOMED; 7434 FL_UNLOCK(fl); 7435 callout_stop(&sc->sfl_callout); 7436 mtx_unlock(&sc->sfl_lock); 7437 7438 KASSERT((fl->flags & FL_STARVING) == 0, 7439 ("%s: still starving", __func__)); 7440 7441 /* Release all buffers if hardware is no longer available. */ 7442 if (!(iq->flags & IQ_HW_ALLOCATED)) 7443 free_fl_buffers(sc, fl); 7444 } 7445 } 7446 7447 /* 7448 * Wait for all activity on all the queues of the VI to complete. It is assumed 7449 * that no new work is being enqueued by the hardware or the driver. That part 7450 * should be arranged before calling this function. 7451 */ 7452 static void 7453 quiesce_vi(struct vi_info *vi) 7454 { 7455 int i; 7456 struct adapter *sc = vi->adapter; 7457 struct sge_rxq *rxq; 7458 struct sge_txq *txq; 7459 #ifdef TCP_OFFLOAD 7460 struct sge_ofld_rxq *ofld_rxq; 7461 #endif 7462 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7463 struct sge_ofld_txq *ofld_txq; 7464 #endif 7465 7466 if (!(vi->flags & VI_INIT_DONE)) 7467 return; 7468 7469 for_each_txq(vi, i, txq) { 7470 quiesce_txq(txq); 7471 } 7472 7473 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7474 for_each_ofld_txq(vi, i, ofld_txq) { 7475 quiesce_wrq(&ofld_txq->wrq); 7476 } 7477 #endif 7478 7479 for_each_rxq(vi, i, rxq) { 7480 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7481 } 7482 7483 #ifdef TCP_OFFLOAD 7484 for_each_ofld_rxq(vi, i, ofld_rxq) { 7485 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7486 } 7487 #endif 7488 } 7489 7490 static int 7491 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7492 driver_intr_t *handler, void *arg, char *name) 7493 { 7494 int rc; 7495 7496 irq->rid = rid; 7497 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7498 RF_SHAREABLE | RF_ACTIVE); 7499 if (irq->res == NULL) { 7500 device_printf(sc->dev, 7501 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7502 return (ENOMEM); 7503 } 7504 7505 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7506 NULL, handler, arg, &irq->tag); 7507 if (rc != 0) { 7508 device_printf(sc->dev, 7509 "failed to setup interrupt for rid %d, name %s: %d\n", 7510 rid, name, rc); 7511 } else if (name) 7512 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7513 7514 return (rc); 7515 } 7516 7517 static int 7518 t4_free_irq(struct adapter *sc, struct irq *irq) 7519 { 7520 if (irq->tag) 7521 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7522 if (irq->res) 7523 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7524 7525 bzero(irq, sizeof(*irq)); 7526 7527 return (0); 7528 } 7529 7530 static void 7531 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7532 { 7533 7534 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7535 t4_get_regs(sc, buf, regs->len); 7536 } 7537 7538 #define A_PL_INDIR_CMD 0x1f8 7539 7540 #define S_PL_AUTOINC 31 7541 #define M_PL_AUTOINC 0x1U 7542 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7543 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7544 7545 #define S_PL_VFID 20 7546 #define M_PL_VFID 0xffU 7547 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7548 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7549 7550 #define S_PL_ADDR 0 7551 #define M_PL_ADDR 0xfffffU 7552 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7553 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7554 7555 #define A_PL_INDIR_DATA 0x1fc 7556 7557 static uint64_t 7558 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7559 { 7560 u32 stats[2]; 7561 7562 if (sc->flags & IS_VF) { 7563 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7564 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7565 } else { 7566 mtx_assert(&sc->reg_lock, MA_OWNED); 7567 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7568 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7569 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7570 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7571 } 7572 return (((uint64_t)stats[1]) << 32 | stats[0]); 7573 } 7574 7575 static void 7576 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7577 { 7578 7579 #define GET_STAT(name) \ 7580 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7581 7582 if (!(sc->flags & IS_VF)) 7583 mtx_lock(&sc->reg_lock); 7584 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7585 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7586 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7587 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7588 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7589 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7590 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7591 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7592 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7593 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7594 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7595 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7596 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7597 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7598 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7599 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7600 if (!(sc->flags & IS_VF)) 7601 mtx_unlock(&sc->reg_lock); 7602 7603 #undef GET_STAT 7604 } 7605 7606 static void 7607 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7608 { 7609 int reg; 7610 7611 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7612 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7613 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7614 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7615 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7616 } 7617 7618 static void 7619 vi_refresh_stats(struct vi_info *vi) 7620 { 7621 struct timeval tv; 7622 const struct timeval interval = {0, 250000}; /* 250ms */ 7623 7624 mtx_assert(&vi->tick_mtx, MA_OWNED); 7625 7626 if (vi->flags & VI_SKIP_STATS) 7627 return; 7628 7629 getmicrotime(&tv); 7630 timevalsub(&tv, &interval); 7631 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7632 return; 7633 7634 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7635 getmicrotime(&vi->last_refreshed); 7636 } 7637 7638 static void 7639 cxgbe_refresh_stats(struct vi_info *vi) 7640 { 7641 u_int i, v, tnl_cong_drops, chan_map; 7642 struct timeval tv; 7643 const struct timeval interval = {0, 250000}; /* 250ms */ 7644 struct port_info *pi; 7645 struct adapter *sc; 7646 7647 mtx_assert(&vi->tick_mtx, MA_OWNED); 7648 7649 if (vi->flags & VI_SKIP_STATS) 7650 return; 7651 7652 getmicrotime(&tv); 7653 timevalsub(&tv, &interval); 7654 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7655 return; 7656 7657 pi = vi->pi; 7658 sc = vi->adapter; 7659 tnl_cong_drops = 0; 7660 t4_get_port_stats(sc, pi->hw_port, &pi->stats); 7661 chan_map = pi->rx_e_chan_map; 7662 while (chan_map) { 7663 i = ffs(chan_map) - 1; 7664 mtx_lock(&sc->reg_lock); 7665 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7666 A_TP_MIB_TNL_CNG_DROP_0 + i); 7667 mtx_unlock(&sc->reg_lock); 7668 tnl_cong_drops += v; 7669 chan_map &= ~(1 << i); 7670 } 7671 pi->tnl_cong_drops = tnl_cong_drops; 7672 getmicrotime(&vi->last_refreshed); 7673 } 7674 7675 static void 7676 cxgbe_tick(void *arg) 7677 { 7678 struct vi_info *vi = arg; 7679 7680 MPASS(IS_MAIN_VI(vi)); 7681 mtx_assert(&vi->tick_mtx, MA_OWNED); 7682 7683 cxgbe_refresh_stats(vi); 7684 callout_schedule(&vi->tick, hz); 7685 } 7686 7687 static void 7688 vi_tick(void *arg) 7689 { 7690 struct vi_info *vi = arg; 7691 7692 mtx_assert(&vi->tick_mtx, MA_OWNED); 7693 7694 vi_refresh_stats(vi); 7695 callout_schedule(&vi->tick, hz); 7696 } 7697 7698 /* CIM inbound queues */ 7699 static const char *t4_ibq[CIM_NUM_IBQ] = { 7700 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi" 7701 }; 7702 static const char *t7_ibq[CIM_NUM_IBQ_T7] = { 7703 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7704 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3", 7705 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7" 7706 }; 7707 static const char *t7_ibq_sec[] = { 7708 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7709 NULL, NULL, NULL, "ibq_ipc0" 7710 }; 7711 7712 /* CIM outbound queues */ 7713 static const char *t4_obq[CIM_NUM_OBQ_T5] = { 7714 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7715 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */ 7716 }; 7717 static const char *t7_obq[CIM_NUM_OBQ_T7] = { 7718 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7719 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3", 7720 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7" 7721 }; 7722 static const char *t7_obq_sec[] = { 7723 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL, 7724 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0" 7725 }; 7726 7727 static void 7728 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 7729 struct sysctl_oid_list *c0) 7730 { 7731 struct sysctl_oid *oid; 7732 struct sysctl_oid_list *children1; 7733 int i, j, qcount; 7734 char s[16]; 7735 const char **qname; 7736 7737 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim", 7738 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block"); 7739 c0 = SYSCTL_CHILDREN(oid); 7740 7741 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL, 7742 sc->params.ncores, "# of active CIM cores"); 7743 7744 for (i = 0; i < sc->params.ncores; i++) { 7745 snprintf(s, sizeof(s), "%u", i); 7746 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s, 7747 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core"); 7748 children1 = SYSCTL_CHILDREN(oid); 7749 7750 /* 7751 * CTLFLAG_SKIP because the misc.devlog sysctl already displays 7752 * the log for all cores. Use this sysctl to get the log for a 7753 * particular core only. 7754 */ 7755 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog", 7756 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP, 7757 sc, i, sysctl_devlog, "A", "firmware's device log"); 7758 7759 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg", 7760 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7761 sysctl_loadavg, "A", 7762 "microprocessor load averages (select firmwares only)"); 7763 7764 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg", 7765 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7766 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg, 7767 "A", "Queue configuration"); 7768 7769 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la", 7770 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7771 sysctl_cim_la, "A", "Logic analyzer"); 7772 7773 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la", 7774 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7775 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7776 7777 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la", 7778 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7779 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7780 7781 /* IBQs */ 7782 switch (chip_id(sc)) { 7783 case CHELSIO_T4: 7784 case CHELSIO_T5: 7785 case CHELSIO_T6: 7786 qname = &t4_ibq[0]; 7787 qcount = nitems(t4_ibq); 7788 break; 7789 case CHELSIO_T7: 7790 default: 7791 if (i == 0) { 7792 qname = &t7_ibq[0]; 7793 qcount = nitems(t7_ibq); 7794 } else { 7795 qname = &t7_ibq_sec[0]; 7796 qcount = nitems(t7_ibq_sec); 7797 } 7798 break; 7799 } 7800 MPASS(qcount <= sc->chip_params->cim_num_ibq); 7801 for (j = 0; j < qcount; j++) { 7802 if (qname[j] == NULL) 7803 continue; 7804 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7805 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7806 (i << 16) | j, sysctl_cim_ibq, "A", NULL); 7807 } 7808 7809 /* OBQs */ 7810 switch (chip_id(sc)) { 7811 case CHELSIO_T4: 7812 qname = t4_obq; 7813 qcount = CIM_NUM_OBQ; 7814 break; 7815 case CHELSIO_T5: 7816 case CHELSIO_T6: 7817 qname = t4_obq; 7818 qcount = nitems(t4_obq); 7819 break; 7820 case CHELSIO_T7: 7821 default: 7822 if (i == 0) { 7823 qname = t7_obq; 7824 qcount = nitems(t7_obq); 7825 } else { 7826 qname = t7_obq_sec; 7827 qcount = nitems(t7_obq_sec); 7828 } 7829 break; 7830 } 7831 MPASS(qcount <= sc->chip_params->cim_num_obq); 7832 for (j = 0; j < qcount; j++) { 7833 if (qname[j] == NULL) 7834 continue; 7835 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7836 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7837 (i << 16) | j, sysctl_cim_obq, "A", NULL); 7838 } 7839 } 7840 } 7841 7842 /* 7843 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7844 */ 7845 static char *caps_decoder[] = { 7846 "\20\001IPMI\002NCSI", /* 0: NBM */ 7847 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7848 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7849 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7850 "\006HASHFILTER\007ETHOFLD", 7851 "\20\001TOE\002SENDPATH", /* 4: TOE */ 7852 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */ 7853 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7854 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7855 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7856 "\007T10DIF" 7857 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7858 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7859 "\004TLS_HW,\005TOE_IPSEC", 7860 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7861 "\004PO_INITIATOR\005PO_TARGET", 7862 "\20\001NVMe_TCP", /* 9: NVMe */ 7863 }; 7864 7865 void 7866 t4_sysctls(struct adapter *sc) 7867 { 7868 struct sysctl_ctx_list *ctx = &sc->ctx; 7869 struct sysctl_oid *oid; 7870 struct sysctl_oid_list *children, *c0; 7871 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7872 7873 /* 7874 * dev.t4nex.X. 7875 */ 7876 oid = device_get_sysctl_tree(sc->dev); 7877 c0 = children = SYSCTL_CHILDREN(oid); 7878 7879 sc->sc_do_rxcopy = 1; 7880 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7881 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7882 7883 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7884 sc->params.nports, "# of ports"); 7885 7886 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7887 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7888 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7889 "available doorbells"); 7890 7891 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7892 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7893 7894 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7895 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7896 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7897 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7898 7899 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7900 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7901 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7902 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7903 7904 t4_sge_sysctls(sc, ctx, children); 7905 7906 sc->lro_timeout = 100; 7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7908 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7909 7910 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7911 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7912 7913 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW, 7914 &sc->intr_flags, 0, "flags for the slow interrupt handler"); 7915 7916 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7917 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7918 7919 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7920 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7921 7922 if (sc->flags & IS_VF) 7923 return; 7924 7925 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7926 NULL, chip_rev(sc), "chip hardware revision"); 7927 7928 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7929 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7930 7931 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7932 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7933 7934 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7935 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7936 7937 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7938 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7939 7940 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7941 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7942 7943 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7944 sc->er_version, 0, "expansion ROM version"); 7945 7946 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7947 sc->bs_version, 0, "bootstrap firmware version"); 7948 7949 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7950 NULL, sc->params.scfg_vers, "serial config version"); 7951 7952 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7953 NULL, sc->params.vpd_vers, "VPD version"); 7954 7955 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7956 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7957 7958 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7959 sc->cfcsum, "config file checksum"); 7960 7961 #define SYSCTL_CAP(name, n, text) \ 7962 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7963 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7964 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7965 "available " text " capabilities") 7966 7967 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7968 SYSCTL_CAP(linkcaps, 1, "link"); 7969 SYSCTL_CAP(switchcaps, 2, "switch"); 7970 SYSCTL_CAP(nvmecaps, 9, "NVMe"); 7971 SYSCTL_CAP(niccaps, 3, "NIC"); 7972 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7973 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7974 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7975 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7976 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7977 #undef SYSCTL_CAP 7978 7979 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7980 NULL, sc->tids.nftids, "number of filters"); 7981 7982 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7983 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7984 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7985 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7986 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7987 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7988 7989 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7990 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7991 "I", "core Vdd (in mV)"); 7992 7993 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7994 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7995 sysctl_cpus, "A", "local CPUs"); 7996 7997 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7998 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7999 sysctl_cpus, "A", "preferred CPUs for interrupts"); 8000 8001 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 8002 &sc->swintr, 0, "software triggered interrupts"); 8003 8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 8005 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 8006 "1 = reset adapter, 0 = zero reset counter"); 8007 8008 /* 8009 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 8010 */ 8011 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 8012 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 8013 "logs and miscellaneous information"); 8014 children = SYSCTL_CHILDREN(oid); 8015 8016 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 8017 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8018 sysctl_cctrl, "A", "congestion control"); 8019 8020 cim_sysctls(sc, ctx, children); 8021 8022 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 8023 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8024 sysctl_cpl_stats, "A", "CPL statistics"); 8025 8026 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 8027 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8028 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 8029 8030 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 8031 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8032 sysctl_tid_stats, "A", "tid stats"); 8033 8034 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 8035 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1, 8036 sysctl_devlog, "A", "firmware's device log (all cores)"); 8037 8038 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 8039 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8040 sysctl_fcoe_stats, "A", "FCoE statistics"); 8041 8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 8043 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8044 sysctl_hw_sched, "A", "hardware scheduler "); 8045 8046 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 8047 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8048 sysctl_l2t, "A", "hardware L2 table"); 8049 8050 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 8051 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8052 sysctl_smt, "A", "hardware source MAC table"); 8053 8054 #ifdef INET6 8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 8056 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8057 sysctl_clip, "A", "active CLIP table entries"); 8058 #endif 8059 8060 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 8061 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8062 sysctl_lb_stats, "A", "loopback statistics"); 8063 8064 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 8065 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8066 sysctl_meminfo, "A", "memory regions"); 8067 8068 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 8069 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8070 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 : 8071 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam), 8072 "A", "MPS TCAM entries"); 8073 8074 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 8075 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8076 sysctl_path_mtus, "A", "path MTUs"); 8077 8078 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 8079 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8080 sysctl_pm_stats, "A", "PM statistics"); 8081 8082 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 8083 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8084 sysctl_rdma_stats, "A", "RDMA statistics"); 8085 8086 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 8087 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8088 sysctl_tcp_stats, "A", "TCP statistics"); 8089 8090 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 8091 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8092 sysctl_tids, "A", "TID information"); 8093 8094 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 8095 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8096 sysctl_tp_err_stats, "A", "TP error statistics"); 8097 8098 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 8099 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8100 sysctl_tnl_stats, "A", "TP tunnel statistics"); 8101 8102 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 8103 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 8104 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 8105 8106 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 8107 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8108 sysctl_tp_la, "A", "TP logic analyzer"); 8109 8110 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 8111 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8112 sysctl_tx_rate, "A", "Tx rate"); 8113 8114 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 8115 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8116 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 8117 8118 if (chip_id(sc) >= CHELSIO_T5) { 8119 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 8120 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8121 sysctl_wcwr_stats, "A", "write combined work requests"); 8122 } 8123 8124 #ifdef KERN_TLS 8125 if (is_ktls(sc)) { 8126 /* 8127 * dev.t4nex.0.tls. 8128 */ 8129 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 8130 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 8131 children = SYSCTL_CHILDREN(oid); 8132 8133 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 8134 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 8135 "keys in work requests (1) or attempt to store TLS keys " 8136 "in card memory."); 8137 8138 if (is_t6(sc)) 8139 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 8140 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 8141 "combine TCB field updates with TLS record work " 8142 "requests."); 8143 else { 8144 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records", 8145 CTLFLAG_RW, &sc->tlst.short_records, 0, 8146 "Use cipher-only mode for short records."); 8147 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash", 8148 CTLFLAG_RW, &sc->tlst.partial_ghash, 0, 8149 "Use partial GHASH for AES-GCM records."); 8150 } 8151 } 8152 #endif 8153 8154 #ifdef TCP_OFFLOAD 8155 if (is_offload(sc)) { 8156 int i; 8157 char s[4]; 8158 8159 /* 8160 * dev.t4nex.X.toe. 8161 */ 8162 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 8163 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 8164 children = SYSCTL_CHILDREN(oid); 8165 8166 sc->tt.cong_algorithm = -1; 8167 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 8168 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 8169 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 8170 "3 = highspeed)"); 8171 8172 sc->tt.sndbuf = -1; 8173 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 8174 &sc->tt.sndbuf, 0, "hardware send buffer"); 8175 8176 sc->tt.ddp = 0; 8177 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 8178 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 8179 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 8180 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 8181 8182 sc->tt.rx_coalesce = -1; 8183 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 8184 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 8185 8186 sc->tt.tls = 1; 8187 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 8188 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 8189 "Inline TLS allowed"); 8190 8191 sc->tt.tx_align = -1; 8192 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 8193 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 8194 8195 sc->tt.tx_zcopy = 0; 8196 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 8197 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 8198 "Enable zero-copy aio_write(2)"); 8199 8200 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 8201 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8202 "cop_managed_offloading", CTLFLAG_RW, 8203 &sc->tt.cop_managed_offloading, 0, 8204 "COP (Connection Offload Policy) controls all TOE offload"); 8205 8206 sc->tt.autorcvbuf_inc = 16 * 1024; 8207 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 8208 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 8209 "autorcvbuf increment"); 8210 8211 sc->tt.update_hc_on_pmtu_change = 1; 8212 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8213 "update_hc_on_pmtu_change", CTLFLAG_RW, 8214 &sc->tt.update_hc_on_pmtu_change, 0, 8215 "Update hostcache entry if the PMTU changes"); 8216 8217 sc->tt.iso = 1; 8218 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 8219 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 8220 8221 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 8222 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8223 sysctl_tp_tick, "A", "TP timer tick (us)"); 8224 8225 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 8226 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 8227 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 8228 8229 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 8230 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 8231 sysctl_tp_tick, "A", "DACK tick (us)"); 8232 8233 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 8234 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8235 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 8236 8237 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 8238 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8239 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 8240 "Minimum retransmit interval (us)"); 8241 8242 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 8243 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8244 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 8245 "Maximum retransmit interval (us)"); 8246 8247 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 8248 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8249 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 8250 "Persist timer min (us)"); 8251 8252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 8253 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8254 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 8255 "Persist timer max (us)"); 8256 8257 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 8258 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8259 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 8260 "Keepalive idle timer (us)"); 8261 8262 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 8263 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8264 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 8265 "Keepalive interval timer (us)"); 8266 8267 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 8268 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8269 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 8270 8271 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 8272 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8273 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 8274 "FINWAIT2 timer (us)"); 8275 8276 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 8277 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8278 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 8279 "Number of SYN retransmissions before abort"); 8280 8281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 8282 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8283 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 8284 "Number of retransmissions before abort"); 8285 8286 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 8287 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8288 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 8289 "Number of keepalive probes before abort"); 8290 8291 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 8292 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8293 "TOE retransmit backoffs"); 8294 children = SYSCTL_CHILDREN(oid); 8295 for (i = 0; i < 16; i++) { 8296 snprintf(s, sizeof(s), "%u", i); 8297 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 8298 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8299 i, sysctl_tp_backoff, "IU", 8300 "TOE retransmit backoff"); 8301 } 8302 } 8303 #endif 8304 } 8305 8306 void 8307 vi_sysctls(struct vi_info *vi) 8308 { 8309 struct sysctl_ctx_list *ctx = &vi->ctx; 8310 struct sysctl_oid *oid; 8311 struct sysctl_oid_list *children; 8312 8313 /* 8314 * dev.v?(cxgbe|cxl).X. 8315 */ 8316 oid = device_get_sysctl_tree(vi->dev); 8317 children = SYSCTL_CHILDREN(oid); 8318 8319 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 8320 vi->viid, "VI identifer"); 8321 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 8322 &vi->nrxq, 0, "# of rx queues"); 8323 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 8324 &vi->ntxq, 0, "# of tx queues"); 8325 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 8326 &vi->first_rxq, 0, "index of first rx queue"); 8327 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 8328 &vi->first_txq, 0, "index of first tx queue"); 8329 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 8330 vi->rss_base, "start of RSS indirection table"); 8331 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 8332 vi->rss_size, "size of RSS indirection table"); 8333 8334 if (IS_MAIN_VI(vi)) { 8335 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 8336 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8337 sysctl_noflowq, "IU", 8338 "Reserve queue 0 for non-flowid packets"); 8339 } 8340 8341 if (vi->adapter->flags & IS_VF) { 8342 MPASS(vi->flags & TX_USES_VM_WR); 8343 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 8344 NULL, 1, "use VM work requests for transmit"); 8345 } else { 8346 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 8347 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8348 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 8349 } 8350 8351 #ifdef TCP_OFFLOAD 8352 if (vi->nofldrxq != 0) { 8353 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 8354 &vi->nofldrxq, 0, 8355 "# of rx queues for offloaded TCP connections"); 8356 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 8357 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 8358 "index of first TOE rx queue"); 8359 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 8360 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8361 sysctl_holdoff_tmr_idx_ofld, "I", 8362 "holdoff timer index for TOE queues"); 8363 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 8364 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8365 sysctl_holdoff_pktc_idx_ofld, "I", 8366 "holdoff packet counter index for TOE queues"); 8367 } 8368 #endif 8369 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 8370 if (vi->nofldtxq != 0) { 8371 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 8372 &vi->nofldtxq, 0, 8373 "# of tx queues for TOE/ETHOFLD"); 8374 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 8375 CTLFLAG_RD, &vi->first_ofld_txq, 0, 8376 "index of first TOE/ETHOFLD tx queue"); 8377 } 8378 #endif 8379 #ifdef DEV_NETMAP 8380 if (vi->nnmrxq != 0) { 8381 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 8382 &vi->nnmrxq, 0, "# of netmap rx queues"); 8383 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 8384 &vi->nnmtxq, 0, "# of netmap tx queues"); 8385 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 8386 CTLFLAG_RD, &vi->first_nm_rxq, 0, 8387 "index of first netmap rx queue"); 8388 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8389 CTLFLAG_RD, &vi->first_nm_txq, 0, 8390 "index of first netmap tx queue"); 8391 } 8392 #endif 8393 8394 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8395 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8396 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8397 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8398 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8399 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8400 8401 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8402 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8403 sysctl_qsize_rxq, "I", "rx queue size"); 8404 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8405 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8406 sysctl_qsize_txq, "I", "tx queue size"); 8407 } 8408 8409 static void 8410 cxgbe_sysctls(struct port_info *pi) 8411 { 8412 struct sysctl_ctx_list *ctx = &pi->ctx; 8413 struct sysctl_oid *oid; 8414 struct sysctl_oid_list *children, *children2; 8415 struct adapter *sc = pi->adapter; 8416 int i; 8417 char name[16]; 8418 static char *tc_flags = {"\20\1USER"}; 8419 8420 /* 8421 * dev.cxgbe.X. 8422 */ 8423 oid = device_get_sysctl_tree(pi->dev); 8424 children = SYSCTL_CHILDREN(oid); 8425 8426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8427 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8428 sysctl_linkdnrc, "A", "reason why link is down"); 8429 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8430 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8431 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8432 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8433 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8434 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8435 sysctl_btphy, "I", "PHY firmware version"); 8436 } 8437 8438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8439 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8440 sysctl_pause_settings, "A", 8441 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8442 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8443 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8444 "FEC in use on the link"); 8445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8446 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8447 sysctl_requested_fec, "A", 8448 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8449 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8450 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8451 "FEC recommended by the cable/transceiver"); 8452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8453 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8454 sysctl_autoneg, "I", 8455 "autonegotiation (-1 = not supported)"); 8456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8457 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8458 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8459 8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8461 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8463 &pi->link_cfg.pcaps, 0, "port capabilities"); 8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8465 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8466 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8467 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8468 8469 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8470 port_top_speed(pi), "max speed (in Gbps)"); 8471 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8472 pi->mps_bg_map, "MPS buffer group map"); 8473 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8474 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8475 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8476 pi->tx_chan, "TP tx c-channel"); 8477 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8478 pi->rx_chan, "TP rx c-channel"); 8479 8480 if (sc->flags & IS_VF) 8481 return; 8482 8483 /* 8484 * dev.(cxgbe|cxl).X.tc. 8485 */ 8486 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8487 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8488 "Tx scheduler traffic classes (cl_rl)"); 8489 children2 = SYSCTL_CHILDREN(oid); 8490 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8491 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8492 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8493 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8494 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8495 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8496 for (i = 0; i < sc->params.nsched_cls; i++) { 8497 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8498 8499 snprintf(name, sizeof(name), "%d", i); 8500 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8501 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8502 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8503 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8504 CTLFLAG_RD, &tc->state, 0, "current state"); 8505 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8507 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8508 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8509 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8510 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8511 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8512 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8513 "traffic class parameters"); 8514 } 8515 8516 /* 8517 * dev.cxgbe.X.stats. 8518 */ 8519 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8520 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8521 children = SYSCTL_CHILDREN(oid); 8522 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8523 &pi->tx_parse_error, 0, 8524 "# of tx packets with invalid length or # of segments"); 8525 8526 #define T4_LBSTAT(name, stat, desc) do { \ 8527 if (sc->params.tp.lb_mode) { \ 8528 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8529 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \ 8530 A_MPS_PORT_STAT_##stat##_L, \ 8531 sysctl_handle_t4_portstat64, "QU", desc); \ 8532 } else { \ 8533 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8534 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8535 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8536 sysctl_handle_t4_reg64, "QU", desc); \ 8537 } \ 8538 } while (0) 8539 8540 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8541 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8542 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8543 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8544 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8545 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8546 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8547 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8548 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8549 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8550 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8551 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8552 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8553 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8554 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8555 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8556 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8557 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8558 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8559 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8560 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8561 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8562 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8563 8564 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8565 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8566 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8567 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8568 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8569 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8570 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8571 if (is_t6(sc)) { 8572 /* Read from port_stats and may be stale by up to 1s */ 8573 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err", 8574 CTLFLAG_RD, &pi->stats.rx_fcs_err, 8575 "# of frames received with bad FCS since last link up"); 8576 } else { 8577 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8578 "# of frames received with bad FCS"); 8579 } 8580 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8581 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8582 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8583 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8584 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8585 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8586 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8587 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8588 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8589 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8590 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8591 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8592 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8593 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8594 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8595 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8596 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8597 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8598 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8599 #undef T4_LBSTAT 8600 8601 #define T4_REGSTAT(name, stat, desc) do { \ 8602 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8603 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8604 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \ 8605 } while (0) 8606 8607 if (pi->mps_bg_map & 1) { 8608 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME, 8609 "# drops due to buffer-group 0 overflows"); 8610 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME, 8611 "# of buffer-group 0 truncated packets"); 8612 } 8613 if (pi->mps_bg_map & 2) { 8614 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME, 8615 "# drops due to buffer-group 1 overflows"); 8616 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME, 8617 "# of buffer-group 1 truncated packets"); 8618 } 8619 if (pi->mps_bg_map & 4) { 8620 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME, 8621 "# drops due to buffer-group 2 overflows"); 8622 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME, 8623 "# of buffer-group 2 truncated packets"); 8624 } 8625 if (pi->mps_bg_map & 8) { 8626 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME, 8627 "# drops due to buffer-group 3 overflows"); 8628 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME, 8629 "# of buffer-group 3 truncated packets"); 8630 } 8631 #undef T4_REGSTAT 8632 } 8633 8634 static int 8635 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8636 { 8637 int rc, *i, space = 0; 8638 struct sbuf sb; 8639 8640 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8641 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8642 if (space) 8643 sbuf_printf(&sb, " "); 8644 sbuf_printf(&sb, "%d", *i); 8645 space = 1; 8646 } 8647 rc = sbuf_finish(&sb); 8648 sbuf_delete(&sb); 8649 return (rc); 8650 } 8651 8652 static int 8653 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8654 { 8655 int rc; 8656 struct sbuf *sb; 8657 8658 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8659 if (sb == NULL) 8660 return (ENOMEM); 8661 8662 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8663 rc = sbuf_finish(sb); 8664 sbuf_delete(sb); 8665 8666 return (rc); 8667 } 8668 8669 static int 8670 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8671 { 8672 int rc; 8673 struct sbuf *sb; 8674 8675 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8676 if (sb == NULL) 8677 return (ENOMEM); 8678 8679 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8680 rc = sbuf_finish(sb); 8681 sbuf_delete(sb); 8682 8683 return (rc); 8684 } 8685 8686 static int 8687 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8688 { 8689 struct port_info *pi = arg1; 8690 int op = arg2; 8691 struct adapter *sc = pi->adapter; 8692 u_int v; 8693 int rc; 8694 8695 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8696 if (rc) 8697 return (rc); 8698 if (!hw_all_ok(sc)) 8699 rc = ENXIO; 8700 else { 8701 /* XXX: magic numbers */ 8702 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8703 op ? 0x20 : 0xc820, &v); 8704 } 8705 end_synchronized_op(sc, 0); 8706 if (rc) 8707 return (rc); 8708 if (op == 0) 8709 v /= 256; 8710 8711 rc = sysctl_handle_int(oidp, &v, 0, req); 8712 return (rc); 8713 } 8714 8715 static int 8716 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8717 { 8718 struct vi_info *vi = arg1; 8719 int rc, val; 8720 8721 val = vi->rsrv_noflowq; 8722 rc = sysctl_handle_int(oidp, &val, 0, req); 8723 if (rc != 0 || req->newptr == NULL) 8724 return (rc); 8725 8726 if ((val >= 1) && (vi->ntxq > 1)) 8727 vi->rsrv_noflowq = 1; 8728 else 8729 vi->rsrv_noflowq = 0; 8730 8731 return (rc); 8732 } 8733 8734 static int 8735 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8736 { 8737 struct vi_info *vi = arg1; 8738 struct adapter *sc = vi->adapter; 8739 int rc, val, i; 8740 8741 MPASS(!(sc->flags & IS_VF)); 8742 8743 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8744 rc = sysctl_handle_int(oidp, &val, 0, req); 8745 if (rc != 0 || req->newptr == NULL) 8746 return (rc); 8747 8748 if (val != 0 && val != 1) 8749 return (EINVAL); 8750 8751 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8752 "t4txvm"); 8753 if (rc) 8754 return (rc); 8755 if (!hw_all_ok(sc)) 8756 rc = ENXIO; 8757 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8758 /* 8759 * We don't want parse_pkt to run with one setting (VF or PF) 8760 * and then eth_tx to see a different setting but still use 8761 * stale information calculated by parse_pkt. 8762 */ 8763 rc = EBUSY; 8764 } else { 8765 struct port_info *pi = vi->pi; 8766 struct sge_txq *txq; 8767 uint32_t ctrl0; 8768 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8769 8770 if (val) { 8771 vi->flags |= TX_USES_VM_WR; 8772 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8773 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8774 V_TXPKT_INTF(pi->hw_port)); 8775 if (!(sc->flags & IS_VF)) 8776 npkt--; 8777 } else { 8778 vi->flags &= ~TX_USES_VM_WR; 8779 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8780 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8781 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) | 8782 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8783 } 8784 for_each_txq(vi, i, txq) { 8785 txq->cpl_ctrl0 = ctrl0; 8786 txq->txp.max_npkt = npkt; 8787 } 8788 } 8789 end_synchronized_op(sc, LOCK_HELD); 8790 return (rc); 8791 } 8792 8793 static int 8794 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8795 { 8796 struct vi_info *vi = arg1; 8797 struct adapter *sc = vi->adapter; 8798 int idx, rc, i; 8799 struct sge_rxq *rxq; 8800 uint8_t v; 8801 8802 idx = vi->tmr_idx; 8803 8804 rc = sysctl_handle_int(oidp, &idx, 0, req); 8805 if (rc != 0 || req->newptr == NULL) 8806 return (rc); 8807 8808 if (idx < 0 || idx >= SGE_NTIMERS) 8809 return (EINVAL); 8810 8811 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8812 "t4tmr"); 8813 if (rc) 8814 return (rc); 8815 8816 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8817 for_each_rxq(vi, i, rxq) { 8818 #ifdef atomic_store_rel_8 8819 atomic_store_rel_8(&rxq->iq.intr_params, v); 8820 #else 8821 rxq->iq.intr_params = v; 8822 #endif 8823 } 8824 vi->tmr_idx = idx; 8825 8826 end_synchronized_op(sc, LOCK_HELD); 8827 return (0); 8828 } 8829 8830 static int 8831 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8832 { 8833 struct vi_info *vi = arg1; 8834 struct adapter *sc = vi->adapter; 8835 int idx, rc; 8836 8837 idx = vi->pktc_idx; 8838 8839 rc = sysctl_handle_int(oidp, &idx, 0, req); 8840 if (rc != 0 || req->newptr == NULL) 8841 return (rc); 8842 8843 if (idx < -1 || idx >= SGE_NCOUNTERS) 8844 return (EINVAL); 8845 8846 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8847 "t4pktc"); 8848 if (rc) 8849 return (rc); 8850 8851 if (vi->flags & VI_INIT_DONE) 8852 rc = EBUSY; /* cannot be changed once the queues are created */ 8853 else 8854 vi->pktc_idx = idx; 8855 8856 end_synchronized_op(sc, LOCK_HELD); 8857 return (rc); 8858 } 8859 8860 static int 8861 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8862 { 8863 struct vi_info *vi = arg1; 8864 struct adapter *sc = vi->adapter; 8865 int qsize, rc; 8866 8867 qsize = vi->qsize_rxq; 8868 8869 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8870 if (rc != 0 || req->newptr == NULL) 8871 return (rc); 8872 8873 if (qsize < 128 || (qsize & 7)) 8874 return (EINVAL); 8875 8876 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8877 "t4rxqs"); 8878 if (rc) 8879 return (rc); 8880 8881 if (vi->flags & VI_INIT_DONE) 8882 rc = EBUSY; /* cannot be changed once the queues are created */ 8883 else 8884 vi->qsize_rxq = qsize; 8885 8886 end_synchronized_op(sc, LOCK_HELD); 8887 return (rc); 8888 } 8889 8890 static int 8891 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8892 { 8893 struct vi_info *vi = arg1; 8894 struct adapter *sc = vi->adapter; 8895 int qsize, rc; 8896 8897 qsize = vi->qsize_txq; 8898 8899 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8900 if (rc != 0 || req->newptr == NULL) 8901 return (rc); 8902 8903 if (qsize < 128 || qsize > 65536) 8904 return (EINVAL); 8905 8906 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8907 "t4txqs"); 8908 if (rc) 8909 return (rc); 8910 8911 if (vi->flags & VI_INIT_DONE) 8912 rc = EBUSY; /* cannot be changed once the queues are created */ 8913 else 8914 vi->qsize_txq = qsize; 8915 8916 end_synchronized_op(sc, LOCK_HELD); 8917 return (rc); 8918 } 8919 8920 static int 8921 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8922 { 8923 struct port_info *pi = arg1; 8924 struct adapter *sc = pi->adapter; 8925 struct link_config *lc = &pi->link_cfg; 8926 int rc; 8927 8928 if (req->newptr == NULL) { 8929 struct sbuf *sb; 8930 static char *bits = "\20\1RX\2TX\3AUTO"; 8931 8932 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8933 if (sb == NULL) 8934 return (ENOMEM); 8935 8936 if (lc->link_ok) { 8937 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8938 (lc->requested_fc & PAUSE_AUTONEG), bits); 8939 } else { 8940 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8941 PAUSE_RX | PAUSE_AUTONEG), bits); 8942 } 8943 rc = sbuf_finish(sb); 8944 sbuf_delete(sb); 8945 } else { 8946 char s[2]; 8947 int n; 8948 8949 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8950 PAUSE_AUTONEG)); 8951 s[1] = 0; 8952 8953 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8954 if (rc != 0) 8955 return(rc); 8956 8957 if (s[1] != 0) 8958 return (EINVAL); 8959 if (s[0] < '0' || s[0] > '9') 8960 return (EINVAL); /* not a number */ 8961 n = s[0] - '0'; 8962 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8963 return (EINVAL); /* some other bit is set too */ 8964 8965 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8966 "t4PAUSE"); 8967 if (rc) 8968 return (rc); 8969 if (hw_all_ok(sc)) { 8970 PORT_LOCK(pi); 8971 lc->requested_fc = n; 8972 fixup_link_config(pi); 8973 if (pi->up_vis > 0) 8974 rc = apply_link_config(pi); 8975 set_current_media(pi); 8976 PORT_UNLOCK(pi); 8977 } 8978 end_synchronized_op(sc, 0); 8979 } 8980 8981 return (rc); 8982 } 8983 8984 static int 8985 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8986 { 8987 struct port_info *pi = arg1; 8988 struct link_config *lc = &pi->link_cfg; 8989 int rc; 8990 struct sbuf *sb; 8991 8992 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8993 if (sb == NULL) 8994 return (ENOMEM); 8995 if (lc->link_ok) 8996 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits); 8997 else 8998 sbuf_printf(sb, "no link"); 8999 rc = sbuf_finish(sb); 9000 sbuf_delete(sb); 9001 9002 return (rc); 9003 } 9004 9005 static int 9006 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 9007 { 9008 struct port_info *pi = arg1; 9009 struct adapter *sc = pi->adapter; 9010 struct link_config *lc = &pi->link_cfg; 9011 int rc; 9012 int8_t old = lc->requested_fec; 9013 9014 if (req->newptr == NULL) { 9015 struct sbuf *sb; 9016 9017 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9018 if (sb == NULL) 9019 return (ENOMEM); 9020 9021 sbuf_printf(sb, "%b", old, t4_fec_bits); 9022 rc = sbuf_finish(sb); 9023 sbuf_delete(sb); 9024 } else { 9025 char s[8]; 9026 int n; 9027 9028 snprintf(s, sizeof(s), "%d", old == FEC_AUTO ? -1 : 9029 old & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 9030 9031 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 9032 if (rc != 0) 9033 return(rc); 9034 9035 n = strtol(&s[0], NULL, 0); 9036 if (n < 0 || n & FEC_AUTO) 9037 n = FEC_AUTO; 9038 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 9039 return (EINVAL);/* some other bit is set too */ 9040 9041 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9042 "t4reqf"); 9043 if (rc) 9044 return (rc); 9045 PORT_LOCK(pi); 9046 if (lc->requested_fec != old) { 9047 rc = EBUSY; 9048 goto done; 9049 } 9050 if (n == FEC_AUTO) 9051 lc->requested_fec = FEC_AUTO; 9052 else if (n == 0 || n == FEC_NONE) 9053 lc->requested_fec = FEC_NONE; 9054 else { 9055 if ((lc->pcaps | 9056 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 9057 lc->pcaps) { 9058 rc = ENOTSUP; 9059 goto done; 9060 } 9061 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 9062 FEC_MODULE); 9063 } 9064 if (hw_all_ok(sc)) { 9065 fixup_link_config(pi); 9066 if (pi->up_vis > 0) { 9067 rc = apply_link_config(pi); 9068 if (rc != 0) { 9069 lc->requested_fec = old; 9070 if (rc == FW_EPROTO) 9071 rc = ENOTSUP; 9072 } 9073 } 9074 } 9075 done: 9076 PORT_UNLOCK(pi); 9077 end_synchronized_op(sc, 0); 9078 } 9079 9080 return (rc); 9081 } 9082 9083 static int 9084 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 9085 { 9086 struct port_info *pi = arg1; 9087 struct adapter *sc = pi->adapter; 9088 struct link_config *lc = &pi->link_cfg; 9089 int rc; 9090 int8_t fec; 9091 struct sbuf *sb; 9092 9093 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9094 if (sb == NULL) 9095 return (ENOMEM); 9096 9097 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 9098 rc = EBUSY; 9099 goto done; 9100 } 9101 if (!hw_all_ok(sc)) { 9102 rc = ENXIO; 9103 goto done; 9104 } 9105 PORT_LOCK(pi); 9106 if (pi->up_vis == 0) { 9107 /* 9108 * If all the interfaces are administratively down the firmware 9109 * does not report transceiver changes. Refresh port info here. 9110 * This is the only reason we have a synchronized op in this 9111 * function. Just PORT_LOCK would have been enough otherwise. 9112 */ 9113 t4_update_port_info(pi); 9114 } 9115 9116 fec = lc->fec_hint; 9117 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 9118 !fec_supported(lc->pcaps)) { 9119 PORT_UNLOCK(pi); 9120 sbuf_printf(sb, "n/a"); 9121 } else { 9122 if (fec == 0) 9123 fec = FEC_NONE; 9124 PORT_UNLOCK(pi); 9125 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits); 9126 } 9127 rc = sbuf_finish(sb); 9128 done: 9129 sbuf_delete(sb); 9130 end_synchronized_op(sc, 0); 9131 9132 return (rc); 9133 } 9134 9135 static int 9136 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 9137 { 9138 struct port_info *pi = arg1; 9139 struct adapter *sc = pi->adapter; 9140 struct link_config *lc = &pi->link_cfg; 9141 int rc, val; 9142 9143 if (lc->pcaps & FW_PORT_CAP32_ANEG) 9144 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 9145 else 9146 val = -1; 9147 rc = sysctl_handle_int(oidp, &val, 0, req); 9148 if (rc != 0 || req->newptr == NULL) 9149 return (rc); 9150 if (val == 0) 9151 val = AUTONEG_DISABLE; 9152 else if (val == 1) 9153 val = AUTONEG_ENABLE; 9154 else 9155 val = AUTONEG_AUTO; 9156 9157 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9158 "t4aneg"); 9159 if (rc) 9160 return (rc); 9161 PORT_LOCK(pi); 9162 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 9163 rc = ENOTSUP; 9164 goto done; 9165 } 9166 lc->requested_aneg = val; 9167 if (hw_all_ok(sc)) { 9168 fixup_link_config(pi); 9169 if (pi->up_vis > 0) 9170 rc = apply_link_config(pi); 9171 set_current_media(pi); 9172 } 9173 done: 9174 PORT_UNLOCK(pi); 9175 end_synchronized_op(sc, 0); 9176 return (rc); 9177 } 9178 9179 static int 9180 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 9181 { 9182 struct port_info *pi = arg1; 9183 struct adapter *sc = pi->adapter; 9184 struct link_config *lc = &pi->link_cfg; 9185 int rc, val; 9186 9187 val = lc->force_fec; 9188 MPASS(val >= -1 && val <= 1); 9189 rc = sysctl_handle_int(oidp, &val, 0, req); 9190 if (rc != 0 || req->newptr == NULL) 9191 return (rc); 9192 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 9193 return (ENOTSUP); 9194 if (val < -1 || val > 1) 9195 return (EINVAL); 9196 9197 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 9198 if (rc) 9199 return (rc); 9200 PORT_LOCK(pi); 9201 lc->force_fec = val; 9202 if (hw_all_ok(sc)) { 9203 fixup_link_config(pi); 9204 if (pi->up_vis > 0) 9205 rc = apply_link_config(pi); 9206 } 9207 PORT_UNLOCK(pi); 9208 end_synchronized_op(sc, 0); 9209 return (rc); 9210 } 9211 9212 static int 9213 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 9214 { 9215 struct adapter *sc = arg1; 9216 int rc, reg = arg2; 9217 uint64_t val; 9218 9219 mtx_lock(&sc->reg_lock); 9220 if (hw_off_limits(sc)) 9221 rc = ENXIO; 9222 else { 9223 rc = 0; 9224 val = t4_read_reg64(sc, reg); 9225 } 9226 mtx_unlock(&sc->reg_lock); 9227 if (rc == 0) 9228 rc = sysctl_handle_64(oidp, &val, 0, req); 9229 return (rc); 9230 } 9231 9232 static int 9233 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS) 9234 { 9235 struct port_info *pi = arg1; 9236 struct adapter *sc = pi->adapter; 9237 int rc, i, reg = arg2; 9238 uint64_t val; 9239 9240 mtx_lock(&sc->reg_lock); 9241 if (hw_off_limits(sc)) 9242 rc = ENXIO; 9243 else { 9244 val = 0; 9245 for (i = 0; i < sc->params.tp.lb_nchan; i++) { 9246 val += t4_read_reg64(sc, 9247 t4_port_reg(sc, pi->tx_chan + i, reg)); 9248 } 9249 rc = 0; 9250 } 9251 mtx_unlock(&sc->reg_lock); 9252 if (rc == 0) 9253 rc = sysctl_handle_64(oidp, &val, 0, req); 9254 return (rc); 9255 } 9256 9257 static int 9258 sysctl_temperature(SYSCTL_HANDLER_ARGS) 9259 { 9260 struct adapter *sc = arg1; 9261 int rc, t; 9262 uint32_t param, val; 9263 9264 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 9265 if (rc) 9266 return (rc); 9267 if (!hw_all_ok(sc)) 9268 rc = ENXIO; 9269 else { 9270 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9271 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9272 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 9273 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9274 } 9275 end_synchronized_op(sc, 0); 9276 if (rc) 9277 return (rc); 9278 9279 /* unknown is returned as 0 but we display -1 in that case */ 9280 t = val == 0 ? -1 : val; 9281 9282 rc = sysctl_handle_int(oidp, &t, 0, req); 9283 return (rc); 9284 } 9285 9286 static int 9287 sysctl_vdd(SYSCTL_HANDLER_ARGS) 9288 { 9289 struct adapter *sc = arg1; 9290 int rc; 9291 uint32_t param, val; 9292 9293 if (sc->params.core_vdd == 0) { 9294 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9295 "t4vdd"); 9296 if (rc) 9297 return (rc); 9298 if (!hw_all_ok(sc)) 9299 rc = ENXIO; 9300 else { 9301 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9302 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9303 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 9304 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 9305 ¶m, &val); 9306 } 9307 end_synchronized_op(sc, 0); 9308 if (rc) 9309 return (rc); 9310 sc->params.core_vdd = val; 9311 } 9312 9313 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 9314 } 9315 9316 static int 9317 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 9318 { 9319 struct adapter *sc = arg1; 9320 int rc, v; 9321 uint32_t param, val; 9322 9323 v = sc->sensor_resets; 9324 rc = sysctl_handle_int(oidp, &v, 0, req); 9325 if (rc != 0 || req->newptr == NULL || v <= 0) 9326 return (rc); 9327 9328 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 9329 chip_id(sc) < CHELSIO_T5) 9330 return (ENOTSUP); 9331 9332 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 9333 if (rc) 9334 return (rc); 9335 if (!hw_all_ok(sc)) 9336 rc = ENXIO; 9337 else { 9338 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9339 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9340 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 9341 val = 1; 9342 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9343 } 9344 end_synchronized_op(sc, 0); 9345 if (rc == 0) 9346 sc->sensor_resets++; 9347 return (rc); 9348 } 9349 9350 static int 9351 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 9352 { 9353 struct adapter *sc = arg1; 9354 struct sbuf *sb; 9355 int rc; 9356 uint32_t param, val; 9357 uint8_t coreid = (uint8_t)arg2; 9358 9359 KASSERT(coreid < sc->params.ncores, 9360 ("%s: bad coreid %u\n", __func__, coreid)); 9361 9362 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 9363 if (rc) 9364 return (rc); 9365 if (!hw_all_ok(sc)) 9366 rc = ENXIO; 9367 else { 9368 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9369 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) | 9370 V_FW_PARAMS_PARAM_Y(coreid); 9371 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9372 } 9373 end_synchronized_op(sc, 0); 9374 if (rc) 9375 return (rc); 9376 9377 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9378 if (sb == NULL) 9379 return (ENOMEM); 9380 9381 if (val == 0xffffffff) { 9382 /* Only debug and custom firmwares report load averages. */ 9383 sbuf_printf(sb, "not available"); 9384 } else { 9385 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 9386 (val >> 16) & 0xff); 9387 } 9388 rc = sbuf_finish(sb); 9389 sbuf_delete(sb); 9390 9391 return (rc); 9392 } 9393 9394 static int 9395 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 9396 { 9397 struct adapter *sc = arg1; 9398 struct sbuf *sb; 9399 int rc, i; 9400 uint16_t incr[NMTUS][NCCTRL_WIN]; 9401 static const char *dec_fac[] = { 9402 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 9403 "0.9375" 9404 }; 9405 9406 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9407 if (sb == NULL) 9408 return (ENOMEM); 9409 9410 rc = 0; 9411 mtx_lock(&sc->reg_lock); 9412 if (hw_off_limits(sc)) 9413 rc = ENXIO; 9414 else 9415 t4_read_cong_tbl(sc, incr); 9416 mtx_unlock(&sc->reg_lock); 9417 if (rc) 9418 goto done; 9419 9420 for (i = 0; i < NCCTRL_WIN; ++i) { 9421 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 9422 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 9423 incr[5][i], incr[6][i], incr[7][i]); 9424 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 9425 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 9426 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 9427 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 9428 } 9429 9430 rc = sbuf_finish(sb); 9431 done: 9432 sbuf_delete(sb); 9433 return (rc); 9434 } 9435 9436 static int 9437 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS) 9438 { 9439 struct adapter *sc = arg1; 9440 struct sbuf *sb; 9441 int rc, i, n, qid, coreid; 9442 uint32_t *buf, *p; 9443 9444 qid = arg2 & 0xffff; 9445 coreid = arg2 >> 16; 9446 9447 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq, 9448 ("%s: bad ibq qid %d\n", __func__, qid)); 9449 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9450 ("%s: bad coreid %d\n", __func__, coreid)); 9451 9452 n = 4 * CIM_IBQ_SIZE; 9453 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9454 mtx_lock(&sc->reg_lock); 9455 if (hw_off_limits(sc)) 9456 rc = -ENXIO; 9457 else 9458 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n); 9459 mtx_unlock(&sc->reg_lock); 9460 if (rc < 0) { 9461 rc = -rc; 9462 goto done; 9463 } 9464 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9465 9466 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9467 if (sb == NULL) { 9468 rc = ENOMEM; 9469 goto done; 9470 } 9471 for (i = 0, p = buf; i < n; i += 16, p += 4) 9472 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9473 p[2], p[3]); 9474 rc = sbuf_finish(sb); 9475 sbuf_delete(sb); 9476 done: 9477 free(buf, M_CXGBE); 9478 return (rc); 9479 } 9480 9481 static int 9482 sysctl_cim_obq(SYSCTL_HANDLER_ARGS) 9483 { 9484 struct adapter *sc = arg1; 9485 struct sbuf *sb; 9486 int rc, i, n, qid, coreid; 9487 uint32_t *buf, *p; 9488 9489 qid = arg2 & 0xffff; 9490 coreid = arg2 >> 16; 9491 9492 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq, 9493 ("%s: bad obq qid %d\n", __func__, qid)); 9494 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9495 ("%s: bad coreid %d\n", __func__, coreid)); 9496 9497 n = 6 * CIM_OBQ_SIZE * 4; 9498 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9499 mtx_lock(&sc->reg_lock); 9500 if (hw_off_limits(sc)) 9501 rc = -ENXIO; 9502 else 9503 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n); 9504 mtx_unlock(&sc->reg_lock); 9505 if (rc < 0) { 9506 rc = -rc; 9507 goto done; 9508 } 9509 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9510 9511 rc = sysctl_wire_old_buffer(req, 0); 9512 if (rc != 0) 9513 goto done; 9514 9515 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9516 if (sb == NULL) { 9517 rc = ENOMEM; 9518 goto done; 9519 } 9520 for (i = 0, p = buf; i < n; i += 16, p += 4) 9521 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9522 p[2], p[3]); 9523 rc = sbuf_finish(sb); 9524 sbuf_delete(sb); 9525 done: 9526 free(buf, M_CXGBE); 9527 return (rc); 9528 } 9529 9530 static void 9531 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9532 { 9533 uint32_t *p; 9534 9535 sbuf_printf(sb, "Status Data PC%s", 9536 cfg & F_UPDBGLACAPTPCONLY ? "" : 9537 " LS0Stat LS0Addr LS0Data"); 9538 9539 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9540 if (cfg & F_UPDBGLACAPTPCONLY) { 9541 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9542 p[6], p[7]); 9543 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9544 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9545 p[4] & 0xff, p[5] >> 8); 9546 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9547 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9548 p[1] & 0xf, p[2] >> 4); 9549 } else { 9550 sbuf_printf(sb, 9551 "\n %02x %x%07x %x%07x %08x %08x " 9552 "%08x%08x%08x%08x", 9553 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9554 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9555 p[6], p[7]); 9556 } 9557 } 9558 } 9559 9560 static void 9561 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9562 { 9563 uint32_t *p; 9564 9565 sbuf_printf(sb, "Status Inst Data PC%s", 9566 cfg & F_UPDBGLACAPTPCONLY ? "" : 9567 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9568 9569 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9570 if (cfg & F_UPDBGLACAPTPCONLY) { 9571 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9572 p[3] & 0xff, p[2], p[1], p[0]); 9573 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9574 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9575 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9576 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9577 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9578 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9579 p[6] >> 16); 9580 } else { 9581 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9582 "%08x %08x %08x %08x %08x %08x", 9583 (p[9] >> 16) & 0xff, 9584 p[9] & 0xffff, p[8] >> 16, 9585 p[8] & 0xffff, p[7] >> 16, 9586 p[7] & 0xffff, p[6] >> 16, 9587 p[2], p[1], p[0], p[5], p[4], p[3]); 9588 } 9589 } 9590 } 9591 9592 static int 9593 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 9594 { 9595 uint32_t cfg, *buf; 9596 int rc; 9597 9598 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9599 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9600 M_ZERO | flags); 9601 if (buf == NULL) 9602 return (ENOMEM); 9603 9604 mtx_lock(&sc->reg_lock); 9605 if (hw_off_limits(sc)) 9606 rc = ENXIO; 9607 else { 9608 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, 9609 &cfg); 9610 if (rc == 0) 9611 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL); 9612 } 9613 mtx_unlock(&sc->reg_lock); 9614 if (rc == 0) { 9615 if (chip_id(sc) < CHELSIO_T6) 9616 sbuf_cim_la4(sc, sb, buf, cfg); 9617 else 9618 sbuf_cim_la6(sc, sb, buf, cfg); 9619 } 9620 free(buf, M_CXGBE); 9621 return (rc); 9622 } 9623 9624 static int 9625 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9626 { 9627 struct adapter *sc = arg1; 9628 int coreid = arg2; 9629 struct sbuf *sb; 9630 int rc; 9631 9632 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9633 if (sb == NULL) 9634 return (ENOMEM); 9635 9636 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK); 9637 if (rc == 0) 9638 rc = sbuf_finish(sb); 9639 sbuf_delete(sb); 9640 return (rc); 9641 } 9642 9643 static void 9644 dump_cim_regs(struct adapter *sc) 9645 { 9646 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9647 device_get_nameunit(sc->dev), 9648 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9649 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9650 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9651 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9652 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9653 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9654 device_get_nameunit(sc->dev), 9655 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9656 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9657 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9658 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9659 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9660 } 9661 9662 static void 9663 dump_cimla(struct adapter *sc) 9664 { 9665 struct sbuf sb; 9666 int rc; 9667 9668 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9669 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9670 device_get_nameunit(sc->dev)); 9671 return; 9672 } 9673 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK); 9674 if (rc == 0) { 9675 rc = sbuf_finish(&sb); 9676 if (rc == 0) { 9677 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9678 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9679 } 9680 } 9681 sbuf_delete(&sb); 9682 } 9683 9684 void 9685 t4_os_cim_err(struct adapter *sc) 9686 { 9687 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9688 } 9689 9690 static int 9691 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9692 { 9693 struct adapter *sc = arg1; 9694 u_int i; 9695 struct sbuf *sb; 9696 uint32_t *buf, *p; 9697 int rc; 9698 9699 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9700 if (sb == NULL) 9701 return (ENOMEM); 9702 9703 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9704 M_ZERO | M_WAITOK); 9705 9706 rc = 0; 9707 mtx_lock(&sc->reg_lock); 9708 if (hw_off_limits(sc)) 9709 rc = ENXIO; 9710 else 9711 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9712 mtx_unlock(&sc->reg_lock); 9713 if (rc) 9714 goto done; 9715 9716 p = buf; 9717 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9718 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9719 p[1], p[0]); 9720 } 9721 9722 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9723 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9724 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9725 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9726 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9727 (p[1] >> 2) | ((p[2] & 3) << 30), 9728 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9729 p[0] & 1); 9730 } 9731 rc = sbuf_finish(sb); 9732 done: 9733 sbuf_delete(sb); 9734 free(buf, M_CXGBE); 9735 return (rc); 9736 } 9737 9738 static int 9739 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9740 { 9741 struct adapter *sc = arg1; 9742 u_int i; 9743 struct sbuf *sb; 9744 uint32_t *buf, *p; 9745 int rc; 9746 9747 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9748 if (sb == NULL) 9749 return (ENOMEM); 9750 9751 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9752 M_ZERO | M_WAITOK); 9753 9754 rc = 0; 9755 mtx_lock(&sc->reg_lock); 9756 if (hw_off_limits(sc)) 9757 rc = ENXIO; 9758 else 9759 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9760 mtx_unlock(&sc->reg_lock); 9761 if (rc) 9762 goto done; 9763 9764 p = buf; 9765 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9766 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9767 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9768 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9769 p[4], p[3], p[2], p[1], p[0]); 9770 } 9771 9772 sbuf_printf(sb, "\n\nCntl ID Data"); 9773 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9774 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9775 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9776 } 9777 9778 rc = sbuf_finish(sb); 9779 done: 9780 sbuf_delete(sb); 9781 free(buf, M_CXGBE); 9782 return (rc); 9783 } 9784 9785 static int 9786 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9787 { 9788 struct adapter *sc = arg1; 9789 struct sbuf *sb; 9790 int rc, i; 9791 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9792 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9793 uint16_t thres[CIM_NUM_IBQ]; 9794 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9795 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9796 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9797 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 9798 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 9799 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 9800 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 9801 }; 9802 9803 MPASS(chip_id(sc) < CHELSIO_T7); 9804 9805 cim_num_obq = sc->chip_params->cim_num_obq; 9806 if (is_t4(sc)) { 9807 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9808 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9809 } else { 9810 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9811 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9812 } 9813 nq = CIM_NUM_IBQ + cim_num_obq; 9814 9815 mtx_lock(&sc->reg_lock); 9816 if (hw_off_limits(sc)) 9817 rc = ENXIO; 9818 else { 9819 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9820 if (rc == 0) { 9821 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9822 obq_wr); 9823 if (rc == 0) 9824 t4_read_cimq_cfg(sc, base, size, thres); 9825 } 9826 } 9827 mtx_unlock(&sc->reg_lock); 9828 if (rc) 9829 return (rc); 9830 9831 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9832 if (sb == NULL) 9833 return (ENOMEM); 9834 9835 sbuf_printf(sb, 9836 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9837 9838 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9839 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9840 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9841 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9842 G_QUEREMFLITS(p[2]) * 16); 9843 for ( ; i < nq; i++, p += 4, wr += 2) 9844 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9845 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9846 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9847 G_QUEREMFLITS(p[2]) * 16); 9848 9849 rc = sbuf_finish(sb); 9850 sbuf_delete(sb); 9851 9852 return (rc); 9853 } 9854 9855 static int 9856 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS) 9857 { 9858 struct adapter *sc = arg1; 9859 u_int coreid = arg2; 9860 struct sbuf *sb; 9861 int rc, i; 9862 u_int addr; 9863 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9864 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9865 uint16_t thres[CIM_NUM_IBQ_T7]; 9866 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr; 9867 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat; 9868 static const char * const qname_ibq_t7[] = { 9869 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI", 9870 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7", 9871 }; 9872 static const char * const qname_obq_t7[] = { 9873 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX", 9874 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", 9875 "IPC6", "IPC7" 9876 }; 9877 static const char * const qname_ibq_sec_t7[] = { 9878 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD", 9879 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", 9880 }; 9881 static const char * const qname_obq_sec_t7[] = { 9882 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX", 9883 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", 9884 "RSVD", "RSVD", 9885 }; 9886 9887 MPASS(chip_id(sc) >= CHELSIO_T7); 9888 9889 mtx_lock(&sc->reg_lock); 9890 if (hw_off_limits(sc)) 9891 rc = ENXIO; 9892 else { 9893 rc = -t4_cim_read_core(sc, 1, coreid, 9894 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat); 9895 if (rc != 0) 9896 goto unlock; 9897 9898 rc = -t4_cim_read_core(sc, 1, coreid, 9899 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7, 9900 &stat[4 * CIM_NUM_IBQ_T7]); 9901 if (rc != 0) 9902 goto unlock; 9903 9904 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR; 9905 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) { 9906 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1, 9907 &obq_wr[i]); 9908 if (rc != 0) 9909 goto unlock; 9910 } 9911 t4_read_cimq_cfg_core(sc, coreid, base, size, thres); 9912 } 9913 unlock: 9914 mtx_unlock(&sc->reg_lock); 9915 if (rc) 9916 return (rc); 9917 9918 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9919 if (sb == NULL) 9920 return (ENOMEM); 9921 9922 sbuf_printf(sb, 9923 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9924 9925 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) { 9926 if (!size[i]) 9927 continue; 9928 9929 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9930 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i], 9931 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff, 9932 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]), 9933 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16); 9934 } 9935 9936 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) { 9937 if (!size[i]) 9938 continue; 9939 9940 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", 9941 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] : 9942 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7], 9943 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff, 9944 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9945 G_T7_QUEREMFLITS(p[2]) * 16); 9946 } 9947 9948 rc = sbuf_finish(sb); 9949 sbuf_delete(sb); 9950 return (rc); 9951 } 9952 9953 static int 9954 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9955 { 9956 struct adapter *sc = arg1; 9957 struct sbuf *sb; 9958 int rc; 9959 struct tp_cpl_stats stats; 9960 9961 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9962 if (sb == NULL) 9963 return (ENOMEM); 9964 9965 rc = 0; 9966 mtx_lock(&sc->reg_lock); 9967 if (hw_off_limits(sc)) 9968 rc = ENXIO; 9969 else 9970 t4_tp_get_cpl_stats(sc, &stats, 0); 9971 mtx_unlock(&sc->reg_lock); 9972 if (rc) 9973 goto done; 9974 9975 if (sc->chip_params->nchan > 2) { 9976 sbuf_printf(sb, " channel 0 channel 1" 9977 " channel 2 channel 3"); 9978 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9979 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9980 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9981 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9982 } else { 9983 sbuf_printf(sb, " channel 0 channel 1"); 9984 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9985 stats.req[0], stats.req[1]); 9986 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9987 stats.rsp[0], stats.rsp[1]); 9988 } 9989 9990 rc = sbuf_finish(sb); 9991 done: 9992 sbuf_delete(sb); 9993 return (rc); 9994 } 9995 9996 static int 9997 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9998 { 9999 struct adapter *sc = arg1; 10000 struct sbuf *sb; 10001 int rc; 10002 struct tp_usm_stats stats; 10003 10004 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10005 if (sb == NULL) 10006 return (ENOMEM); 10007 10008 rc = 0; 10009 mtx_lock(&sc->reg_lock); 10010 if (hw_off_limits(sc)) 10011 rc = ENXIO; 10012 else 10013 t4_get_usm_stats(sc, &stats, 1); 10014 mtx_unlock(&sc->reg_lock); 10015 if (rc == 0) { 10016 sbuf_printf(sb, "Frames: %u\n", stats.frames); 10017 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 10018 sbuf_printf(sb, "Drops: %u", stats.drops); 10019 rc = sbuf_finish(sb); 10020 } 10021 sbuf_delete(sb); 10022 10023 return (rc); 10024 } 10025 10026 static int 10027 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 10028 { 10029 struct adapter *sc = arg1; 10030 struct sbuf *sb; 10031 int rc; 10032 struct tp_tid_stats stats; 10033 10034 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10035 if (sb == NULL) 10036 return (ENOMEM); 10037 10038 rc = 0; 10039 mtx_lock(&sc->reg_lock); 10040 if (hw_off_limits(sc)) 10041 rc = ENXIO; 10042 else 10043 t4_tp_get_tid_stats(sc, &stats, 1); 10044 mtx_unlock(&sc->reg_lock); 10045 if (rc == 0) { 10046 sbuf_printf(sb, "Delete: %u\n", stats.del); 10047 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 10048 sbuf_printf(sb, "Active: %u\n", stats.act); 10049 sbuf_printf(sb, "Passive: %u", stats.pas); 10050 rc = sbuf_finish(sb); 10051 } 10052 sbuf_delete(sb); 10053 10054 return (rc); 10055 } 10056 10057 static const char * const devlog_level_strings[] = { 10058 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 10059 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 10060 [FW_DEVLOG_LEVEL_ERR] = "ERR", 10061 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 10062 [FW_DEVLOG_LEVEL_INFO] = "INFO", 10063 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 10064 }; 10065 10066 static const char * const devlog_facility_strings[] = { 10067 [FW_DEVLOG_FACILITY_CORE] = "CORE", 10068 [FW_DEVLOG_FACILITY_CF] = "CF", 10069 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 10070 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 10071 [FW_DEVLOG_FACILITY_RES] = "RES", 10072 [FW_DEVLOG_FACILITY_HW] = "HW", 10073 [FW_DEVLOG_FACILITY_FLR] = "FLR", 10074 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 10075 [FW_DEVLOG_FACILITY_PHY] = "PHY", 10076 [FW_DEVLOG_FACILITY_MAC] = "MAC", 10077 [FW_DEVLOG_FACILITY_PORT] = "PORT", 10078 [FW_DEVLOG_FACILITY_VI] = "VI", 10079 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 10080 [FW_DEVLOG_FACILITY_ACL] = "ACL", 10081 [FW_DEVLOG_FACILITY_TM] = "TM", 10082 [FW_DEVLOG_FACILITY_QFC] = "QFC", 10083 [FW_DEVLOG_FACILITY_DCB] = "DCB", 10084 [FW_DEVLOG_FACILITY_ETH] = "ETH", 10085 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 10086 [FW_DEVLOG_FACILITY_RI] = "RI", 10087 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 10088 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 10089 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 10090 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 10091 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 10092 }; 10093 10094 static int 10095 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 10096 { 10097 int i, j, rc, nentries, first = 0; 10098 struct devlog_params *dparams = &sc->params.devlog; 10099 struct fw_devlog_e *buf, *e; 10100 uint32_t addr, size; 10101 uint64_t ftstamp = UINT64_MAX; 10102 10103 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10104 ("%s: bad coreid %d\n", __func__, coreid)); 10105 10106 if (dparams->addr == 0) 10107 return (ENXIO); 10108 10109 size = dparams->size / sc->params.ncores; 10110 addr = dparams->addr + coreid * size; 10111 10112 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 10113 buf = malloc(size, M_CXGBE, M_ZERO | flags); 10114 if (buf == NULL) 10115 return (ENOMEM); 10116 10117 mtx_lock(&sc->reg_lock); 10118 if (hw_off_limits(sc)) 10119 rc = ENXIO; 10120 else 10121 rc = read_via_memwin(sc, 1, addr, (void *)buf, size); 10122 mtx_unlock(&sc->reg_lock); 10123 if (rc != 0) 10124 goto done; 10125 10126 nentries = size / sizeof(struct fw_devlog_e); 10127 for (i = 0; i < nentries; i++) { 10128 e = &buf[i]; 10129 10130 if (e->timestamp == 0) 10131 break; /* end */ 10132 10133 e->timestamp = be64toh(e->timestamp); 10134 e->seqno = be32toh(e->seqno); 10135 for (j = 0; j < 8; j++) 10136 e->params[j] = be32toh(e->params[j]); 10137 10138 if (e->timestamp < ftstamp) { 10139 ftstamp = e->timestamp; 10140 first = i; 10141 } 10142 } 10143 10144 if (buf[first].timestamp == 0) 10145 goto done; /* nothing in the log */ 10146 10147 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 10148 "Seq#", "Tstamp", "Level", "Facility", "Message"); 10149 10150 i = first; 10151 do { 10152 e = &buf[i]; 10153 if (e->timestamp == 0) 10154 break; /* end */ 10155 10156 sbuf_printf(sb, "%10d %15ju %8s %8s ", 10157 e->seqno, e->timestamp, 10158 (e->level < nitems(devlog_level_strings) ? 10159 devlog_level_strings[e->level] : "UNKNOWN"), 10160 (e->facility < nitems(devlog_facility_strings) ? 10161 devlog_facility_strings[e->facility] : "UNKNOWN")); 10162 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 10163 e->params[2], e->params[3], e->params[4], 10164 e->params[5], e->params[6], e->params[7]); 10165 10166 if (++i == nentries) 10167 i = 0; 10168 } while (i != first); 10169 done: 10170 free(buf, M_CXGBE); 10171 return (rc); 10172 } 10173 10174 static int 10175 sysctl_devlog(SYSCTL_HANDLER_ARGS) 10176 { 10177 struct adapter *sc = arg1; 10178 int rc, i, coreid = arg2; 10179 struct sbuf *sb; 10180 10181 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10182 if (sb == NULL) 10183 return (ENOMEM); 10184 if (coreid == -1) { 10185 /* -1 means all cores */ 10186 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10187 if (sc->params.ncores > 0) 10188 sbuf_printf(sb, "=== CIM core %u ===\n", i); 10189 rc = sbuf_devlog(sc, i, sb, M_WAITOK); 10190 } 10191 } else { 10192 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10193 ("%s: bad coreid %d\n", __func__, coreid)); 10194 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK); 10195 } 10196 if (rc == 0) 10197 rc = sbuf_finish(sb); 10198 sbuf_delete(sb); 10199 return (rc); 10200 } 10201 10202 static void 10203 dump_devlog(struct adapter *sc) 10204 { 10205 int rc, i; 10206 struct sbuf sb; 10207 10208 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 10209 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 10210 device_get_nameunit(sc->dev)); 10211 return; 10212 } 10213 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10214 if (sc->params.ncores > 0) 10215 sbuf_printf(&sb, "=== CIM core %u ===\n", i); 10216 rc = sbuf_devlog(sc, i, &sb, M_WAITOK); 10217 } 10218 if (rc == 0) { 10219 sbuf_finish(&sb); 10220 log(LOG_DEBUG, "%s: device log follows.\n%s", 10221 device_get_nameunit(sc->dev), sbuf_data(&sb)); 10222 } 10223 sbuf_delete(&sb); 10224 } 10225 10226 static int 10227 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 10228 { 10229 struct adapter *sc = arg1; 10230 struct sbuf *sb; 10231 int rc; 10232 struct tp_fcoe_stats stats[MAX_NCHAN]; 10233 int i, nchan = sc->chip_params->nchan; 10234 10235 rc = 0; 10236 mtx_lock(&sc->reg_lock); 10237 if (hw_off_limits(sc)) 10238 rc = ENXIO; 10239 else { 10240 for (i = 0; i < nchan; i++) 10241 t4_get_fcoe_stats(sc, i, &stats[i], 1); 10242 } 10243 mtx_unlock(&sc->reg_lock); 10244 if (rc != 0) 10245 return (rc); 10246 10247 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10248 if (sb == NULL) 10249 return (ENOMEM); 10250 10251 if (nchan > 2) { 10252 sbuf_printf(sb, " channel 0 channel 1" 10253 " channel 2 channel 3"); 10254 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 10255 stats[0].octets_ddp, stats[1].octets_ddp, 10256 stats[2].octets_ddp, stats[3].octets_ddp); 10257 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 10258 stats[0].frames_ddp, stats[1].frames_ddp, 10259 stats[2].frames_ddp, stats[3].frames_ddp); 10260 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 10261 stats[0].frames_drop, stats[1].frames_drop, 10262 stats[2].frames_drop, stats[3].frames_drop); 10263 } else { 10264 sbuf_printf(sb, " channel 0 channel 1"); 10265 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 10266 stats[0].octets_ddp, stats[1].octets_ddp); 10267 sbuf_printf(sb, "\nframesDDP: %16u %16u", 10268 stats[0].frames_ddp, stats[1].frames_ddp); 10269 sbuf_printf(sb, "\nframesDrop: %16u %16u", 10270 stats[0].frames_drop, stats[1].frames_drop); 10271 } 10272 10273 rc = sbuf_finish(sb); 10274 sbuf_delete(sb); 10275 10276 return (rc); 10277 } 10278 10279 static int 10280 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 10281 { 10282 struct adapter *sc = arg1; 10283 struct sbuf *sb; 10284 int rc, i; 10285 unsigned int map, kbps, ipg, mode; 10286 unsigned int pace_tab[NTX_SCHED]; 10287 10288 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 10289 if (sb == NULL) 10290 return (ENOMEM); 10291 10292 mtx_lock(&sc->reg_lock); 10293 if (hw_off_limits(sc)) { 10294 mtx_unlock(&sc->reg_lock); 10295 rc = ENXIO; 10296 goto done; 10297 } 10298 10299 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 10300 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 10301 t4_read_pace_tbl(sc, pace_tab); 10302 mtx_unlock(&sc->reg_lock); 10303 10304 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 10305 "Class IPG (0.1 ns) Flow IPG (us)"); 10306 10307 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 10308 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 10309 sbuf_printf(sb, "\n %u %-5s %u ", i, 10310 (mode & (1 << i)) ? "flow" : "class", map & 3); 10311 if (kbps) 10312 sbuf_printf(sb, "%9u ", kbps); 10313 else 10314 sbuf_printf(sb, " disabled "); 10315 10316 if (ipg) 10317 sbuf_printf(sb, "%13u ", ipg); 10318 else 10319 sbuf_printf(sb, " disabled "); 10320 10321 if (pace_tab[i]) 10322 sbuf_printf(sb, "%10u", pace_tab[i]); 10323 else 10324 sbuf_printf(sb, " disabled"); 10325 } 10326 rc = sbuf_finish(sb); 10327 done: 10328 sbuf_delete(sb); 10329 return (rc); 10330 } 10331 10332 static int 10333 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 10334 { 10335 struct adapter *sc = arg1; 10336 struct sbuf *sb; 10337 int rc, i, j; 10338 uint64_t *p0, *p1; 10339 struct lb_port_stats s[2]; 10340 static const char *stat_name[] = { 10341 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 10342 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 10343 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 10344 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 10345 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 10346 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 10347 "BG2FramesTrunc:", "BG3FramesTrunc:" 10348 }; 10349 10350 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10351 if (sb == NULL) 10352 return (ENOMEM); 10353 10354 memset(s, 0, sizeof(s)); 10355 10356 rc = 0; 10357 for (i = 0; i < sc->chip_params->nchan; i += 2) { 10358 mtx_lock(&sc->reg_lock); 10359 if (hw_off_limits(sc)) 10360 rc = ENXIO; 10361 else { 10362 t4_get_lb_stats(sc, i, &s[0]); 10363 t4_get_lb_stats(sc, i + 1, &s[1]); 10364 } 10365 mtx_unlock(&sc->reg_lock); 10366 if (rc != 0) 10367 break; 10368 10369 p0 = &s[0].octets; 10370 p1 = &s[1].octets; 10371 sbuf_printf(sb, "%s Loopback %u" 10372 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 10373 10374 for (j = 0; j < nitems(stat_name); j++) 10375 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 10376 *p0++, *p1++); 10377 } 10378 10379 if (rc == 0) 10380 rc = sbuf_finish(sb); 10381 sbuf_delete(sb); 10382 10383 return (rc); 10384 } 10385 10386 static int 10387 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 10388 { 10389 int rc = 0; 10390 struct port_info *pi = arg1; 10391 struct link_config *lc = &pi->link_cfg; 10392 struct sbuf *sb; 10393 10394 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 10395 if (sb == NULL) 10396 return (ENOMEM); 10397 10398 if (lc->link_ok || lc->link_down_rc == 255) 10399 sbuf_printf(sb, "n/a"); 10400 else 10401 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 10402 10403 rc = sbuf_finish(sb); 10404 sbuf_delete(sb); 10405 10406 return (rc); 10407 } 10408 10409 struct mem_desc { 10410 uint64_t base; 10411 uint64_t limit; 10412 u_int idx; 10413 }; 10414 10415 static int 10416 mem_desc_cmp(const void *a, const void *b) 10417 { 10418 const uint64_t v1 = ((const struct mem_desc *)a)->base; 10419 const uint64_t v2 = ((const struct mem_desc *)b)->base; 10420 10421 if (v1 < v2) 10422 return (-1); 10423 else if (v1 > v2) 10424 return (1); 10425 10426 return (0); 10427 } 10428 10429 static void 10430 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to) 10431 { 10432 uintmax_t size; 10433 10434 if (from == to) 10435 return; 10436 10437 size = to - from + 1; 10438 if (size == 0) 10439 return; 10440 10441 if (from > UINT32_MAX || to > UINT32_MAX) 10442 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name, 10443 (uintmax_t)from, (uintmax_t)to, size); 10444 else 10445 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name, 10446 (uintmax_t)from, (uintmax_t)to, size); 10447 } 10448 10449 static int 10450 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 10451 { 10452 struct adapter *sc = arg1; 10453 struct sbuf *sb; 10454 int rc, i, n, nchan; 10455 uint32_t lo, hi, used, free, alloc; 10456 static const char *memory[] = { 10457 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 10458 }; 10459 static const char *region[] = { 10460 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 10461 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 10462 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 10463 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 10464 "RQUDP region:", "PBL region:", "TXPBL region:", 10465 "TLSKey region:", "RRQ region:", "NVMe STAG region:", 10466 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:", 10467 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:", 10468 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:", 10469 }; 10470 struct mem_desc avail[4]; 10471 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 10472 struct mem_desc *md; 10473 10474 rc = sysctl_wire_old_buffer(req, 0); 10475 if (rc != 0) 10476 return (rc); 10477 10478 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10479 if (sb == NULL) 10480 return (ENOMEM); 10481 10482 for (i = 0; i < nitems(mem); i++) { 10483 mem[i].limit = 0; 10484 mem[i].idx = i; 10485 } 10486 10487 mtx_lock(&sc->reg_lock); 10488 if (hw_off_limits(sc)) { 10489 rc = ENXIO; 10490 goto done; 10491 } 10492 10493 /* Find and sort the populated memory ranges */ 10494 i = 0; 10495 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 10496 if (lo & F_EDRAM0_ENABLE) { 10497 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 10498 if (chip_id(sc) >= CHELSIO_T7) { 10499 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20; 10500 avail[i].limit = avail[i].base + 10501 (G_T7_EDRAM0_SIZE(hi) << 20); 10502 } else { 10503 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20; 10504 avail[i].limit = avail[i].base + 10505 (G_EDRAM0_SIZE(hi) << 20); 10506 } 10507 avail[i].idx = 0; 10508 i++; 10509 } 10510 if (lo & F_EDRAM1_ENABLE) { 10511 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 10512 if (chip_id(sc) >= CHELSIO_T7) { 10513 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20; 10514 avail[i].limit = avail[i].base + 10515 (G_T7_EDRAM1_SIZE(hi) << 20); 10516 } else { 10517 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20; 10518 avail[i].limit = avail[i].base + 10519 (G_EDRAM1_SIZE(hi) << 20); 10520 } 10521 avail[i].idx = 1; 10522 i++; 10523 } 10524 if (lo & F_EXT_MEM_ENABLE) { 10525 switch (chip_id(sc)) { 10526 case CHELSIO_T4: 10527 case CHELSIO_T6: 10528 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 10529 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20; 10530 avail[i].limit = avail[i].base + 10531 (G_EXT_MEM_SIZE(hi) << 20); 10532 avail[i].idx = 2; 10533 break; 10534 case CHELSIO_T5: 10535 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10536 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20; 10537 avail[i].limit = avail[i].base + 10538 (G_EXT_MEM0_SIZE(hi) << 20); 10539 avail[i].idx = 3; /* Call it MC0 for T5 */ 10540 break; 10541 default: 10542 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10543 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20; 10544 avail[i].limit = avail[i].base + 10545 (G_T7_EXT_MEM0_SIZE(hi) << 20); 10546 avail[i].idx = 3; /* Call it MC0 for T7+ */ 10547 break; 10548 } 10549 i++; 10550 } 10551 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) { 10552 /* Only T5 and T7+ have 2 MCs. */ 10553 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7); 10554 10555 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10556 if (chip_id(sc) >= CHELSIO_T7) { 10557 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20; 10558 avail[i].limit = avail[i].base + 10559 (G_T7_EXT_MEM1_SIZE(hi) << 20); 10560 } else { 10561 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20; 10562 avail[i].limit = avail[i].base + 10563 (G_EXT_MEM1_SIZE(hi) << 20); 10564 } 10565 avail[i].idx = 4; 10566 i++; 10567 } 10568 if (lo & F_HMA_MUX) { 10569 /* Only T6+ have HMA. */ 10570 MPASS(chip_id(sc) >= CHELSIO_T6); 10571 10572 if (chip_id(sc) >= CHELSIO_T7) { 10573 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR); 10574 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20; 10575 avail[i].limit = avail[i].base + 10576 (G_T7_HMA_SIZE(hi) << 20); 10577 } else { 10578 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10579 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10580 avail[i].limit = avail[i].base + 10581 (G_EXT_MEM1_SIZE(hi) << 20); 10582 } 10583 avail[i].idx = 5; 10584 i++; 10585 } 10586 MPASS(i <= nitems(avail)); 10587 if (!i) /* no memory available */ 10588 goto done; 10589 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 10590 10591 md = &mem[0]; 10592 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 10593 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 10594 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 10595 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10596 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 10597 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 10598 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 10599 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 10600 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 10601 10602 /* the next few have explicit upper bounds */ 10603 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 10604 md->limit = md->base - 1 + 10605 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 10606 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 10607 md++; 10608 10609 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 10610 md->limit = md->base - 1 + 10611 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 10612 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 10613 md++; 10614 10615 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10616 if (chip_id(sc) <= CHELSIO_T5) 10617 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 10618 else 10619 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 10620 md->limit = 0; 10621 } else { 10622 md->base = 0; 10623 md->idx = nitems(region); /* hide it */ 10624 } 10625 md++; 10626 10627 #define ulp_region(reg) do {\ 10628 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \ 10629 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \ 10630 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \ 10631 md->limit += (1 << shift) - 1; \ 10632 md++; \ 10633 } while (0) 10634 10635 #define hide_ulp_region() do { \ 10636 md->base = 0; \ 10637 md->idx = nitems(region); \ 10638 md++; \ 10639 } while (0) 10640 10641 ulp_region(RX_ISCSI); 10642 ulp_region(RX_TDDP); 10643 ulp_region(TX_TPT); 10644 ulp_region(RX_STAG); 10645 ulp_region(RX_RQ); 10646 if (chip_id(sc) < CHELSIO_T7) 10647 ulp_region(RX_RQUDP); 10648 else 10649 hide_ulp_region(); 10650 ulp_region(RX_PBL); 10651 ulp_region(TX_PBL); 10652 if (chip_id(sc) >= CHELSIO_T6) 10653 ulp_region(RX_TLS_KEY); 10654 else 10655 hide_ulp_region(); 10656 if (chip_id(sc) >= CHELSIO_T7) { 10657 ulp_region(RX_RRQ); 10658 ulp_region(RX_NVME_TCP_STAG); 10659 ulp_region(RX_NVME_TCP_RQ); 10660 ulp_region(RX_NVME_TCP_PBL); 10661 ulp_region(TX_NVME_TCP_TPT); 10662 ulp_region(TX_NVME_TCP_PBL); 10663 } else { 10664 hide_ulp_region(); 10665 hide_ulp_region(); 10666 hide_ulp_region(); 10667 hide_ulp_region(); 10668 hide_ulp_region(); 10669 hide_ulp_region(); 10670 } 10671 #undef ulp_region 10672 #undef hide_ulp_region 10673 10674 md->base = 0; 10675 if (is_t4(sc)) 10676 md->idx = nitems(region); 10677 else { 10678 uint32_t size = 0; 10679 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 10680 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 10681 10682 if (is_t5(sc)) { 10683 if (sge_ctrl & F_VFIFO_ENABLE) 10684 size = fifo_size << 2; 10685 } else 10686 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10687 10688 if (size) { 10689 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10690 md->limit = md->base + size - 1; 10691 } else 10692 md->idx = nitems(region); 10693 } 10694 md++; 10695 10696 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10697 md->limit = 0; 10698 md++; 10699 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10700 md->limit = 0; 10701 md++; 10702 10703 if (chip_id(sc) >= CHELSIO_T7) { 10704 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false); 10705 md->base = lo; 10706 } else { 10707 md->base = 0; 10708 md->idx = nitems(region); 10709 } 10710 md++; 10711 10712 md->base = sc->vres.ocq.start; 10713 if (sc->vres.ocq.size) 10714 md->limit = md->base + sc->vres.ocq.size - 1; 10715 else 10716 md->idx = nitems(region); /* hide it */ 10717 md++; 10718 10719 /* add any address-space holes, there can be up to 3 */ 10720 for (n = 0; n < i - 1; n++) 10721 if (avail[n].limit < avail[n + 1].base) 10722 (md++)->base = avail[n].limit; 10723 if (avail[n].limit) 10724 (md++)->base = avail[n].limit; 10725 10726 n = md - mem; 10727 MPASS(n <= nitems(mem)); 10728 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10729 10730 for (lo = 0; lo < i; lo++) 10731 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10732 avail[lo].limit - 1); 10733 10734 sbuf_printf(sb, "\n"); 10735 for (i = 0; i < n; i++) { 10736 if (mem[i].idx >= nitems(region)) 10737 continue; /* skip holes */ 10738 if (!mem[i].limit) 10739 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10740 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10741 mem[i].limit); 10742 } 10743 10744 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10745 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10746 if (hi != lo - 1) { 10747 sbuf_printf(sb, "\n"); 10748 mem_region_show(sb, "uP RAM:", lo, hi); 10749 } 10750 10751 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10752 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10753 if (hi != lo - 1) 10754 mem_region_show(sb, "uP Extmem2:", lo, hi); 10755 10756 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10757 if (chip_id(sc) >= CHELSIO_T7) 10758 nchan = 1 << G_T7_PMRXNUMCHN(lo); 10759 else 10760 nchan = lo & F_PMRXNUMCHN ? 2 : 1; 10761 for (i = 0, free = 0; i < nchan; i++) 10762 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10763 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10764 G_PMRXMAXPAGE(lo), free, 10765 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan); 10766 10767 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10768 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10769 if (chip_id(sc) >= CHELSIO_T7) 10770 nchan = 1 << G_T7_PMTXNUMCHN(lo); 10771 else 10772 nchan = 1 << G_PMTXNUMCHN(lo); 10773 for (i = 0, free = 0; i < nchan; i++) 10774 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10775 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10776 G_PMTXMAXPAGE(lo), free, 10777 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10778 hi >= (1 << 20) ? 'M' : 'K', nchan); 10779 sbuf_printf(sb, "%u p-structs (%u free)\n", 10780 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10781 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10782 10783 for (i = 0; i < 4; i++) { 10784 if (chip_id(sc) > CHELSIO_T5) 10785 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10786 else 10787 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10788 if (is_t5(sc)) { 10789 used = G_T5_USED(lo); 10790 alloc = G_T5_ALLOC(lo); 10791 } else { 10792 used = G_USED(lo); 10793 alloc = G_ALLOC(lo); 10794 } 10795 /* For T6+ these are MAC buffer groups */ 10796 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10797 i, used, alloc); 10798 } 10799 for (i = 0; i < sc->chip_params->nchan; i++) { 10800 if (chip_id(sc) > CHELSIO_T5) 10801 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10802 else 10803 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10804 if (is_t5(sc)) { 10805 used = G_T5_USED(lo); 10806 alloc = G_T5_ALLOC(lo); 10807 } else { 10808 used = G_USED(lo); 10809 alloc = G_ALLOC(lo); 10810 } 10811 /* For T6+ these are MAC buffer groups */ 10812 sbuf_printf(sb, 10813 "\nLoopback %d using %u pages out of %u allocated", 10814 i, used, alloc); 10815 } 10816 done: 10817 mtx_unlock(&sc->reg_lock); 10818 if (rc == 0) 10819 rc = sbuf_finish(sb); 10820 sbuf_delete(sb); 10821 return (rc); 10822 } 10823 10824 static inline void 10825 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10826 { 10827 *mask = x | y; 10828 y = htobe64(y); 10829 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10830 } 10831 10832 static int 10833 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10834 { 10835 struct adapter *sc = arg1; 10836 struct sbuf *sb; 10837 int rc, i; 10838 10839 MPASS(chip_id(sc) <= CHELSIO_T5); 10840 10841 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10842 if (sb == NULL) 10843 return (ENOMEM); 10844 10845 sbuf_printf(sb, 10846 "Idx Ethernet address Mask Vld Ports PF" 10847 " VF Replication P0 P1 P2 P3 ML"); 10848 rc = 0; 10849 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10850 uint64_t tcamx, tcamy, mask; 10851 uint32_t cls_lo, cls_hi; 10852 uint8_t addr[ETHER_ADDR_LEN]; 10853 10854 mtx_lock(&sc->reg_lock); 10855 if (hw_off_limits(sc)) 10856 rc = ENXIO; 10857 else { 10858 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10859 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10860 } 10861 mtx_unlock(&sc->reg_lock); 10862 if (rc != 0) 10863 break; 10864 if (tcamx & tcamy) 10865 continue; 10866 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10867 mtx_lock(&sc->reg_lock); 10868 if (hw_off_limits(sc)) 10869 rc = ENXIO; 10870 else { 10871 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10872 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10873 } 10874 mtx_unlock(&sc->reg_lock); 10875 if (rc != 0) 10876 break; 10877 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10878 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10879 addr[3], addr[4], addr[5], (uintmax_t)mask, 10880 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10881 G_PORTMAP(cls_hi), G_PF(cls_lo), 10882 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10883 10884 if (cls_lo & F_REPLICATE) { 10885 struct fw_ldst_cmd ldst_cmd; 10886 10887 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10888 ldst_cmd.op_to_addrspace = 10889 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10890 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10891 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10892 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10893 ldst_cmd.u.mps.rplc.fid_idx = 10894 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10895 V_FW_LDST_CMD_IDX(i)); 10896 10897 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10898 "t4mps"); 10899 if (rc) 10900 break; 10901 if (hw_off_limits(sc)) 10902 rc = ENXIO; 10903 else 10904 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10905 sizeof(ldst_cmd), &ldst_cmd); 10906 end_synchronized_op(sc, 0); 10907 if (rc != 0) 10908 break; 10909 else { 10910 sbuf_printf(sb, " %08x %08x %08x %08x", 10911 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10912 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10913 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10914 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10915 } 10916 } else 10917 sbuf_printf(sb, "%36s", ""); 10918 10919 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10920 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10921 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10922 } 10923 10924 if (rc) 10925 (void) sbuf_finish(sb); 10926 else 10927 rc = sbuf_finish(sb); 10928 sbuf_delete(sb); 10929 10930 return (rc); 10931 } 10932 10933 static int 10934 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10935 { 10936 struct adapter *sc = arg1; 10937 struct sbuf *sb; 10938 int rc, i; 10939 10940 MPASS(chip_id(sc) == CHELSIO_T6); 10941 10942 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10943 if (sb == NULL) 10944 return (ENOMEM); 10945 10946 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10947 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10948 " Replication" 10949 " P0 P1 P2 P3 ML"); 10950 10951 rc = 0; 10952 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10953 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10954 uint16_t ivlan; 10955 uint64_t tcamx, tcamy, val, mask; 10956 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10957 uint8_t addr[ETHER_ADDR_LEN]; 10958 10959 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10960 if (i < 256) 10961 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10962 else 10963 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10964 mtx_lock(&sc->reg_lock); 10965 if (hw_off_limits(sc)) 10966 rc = ENXIO; 10967 else { 10968 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10969 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10970 tcamy = G_DMACH(val) << 32; 10971 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10972 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10973 } 10974 mtx_unlock(&sc->reg_lock); 10975 if (rc != 0) 10976 break; 10977 10978 lookup_type = G_DATALKPTYPE(data2); 10979 port_num = G_DATAPORTNUM(data2); 10980 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10981 /* Inner header VNI */ 10982 vniy = ((data2 & F_DATAVIDH2) << 23) | 10983 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10984 dip_hit = data2 & F_DATADIPHIT; 10985 vlan_vld = 0; 10986 } else { 10987 vniy = 0; 10988 dip_hit = 0; 10989 vlan_vld = data2 & F_DATAVIDH2; 10990 ivlan = G_VIDL(val); 10991 } 10992 10993 ctl |= V_CTLXYBITSEL(1); 10994 mtx_lock(&sc->reg_lock); 10995 if (hw_off_limits(sc)) 10996 rc = ENXIO; 10997 else { 10998 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10999 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 11000 tcamx = G_DMACH(val) << 32; 11001 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 11002 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 11003 } 11004 mtx_unlock(&sc->reg_lock); 11005 if (rc != 0) 11006 break; 11007 11008 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11009 /* Inner header VNI mask */ 11010 vnix = ((data2 & F_DATAVIDH2) << 23) | 11011 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 11012 } else 11013 vnix = 0; 11014 11015 if (tcamx & tcamy) 11016 continue; 11017 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11018 11019 mtx_lock(&sc->reg_lock); 11020 if (hw_off_limits(sc)) 11021 rc = ENXIO; 11022 else { 11023 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11024 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11025 } 11026 mtx_unlock(&sc->reg_lock); 11027 if (rc != 0) 11028 break; 11029 11030 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11031 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11032 "%012jx %06x %06x - - %3c" 11033 " I %4x %3c %#x%4u%4d", i, addr[0], 11034 addr[1], addr[2], addr[3], addr[4], addr[5], 11035 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11036 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11037 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11038 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11039 } else { 11040 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11041 "%012jx - - ", i, addr[0], addr[1], 11042 addr[2], addr[3], addr[4], addr[5], 11043 (uintmax_t)mask); 11044 11045 if (vlan_vld) 11046 sbuf_printf(sb, "%4u Y ", ivlan); 11047 else 11048 sbuf_printf(sb, " - N "); 11049 11050 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11051 lookup_type ? 'I' : 'O', port_num, 11052 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11053 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11054 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11055 } 11056 11057 11058 if (cls_lo & F_T6_REPLICATE) { 11059 struct fw_ldst_cmd ldst_cmd; 11060 11061 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11062 ldst_cmd.op_to_addrspace = 11063 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11064 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11065 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11066 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11067 ldst_cmd.u.mps.rplc.fid_idx = 11068 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11069 V_FW_LDST_CMD_IDX(i)); 11070 11071 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11072 "t6mps"); 11073 if (rc) 11074 break; 11075 if (hw_off_limits(sc)) 11076 rc = ENXIO; 11077 else 11078 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11079 sizeof(ldst_cmd), &ldst_cmd); 11080 end_synchronized_op(sc, 0); 11081 if (rc != 0) 11082 break; 11083 else { 11084 sbuf_printf(sb, " %08x %08x %08x %08x" 11085 " %08x %08x %08x %08x", 11086 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11087 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11088 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11089 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11090 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11091 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11092 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11093 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11094 } 11095 } else 11096 sbuf_printf(sb, "%72s", ""); 11097 11098 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11099 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11100 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11101 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11102 } 11103 11104 if (rc) 11105 (void) sbuf_finish(sb); 11106 else 11107 rc = sbuf_finish(sb); 11108 sbuf_delete(sb); 11109 11110 return (rc); 11111 } 11112 11113 static int 11114 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS) 11115 { 11116 struct adapter *sc = arg1; 11117 struct sbuf *sb; 11118 int rc, i; 11119 11120 MPASS(chip_id(sc) >= CHELSIO_T7); 11121 11122 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11123 if (sb == NULL) 11124 return (ENOMEM); 11125 11126 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 11127 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 11128 " Replication" 11129 " P0 P1 P2 P3 ML"); 11130 11131 rc = 0; 11132 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 11133 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 11134 uint16_t ivlan; 11135 uint64_t tcamx, tcamy, val, mask; 11136 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 11137 uint8_t addr[ETHER_ADDR_LEN]; 11138 11139 /* Read tcamy */ 11140 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11141 if (chip_rev(sc) == 0) { 11142 if (i < 256) 11143 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11144 else 11145 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1); 11146 } else { 11147 #if 0 11148 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11149 #endif 11150 if (i < 512) 11151 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11152 else if (i < 1024) 11153 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1); 11154 else 11155 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2); 11156 } 11157 11158 mtx_lock(&sc->reg_lock); 11159 if (hw_off_limits(sc)) 11160 rc = ENXIO; 11161 else { 11162 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11163 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11164 tcamy = G_DMACH(val) << 32; 11165 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11166 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11167 } 11168 mtx_unlock(&sc->reg_lock); 11169 if (rc != 0) 11170 break; 11171 11172 lookup_type = G_DATALKPTYPE(data2); 11173 port_num = G_DATAPORTNUM(data2); 11174 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11175 /* Inner header VNI */ 11176 vniy = (((data2 & F_DATAVIDH2) | 11177 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11178 dip_hit = data2 & F_DATADIPHIT; 11179 vlan_vld = 0; 11180 } else { 11181 vniy = 0; 11182 dip_hit = 0; 11183 vlan_vld = data2 & F_DATAVIDH2; 11184 ivlan = G_VIDL(val); 11185 } 11186 11187 ctl |= V_CTLXYBITSEL(1); 11188 mtx_lock(&sc->reg_lock); 11189 if (hw_off_limits(sc)) 11190 rc = ENXIO; 11191 else { 11192 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11193 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11194 tcamx = G_DMACH(val) << 32; 11195 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11196 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11197 } 11198 mtx_unlock(&sc->reg_lock); 11199 if (rc != 0) 11200 break; 11201 11202 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11203 /* Inner header VNI mask */ 11204 vnix = (((data2 & F_DATAVIDH2) | 11205 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11206 } else 11207 vnix = 0; 11208 11209 if (tcamx & tcamy) 11210 continue; 11211 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11212 11213 mtx_lock(&sc->reg_lock); 11214 if (hw_off_limits(sc)) 11215 rc = ENXIO; 11216 else { 11217 if (chip_rev(sc) == 0) { 11218 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11219 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11220 } else { 11221 t4_write_reg(sc, A_MPS_CLS_SRAM_H, 11222 V_SRAMWRN(0) | V_SRAMINDEX(i)); 11223 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L); 11224 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H); 11225 } 11226 } 11227 mtx_unlock(&sc->reg_lock); 11228 if (rc != 0) 11229 break; 11230 11231 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11232 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11233 "%012jx %06x %06x - - %3c" 11234 " I %4x %3c %#x%4u%4d", i, addr[0], 11235 addr[1], addr[2], addr[3], addr[4], addr[5], 11236 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11237 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11238 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11239 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11240 } else { 11241 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11242 "%012jx - - ", i, addr[0], addr[1], 11243 addr[2], addr[3], addr[4], addr[5], 11244 (uintmax_t)mask); 11245 11246 if (vlan_vld) 11247 sbuf_printf(sb, "%4u Y ", ivlan); 11248 else 11249 sbuf_printf(sb, " - N "); 11250 11251 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11252 lookup_type ? 'I' : 'O', port_num, 11253 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11254 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11255 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11256 } 11257 11258 if (cls_lo & F_T6_REPLICATE) { 11259 struct fw_ldst_cmd ldst_cmd; 11260 11261 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11262 ldst_cmd.op_to_addrspace = 11263 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11264 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11265 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11266 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11267 ldst_cmd.u.mps.rplc.fid_idx = 11268 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11269 V_FW_LDST_CMD_IDX(i)); 11270 11271 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11272 "t6mps"); 11273 if (rc) 11274 break; 11275 if (hw_off_limits(sc)) 11276 rc = ENXIO; 11277 else 11278 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11279 sizeof(ldst_cmd), &ldst_cmd); 11280 end_synchronized_op(sc, 0); 11281 if (rc != 0) 11282 break; 11283 else { 11284 sbuf_printf(sb, " %08x %08x %08x %08x" 11285 " %08x %08x %08x %08x", 11286 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11287 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11288 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11289 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11290 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11291 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11292 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11293 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11294 } 11295 } else 11296 sbuf_printf(sb, "%72s", ""); 11297 11298 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11299 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11300 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11301 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11302 } 11303 11304 if (rc) 11305 (void) sbuf_finish(sb); 11306 else 11307 rc = sbuf_finish(sb); 11308 sbuf_delete(sb); 11309 11310 return (rc); 11311 } 11312 11313 static int 11314 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 11315 { 11316 struct adapter *sc = arg1; 11317 struct sbuf *sb; 11318 int rc; 11319 uint16_t mtus[NMTUS]; 11320 11321 rc = 0; 11322 mtx_lock(&sc->reg_lock); 11323 if (hw_off_limits(sc)) 11324 rc = ENXIO; 11325 else 11326 t4_read_mtu_tbl(sc, mtus, NULL); 11327 mtx_unlock(&sc->reg_lock); 11328 if (rc != 0) 11329 return (rc); 11330 11331 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11332 if (sb == NULL) 11333 return (ENOMEM); 11334 11335 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 11336 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 11337 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 11338 mtus[14], mtus[15]); 11339 11340 rc = sbuf_finish(sb); 11341 sbuf_delete(sb); 11342 11343 return (rc); 11344 } 11345 11346 static int 11347 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 11348 { 11349 struct adapter *sc = arg1; 11350 struct sbuf *sb; 11351 int rc, i; 11352 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 11353 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 11354 uint32_t stats[T7_PM_RX_CACHE_NSTATS]; 11355 static const char *tx_stats[MAX_PM_NSTATS] = { 11356 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 11357 "Tx FIFO wait", NULL, "Tx latency" 11358 }; 11359 static const char *rx_stats[MAX_PM_NSTATS] = { 11360 "Read:", "Write bypass:", "Write mem:", "Flush:", 11361 "Rx FIFO wait", NULL, "Rx latency" 11362 }; 11363 11364 rc = 0; 11365 mtx_lock(&sc->reg_lock); 11366 if (hw_off_limits(sc)) 11367 rc = ENXIO; 11368 else { 11369 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 11370 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 11371 if (chip_id(sc) >= CHELSIO_T7) 11372 t4_pmrx_cache_get_stats(sc, stats); 11373 } 11374 mtx_unlock(&sc->reg_lock); 11375 if (rc != 0) 11376 return (rc); 11377 11378 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11379 if (sb == NULL) 11380 return (ENOMEM); 11381 11382 sbuf_printf(sb, " Tx pcmds Tx bytes"); 11383 for (i = 0; i < 4; i++) { 11384 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11385 tx_cyc[i]); 11386 } 11387 11388 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 11389 for (i = 0; i < 4; i++) { 11390 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11391 rx_cyc[i]); 11392 } 11393 11394 if (chip_id(sc) > CHELSIO_T5) { 11395 sbuf_printf(sb, 11396 "\n Total wait Total occupancy"); 11397 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11398 tx_cyc[i]); 11399 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11400 rx_cyc[i]); 11401 11402 i += 2; 11403 MPASS(i < nitems(tx_stats)); 11404 11405 sbuf_printf(sb, 11406 "\n Reads Total wait"); 11407 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11408 tx_cyc[i]); 11409 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11410 rx_cyc[i]); 11411 } 11412 11413 if (chip_id(sc) >= CHELSIO_T7) { 11414 i = 0; 11415 sbuf_printf(sb, "\n\nPM RX Cache Stats\n"); 11416 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]); 11417 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]); 11418 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]); 11419 sbuf_printf(sb, "%-40s %u\n", "Write Split Request", 11420 stats[i++]); 11421 sbuf_printf(sb, "%-40s %u\n", 11422 "Normal Read Split (Read Invalidate)", stats[i++]); 11423 sbuf_printf(sb, "%-40s %u\n", 11424 "Feedback Read Split (Read NoInvalidate)", 11425 stats[i++]); 11426 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]); 11427 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit", 11428 stats[i++]); 11429 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit", 11430 stats[i++]); 11431 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail", 11432 stats[i++]); 11433 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail", 11434 stats[i++]); 11435 sbuf_printf(sb, "%-40s %u\n", 11436 "Normal Read Hit Partial Avail", 11437 stats[i++]); 11438 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail", 11439 stats[i++]); 11440 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail", 11441 stats[i++]); 11442 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail", 11443 stats[i++]); 11444 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free", 11445 stats[i++]); 11446 sbuf_printf(sb, "%-40s %u\n", 11447 "Normal Read Part-avail Mul-Regions", 11448 stats[i++]); 11449 sbuf_printf(sb, "%-40s %u\n", 11450 "FB Read Part-avail Mul-Regions", 11451 stats[i++]); 11452 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used", 11453 stats[i++]); 11454 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used", 11455 stats[i++]); 11456 sbuf_printf(sb, "%-40s %u\n", 11457 "Write Miss LRU-Multiple Evict", stats[i++]); 11458 sbuf_printf(sb, "%-40s %u\n", 11459 "Write Hit Increasing Islands", stats[i++]); 11460 sbuf_printf(sb, "%-40s %u\n", 11461 "Normal Read Island Read split", stats[i++]); 11462 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction", 11463 stats[i++]); 11464 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction", 11465 stats[i++]); 11466 } 11467 11468 rc = sbuf_finish(sb); 11469 sbuf_delete(sb); 11470 11471 return (rc); 11472 } 11473 11474 static int 11475 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 11476 { 11477 struct adapter *sc = arg1; 11478 struct sbuf *sb; 11479 int rc; 11480 struct tp_rdma_stats stats; 11481 11482 rc = 0; 11483 mtx_lock(&sc->reg_lock); 11484 if (hw_off_limits(sc)) 11485 rc = ENXIO; 11486 else 11487 t4_tp_get_rdma_stats(sc, &stats, 0); 11488 mtx_unlock(&sc->reg_lock); 11489 if (rc != 0) 11490 return (rc); 11491 11492 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11493 if (sb == NULL) 11494 return (ENOMEM); 11495 11496 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 11497 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 11498 11499 rc = sbuf_finish(sb); 11500 sbuf_delete(sb); 11501 11502 return (rc); 11503 } 11504 11505 static int 11506 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 11507 { 11508 struct adapter *sc = arg1; 11509 struct sbuf *sb; 11510 int rc; 11511 struct tp_tcp_stats v4, v6; 11512 11513 rc = 0; 11514 mtx_lock(&sc->reg_lock); 11515 if (hw_off_limits(sc)) 11516 rc = ENXIO; 11517 else 11518 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 11519 mtx_unlock(&sc->reg_lock); 11520 if (rc != 0) 11521 return (rc); 11522 11523 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11524 if (sb == NULL) 11525 return (ENOMEM); 11526 11527 sbuf_printf(sb, 11528 " IP IPv6\n"); 11529 sbuf_printf(sb, "OutRsts: %20u %20u\n", 11530 v4.tcp_out_rsts, v6.tcp_out_rsts); 11531 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 11532 v4.tcp_in_segs, v6.tcp_in_segs); 11533 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 11534 v4.tcp_out_segs, v6.tcp_out_segs); 11535 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 11536 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 11537 11538 rc = sbuf_finish(sb); 11539 sbuf_delete(sb); 11540 11541 return (rc); 11542 } 11543 11544 static int 11545 sysctl_tids(SYSCTL_HANDLER_ARGS) 11546 { 11547 struct adapter *sc = arg1; 11548 struct sbuf *sb; 11549 int rc; 11550 uint32_t x, y; 11551 struct tid_info *t = &sc->tids; 11552 11553 rc = 0; 11554 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11555 if (sb == NULL) 11556 return (ENOMEM); 11557 11558 if (t->natids) { 11559 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 11560 t->atids_in_use); 11561 } 11562 11563 if (t->nhpftids) { 11564 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 11565 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 11566 } 11567 11568 if (t->ntids) { 11569 bool hashen = false; 11570 11571 mtx_lock(&sc->reg_lock); 11572 if (hw_off_limits(sc)) 11573 rc = ENXIO; 11574 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 11575 hashen = true; 11576 if (chip_id(sc) <= CHELSIO_T5) { 11577 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 11578 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 11579 } else { 11580 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 11581 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 11582 } 11583 } 11584 mtx_unlock(&sc->reg_lock); 11585 if (rc != 0) 11586 goto done; 11587 11588 sbuf_printf(sb, "TID range: "); 11589 if (hashen) { 11590 if (x) 11591 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 11592 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 11593 } else { 11594 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 11595 t->ntids - 1); 11596 } 11597 sbuf_printf(sb, ", in use: %u\n", 11598 atomic_load_acq_int(&t->tids_in_use)); 11599 } 11600 11601 if (t->nstids) { 11602 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 11603 t->stid_base + t->nstids - 1, t->stids_in_use); 11604 } 11605 11606 if (t->nftids) { 11607 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 11608 t->ftid_end, t->ftids_in_use); 11609 } 11610 11611 if (t->netids) { 11612 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 11613 t->etid_base + t->netids - 1, t->etids_in_use); 11614 } 11615 11616 mtx_lock(&sc->reg_lock); 11617 if (hw_off_limits(sc)) 11618 rc = ENXIO; 11619 else { 11620 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 11621 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 11622 } 11623 mtx_unlock(&sc->reg_lock); 11624 if (rc != 0) 11625 goto done; 11626 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 11627 done: 11628 if (rc == 0) 11629 rc = sbuf_finish(sb); 11630 else 11631 (void)sbuf_finish(sb); 11632 sbuf_delete(sb); 11633 11634 return (rc); 11635 } 11636 11637 static int 11638 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 11639 { 11640 struct adapter *sc = arg1; 11641 struct sbuf *sb; 11642 int rc; 11643 struct tp_err_stats stats; 11644 11645 rc = 0; 11646 mtx_lock(&sc->reg_lock); 11647 if (hw_off_limits(sc)) 11648 rc = ENXIO; 11649 else 11650 t4_tp_get_err_stats(sc, &stats, 0); 11651 mtx_unlock(&sc->reg_lock); 11652 if (rc != 0) 11653 return (rc); 11654 11655 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11656 if (sb == NULL) 11657 return (ENOMEM); 11658 11659 if (sc->chip_params->nchan > 2) { 11660 sbuf_printf(sb, " channel 0 channel 1" 11661 " channel 2 channel 3\n"); 11662 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 11663 stats.mac_in_errs[0], stats.mac_in_errs[1], 11664 stats.mac_in_errs[2], stats.mac_in_errs[3]); 11665 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 11666 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 11667 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 11668 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 11669 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 11670 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 11671 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 11672 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 11673 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 11674 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 11675 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 11676 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 11677 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 11678 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 11679 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 11680 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 11681 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 11682 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 11683 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 11684 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 11685 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 11686 } else { 11687 sbuf_printf(sb, " channel 0 channel 1\n"); 11688 sbuf_printf(sb, "macInErrs: %10u %10u\n", 11689 stats.mac_in_errs[0], stats.mac_in_errs[1]); 11690 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 11691 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 11692 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 11693 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 11694 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 11695 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 11696 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 11697 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 11698 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 11699 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 11700 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 11701 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 11702 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 11703 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 11704 } 11705 11706 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 11707 stats.ofld_no_neigh, stats.ofld_cong_defer); 11708 11709 rc = sbuf_finish(sb); 11710 sbuf_delete(sb); 11711 11712 return (rc); 11713 } 11714 11715 static int 11716 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 11717 { 11718 struct adapter *sc = arg1; 11719 struct sbuf *sb; 11720 int rc; 11721 struct tp_tnl_stats stats; 11722 11723 rc = 0; 11724 mtx_lock(&sc->reg_lock); 11725 if (hw_off_limits(sc)) 11726 rc = ENXIO; 11727 else 11728 t4_tp_get_tnl_stats(sc, &stats, 1); 11729 mtx_unlock(&sc->reg_lock); 11730 if (rc != 0) 11731 return (rc); 11732 11733 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11734 if (sb == NULL) 11735 return (ENOMEM); 11736 11737 if (sc->chip_params->nchan > 2) { 11738 sbuf_printf(sb, " channel 0 channel 1" 11739 " channel 2 channel 3\n"); 11740 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 11741 stats.out_pkt[0], stats.out_pkt[1], 11742 stats.out_pkt[2], stats.out_pkt[3]); 11743 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 11744 stats.in_pkt[0], stats.in_pkt[1], 11745 stats.in_pkt[2], stats.in_pkt[3]); 11746 } else { 11747 sbuf_printf(sb, " channel 0 channel 1\n"); 11748 sbuf_printf(sb, "OutPkts: %10u %10u\n", 11749 stats.out_pkt[0], stats.out_pkt[1]); 11750 sbuf_printf(sb, "InPkts: %10u %10u", 11751 stats.in_pkt[0], stats.in_pkt[1]); 11752 } 11753 11754 rc = sbuf_finish(sb); 11755 sbuf_delete(sb); 11756 11757 return (rc); 11758 } 11759 11760 static int 11761 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 11762 { 11763 struct adapter *sc = arg1; 11764 struct tp_params *tpp = &sc->params.tp; 11765 u_int mask; 11766 int rc; 11767 11768 mask = tpp->la_mask >> 16; 11769 rc = sysctl_handle_int(oidp, &mask, 0, req); 11770 if (rc != 0 || req->newptr == NULL) 11771 return (rc); 11772 if (mask > 0xffff) 11773 return (EINVAL); 11774 mtx_lock(&sc->reg_lock); 11775 if (hw_off_limits(sc)) 11776 rc = ENXIO; 11777 else { 11778 tpp->la_mask = mask << 16; 11779 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 11780 tpp->la_mask); 11781 } 11782 mtx_unlock(&sc->reg_lock); 11783 11784 return (rc); 11785 } 11786 11787 struct field_desc { 11788 const char *name; 11789 u_int start; 11790 u_int width; 11791 }; 11792 11793 static void 11794 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 11795 { 11796 char buf[32]; 11797 int line_size = 0; 11798 11799 while (f->name) { 11800 uint64_t mask = (1ULL << f->width) - 1; 11801 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 11802 ((uintmax_t)v >> f->start) & mask); 11803 11804 if (line_size + len >= 79) { 11805 line_size = 8; 11806 sbuf_printf(sb, "\n "); 11807 } 11808 sbuf_printf(sb, "%s ", buf); 11809 line_size += len + 1; 11810 f++; 11811 } 11812 sbuf_printf(sb, "\n"); 11813 } 11814 11815 static const struct field_desc tp_la0[] = { 11816 { "RcfOpCodeOut", 60, 4 }, 11817 { "State", 56, 4 }, 11818 { "WcfState", 52, 4 }, 11819 { "RcfOpcSrcOut", 50, 2 }, 11820 { "CRxError", 49, 1 }, 11821 { "ERxError", 48, 1 }, 11822 { "SanityFailed", 47, 1 }, 11823 { "SpuriousMsg", 46, 1 }, 11824 { "FlushInputMsg", 45, 1 }, 11825 { "FlushInputCpl", 44, 1 }, 11826 { "RssUpBit", 43, 1 }, 11827 { "RssFilterHit", 42, 1 }, 11828 { "Tid", 32, 10 }, 11829 { "InitTcb", 31, 1 }, 11830 { "LineNumber", 24, 7 }, 11831 { "Emsg", 23, 1 }, 11832 { "EdataOut", 22, 1 }, 11833 { "Cmsg", 21, 1 }, 11834 { "CdataOut", 20, 1 }, 11835 { "EreadPdu", 19, 1 }, 11836 { "CreadPdu", 18, 1 }, 11837 { "TunnelPkt", 17, 1 }, 11838 { "RcfPeerFin", 16, 1 }, 11839 { "RcfReasonOut", 12, 4 }, 11840 { "TxCchannel", 10, 2 }, 11841 { "RcfTxChannel", 8, 2 }, 11842 { "RxEchannel", 6, 2 }, 11843 { "RcfRxChannel", 5, 1 }, 11844 { "RcfDataOutSrdy", 4, 1 }, 11845 { "RxDvld", 3, 1 }, 11846 { "RxOoDvld", 2, 1 }, 11847 { "RxCongestion", 1, 1 }, 11848 { "TxCongestion", 0, 1 }, 11849 { NULL } 11850 }; 11851 11852 static const struct field_desc tp_la1[] = { 11853 { "CplCmdIn", 56, 8 }, 11854 { "CplCmdOut", 48, 8 }, 11855 { "ESynOut", 47, 1 }, 11856 { "EAckOut", 46, 1 }, 11857 { "EFinOut", 45, 1 }, 11858 { "ERstOut", 44, 1 }, 11859 { "SynIn", 43, 1 }, 11860 { "AckIn", 42, 1 }, 11861 { "FinIn", 41, 1 }, 11862 { "RstIn", 40, 1 }, 11863 { "DataIn", 39, 1 }, 11864 { "DataInVld", 38, 1 }, 11865 { "PadIn", 37, 1 }, 11866 { "RxBufEmpty", 36, 1 }, 11867 { "RxDdp", 35, 1 }, 11868 { "RxFbCongestion", 34, 1 }, 11869 { "TxFbCongestion", 33, 1 }, 11870 { "TxPktSumSrdy", 32, 1 }, 11871 { "RcfUlpType", 28, 4 }, 11872 { "Eread", 27, 1 }, 11873 { "Ebypass", 26, 1 }, 11874 { "Esave", 25, 1 }, 11875 { "Static0", 24, 1 }, 11876 { "Cread", 23, 1 }, 11877 { "Cbypass", 22, 1 }, 11878 { "Csave", 21, 1 }, 11879 { "CPktOut", 20, 1 }, 11880 { "RxPagePoolFull", 18, 2 }, 11881 { "RxLpbkPkt", 17, 1 }, 11882 { "TxLpbkPkt", 16, 1 }, 11883 { "RxVfValid", 15, 1 }, 11884 { "SynLearned", 14, 1 }, 11885 { "SetDelEntry", 13, 1 }, 11886 { "SetInvEntry", 12, 1 }, 11887 { "CpcmdDvld", 11, 1 }, 11888 { "CpcmdSave", 10, 1 }, 11889 { "RxPstructsFull", 8, 2 }, 11890 { "EpcmdDvld", 7, 1 }, 11891 { "EpcmdFlush", 6, 1 }, 11892 { "EpcmdTrimPrefix", 5, 1 }, 11893 { "EpcmdTrimPostfix", 4, 1 }, 11894 { "ERssIp4Pkt", 3, 1 }, 11895 { "ERssIp6Pkt", 2, 1 }, 11896 { "ERssTcpUdpPkt", 1, 1 }, 11897 { "ERssFceFipPkt", 0, 1 }, 11898 { NULL } 11899 }; 11900 11901 static const struct field_desc tp_la2[] = { 11902 { "CplCmdIn", 56, 8 }, 11903 { "MpsVfVld", 55, 1 }, 11904 { "MpsPf", 52, 3 }, 11905 { "MpsVf", 44, 8 }, 11906 { "SynIn", 43, 1 }, 11907 { "AckIn", 42, 1 }, 11908 { "FinIn", 41, 1 }, 11909 { "RstIn", 40, 1 }, 11910 { "DataIn", 39, 1 }, 11911 { "DataInVld", 38, 1 }, 11912 { "PadIn", 37, 1 }, 11913 { "RxBufEmpty", 36, 1 }, 11914 { "RxDdp", 35, 1 }, 11915 { "RxFbCongestion", 34, 1 }, 11916 { "TxFbCongestion", 33, 1 }, 11917 { "TxPktSumSrdy", 32, 1 }, 11918 { "RcfUlpType", 28, 4 }, 11919 { "Eread", 27, 1 }, 11920 { "Ebypass", 26, 1 }, 11921 { "Esave", 25, 1 }, 11922 { "Static0", 24, 1 }, 11923 { "Cread", 23, 1 }, 11924 { "Cbypass", 22, 1 }, 11925 { "Csave", 21, 1 }, 11926 { "CPktOut", 20, 1 }, 11927 { "RxPagePoolFull", 18, 2 }, 11928 { "RxLpbkPkt", 17, 1 }, 11929 { "TxLpbkPkt", 16, 1 }, 11930 { "RxVfValid", 15, 1 }, 11931 { "SynLearned", 14, 1 }, 11932 { "SetDelEntry", 13, 1 }, 11933 { "SetInvEntry", 12, 1 }, 11934 { "CpcmdDvld", 11, 1 }, 11935 { "CpcmdSave", 10, 1 }, 11936 { "RxPstructsFull", 8, 2 }, 11937 { "EpcmdDvld", 7, 1 }, 11938 { "EpcmdFlush", 6, 1 }, 11939 { "EpcmdTrimPrefix", 5, 1 }, 11940 { "EpcmdTrimPostfix", 4, 1 }, 11941 { "ERssIp4Pkt", 3, 1 }, 11942 { "ERssIp6Pkt", 2, 1 }, 11943 { "ERssTcpUdpPkt", 1, 1 }, 11944 { "ERssFceFipPkt", 0, 1 }, 11945 { NULL } 11946 }; 11947 11948 static void 11949 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 11950 { 11951 11952 field_desc_show(sb, *p, tp_la0); 11953 } 11954 11955 static void 11956 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11957 { 11958 11959 if (idx) 11960 sbuf_printf(sb, "\n"); 11961 field_desc_show(sb, p[0], tp_la0); 11962 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11963 field_desc_show(sb, p[1], tp_la0); 11964 } 11965 11966 static void 11967 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11968 { 11969 11970 if (idx) 11971 sbuf_printf(sb, "\n"); 11972 field_desc_show(sb, p[0], tp_la0); 11973 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11974 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11975 } 11976 11977 static int 11978 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11979 { 11980 struct adapter *sc = arg1; 11981 struct sbuf *sb; 11982 uint64_t *buf, *p; 11983 int rc; 11984 u_int i, inc; 11985 void (*show_func)(struct sbuf *, uint64_t *, int); 11986 11987 rc = 0; 11988 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11989 if (sb == NULL) 11990 return (ENOMEM); 11991 11992 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11993 11994 mtx_lock(&sc->reg_lock); 11995 if (hw_off_limits(sc)) 11996 rc = ENXIO; 11997 else { 11998 t4_tp_read_la(sc, buf, NULL); 11999 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 12000 case 2: 12001 inc = 2; 12002 show_func = tp_la_show2; 12003 break; 12004 case 3: 12005 inc = 2; 12006 show_func = tp_la_show3; 12007 break; 12008 default: 12009 inc = 1; 12010 show_func = tp_la_show; 12011 } 12012 } 12013 mtx_unlock(&sc->reg_lock); 12014 if (rc != 0) 12015 goto done; 12016 12017 p = buf; 12018 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 12019 (*show_func)(sb, p, i); 12020 rc = sbuf_finish(sb); 12021 done: 12022 sbuf_delete(sb); 12023 free(buf, M_CXGBE); 12024 return (rc); 12025 } 12026 12027 static int 12028 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 12029 { 12030 struct adapter *sc = arg1; 12031 struct sbuf *sb; 12032 int rc; 12033 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 12034 12035 rc = 0; 12036 mtx_lock(&sc->reg_lock); 12037 if (hw_off_limits(sc)) 12038 rc = ENXIO; 12039 else 12040 t4_get_chan_txrate(sc, nrate, orate); 12041 mtx_unlock(&sc->reg_lock); 12042 if (rc != 0) 12043 return (rc); 12044 12045 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 12046 if (sb == NULL) 12047 return (ENOMEM); 12048 12049 if (sc->chip_params->nchan > 2) { 12050 sbuf_printf(sb, " channel 0 channel 1" 12051 " channel 2 channel 3\n"); 12052 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 12053 nrate[0], nrate[1], nrate[2], nrate[3]); 12054 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 12055 orate[0], orate[1], orate[2], orate[3]); 12056 } else { 12057 sbuf_printf(sb, " channel 0 channel 1\n"); 12058 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 12059 nrate[0], nrate[1]); 12060 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 12061 orate[0], orate[1]); 12062 } 12063 12064 rc = sbuf_finish(sb); 12065 sbuf_delete(sb); 12066 12067 return (rc); 12068 } 12069 12070 static int 12071 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 12072 { 12073 struct adapter *sc = arg1; 12074 struct sbuf *sb; 12075 uint32_t *buf, *p; 12076 int rc, i; 12077 12078 rc = 0; 12079 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12080 if (sb == NULL) 12081 return (ENOMEM); 12082 12083 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 12084 M_ZERO | M_WAITOK); 12085 12086 mtx_lock(&sc->reg_lock); 12087 if (hw_off_limits(sc)) 12088 rc = ENXIO; 12089 else 12090 t4_ulprx_read_la(sc, buf); 12091 mtx_unlock(&sc->reg_lock); 12092 if (rc != 0) 12093 goto done; 12094 12095 p = buf; 12096 sbuf_printf(sb, " Pcmd Type Message" 12097 " Data"); 12098 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 12099 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 12100 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 12101 } 12102 rc = sbuf_finish(sb); 12103 done: 12104 sbuf_delete(sb); 12105 free(buf, M_CXGBE); 12106 return (rc); 12107 } 12108 12109 static int 12110 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 12111 { 12112 struct adapter *sc = arg1; 12113 struct sbuf *sb; 12114 int rc; 12115 uint32_t cfg, s1, s2; 12116 12117 MPASS(chip_id(sc) >= CHELSIO_T5); 12118 12119 rc = 0; 12120 mtx_lock(&sc->reg_lock); 12121 if (hw_off_limits(sc)) 12122 rc = ENXIO; 12123 else { 12124 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 12125 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 12126 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 12127 } 12128 mtx_unlock(&sc->reg_lock); 12129 if (rc != 0) 12130 return (rc); 12131 12132 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12133 if (sb == NULL) 12134 return (ENOMEM); 12135 12136 if (G_STATSOURCE_T5(cfg) == 7) { 12137 int mode; 12138 12139 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 12140 if (mode == 0) 12141 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 12142 else if (mode == 1) 12143 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 12144 else 12145 sbuf_printf(sb, "unknown mode %d", mode); 12146 } 12147 rc = sbuf_finish(sb); 12148 sbuf_delete(sb); 12149 12150 return (rc); 12151 } 12152 12153 static int 12154 sysctl_cpus(SYSCTL_HANDLER_ARGS) 12155 { 12156 struct adapter *sc = arg1; 12157 enum cpu_sets op = arg2; 12158 cpuset_t cpuset; 12159 struct sbuf *sb; 12160 int i, rc; 12161 12162 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 12163 12164 CPU_ZERO(&cpuset); 12165 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 12166 if (rc != 0) 12167 return (rc); 12168 12169 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12170 if (sb == NULL) 12171 return (ENOMEM); 12172 12173 CPU_FOREACH(i) 12174 sbuf_printf(sb, "%d ", i); 12175 rc = sbuf_finish(sb); 12176 sbuf_delete(sb); 12177 12178 return (rc); 12179 } 12180 12181 static int 12182 sysctl_reset(SYSCTL_HANDLER_ARGS) 12183 { 12184 struct adapter *sc = arg1; 12185 u_int val; 12186 int rc; 12187 12188 val = atomic_load_int(&sc->num_resets); 12189 rc = sysctl_handle_int(oidp, &val, 0, req); 12190 if (rc != 0 || req->newptr == NULL) 12191 return (rc); 12192 12193 if (val == 0) { 12194 /* Zero out the counter that tracks reset. */ 12195 atomic_store_int(&sc->num_resets, 0); 12196 return (0); 12197 } 12198 12199 if (val != 1) 12200 return (EINVAL); /* 0 or 1 are the only legal values */ 12201 12202 if (hw_off_limits(sc)) /* harmless race */ 12203 return (EALREADY); 12204 12205 taskqueue_enqueue(reset_tq, &sc->reset_task); 12206 return (0); 12207 } 12208 12209 #ifdef TCP_OFFLOAD 12210 static int 12211 sysctl_tls(SYSCTL_HANDLER_ARGS) 12212 { 12213 struct adapter *sc = arg1; 12214 int i, j, v, rc; 12215 struct vi_info *vi; 12216 12217 v = sc->tt.tls; 12218 rc = sysctl_handle_int(oidp, &v, 0, req); 12219 if (rc != 0 || req->newptr == NULL) 12220 return (rc); 12221 12222 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 12223 return (ENOTSUP); 12224 12225 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 12226 if (rc) 12227 return (rc); 12228 if (hw_off_limits(sc)) 12229 rc = ENXIO; 12230 else { 12231 sc->tt.tls = !!v; 12232 for_each_port(sc, i) { 12233 for_each_vi(sc->port[i], j, vi) { 12234 if (vi->flags & VI_INIT_DONE) 12235 t4_update_fl_bufsize(vi->ifp); 12236 } 12237 } 12238 } 12239 end_synchronized_op(sc, 0); 12240 12241 return (rc); 12242 12243 } 12244 12245 static void 12246 unit_conv(char *buf, size_t len, u_int val, u_int factor) 12247 { 12248 u_int rem = val % factor; 12249 12250 if (rem == 0) 12251 snprintf(buf, len, "%u", val / factor); 12252 else { 12253 while (rem % 10 == 0) 12254 rem /= 10; 12255 snprintf(buf, len, "%u.%u", val / factor, rem); 12256 } 12257 } 12258 12259 static int 12260 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 12261 { 12262 struct adapter *sc = arg1; 12263 char buf[16]; 12264 u_int res, re; 12265 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12266 12267 mtx_lock(&sc->reg_lock); 12268 if (hw_off_limits(sc)) 12269 res = (u_int)-1; 12270 else 12271 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 12272 mtx_unlock(&sc->reg_lock); 12273 if (res == (u_int)-1) 12274 return (ENXIO); 12275 12276 switch (arg2) { 12277 case 0: 12278 /* timer_tick */ 12279 re = G_TIMERRESOLUTION(res); 12280 break; 12281 case 1: 12282 /* TCP timestamp tick */ 12283 re = G_TIMESTAMPRESOLUTION(res); 12284 break; 12285 case 2: 12286 /* DACK tick */ 12287 re = G_DELAYEDACKRESOLUTION(res); 12288 break; 12289 default: 12290 return (EDOOFUS); 12291 } 12292 12293 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 12294 12295 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 12296 } 12297 12298 static int 12299 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 12300 { 12301 struct adapter *sc = arg1; 12302 int rc; 12303 u_int dack_tmr, dack_re, v; 12304 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12305 12306 mtx_lock(&sc->reg_lock); 12307 if (hw_off_limits(sc)) 12308 rc = ENXIO; 12309 else { 12310 rc = 0; 12311 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 12312 A_TP_TIMER_RESOLUTION)); 12313 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 12314 } 12315 mtx_unlock(&sc->reg_lock); 12316 if (rc != 0) 12317 return (rc); 12318 12319 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 12320 12321 return (sysctl_handle_int(oidp, &v, 0, req)); 12322 } 12323 12324 static int 12325 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 12326 { 12327 struct adapter *sc = arg1; 12328 int rc, reg = arg2; 12329 u_int tre; 12330 u_long tp_tick_us, v; 12331 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12332 12333 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 12334 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 12335 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 12336 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 12337 12338 mtx_lock(&sc->reg_lock); 12339 if (hw_off_limits(sc)) 12340 rc = ENXIO; 12341 else { 12342 rc = 0; 12343 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 12344 tp_tick_us = (cclk_ps << tre) / 1000000; 12345 if (reg == A_TP_INIT_SRTT) 12346 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 12347 else 12348 v = tp_tick_us * t4_read_reg(sc, reg); 12349 } 12350 mtx_unlock(&sc->reg_lock); 12351 if (rc != 0) 12352 return (rc); 12353 else 12354 return (sysctl_handle_long(oidp, &v, 0, req)); 12355 } 12356 12357 /* 12358 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 12359 * passed to this function. 12360 */ 12361 static int 12362 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 12363 { 12364 struct adapter *sc = arg1; 12365 int rc, idx = arg2; 12366 u_int v; 12367 12368 MPASS(idx >= 0 && idx <= 24); 12369 12370 mtx_lock(&sc->reg_lock); 12371 if (hw_off_limits(sc)) 12372 rc = ENXIO; 12373 else { 12374 rc = 0; 12375 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 12376 } 12377 mtx_unlock(&sc->reg_lock); 12378 if (rc != 0) 12379 return (rc); 12380 else 12381 return (sysctl_handle_int(oidp, &v, 0, req)); 12382 } 12383 12384 static int 12385 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 12386 { 12387 struct adapter *sc = arg1; 12388 int rc, idx = arg2; 12389 u_int shift, v, r; 12390 12391 MPASS(idx >= 0 && idx < 16); 12392 12393 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 12394 shift = (idx & 3) << 3; 12395 mtx_lock(&sc->reg_lock); 12396 if (hw_off_limits(sc)) 12397 rc = ENXIO; 12398 else { 12399 rc = 0; 12400 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 12401 } 12402 mtx_unlock(&sc->reg_lock); 12403 if (rc != 0) 12404 return (rc); 12405 else 12406 return (sysctl_handle_int(oidp, &v, 0, req)); 12407 } 12408 12409 static int 12410 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 12411 { 12412 struct vi_info *vi = arg1; 12413 struct adapter *sc = vi->adapter; 12414 int idx, rc, i; 12415 struct sge_ofld_rxq *ofld_rxq; 12416 uint8_t v; 12417 12418 idx = vi->ofld_tmr_idx; 12419 12420 rc = sysctl_handle_int(oidp, &idx, 0, req); 12421 if (rc != 0 || req->newptr == NULL) 12422 return (rc); 12423 12424 if (idx < 0 || idx >= SGE_NTIMERS) 12425 return (EINVAL); 12426 12427 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12428 "t4otmr"); 12429 if (rc) 12430 return (rc); 12431 12432 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 12433 for_each_ofld_rxq(vi, i, ofld_rxq) { 12434 #ifdef atomic_store_rel_8 12435 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 12436 #else 12437 ofld_rxq->iq.intr_params = v; 12438 #endif 12439 } 12440 vi->ofld_tmr_idx = idx; 12441 12442 end_synchronized_op(sc, LOCK_HELD); 12443 return (0); 12444 } 12445 12446 static int 12447 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 12448 { 12449 struct vi_info *vi = arg1; 12450 struct adapter *sc = vi->adapter; 12451 int idx, rc; 12452 12453 idx = vi->ofld_pktc_idx; 12454 12455 rc = sysctl_handle_int(oidp, &idx, 0, req); 12456 if (rc != 0 || req->newptr == NULL) 12457 return (rc); 12458 12459 if (idx < -1 || idx >= SGE_NCOUNTERS) 12460 return (EINVAL); 12461 12462 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12463 "t4opktc"); 12464 if (rc) 12465 return (rc); 12466 12467 if (vi->flags & VI_INIT_DONE) 12468 rc = EBUSY; /* cannot be changed once the queues are created */ 12469 else 12470 vi->ofld_pktc_idx = idx; 12471 12472 end_synchronized_op(sc, LOCK_HELD); 12473 return (rc); 12474 } 12475 #endif 12476 12477 static int 12478 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len, 12479 uint32_t *data) 12480 { 12481 int rc; 12482 12483 if (len < sc->chip_params->sge_ctxt_size) 12484 return (ENOBUFS); 12485 if (cid > M_CTXTQID) 12486 return (EINVAL); 12487 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS && 12488 mem_id != CTXT_FLM && mem_id != CTXT_CNM) 12489 return (EINVAL); 12490 12491 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 12492 if (rc) 12493 return (rc); 12494 12495 if (hw_off_limits(sc)) { 12496 rc = ENXIO; 12497 goto done; 12498 } 12499 12500 if (sc->flags & FW_OK) { 12501 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data); 12502 if (rc == 0) 12503 goto done; 12504 } 12505 12506 /* 12507 * Read via firmware failed or wasn't even attempted. Read directly via 12508 * the backdoor. 12509 */ 12510 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data); 12511 done: 12512 end_synchronized_op(sc, 0); 12513 return (rc); 12514 } 12515 12516 static int 12517 load_fw(struct adapter *sc, struct t4_data *fw) 12518 { 12519 int rc; 12520 uint8_t *fw_data; 12521 12522 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 12523 if (rc) 12524 return (rc); 12525 12526 if (hw_off_limits(sc)) { 12527 rc = ENXIO; 12528 goto done; 12529 } 12530 12531 /* 12532 * The firmware, with the sole exception of the memory parity error 12533 * handler, runs from memory and not flash. It is almost always safe to 12534 * install a new firmware on a running system. Just set bit 1 in 12535 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 12536 */ 12537 if (sc->flags & FULL_INIT_DONE && 12538 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 12539 rc = EBUSY; 12540 goto done; 12541 } 12542 12543 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 12544 12545 rc = copyin(fw->data, fw_data, fw->len); 12546 if (rc == 0) 12547 rc = -t4_load_fw(sc, fw_data, fw->len); 12548 12549 free(fw_data, M_CXGBE); 12550 done: 12551 end_synchronized_op(sc, 0); 12552 return (rc); 12553 } 12554 12555 static int 12556 load_cfg(struct adapter *sc, struct t4_data *cfg) 12557 { 12558 int rc; 12559 uint8_t *cfg_data = NULL; 12560 12561 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12562 if (rc) 12563 return (rc); 12564 12565 if (hw_off_limits(sc)) { 12566 rc = ENXIO; 12567 goto done; 12568 } 12569 12570 if (cfg->len == 0) { 12571 /* clear */ 12572 rc = -t4_load_cfg(sc, NULL, 0); 12573 goto done; 12574 } 12575 12576 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 12577 12578 rc = copyin(cfg->data, cfg_data, cfg->len); 12579 if (rc == 0) 12580 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 12581 12582 free(cfg_data, M_CXGBE); 12583 done: 12584 end_synchronized_op(sc, 0); 12585 return (rc); 12586 } 12587 12588 static int 12589 load_boot(struct adapter *sc, struct t4_bootrom *br) 12590 { 12591 int rc; 12592 uint8_t *br_data = NULL; 12593 u_int offset; 12594 12595 if (br->len > 1024 * 1024) 12596 return (EFBIG); 12597 12598 if (br->pf_offset == 0) { 12599 /* pfidx */ 12600 if (br->pfidx_addr > 7) 12601 return (EINVAL); 12602 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 12603 A_PCIE_PF_EXPROM_OFST))); 12604 } else if (br->pf_offset == 1) { 12605 /* offset */ 12606 offset = G_OFFSET(br->pfidx_addr); 12607 } else { 12608 return (EINVAL); 12609 } 12610 12611 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 12612 if (rc) 12613 return (rc); 12614 12615 if (hw_off_limits(sc)) { 12616 rc = ENXIO; 12617 goto done; 12618 } 12619 12620 if (br->len == 0) { 12621 /* clear */ 12622 rc = -t4_load_boot(sc, NULL, offset, 0); 12623 goto done; 12624 } 12625 12626 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 12627 12628 rc = copyin(br->data, br_data, br->len); 12629 if (rc == 0) 12630 rc = -t4_load_boot(sc, br_data, offset, br->len); 12631 12632 free(br_data, M_CXGBE); 12633 done: 12634 end_synchronized_op(sc, 0); 12635 return (rc); 12636 } 12637 12638 static int 12639 load_bootcfg(struct adapter *sc, struct t4_data *bc) 12640 { 12641 int rc; 12642 uint8_t *bc_data = NULL; 12643 12644 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12645 if (rc) 12646 return (rc); 12647 12648 if (hw_off_limits(sc)) { 12649 rc = ENXIO; 12650 goto done; 12651 } 12652 12653 if (bc->len == 0) { 12654 /* clear */ 12655 rc = -t4_load_bootcfg(sc, NULL, 0); 12656 goto done; 12657 } 12658 12659 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 12660 12661 rc = copyin(bc->data, bc_data, bc->len); 12662 if (rc == 0) 12663 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 12664 12665 free(bc_data, M_CXGBE); 12666 done: 12667 end_synchronized_op(sc, 0); 12668 return (rc); 12669 } 12670 12671 static int 12672 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 12673 { 12674 int rc; 12675 struct cudbg_init *cudbg; 12676 void *handle, *buf; 12677 12678 /* buf is large, don't block if no memory is available */ 12679 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 12680 if (buf == NULL) 12681 return (ENOMEM); 12682 12683 handle = cudbg_alloc_handle(); 12684 if (handle == NULL) { 12685 rc = ENOMEM; 12686 goto done; 12687 } 12688 12689 cudbg = cudbg_get_init(handle); 12690 cudbg->adap = sc; 12691 cudbg->print = (cudbg_print_cb)printf; 12692 12693 #ifndef notyet 12694 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 12695 __func__, dump->wr_flash, dump->len, dump->data); 12696 #endif 12697 12698 if (dump->wr_flash) 12699 cudbg->use_flash = 1; 12700 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 12701 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 12702 12703 rc = cudbg_collect(handle, buf, &dump->len); 12704 if (rc != 0) 12705 goto done; 12706 12707 rc = copyout(buf, dump->data, dump->len); 12708 done: 12709 cudbg_free_handle(handle); 12710 free(buf, M_CXGBE); 12711 return (rc); 12712 } 12713 12714 static void 12715 free_offload_policy(struct t4_offload_policy *op) 12716 { 12717 struct offload_rule *r; 12718 int i; 12719 12720 if (op == NULL) 12721 return; 12722 12723 r = &op->rule[0]; 12724 for (i = 0; i < op->nrules; i++, r++) { 12725 free(r->bpf_prog.bf_insns, M_CXGBE); 12726 } 12727 free(op->rule, M_CXGBE); 12728 free(op, M_CXGBE); 12729 } 12730 12731 static int 12732 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 12733 { 12734 int i, rc, len; 12735 struct t4_offload_policy *op, *old; 12736 struct bpf_program *bf; 12737 const struct offload_settings *s; 12738 struct offload_rule *r; 12739 void *u; 12740 12741 if (!is_offload(sc)) 12742 return (ENODEV); 12743 12744 if (uop->nrules == 0) { 12745 /* Delete installed policies. */ 12746 op = NULL; 12747 goto set_policy; 12748 } else if (uop->nrules > 256) { /* arbitrary */ 12749 return (E2BIG); 12750 } 12751 12752 /* Copy userspace offload policy to kernel */ 12753 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 12754 op->nrules = uop->nrules; 12755 len = op->nrules * sizeof(struct offload_rule); 12756 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12757 rc = copyin(uop->rule, op->rule, len); 12758 if (rc) { 12759 free(op->rule, M_CXGBE); 12760 free(op, M_CXGBE); 12761 return (rc); 12762 } 12763 12764 r = &op->rule[0]; 12765 for (i = 0; i < op->nrules; i++, r++) { 12766 12767 /* Validate open_type */ 12768 if (r->open_type != OPEN_TYPE_LISTEN && 12769 r->open_type != OPEN_TYPE_ACTIVE && 12770 r->open_type != OPEN_TYPE_PASSIVE && 12771 r->open_type != OPEN_TYPE_DONTCARE) { 12772 error: 12773 /* 12774 * Rules 0 to i have malloc'd filters that need to be 12775 * freed. Rules i+1 to nrules have userspace pointers 12776 * and should be left alone. 12777 */ 12778 op->nrules = i; 12779 free_offload_policy(op); 12780 return (rc); 12781 } 12782 12783 /* Validate settings */ 12784 s = &r->settings; 12785 if ((s->offload != 0 && s->offload != 1) || 12786 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 12787 s->sched_class < -1 || 12788 s->sched_class >= sc->params.nsched_cls) { 12789 rc = EINVAL; 12790 goto error; 12791 } 12792 12793 bf = &r->bpf_prog; 12794 u = bf->bf_insns; /* userspace ptr */ 12795 bf->bf_insns = NULL; 12796 if (bf->bf_len == 0) { 12797 /* legal, matches everything */ 12798 continue; 12799 } 12800 len = bf->bf_len * sizeof(*bf->bf_insns); 12801 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12802 rc = copyin(u, bf->bf_insns, len); 12803 if (rc != 0) 12804 goto error; 12805 12806 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 12807 rc = EINVAL; 12808 goto error; 12809 } 12810 } 12811 set_policy: 12812 rw_wlock(&sc->policy_lock); 12813 old = sc->policy; 12814 sc->policy = op; 12815 rw_wunlock(&sc->policy_lock); 12816 free_offload_policy(old); 12817 12818 return (0); 12819 } 12820 12821 #define MAX_READ_BUF_SIZE (128 * 1024) 12822 static int 12823 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 12824 { 12825 uint32_t addr, remaining, n; 12826 uint32_t *buf; 12827 int rc; 12828 uint8_t *dst; 12829 12830 mtx_lock(&sc->reg_lock); 12831 if (hw_off_limits(sc)) 12832 rc = ENXIO; 12833 else 12834 rc = validate_mem_range(sc, mr->addr, mr->len); 12835 mtx_unlock(&sc->reg_lock); 12836 if (rc != 0) 12837 return (rc); 12838 12839 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 12840 addr = mr->addr; 12841 remaining = mr->len; 12842 dst = (void *)mr->data; 12843 12844 while (remaining) { 12845 n = min(remaining, MAX_READ_BUF_SIZE); 12846 mtx_lock(&sc->reg_lock); 12847 if (hw_off_limits(sc)) 12848 rc = ENXIO; 12849 else 12850 read_via_memwin(sc, 2, addr, buf, n); 12851 mtx_unlock(&sc->reg_lock); 12852 if (rc != 0) 12853 break; 12854 12855 rc = copyout(buf, dst, n); 12856 if (rc != 0) 12857 break; 12858 12859 dst += n; 12860 remaining -= n; 12861 addr += n; 12862 } 12863 12864 free(buf, M_CXGBE); 12865 return (rc); 12866 } 12867 #undef MAX_READ_BUF_SIZE 12868 12869 static int 12870 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12871 { 12872 int rc; 12873 12874 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12875 return (EINVAL); 12876 12877 if (i2cd->len > sizeof(i2cd->data)) 12878 return (EFBIG); 12879 12880 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12881 if (rc) 12882 return (rc); 12883 if (hw_off_limits(sc)) 12884 rc = ENXIO; 12885 else 12886 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12887 i2cd->offset, i2cd->len, &i2cd->data[0]); 12888 end_synchronized_op(sc, 0); 12889 12890 return (rc); 12891 } 12892 12893 static int 12894 clear_stats(struct adapter *sc, u_int port_id) 12895 { 12896 int i, v, chan_map; 12897 struct port_info *pi; 12898 struct vi_info *vi; 12899 struct sge_rxq *rxq; 12900 struct sge_txq *txq; 12901 struct sge_wrq *wrq; 12902 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12903 struct sge_ofld_txq *ofld_txq; 12904 #endif 12905 #ifdef TCP_OFFLOAD 12906 struct sge_ofld_rxq *ofld_rxq; 12907 #endif 12908 12909 if (port_id >= sc->params.nports) 12910 return (EINVAL); 12911 pi = sc->port[port_id]; 12912 if (pi == NULL) 12913 return (EIO); 12914 12915 mtx_lock(&sc->reg_lock); 12916 if (!hw_off_limits(sc)) { 12917 /* MAC stats */ 12918 t4_clr_port_stats(sc, pi->hw_port); 12919 if (is_t6(sc)) { 12920 if (pi->fcs_reg != -1) 12921 pi->fcs_base = t4_read_reg64(sc, 12922 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 12923 else 12924 pi->stats.rx_fcs_err = 0; 12925 } 12926 for_each_vi(pi, v, vi) { 12927 if (vi->flags & VI_INIT_DONE) 12928 t4_clr_vi_stats(sc, vi->vin); 12929 } 12930 chan_map = pi->rx_e_chan_map; 12931 v = 0; /* reuse */ 12932 while (chan_map) { 12933 i = ffs(chan_map) - 1; 12934 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12935 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12936 chan_map &= ~(1 << i); 12937 } 12938 } 12939 mtx_unlock(&sc->reg_lock); 12940 pi->tx_parse_error = 0; 12941 pi->tnl_cong_drops = 0; 12942 12943 /* 12944 * Since this command accepts a port, clear stats for 12945 * all VIs on this port. 12946 */ 12947 for_each_vi(pi, v, vi) { 12948 if (vi->flags & VI_INIT_DONE) { 12949 12950 for_each_rxq(vi, i, rxq) { 12951 #if defined(INET) || defined(INET6) 12952 rxq->lro.lro_queued = 0; 12953 rxq->lro.lro_flushed = 0; 12954 #endif 12955 rxq->rxcsum = 0; 12956 rxq->vlan_extraction = 0; 12957 rxq->vxlan_rxcsum = 0; 12958 12959 rxq->fl.cl_allocated = 0; 12960 rxq->fl.cl_recycled = 0; 12961 rxq->fl.cl_fast_recycled = 0; 12962 } 12963 12964 for_each_txq(vi, i, txq) { 12965 txq->txcsum = 0; 12966 txq->tso_wrs = 0; 12967 txq->vlan_insertion = 0; 12968 txq->imm_wrs = 0; 12969 txq->sgl_wrs = 0; 12970 txq->txpkt_wrs = 0; 12971 txq->txpkts0_wrs = 0; 12972 txq->txpkts1_wrs = 0; 12973 txq->txpkts0_pkts = 0; 12974 txq->txpkts1_pkts = 0; 12975 txq->txpkts_flush = 0; 12976 txq->raw_wrs = 0; 12977 txq->vxlan_tso_wrs = 0; 12978 txq->vxlan_txcsum = 0; 12979 txq->kern_tls_records = 0; 12980 txq->kern_tls_short = 0; 12981 txq->kern_tls_partial = 0; 12982 txq->kern_tls_full = 0; 12983 txq->kern_tls_octets = 0; 12984 txq->kern_tls_waste = 0; 12985 txq->kern_tls_header = 0; 12986 txq->kern_tls_fin_short = 0; 12987 txq->kern_tls_cbc = 0; 12988 txq->kern_tls_gcm = 0; 12989 if (is_t6(sc)) { 12990 txq->kern_tls_options = 0; 12991 txq->kern_tls_fin = 0; 12992 } else { 12993 txq->kern_tls_ghash_received = 0; 12994 txq->kern_tls_ghash_requested = 0; 12995 txq->kern_tls_lso = 0; 12996 txq->kern_tls_partial_ghash = 0; 12997 txq->kern_tls_splitmode = 0; 12998 txq->kern_tls_trailer = 0; 12999 } 13000 mp_ring_reset_stats(txq->r); 13001 } 13002 13003 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13004 for_each_ofld_txq(vi, i, ofld_txq) { 13005 ofld_txq->wrq.tx_wrs_direct = 0; 13006 ofld_txq->wrq.tx_wrs_copied = 0; 13007 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 13008 counter_u64_zero(ofld_txq->tx_iscsi_octets); 13009 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 13010 counter_u64_zero(ofld_txq->tx_nvme_pdus); 13011 counter_u64_zero(ofld_txq->tx_nvme_octets); 13012 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs); 13013 counter_u64_zero(ofld_txq->tx_aio_jobs); 13014 counter_u64_zero(ofld_txq->tx_aio_octets); 13015 counter_u64_zero(ofld_txq->tx_toe_tls_records); 13016 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 13017 } 13018 #endif 13019 #ifdef TCP_OFFLOAD 13020 for_each_ofld_rxq(vi, i, ofld_rxq) { 13021 ofld_rxq->fl.cl_allocated = 0; 13022 ofld_rxq->fl.cl_recycled = 0; 13023 ofld_rxq->fl.cl_fast_recycled = 0; 13024 counter_u64_zero( 13025 ofld_rxq->rx_iscsi_ddp_setup_ok); 13026 counter_u64_zero( 13027 ofld_rxq->rx_iscsi_ddp_setup_error); 13028 ofld_rxq->rx_iscsi_ddp_pdus = 0; 13029 ofld_rxq->rx_iscsi_ddp_octets = 0; 13030 ofld_rxq->rx_iscsi_fl_pdus = 0; 13031 ofld_rxq->rx_iscsi_fl_octets = 0; 13032 counter_u64_zero( 13033 ofld_rxq->rx_nvme_ddp_setup_ok); 13034 counter_u64_zero( 13035 ofld_rxq->rx_nvme_ddp_setup_no_stag); 13036 counter_u64_zero( 13037 ofld_rxq->rx_nvme_ddp_setup_error); 13038 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus); 13039 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets); 13040 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus); 13041 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets); 13042 counter_u64_zero( 13043 ofld_rxq->rx_nvme_invalid_headers); 13044 counter_u64_zero( 13045 ofld_rxq->rx_nvme_header_digest_errors); 13046 counter_u64_zero( 13047 ofld_rxq->rx_nvme_data_digest_errors); 13048 ofld_rxq->rx_aio_ddp_jobs = 0; 13049 ofld_rxq->rx_aio_ddp_octets = 0; 13050 ofld_rxq->rx_toe_tls_records = 0; 13051 ofld_rxq->rx_toe_tls_octets = 0; 13052 ofld_rxq->rx_toe_ddp_octets = 0; 13053 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 13054 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 13055 counter_u64_zero(ofld_rxq->ddp_buffer_free); 13056 } 13057 #endif 13058 13059 if (IS_MAIN_VI(vi)) { 13060 wrq = &sc->sge.ctrlq[pi->port_id]; 13061 wrq->tx_wrs_direct = 0; 13062 wrq->tx_wrs_copied = 0; 13063 } 13064 } 13065 } 13066 13067 return (0); 13068 } 13069 13070 static int 13071 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13072 { 13073 #ifdef INET6 13074 struct in6_addr in6; 13075 13076 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13077 if (t4_get_clip_entry(sc, &in6, true) != NULL) 13078 return (0); 13079 else 13080 return (EIO); 13081 #else 13082 return (ENOTSUP); 13083 #endif 13084 } 13085 13086 static int 13087 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13088 { 13089 #ifdef INET6 13090 struct in6_addr in6; 13091 13092 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13093 return (t4_release_clip_addr(sc, &in6)); 13094 #else 13095 return (ENOTSUP); 13096 #endif 13097 } 13098 13099 int 13100 t4_os_find_pci_capability(struct adapter *sc, int cap) 13101 { 13102 int i; 13103 13104 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 13105 } 13106 13107 void 13108 t4_os_portmod_changed(struct port_info *pi) 13109 { 13110 struct adapter *sc = pi->adapter; 13111 struct vi_info *vi; 13112 if_t ifp; 13113 static const char *mod_str[] = { 13114 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM", 13115 "LR_SIMPLEX", "DR" 13116 }; 13117 13118 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 13119 ("%s: port_type %u", __func__, pi->port_type)); 13120 13121 vi = &pi->vi[0]; 13122 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 13123 PORT_LOCK(pi); 13124 build_medialist(pi); 13125 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 13126 fixup_link_config(pi); 13127 apply_link_config(pi); 13128 } 13129 PORT_UNLOCK(pi); 13130 end_synchronized_op(sc, LOCK_HELD); 13131 } 13132 13133 ifp = vi->ifp; 13134 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 13135 if_printf(ifp, "transceiver unplugged.\n"); 13136 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 13137 if_printf(ifp, "unknown transceiver inserted.\n"); 13138 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 13139 if_printf(ifp, "unsupported transceiver inserted.\n"); 13140 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 13141 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 13142 port_top_speed(pi), mod_str[pi->mod_type]); 13143 } else { 13144 if_printf(ifp, "transceiver (type %d) inserted.\n", 13145 pi->mod_type); 13146 } 13147 } 13148 13149 void 13150 t4_os_link_changed(struct port_info *pi) 13151 { 13152 struct vi_info *vi; 13153 if_t ifp; 13154 struct link_config *lc = &pi->link_cfg; 13155 struct adapter *sc = pi->adapter; 13156 int v; 13157 13158 PORT_LOCK_ASSERT_OWNED(pi); 13159 13160 if (is_t6(sc)) { 13161 if (lc->link_ok) { 13162 if (lc->speed > 25000 || 13163 (lc->speed == 25000 && lc->fec == FEC_RS)) 13164 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS; 13165 else 13166 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS; 13167 pi->fcs_base = t4_read_reg64(sc, 13168 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 13169 pi->stats.rx_fcs_err = 0; 13170 } else { 13171 pi->fcs_reg = -1; 13172 } 13173 } else { 13174 MPASS(pi->fcs_reg != -1); 13175 MPASS(pi->fcs_base == 0); 13176 } 13177 13178 for_each_vi(pi, v, vi) { 13179 ifp = vi->ifp; 13180 if (ifp == NULL || IS_DETACHING(vi)) 13181 continue; 13182 13183 if (lc->link_ok) { 13184 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 13185 if_link_state_change(ifp, LINK_STATE_UP); 13186 } else { 13187 if_link_state_change(ifp, LINK_STATE_DOWN); 13188 } 13189 } 13190 } 13191 13192 void 13193 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 13194 { 13195 struct adapter *sc; 13196 13197 sx_slock(&t4_list_lock); 13198 SLIST_FOREACH(sc, &t4_list, link) { 13199 /* 13200 * func should not make any assumptions about what state sc is 13201 * in - the only guarantee is that sc->sc_lock is a valid lock. 13202 */ 13203 func(sc, arg); 13204 } 13205 sx_sunlock(&t4_list_lock); 13206 } 13207 13208 static int 13209 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 13210 struct thread *td) 13211 { 13212 int rc; 13213 struct adapter *sc = dev->si_drv1; 13214 13215 rc = priv_check(td, PRIV_DRIVER); 13216 if (rc != 0) 13217 return (rc); 13218 13219 switch (cmd) { 13220 case CHELSIO_T4_GETREG: { 13221 struct t4_reg *edata = (struct t4_reg *)data; 13222 13223 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13224 return (EFAULT); 13225 13226 mtx_lock(&sc->reg_lock); 13227 if (hw_off_limits(sc)) 13228 rc = ENXIO; 13229 else if (edata->size == 4) 13230 edata->val = t4_read_reg(sc, edata->addr); 13231 else if (edata->size == 8) 13232 edata->val = t4_read_reg64(sc, edata->addr); 13233 else 13234 rc = EINVAL; 13235 mtx_unlock(&sc->reg_lock); 13236 13237 break; 13238 } 13239 case CHELSIO_T4_SETREG: { 13240 struct t4_reg *edata = (struct t4_reg *)data; 13241 13242 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13243 return (EFAULT); 13244 13245 mtx_lock(&sc->reg_lock); 13246 if (hw_off_limits(sc)) 13247 rc = ENXIO; 13248 else if (edata->size == 4) { 13249 if (edata->val & 0xffffffff00000000) 13250 rc = EINVAL; 13251 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 13252 } else if (edata->size == 8) 13253 t4_write_reg64(sc, edata->addr, edata->val); 13254 else 13255 rc = EINVAL; 13256 mtx_unlock(&sc->reg_lock); 13257 13258 break; 13259 } 13260 case CHELSIO_T4_REGDUMP: { 13261 struct t4_regdump *regs = (struct t4_regdump *)data; 13262 int reglen = t4_get_regs_len(sc); 13263 uint8_t *buf; 13264 13265 if (regs->len < reglen) { 13266 regs->len = reglen; /* hint to the caller */ 13267 return (ENOBUFS); 13268 } 13269 13270 regs->len = reglen; 13271 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 13272 mtx_lock(&sc->reg_lock); 13273 if (hw_off_limits(sc)) 13274 rc = ENXIO; 13275 else 13276 get_regs(sc, regs, buf); 13277 mtx_unlock(&sc->reg_lock); 13278 if (rc == 0) 13279 rc = copyout(buf, regs->data, reglen); 13280 free(buf, M_CXGBE); 13281 break; 13282 } 13283 case CHELSIO_T4_GET_FILTER_MODE: 13284 rc = get_filter_mode(sc, (uint32_t *)data); 13285 break; 13286 case CHELSIO_T4_SET_FILTER_MODE: 13287 rc = set_filter_mode(sc, *(uint32_t *)data); 13288 break; 13289 case CHELSIO_T4_SET_FILTER_MASK: 13290 rc = set_filter_mask(sc, *(uint32_t *)data); 13291 break; 13292 case CHELSIO_T4_GET_FILTER: 13293 rc = get_filter(sc, (struct t4_filter *)data); 13294 break; 13295 case CHELSIO_T4_SET_FILTER: 13296 rc = set_filter(sc, (struct t4_filter *)data); 13297 break; 13298 case CHELSIO_T4_DEL_FILTER: 13299 rc = del_filter(sc, (struct t4_filter *)data); 13300 break; 13301 case CHELSIO_T4_GET_SGE_CONTEXT: { 13302 struct t4_sge_context *ctxt = (struct t4_sge_context *)data; 13303 13304 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13305 sizeof(ctxt->data), &ctxt->data[0]); 13306 break; 13307 } 13308 case CHELSIO_T4_LOAD_FW: 13309 rc = load_fw(sc, (struct t4_data *)data); 13310 break; 13311 case CHELSIO_T4_GET_MEM: 13312 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 13313 break; 13314 case CHELSIO_T4_GET_I2C: 13315 rc = read_i2c(sc, (struct t4_i2c_data *)data); 13316 break; 13317 case CHELSIO_T4_CLEAR_STATS: 13318 rc = clear_stats(sc, *(uint32_t *)data); 13319 break; 13320 case CHELSIO_T4_SCHED_CLASS: 13321 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 13322 break; 13323 case CHELSIO_T4_SCHED_QUEUE: 13324 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 13325 break; 13326 case CHELSIO_T4_GET_TRACER: 13327 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 13328 break; 13329 case CHELSIO_T4_SET_TRACER: 13330 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 13331 break; 13332 case CHELSIO_T4_LOAD_CFG: 13333 rc = load_cfg(sc, (struct t4_data *)data); 13334 break; 13335 case CHELSIO_T4_LOAD_BOOT: 13336 rc = load_boot(sc, (struct t4_bootrom *)data); 13337 break; 13338 case CHELSIO_T4_LOAD_BOOTCFG: 13339 rc = load_bootcfg(sc, (struct t4_data *)data); 13340 break; 13341 case CHELSIO_T4_CUDBG_DUMP: 13342 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 13343 break; 13344 case CHELSIO_T4_SET_OFLD_POLICY: 13345 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 13346 break; 13347 case CHELSIO_T4_HOLD_CLIP_ADDR: 13348 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 13349 break; 13350 case CHELSIO_T4_RELEASE_CLIP_ADDR: 13351 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 13352 break; 13353 case CHELSIO_T4_GET_SGE_CTXT: { 13354 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data; 13355 13356 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13357 sizeof(ctxt->data), &ctxt->data[0]); 13358 break; 13359 } 13360 default: 13361 rc = ENOTTY; 13362 } 13363 13364 return (rc); 13365 } 13366 13367 #ifdef TCP_OFFLOAD 13368 int 13369 toe_capability(struct vi_info *vi, bool enable) 13370 { 13371 int rc; 13372 struct port_info *pi = vi->pi; 13373 struct adapter *sc = pi->adapter; 13374 13375 ASSERT_SYNCHRONIZED_OP(sc); 13376 13377 if (!is_offload(sc)) 13378 return (ENODEV); 13379 if (!hw_all_ok(sc)) 13380 return (ENXIO); 13381 13382 if (enable) { 13383 #ifdef KERN_TLS 13384 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 13385 int i, j, n; 13386 struct port_info *p; 13387 struct vi_info *v; 13388 13389 /* 13390 * Reconfigure hardware for TOE if TXTLS is not enabled 13391 * on any ifnet. 13392 */ 13393 n = 0; 13394 for_each_port(sc, i) { 13395 p = sc->port[i]; 13396 for_each_vi(p, j, v) { 13397 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 13398 CH_WARN(sc, 13399 "%s has NIC TLS enabled.\n", 13400 device_get_nameunit(v->dev)); 13401 n++; 13402 } 13403 } 13404 } 13405 if (n > 0) { 13406 CH_WARN(sc, "Disable NIC TLS on all interfaces " 13407 "associated with this adapter before " 13408 "trying to enable TOE.\n"); 13409 return (EAGAIN); 13410 } 13411 rc = t6_config_kern_tls(sc, false); 13412 if (rc) 13413 return (rc); 13414 } 13415 #endif 13416 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 13417 /* TOE is already enabled. */ 13418 return (0); 13419 } 13420 13421 /* 13422 * We need the port's queues around so that we're able to send 13423 * and receive CPLs to/from the TOE even if the ifnet for this 13424 * port has never been UP'd administratively. 13425 */ 13426 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 13427 return (rc); 13428 if (!(pi->vi[0].flags & VI_INIT_DONE) && 13429 ((rc = vi_init(&pi->vi[0])) != 0)) 13430 return (rc); 13431 13432 if (isset(&sc->offload_map, pi->port_id)) { 13433 /* TOE is enabled on another VI of this port. */ 13434 MPASS(pi->uld_vis > 0); 13435 pi->uld_vis++; 13436 return (0); 13437 } 13438 13439 if (!uld_active(sc, ULD_TOM)) { 13440 rc = t4_activate_uld(sc, ULD_TOM); 13441 if (rc == EAGAIN) { 13442 log(LOG_WARNING, 13443 "You must kldload t4_tom.ko before trying " 13444 "to enable TOE on a cxgbe interface.\n"); 13445 } 13446 if (rc != 0) 13447 return (rc); 13448 KASSERT(sc->tom_softc != NULL, 13449 ("%s: TOM activated but softc NULL", __func__)); 13450 KASSERT(uld_active(sc, ULD_TOM), 13451 ("%s: TOM activated but flag not set", __func__)); 13452 } 13453 13454 /* 13455 * Activate iWARP, iSCSI, and NVMe too, if the modules 13456 * are loaded. 13457 */ 13458 if (!uld_active(sc, ULD_IWARP)) 13459 (void) t4_activate_uld(sc, ULD_IWARP); 13460 if (!uld_active(sc, ULD_ISCSI)) 13461 (void) t4_activate_uld(sc, ULD_ISCSI); 13462 if (!uld_active(sc, ULD_NVME)) 13463 (void) t4_activate_uld(sc, ULD_NVME); 13464 13465 if (pi->uld_vis++ == 0) 13466 setbit(&sc->offload_map, pi->port_id); 13467 } else { 13468 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 13469 /* TOE is already disabled. */ 13470 return (0); 13471 } 13472 MPASS(isset(&sc->offload_map, pi->port_id)); 13473 MPASS(pi->uld_vis > 0); 13474 if (--pi->uld_vis == 0) 13475 clrbit(&sc->offload_map, pi->port_id); 13476 } 13477 13478 return (0); 13479 } 13480 13481 /* 13482 * Add an upper layer driver to the global list. 13483 */ 13484 int 13485 t4_register_uld(struct uld_info *ui, int id) 13486 { 13487 int rc; 13488 13489 if (id < 0 || id > ULD_MAX) 13490 return (EINVAL); 13491 sx_xlock(&t4_uld_list_lock); 13492 if (t4_uld_list[id] != NULL) 13493 rc = EEXIST; 13494 else { 13495 t4_uld_list[id] = ui; 13496 rc = 0; 13497 } 13498 sx_xunlock(&t4_uld_list_lock); 13499 return (rc); 13500 } 13501 13502 int 13503 t4_unregister_uld(struct uld_info *ui, int id) 13504 { 13505 13506 if (id < 0 || id > ULD_MAX) 13507 return (EINVAL); 13508 sx_xlock(&t4_uld_list_lock); 13509 MPASS(t4_uld_list[id] == ui); 13510 t4_uld_list[id] = NULL; 13511 sx_xunlock(&t4_uld_list_lock); 13512 return (0); 13513 } 13514 13515 int 13516 t4_activate_uld(struct adapter *sc, int id) 13517 { 13518 int rc; 13519 13520 ASSERT_SYNCHRONIZED_OP(sc); 13521 13522 if (id < 0 || id > ULD_MAX) 13523 return (EINVAL); 13524 13525 /* Adapter needs to be initialized before any ULD can be activated. */ 13526 if (!(sc->flags & FULL_INIT_DONE)) { 13527 rc = adapter_init(sc); 13528 if (rc != 0) 13529 return (rc); 13530 } 13531 13532 sx_slock(&t4_uld_list_lock); 13533 if (t4_uld_list[id] == NULL) 13534 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 13535 else { 13536 rc = t4_uld_list[id]->uld_activate(sc); 13537 if (rc == 0) 13538 setbit(&sc->active_ulds, id); 13539 } 13540 sx_sunlock(&t4_uld_list_lock); 13541 13542 return (rc); 13543 } 13544 13545 int 13546 t4_deactivate_uld(struct adapter *sc, int id) 13547 { 13548 int rc; 13549 13550 ASSERT_SYNCHRONIZED_OP(sc); 13551 13552 if (id < 0 || id > ULD_MAX) 13553 return (EINVAL); 13554 13555 sx_slock(&t4_uld_list_lock); 13556 if (t4_uld_list[id] == NULL) 13557 rc = ENXIO; 13558 else { 13559 rc = t4_uld_list[id]->uld_deactivate(sc); 13560 if (rc == 0) 13561 clrbit(&sc->active_ulds, id); 13562 } 13563 sx_sunlock(&t4_uld_list_lock); 13564 13565 return (rc); 13566 } 13567 13568 static int 13569 deactivate_all_uld(struct adapter *sc) 13570 { 13571 int i, rc; 13572 13573 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 13574 if (rc != 0) 13575 return (ENXIO); 13576 sx_slock(&t4_uld_list_lock); 13577 for (i = 0; i <= ULD_MAX; i++) { 13578 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 13579 continue; 13580 rc = t4_uld_list[i]->uld_deactivate(sc); 13581 if (rc != 0) 13582 break; 13583 clrbit(&sc->active_ulds, i); 13584 } 13585 sx_sunlock(&t4_uld_list_lock); 13586 end_synchronized_op(sc, 0); 13587 13588 return (rc); 13589 } 13590 13591 static void 13592 stop_all_uld(struct adapter *sc) 13593 { 13594 int i; 13595 13596 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 13597 return; 13598 sx_slock(&t4_uld_list_lock); 13599 for (i = 0; i <= ULD_MAX; i++) { 13600 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13601 t4_uld_list[i]->uld_stop == NULL) 13602 continue; 13603 (void) t4_uld_list[i]->uld_stop(sc); 13604 } 13605 sx_sunlock(&t4_uld_list_lock); 13606 end_synchronized_op(sc, 0); 13607 } 13608 13609 static void 13610 restart_all_uld(struct adapter *sc) 13611 { 13612 int i; 13613 13614 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 13615 return; 13616 sx_slock(&t4_uld_list_lock); 13617 for (i = 0; i <= ULD_MAX; i++) { 13618 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13619 t4_uld_list[i]->uld_restart == NULL) 13620 continue; 13621 (void) t4_uld_list[i]->uld_restart(sc); 13622 } 13623 sx_sunlock(&t4_uld_list_lock); 13624 end_synchronized_op(sc, 0); 13625 } 13626 13627 int 13628 uld_active(struct adapter *sc, int id) 13629 { 13630 13631 MPASS(id >= 0 && id <= ULD_MAX); 13632 13633 return (isset(&sc->active_ulds, id)); 13634 } 13635 #endif 13636 13637 #ifdef KERN_TLS 13638 static int 13639 ktls_capability(struct adapter *sc, bool enable) 13640 { 13641 ASSERT_SYNCHRONIZED_OP(sc); 13642 13643 if (!is_ktls(sc)) 13644 return (ENODEV); 13645 if (!is_t6(sc)) 13646 return (0); 13647 if (!hw_all_ok(sc)) 13648 return (ENXIO); 13649 13650 if (enable) { 13651 if (sc->flags & KERN_TLS_ON) 13652 return (0); /* already on */ 13653 if (sc->offload_map != 0) { 13654 CH_WARN(sc, 13655 "Disable TOE on all interfaces associated with " 13656 "this adapter before trying to enable NIC TLS.\n"); 13657 return (EAGAIN); 13658 } 13659 return (t6_config_kern_tls(sc, true)); 13660 } else { 13661 /* 13662 * Nothing to do for disable. If TOE is enabled sometime later 13663 * then toe_capability will reconfigure the hardware. 13664 */ 13665 return (0); 13666 } 13667 } 13668 #endif 13669 13670 /* 13671 * t = ptr to tunable. 13672 * nc = number of CPUs. 13673 * c = compiled in default for that tunable. 13674 */ 13675 static void 13676 calculate_nqueues(int *t, int nc, const int c) 13677 { 13678 int nq; 13679 13680 if (*t > 0) 13681 return; 13682 nq = *t < 0 ? -*t : c; 13683 *t = min(nc, nq); 13684 } 13685 13686 /* 13687 * Come up with reasonable defaults for some of the tunables, provided they're 13688 * not set by the user (in which case we'll use the values as is). 13689 */ 13690 static void 13691 tweak_tunables(void) 13692 { 13693 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 13694 13695 if (t4_ntxq < 1) { 13696 #ifdef RSS 13697 t4_ntxq = rss_getnumbuckets(); 13698 #else 13699 calculate_nqueues(&t4_ntxq, nc, NTXQ); 13700 #endif 13701 } 13702 13703 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 13704 13705 if (t4_nrxq < 1) { 13706 #ifdef RSS 13707 t4_nrxq = rss_getnumbuckets(); 13708 #else 13709 calculate_nqueues(&t4_nrxq, nc, NRXQ); 13710 #endif 13711 } 13712 13713 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 13714 13715 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13716 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 13717 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 13718 #endif 13719 #ifdef TCP_OFFLOAD 13720 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 13721 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 13722 #endif 13723 13724 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 13725 if (t4_toecaps_allowed == -1) 13726 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 13727 #else 13728 if (t4_toecaps_allowed == -1) 13729 t4_toecaps_allowed = 0; 13730 #endif 13731 13732 #ifdef TCP_OFFLOAD 13733 if (t4_rdmacaps_allowed == -1) { 13734 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 13735 FW_CAPS_CONFIG_RDMA_RDMAC; 13736 } 13737 13738 if (t4_iscsicaps_allowed == -1) { 13739 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 13740 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 13741 FW_CAPS_CONFIG_ISCSI_T10DIF; 13742 } 13743 13744 if (t4_nvmecaps_allowed == -1) 13745 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP; 13746 13747 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 13748 t4_tmr_idx_ofld = TMR_IDX_OFLD; 13749 13750 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 13751 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 13752 #else 13753 if (t4_rdmacaps_allowed == -1) 13754 t4_rdmacaps_allowed = 0; 13755 13756 if (t4_iscsicaps_allowed == -1) 13757 t4_iscsicaps_allowed = 0; 13758 13759 if (t4_nvmecaps_allowed == -1) 13760 t4_nvmecaps_allowed = 0; 13761 #endif 13762 13763 #ifdef DEV_NETMAP 13764 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 13765 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 13766 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 13767 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 13768 #endif 13769 13770 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 13771 t4_tmr_idx = TMR_IDX; 13772 13773 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 13774 t4_pktc_idx = PKTC_IDX; 13775 13776 if (t4_qsize_txq < 128) 13777 t4_qsize_txq = 128; 13778 13779 if (t4_qsize_rxq < 128) 13780 t4_qsize_rxq = 128; 13781 while (t4_qsize_rxq & 7) 13782 t4_qsize_rxq++; 13783 13784 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 13785 13786 /* 13787 * Number of VIs to create per-port. The first VI is the "main" regular 13788 * VI for the port. The rest are additional virtual interfaces on the 13789 * same physical port. Note that the main VI does not have native 13790 * netmap support but the extra VIs do. 13791 * 13792 * Limit the number of VIs per port to the number of available 13793 * MAC addresses per port. 13794 */ 13795 if (t4_num_vis < 1) 13796 t4_num_vis = 1; 13797 if (t4_num_vis > nitems(vi_mac_funcs)) { 13798 t4_num_vis = nitems(vi_mac_funcs); 13799 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 13800 } 13801 13802 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 13803 pcie_relaxed_ordering = 1; 13804 #if defined(__i386__) || defined(__amd64__) 13805 if (cpu_vendor_id == CPU_VENDOR_INTEL) 13806 pcie_relaxed_ordering = 0; 13807 #endif 13808 } 13809 } 13810 13811 #ifdef DDB 13812 static void 13813 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 13814 { 13815 uint32_t base, j, off, pf, reg, save, win_pos; 13816 13817 reg = chip_id(sc) > CHELSIO_T6 ? 13818 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) : 13819 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 13820 save = t4_read_reg(sc, reg); 13821 base = sc->memwin[2].mw_base; 13822 13823 if (is_t4(sc)) { 13824 pf = 0; 13825 win_pos = addr & ~0xf; /* start must be 16B aligned */ 13826 } else { 13827 pf = V_PFNUM(sc->pf); 13828 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 13829 } 13830 off = addr - win_pos; 13831 if (chip_id(sc) > CHELSIO_T6) 13832 win_pos >>= X_T7_MEMOFST_SHIFT; 13833 t4_write_reg(sc, reg, win_pos | pf); 13834 t4_read_reg(sc, reg); 13835 13836 while (len > 0 && !db_pager_quit) { 13837 uint32_t buf[8]; 13838 for (j = 0; j < 8; j++, off += 4) 13839 buf[j] = htonl(t4_read_reg(sc, base + off)); 13840 13841 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 13842 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 13843 buf[7]); 13844 if (len <= sizeof(buf)) 13845 len = 0; 13846 else 13847 len -= sizeof(buf); 13848 } 13849 13850 t4_write_reg(sc, reg, save); 13851 t4_read_reg(sc, reg); 13852 } 13853 13854 static void 13855 t4_dump_tcb(struct adapter *sc, int tid) 13856 { 13857 uint32_t tcb_addr; 13858 13859 /* Dump TCB for the tid */ 13860 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 13861 tcb_addr += tid * TCB_SIZE; 13862 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 13863 } 13864 13865 static void 13866 t4_dump_devlog(struct adapter *sc) 13867 { 13868 struct devlog_params *dparams = &sc->params.devlog; 13869 struct fw_devlog_e e; 13870 int i, first, j, m, nentries, rc; 13871 uint64_t ftstamp = UINT64_MAX; 13872 13873 if (dparams->start == 0) { 13874 db_printf("devlog params not valid\n"); 13875 return; 13876 } 13877 13878 nentries = dparams->size / sizeof(struct fw_devlog_e); 13879 m = fwmtype_to_hwmtype(dparams->memtype); 13880 13881 /* Find the first entry. */ 13882 first = -1; 13883 for (i = 0; i < nentries && !db_pager_quit; i++) { 13884 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13885 sizeof(e), (void *)&e); 13886 if (rc != 0) 13887 break; 13888 13889 if (e.timestamp == 0) 13890 break; 13891 13892 e.timestamp = be64toh(e.timestamp); 13893 if (e.timestamp < ftstamp) { 13894 ftstamp = e.timestamp; 13895 first = i; 13896 } 13897 } 13898 13899 if (first == -1) 13900 return; 13901 13902 i = first; 13903 do { 13904 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13905 sizeof(e), (void *)&e); 13906 if (rc != 0) 13907 return; 13908 13909 if (e.timestamp == 0) 13910 return; 13911 13912 e.timestamp = be64toh(e.timestamp); 13913 e.seqno = be32toh(e.seqno); 13914 for (j = 0; j < 8; j++) 13915 e.params[j] = be32toh(e.params[j]); 13916 13917 db_printf("%10d %15ju %8s %8s ", 13918 e.seqno, e.timestamp, 13919 (e.level < nitems(devlog_level_strings) ? 13920 devlog_level_strings[e.level] : "UNKNOWN"), 13921 (e.facility < nitems(devlog_facility_strings) ? 13922 devlog_facility_strings[e.facility] : "UNKNOWN")); 13923 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13924 e.params[3], e.params[4], e.params[5], e.params[6], 13925 e.params[7]); 13926 13927 if (++i == nentries) 13928 i = 0; 13929 } while (i != first && !db_pager_quit); 13930 } 13931 13932 static DB_DEFINE_TABLE(show, t4, show_t4); 13933 13934 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 13935 { 13936 device_t dev; 13937 int t; 13938 bool valid; 13939 13940 valid = false; 13941 t = db_read_token(); 13942 if (t == tIDENT) { 13943 dev = device_lookup_by_name(db_tok_string); 13944 valid = true; 13945 } 13946 db_skip_to_eol(); 13947 if (!valid) { 13948 db_printf("usage: show t4 devlog <nexus>\n"); 13949 return; 13950 } 13951 13952 if (dev == NULL) { 13953 db_printf("device not found\n"); 13954 return; 13955 } 13956 13957 t4_dump_devlog(device_get_softc(dev)); 13958 } 13959 13960 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 13961 { 13962 device_t dev; 13963 int radix, tid, t; 13964 bool valid; 13965 13966 valid = false; 13967 radix = db_radix; 13968 db_radix = 10; 13969 t = db_read_token(); 13970 if (t == tIDENT) { 13971 dev = device_lookup_by_name(db_tok_string); 13972 t = db_read_token(); 13973 if (t == tNUMBER) { 13974 tid = db_tok_number; 13975 valid = true; 13976 } 13977 } 13978 db_radix = radix; 13979 db_skip_to_eol(); 13980 if (!valid) { 13981 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13982 return; 13983 } 13984 13985 if (dev == NULL) { 13986 db_printf("device not found\n"); 13987 return; 13988 } 13989 if (tid < 0) { 13990 db_printf("invalid tid\n"); 13991 return; 13992 } 13993 13994 t4_dump_tcb(device_get_softc(dev), tid); 13995 } 13996 13997 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13998 { 13999 device_t dev; 14000 int radix, t; 14001 bool valid; 14002 14003 valid = false; 14004 radix = db_radix; 14005 db_radix = 10; 14006 t = db_read_token(); 14007 if (t == tIDENT) { 14008 dev = device_lookup_by_name(db_tok_string); 14009 t = db_read_token(); 14010 if (t == tNUMBER) { 14011 addr = db_tok_number; 14012 t = db_read_token(); 14013 if (t == tNUMBER) { 14014 count = db_tok_number; 14015 valid = true; 14016 } 14017 } 14018 } 14019 db_radix = radix; 14020 db_skip_to_eol(); 14021 if (!valid) { 14022 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 14023 return; 14024 } 14025 14026 if (dev == NULL) { 14027 db_printf("device not found\n"); 14028 return; 14029 } 14030 if (addr < 0) { 14031 db_printf("invalid address\n"); 14032 return; 14033 } 14034 if (count <= 0) { 14035 db_printf("invalid length\n"); 14036 return; 14037 } 14038 14039 t4_dump_mem(device_get_softc(dev), addr, count); 14040 } 14041 #endif 14042 14043 static eventhandler_tag vxlan_start_evtag; 14044 static eventhandler_tag vxlan_stop_evtag; 14045 14046 struct vxlan_evargs { 14047 if_t ifp; 14048 uint16_t port; 14049 }; 14050 14051 static void 14052 enable_vxlan_rx(struct adapter *sc) 14053 { 14054 int i, rc; 14055 struct port_info *pi; 14056 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 14057 14058 ASSERT_SYNCHRONIZED_OP(sc); 14059 14060 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 14061 F_VXLAN_EN); 14062 for_each_port(sc, i) { 14063 pi = sc->port[i]; 14064 if (pi->vxlan_tcam_entry == true) 14065 continue; 14066 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 14067 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 14068 true); 14069 if (rc < 0) { 14070 rc = -rc; 14071 CH_ERR(&pi->vi[0], 14072 "failed to add VXLAN TCAM entry: %d.\n", rc); 14073 } else { 14074 MPASS(rc == sc->rawf_base + pi->port_id); 14075 pi->vxlan_tcam_entry = true; 14076 } 14077 } 14078 } 14079 14080 static void 14081 t4_vxlan_start(struct adapter *sc, void *arg) 14082 { 14083 struct vxlan_evargs *v = arg; 14084 14085 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14086 return; 14087 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 14088 return; 14089 14090 if (sc->vxlan_refcount == 0) { 14091 sc->vxlan_port = v->port; 14092 sc->vxlan_refcount = 1; 14093 if (!hw_off_limits(sc)) 14094 enable_vxlan_rx(sc); 14095 } else if (sc->vxlan_port == v->port) { 14096 sc->vxlan_refcount++; 14097 } else { 14098 CH_ERR(sc, "VXLAN already configured on port %d; " 14099 "ignoring attempt to configure it on port %d\n", 14100 sc->vxlan_port, v->port); 14101 } 14102 end_synchronized_op(sc, 0); 14103 } 14104 14105 static void 14106 t4_vxlan_stop(struct adapter *sc, void *arg) 14107 { 14108 struct vxlan_evargs *v = arg; 14109 14110 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14111 return; 14112 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 14113 return; 14114 14115 /* 14116 * VXLANs may have been configured before the driver was loaded so we 14117 * may see more stops than starts. This is not handled cleanly but at 14118 * least we keep the refcount sane. 14119 */ 14120 if (sc->vxlan_port != v->port) 14121 goto done; 14122 if (sc->vxlan_refcount == 0) { 14123 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 14124 "ignoring attempt to stop it again.\n", sc->vxlan_port); 14125 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 14126 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 14127 done: 14128 end_synchronized_op(sc, 0); 14129 } 14130 14131 static void 14132 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 14133 sa_family_t family, u_int port) 14134 { 14135 struct vxlan_evargs v; 14136 14137 MPASS(family == AF_INET || family == AF_INET6); 14138 v.ifp = ifp; 14139 v.port = port; 14140 14141 t4_iterate(t4_vxlan_start, &v); 14142 } 14143 14144 static void 14145 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 14146 u_int port) 14147 { 14148 struct vxlan_evargs v; 14149 14150 MPASS(family == AF_INET || family == AF_INET6); 14151 v.ifp = ifp; 14152 v.port = port; 14153 14154 t4_iterate(t4_vxlan_stop, &v); 14155 } 14156 14157 14158 static struct sx mlu; /* mod load unload */ 14159 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 14160 14161 static int 14162 mod_event(module_t mod, int cmd, void *arg) 14163 { 14164 int rc = 0; 14165 static int loaded = 0; 14166 14167 switch (cmd) { 14168 case MOD_LOAD: 14169 sx_xlock(&mlu); 14170 if (loaded++ == 0) { 14171 t4_sge_modload(); 14172 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14173 t4_filter_rpl, CPL_COOKIE_FILTER); 14174 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 14175 do_l2t_write_rpl, CPL_COOKIE_FILTER); 14176 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 14177 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 14178 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14179 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 14180 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 14181 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 14182 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 14183 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 14184 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 14185 do_smt_write_rpl); 14186 sx_init(&t4_list_lock, "T4/T5 adapters"); 14187 SLIST_INIT(&t4_list); 14188 callout_init(&fatal_callout, 1); 14189 #ifdef TCP_OFFLOAD 14190 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 14191 #endif 14192 #ifdef INET6 14193 t4_clip_modload(); 14194 #endif 14195 #ifdef KERN_TLS 14196 t6_ktls_modload(); 14197 t7_ktls_modload(); 14198 #endif 14199 t4_tracer_modload(); 14200 tweak_tunables(); 14201 vxlan_start_evtag = 14202 EVENTHANDLER_REGISTER(vxlan_start, 14203 t4_vxlan_start_handler, NULL, 14204 EVENTHANDLER_PRI_ANY); 14205 vxlan_stop_evtag = 14206 EVENTHANDLER_REGISTER(vxlan_stop, 14207 t4_vxlan_stop_handler, NULL, 14208 EVENTHANDLER_PRI_ANY); 14209 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 14210 taskqueue_thread_enqueue, &reset_tq); 14211 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 14212 "t4_rst_thr"); 14213 } 14214 sx_xunlock(&mlu); 14215 break; 14216 14217 case MOD_UNLOAD: 14218 sx_xlock(&mlu); 14219 if (--loaded == 0) { 14220 #ifdef TCP_OFFLOAD 14221 int i; 14222 #endif 14223 int tries; 14224 14225 taskqueue_free(reset_tq); 14226 14227 tries = 0; 14228 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 14229 uprintf("%ju clusters with custom free routine " 14230 "still is use.\n", t4_sge_extfree_refs()); 14231 pause("t4unload", 2 * hz); 14232 } 14233 14234 sx_slock(&t4_list_lock); 14235 if (!SLIST_EMPTY(&t4_list)) { 14236 rc = EBUSY; 14237 sx_sunlock(&t4_list_lock); 14238 goto done_unload; 14239 } 14240 #ifdef TCP_OFFLOAD 14241 sx_slock(&t4_uld_list_lock); 14242 for (i = 0; i <= ULD_MAX; i++) { 14243 if (t4_uld_list[i] != NULL) { 14244 rc = EBUSY; 14245 sx_sunlock(&t4_uld_list_lock); 14246 sx_sunlock(&t4_list_lock); 14247 goto done_unload; 14248 } 14249 } 14250 sx_sunlock(&t4_uld_list_lock); 14251 #endif 14252 sx_sunlock(&t4_list_lock); 14253 14254 if (t4_sge_extfree_refs() == 0) { 14255 EVENTHANDLER_DEREGISTER(vxlan_start, 14256 vxlan_start_evtag); 14257 EVENTHANDLER_DEREGISTER(vxlan_stop, 14258 vxlan_stop_evtag); 14259 t4_tracer_modunload(); 14260 #ifdef KERN_TLS 14261 t7_ktls_modunload(); 14262 t6_ktls_modunload(); 14263 #endif 14264 #ifdef INET6 14265 t4_clip_modunload(); 14266 #endif 14267 #ifdef TCP_OFFLOAD 14268 sx_destroy(&t4_uld_list_lock); 14269 #endif 14270 sx_destroy(&t4_list_lock); 14271 t4_sge_modunload(); 14272 loaded = 0; 14273 } else { 14274 rc = EBUSY; 14275 loaded++; /* undo earlier decrement */ 14276 } 14277 } 14278 done_unload: 14279 sx_xunlock(&mlu); 14280 break; 14281 } 14282 14283 return (rc); 14284 } 14285 14286 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 14287 MODULE_VERSION(t4nex, 1); 14288 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 14289 #ifdef DEV_NETMAP 14290 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 14291 #endif /* DEV_NETMAP */ 14292 14293 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 14294 MODULE_VERSION(t5nex, 1); 14295 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 14296 #ifdef DEV_NETMAP 14297 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 14298 #endif /* DEV_NETMAP */ 14299 14300 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 14301 MODULE_VERSION(t6nex, 1); 14302 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 14303 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 14304 #ifdef DEV_NETMAP 14305 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 14306 #endif /* DEV_NETMAP */ 14307 14308 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0); 14309 MODULE_VERSION(chnex, 1); 14310 MODULE_DEPEND(chnex, crypto, 1, 1, 1); 14311 MODULE_DEPEND(chnex, firmware, 1, 1, 1); 14312 #ifdef DEV_NETMAP 14313 MODULE_DEPEND(chnex, netmap, 1, 1, 1); 14314 #endif /* DEV_NETMAP */ 14315 14316 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 14317 MODULE_VERSION(cxgbe, 1); 14318 14319 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 14320 MODULE_VERSION(cxl, 1); 14321 14322 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 14323 MODULE_VERSION(cc, 1); 14324 14325 DRIVER_MODULE(che, chnex, che_driver, 0, 0); 14326 MODULE_VERSION(che, 1); 14327 14328 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 14329 MODULE_VERSION(vcxgbe, 1); 14330 14331 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 14332 MODULE_VERSION(vcxl, 1); 14333 14334 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 14335 MODULE_VERSION(vcc, 1); 14336 14337 DRIVER_MODULE(vche, che, vche_driver, 0, 0); 14338 MODULE_VERSION(vche, 1); 14339