1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 DEVMETHOD(device_probe, t4_probe),
107 DEVMETHOD(device_attach, t4_attach),
108 DEVMETHOD(device_detach, t4_detach),
109 DEVMETHOD(device_suspend, t4_suspend),
110 DEVMETHOD(device_resume, t4_resume),
111
112 DEVMETHOD(bus_child_location, t4_child_location),
113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
114 DEVMETHOD(bus_reset_post, t4_reset_post),
115
116 DEVMETHOD(t4_is_main_ready, t4_ready),
117 DEVMETHOD(t4_read_port_device, t4_read_port_device),
118
119 DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 "t4nex",
123 t4_methods,
124 sizeof(struct adapter)
125 };
126
127
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 DEVMETHOD(device_probe, cxgbe_probe),
134 DEVMETHOD(device_attach, cxgbe_attach),
135 DEVMETHOD(device_detach, cxgbe_detach),
136 { 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 "cxgbe",
140 cxgbe_methods,
141 sizeof(struct port_info)
142 };
143
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 DEVMETHOD(device_probe, vcxgbe_probe),
150 DEVMETHOD(device_attach, vcxgbe_attach),
151 DEVMETHOD(device_detach, vcxgbe_detach),
152 { 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 "vcxgbe",
156 vcxgbe_methods,
157 sizeof(struct vi_info)
158 };
159
160 static d_ioctl_t t4_ioctl;
161
162 static struct cdevsw t4_cdevsw = {
163 .d_version = D_VERSION,
164 .d_ioctl = t4_ioctl,
165 .d_name = "t4nex",
166 };
167
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 DEVMETHOD(device_probe, t5_probe),
172 DEVMETHOD(device_attach, t4_attach),
173 DEVMETHOD(device_detach, t4_detach),
174 DEVMETHOD(device_suspend, t4_suspend),
175 DEVMETHOD(device_resume, t4_resume),
176
177 DEVMETHOD(bus_child_location, t4_child_location),
178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
179 DEVMETHOD(bus_reset_post, t4_reset_post),
180
181 DEVMETHOD(t4_is_main_ready, t4_ready),
182 DEVMETHOD(t4_read_port_device, t4_read_port_device),
183
184 DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 "t5nex",
188 t5_methods,
189 sizeof(struct adapter)
190 };
191
192
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 "cxl",
196 cxgbe_methods,
197 sizeof(struct port_info)
198 };
199
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 "vcxl",
203 vcxgbe_methods,
204 sizeof(struct vi_info)
205 };
206
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 DEVMETHOD(device_probe, t6_probe),
211 DEVMETHOD(device_attach, t4_attach),
212 DEVMETHOD(device_detach, t4_detach),
213 DEVMETHOD(device_suspend, t4_suspend),
214 DEVMETHOD(device_resume, t4_resume),
215
216 DEVMETHOD(bus_child_location, t4_child_location),
217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
218 DEVMETHOD(bus_reset_post, t4_reset_post),
219
220 DEVMETHOD(t4_is_main_ready, t4_ready),
221 DEVMETHOD(t4_read_port_device, t4_read_port_device),
222
223 DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 "t6nex",
227 t6_methods,
228 sizeof(struct adapter)
229 };
230
231
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 "cc",
235 cxgbe_methods,
236 sizeof(struct port_info)
237 };
238
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 "vcc",
242 vcxgbe_methods,
243 sizeof(struct vi_info)
244 };
245
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253 struct m_snd_tag **);
254 #endif
255
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257
258 /*
259 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260 * then ADAPTER_LOCK, then t4_uld_list_lock.
261 */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 struct uld_info *t4_uld_list[ULD_MAX + 1];
267 #endif
268
269 /*
270 * Tunables. See tweak_tunables() too.
271 *
272 * Each tunable is set to a default value here if it's known at compile-time.
273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274 * provide a reasonable default (upto n) when the driver is loaded.
275 *
276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
277 * T5 are under hw.cxl.
278 */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280 "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282 "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284 "cxgbe(4) TOE parameters");
285
286 /*
287 * Number of queues for tx and rx, NIC and offload.
288 */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292 "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
294
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298 "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
300
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304 "Number of TX queues per VI");
305
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309 "Number of RX queues per VI");
310
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313 0, "Reserve TX queue 0 of each VI for non-flowid packets");
314
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319 "Number of offload TX queues per port");
320
321 #define NOFLDTXQ_VI 1
322 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
324 "Number of offload TX queues per VI");
325 #endif
326
327 #if defined(TCP_OFFLOAD)
328 #define NOFLDRXQ 2
329 static int t4_nofldrxq = -NOFLDRXQ;
330 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
331 "Number of offload RX queues per port");
332
333 #define NOFLDRXQ_VI 1
334 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
335 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
336 "Number of offload RX queues per VI");
337
338 #define TMR_IDX_OFLD 1
339 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
340 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
341 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
342
343 #define PKTC_IDX_OFLD (-1)
344 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
345 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
346 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
347
348 /* 0 means chip/fw default, non-zero number is value in microseconds */
349 static u_long t4_toe_keepalive_idle = 0;
350 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
351 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
352
353 /* 0 means chip/fw default, non-zero number is value in microseconds */
354 static u_long t4_toe_keepalive_interval = 0;
355 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
356 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
357
358 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
359 static int t4_toe_keepalive_count = 0;
360 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
361 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
362
363 /* 0 means chip/fw default, non-zero number is value in microseconds */
364 static u_long t4_toe_rexmt_min = 0;
365 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
366 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
367
368 /* 0 means chip/fw default, non-zero number is value in microseconds */
369 static u_long t4_toe_rexmt_max = 0;
370 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
371 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
372
373 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
374 static int t4_toe_rexmt_count = 0;
375 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
376 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
377
378 /* -1 means chip/fw default, other values are raw backoff values to use */
379 static int t4_toe_rexmt_backoff[16] = {
380 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
381 };
382 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
383 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
384 "cxgbe(4) TOE retransmit backoff values");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
386 &t4_toe_rexmt_backoff[0], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
388 &t4_toe_rexmt_backoff[1], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
390 &t4_toe_rexmt_backoff[2], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
392 &t4_toe_rexmt_backoff[3], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
394 &t4_toe_rexmt_backoff[4], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
396 &t4_toe_rexmt_backoff[5], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
398 &t4_toe_rexmt_backoff[6], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_backoff[7], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_backoff[8], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
404 &t4_toe_rexmt_backoff[9], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
406 &t4_toe_rexmt_backoff[10], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
408 &t4_toe_rexmt_backoff[11], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_backoff[12], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_backoff[13], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
414 &t4_toe_rexmt_backoff[14], 0, "");
415 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
416 &t4_toe_rexmt_backoff[15], 0, "");
417
418 int t4_ddp_rcvbuf_len = 256 * 1024;
419 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
420 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
421
422 unsigned int t4_ddp_rcvbuf_cache = 4;
423 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
424 &t4_ddp_rcvbuf_cache, 0,
425 "maximum number of free DDP RX buffers to cache per connection");
426 #endif
427
428 #ifdef DEV_NETMAP
429 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
430 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
431 static int t4_native_netmap = NN_EXTRA_VI;
432 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
433 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
434
435 #define NNMTXQ 8
436 static int t4_nnmtxq = -NNMTXQ;
437 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
438 "Number of netmap TX queues");
439
440 #define NNMRXQ 8
441 static int t4_nnmrxq = -NNMRXQ;
442 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
443 "Number of netmap RX queues");
444
445 #define NNMTXQ_VI 2
446 static int t4_nnmtxq_vi = -NNMTXQ_VI;
447 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
448 "Number of netmap TX queues per VI");
449
450 #define NNMRXQ_VI 2
451 static int t4_nnmrxq_vi = -NNMRXQ_VI;
452 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
453 "Number of netmap RX queues per VI");
454 #endif
455
456 /*
457 * Holdoff parameters for ports.
458 */
459 #define TMR_IDX 1
460 int t4_tmr_idx = TMR_IDX;
461 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
462 0, "Holdoff timer index");
463 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
464
465 #define PKTC_IDX (-1)
466 int t4_pktc_idx = PKTC_IDX;
467 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
468 0, "Holdoff packet counter index");
469 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
470
471 /*
472 * Size (# of entries) of each tx and rx queue.
473 */
474 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
476 "Number of descriptors in each TX queue");
477
478 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
479 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
480 "Number of descriptors in each RX queue");
481
482 /*
483 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
484 */
485 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
487 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
488
489 /*
490 * Configuration file. All the _CF names here are special.
491 */
492 #define DEFAULT_CF "default"
493 #define BUILTIN_CF "built-in"
494 #define FLASH_CF "flash"
495 #define UWIRE_CF "uwire"
496 #define FPGA_CF "fpga"
497 static char t4_cfg_file[32] = DEFAULT_CF;
498 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
499 sizeof(t4_cfg_file), "Firmware configuration file");
500
501 /*
502 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
503 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
504 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
505 * mark or when signalled to do so, 0 to never emit PAUSE.
506 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
507 * negotiated settings will override rx_pause/tx_pause.
508 * Otherwise rx_pause/tx_pause are applied forcibly.
509 */
510 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
512 &t4_pause_settings, 0,
513 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
514
515 /*
516 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
517 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
518 * 0 to disable FEC.
519 */
520 static int t4_fec = -1;
521 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
522 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
523
524 /*
525 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
526 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
527 * driver runs as if this is set to 0.
528 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
529 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
530 * transceiver. Multiple FEC bits may not be okay but will be passed on to
531 * the firmware anyway (may result in l1cfg errors with old firmwares).
532 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
533 * means set all FEC bits that are valid for the speed.
534 */
535 static int t4_force_fec = -1;
536 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
537 "Controls the use of FORCE_FEC bit in L1 configuration.");
538
539 /*
540 * Link autonegotiation.
541 * -1 to run with the firmware default.
542 * 0 to disable.
543 * 1 to enable.
544 */
545 static int t4_autoneg = -1;
546 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
547 "Link autonegotiation");
548
549 /*
550 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
551 * encouraged respectively). '-n' is the same as 'n' except the firmware
552 * version used in the checks is read from the firmware bundled with the driver.
553 */
554 static int t4_fw_install = 1;
555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
556 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
557
558 /*
559 * ASIC features that will be used. Disable the ones you don't want so that the
560 * chip resources aren't wasted on features that will not be used.
561 */
562 static int t4_nbmcaps_allowed = 0;
563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
564 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
565
566 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
567 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
568 &t4_linkcaps_allowed, 0, "Default link capabilities");
569
570 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
571 FW_CAPS_CONFIG_SWITCH_EGRESS;
572 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
573 &t4_switchcaps_allowed, 0, "Default switch capabilities");
574
575 #ifdef RATELIMIT
576 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
577 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
578 #else
579 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
580 FW_CAPS_CONFIG_NIC_HASHFILTER;
581 #endif
582 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
583 &t4_niccaps_allowed, 0, "Default NIC capabilities");
584
585 static int t4_toecaps_allowed = -1;
586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
587 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
588
589 static int t4_rdmacaps_allowed = -1;
590 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
591 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
592
593 static int t4_cryptocaps_allowed = -1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
595 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
596
597 static int t4_iscsicaps_allowed = -1;
598 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
599 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
600
601 static int t4_fcoecaps_allowed = 0;
602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
603 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
604
605 static int t5_write_combine = 0;
606 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
607 0, "Use WC instead of UC for BAR2");
608
609 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
610 static int t4_doorbells_allowed = 0xf;
611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
612 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
613
614 static int t4_num_vis = 1;
615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
616 "Number of VIs per port");
617
618 /*
619 * PCIe Relaxed Ordering.
620 * -1: driver should figure out a good value.
621 * 0: disable RO.
622 * 1: enable RO.
623 * 2: leave RO alone.
624 */
625 static int pcie_relaxed_ordering = -1;
626 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
627 &pcie_relaxed_ordering, 0,
628 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
629
630 static int t4_panic_on_fatal_err = 0;
631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
632 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
633
634 static int t4_reset_on_fatal_err = 0;
635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
636 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
637
638 static int t4_clock_gate_on_suspend = 0;
639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
640 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
641
642 static int t4_tx_vm_wr = 0;
643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
644 "Use VM work requests to transmit packets.");
645
646 /*
647 * Set to non-zero to enable the attack filter. A packet that matches any of
648 * these conditions will get dropped on ingress:
649 * 1) IP && source address == destination address.
650 * 2) TCP/IP && source address is not a unicast address.
651 * 3) TCP/IP && destination address is not a unicast address.
652 * 4) IP && source address is loopback (127.x.y.z).
653 * 5) IP && destination address is loopback (127.x.y.z).
654 * 6) IPv6 && source address == destination address.
655 * 7) IPv6 && source address is not a unicast address.
656 * 8) IPv6 && source address is loopback (::1/128).
657 * 9) IPv6 && destination address is loopback (::1/128).
658 * 10) IPv6 && source address is unspecified (::/128).
659 * 11) IPv6 && destination address is unspecified (::/128).
660 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
661 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
662 */
663 static int t4_attack_filter = 0;
664 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
665 &t4_attack_filter, 0, "Drop suspicious traffic");
666
667 static int t4_drop_ip_fragments = 0;
668 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
669 &t4_drop_ip_fragments, 0, "Drop IP fragments");
670
671 static int t4_drop_pkts_with_l2_errors = 1;
672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
673 &t4_drop_pkts_with_l2_errors, 0,
674 "Drop all frames with Layer 2 length or checksum errors");
675
676 static int t4_drop_pkts_with_l3_errors = 0;
677 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
678 &t4_drop_pkts_with_l3_errors, 0,
679 "Drop all frames with IP version, length, or checksum errors");
680
681 static int t4_drop_pkts_with_l4_errors = 0;
682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
683 &t4_drop_pkts_with_l4_errors, 0,
684 "Drop all frames with Layer 4 length, checksum, or other errors");
685
686 #ifdef TCP_OFFLOAD
687 /*
688 * TOE tunables.
689 */
690 static int t4_cop_managed_offloading = 0;
691 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
692 &t4_cop_managed_offloading, 0,
693 "COP (Connection Offload Policy) controls all TOE offload");
694 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
695 #endif
696
697 #ifdef KERN_TLS
698 /*
699 * This enables KERN_TLS for all adapters if set.
700 */
701 static int t4_kern_tls = 0;
702 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
703 "Enable KERN_TLS mode for T6 adapters");
704
705 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
706 "cxgbe(4) KERN_TLS parameters");
707
708 static int t4_tls_inline_keys = 0;
709 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
710 &t4_tls_inline_keys, 0,
711 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
712 "in card memory.");
713
714 static int t4_tls_combo_wrs = 0;
715 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
716 0, "Attempt to combine TCB field updates with TLS record work requests.");
717 #endif
718
719 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
720 static int vi_mac_funcs[] = {
721 FW_VI_FUNC_ETH,
722 FW_VI_FUNC_OFLD,
723 FW_VI_FUNC_IWARP,
724 FW_VI_FUNC_OPENISCSI,
725 FW_VI_FUNC_OPENFCOE,
726 FW_VI_FUNC_FOISCSI,
727 FW_VI_FUNC_FOFCOE,
728 };
729
730 struct intrs_and_queues {
731 uint16_t intr_type; /* INTx, MSI, or MSI-X */
732 uint16_t num_vis; /* number of VIs for each port */
733 uint16_t nirq; /* Total # of vectors */
734 uint16_t ntxq; /* # of NIC txq's for each port */
735 uint16_t nrxq; /* # of NIC rxq's for each port */
736 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
737 uint16_t nofldrxq; /* # of TOE rxq's for each port */
738 uint16_t nnmtxq; /* # of netmap txq's */
739 uint16_t nnmrxq; /* # of netmap rxq's */
740
741 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
742 uint16_t ntxq_vi; /* # of NIC txq's */
743 uint16_t nrxq_vi; /* # of NIC rxq's */
744 uint16_t nofldtxq_vi; /* # of TOE txq's */
745 uint16_t nofldrxq_vi; /* # of TOE rxq's */
746 uint16_t nnmtxq_vi; /* # of netmap txq's */
747 uint16_t nnmrxq_vi; /* # of netmap rxq's */
748 };
749
750 static void setup_memwin(struct adapter *);
751 static void position_memwin(struct adapter *, int, uint32_t);
752 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
753 static int fwmtype_to_hwmtype(int);
754 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
755 uint32_t *);
756 static int fixup_devlog_params(struct adapter *);
757 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
758 static int contact_firmware(struct adapter *);
759 static int partition_resources(struct adapter *);
760 static int get_params__pre_init(struct adapter *);
761 static int set_params__pre_init(struct adapter *);
762 static int get_params__post_init(struct adapter *);
763 static int set_params__post_init(struct adapter *);
764 static void t4_set_desc(struct adapter *);
765 static bool fixed_ifmedia(struct port_info *);
766 static void build_medialist(struct port_info *);
767 static void init_link_config(struct port_info *);
768 static int fixup_link_config(struct port_info *);
769 static int apply_link_config(struct port_info *);
770 static int cxgbe_init_synchronized(struct vi_info *);
771 static int cxgbe_uninit_synchronized(struct vi_info *);
772 static int adapter_full_init(struct adapter *);
773 static void adapter_full_uninit(struct adapter *);
774 static int vi_full_init(struct vi_info *);
775 static void vi_full_uninit(struct vi_info *);
776 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
777 static void quiesce_txq(struct sge_txq *);
778 static void quiesce_wrq(struct sge_wrq *);
779 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
780 static void quiesce_vi(struct vi_info *);
781 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
782 driver_intr_t *, void *, char *);
783 static int t4_free_irq(struct adapter *, struct irq *);
784 static void t4_init_atid_table(struct adapter *);
785 static void t4_free_atid_table(struct adapter *);
786 static void stop_atid_allocator(struct adapter *);
787 static void restart_atid_allocator(struct adapter *);
788 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
789 static void vi_refresh_stats(struct vi_info *);
790 static void cxgbe_refresh_stats(struct vi_info *);
791 static void cxgbe_tick(void *);
792 static void vi_tick(void *);
793 static void cxgbe_sysctls(struct port_info *);
794 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
795 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
796 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
797 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
798 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
799 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
800 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
801 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
802 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
803 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
804 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
805 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
806 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
807 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
808 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
809 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
810 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
811 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
812 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
813 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
814 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
819 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
820 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
821 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
825 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
827 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
829 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
830 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
831 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
832 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
833 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
840 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
841 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
842 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
843 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
844 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
845 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
846 #ifdef TCP_OFFLOAD
847 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
848 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
849 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
850 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
851 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
853 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
854 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
855 #endif
856 static int get_sge_context(struct adapter *, struct t4_sge_context *);
857 static int load_fw(struct adapter *, struct t4_data *);
858 static int load_cfg(struct adapter *, struct t4_data *);
859 static int load_boot(struct adapter *, struct t4_bootrom *);
860 static int load_bootcfg(struct adapter *, struct t4_data *);
861 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
862 static void free_offload_policy(struct t4_offload_policy *);
863 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
864 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
865 static int read_i2c(struct adapter *, struct t4_i2c_data *);
866 static int clear_stats(struct adapter *, u_int);
867 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
868 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
869 static inline int stop_adapter(struct adapter *);
870 static inline void set_adapter_hwstatus(struct adapter *, const bool);
871 static int stop_lld(struct adapter *);
872 static inline int restart_adapter(struct adapter *);
873 static int restart_lld(struct adapter *);
874 #ifdef TCP_OFFLOAD
875 static int deactivate_all_uld(struct adapter *);
876 static void stop_all_uld(struct adapter *);
877 static void restart_all_uld(struct adapter *);
878 #endif
879 #ifdef KERN_TLS
880 static int ktls_capability(struct adapter *, bool);
881 #endif
882 static int mod_event(module_t, int, void *);
883 static int notify_siblings(device_t, int);
884 static uint64_t vi_get_counter(if_t, ift_counter);
885 static uint64_t cxgbe_get_counter(if_t, ift_counter);
886 static void enable_vxlan_rx(struct adapter *);
887 static void reset_adapter_task(void *, int);
888 static void fatal_error_task(void *, int);
889 static void dump_devlog(struct adapter *);
890 static void dump_cim_regs(struct adapter *);
891 static void dump_cimla(struct adapter *);
892
893 struct {
894 uint16_t device;
895 char *desc;
896 } t4_pciids[] = {
897 {0xa000, "Chelsio Terminator 4 FPGA"},
898 {0x4400, "Chelsio T440-dbg"},
899 {0x4401, "Chelsio T420-CR"},
900 {0x4402, "Chelsio T422-CR"},
901 {0x4403, "Chelsio T440-CR"},
902 {0x4404, "Chelsio T420-BCH"},
903 {0x4405, "Chelsio T440-BCH"},
904 {0x4406, "Chelsio T440-CH"},
905 {0x4407, "Chelsio T420-SO"},
906 {0x4408, "Chelsio T420-CX"},
907 {0x4409, "Chelsio T420-BT"},
908 {0x440a, "Chelsio T404-BT"},
909 {0x440e, "Chelsio T440-LP-CR"},
910 }, t5_pciids[] = {
911 {0xb000, "Chelsio Terminator 5 FPGA"},
912 {0x5400, "Chelsio T580-dbg"},
913 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
914 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
915 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
916 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
917 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
918 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
919 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
920 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
921 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
922 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
923 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
924 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
925 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
926 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
927 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
928 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
929 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
930
931 /* Custom */
932 {0x5483, "Custom T540-CR"},
933 {0x5484, "Custom T540-BT"},
934 }, t6_pciids[] = {
935 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
936 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
937 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
938 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
939 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
940 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
941 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
942 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
943 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
944 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
945 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
946 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
947 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
948 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
949 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
950 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
951
952 /* Custom */
953 {0x6480, "Custom T6225-CR"},
954 {0x6481, "Custom T62100-CR"},
955 {0x6482, "Custom T6225-CR"},
956 {0x6483, "Custom T62100-CR"},
957 {0x6484, "Custom T64100-CR"},
958 {0x6485, "Custom T6240-SO"},
959 {0x6486, "Custom T6225-SO-CR"},
960 {0x6487, "Custom T6225-CR"},
961 };
962
963 #ifdef TCP_OFFLOAD
964 /*
965 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
966 * be exactly the same for both rxq and ofld_rxq.
967 */
968 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
969 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
970 #endif
971 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
972
973 static int
t4_probe(device_t dev)974 t4_probe(device_t dev)
975 {
976 int i;
977 uint16_t v = pci_get_vendor(dev);
978 uint16_t d = pci_get_device(dev);
979 uint8_t f = pci_get_function(dev);
980
981 if (v != PCI_VENDOR_ID_CHELSIO)
982 return (ENXIO);
983
984 /* Attach only to PF0 of the FPGA */
985 if (d == 0xa000 && f != 0)
986 return (ENXIO);
987
988 for (i = 0; i < nitems(t4_pciids); i++) {
989 if (d == t4_pciids[i].device) {
990 device_set_desc(dev, t4_pciids[i].desc);
991 return (BUS_PROBE_DEFAULT);
992 }
993 }
994
995 return (ENXIO);
996 }
997
998 static int
t5_probe(device_t dev)999 t5_probe(device_t dev)
1000 {
1001 int i;
1002 uint16_t v = pci_get_vendor(dev);
1003 uint16_t d = pci_get_device(dev);
1004 uint8_t f = pci_get_function(dev);
1005
1006 if (v != PCI_VENDOR_ID_CHELSIO)
1007 return (ENXIO);
1008
1009 /* Attach only to PF0 of the FPGA */
1010 if (d == 0xb000 && f != 0)
1011 return (ENXIO);
1012
1013 for (i = 0; i < nitems(t5_pciids); i++) {
1014 if (d == t5_pciids[i].device) {
1015 device_set_desc(dev, t5_pciids[i].desc);
1016 return (BUS_PROBE_DEFAULT);
1017 }
1018 }
1019
1020 return (ENXIO);
1021 }
1022
1023 static int
t6_probe(device_t dev)1024 t6_probe(device_t dev)
1025 {
1026 int i;
1027 uint16_t v = pci_get_vendor(dev);
1028 uint16_t d = pci_get_device(dev);
1029
1030 if (v != PCI_VENDOR_ID_CHELSIO)
1031 return (ENXIO);
1032
1033 for (i = 0; i < nitems(t6_pciids); i++) {
1034 if (d == t6_pciids[i].device) {
1035 device_set_desc(dev, t6_pciids[i].desc);
1036 return (BUS_PROBE_DEFAULT);
1037 }
1038 }
1039
1040 return (ENXIO);
1041 }
1042
1043 static void
t5_attribute_workaround(device_t dev)1044 t5_attribute_workaround(device_t dev)
1045 {
1046 device_t root_port;
1047 uint32_t v;
1048
1049 /*
1050 * The T5 chips do not properly echo the No Snoop and Relaxed
1051 * Ordering attributes when replying to a TLP from a Root
1052 * Port. As a workaround, find the parent Root Port and
1053 * disable No Snoop and Relaxed Ordering. Note that this
1054 * affects all devices under this root port.
1055 */
1056 root_port = pci_find_pcie_root_port(dev);
1057 if (root_port == NULL) {
1058 device_printf(dev, "Unable to find parent root port\n");
1059 return;
1060 }
1061
1062 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1063 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1064 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1065 0)
1066 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1067 device_get_nameunit(root_port));
1068 }
1069
1070 static const struct devnames devnames[] = {
1071 {
1072 .nexus_name = "t4nex",
1073 .ifnet_name = "cxgbe",
1074 .vi_ifnet_name = "vcxgbe",
1075 .pf03_drv_name = "t4iov",
1076 .vf_nexus_name = "t4vf",
1077 .vf_ifnet_name = "cxgbev"
1078 }, {
1079 .nexus_name = "t5nex",
1080 .ifnet_name = "cxl",
1081 .vi_ifnet_name = "vcxl",
1082 .pf03_drv_name = "t5iov",
1083 .vf_nexus_name = "t5vf",
1084 .vf_ifnet_name = "cxlv"
1085 }, {
1086 .nexus_name = "t6nex",
1087 .ifnet_name = "cc",
1088 .vi_ifnet_name = "vcc",
1089 .pf03_drv_name = "t6iov",
1090 .vf_nexus_name = "t6vf",
1091 .vf_ifnet_name = "ccv"
1092 }
1093 };
1094
1095 void
t4_init_devnames(struct adapter * sc)1096 t4_init_devnames(struct adapter *sc)
1097 {
1098 int id;
1099
1100 id = chip_id(sc);
1101 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1102 sc->names = &devnames[id - CHELSIO_T4];
1103 else {
1104 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1105 sc->names = NULL;
1106 }
1107 }
1108
1109 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1110 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1111 {
1112 const char *parent, *name;
1113 long value;
1114 int line, unit;
1115
1116 line = 0;
1117 parent = device_get_nameunit(sc->dev);
1118 name = sc->names->ifnet_name;
1119 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1120 if (resource_long_value(name, unit, "port", &value) == 0 &&
1121 value == pi->port_id)
1122 return (unit);
1123 }
1124 return (-1);
1125 }
1126
1127 static void
t4_calibration(void * arg)1128 t4_calibration(void *arg)
1129 {
1130 struct adapter *sc;
1131 struct clock_sync *cur, *nex;
1132 uint64_t hw;
1133 sbintime_t sbt;
1134 int next_up;
1135
1136 sc = (struct adapter *)arg;
1137
1138 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1139 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1140 sbt = sbinuptime();
1141
1142 cur = &sc->cal_info[sc->cal_current];
1143 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1144 nex = &sc->cal_info[next_up];
1145 if (__predict_false(sc->cal_count == 0)) {
1146 /* First time in, just get the values in */
1147 cur->hw_cur = hw;
1148 cur->sbt_cur = sbt;
1149 sc->cal_count++;
1150 goto done;
1151 }
1152
1153 if (cur->hw_cur == hw) {
1154 /* The clock is not advancing? */
1155 sc->cal_count = 0;
1156 atomic_store_rel_int(&cur->gen, 0);
1157 goto done;
1158 }
1159
1160 seqc_write_begin(&nex->gen);
1161 nex->hw_prev = cur->hw_cur;
1162 nex->sbt_prev = cur->sbt_cur;
1163 nex->hw_cur = hw;
1164 nex->sbt_cur = sbt;
1165 seqc_write_end(&nex->gen);
1166 sc->cal_current = next_up;
1167 done:
1168 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1169 sc, C_DIRECT_EXEC);
1170 }
1171
1172 static void
t4_calibration_start(struct adapter * sc)1173 t4_calibration_start(struct adapter *sc)
1174 {
1175 /*
1176 * Here if we have not done a calibration
1177 * then do so otherwise start the appropriate
1178 * timer.
1179 */
1180 int i;
1181
1182 for (i = 0; i < CNT_CAL_INFO; i++) {
1183 sc->cal_info[i].gen = 0;
1184 }
1185 sc->cal_current = 0;
1186 sc->cal_count = 0;
1187 sc->cal_gen = 0;
1188 t4_calibration(sc);
1189 }
1190
1191 static int
t4_attach(device_t dev)1192 t4_attach(device_t dev)
1193 {
1194 struct adapter *sc;
1195 int rc = 0, i, j, rqidx, tqidx, nports;
1196 struct make_dev_args mda;
1197 struct intrs_and_queues iaq;
1198 struct sge *s;
1199 uint32_t *buf;
1200 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1201 int ofld_tqidx;
1202 #endif
1203 #ifdef TCP_OFFLOAD
1204 int ofld_rqidx;
1205 #endif
1206 #ifdef DEV_NETMAP
1207 int nm_rqidx, nm_tqidx;
1208 #endif
1209 int num_vis;
1210
1211 sc = device_get_softc(dev);
1212 sc->dev = dev;
1213 sysctl_ctx_init(&sc->ctx);
1214 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1215
1216 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1217 t5_attribute_workaround(dev);
1218 pci_enable_busmaster(dev);
1219 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1220 uint32_t v;
1221
1222 pci_set_max_read_req(dev, 4096);
1223 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1224 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1225 if (pcie_relaxed_ordering == 0 &&
1226 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1227 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1228 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1229 } else if (pcie_relaxed_ordering == 1 &&
1230 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1231 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1232 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1233 }
1234 }
1235
1236 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1237 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1238 sc->traceq = -1;
1239 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1240 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1241 device_get_nameunit(dev));
1242
1243 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1244 device_get_nameunit(dev));
1245 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1246 t4_add_adapter(sc);
1247
1248 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1249 TAILQ_INIT(&sc->sfl);
1250 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1251
1252 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1253
1254 sc->policy = NULL;
1255 rw_init(&sc->policy_lock, "connection offload policy");
1256
1257 callout_init(&sc->ktls_tick, 1);
1258
1259 callout_init(&sc->cal_callout, 1);
1260
1261 refcount_init(&sc->vxlan_refcount, 0);
1262
1263 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1264 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1265
1266 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1267 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1268 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1269 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1270 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1271 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1272
1273 rc = t4_map_bars_0_and_4(sc);
1274 if (rc != 0)
1275 goto done; /* error message displayed already */
1276
1277 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1278
1279 /* Prepare the adapter for operation. */
1280 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1281 rc = -t4_prep_adapter(sc, buf);
1282 free(buf, M_CXGBE);
1283 if (rc != 0) {
1284 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1285 goto done;
1286 }
1287
1288 /*
1289 * This is the real PF# to which we're attaching. Works from within PCI
1290 * passthrough environments too, where pci_get_function() could return a
1291 * different PF# depending on the passthrough configuration. We need to
1292 * use the real PF# in all our communication with the firmware.
1293 */
1294 j = t4_read_reg(sc, A_PL_WHOAMI);
1295 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1296 sc->mbox = sc->pf;
1297
1298 t4_init_devnames(sc);
1299 if (sc->names == NULL) {
1300 rc = ENOTSUP;
1301 goto done; /* error message displayed already */
1302 }
1303
1304 /*
1305 * Do this really early, with the memory windows set up even before the
1306 * character device. The userland tool's register i/o and mem read
1307 * will work even in "recovery mode".
1308 */
1309 setup_memwin(sc);
1310 if (t4_init_devlog_params(sc, 0) == 0)
1311 fixup_devlog_params(sc);
1312 make_dev_args_init(&mda);
1313 mda.mda_devsw = &t4_cdevsw;
1314 mda.mda_uid = UID_ROOT;
1315 mda.mda_gid = GID_WHEEL;
1316 mda.mda_mode = 0600;
1317 mda.mda_si_drv1 = sc;
1318 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1319 if (rc != 0)
1320 device_printf(dev, "failed to create nexus char device: %d.\n",
1321 rc);
1322
1323 /* Go no further if recovery mode has been requested. */
1324 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1325 device_printf(dev, "recovery mode.\n");
1326 goto done;
1327 }
1328
1329 #if defined(__i386__)
1330 if ((cpu_feature & CPUID_CX8) == 0) {
1331 device_printf(dev, "64 bit atomics not available.\n");
1332 rc = ENOTSUP;
1333 goto done;
1334 }
1335 #endif
1336
1337 /* Contact the firmware and try to become the master driver. */
1338 rc = contact_firmware(sc);
1339 if (rc != 0)
1340 goto done; /* error message displayed already */
1341 MPASS(sc->flags & FW_OK);
1342
1343 rc = get_params__pre_init(sc);
1344 if (rc != 0)
1345 goto done; /* error message displayed already */
1346
1347 if (sc->flags & MASTER_PF) {
1348 rc = partition_resources(sc);
1349 if (rc != 0)
1350 goto done; /* error message displayed already */
1351 }
1352
1353 rc = get_params__post_init(sc);
1354 if (rc != 0)
1355 goto done; /* error message displayed already */
1356
1357 rc = set_params__post_init(sc);
1358 if (rc != 0)
1359 goto done; /* error message displayed already */
1360
1361 rc = t4_map_bar_2(sc);
1362 if (rc != 0)
1363 goto done; /* error message displayed already */
1364
1365 rc = t4_adj_doorbells(sc);
1366 if (rc != 0)
1367 goto done; /* error message displayed already */
1368
1369 rc = t4_create_dma_tag(sc);
1370 if (rc != 0)
1371 goto done; /* error message displayed already */
1372
1373 /*
1374 * First pass over all the ports - allocate VIs and initialize some
1375 * basic parameters like mac address, port type, etc.
1376 */
1377 for_each_port(sc, i) {
1378 struct port_info *pi;
1379
1380 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1381 sc->port[i] = pi;
1382
1383 /* These must be set before t4_port_init */
1384 pi->adapter = sc;
1385 pi->port_id = i;
1386 /*
1387 * XXX: vi[0] is special so we can't delay this allocation until
1388 * pi->nvi's final value is known.
1389 */
1390 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1391 M_ZERO | M_WAITOK);
1392
1393 /*
1394 * Allocate the "main" VI and initialize parameters
1395 * like mac addr.
1396 */
1397 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1398 if (rc != 0) {
1399 device_printf(dev, "unable to initialize port %d: %d\n",
1400 i, rc);
1401 free(pi->vi, M_CXGBE);
1402 free(pi, M_CXGBE);
1403 sc->port[i] = NULL;
1404 goto done;
1405 }
1406
1407 if (is_bt(pi->port_type))
1408 setbit(&sc->bt_map, pi->tx_chan);
1409 else
1410 MPASS(!isset(&sc->bt_map, pi->tx_chan));
1411
1412 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1413 device_get_nameunit(dev), i);
1414 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1415 sc->chan_map[pi->tx_chan] = i;
1416
1417 /*
1418 * The MPS counter for FCS errors doesn't work correctly on the
1419 * T6 so we use the MAC counter here. Which MAC is in use
1420 * depends on the link settings which will be known when the
1421 * link comes up.
1422 */
1423 if (is_t6(sc))
1424 pi->fcs_reg = -1;
1425 else {
1426 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1427 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1428 }
1429 pi->fcs_base = 0;
1430
1431 /* All VIs on this port share this media. */
1432 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1433 cxgbe_media_status);
1434
1435 PORT_LOCK(pi);
1436 init_link_config(pi);
1437 fixup_link_config(pi);
1438 build_medialist(pi);
1439 if (fixed_ifmedia(pi))
1440 pi->flags |= FIXED_IFMEDIA;
1441 PORT_UNLOCK(pi);
1442
1443 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1444 t4_ifnet_unit(sc, pi));
1445 if (pi->dev == NULL) {
1446 device_printf(dev,
1447 "failed to add device for port %d.\n", i);
1448 rc = ENXIO;
1449 goto done;
1450 }
1451 pi->vi[0].dev = pi->dev;
1452 device_set_softc(pi->dev, pi);
1453 }
1454
1455 /*
1456 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1457 */
1458 nports = sc->params.nports;
1459 rc = cfg_itype_and_nqueues(sc, &iaq);
1460 if (rc != 0)
1461 goto done; /* error message displayed already */
1462
1463 num_vis = iaq.num_vis;
1464 sc->intr_type = iaq.intr_type;
1465 sc->intr_count = iaq.nirq;
1466
1467 s = &sc->sge;
1468 s->nrxq = nports * iaq.nrxq;
1469 s->ntxq = nports * iaq.ntxq;
1470 if (num_vis > 1) {
1471 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1472 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1473 }
1474 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1475 s->neq += nports; /* ctrl queues: 1 per port */
1476 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1477 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1478 if (is_offload(sc) || is_ethoffload(sc)) {
1479 s->nofldtxq = nports * iaq.nofldtxq;
1480 if (num_vis > 1)
1481 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1482 s->neq += s->nofldtxq;
1483
1484 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1485 M_CXGBE, M_ZERO | M_WAITOK);
1486 }
1487 #endif
1488 #ifdef TCP_OFFLOAD
1489 if (is_offload(sc)) {
1490 s->nofldrxq = nports * iaq.nofldrxq;
1491 if (num_vis > 1)
1492 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1493 s->neq += s->nofldrxq; /* free list */
1494 s->niq += s->nofldrxq;
1495
1496 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1497 M_CXGBE, M_ZERO | M_WAITOK);
1498 }
1499 #endif
1500 #ifdef DEV_NETMAP
1501 s->nnmrxq = 0;
1502 s->nnmtxq = 0;
1503 if (t4_native_netmap & NN_MAIN_VI) {
1504 s->nnmrxq += nports * iaq.nnmrxq;
1505 s->nnmtxq += nports * iaq.nnmtxq;
1506 }
1507 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1508 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1509 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1510 }
1511 s->neq += s->nnmtxq + s->nnmrxq;
1512 s->niq += s->nnmrxq;
1513
1514 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1515 M_CXGBE, M_ZERO | M_WAITOK);
1516 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1517 M_CXGBE, M_ZERO | M_WAITOK);
1518 #endif
1519 MPASS(s->niq <= s->iqmap_sz);
1520 MPASS(s->neq <= s->eqmap_sz);
1521
1522 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1523 M_ZERO | M_WAITOK);
1524 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1525 M_ZERO | M_WAITOK);
1526 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1527 M_ZERO | M_WAITOK);
1528 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1529 M_ZERO | M_WAITOK);
1530 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1531 M_ZERO | M_WAITOK);
1532
1533 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1534 M_ZERO | M_WAITOK);
1535
1536 t4_init_l2t(sc, M_WAITOK);
1537 t4_init_smt(sc, M_WAITOK);
1538 t4_init_tx_sched(sc);
1539 t4_init_atid_table(sc);
1540 #ifdef RATELIMIT
1541 t4_init_etid_table(sc);
1542 #endif
1543 #ifdef INET6
1544 t4_init_clip_table(sc);
1545 #endif
1546 if (sc->vres.key.size != 0)
1547 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1548 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1549
1550 /*
1551 * Second pass over the ports. This time we know the number of rx and
1552 * tx queues that each port should get.
1553 */
1554 rqidx = tqidx = 0;
1555 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1556 ofld_tqidx = 0;
1557 #endif
1558 #ifdef TCP_OFFLOAD
1559 ofld_rqidx = 0;
1560 #endif
1561 #ifdef DEV_NETMAP
1562 nm_rqidx = nm_tqidx = 0;
1563 #endif
1564 for_each_port(sc, i) {
1565 struct port_info *pi = sc->port[i];
1566 struct vi_info *vi;
1567
1568 if (pi == NULL)
1569 continue;
1570
1571 pi->nvi = num_vis;
1572 for_each_vi(pi, j, vi) {
1573 vi->pi = pi;
1574 vi->adapter = sc;
1575 vi->first_intr = -1;
1576 vi->qsize_rxq = t4_qsize_rxq;
1577 vi->qsize_txq = t4_qsize_txq;
1578
1579 vi->first_rxq = rqidx;
1580 vi->first_txq = tqidx;
1581 vi->tmr_idx = t4_tmr_idx;
1582 vi->pktc_idx = t4_pktc_idx;
1583 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1584 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1585
1586 rqidx += vi->nrxq;
1587 tqidx += vi->ntxq;
1588
1589 if (j == 0 && vi->ntxq > 1)
1590 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1591 else
1592 vi->rsrv_noflowq = 0;
1593
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 vi->first_ofld_txq = ofld_tqidx;
1596 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1597 ofld_tqidx += vi->nofldtxq;
1598 #endif
1599 #ifdef TCP_OFFLOAD
1600 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1601 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1602 vi->first_ofld_rxq = ofld_rqidx;
1603 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1604
1605 ofld_rqidx += vi->nofldrxq;
1606 #endif
1607 #ifdef DEV_NETMAP
1608 vi->first_nm_rxq = nm_rqidx;
1609 vi->first_nm_txq = nm_tqidx;
1610 if (j == 0) {
1611 vi->nnmrxq = iaq.nnmrxq;
1612 vi->nnmtxq = iaq.nnmtxq;
1613 } else {
1614 vi->nnmrxq = iaq.nnmrxq_vi;
1615 vi->nnmtxq = iaq.nnmtxq_vi;
1616 }
1617 nm_rqidx += vi->nnmrxq;
1618 nm_tqidx += vi->nnmtxq;
1619 #endif
1620 }
1621 }
1622
1623 rc = t4_setup_intr_handlers(sc);
1624 if (rc != 0) {
1625 device_printf(dev,
1626 "failed to setup interrupt handlers: %d\n", rc);
1627 goto done;
1628 }
1629
1630 bus_identify_children(dev);
1631
1632 /*
1633 * Ensure thread-safe mailbox access (in debug builds).
1634 *
1635 * So far this was the only thread accessing the mailbox but various
1636 * ifnets and sysctls are about to be created and their handlers/ioctls
1637 * will access the mailbox from different threads.
1638 */
1639 sc->flags |= CHK_MBOX_ACCESS;
1640
1641 bus_attach_children(dev);
1642 t4_calibration_start(sc);
1643
1644 device_printf(dev,
1645 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1646 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1647 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1648 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1649 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1650
1651 t4_set_desc(sc);
1652
1653 notify_siblings(dev, 0);
1654
1655 done:
1656 if (rc != 0 && sc->cdev) {
1657 /* cdev was created and so cxgbetool works; recover that way. */
1658 device_printf(dev,
1659 "error during attach, adapter is now in recovery mode.\n");
1660 rc = 0;
1661 }
1662
1663 if (rc != 0)
1664 t4_detach_common(dev);
1665 else
1666 t4_sysctls(sc);
1667
1668 return (rc);
1669 }
1670
1671 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1672 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1673 {
1674 struct adapter *sc;
1675 struct port_info *pi;
1676 int i;
1677
1678 sc = device_get_softc(bus);
1679 for_each_port(sc, i) {
1680 pi = sc->port[i];
1681 if (pi != NULL && pi->dev == dev) {
1682 sbuf_printf(sb, "port=%d", pi->port_id);
1683 break;
1684 }
1685 }
1686 return (0);
1687 }
1688
1689 static int
t4_ready(device_t dev)1690 t4_ready(device_t dev)
1691 {
1692 struct adapter *sc;
1693
1694 sc = device_get_softc(dev);
1695 if (sc->flags & FW_OK)
1696 return (0);
1697 return (ENXIO);
1698 }
1699
1700 static int
t4_read_port_device(device_t dev,int port,device_t * child)1701 t4_read_port_device(device_t dev, int port, device_t *child)
1702 {
1703 struct adapter *sc;
1704 struct port_info *pi;
1705
1706 sc = device_get_softc(dev);
1707 if (port < 0 || port >= MAX_NPORTS)
1708 return (EINVAL);
1709 pi = sc->port[port];
1710 if (pi == NULL || pi->dev == NULL)
1711 return (ENXIO);
1712 *child = pi->dev;
1713 return (0);
1714 }
1715
1716 static int
notify_siblings(device_t dev,int detaching)1717 notify_siblings(device_t dev, int detaching)
1718 {
1719 device_t sibling;
1720 int error, i;
1721
1722 error = 0;
1723 for (i = 0; i < PCI_FUNCMAX; i++) {
1724 if (i == pci_get_function(dev))
1725 continue;
1726 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1727 pci_get_slot(dev), i);
1728 if (sibling == NULL || !device_is_attached(sibling))
1729 continue;
1730 if (detaching)
1731 error = T4_DETACH_CHILD(sibling);
1732 else
1733 (void)T4_ATTACH_CHILD(sibling);
1734 if (error)
1735 break;
1736 }
1737 return (error);
1738 }
1739
1740 /*
1741 * Idempotent
1742 */
1743 static int
t4_detach(device_t dev)1744 t4_detach(device_t dev)
1745 {
1746 int rc;
1747
1748 rc = notify_siblings(dev, 1);
1749 if (rc) {
1750 device_printf(dev,
1751 "failed to detach sibling devices: %d\n", rc);
1752 return (rc);
1753 }
1754
1755 return (t4_detach_common(dev));
1756 }
1757
1758 int
t4_detach_common(device_t dev)1759 t4_detach_common(device_t dev)
1760 {
1761 struct adapter *sc;
1762 struct port_info *pi;
1763 int i, rc;
1764
1765 sc = device_get_softc(dev);
1766
1767 #ifdef TCP_OFFLOAD
1768 rc = deactivate_all_uld(sc);
1769 if (rc) {
1770 device_printf(dev,
1771 "failed to detach upper layer drivers: %d\n", rc);
1772 return (rc);
1773 }
1774 #endif
1775
1776 if (sc->cdev) {
1777 destroy_dev(sc->cdev);
1778 sc->cdev = NULL;
1779 }
1780
1781 sx_xlock(&t4_list_lock);
1782 SLIST_REMOVE(&t4_list, sc, adapter, link);
1783 sx_xunlock(&t4_list_lock);
1784
1785 sc->flags &= ~CHK_MBOX_ACCESS;
1786 if (sc->flags & FULL_INIT_DONE) {
1787 if (!(sc->flags & IS_VF))
1788 t4_intr_disable(sc);
1789 }
1790
1791 if (device_is_attached(dev)) {
1792 rc = bus_detach_children(dev);
1793 if (rc) {
1794 device_printf(dev,
1795 "failed to detach child devices: %d\n", rc);
1796 return (rc);
1797 }
1798 }
1799
1800 for (i = 0; i < sc->intr_count; i++)
1801 t4_free_irq(sc, &sc->irq[i]);
1802
1803 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1804 t4_free_tx_sched(sc);
1805
1806 for (i = 0; i < MAX_NPORTS; i++) {
1807 pi = sc->port[i];
1808 if (pi) {
1809 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1810
1811 mtx_destroy(&pi->pi_lock);
1812 free(pi->vi, M_CXGBE);
1813 free(pi, M_CXGBE);
1814 }
1815 }
1816 callout_stop(&sc->cal_callout);
1817 callout_drain(&sc->cal_callout);
1818 device_delete_children(dev);
1819 sysctl_ctx_free(&sc->ctx);
1820 adapter_full_uninit(sc);
1821
1822 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1823 t4_fw_bye(sc, sc->mbox);
1824
1825 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1826 pci_release_msi(dev);
1827
1828 if (sc->regs_res)
1829 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1830 sc->regs_res);
1831
1832 if (sc->udbs_res)
1833 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1834 sc->udbs_res);
1835
1836 if (sc->msix_res)
1837 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1838 sc->msix_res);
1839
1840 if (sc->l2t)
1841 t4_free_l2t(sc);
1842 if (sc->smt)
1843 t4_free_smt(sc->smt);
1844 t4_free_atid_table(sc);
1845 #ifdef RATELIMIT
1846 t4_free_etid_table(sc);
1847 #endif
1848 if (sc->key_map)
1849 vmem_destroy(sc->key_map);
1850 #ifdef INET6
1851 t4_destroy_clip_table(sc);
1852 #endif
1853
1854 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1855 free(sc->sge.ofld_txq, M_CXGBE);
1856 #endif
1857 #ifdef TCP_OFFLOAD
1858 free(sc->sge.ofld_rxq, M_CXGBE);
1859 #endif
1860 #ifdef DEV_NETMAP
1861 free(sc->sge.nm_rxq, M_CXGBE);
1862 free(sc->sge.nm_txq, M_CXGBE);
1863 #endif
1864 free(sc->irq, M_CXGBE);
1865 free(sc->sge.rxq, M_CXGBE);
1866 free(sc->sge.txq, M_CXGBE);
1867 free(sc->sge.ctrlq, M_CXGBE);
1868 free(sc->sge.iqmap, M_CXGBE);
1869 free(sc->sge.eqmap, M_CXGBE);
1870 free(sc->tids.ftid_tab, M_CXGBE);
1871 free(sc->tids.hpftid_tab, M_CXGBE);
1872 free_hftid_hash(&sc->tids);
1873 free(sc->tids.tid_tab, M_CXGBE);
1874 t4_destroy_dma_tag(sc);
1875
1876 callout_drain(&sc->ktls_tick);
1877 callout_drain(&sc->sfl_callout);
1878 if (mtx_initialized(&sc->tids.ftid_lock)) {
1879 mtx_destroy(&sc->tids.ftid_lock);
1880 cv_destroy(&sc->tids.ftid_cv);
1881 }
1882 if (mtx_initialized(&sc->tids.atid_lock))
1883 mtx_destroy(&sc->tids.atid_lock);
1884 if (mtx_initialized(&sc->ifp_lock))
1885 mtx_destroy(&sc->ifp_lock);
1886
1887 if (rw_initialized(&sc->policy_lock)) {
1888 rw_destroy(&sc->policy_lock);
1889 #ifdef TCP_OFFLOAD
1890 if (sc->policy != NULL)
1891 free_offload_policy(sc->policy);
1892 #endif
1893 }
1894
1895 for (i = 0; i < NUM_MEMWIN; i++) {
1896 struct memwin *mw = &sc->memwin[i];
1897
1898 if (rw_initialized(&mw->mw_lock))
1899 rw_destroy(&mw->mw_lock);
1900 }
1901
1902 mtx_destroy(&sc->sfl_lock);
1903 mtx_destroy(&sc->reg_lock);
1904 mtx_destroy(&sc->sc_lock);
1905
1906 bzero(sc, sizeof(*sc));
1907
1908 return (0);
1909 }
1910
1911 static inline int
stop_adapter(struct adapter * sc)1912 stop_adapter(struct adapter *sc)
1913 {
1914 struct port_info *pi;
1915 int i;
1916
1917 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1918 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1919 __func__, curthread, sc->flags, sc->error_flags);
1920 return (EALREADY);
1921 }
1922 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1923 sc->flags, sc->error_flags);
1924 t4_shutdown_adapter(sc);
1925 for_each_port(sc, i) {
1926 pi = sc->port[i];
1927 PORT_LOCK(pi);
1928 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1929 /*
1930 * t4_shutdown_adapter has already shut down all the
1931 * PHYs but it also disables interrupts and DMA so there
1932 * won't be a link interrupt. Update the state manually
1933 * if the link was up previously and inform the kernel.
1934 */
1935 pi->link_cfg.link_ok = false;
1936 t4_os_link_changed(pi);
1937 }
1938 PORT_UNLOCK(pi);
1939 }
1940
1941 return (0);
1942 }
1943
1944 static inline int
restart_adapter(struct adapter * sc)1945 restart_adapter(struct adapter *sc)
1946 {
1947 uint32_t val;
1948
1949 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1950 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1951 __func__, curthread, sc->flags, sc->error_flags);
1952 return (EALREADY);
1953 }
1954 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1955 sc->flags, sc->error_flags);
1956
1957 MPASS(hw_off_limits(sc));
1958 MPASS((sc->flags & FW_OK) == 0);
1959 MPASS((sc->flags & MASTER_PF) == 0);
1960 MPASS(sc->reset_thread == NULL);
1961
1962 /*
1963 * The adapter is supposed to be back on PCIE with its config space and
1964 * BARs restored to their state before reset. Register access via
1965 * t4_read_reg BAR0 should just work.
1966 */
1967 sc->reset_thread = curthread;
1968 val = t4_read_reg(sc, A_PL_WHOAMI);
1969 if (val == 0xffffffff || val == 0xeeeeeeee) {
1970 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1971 sc->reset_thread = NULL;
1972 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1973 return (ENXIO);
1974 }
1975 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1976 atomic_add_int(&sc->incarnation, 1);
1977 atomic_add_int(&sc->num_resets, 1);
1978
1979 return (0);
1980 }
1981
1982 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)1983 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1984 {
1985 if (usable) {
1986 /* Must be marked reusable by the designated thread. */
1987 ASSERT_SYNCHRONIZED_OP(sc);
1988 MPASS(sc->reset_thread == curthread);
1989 mtx_lock(&sc->reg_lock);
1990 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1991 mtx_unlock(&sc->reg_lock);
1992 } else {
1993 /* Mark the adapter totally off limits. */
1994 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
1995 mtx_lock(&sc->reg_lock);
1996 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
1997 mtx_unlock(&sc->reg_lock);
1998 sc->flags &= ~(FW_OK | MASTER_PF);
1999 sc->reset_thread = NULL;
2000 end_synchronized_op(sc, 0);
2001 }
2002 }
2003
2004 static int
stop_lld(struct adapter * sc)2005 stop_lld(struct adapter *sc)
2006 {
2007 struct port_info *pi;
2008 struct vi_info *vi;
2009 if_t ifp;
2010 struct sge_rxq *rxq;
2011 struct sge_txq *txq;
2012 struct sge_wrq *wrq;
2013 #ifdef TCP_OFFLOAD
2014 struct sge_ofld_rxq *ofld_rxq;
2015 #endif
2016 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2017 struct sge_ofld_txq *ofld_txq;
2018 #endif
2019 int rc, i, j, k;
2020
2021 /*
2022 * XXX: Can there be a synch_op in progress that will hang because
2023 * hardware has been stopped? We'll hang too and the solution will be
2024 * to use a version of begin_synch_op that wakes up existing synch_op
2025 * with errors. Maybe stop_adapter should do this wakeup?
2026 *
2027 * I don't think any synch_op could get stranded waiting for DMA or
2028 * interrupt so I think we're okay here. Remove this comment block
2029 * after testing.
2030 */
2031 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2032 if (rc != 0)
2033 return (ENXIO);
2034
2035 /* Quiesce all activity. */
2036 for_each_port(sc, i) {
2037 pi = sc->port[i];
2038 pi->vxlan_tcam_entry = false;
2039 for_each_vi(pi, j, vi) {
2040 vi->xact_addr_filt = -1;
2041 mtx_lock(&vi->tick_mtx);
2042 vi->flags |= VI_SKIP_STATS;
2043 mtx_unlock(&vi->tick_mtx);
2044 if (!(vi->flags & VI_INIT_DONE))
2045 continue;
2046
2047 ifp = vi->ifp;
2048 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2049 mtx_lock(&vi->tick_mtx);
2050 callout_stop(&vi->tick);
2051 mtx_unlock(&vi->tick_mtx);
2052 callout_drain(&vi->tick);
2053 }
2054
2055 /*
2056 * Note that the HW is not available.
2057 */
2058 for_each_txq(vi, k, txq) {
2059 TXQ_LOCK(txq);
2060 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2061 TXQ_UNLOCK(txq);
2062 }
2063 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2064 for_each_ofld_txq(vi, k, ofld_txq) {
2065 TXQ_LOCK(&ofld_txq->wrq);
2066 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2067 TXQ_UNLOCK(&ofld_txq->wrq);
2068 }
2069 #endif
2070 for_each_rxq(vi, k, rxq) {
2071 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2072 }
2073 #if defined(TCP_OFFLOAD)
2074 for_each_ofld_rxq(vi, k, ofld_rxq) {
2075 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2076 }
2077 #endif
2078
2079 quiesce_vi(vi);
2080 }
2081
2082 if (sc->flags & FULL_INIT_DONE) {
2083 /* Control queue */
2084 wrq = &sc->sge.ctrlq[i];
2085 TXQ_LOCK(wrq);
2086 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2087 TXQ_UNLOCK(wrq);
2088 quiesce_wrq(wrq);
2089 }
2090
2091 if (pi->flags & HAS_TRACEQ) {
2092 pi->flags &= ~HAS_TRACEQ;
2093 sc->traceq = -1;
2094 sc->tracer_valid = 0;
2095 sc->tracer_enabled = 0;
2096 }
2097 }
2098 if (sc->flags & FULL_INIT_DONE) {
2099 /* Firmware event queue */
2100 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2101 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2102 }
2103
2104 /* Stop calibration */
2105 callout_stop(&sc->cal_callout);
2106 callout_drain(&sc->cal_callout);
2107
2108 if (t4_clock_gate_on_suspend) {
2109 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2110 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2111 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2112 }
2113
2114 end_synchronized_op(sc, 0);
2115
2116 stop_atid_allocator(sc);
2117 t4_stop_l2t(sc);
2118
2119 return (rc);
2120 }
2121
2122 int
suspend_adapter(struct adapter * sc)2123 suspend_adapter(struct adapter *sc)
2124 {
2125 stop_adapter(sc);
2126 stop_lld(sc);
2127 #ifdef TCP_OFFLOAD
2128 stop_all_uld(sc);
2129 #endif
2130 set_adapter_hwstatus(sc, false);
2131
2132 return (0);
2133 }
2134
2135 static int
t4_suspend(device_t dev)2136 t4_suspend(device_t dev)
2137 {
2138 struct adapter *sc = device_get_softc(dev);
2139 int rc;
2140
2141 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2142 rc = suspend_adapter(sc);
2143 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2144
2145 return (rc);
2146 }
2147
2148 struct adapter_pre_reset_state {
2149 u_int flags;
2150 uint16_t nbmcaps;
2151 uint16_t linkcaps;
2152 uint16_t switchcaps;
2153 uint16_t niccaps;
2154 uint16_t toecaps;
2155 uint16_t rdmacaps;
2156 uint16_t cryptocaps;
2157 uint16_t iscsicaps;
2158 uint16_t fcoecaps;
2159
2160 u_int cfcsum;
2161 char cfg_file[32];
2162
2163 struct adapter_params params;
2164 struct t4_virt_res vres;
2165 struct tid_info tids;
2166 struct sge sge;
2167
2168 int rawf_base;
2169 int nrawf;
2170
2171 };
2172
2173 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2174 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2175 {
2176
2177 ASSERT_SYNCHRONIZED_OP(sc);
2178
2179 o->flags = sc->flags;
2180
2181 o->nbmcaps = sc->nbmcaps;
2182 o->linkcaps = sc->linkcaps;
2183 o->switchcaps = sc->switchcaps;
2184 o->niccaps = sc->niccaps;
2185 o->toecaps = sc->toecaps;
2186 o->rdmacaps = sc->rdmacaps;
2187 o->cryptocaps = sc->cryptocaps;
2188 o->iscsicaps = sc->iscsicaps;
2189 o->fcoecaps = sc->fcoecaps;
2190
2191 o->cfcsum = sc->cfcsum;
2192 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2193 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2194
2195 o->params = sc->params;
2196 o->vres = sc->vres;
2197 o->tids = sc->tids;
2198 o->sge = sc->sge;
2199
2200 o->rawf_base = sc->rawf_base;
2201 o->nrawf = sc->nrawf;
2202 }
2203
2204 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2205 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2206 {
2207 int rc = 0;
2208
2209 ASSERT_SYNCHRONIZED_OP(sc);
2210
2211 /* Capabilities */
2212 #define COMPARE_CAPS(c) do { \
2213 if (o->c##caps != sc->c##caps) { \
2214 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2215 sc->c##caps); \
2216 rc = EINVAL; \
2217 } \
2218 } while (0)
2219 COMPARE_CAPS(nbm);
2220 COMPARE_CAPS(link);
2221 COMPARE_CAPS(switch);
2222 COMPARE_CAPS(nic);
2223 COMPARE_CAPS(toe);
2224 COMPARE_CAPS(rdma);
2225 COMPARE_CAPS(crypto);
2226 COMPARE_CAPS(iscsi);
2227 COMPARE_CAPS(fcoe);
2228 #undef COMPARE_CAPS
2229
2230 /* Firmware config file */
2231 if (o->cfcsum != sc->cfcsum) {
2232 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2233 o->cfcsum, sc->cfg_file, sc->cfcsum);
2234 rc = EINVAL;
2235 }
2236
2237 #define COMPARE_PARAM(p, name) do { \
2238 if (o->p != sc->p) { \
2239 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2240 rc = EINVAL; \
2241 } \
2242 } while (0)
2243 COMPARE_PARAM(sge.iq_start, iq_start);
2244 COMPARE_PARAM(sge.eq_start, eq_start);
2245 COMPARE_PARAM(tids.ftid_base, ftid_base);
2246 COMPARE_PARAM(tids.ftid_end, ftid_end);
2247 COMPARE_PARAM(tids.nftids, nftids);
2248 COMPARE_PARAM(vres.l2t.start, l2t_start);
2249 COMPARE_PARAM(vres.l2t.size, l2t_size);
2250 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2251 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2252 COMPARE_PARAM(tids.tid_base, tid_base);
2253 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2254 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2255 COMPARE_PARAM(tids.nhpftids, nhpftids);
2256 COMPARE_PARAM(rawf_base, rawf_base);
2257 COMPARE_PARAM(nrawf, nrawf);
2258 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2259 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2260 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2261 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2262 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2263 COMPARE_PARAM(tids.ntids, ntids);
2264 COMPARE_PARAM(tids.etid_base, etid_base);
2265 COMPARE_PARAM(tids.etid_end, etid_end);
2266 COMPARE_PARAM(tids.netids, netids);
2267 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2268 COMPARE_PARAM(params.ethoffload, ethoffload);
2269 COMPARE_PARAM(tids.natids, natids);
2270 COMPARE_PARAM(tids.stid_base, stid_base);
2271 COMPARE_PARAM(vres.ddp.start, ddp_start);
2272 COMPARE_PARAM(vres.ddp.size, ddp_size);
2273 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2274 COMPARE_PARAM(vres.stag.start, stag_start);
2275 COMPARE_PARAM(vres.stag.size, stag_size);
2276 COMPARE_PARAM(vres.rq.start, rq_start);
2277 COMPARE_PARAM(vres.rq.size, rq_size);
2278 COMPARE_PARAM(vres.pbl.start, pbl_start);
2279 COMPARE_PARAM(vres.pbl.size, pbl_size);
2280 COMPARE_PARAM(vres.qp.start, qp_start);
2281 COMPARE_PARAM(vres.qp.size, qp_size);
2282 COMPARE_PARAM(vres.cq.start, cq_start);
2283 COMPARE_PARAM(vres.cq.size, cq_size);
2284 COMPARE_PARAM(vres.ocq.start, ocq_start);
2285 COMPARE_PARAM(vres.ocq.size, ocq_size);
2286 COMPARE_PARAM(vres.srq.start, srq_start);
2287 COMPARE_PARAM(vres.srq.size, srq_size);
2288 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2289 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2290 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2291 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2292 COMPARE_PARAM(vres.key.start, key_start);
2293 COMPARE_PARAM(vres.key.size, key_size);
2294 #undef COMPARE_PARAM
2295
2296 return (rc);
2297 }
2298
2299 static int
restart_lld(struct adapter * sc)2300 restart_lld(struct adapter *sc)
2301 {
2302 struct adapter_pre_reset_state *old_state = NULL;
2303 struct port_info *pi;
2304 struct vi_info *vi;
2305 if_t ifp;
2306 struct sge_txq *txq;
2307 int rc, i, j, k;
2308
2309 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2310 if (rc != 0)
2311 return (ENXIO);
2312
2313 /* Restore memory window. */
2314 setup_memwin(sc);
2315
2316 /* Go no further if recovery mode has been requested. */
2317 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2318 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2319 rc = 0;
2320 set_adapter_hwstatus(sc, true);
2321 goto done;
2322 }
2323
2324 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2325 save_caps_and_params(sc, old_state);
2326
2327 /* Reestablish contact with firmware and become the primary PF. */
2328 rc = contact_firmware(sc);
2329 if (rc != 0)
2330 goto done; /* error message displayed already */
2331 MPASS(sc->flags & FW_OK);
2332
2333 if (sc->flags & MASTER_PF) {
2334 rc = partition_resources(sc);
2335 if (rc != 0)
2336 goto done; /* error message displayed already */
2337 }
2338
2339 rc = get_params__post_init(sc);
2340 if (rc != 0)
2341 goto done; /* error message displayed already */
2342
2343 rc = set_params__post_init(sc);
2344 if (rc != 0)
2345 goto done; /* error message displayed already */
2346
2347 rc = compare_caps_and_params(sc, old_state);
2348 if (rc != 0)
2349 goto done; /* error message displayed already */
2350
2351 for_each_port(sc, i) {
2352 pi = sc->port[i];
2353 MPASS(pi != NULL);
2354 MPASS(pi->vi != NULL);
2355 MPASS(pi->vi[0].dev == pi->dev);
2356
2357 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2358 if (rc != 0) {
2359 CH_ERR(sc,
2360 "failed to re-initialize port %d: %d\n", i, rc);
2361 goto done;
2362 }
2363 MPASS(sc->chan_map[pi->tx_chan] == i);
2364
2365 PORT_LOCK(pi);
2366 fixup_link_config(pi);
2367 build_medialist(pi);
2368 PORT_UNLOCK(pi);
2369 for_each_vi(pi, j, vi) {
2370 if (IS_MAIN_VI(vi))
2371 continue;
2372 rc = alloc_extra_vi(sc, pi, vi);
2373 if (rc != 0) {
2374 CH_ERR(vi,
2375 "failed to re-allocate extra VI: %d\n", rc);
2376 goto done;
2377 }
2378 }
2379 }
2380
2381 /*
2382 * Interrupts and queues are about to be enabled and other threads will
2383 * want to access the hardware too. It is safe to do so. Note that
2384 * this thread is still in the middle of a synchronized_op.
2385 */
2386 set_adapter_hwstatus(sc, true);
2387
2388 if (sc->flags & FULL_INIT_DONE) {
2389 rc = adapter_full_init(sc);
2390 if (rc != 0) {
2391 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2392 goto done;
2393 }
2394
2395 if (sc->vxlan_refcount > 0)
2396 enable_vxlan_rx(sc);
2397
2398 for_each_port(sc, i) {
2399 pi = sc->port[i];
2400 for_each_vi(pi, j, vi) {
2401 mtx_lock(&vi->tick_mtx);
2402 vi->flags &= ~VI_SKIP_STATS;
2403 mtx_unlock(&vi->tick_mtx);
2404 if (!(vi->flags & VI_INIT_DONE))
2405 continue;
2406 rc = vi_full_init(vi);
2407 if (rc != 0) {
2408 CH_ERR(vi, "failed to re-initialize "
2409 "interface: %d\n", rc);
2410 goto done;
2411 }
2412 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2413 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2414 t4_write_reg(sc, is_t4(sc) ?
2415 A_MPS_TRC_RSS_CONTROL :
2416 A_MPS_T5_TRC_RSS_CONTROL,
2417 V_RSSCONTROL(pi->tx_chan) |
2418 V_QUEUENUMBER(sc->traceq));
2419 pi->flags |= HAS_TRACEQ;
2420 }
2421
2422 ifp = vi->ifp;
2423 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2424 continue;
2425 /*
2426 * Note that we do not setup multicast addresses
2427 * in the first pass. This ensures that the
2428 * unicast DMACs for all VIs on all ports get an
2429 * MPS TCAM entry.
2430 */
2431 rc = update_mac_settings(ifp, XGMAC_ALL &
2432 ~XGMAC_MCADDRS);
2433 if (rc != 0) {
2434 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2435 goto done;
2436 }
2437 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2438 true);
2439 if (rc != 0) {
2440 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2441 goto done;
2442 }
2443 for_each_txq(vi, k, txq) {
2444 TXQ_LOCK(txq);
2445 txq->eq.flags |= EQ_ENABLED;
2446 TXQ_UNLOCK(txq);
2447 }
2448 mtx_lock(&vi->tick_mtx);
2449 callout_schedule(&vi->tick, hz);
2450 mtx_unlock(&vi->tick_mtx);
2451 }
2452 PORT_LOCK(pi);
2453 if (pi->up_vis > 0) {
2454 t4_update_port_info(pi);
2455 fixup_link_config(pi);
2456 build_medialist(pi);
2457 apply_link_config(pi);
2458 if (pi->link_cfg.link_ok)
2459 t4_os_link_changed(pi);
2460 }
2461 PORT_UNLOCK(pi);
2462 }
2463
2464 /* Now reprogram the L2 multicast addresses. */
2465 for_each_port(sc, i) {
2466 pi = sc->port[i];
2467 for_each_vi(pi, j, vi) {
2468 if (!(vi->flags & VI_INIT_DONE))
2469 continue;
2470 ifp = vi->ifp;
2471 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2472 continue;
2473 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2474 if (rc != 0) {
2475 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2476 rc = 0; /* carry on */
2477 }
2478 }
2479 }
2480 }
2481
2482 /* Reset all calibration */
2483 t4_calibration_start(sc);
2484 done:
2485 end_synchronized_op(sc, 0);
2486 free(old_state, M_CXGBE);
2487
2488 restart_atid_allocator(sc);
2489 t4_restart_l2t(sc);
2490
2491 return (rc);
2492 }
2493
2494 int
resume_adapter(struct adapter * sc)2495 resume_adapter(struct adapter *sc)
2496 {
2497 restart_adapter(sc);
2498 restart_lld(sc);
2499 #ifdef TCP_OFFLOAD
2500 restart_all_uld(sc);
2501 #endif
2502 return (0);
2503 }
2504
2505 static int
t4_resume(device_t dev)2506 t4_resume(device_t dev)
2507 {
2508 struct adapter *sc = device_get_softc(dev);
2509 int rc;
2510
2511 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2512 rc = resume_adapter(sc);
2513 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2514
2515 return (rc);
2516 }
2517
2518 static int
t4_reset_prepare(device_t dev,device_t child)2519 t4_reset_prepare(device_t dev, device_t child)
2520 {
2521 struct adapter *sc = device_get_softc(dev);
2522
2523 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2524 return (0);
2525 }
2526
2527 static int
t4_reset_post(device_t dev,device_t child)2528 t4_reset_post(device_t dev, device_t child)
2529 {
2530 struct adapter *sc = device_get_softc(dev);
2531
2532 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2533 return (0);
2534 }
2535
2536 static int
reset_adapter_with_pci_bus_reset(struct adapter * sc)2537 reset_adapter_with_pci_bus_reset(struct adapter *sc)
2538 {
2539 int rc;
2540
2541 mtx_lock(&Giant);
2542 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2543 mtx_unlock(&Giant);
2544 return (rc);
2545 }
2546
2547 static int
reset_adapter_with_pl_rst(struct adapter * sc)2548 reset_adapter_with_pl_rst(struct adapter *sc)
2549 {
2550 suspend_adapter(sc);
2551
2552 /* This is a t4_write_reg without the hw_off_limits check. */
2553 MPASS(sc->error_flags & HW_OFF_LIMITS);
2554 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2555 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2556 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2557
2558 resume_adapter(sc);
2559
2560 return (0);
2561 }
2562
2563 static inline int
reset_adapter(struct adapter * sc)2564 reset_adapter(struct adapter *sc)
2565 {
2566 if (vm_guest == 0)
2567 return (reset_adapter_with_pci_bus_reset(sc));
2568 else
2569 return (reset_adapter_with_pl_rst(sc));
2570 }
2571
2572 static void
reset_adapter_task(void * arg,int pending)2573 reset_adapter_task(void *arg, int pending)
2574 {
2575 struct adapter *sc = arg;
2576 const int flags = sc->flags;
2577 const int eflags = sc->error_flags;
2578 int rc;
2579
2580 if (pending > 1)
2581 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2582 rc = reset_adapter(sc);
2583 if (rc != 0) {
2584 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2585 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2586 rc, flags, sc->flags, eflags, sc->error_flags);
2587 }
2588 }
2589
2590 static int
cxgbe_probe(device_t dev)2591 cxgbe_probe(device_t dev)
2592 {
2593 struct port_info *pi = device_get_softc(dev);
2594
2595 device_set_descf(dev, "port %d", pi->port_id);
2596
2597 return (BUS_PROBE_DEFAULT);
2598 }
2599
2600 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2601 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2602 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2603 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2604 #define T4_CAP_ENABLE (T4_CAP)
2605
2606 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2607 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2608 {
2609 if_t ifp;
2610 struct sbuf *sb;
2611 struct sysctl_ctx_list *ctx = &vi->ctx;
2612 struct sysctl_oid_list *children;
2613 struct pfil_head_args pa;
2614 struct adapter *sc = vi->adapter;
2615
2616 sysctl_ctx_init(ctx);
2617 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2618 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2619 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2620 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2621 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2622 #ifdef DEV_NETMAP
2623 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2624 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2625 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2626 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2627 #endif
2628 #ifdef TCP_OFFLOAD
2629 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2630 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2631 #endif
2632 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2633 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2634 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2635 #endif
2636
2637 vi->xact_addr_filt = -1;
2638 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2639 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2640 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2641 vi->flags |= TX_USES_VM_WR;
2642
2643 /* Allocate an ifnet and set it up */
2644 ifp = if_alloc_dev(IFT_ETHER, dev);
2645 vi->ifp = ifp;
2646 if_setsoftc(ifp, vi);
2647
2648 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2649 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2650
2651 if_setinitfn(ifp, cxgbe_init);
2652 if_setioctlfn(ifp, cxgbe_ioctl);
2653 if_settransmitfn(ifp, cxgbe_transmit);
2654 if_setqflushfn(ifp, cxgbe_qflush);
2655 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2656 if_setgetcounterfn(ifp, vi_get_counter);
2657 else
2658 if_setgetcounterfn(ifp, cxgbe_get_counter);
2659 #if defined(KERN_TLS) || defined(RATELIMIT)
2660 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2661 #endif
2662 #ifdef RATELIMIT
2663 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2664 #endif
2665
2666 if_setcapabilities(ifp, T4_CAP);
2667 if_setcapenable(ifp, T4_CAP_ENABLE);
2668 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2669 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2670 if (chip_id(sc) >= CHELSIO_T6) {
2671 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2672 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2673 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2674 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2675 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2676 }
2677
2678 #ifdef TCP_OFFLOAD
2679 if (vi->nofldrxq != 0)
2680 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2681 #endif
2682 #ifdef RATELIMIT
2683 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2684 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2685 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2686 }
2687 #endif
2688
2689 if_sethwtsomax(ifp, IP_MAXPACKET);
2690 if (vi->flags & TX_USES_VM_WR)
2691 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2692 else
2693 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2694 #ifdef RATELIMIT
2695 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2696 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2697 #endif
2698 if_sethwtsomaxsegsize(ifp, 65536);
2699 #ifdef KERN_TLS
2700 if (is_ktls(sc)) {
2701 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2702 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2703 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2704 }
2705 #endif
2706
2707 ether_ifattach(ifp, vi->hw_addr);
2708 #ifdef DEV_NETMAP
2709 if (vi->nnmrxq != 0)
2710 cxgbe_nm_attach(vi);
2711 #endif
2712 sb = sbuf_new_auto();
2713 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2715 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2716 case IFCAP_TOE:
2717 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2718 break;
2719 case IFCAP_TOE | IFCAP_TXRTLMT:
2720 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2721 break;
2722 case IFCAP_TXRTLMT:
2723 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2724 break;
2725 }
2726 #endif
2727 #ifdef TCP_OFFLOAD
2728 if (if_getcapabilities(ifp) & IFCAP_TOE)
2729 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2730 #endif
2731 #ifdef DEV_NETMAP
2732 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2733 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2734 vi->nnmtxq, vi->nnmrxq);
2735 #endif
2736 sbuf_finish(sb);
2737 device_printf(dev, "%s\n", sbuf_data(sb));
2738 sbuf_delete(sb);
2739
2740 vi_sysctls(vi);
2741
2742 pa.pa_version = PFIL_VERSION;
2743 pa.pa_flags = PFIL_IN;
2744 pa.pa_type = PFIL_TYPE_ETHERNET;
2745 pa.pa_headname = if_name(ifp);
2746 vi->pfil = pfil_head_register(&pa);
2747 }
2748
2749 static int
cxgbe_attach(device_t dev)2750 cxgbe_attach(device_t dev)
2751 {
2752 struct port_info *pi = device_get_softc(dev);
2753 struct adapter *sc = pi->adapter;
2754 struct vi_info *vi;
2755 int i;
2756
2757 sysctl_ctx_init(&pi->ctx);
2758
2759 cxgbe_vi_attach(dev, &pi->vi[0]);
2760
2761 for_each_vi(pi, i, vi) {
2762 if (i == 0)
2763 continue;
2764 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2765 if (vi->dev == NULL) {
2766 device_printf(dev, "failed to add VI %d\n", i);
2767 continue;
2768 }
2769 device_set_softc(vi->dev, vi);
2770 }
2771
2772 cxgbe_sysctls(pi);
2773
2774 bus_attach_children(dev);
2775
2776 return (0);
2777 }
2778
2779 static void
cxgbe_vi_detach(struct vi_info * vi)2780 cxgbe_vi_detach(struct vi_info *vi)
2781 {
2782 if_t ifp = vi->ifp;
2783
2784 if (vi->pfil != NULL) {
2785 pfil_head_unregister(vi->pfil);
2786 vi->pfil = NULL;
2787 }
2788
2789 ether_ifdetach(ifp);
2790
2791 /* Let detach proceed even if these fail. */
2792 #ifdef DEV_NETMAP
2793 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2794 cxgbe_nm_detach(vi);
2795 #endif
2796 cxgbe_uninit_synchronized(vi);
2797 callout_drain(&vi->tick);
2798 mtx_destroy(&vi->tick_mtx);
2799 sysctl_ctx_free(&vi->ctx);
2800 vi_full_uninit(vi);
2801
2802 if_free(vi->ifp);
2803 vi->ifp = NULL;
2804 }
2805
2806 static int
cxgbe_detach(device_t dev)2807 cxgbe_detach(device_t dev)
2808 {
2809 struct port_info *pi = device_get_softc(dev);
2810 struct adapter *sc = pi->adapter;
2811 int rc;
2812
2813 /* Detach the extra VIs first. */
2814 rc = bus_generic_detach(dev);
2815 if (rc)
2816 return (rc);
2817
2818 sysctl_ctx_free(&pi->ctx);
2819 begin_vi_detach(sc, &pi->vi[0]);
2820 if (pi->flags & HAS_TRACEQ) {
2821 sc->traceq = -1; /* cloner should not create ifnet */
2822 t4_tracer_port_detach(sc);
2823 }
2824 cxgbe_vi_detach(&pi->vi[0]);
2825 ifmedia_removeall(&pi->media);
2826 end_vi_detach(sc, &pi->vi[0]);
2827
2828 return (0);
2829 }
2830
2831 static void
cxgbe_init(void * arg)2832 cxgbe_init(void *arg)
2833 {
2834 struct vi_info *vi = arg;
2835 struct adapter *sc = vi->adapter;
2836
2837 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2838 return;
2839 cxgbe_init_synchronized(vi);
2840 end_synchronized_op(sc, 0);
2841 }
2842
2843 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)2844 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2845 {
2846 int rc = 0, mtu, flags;
2847 struct vi_info *vi = if_getsoftc(ifp);
2848 struct port_info *pi = vi->pi;
2849 struct adapter *sc = pi->adapter;
2850 struct ifreq *ifr = (struct ifreq *)data;
2851 uint32_t mask;
2852
2853 switch (cmd) {
2854 case SIOCSIFMTU:
2855 mtu = ifr->ifr_mtu;
2856 if (mtu < ETHERMIN || mtu > MAX_MTU)
2857 return (EINVAL);
2858
2859 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2860 if (rc)
2861 return (rc);
2862 if_setmtu(ifp, mtu);
2863 if (vi->flags & VI_INIT_DONE) {
2864 t4_update_fl_bufsize(ifp);
2865 if (!hw_off_limits(sc) &&
2866 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2867 rc = update_mac_settings(ifp, XGMAC_MTU);
2868 }
2869 end_synchronized_op(sc, 0);
2870 break;
2871
2872 case SIOCSIFFLAGS:
2873 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2874 if (rc)
2875 return (rc);
2876
2877 if (hw_off_limits(sc)) {
2878 rc = ENXIO;
2879 goto fail;
2880 }
2881
2882 if (if_getflags(ifp) & IFF_UP) {
2883 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2884 flags = vi->if_flags;
2885 if ((if_getflags(ifp) ^ flags) &
2886 (IFF_PROMISC | IFF_ALLMULTI)) {
2887 rc = update_mac_settings(ifp,
2888 XGMAC_PROMISC | XGMAC_ALLMULTI);
2889 }
2890 } else {
2891 rc = cxgbe_init_synchronized(vi);
2892 }
2893 vi->if_flags = if_getflags(ifp);
2894 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2895 rc = cxgbe_uninit_synchronized(vi);
2896 }
2897 end_synchronized_op(sc, 0);
2898 break;
2899
2900 case SIOCADDMULTI:
2901 case SIOCDELMULTI:
2902 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2903 if (rc)
2904 return (rc);
2905 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2906 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2907 end_synchronized_op(sc, 0);
2908 break;
2909
2910 case SIOCSIFCAP:
2911 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2912 if (rc)
2913 return (rc);
2914
2915 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2916 if (mask & IFCAP_TXCSUM) {
2917 if_togglecapenable(ifp, IFCAP_TXCSUM);
2918 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2919
2920 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2921 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2922 mask &= ~IFCAP_TSO4;
2923 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2924 if_printf(ifp,
2925 "tso4 disabled due to -txcsum.\n");
2926 }
2927 }
2928 if (mask & IFCAP_TXCSUM_IPV6) {
2929 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2930 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2931
2932 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2933 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2934 mask &= ~IFCAP_TSO6;
2935 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2936 if_printf(ifp,
2937 "tso6 disabled due to -txcsum6.\n");
2938 }
2939 }
2940 if (mask & IFCAP_RXCSUM)
2941 if_togglecapenable(ifp, IFCAP_RXCSUM);
2942 if (mask & IFCAP_RXCSUM_IPV6)
2943 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2944
2945 /*
2946 * Note that we leave CSUM_TSO alone (it is always set). The
2947 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2948 * sending a TSO request our way, so it's sufficient to toggle
2949 * IFCAP_TSOx only.
2950 */
2951 if (mask & IFCAP_TSO4) {
2952 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2953 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2954 if_printf(ifp, "enable txcsum first.\n");
2955 rc = EAGAIN;
2956 goto fail;
2957 }
2958 if_togglecapenable(ifp, IFCAP_TSO4);
2959 }
2960 if (mask & IFCAP_TSO6) {
2961 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2962 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2963 if_printf(ifp, "enable txcsum6 first.\n");
2964 rc = EAGAIN;
2965 goto fail;
2966 }
2967 if_togglecapenable(ifp, IFCAP_TSO6);
2968 }
2969 if (mask & IFCAP_LRO) {
2970 #if defined(INET) || defined(INET6)
2971 int i;
2972 struct sge_rxq *rxq;
2973
2974 if_togglecapenable(ifp, IFCAP_LRO);
2975 for_each_rxq(vi, i, rxq) {
2976 if (if_getcapenable(ifp) & IFCAP_LRO)
2977 rxq->iq.flags |= IQ_LRO_ENABLED;
2978 else
2979 rxq->iq.flags &= ~IQ_LRO_ENABLED;
2980 }
2981 #endif
2982 }
2983 #ifdef TCP_OFFLOAD
2984 if (mask & IFCAP_TOE) {
2985 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2986
2987 rc = toe_capability(vi, enable);
2988 if (rc != 0)
2989 goto fail;
2990
2991 if_togglecapenable(ifp, mask);
2992 }
2993 #endif
2994 if (mask & IFCAP_VLAN_HWTAGGING) {
2995 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2996 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2997 rc = update_mac_settings(ifp, XGMAC_VLANEX);
2998 }
2999 if (mask & IFCAP_VLAN_MTU) {
3000 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3001
3002 /* Need to find out how to disable auto-mtu-inflation */
3003 }
3004 if (mask & IFCAP_VLAN_HWTSO)
3005 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3006 if (mask & IFCAP_VLAN_HWCSUM)
3007 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3008 #ifdef RATELIMIT
3009 if (mask & IFCAP_TXRTLMT)
3010 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3011 #endif
3012 if (mask & IFCAP_HWRXTSTMP) {
3013 int i;
3014 struct sge_rxq *rxq;
3015
3016 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3017 for_each_rxq(vi, i, rxq) {
3018 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3019 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3020 else
3021 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3022 }
3023 }
3024 if (mask & IFCAP_MEXTPG)
3025 if_togglecapenable(ifp, IFCAP_MEXTPG);
3026
3027 #ifdef KERN_TLS
3028 if (mask & IFCAP_TXTLS) {
3029 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3030
3031 rc = ktls_capability(sc, enable);
3032 if (rc != 0)
3033 goto fail;
3034
3035 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3036 }
3037 #endif
3038 if (mask & IFCAP_VXLAN_HWCSUM) {
3039 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3040 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3041 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3042 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3043 }
3044 if (mask & IFCAP_VXLAN_HWTSO) {
3045 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3046 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3047 CSUM_INNER_IP_TSO);
3048 }
3049
3050 #ifdef VLAN_CAPABILITIES
3051 VLAN_CAPABILITIES(ifp);
3052 #endif
3053 fail:
3054 end_synchronized_op(sc, 0);
3055 break;
3056
3057 case SIOCSIFMEDIA:
3058 case SIOCGIFMEDIA:
3059 case SIOCGIFXMEDIA:
3060 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3061 break;
3062
3063 case SIOCGI2C: {
3064 struct ifi2creq i2c;
3065
3066 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3067 if (rc != 0)
3068 break;
3069 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3070 rc = EPERM;
3071 break;
3072 }
3073 if (i2c.len > sizeof(i2c.data)) {
3074 rc = EINVAL;
3075 break;
3076 }
3077 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3078 if (rc)
3079 return (rc);
3080 if (hw_off_limits(sc))
3081 rc = ENXIO;
3082 else
3083 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3084 i2c.offset, i2c.len, &i2c.data[0]);
3085 end_synchronized_op(sc, 0);
3086 if (rc == 0)
3087 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3088 break;
3089 }
3090
3091 default:
3092 rc = ether_ioctl(ifp, cmd, data);
3093 }
3094
3095 return (rc);
3096 }
3097
3098 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3099 cxgbe_transmit(if_t ifp, struct mbuf *m)
3100 {
3101 struct vi_info *vi = if_getsoftc(ifp);
3102 struct port_info *pi = vi->pi;
3103 struct adapter *sc;
3104 struct sge_txq *txq;
3105 void *items[1];
3106 int rc;
3107
3108 M_ASSERTPKTHDR(m);
3109 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3110 #if defined(KERN_TLS) || defined(RATELIMIT)
3111 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3112 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3113 #endif
3114
3115 if (__predict_false(pi->link_cfg.link_ok == false)) {
3116 m_freem(m);
3117 return (ENETDOWN);
3118 }
3119
3120 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3121 if (__predict_false(rc != 0)) {
3122 if (__predict_true(rc == EINPROGRESS)) {
3123 /* queued by parse_pkt */
3124 MPASS(m != NULL);
3125 return (0);
3126 }
3127
3128 MPASS(m == NULL); /* was freed already */
3129 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3130 return (rc);
3131 }
3132
3133 /* Select a txq. */
3134 sc = vi->adapter;
3135 txq = &sc->sge.txq[vi->first_txq];
3136 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3137 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3138 vi->rsrv_noflowq);
3139
3140 items[0] = m;
3141 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3142 if (__predict_false(rc != 0))
3143 m_freem(m);
3144
3145 return (rc);
3146 }
3147
3148 static void
cxgbe_qflush(if_t ifp)3149 cxgbe_qflush(if_t ifp)
3150 {
3151 struct vi_info *vi = if_getsoftc(ifp);
3152 struct sge_txq *txq;
3153 int i;
3154
3155 /* queues do not exist if !VI_INIT_DONE. */
3156 if (vi->flags & VI_INIT_DONE) {
3157 for_each_txq(vi, i, txq) {
3158 TXQ_LOCK(txq);
3159 txq->eq.flags |= EQ_QFLUSH;
3160 TXQ_UNLOCK(txq);
3161 while (!mp_ring_is_idle(txq->r)) {
3162 mp_ring_check_drainage(txq->r, 4096);
3163 pause("qflush", 1);
3164 }
3165 TXQ_LOCK(txq);
3166 txq->eq.flags &= ~EQ_QFLUSH;
3167 TXQ_UNLOCK(txq);
3168 }
3169 }
3170 if_qflush(ifp);
3171 }
3172
3173 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3174 vi_get_counter(if_t ifp, ift_counter c)
3175 {
3176 struct vi_info *vi = if_getsoftc(ifp);
3177 struct fw_vi_stats_vf *s = &vi->stats;
3178
3179 mtx_lock(&vi->tick_mtx);
3180 vi_refresh_stats(vi);
3181 mtx_unlock(&vi->tick_mtx);
3182
3183 switch (c) {
3184 case IFCOUNTER_IPACKETS:
3185 return (s->rx_bcast_frames + s->rx_mcast_frames +
3186 s->rx_ucast_frames);
3187 case IFCOUNTER_IERRORS:
3188 return (s->rx_err_frames);
3189 case IFCOUNTER_OPACKETS:
3190 return (s->tx_bcast_frames + s->tx_mcast_frames +
3191 s->tx_ucast_frames + s->tx_offload_frames);
3192 case IFCOUNTER_OERRORS:
3193 return (s->tx_drop_frames);
3194 case IFCOUNTER_IBYTES:
3195 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3196 s->rx_ucast_bytes);
3197 case IFCOUNTER_OBYTES:
3198 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3199 s->tx_ucast_bytes + s->tx_offload_bytes);
3200 case IFCOUNTER_IMCASTS:
3201 return (s->rx_mcast_frames);
3202 case IFCOUNTER_OMCASTS:
3203 return (s->tx_mcast_frames);
3204 case IFCOUNTER_OQDROPS: {
3205 uint64_t drops;
3206
3207 drops = 0;
3208 if (vi->flags & VI_INIT_DONE) {
3209 int i;
3210 struct sge_txq *txq;
3211
3212 for_each_txq(vi, i, txq)
3213 drops += counter_u64_fetch(txq->r->dropped);
3214 }
3215
3216 return (drops);
3217
3218 }
3219
3220 default:
3221 return (if_get_counter_default(ifp, c));
3222 }
3223 }
3224
3225 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3226 cxgbe_get_counter(if_t ifp, ift_counter c)
3227 {
3228 struct vi_info *vi = if_getsoftc(ifp);
3229 struct port_info *pi = vi->pi;
3230 struct port_stats *s = &pi->stats;
3231
3232 mtx_lock(&vi->tick_mtx);
3233 cxgbe_refresh_stats(vi);
3234 mtx_unlock(&vi->tick_mtx);
3235
3236 switch (c) {
3237 case IFCOUNTER_IPACKETS:
3238 return (s->rx_frames);
3239
3240 case IFCOUNTER_IERRORS:
3241 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3242 s->rx_fcs_err + s->rx_len_err);
3243
3244 case IFCOUNTER_OPACKETS:
3245 return (s->tx_frames);
3246
3247 case IFCOUNTER_OERRORS:
3248 return (s->tx_error_frames);
3249
3250 case IFCOUNTER_IBYTES:
3251 return (s->rx_octets);
3252
3253 case IFCOUNTER_OBYTES:
3254 return (s->tx_octets);
3255
3256 case IFCOUNTER_IMCASTS:
3257 return (s->rx_mcast_frames);
3258
3259 case IFCOUNTER_OMCASTS:
3260 return (s->tx_mcast_frames);
3261
3262 case IFCOUNTER_IQDROPS:
3263 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3264 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3265 s->rx_trunc3 + pi->tnl_cong_drops);
3266
3267 case IFCOUNTER_OQDROPS: {
3268 uint64_t drops;
3269
3270 drops = s->tx_drop;
3271 if (vi->flags & VI_INIT_DONE) {
3272 int i;
3273 struct sge_txq *txq;
3274
3275 for_each_txq(vi, i, txq)
3276 drops += counter_u64_fetch(txq->r->dropped);
3277 }
3278
3279 return (drops);
3280
3281 }
3282
3283 default:
3284 return (if_get_counter_default(ifp, c));
3285 }
3286 }
3287
3288 #if defined(KERN_TLS) || defined(RATELIMIT)
3289 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3290 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3291 struct m_snd_tag **pt)
3292 {
3293 int error;
3294
3295 switch (params->hdr.type) {
3296 #ifdef RATELIMIT
3297 case IF_SND_TAG_TYPE_RATE_LIMIT:
3298 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3299 break;
3300 #endif
3301 #ifdef KERN_TLS
3302 case IF_SND_TAG_TYPE_TLS:
3303 {
3304 struct vi_info *vi = if_getsoftc(ifp);
3305
3306 if (is_t6(vi->pi->adapter))
3307 error = t6_tls_tag_alloc(ifp, params, pt);
3308 else
3309 error = EOPNOTSUPP;
3310 break;
3311 }
3312 #endif
3313 default:
3314 error = EOPNOTSUPP;
3315 }
3316 return (error);
3317 }
3318 #endif
3319
3320 /*
3321 * The kernel picks a media from the list we had provided but we still validate
3322 * the requeste.
3323 */
3324 int
cxgbe_media_change(if_t ifp)3325 cxgbe_media_change(if_t ifp)
3326 {
3327 struct vi_info *vi = if_getsoftc(ifp);
3328 struct port_info *pi = vi->pi;
3329 struct ifmedia *ifm = &pi->media;
3330 struct link_config *lc = &pi->link_cfg;
3331 struct adapter *sc = pi->adapter;
3332 int rc;
3333
3334 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3335 if (rc != 0)
3336 return (rc);
3337 PORT_LOCK(pi);
3338 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3339 /* ifconfig .. media autoselect */
3340 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3341 rc = ENOTSUP; /* AN not supported by transceiver */
3342 goto done;
3343 }
3344 lc->requested_aneg = AUTONEG_ENABLE;
3345 lc->requested_speed = 0;
3346 lc->requested_fc |= PAUSE_AUTONEG;
3347 } else {
3348 lc->requested_aneg = AUTONEG_DISABLE;
3349 lc->requested_speed =
3350 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3351 lc->requested_fc = 0;
3352 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3353 lc->requested_fc |= PAUSE_RX;
3354 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3355 lc->requested_fc |= PAUSE_TX;
3356 }
3357 if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3358 fixup_link_config(pi);
3359 rc = apply_link_config(pi);
3360 }
3361 done:
3362 PORT_UNLOCK(pi);
3363 end_synchronized_op(sc, 0);
3364 return (rc);
3365 }
3366
3367 /*
3368 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3369 * given speed.
3370 */
3371 static int
port_mword(struct port_info * pi,uint32_t speed)3372 port_mword(struct port_info *pi, uint32_t speed)
3373 {
3374
3375 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3376 MPASS(powerof2(speed));
3377
3378 switch(pi->port_type) {
3379 case FW_PORT_TYPE_BT_SGMII:
3380 case FW_PORT_TYPE_BT_XFI:
3381 case FW_PORT_TYPE_BT_XAUI:
3382 /* BaseT */
3383 switch (speed) {
3384 case FW_PORT_CAP32_SPEED_100M:
3385 return (IFM_100_T);
3386 case FW_PORT_CAP32_SPEED_1G:
3387 return (IFM_1000_T);
3388 case FW_PORT_CAP32_SPEED_10G:
3389 return (IFM_10G_T);
3390 }
3391 break;
3392 case FW_PORT_TYPE_KX4:
3393 if (speed == FW_PORT_CAP32_SPEED_10G)
3394 return (IFM_10G_KX4);
3395 break;
3396 case FW_PORT_TYPE_CX4:
3397 if (speed == FW_PORT_CAP32_SPEED_10G)
3398 return (IFM_10G_CX4);
3399 break;
3400 case FW_PORT_TYPE_KX:
3401 if (speed == FW_PORT_CAP32_SPEED_1G)
3402 return (IFM_1000_KX);
3403 break;
3404 case FW_PORT_TYPE_KR:
3405 case FW_PORT_TYPE_BP_AP:
3406 case FW_PORT_TYPE_BP4_AP:
3407 case FW_PORT_TYPE_BP40_BA:
3408 case FW_PORT_TYPE_KR4_100G:
3409 case FW_PORT_TYPE_KR_SFP28:
3410 case FW_PORT_TYPE_KR_XLAUI:
3411 switch (speed) {
3412 case FW_PORT_CAP32_SPEED_1G:
3413 return (IFM_1000_KX);
3414 case FW_PORT_CAP32_SPEED_10G:
3415 return (IFM_10G_KR);
3416 case FW_PORT_CAP32_SPEED_25G:
3417 return (IFM_25G_KR);
3418 case FW_PORT_CAP32_SPEED_40G:
3419 return (IFM_40G_KR4);
3420 case FW_PORT_CAP32_SPEED_50G:
3421 return (IFM_50G_KR2);
3422 case FW_PORT_CAP32_SPEED_100G:
3423 return (IFM_100G_KR4);
3424 }
3425 break;
3426 case FW_PORT_TYPE_FIBER_XFI:
3427 case FW_PORT_TYPE_FIBER_XAUI:
3428 case FW_PORT_TYPE_SFP:
3429 case FW_PORT_TYPE_QSFP_10G:
3430 case FW_PORT_TYPE_QSA:
3431 case FW_PORT_TYPE_QSFP:
3432 case FW_PORT_TYPE_CR4_QSFP:
3433 case FW_PORT_TYPE_CR_QSFP:
3434 case FW_PORT_TYPE_CR2_QSFP:
3435 case FW_PORT_TYPE_SFP28:
3436 /* Pluggable transceiver */
3437 switch (pi->mod_type) {
3438 case FW_PORT_MOD_TYPE_LR:
3439 switch (speed) {
3440 case FW_PORT_CAP32_SPEED_1G:
3441 return (IFM_1000_LX);
3442 case FW_PORT_CAP32_SPEED_10G:
3443 return (IFM_10G_LR);
3444 case FW_PORT_CAP32_SPEED_25G:
3445 return (IFM_25G_LR);
3446 case FW_PORT_CAP32_SPEED_40G:
3447 return (IFM_40G_LR4);
3448 case FW_PORT_CAP32_SPEED_50G:
3449 return (IFM_50G_LR2);
3450 case FW_PORT_CAP32_SPEED_100G:
3451 return (IFM_100G_LR4);
3452 }
3453 break;
3454 case FW_PORT_MOD_TYPE_SR:
3455 switch (speed) {
3456 case FW_PORT_CAP32_SPEED_1G:
3457 return (IFM_1000_SX);
3458 case FW_PORT_CAP32_SPEED_10G:
3459 return (IFM_10G_SR);
3460 case FW_PORT_CAP32_SPEED_25G:
3461 return (IFM_25G_SR);
3462 case FW_PORT_CAP32_SPEED_40G:
3463 return (IFM_40G_SR4);
3464 case FW_PORT_CAP32_SPEED_50G:
3465 return (IFM_50G_SR2);
3466 case FW_PORT_CAP32_SPEED_100G:
3467 return (IFM_100G_SR4);
3468 }
3469 break;
3470 case FW_PORT_MOD_TYPE_ER:
3471 if (speed == FW_PORT_CAP32_SPEED_10G)
3472 return (IFM_10G_ER);
3473 break;
3474 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3475 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3476 switch (speed) {
3477 case FW_PORT_CAP32_SPEED_1G:
3478 return (IFM_1000_CX);
3479 case FW_PORT_CAP32_SPEED_10G:
3480 return (IFM_10G_TWINAX);
3481 case FW_PORT_CAP32_SPEED_25G:
3482 return (IFM_25G_CR);
3483 case FW_PORT_CAP32_SPEED_40G:
3484 return (IFM_40G_CR4);
3485 case FW_PORT_CAP32_SPEED_50G:
3486 return (IFM_50G_CR2);
3487 case FW_PORT_CAP32_SPEED_100G:
3488 return (IFM_100G_CR4);
3489 }
3490 break;
3491 case FW_PORT_MOD_TYPE_LRM:
3492 if (speed == FW_PORT_CAP32_SPEED_10G)
3493 return (IFM_10G_LRM);
3494 break;
3495 case FW_PORT_MOD_TYPE_NA:
3496 MPASS(0); /* Not pluggable? */
3497 /* fall throough */
3498 case FW_PORT_MOD_TYPE_ERROR:
3499 case FW_PORT_MOD_TYPE_UNKNOWN:
3500 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3501 break;
3502 case FW_PORT_MOD_TYPE_NONE:
3503 return (IFM_NONE);
3504 }
3505 break;
3506 case FW_PORT_TYPE_NONE:
3507 return (IFM_NONE);
3508 }
3509
3510 return (IFM_UNKNOWN);
3511 }
3512
3513 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3514 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3515 {
3516 struct vi_info *vi = if_getsoftc(ifp);
3517 struct port_info *pi = vi->pi;
3518 struct adapter *sc = pi->adapter;
3519 struct link_config *lc = &pi->link_cfg;
3520
3521 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3522 return;
3523 PORT_LOCK(pi);
3524
3525 if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3526 /*
3527 * If all the interfaces are administratively down the firmware
3528 * does not report transceiver changes. Refresh port info here
3529 * so that ifconfig displays accurate ifmedia at all times.
3530 * This is the only reason we have a synchronized op in this
3531 * function. Just PORT_LOCK would have been enough otherwise.
3532 */
3533 t4_update_port_info(pi);
3534 build_medialist(pi);
3535 }
3536
3537 /* ifm_status */
3538 ifmr->ifm_status = IFM_AVALID;
3539 if (lc->link_ok == false)
3540 goto done;
3541 ifmr->ifm_status |= IFM_ACTIVE;
3542
3543 /* ifm_active */
3544 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3545 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3546 if (lc->fc & PAUSE_RX)
3547 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3548 if (lc->fc & PAUSE_TX)
3549 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3550 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3551 done:
3552 PORT_UNLOCK(pi);
3553 end_synchronized_op(sc, 0);
3554 }
3555
3556 static int
vcxgbe_probe(device_t dev)3557 vcxgbe_probe(device_t dev)
3558 {
3559 struct vi_info *vi = device_get_softc(dev);
3560
3561 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3562 vi - vi->pi->vi);
3563
3564 return (BUS_PROBE_DEFAULT);
3565 }
3566
3567 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3568 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3569 {
3570 int func, index, rc;
3571 uint32_t param, val;
3572
3573 ASSERT_SYNCHRONIZED_OP(sc);
3574
3575 index = vi - pi->vi;
3576 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3577 KASSERT(index < nitems(vi_mac_funcs),
3578 ("%s: VI %s doesn't have a MAC func", __func__,
3579 device_get_nameunit(vi->dev)));
3580 func = vi_mac_funcs[index];
3581 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3582 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3583 if (rc < 0) {
3584 CH_ERR(vi, "failed to allocate virtual interface %d"
3585 "for port %d: %d\n", index, pi->port_id, -rc);
3586 return (-rc);
3587 }
3588 vi->viid = rc;
3589
3590 if (vi->rss_size == 1) {
3591 /*
3592 * This VI didn't get a slice of the RSS table. Reduce the
3593 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3594 * configuration file (nvi, rssnvi for this PF) if this is a
3595 * problem.
3596 */
3597 device_printf(vi->dev, "RSS table not available.\n");
3598 vi->rss_base = 0xffff;
3599
3600 return (0);
3601 }
3602
3603 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3604 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3605 V_FW_PARAMS_PARAM_YZ(vi->viid);
3606 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3607 if (rc)
3608 vi->rss_base = 0xffff;
3609 else {
3610 MPASS((val >> 16) == vi->rss_size);
3611 vi->rss_base = val & 0xffff;
3612 }
3613
3614 return (0);
3615 }
3616
3617 static int
vcxgbe_attach(device_t dev)3618 vcxgbe_attach(device_t dev)
3619 {
3620 struct vi_info *vi;
3621 struct port_info *pi;
3622 struct adapter *sc;
3623 int rc;
3624
3625 vi = device_get_softc(dev);
3626 pi = vi->pi;
3627 sc = pi->adapter;
3628
3629 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3630 if (rc)
3631 return (rc);
3632 rc = alloc_extra_vi(sc, pi, vi);
3633 end_synchronized_op(sc, 0);
3634 if (rc)
3635 return (rc);
3636
3637 cxgbe_vi_attach(dev, vi);
3638
3639 return (0);
3640 }
3641
3642 static int
vcxgbe_detach(device_t dev)3643 vcxgbe_detach(device_t dev)
3644 {
3645 struct vi_info *vi;
3646 struct adapter *sc;
3647
3648 vi = device_get_softc(dev);
3649 sc = vi->adapter;
3650
3651 begin_vi_detach(sc, vi);
3652 cxgbe_vi_detach(vi);
3653 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3654 end_vi_detach(sc, vi);
3655
3656 return (0);
3657 }
3658
3659 static struct callout fatal_callout;
3660 static struct taskqueue *reset_tq;
3661
3662 static void
delayed_panic(void * arg)3663 delayed_panic(void *arg)
3664 {
3665 struct adapter *sc = arg;
3666
3667 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3668 }
3669
3670 static void
fatal_error_task(void * arg,int pending)3671 fatal_error_task(void *arg, int pending)
3672 {
3673 struct adapter *sc = arg;
3674 int rc;
3675
3676 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3677 dump_cim_regs(sc);
3678 dump_cimla(sc);
3679 dump_devlog(sc);
3680 }
3681
3682 if (t4_reset_on_fatal_err) {
3683 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3684 rc = reset_adapter(sc);
3685 if (rc == 0 && t4_panic_on_fatal_err) {
3686 CH_ALERT(sc, "reset was successful, "
3687 "system will NOT panic.\n");
3688 return;
3689 }
3690 }
3691
3692 if (t4_panic_on_fatal_err) {
3693 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3694 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3695 }
3696 }
3697
3698 void
t4_fatal_err(struct adapter * sc,bool fw_error)3699 t4_fatal_err(struct adapter *sc, bool fw_error)
3700 {
3701 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3702
3703 stop_adapter(sc);
3704 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3705 return;
3706 if (fw_error) {
3707 /*
3708 * We are here because of a firmware error/timeout and not
3709 * because of a hardware interrupt. It is possible (although
3710 * not very likely) that an error interrupt was also raised but
3711 * this thread ran first and inhibited t4_intr_err. We walk the
3712 * main INT_CAUSE registers here to make sure we haven't missed
3713 * anything interesting.
3714 */
3715 t4_slow_intr_handler(sc, verbose);
3716 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3717 }
3718 t4_report_fw_error(sc);
3719 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3720 device_get_nameunit(sc->dev), fw_error);
3721 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3722 }
3723
3724 void
t4_add_adapter(struct adapter * sc)3725 t4_add_adapter(struct adapter *sc)
3726 {
3727 sx_xlock(&t4_list_lock);
3728 SLIST_INSERT_HEAD(&t4_list, sc, link);
3729 sx_xunlock(&t4_list_lock);
3730 }
3731
3732 int
t4_map_bars_0_and_4(struct adapter * sc)3733 t4_map_bars_0_and_4(struct adapter *sc)
3734 {
3735 sc->regs_rid = PCIR_BAR(0);
3736 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3737 &sc->regs_rid, RF_ACTIVE);
3738 if (sc->regs_res == NULL) {
3739 device_printf(sc->dev, "cannot map registers.\n");
3740 return (ENXIO);
3741 }
3742 sc->bt = rman_get_bustag(sc->regs_res);
3743 sc->bh = rman_get_bushandle(sc->regs_res);
3744 sc->mmio_len = rman_get_size(sc->regs_res);
3745 setbit(&sc->doorbells, DOORBELL_KDB);
3746
3747 sc->msix_rid = PCIR_BAR(4);
3748 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3749 &sc->msix_rid, RF_ACTIVE);
3750 if (sc->msix_res == NULL) {
3751 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3752 return (ENXIO);
3753 }
3754
3755 return (0);
3756 }
3757
3758 int
t4_map_bar_2(struct adapter * sc)3759 t4_map_bar_2(struct adapter *sc)
3760 {
3761
3762 /*
3763 * T4: only iWARP driver uses the userspace doorbells. There is no need
3764 * to map it if RDMA is disabled.
3765 */
3766 if (is_t4(sc) && sc->rdmacaps == 0)
3767 return (0);
3768
3769 sc->udbs_rid = PCIR_BAR(2);
3770 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3771 &sc->udbs_rid, RF_ACTIVE);
3772 if (sc->udbs_res == NULL) {
3773 device_printf(sc->dev, "cannot map doorbell BAR.\n");
3774 return (ENXIO);
3775 }
3776 sc->udbs_base = rman_get_virtual(sc->udbs_res);
3777
3778 if (chip_id(sc) >= CHELSIO_T5) {
3779 setbit(&sc->doorbells, DOORBELL_UDB);
3780 #if defined(__i386__) || defined(__amd64__)
3781 if (t5_write_combine) {
3782 int rc, mode;
3783
3784 /*
3785 * Enable write combining on BAR2. This is the
3786 * userspace doorbell BAR and is split into 128B
3787 * (UDBS_SEG_SIZE) doorbell regions, each associated
3788 * with an egress queue. The first 64B has the doorbell
3789 * and the second 64B can be used to submit a tx work
3790 * request with an implicit doorbell.
3791 */
3792
3793 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3794 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3795 if (rc == 0) {
3796 clrbit(&sc->doorbells, DOORBELL_UDB);
3797 setbit(&sc->doorbells, DOORBELL_WCWR);
3798 setbit(&sc->doorbells, DOORBELL_UDBWC);
3799 } else {
3800 device_printf(sc->dev,
3801 "couldn't enable write combining: %d\n",
3802 rc);
3803 }
3804
3805 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3806 t4_write_reg(sc, A_SGE_STAT_CFG,
3807 V_STATSOURCE_T5(7) | mode);
3808 }
3809 #endif
3810 }
3811 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3812
3813 return (0);
3814 }
3815
3816 int
t4_adj_doorbells(struct adapter * sc)3817 t4_adj_doorbells(struct adapter *sc)
3818 {
3819 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3820 sc->doorbells &= t4_doorbells_allowed;
3821 return (0);
3822 }
3823 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3824 sc->doorbells, t4_doorbells_allowed);
3825 return (EINVAL);
3826 }
3827
3828 struct memwin_init {
3829 uint32_t base;
3830 uint32_t aperture;
3831 };
3832
3833 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3834 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3835 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3836 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3837 };
3838
3839 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3840 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3841 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3842 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3843 };
3844
3845 static void
setup_memwin(struct adapter * sc)3846 setup_memwin(struct adapter *sc)
3847 {
3848 const struct memwin_init *mw_init;
3849 struct memwin *mw;
3850 int i;
3851 uint32_t bar0;
3852
3853 if (is_t4(sc)) {
3854 /*
3855 * Read low 32b of bar0 indirectly via the hardware backdoor
3856 * mechanism. Works from within PCI passthrough environments
3857 * too, where rman_get_start() can return a different value. We
3858 * need to program the T4 memory window decoders with the actual
3859 * addresses that will be coming across the PCIe link.
3860 */
3861 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3862 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3863
3864 mw_init = &t4_memwin[0];
3865 } else {
3866 /* T5+ use the relative offset inside the PCIe BAR */
3867 bar0 = 0;
3868
3869 mw_init = &t5_memwin[0];
3870 }
3871
3872 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3873 if (!rw_initialized(&mw->mw_lock)) {
3874 rw_init(&mw->mw_lock, "memory window access");
3875 mw->mw_base = mw_init->base;
3876 mw->mw_aperture = mw_init->aperture;
3877 mw->mw_curpos = 0;
3878 }
3879 t4_write_reg(sc,
3880 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3881 (mw->mw_base + bar0) | V_BIR(0) |
3882 V_WINDOW(ilog2(mw->mw_aperture) - 10));
3883 rw_wlock(&mw->mw_lock);
3884 position_memwin(sc, i, mw->mw_curpos);
3885 rw_wunlock(&mw->mw_lock);
3886 }
3887
3888 /* flush */
3889 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3890 }
3891
3892 /*
3893 * Positions the memory window at the given address in the card's address space.
3894 * There are some alignment requirements and the actual position may be at an
3895 * address prior to the requested address. mw->mw_curpos always has the actual
3896 * position of the window.
3897 */
3898 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)3899 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3900 {
3901 struct memwin *mw;
3902 uint32_t pf;
3903 uint32_t reg;
3904
3905 MPASS(idx >= 0 && idx < NUM_MEMWIN);
3906 mw = &sc->memwin[idx];
3907 rw_assert(&mw->mw_lock, RA_WLOCKED);
3908
3909 if (is_t4(sc)) {
3910 pf = 0;
3911 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
3912 } else {
3913 pf = V_PFNUM(sc->pf);
3914 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
3915 }
3916 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3917 t4_write_reg(sc, reg, mw->mw_curpos | pf);
3918 t4_read_reg(sc, reg); /* flush */
3919 }
3920
3921 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)3922 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3923 int len, int rw)
3924 {
3925 struct memwin *mw;
3926 uint32_t mw_end, v;
3927
3928 MPASS(idx >= 0 && idx < NUM_MEMWIN);
3929
3930 /* Memory can only be accessed in naturally aligned 4 byte units */
3931 if (addr & 3 || len & 3 || len <= 0)
3932 return (EINVAL);
3933
3934 mw = &sc->memwin[idx];
3935 while (len > 0) {
3936 rw_rlock(&mw->mw_lock);
3937 mw_end = mw->mw_curpos + mw->mw_aperture;
3938 if (addr >= mw_end || addr < mw->mw_curpos) {
3939 /* Will need to reposition the window */
3940 if (!rw_try_upgrade(&mw->mw_lock)) {
3941 rw_runlock(&mw->mw_lock);
3942 rw_wlock(&mw->mw_lock);
3943 }
3944 rw_assert(&mw->mw_lock, RA_WLOCKED);
3945 position_memwin(sc, idx, addr);
3946 rw_downgrade(&mw->mw_lock);
3947 mw_end = mw->mw_curpos + mw->mw_aperture;
3948 }
3949 rw_assert(&mw->mw_lock, RA_RLOCKED);
3950 while (addr < mw_end && len > 0) {
3951 if (rw == 0) {
3952 v = t4_read_reg(sc, mw->mw_base + addr -
3953 mw->mw_curpos);
3954 *val++ = le32toh(v);
3955 } else {
3956 v = *val++;
3957 t4_write_reg(sc, mw->mw_base + addr -
3958 mw->mw_curpos, htole32(v));
3959 }
3960 addr += 4;
3961 len -= 4;
3962 }
3963 rw_runlock(&mw->mw_lock);
3964 }
3965
3966 return (0);
3967 }
3968
3969 CTASSERT(M_TID_COOKIE == M_COOKIE);
3970 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3971
3972 static void
t4_init_atid_table(struct adapter * sc)3973 t4_init_atid_table(struct adapter *sc)
3974 {
3975 struct tid_info *t;
3976 int i;
3977
3978 t = &sc->tids;
3979 if (t->natids == 0)
3980 return;
3981
3982 MPASS(t->atid_tab == NULL);
3983
3984 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3985 M_ZERO | M_WAITOK);
3986 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3987 t->afree = t->atid_tab;
3988 t->atids_in_use = 0;
3989 t->atid_alloc_stopped = false;
3990 for (i = 1; i < t->natids; i++)
3991 t->atid_tab[i - 1].next = &t->atid_tab[i];
3992 t->atid_tab[t->natids - 1].next = NULL;
3993 }
3994
3995 static void
t4_free_atid_table(struct adapter * sc)3996 t4_free_atid_table(struct adapter *sc)
3997 {
3998 struct tid_info *t;
3999
4000 t = &sc->tids;
4001
4002 KASSERT(t->atids_in_use == 0,
4003 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4004
4005 if (mtx_initialized(&t->atid_lock))
4006 mtx_destroy(&t->atid_lock);
4007 free(t->atid_tab, M_CXGBE);
4008 t->atid_tab = NULL;
4009 }
4010
4011 static void
stop_atid_allocator(struct adapter * sc)4012 stop_atid_allocator(struct adapter *sc)
4013 {
4014 struct tid_info *t = &sc->tids;
4015
4016 mtx_lock(&t->atid_lock);
4017 t->atid_alloc_stopped = true;
4018 mtx_unlock(&t->atid_lock);
4019 }
4020
4021 static void
restart_atid_allocator(struct adapter * sc)4022 restart_atid_allocator(struct adapter *sc)
4023 {
4024 struct tid_info *t = &sc->tids;
4025
4026 mtx_lock(&t->atid_lock);
4027 KASSERT(t->atids_in_use == 0,
4028 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4029 t->atid_alloc_stopped = false;
4030 mtx_unlock(&t->atid_lock);
4031 }
4032
4033 int
alloc_atid(struct adapter * sc,void * ctx)4034 alloc_atid(struct adapter *sc, void *ctx)
4035 {
4036 struct tid_info *t = &sc->tids;
4037 int atid = -1;
4038
4039 mtx_lock(&t->atid_lock);
4040 if (t->afree && !t->atid_alloc_stopped) {
4041 union aopen_entry *p = t->afree;
4042
4043 atid = p - t->atid_tab;
4044 MPASS(atid <= M_TID_TID);
4045 t->afree = p->next;
4046 p->data = ctx;
4047 t->atids_in_use++;
4048 }
4049 mtx_unlock(&t->atid_lock);
4050 return (atid);
4051 }
4052
4053 void *
lookup_atid(struct adapter * sc,int atid)4054 lookup_atid(struct adapter *sc, int atid)
4055 {
4056 struct tid_info *t = &sc->tids;
4057
4058 return (t->atid_tab[atid].data);
4059 }
4060
4061 void
free_atid(struct adapter * sc,int atid)4062 free_atid(struct adapter *sc, int atid)
4063 {
4064 struct tid_info *t = &sc->tids;
4065 union aopen_entry *p = &t->atid_tab[atid];
4066
4067 mtx_lock(&t->atid_lock);
4068 p->next = t->afree;
4069 t->afree = p;
4070 t->atids_in_use--;
4071 mtx_unlock(&t->atid_lock);
4072 }
4073
4074 static void
queue_tid_release(struct adapter * sc,int tid)4075 queue_tid_release(struct adapter *sc, int tid)
4076 {
4077
4078 CXGBE_UNIMPLEMENTED("deferred tid release");
4079 }
4080
4081 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4082 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4083 {
4084 struct wrqe *wr;
4085 struct cpl_tid_release *req;
4086
4087 wr = alloc_wrqe(sizeof(*req), ctrlq);
4088 if (wr == NULL) {
4089 queue_tid_release(sc, tid); /* defer */
4090 return;
4091 }
4092 req = wrtod(wr);
4093
4094 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4095
4096 t4_wrq_tx(sc, wr);
4097 }
4098
4099 static int
t4_range_cmp(const void * a,const void * b)4100 t4_range_cmp(const void *a, const void *b)
4101 {
4102 return ((const struct t4_range *)a)->start -
4103 ((const struct t4_range *)b)->start;
4104 }
4105
4106 /*
4107 * Verify that the memory range specified by the addr/len pair is valid within
4108 * the card's address space.
4109 */
4110 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4111 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4112 {
4113 struct t4_range mem_ranges[4], *r, *next;
4114 uint32_t em, addr_len;
4115 int i, n, remaining;
4116
4117 /* Memory can only be accessed in naturally aligned 4 byte units */
4118 if (addr & 3 || len & 3 || len == 0)
4119 return (EINVAL);
4120
4121 /* Enabled memories */
4122 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4123
4124 r = &mem_ranges[0];
4125 n = 0;
4126 bzero(r, sizeof(mem_ranges));
4127 if (em & F_EDRAM0_ENABLE) {
4128 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4129 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4130 if (r->size > 0) {
4131 r->start = G_EDRAM0_BASE(addr_len) << 20;
4132 if (addr >= r->start &&
4133 addr + len <= r->start + r->size)
4134 return (0);
4135 r++;
4136 n++;
4137 }
4138 }
4139 if (em & F_EDRAM1_ENABLE) {
4140 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4141 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4142 if (r->size > 0) {
4143 r->start = G_EDRAM1_BASE(addr_len) << 20;
4144 if (addr >= r->start &&
4145 addr + len <= r->start + r->size)
4146 return (0);
4147 r++;
4148 n++;
4149 }
4150 }
4151 if (em & F_EXT_MEM_ENABLE) {
4152 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4153 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4154 if (r->size > 0) {
4155 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4156 if (addr >= r->start &&
4157 addr + len <= r->start + r->size)
4158 return (0);
4159 r++;
4160 n++;
4161 }
4162 }
4163 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4164 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4165 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4166 if (r->size > 0) {
4167 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4168 if (addr >= r->start &&
4169 addr + len <= r->start + r->size)
4170 return (0);
4171 r++;
4172 n++;
4173 }
4174 }
4175 MPASS(n <= nitems(mem_ranges));
4176
4177 if (n > 1) {
4178 /* Sort and merge the ranges. */
4179 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4180
4181 /* Start from index 0 and examine the next n - 1 entries. */
4182 r = &mem_ranges[0];
4183 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4184
4185 MPASS(r->size > 0); /* r is a valid entry. */
4186 next = r + 1;
4187 MPASS(next->size > 0); /* and so is the next one. */
4188
4189 while (r->start + r->size >= next->start) {
4190 /* Merge the next one into the current entry. */
4191 r->size = max(r->start + r->size,
4192 next->start + next->size) - r->start;
4193 n--; /* One fewer entry in total. */
4194 if (--remaining == 0)
4195 goto done; /* short circuit */
4196 next++;
4197 }
4198 if (next != r + 1) {
4199 /*
4200 * Some entries were merged into r and next
4201 * points to the first valid entry that couldn't
4202 * be merged.
4203 */
4204 MPASS(next->size > 0); /* must be valid */
4205 memcpy(r + 1, next, remaining * sizeof(*r));
4206 #ifdef INVARIANTS
4207 /*
4208 * This so that the foo->size assertion in the
4209 * next iteration of the loop do the right
4210 * thing for entries that were pulled up and are
4211 * no longer valid.
4212 */
4213 MPASS(n < nitems(mem_ranges));
4214 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4215 sizeof(struct t4_range));
4216 #endif
4217 }
4218 }
4219 done:
4220 /* Done merging the ranges. */
4221 MPASS(n > 0);
4222 r = &mem_ranges[0];
4223 for (i = 0; i < n; i++, r++) {
4224 if (addr >= r->start &&
4225 addr + len <= r->start + r->size)
4226 return (0);
4227 }
4228 }
4229
4230 return (EFAULT);
4231 }
4232
4233 static int
fwmtype_to_hwmtype(int mtype)4234 fwmtype_to_hwmtype(int mtype)
4235 {
4236
4237 switch (mtype) {
4238 case FW_MEMTYPE_EDC0:
4239 return (MEM_EDC0);
4240 case FW_MEMTYPE_EDC1:
4241 return (MEM_EDC1);
4242 case FW_MEMTYPE_EXTMEM:
4243 return (MEM_MC0);
4244 case FW_MEMTYPE_EXTMEM1:
4245 return (MEM_MC1);
4246 default:
4247 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4248 }
4249 }
4250
4251 /*
4252 * Verify that the memory range specified by the memtype/offset/len pair is
4253 * valid and lies entirely within the memtype specified. The global address of
4254 * the start of the range is returned in addr.
4255 */
4256 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4257 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4258 uint32_t *addr)
4259 {
4260 uint32_t em, addr_len, maddr;
4261
4262 /* Memory can only be accessed in naturally aligned 4 byte units */
4263 if (off & 3 || len & 3 || len == 0)
4264 return (EINVAL);
4265
4266 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4267 switch (fwmtype_to_hwmtype(mtype)) {
4268 case MEM_EDC0:
4269 if (!(em & F_EDRAM0_ENABLE))
4270 return (EINVAL);
4271 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4272 maddr = G_EDRAM0_BASE(addr_len) << 20;
4273 break;
4274 case MEM_EDC1:
4275 if (!(em & F_EDRAM1_ENABLE))
4276 return (EINVAL);
4277 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4278 maddr = G_EDRAM1_BASE(addr_len) << 20;
4279 break;
4280 case MEM_MC:
4281 if (!(em & F_EXT_MEM_ENABLE))
4282 return (EINVAL);
4283 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4284 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4285 break;
4286 case MEM_MC1:
4287 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4288 return (EINVAL);
4289 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4290 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4291 break;
4292 default:
4293 return (EINVAL);
4294 }
4295
4296 *addr = maddr + off; /* global address */
4297 return (validate_mem_range(sc, *addr, len));
4298 }
4299
4300 static int
fixup_devlog_params(struct adapter * sc)4301 fixup_devlog_params(struct adapter *sc)
4302 {
4303 struct devlog_params *dparams = &sc->params.devlog;
4304 int rc;
4305
4306 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4307 dparams->size, &dparams->addr);
4308
4309 return (rc);
4310 }
4311
4312 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4313 update_nirq(struct intrs_and_queues *iaq, int nports)
4314 {
4315
4316 iaq->nirq = T4_EXTRA_INTR;
4317 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4318 iaq->nirq += nports * iaq->nofldrxq;
4319 iaq->nirq += nports * (iaq->num_vis - 1) *
4320 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4321 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4322 }
4323
4324 /*
4325 * Adjust requirements to fit the number of interrupts available.
4326 */
4327 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4328 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4329 int navail)
4330 {
4331 int old_nirq;
4332 const int nports = sc->params.nports;
4333
4334 MPASS(nports > 0);
4335 MPASS(navail > 0);
4336
4337 bzero(iaq, sizeof(*iaq));
4338 iaq->intr_type = itype;
4339 iaq->num_vis = t4_num_vis;
4340 iaq->ntxq = t4_ntxq;
4341 iaq->ntxq_vi = t4_ntxq_vi;
4342 iaq->nrxq = t4_nrxq;
4343 iaq->nrxq_vi = t4_nrxq_vi;
4344 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4345 if (is_offload(sc) || is_ethoffload(sc)) {
4346 iaq->nofldtxq = t4_nofldtxq;
4347 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4348 }
4349 #endif
4350 #ifdef TCP_OFFLOAD
4351 if (is_offload(sc)) {
4352 iaq->nofldrxq = t4_nofldrxq;
4353 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4354 }
4355 #endif
4356 #ifdef DEV_NETMAP
4357 if (t4_native_netmap & NN_MAIN_VI) {
4358 iaq->nnmtxq = t4_nnmtxq;
4359 iaq->nnmrxq = t4_nnmrxq;
4360 }
4361 if (t4_native_netmap & NN_EXTRA_VI) {
4362 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4363 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4364 }
4365 #endif
4366
4367 update_nirq(iaq, nports);
4368 if (iaq->nirq <= navail &&
4369 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4370 /*
4371 * This is the normal case -- there are enough interrupts for
4372 * everything.
4373 */
4374 goto done;
4375 }
4376
4377 /*
4378 * If extra VIs have been configured try reducing their count and see if
4379 * that works.
4380 */
4381 while (iaq->num_vis > 1) {
4382 iaq->num_vis--;
4383 update_nirq(iaq, nports);
4384 if (iaq->nirq <= navail &&
4385 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4386 device_printf(sc->dev, "virtual interfaces per port "
4387 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4388 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4389 "itype %d, navail %u, nirq %d.\n",
4390 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4391 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4392 itype, navail, iaq->nirq);
4393 goto done;
4394 }
4395 }
4396
4397 /*
4398 * Extra VIs will not be created. Log a message if they were requested.
4399 */
4400 MPASS(iaq->num_vis == 1);
4401 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4402 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4403 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4404 if (iaq->num_vis != t4_num_vis) {
4405 device_printf(sc->dev, "extra virtual interfaces disabled. "
4406 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4407 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4408 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4409 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4410 }
4411
4412 /*
4413 * Keep reducing the number of NIC rx queues to the next lower power of
4414 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4415 * if that works.
4416 */
4417 do {
4418 if (iaq->nrxq > 1) {
4419 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4420 if (iaq->nnmrxq > iaq->nrxq)
4421 iaq->nnmrxq = iaq->nrxq;
4422 }
4423 if (iaq->nofldrxq > 1)
4424 iaq->nofldrxq >>= 1;
4425
4426 old_nirq = iaq->nirq;
4427 update_nirq(iaq, nports);
4428 if (iaq->nirq <= navail &&
4429 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4430 device_printf(sc->dev, "running with reduced number of "
4431 "rx queues because of shortage of interrupts. "
4432 "nrxq=%u, nofldrxq=%u. "
4433 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4434 iaq->nofldrxq, itype, navail, iaq->nirq);
4435 goto done;
4436 }
4437 } while (old_nirq != iaq->nirq);
4438
4439 /* One interrupt for everything. Ugh. */
4440 device_printf(sc->dev, "running with minimal number of queues. "
4441 "itype %d, navail %u.\n", itype, navail);
4442 iaq->nirq = 1;
4443 iaq->nrxq = 1;
4444 iaq->ntxq = 1;
4445 if (iaq->nofldrxq > 0) {
4446 iaq->nofldrxq = 1;
4447 iaq->nofldtxq = 1;
4448 }
4449 iaq->nnmtxq = 0;
4450 iaq->nnmrxq = 0;
4451 done:
4452 MPASS(iaq->num_vis > 0);
4453 if (iaq->num_vis > 1) {
4454 MPASS(iaq->nrxq_vi > 0);
4455 MPASS(iaq->ntxq_vi > 0);
4456 }
4457 MPASS(iaq->nirq > 0);
4458 MPASS(iaq->nrxq > 0);
4459 MPASS(iaq->ntxq > 0);
4460 if (itype == INTR_MSI) {
4461 MPASS(powerof2(iaq->nirq));
4462 }
4463 }
4464
4465 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4466 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4467 {
4468 int rc, itype, navail, nalloc;
4469
4470 for (itype = INTR_MSIX; itype; itype >>= 1) {
4471
4472 if ((itype & t4_intr_types) == 0)
4473 continue; /* not allowed */
4474
4475 if (itype == INTR_MSIX)
4476 navail = pci_msix_count(sc->dev);
4477 else if (itype == INTR_MSI)
4478 navail = pci_msi_count(sc->dev);
4479 else
4480 navail = 1;
4481 restart:
4482 if (navail == 0)
4483 continue;
4484
4485 calculate_iaq(sc, iaq, itype, navail);
4486 nalloc = iaq->nirq;
4487 rc = 0;
4488 if (itype == INTR_MSIX)
4489 rc = pci_alloc_msix(sc->dev, &nalloc);
4490 else if (itype == INTR_MSI)
4491 rc = pci_alloc_msi(sc->dev, &nalloc);
4492
4493 if (rc == 0 && nalloc > 0) {
4494 if (nalloc == iaq->nirq)
4495 return (0);
4496
4497 /*
4498 * Didn't get the number requested. Use whatever number
4499 * the kernel is willing to allocate.
4500 */
4501 device_printf(sc->dev, "fewer vectors than requested, "
4502 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4503 itype, iaq->nirq, nalloc);
4504 pci_release_msi(sc->dev);
4505 navail = nalloc;
4506 goto restart;
4507 }
4508
4509 device_printf(sc->dev,
4510 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4511 itype, rc, iaq->nirq, nalloc);
4512 }
4513
4514 device_printf(sc->dev,
4515 "failed to find a usable interrupt type. "
4516 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4517 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4518
4519 return (ENXIO);
4520 }
4521
4522 #define FW_VERSION(chip) ( \
4523 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4524 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4525 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4526 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4527 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4528
4529 /* Just enough of fw_hdr to cover all version info. */
4530 struct fw_h {
4531 __u8 ver;
4532 __u8 chip;
4533 __be16 len512;
4534 __be32 fw_ver;
4535 __be32 tp_microcode_ver;
4536 __u8 intfver_nic;
4537 __u8 intfver_vnic;
4538 __u8 intfver_ofld;
4539 __u8 intfver_ri;
4540 __u8 intfver_iscsipdu;
4541 __u8 intfver_iscsi;
4542 __u8 intfver_fcoepdu;
4543 __u8 intfver_fcoe;
4544 };
4545 /* Spot check a couple of fields. */
4546 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4547 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4548 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4549
4550 struct fw_info {
4551 uint8_t chip;
4552 char *kld_name;
4553 char *fw_mod_name;
4554 struct fw_h fw_h;
4555 } fw_info[] = {
4556 {
4557 .chip = CHELSIO_T4,
4558 .kld_name = "t4fw_cfg",
4559 .fw_mod_name = "t4fw",
4560 .fw_h = {
4561 .chip = FW_HDR_CHIP_T4,
4562 .fw_ver = htobe32(FW_VERSION(T4)),
4563 .intfver_nic = FW_INTFVER(T4, NIC),
4564 .intfver_vnic = FW_INTFVER(T4, VNIC),
4565 .intfver_ofld = FW_INTFVER(T4, OFLD),
4566 .intfver_ri = FW_INTFVER(T4, RI),
4567 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4568 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4569 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4570 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4571 },
4572 }, {
4573 .chip = CHELSIO_T5,
4574 .kld_name = "t5fw_cfg",
4575 .fw_mod_name = "t5fw",
4576 .fw_h = {
4577 .chip = FW_HDR_CHIP_T5,
4578 .fw_ver = htobe32(FW_VERSION(T5)),
4579 .intfver_nic = FW_INTFVER(T5, NIC),
4580 .intfver_vnic = FW_INTFVER(T5, VNIC),
4581 .intfver_ofld = FW_INTFVER(T5, OFLD),
4582 .intfver_ri = FW_INTFVER(T5, RI),
4583 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4584 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4585 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4586 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4587 },
4588 }, {
4589 .chip = CHELSIO_T6,
4590 .kld_name = "t6fw_cfg",
4591 .fw_mod_name = "t6fw",
4592 .fw_h = {
4593 .chip = FW_HDR_CHIP_T6,
4594 .fw_ver = htobe32(FW_VERSION(T6)),
4595 .intfver_nic = FW_INTFVER(T6, NIC),
4596 .intfver_vnic = FW_INTFVER(T6, VNIC),
4597 .intfver_ofld = FW_INTFVER(T6, OFLD),
4598 .intfver_ri = FW_INTFVER(T6, RI),
4599 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4600 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4601 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4602 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4603 },
4604 }
4605 };
4606
4607 static struct fw_info *
find_fw_info(int chip)4608 find_fw_info(int chip)
4609 {
4610 int i;
4611
4612 for (i = 0; i < nitems(fw_info); i++) {
4613 if (fw_info[i].chip == chip)
4614 return (&fw_info[i]);
4615 }
4616 return (NULL);
4617 }
4618
4619 /*
4620 * Is the given firmware API compatible with the one the driver was compiled
4621 * with?
4622 */
4623 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4624 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4625 {
4626
4627 /* short circuit if it's the exact same firmware version */
4628 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4629 return (1);
4630
4631 /*
4632 * XXX: Is this too conservative? Perhaps I should limit this to the
4633 * features that are supported in the driver.
4634 */
4635 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4636 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4637 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4638 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4639 return (1);
4640 #undef SAME_INTF
4641
4642 return (0);
4643 }
4644
4645 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4646 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4647 const struct firmware **fw)
4648 {
4649 struct fw_info *fw_info;
4650
4651 *dcfg = NULL;
4652 if (fw != NULL)
4653 *fw = NULL;
4654
4655 fw_info = find_fw_info(chip_id(sc));
4656 if (fw_info == NULL) {
4657 device_printf(sc->dev,
4658 "unable to look up firmware information for chip %d.\n",
4659 chip_id(sc));
4660 return (EINVAL);
4661 }
4662
4663 *dcfg = firmware_get(fw_info->kld_name);
4664 if (*dcfg != NULL) {
4665 if (fw != NULL)
4666 *fw = firmware_get(fw_info->fw_mod_name);
4667 return (0);
4668 }
4669
4670 return (ENOENT);
4671 }
4672
4673 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4674 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4675 const struct firmware *fw)
4676 {
4677
4678 if (fw != NULL)
4679 firmware_put(fw, FIRMWARE_UNLOAD);
4680 if (dcfg != NULL)
4681 firmware_put(dcfg, FIRMWARE_UNLOAD);
4682 }
4683
4684 /*
4685 * Return values:
4686 * 0 means no firmware install attempted.
4687 * ERESTART means a firmware install was attempted and was successful.
4688 * +ve errno means a firmware install was attempted but failed.
4689 */
4690 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4691 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4692 const struct fw_h *drv_fw, const char *reason, int *already)
4693 {
4694 const struct firmware *cfg, *fw;
4695 const uint32_t c = be32toh(card_fw->fw_ver);
4696 uint32_t d, k;
4697 int rc, fw_install;
4698 struct fw_h bundled_fw;
4699 bool load_attempted;
4700
4701 cfg = fw = NULL;
4702 load_attempted = false;
4703 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4704
4705 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4706 if (t4_fw_install < 0) {
4707 rc = load_fw_module(sc, &cfg, &fw);
4708 if (rc != 0 || fw == NULL) {
4709 device_printf(sc->dev,
4710 "failed to load firmware module: %d. cfg %p, fw %p;"
4711 " will use compiled-in firmware version for"
4712 "hw.cxgbe.fw_install checks.\n",
4713 rc, cfg, fw);
4714 } else {
4715 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4716 }
4717 load_attempted = true;
4718 }
4719 d = be32toh(bundled_fw.fw_ver);
4720
4721 if (reason != NULL)
4722 goto install;
4723
4724 if ((sc->flags & FW_OK) == 0) {
4725
4726 if (c == 0xffffffff) {
4727 reason = "missing";
4728 goto install;
4729 }
4730
4731 rc = 0;
4732 goto done;
4733 }
4734
4735 if (!fw_compatible(card_fw, &bundled_fw)) {
4736 reason = "incompatible or unusable";
4737 goto install;
4738 }
4739
4740 if (d > c) {
4741 reason = "older than the version bundled with this driver";
4742 goto install;
4743 }
4744
4745 if (fw_install == 2 && d != c) {
4746 reason = "different than the version bundled with this driver";
4747 goto install;
4748 }
4749
4750 /* No reason to do anything to the firmware already on the card. */
4751 rc = 0;
4752 goto done;
4753
4754 install:
4755 rc = 0;
4756 if ((*already)++)
4757 goto done;
4758
4759 if (fw_install == 0) {
4760 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4761 "but the driver is prohibited from installing a firmware "
4762 "on the card.\n",
4763 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4764 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4765
4766 goto done;
4767 }
4768
4769 /*
4770 * We'll attempt to install a firmware. Load the module first (if it
4771 * hasn't been loaded already).
4772 */
4773 if (!load_attempted) {
4774 rc = load_fw_module(sc, &cfg, &fw);
4775 if (rc != 0 || fw == NULL) {
4776 device_printf(sc->dev,
4777 "failed to load firmware module: %d. cfg %p, fw %p\n",
4778 rc, cfg, fw);
4779 /* carry on */
4780 }
4781 }
4782 if (fw == NULL) {
4783 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4784 "but the driver cannot take corrective action because it "
4785 "is unable to load the firmware module.\n",
4786 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4787 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4788 rc = sc->flags & FW_OK ? 0 : ENOENT;
4789 goto done;
4790 }
4791 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4792 if (k != d) {
4793 MPASS(t4_fw_install > 0);
4794 device_printf(sc->dev,
4795 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4796 "expecting (%u.%u.%u.%u) and will not be used.\n",
4797 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4798 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4799 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4800 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4801 rc = sc->flags & FW_OK ? 0 : EINVAL;
4802 goto done;
4803 }
4804
4805 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4806 "installing firmware %u.%u.%u.%u on card.\n",
4807 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4808 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4809 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4810 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4811
4812 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4813 if (rc != 0) {
4814 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4815 } else {
4816 /* Installed successfully, update the cached header too. */
4817 rc = ERESTART;
4818 memcpy(card_fw, fw->data, sizeof(*card_fw));
4819 }
4820 done:
4821 unload_fw_module(sc, cfg, fw);
4822
4823 return (rc);
4824 }
4825
4826 /*
4827 * Establish contact with the firmware and attempt to become the master driver.
4828 *
4829 * A firmware will be installed to the card if needed (if the driver is allowed
4830 * to do so).
4831 */
4832 static int
contact_firmware(struct adapter * sc)4833 contact_firmware(struct adapter *sc)
4834 {
4835 int rc, already = 0;
4836 enum dev_state state;
4837 struct fw_info *fw_info;
4838 struct fw_hdr *card_fw; /* fw on the card */
4839 const struct fw_h *drv_fw;
4840
4841 fw_info = find_fw_info(chip_id(sc));
4842 if (fw_info == NULL) {
4843 device_printf(sc->dev,
4844 "unable to look up firmware information for chip %d.\n",
4845 chip_id(sc));
4846 return (EINVAL);
4847 }
4848 drv_fw = &fw_info->fw_h;
4849
4850 /* Read the header of the firmware on the card */
4851 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4852 restart:
4853 rc = -t4_get_fw_hdr(sc, card_fw);
4854 if (rc != 0) {
4855 device_printf(sc->dev,
4856 "unable to read firmware header from card's flash: %d\n",
4857 rc);
4858 goto done;
4859 }
4860
4861 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4862 &already);
4863 if (rc == ERESTART)
4864 goto restart;
4865 if (rc != 0)
4866 goto done;
4867
4868 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4869 if (rc < 0 || state == DEV_STATE_ERR) {
4870 rc = -rc;
4871 device_printf(sc->dev,
4872 "failed to connect to the firmware: %d, %d. "
4873 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4874 #if 0
4875 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4876 "not responding properly to HELLO", &already) == ERESTART)
4877 goto restart;
4878 #endif
4879 goto done;
4880 }
4881 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4882 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
4883
4884 if (rc == sc->pf) {
4885 sc->flags |= MASTER_PF;
4886 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4887 NULL, &already);
4888 if (rc == ERESTART)
4889 rc = 0;
4890 else if (rc != 0)
4891 goto done;
4892 } else if (state == DEV_STATE_UNINIT) {
4893 /*
4894 * We didn't get to be the master so we definitely won't be
4895 * configuring the chip. It's a bug if someone else hasn't
4896 * configured it already.
4897 */
4898 device_printf(sc->dev, "couldn't be master(%d), "
4899 "device not already initialized either(%d). "
4900 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4901 rc = EPROTO;
4902 goto done;
4903 } else {
4904 /*
4905 * Some other PF is the master and has configured the chip.
4906 * This is allowed but untested.
4907 */
4908 device_printf(sc->dev, "PF%d is master, device state %d. "
4909 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4910 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4911 sc->cfcsum = 0;
4912 rc = 0;
4913 }
4914 done:
4915 if (rc != 0 && sc->flags & FW_OK) {
4916 t4_fw_bye(sc, sc->mbox);
4917 sc->flags &= ~FW_OK;
4918 }
4919 free(card_fw, M_CXGBE);
4920 return (rc);
4921 }
4922
4923 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff)4924 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4925 uint32_t mtype, uint32_t moff)
4926 {
4927 struct fw_info *fw_info;
4928 const struct firmware *dcfg, *rcfg = NULL;
4929 const uint32_t *cfdata;
4930 uint32_t cflen, addr;
4931 int rc;
4932
4933 load_fw_module(sc, &dcfg, NULL);
4934
4935 /* Card specific interpretation of "default". */
4936 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4937 if (pci_get_device(sc->dev) == 0x440a)
4938 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4939 if (is_fpga(sc))
4940 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4941 }
4942
4943 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4944 if (dcfg == NULL) {
4945 device_printf(sc->dev,
4946 "KLD with default config is not available.\n");
4947 rc = ENOENT;
4948 goto done;
4949 }
4950 cfdata = dcfg->data;
4951 cflen = dcfg->datasize & ~3;
4952 } else {
4953 char s[32];
4954
4955 fw_info = find_fw_info(chip_id(sc));
4956 if (fw_info == NULL) {
4957 device_printf(sc->dev,
4958 "unable to look up firmware information for chip %d.\n",
4959 chip_id(sc));
4960 rc = EINVAL;
4961 goto done;
4962 }
4963 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4964
4965 rcfg = firmware_get(s);
4966 if (rcfg == NULL) {
4967 device_printf(sc->dev,
4968 "unable to load module \"%s\" for configuration "
4969 "profile \"%s\".\n", s, cfg_file);
4970 rc = ENOENT;
4971 goto done;
4972 }
4973 cfdata = rcfg->data;
4974 cflen = rcfg->datasize & ~3;
4975 }
4976
4977 if (cflen > FLASH_CFG_MAX_SIZE) {
4978 device_printf(sc->dev,
4979 "config file too long (%d, max allowed is %d).\n",
4980 cflen, FLASH_CFG_MAX_SIZE);
4981 rc = EINVAL;
4982 goto done;
4983 }
4984
4985 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4986 if (rc != 0) {
4987 device_printf(sc->dev,
4988 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4989 __func__, mtype, moff, cflen, rc);
4990 rc = EINVAL;
4991 goto done;
4992 }
4993 write_via_memwin(sc, 2, addr, cfdata, cflen);
4994 done:
4995 if (rcfg != NULL)
4996 firmware_put(rcfg, FIRMWARE_UNLOAD);
4997 unload_fw_module(sc, dcfg, NULL);
4998 return (rc);
4999 }
5000
5001 struct caps_allowed {
5002 uint16_t nbmcaps;
5003 uint16_t linkcaps;
5004 uint16_t switchcaps;
5005 uint16_t niccaps;
5006 uint16_t toecaps;
5007 uint16_t rdmacaps;
5008 uint16_t cryptocaps;
5009 uint16_t iscsicaps;
5010 uint16_t fcoecaps;
5011 };
5012
5013 #define FW_PARAM_DEV(param) \
5014 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5015 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5016 #define FW_PARAM_PFVF(param) \
5017 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5018 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5019
5020 /*
5021 * Provide a configuration profile to the firmware and have it initialize the
5022 * chip accordingly. This may involve uploading a configuration file to the
5023 * card.
5024 */
5025 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5026 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5027 const struct caps_allowed *caps_allowed)
5028 {
5029 int rc;
5030 struct fw_caps_config_cmd caps;
5031 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5032
5033 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5034 if (rc != 0) {
5035 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5036 return (rc);
5037 }
5038
5039 bzero(&caps, sizeof(caps));
5040 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5041 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5042 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5043 mtype = 0;
5044 moff = 0;
5045 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5046 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5047 mtype = FW_MEMTYPE_FLASH;
5048 moff = t4_flash_cfg_addr(sc);
5049 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5050 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5051 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5052 FW_LEN16(caps));
5053 } else {
5054 /*
5055 * Ask the firmware where it wants us to upload the config file.
5056 */
5057 param = FW_PARAM_DEV(CF);
5058 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5059 if (rc != 0) {
5060 /* No support for config file? Shouldn't happen. */
5061 device_printf(sc->dev,
5062 "failed to query config file location: %d.\n", rc);
5063 goto done;
5064 }
5065 mtype = G_FW_PARAMS_PARAM_Y(val);
5066 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5067 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5068 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5069 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5070 FW_LEN16(caps));
5071
5072 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5073 if (rc != 0) {
5074 device_printf(sc->dev,
5075 "failed to upload config file to card: %d.\n", rc);
5076 goto done;
5077 }
5078 }
5079 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5080 if (rc != 0) {
5081 device_printf(sc->dev, "failed to pre-process config file: %d "
5082 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5083 goto done;
5084 }
5085
5086 finicsum = be32toh(caps.finicsum);
5087 cfcsum = be32toh(caps.cfcsum); /* actual */
5088 if (finicsum != cfcsum) {
5089 device_printf(sc->dev,
5090 "WARNING: config file checksum mismatch: %08x %08x\n",
5091 finicsum, cfcsum);
5092 }
5093 sc->cfcsum = cfcsum;
5094 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5095
5096 /*
5097 * Let the firmware know what features will (not) be used so it can tune
5098 * things accordingly.
5099 */
5100 #define LIMIT_CAPS(x) do { \
5101 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5102 } while (0)
5103 LIMIT_CAPS(nbm);
5104 LIMIT_CAPS(link);
5105 LIMIT_CAPS(switch);
5106 LIMIT_CAPS(nic);
5107 LIMIT_CAPS(toe);
5108 LIMIT_CAPS(rdma);
5109 LIMIT_CAPS(crypto);
5110 LIMIT_CAPS(iscsi);
5111 LIMIT_CAPS(fcoe);
5112 #undef LIMIT_CAPS
5113 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5114 /*
5115 * TOE and hashfilters are mutually exclusive. It is a config
5116 * file or firmware bug if both are reported as available. Try
5117 * to cope with the situation in non-debug builds by disabling
5118 * TOE.
5119 */
5120 MPASS(caps.toecaps == 0);
5121
5122 caps.toecaps = 0;
5123 caps.rdmacaps = 0;
5124 caps.iscsicaps = 0;
5125 }
5126
5127 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5128 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5129 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5130 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5131 if (rc != 0) {
5132 device_printf(sc->dev,
5133 "failed to process config file: %d.\n", rc);
5134 goto done;
5135 }
5136
5137 t4_tweak_chip_settings(sc);
5138 set_params__pre_init(sc);
5139
5140 /* get basic stuff going */
5141 rc = -t4_fw_initialize(sc, sc->mbox);
5142 if (rc != 0) {
5143 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5144 goto done;
5145 }
5146 done:
5147 return (rc);
5148 }
5149
5150 /*
5151 * Partition chip resources for use between various PFs, VFs, etc.
5152 */
5153 static int
partition_resources(struct adapter * sc)5154 partition_resources(struct adapter *sc)
5155 {
5156 char cfg_file[sizeof(t4_cfg_file)];
5157 struct caps_allowed caps_allowed;
5158 int rc;
5159 bool fallback;
5160
5161 /* Only the master driver gets to configure the chip resources. */
5162 MPASS(sc->flags & MASTER_PF);
5163
5164 #define COPY_CAPS(x) do { \
5165 caps_allowed.x##caps = t4_##x##caps_allowed; \
5166 } while (0)
5167 bzero(&caps_allowed, sizeof(caps_allowed));
5168 COPY_CAPS(nbm);
5169 COPY_CAPS(link);
5170 COPY_CAPS(switch);
5171 COPY_CAPS(nic);
5172 COPY_CAPS(toe);
5173 COPY_CAPS(rdma);
5174 COPY_CAPS(crypto);
5175 COPY_CAPS(iscsi);
5176 COPY_CAPS(fcoe);
5177 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5178 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5179 retry:
5180 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5181 if (rc != 0 && fallback) {
5182 dump_devlog(sc);
5183 device_printf(sc->dev,
5184 "failed (%d) to configure card with \"%s\" profile, "
5185 "will fall back to a basic configuration and retry.\n",
5186 rc, cfg_file);
5187 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5188 bzero(&caps_allowed, sizeof(caps_allowed));
5189 COPY_CAPS(switch);
5190 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5191 fallback = false;
5192 goto retry;
5193 }
5194 #undef COPY_CAPS
5195 return (rc);
5196 }
5197
5198 /*
5199 * Retrieve parameters that are needed (or nice to have) very early.
5200 */
5201 static int
get_params__pre_init(struct adapter * sc)5202 get_params__pre_init(struct adapter *sc)
5203 {
5204 int rc;
5205 uint32_t param[2], val[2];
5206
5207 t4_get_version_info(sc);
5208
5209 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5210 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5211 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5212 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5213 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5214
5215 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5216 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5217 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5218 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5219 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5220
5221 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5222 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5223 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5224 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5225 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5226
5227 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5228 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5229 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5230 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5231 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5232
5233 param[0] = FW_PARAM_DEV(PORTVEC);
5234 param[1] = FW_PARAM_DEV(CCLK);
5235 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5236 if (rc != 0) {
5237 device_printf(sc->dev,
5238 "failed to query parameters (pre_init): %d.\n", rc);
5239 return (rc);
5240 }
5241
5242 sc->params.portvec = val[0];
5243 sc->params.nports = bitcount32(val[0]);
5244 sc->params.vpd.cclk = val[1];
5245
5246 /* Read device log parameters. */
5247 rc = -t4_init_devlog_params(sc, 1);
5248 if (rc == 0)
5249 fixup_devlog_params(sc);
5250 else {
5251 device_printf(sc->dev,
5252 "failed to get devlog parameters: %d.\n", rc);
5253 rc = 0; /* devlog isn't critical for device operation */
5254 }
5255
5256 return (rc);
5257 }
5258
5259 /*
5260 * Any params that need to be set before FW_INITIALIZE.
5261 */
5262 static int
set_params__pre_init(struct adapter * sc)5263 set_params__pre_init(struct adapter *sc)
5264 {
5265 int rc = 0;
5266 uint32_t param, val;
5267
5268 if (chip_id(sc) >= CHELSIO_T6) {
5269 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5270 val = 1;
5271 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5272 /* firmwares < 1.20.1.0 do not have this param. */
5273 if (rc == FW_EINVAL &&
5274 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5275 rc = 0;
5276 }
5277 if (rc != 0) {
5278 device_printf(sc->dev,
5279 "failed to enable high priority filters :%d.\n",
5280 rc);
5281 }
5282
5283 param = FW_PARAM_DEV(PPOD_EDRAM);
5284 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5285 if (rc == 0 && val == 1) {
5286 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5287 &val);
5288 if (rc != 0) {
5289 device_printf(sc->dev,
5290 "failed to set PPOD_EDRAM: %d.\n", rc);
5291 }
5292 }
5293 }
5294
5295 /* Enable opaque VIIDs with firmwares that support it. */
5296 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5297 val = 1;
5298 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5299 if (rc == 0 && val == 1)
5300 sc->params.viid_smt_extn_support = true;
5301 else
5302 sc->params.viid_smt_extn_support = false;
5303
5304 return (rc);
5305 }
5306
5307 /*
5308 * Retrieve various parameters that are of interest to the driver. The device
5309 * has been initialized by the firmware at this point.
5310 */
5311 static int
get_params__post_init(struct adapter * sc)5312 get_params__post_init(struct adapter *sc)
5313 {
5314 int rc;
5315 uint32_t param[7], val[7];
5316 struct fw_caps_config_cmd caps;
5317
5318 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5319 param[1] = FW_PARAM_PFVF(EQ_START);
5320 param[2] = FW_PARAM_PFVF(FILTER_START);
5321 param[3] = FW_PARAM_PFVF(FILTER_END);
5322 param[4] = FW_PARAM_PFVF(L2T_START);
5323 param[5] = FW_PARAM_PFVF(L2T_END);
5324 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5325 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5326 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5327 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5328 if (rc != 0) {
5329 device_printf(sc->dev,
5330 "failed to query parameters (post_init): %d.\n", rc);
5331 return (rc);
5332 }
5333
5334 sc->sge.iq_start = val[0];
5335 sc->sge.eq_start = val[1];
5336 if ((int)val[3] > (int)val[2]) {
5337 sc->tids.ftid_base = val[2];
5338 sc->tids.ftid_end = val[3];
5339 sc->tids.nftids = val[3] - val[2] + 1;
5340 }
5341 sc->vres.l2t.start = val[4];
5342 sc->vres.l2t.size = val[5] - val[4] + 1;
5343 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5344 if (sc->vres.l2t.size > 0)
5345 MPASS(fls(val[5]) <= S_SYNC_WR);
5346 sc->params.core_vdd = val[6];
5347
5348 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5349 param[1] = FW_PARAM_PFVF(EQ_END);
5350 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5351 if (rc != 0) {
5352 device_printf(sc->dev,
5353 "failed to query parameters (post_init2): %d.\n", rc);
5354 return (rc);
5355 }
5356 MPASS((int)val[0] >= sc->sge.iq_start);
5357 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5358 MPASS((int)val[1] >= sc->sge.eq_start);
5359 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5360
5361 if (chip_id(sc) >= CHELSIO_T6) {
5362
5363 sc->tids.tid_base = t4_read_reg(sc,
5364 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5365
5366 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5367 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5368 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5369 if (rc != 0) {
5370 device_printf(sc->dev,
5371 "failed to query hpfilter parameters: %d.\n", rc);
5372 return (rc);
5373 }
5374 if ((int)val[1] > (int)val[0]) {
5375 sc->tids.hpftid_base = val[0];
5376 sc->tids.hpftid_end = val[1];
5377 sc->tids.nhpftids = val[1] - val[0] + 1;
5378
5379 /*
5380 * These should go off if the layout changes and the
5381 * driver needs to catch up.
5382 */
5383 MPASS(sc->tids.hpftid_base == 0);
5384 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5385 }
5386
5387 param[0] = FW_PARAM_PFVF(RAWF_START);
5388 param[1] = FW_PARAM_PFVF(RAWF_END);
5389 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5390 if (rc != 0) {
5391 device_printf(sc->dev,
5392 "failed to query rawf parameters: %d.\n", rc);
5393 return (rc);
5394 }
5395 if ((int)val[1] > (int)val[0]) {
5396 sc->rawf_base = val[0];
5397 sc->nrawf = val[1] - val[0] + 1;
5398 }
5399 }
5400
5401 /*
5402 * The parameters that follow may not be available on all firmwares. We
5403 * query them individually rather than in a compound query because old
5404 * firmwares fail the entire query if an unknown parameter is queried.
5405 */
5406
5407 /*
5408 * MPS buffer group configuration.
5409 */
5410 param[0] = FW_PARAM_DEV(MPSBGMAP);
5411 val[0] = 0;
5412 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5413 if (rc == 0)
5414 sc->params.mps_bg_map = val[0];
5415 else
5416 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5417
5418 param[0] = FW_PARAM_DEV(TPCHMAP);
5419 val[0] = 0;
5420 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5421 if (rc == 0)
5422 sc->params.tp_ch_map = val[0];
5423 else
5424 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5425
5426 /*
5427 * Determine whether the firmware supports the filter2 work request.
5428 */
5429 param[0] = FW_PARAM_DEV(FILTER2_WR);
5430 val[0] = 0;
5431 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5432 if (rc == 0)
5433 sc->params.filter2_wr_support = val[0] != 0;
5434 else
5435 sc->params.filter2_wr_support = 0;
5436
5437 /*
5438 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5439 */
5440 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5441 val[0] = 0;
5442 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5443 if (rc == 0)
5444 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5445 else
5446 sc->params.ulptx_memwrite_dsgl = false;
5447
5448 /* FW_RI_FR_NSMR_TPTE_WR support */
5449 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5450 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5451 if (rc == 0)
5452 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5453 else
5454 sc->params.fr_nsmr_tpte_wr_support = false;
5455
5456 /* Support for 512 SGL entries per FR MR. */
5457 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5458 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5459 if (rc == 0)
5460 sc->params.dev_512sgl_mr = val[0] != 0;
5461 else
5462 sc->params.dev_512sgl_mr = false;
5463
5464 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5465 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5466 if (rc == 0)
5467 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5468 else
5469 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5470
5471 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5472 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5473 if (rc == 0) {
5474 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5475 sc->params.nsched_cls = val[0];
5476 } else
5477 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5478
5479 /* get capabilites */
5480 bzero(&caps, sizeof(caps));
5481 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5482 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5483 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5484 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5485 if (rc != 0) {
5486 device_printf(sc->dev,
5487 "failed to get card capabilities: %d.\n", rc);
5488 return (rc);
5489 }
5490
5491 #define READ_CAPS(x) do { \
5492 sc->x = htobe16(caps.x); \
5493 } while (0)
5494 READ_CAPS(nbmcaps);
5495 READ_CAPS(linkcaps);
5496 READ_CAPS(switchcaps);
5497 READ_CAPS(niccaps);
5498 READ_CAPS(toecaps);
5499 READ_CAPS(rdmacaps);
5500 READ_CAPS(cryptocaps);
5501 READ_CAPS(iscsicaps);
5502 READ_CAPS(fcoecaps);
5503
5504 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5505 MPASS(chip_id(sc) > CHELSIO_T4);
5506 MPASS(sc->toecaps == 0);
5507 sc->toecaps = 0;
5508
5509 param[0] = FW_PARAM_DEV(NTID);
5510 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5511 if (rc != 0) {
5512 device_printf(sc->dev,
5513 "failed to query HASHFILTER parameters: %d.\n", rc);
5514 return (rc);
5515 }
5516 sc->tids.ntids = val[0];
5517 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5518 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5519 sc->tids.ntids -= sc->tids.nhpftids;
5520 }
5521 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5522 sc->params.hash_filter = 1;
5523 }
5524 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5525 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5526 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5527 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5528 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5529 if (rc != 0) {
5530 device_printf(sc->dev,
5531 "failed to query NIC parameters: %d.\n", rc);
5532 return (rc);
5533 }
5534 if ((int)val[1] > (int)val[0]) {
5535 sc->tids.etid_base = val[0];
5536 sc->tids.etid_end = val[1];
5537 sc->tids.netids = val[1] - val[0] + 1;
5538 sc->params.eo_wr_cred = val[2];
5539 sc->params.ethoffload = 1;
5540 }
5541 }
5542 if (sc->toecaps) {
5543 /* query offload-related parameters */
5544 param[0] = FW_PARAM_DEV(NTID);
5545 param[1] = FW_PARAM_PFVF(SERVER_START);
5546 param[2] = FW_PARAM_PFVF(SERVER_END);
5547 param[3] = FW_PARAM_PFVF(TDDP_START);
5548 param[4] = FW_PARAM_PFVF(TDDP_END);
5549 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5550 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5551 if (rc != 0) {
5552 device_printf(sc->dev,
5553 "failed to query TOE parameters: %d.\n", rc);
5554 return (rc);
5555 }
5556 sc->tids.ntids = val[0];
5557 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5558 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5559 sc->tids.ntids -= sc->tids.nhpftids;
5560 }
5561 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5562 if ((int)val[2] > (int)val[1]) {
5563 sc->tids.stid_base = val[1];
5564 sc->tids.nstids = val[2] - val[1] + 1;
5565 }
5566 sc->vres.ddp.start = val[3];
5567 sc->vres.ddp.size = val[4] - val[3] + 1;
5568 sc->params.ofldq_wr_cred = val[5];
5569 sc->params.offload = 1;
5570 } else {
5571 /*
5572 * The firmware attempts memfree TOE configuration for -SO cards
5573 * and will report toecaps=0 if it runs out of resources (this
5574 * depends on the config file). It may not report 0 for other
5575 * capabilities dependent on the TOE in this case. Set them to
5576 * 0 here so that the driver doesn't bother tracking resources
5577 * that will never be used.
5578 */
5579 sc->iscsicaps = 0;
5580 sc->rdmacaps = 0;
5581 }
5582 if (sc->rdmacaps) {
5583 param[0] = FW_PARAM_PFVF(STAG_START);
5584 param[1] = FW_PARAM_PFVF(STAG_END);
5585 param[2] = FW_PARAM_PFVF(RQ_START);
5586 param[3] = FW_PARAM_PFVF(RQ_END);
5587 param[4] = FW_PARAM_PFVF(PBL_START);
5588 param[5] = FW_PARAM_PFVF(PBL_END);
5589 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5590 if (rc != 0) {
5591 device_printf(sc->dev,
5592 "failed to query RDMA parameters(1): %d.\n", rc);
5593 return (rc);
5594 }
5595 sc->vres.stag.start = val[0];
5596 sc->vres.stag.size = val[1] - val[0] + 1;
5597 sc->vres.rq.start = val[2];
5598 sc->vres.rq.size = val[3] - val[2] + 1;
5599 sc->vres.pbl.start = val[4];
5600 sc->vres.pbl.size = val[5] - val[4] + 1;
5601
5602 param[0] = FW_PARAM_PFVF(SQRQ_START);
5603 param[1] = FW_PARAM_PFVF(SQRQ_END);
5604 param[2] = FW_PARAM_PFVF(CQ_START);
5605 param[3] = FW_PARAM_PFVF(CQ_END);
5606 param[4] = FW_PARAM_PFVF(OCQ_START);
5607 param[5] = FW_PARAM_PFVF(OCQ_END);
5608 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5609 if (rc != 0) {
5610 device_printf(sc->dev,
5611 "failed to query RDMA parameters(2): %d.\n", rc);
5612 return (rc);
5613 }
5614 sc->vres.qp.start = val[0];
5615 sc->vres.qp.size = val[1] - val[0] + 1;
5616 sc->vres.cq.start = val[2];
5617 sc->vres.cq.size = val[3] - val[2] + 1;
5618 sc->vres.ocq.start = val[4];
5619 sc->vres.ocq.size = val[5] - val[4] + 1;
5620
5621 param[0] = FW_PARAM_PFVF(SRQ_START);
5622 param[1] = FW_PARAM_PFVF(SRQ_END);
5623 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5624 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5625 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5626 if (rc != 0) {
5627 device_printf(sc->dev,
5628 "failed to query RDMA parameters(3): %d.\n", rc);
5629 return (rc);
5630 }
5631 sc->vres.srq.start = val[0];
5632 sc->vres.srq.size = val[1] - val[0] + 1;
5633 sc->params.max_ordird_qp = val[2];
5634 sc->params.max_ird_adapter = val[3];
5635 }
5636 if (sc->iscsicaps) {
5637 param[0] = FW_PARAM_PFVF(ISCSI_START);
5638 param[1] = FW_PARAM_PFVF(ISCSI_END);
5639 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5640 if (rc != 0) {
5641 device_printf(sc->dev,
5642 "failed to query iSCSI parameters: %d.\n", rc);
5643 return (rc);
5644 }
5645 sc->vres.iscsi.start = val[0];
5646 sc->vres.iscsi.size = val[1] - val[0] + 1;
5647 }
5648 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5649 param[0] = FW_PARAM_PFVF(TLS_START);
5650 param[1] = FW_PARAM_PFVF(TLS_END);
5651 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5652 if (rc != 0) {
5653 device_printf(sc->dev,
5654 "failed to query TLS parameters: %d.\n", rc);
5655 return (rc);
5656 }
5657 sc->vres.key.start = val[0];
5658 sc->vres.key.size = val[1] - val[0] + 1;
5659 }
5660
5661 /*
5662 * We've got the params we wanted to query directly from the firmware.
5663 * Grab some others via other means.
5664 */
5665 t4_init_sge_params(sc);
5666 t4_init_tp_params(sc);
5667 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5668 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5669
5670 rc = t4_verify_chip_settings(sc);
5671 if (rc != 0)
5672 return (rc);
5673 t4_init_rx_buf_info(sc);
5674
5675 return (rc);
5676 }
5677
5678 #ifdef KERN_TLS
5679 static void
ktls_tick(void * arg)5680 ktls_tick(void *arg)
5681 {
5682 struct adapter *sc;
5683 uint32_t tstamp;
5684
5685 sc = arg;
5686 tstamp = tcp_ts_getticks();
5687 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5688 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5689 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5690 }
5691
5692 static int
t6_config_kern_tls(struct adapter * sc,bool enable)5693 t6_config_kern_tls(struct adapter *sc, bool enable)
5694 {
5695 int rc;
5696 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5697 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5698 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5699 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5700
5701 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
5702 if (rc != 0) {
5703 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5704 enable ? "enable" : "disable", rc);
5705 return (rc);
5706 }
5707
5708 if (enable) {
5709 sc->flags |= KERN_TLS_ON;
5710 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5711 C_HARDCLOCK);
5712 } else {
5713 sc->flags &= ~KERN_TLS_ON;
5714 callout_stop(&sc->ktls_tick);
5715 }
5716
5717 return (rc);
5718 }
5719 #endif
5720
5721 static int
set_params__post_init(struct adapter * sc)5722 set_params__post_init(struct adapter *sc)
5723 {
5724 uint32_t mask, param, val;
5725 #ifdef TCP_OFFLOAD
5726 int i, v, shift;
5727 #endif
5728
5729 /* ask for encapsulated CPLs */
5730 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5731 val = 1;
5732 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5733
5734 /* Enable 32b port caps if the firmware supports it. */
5735 param = FW_PARAM_PFVF(PORT_CAPS32);
5736 val = 1;
5737 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
5738 sc->params.port_caps32 = 1;
5739
5740 /* Let filter + maskhash steer to a part of the VI's RSS region. */
5741 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5742 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5743 V_MASKFILTER(val - 1));
5744
5745 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5746 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5747 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5748 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5749 val = 0;
5750 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5751 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5752 F_ATTACKFILTERENABLE);
5753 val |= F_DROPERRORATTACK;
5754 }
5755 if (t4_drop_ip_fragments != 0) {
5756 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5757 F_FRAGMENTDROP);
5758 val |= F_DROPERRORFRAG;
5759 }
5760 if (t4_drop_pkts_with_l2_errors != 0)
5761 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5762 if (t4_drop_pkts_with_l3_errors != 0) {
5763 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5764 F_DROPERRORCSUMIP;
5765 }
5766 if (t4_drop_pkts_with_l4_errors != 0) {
5767 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5768 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5769 }
5770 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5771
5772 #ifdef TCP_OFFLOAD
5773 /*
5774 * Override the TOE timers with user provided tunables. This is not the
5775 * recommended way to change the timers (the firmware config file is) so
5776 * these tunables are not documented.
5777 *
5778 * All the timer tunables are in microseconds.
5779 */
5780 if (t4_toe_keepalive_idle != 0) {
5781 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5782 v &= M_KEEPALIVEIDLE;
5783 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5784 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5785 }
5786 if (t4_toe_keepalive_interval != 0) {
5787 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5788 v &= M_KEEPALIVEINTVL;
5789 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5790 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5791 }
5792 if (t4_toe_keepalive_count != 0) {
5793 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5794 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5795 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5796 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5797 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5798 }
5799 if (t4_toe_rexmt_min != 0) {
5800 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5801 v &= M_RXTMIN;
5802 t4_set_reg_field(sc, A_TP_RXT_MIN,
5803 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5804 }
5805 if (t4_toe_rexmt_max != 0) {
5806 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5807 v &= M_RXTMAX;
5808 t4_set_reg_field(sc, A_TP_RXT_MAX,
5809 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5810 }
5811 if (t4_toe_rexmt_count != 0) {
5812 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5813 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5814 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5815 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5816 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5817 }
5818 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5819 if (t4_toe_rexmt_backoff[i] != -1) {
5820 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5821 shift = (i & 3) << 3;
5822 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5823 M_TIMERBACKOFFINDEX0 << shift, v << shift);
5824 }
5825 }
5826 #endif
5827
5828 /*
5829 * Limit TOE connections to 2 reassembly "islands". This is
5830 * required to permit migrating TOE connections to either
5831 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5832 */
5833 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5834 V_PASSMODE(2));
5835
5836 #ifdef KERN_TLS
5837 if (is_ktls(sc)) {
5838 sc->tlst.inline_keys = t4_tls_inline_keys;
5839 sc->tlst.combo_wrs = t4_tls_combo_wrs;
5840 if (t4_kern_tls != 0 && is_t6(sc))
5841 t6_config_kern_tls(sc, true);
5842 }
5843 #endif
5844 return (0);
5845 }
5846
5847 #undef FW_PARAM_PFVF
5848 #undef FW_PARAM_DEV
5849
5850 static void
t4_set_desc(struct adapter * sc)5851 t4_set_desc(struct adapter *sc)
5852 {
5853 struct adapter_params *p = &sc->params;
5854
5855 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5856 }
5857
5858 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)5859 ifmedia_add4(struct ifmedia *ifm, int m)
5860 {
5861
5862 ifmedia_add(ifm, m, 0, NULL);
5863 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5864 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5865 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5866 }
5867
5868 /*
5869 * This is the selected media, which is not quite the same as the active media.
5870 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5871 * and active are not the same, and "media: Ethernet selected" otherwise.
5872 */
5873 static void
set_current_media(struct port_info * pi)5874 set_current_media(struct port_info *pi)
5875 {
5876 struct link_config *lc;
5877 struct ifmedia *ifm;
5878 int mword;
5879 u_int speed;
5880
5881 PORT_LOCK_ASSERT_OWNED(pi);
5882
5883 /* Leave current media alone if it's already set to IFM_NONE. */
5884 ifm = &pi->media;
5885 if (ifm->ifm_cur != NULL &&
5886 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5887 return;
5888
5889 lc = &pi->link_cfg;
5890 if (lc->requested_aneg != AUTONEG_DISABLE &&
5891 lc->pcaps & FW_PORT_CAP32_ANEG) {
5892 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5893 return;
5894 }
5895 mword = IFM_ETHER | IFM_FDX;
5896 if (lc->requested_fc & PAUSE_TX)
5897 mword |= IFM_ETH_TXPAUSE;
5898 if (lc->requested_fc & PAUSE_RX)
5899 mword |= IFM_ETH_RXPAUSE;
5900 if (lc->requested_speed == 0)
5901 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
5902 else
5903 speed = lc->requested_speed;
5904 mword |= port_mword(pi, speed_to_fwcap(speed));
5905 ifmedia_set(ifm, mword);
5906 }
5907
5908 /*
5909 * Returns true if the ifmedia list for the port cannot change.
5910 */
5911 static bool
fixed_ifmedia(struct port_info * pi)5912 fixed_ifmedia(struct port_info *pi)
5913 {
5914
5915 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5916 pi->port_type == FW_PORT_TYPE_BT_XFI ||
5917 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5918 pi->port_type == FW_PORT_TYPE_KX4 ||
5919 pi->port_type == FW_PORT_TYPE_KX ||
5920 pi->port_type == FW_PORT_TYPE_KR ||
5921 pi->port_type == FW_PORT_TYPE_BP_AP ||
5922 pi->port_type == FW_PORT_TYPE_BP4_AP ||
5923 pi->port_type == FW_PORT_TYPE_BP40_BA ||
5924 pi->port_type == FW_PORT_TYPE_KR4_100G ||
5925 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5926 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5927 }
5928
5929 static void
build_medialist(struct port_info * pi)5930 build_medialist(struct port_info *pi)
5931 {
5932 uint32_t ss, speed;
5933 int unknown, mword, bit;
5934 struct link_config *lc;
5935 struct ifmedia *ifm;
5936
5937 PORT_LOCK_ASSERT_OWNED(pi);
5938
5939 if (pi->flags & FIXED_IFMEDIA)
5940 return;
5941
5942 /*
5943 * Rebuild the ifmedia list.
5944 */
5945 ifm = &pi->media;
5946 ifmedia_removeall(ifm);
5947 lc = &pi->link_cfg;
5948 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5949 if (__predict_false(ss == 0)) { /* not supposed to happen. */
5950 MPASS(ss != 0);
5951 no_media:
5952 MPASS(LIST_EMPTY(&ifm->ifm_list));
5953 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5954 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5955 return;
5956 }
5957
5958 unknown = 0;
5959 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5960 speed = 1 << bit;
5961 MPASS(speed & M_FW_PORT_CAP32_SPEED);
5962 if (ss & speed) {
5963 mword = port_mword(pi, speed);
5964 if (mword == IFM_NONE) {
5965 goto no_media;
5966 } else if (mword == IFM_UNKNOWN)
5967 unknown++;
5968 else
5969 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5970 }
5971 }
5972 if (unknown > 0) /* Add one unknown for all unknown media types. */
5973 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5974 if (lc->pcaps & FW_PORT_CAP32_ANEG)
5975 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5976
5977 set_current_media(pi);
5978 }
5979
5980 /*
5981 * Initialize the requested fields in the link config based on driver tunables.
5982 */
5983 static void
init_link_config(struct port_info * pi)5984 init_link_config(struct port_info *pi)
5985 {
5986 struct link_config *lc = &pi->link_cfg;
5987
5988 PORT_LOCK_ASSERT_OWNED(pi);
5989
5990 lc->requested_caps = 0;
5991 lc->requested_speed = 0;
5992
5993 if (t4_autoneg == 0)
5994 lc->requested_aneg = AUTONEG_DISABLE;
5995 else if (t4_autoneg == 1)
5996 lc->requested_aneg = AUTONEG_ENABLE;
5997 else
5998 lc->requested_aneg = AUTONEG_AUTO;
5999
6000 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6001 PAUSE_AUTONEG);
6002
6003 if (t4_fec & FEC_AUTO)
6004 lc->requested_fec = FEC_AUTO;
6005 else if (t4_fec == 0)
6006 lc->requested_fec = FEC_NONE;
6007 else {
6008 /* -1 is handled by the FEC_AUTO block above and not here. */
6009 lc->requested_fec = t4_fec &
6010 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6011 if (lc->requested_fec == 0)
6012 lc->requested_fec = FEC_AUTO;
6013 }
6014 if (t4_force_fec < 0)
6015 lc->force_fec = -1;
6016 else if (t4_force_fec > 0)
6017 lc->force_fec = 1;
6018 else
6019 lc->force_fec = 0;
6020 }
6021
6022 /*
6023 * Makes sure that all requested settings comply with what's supported by the
6024 * port. Returns the number of settings that were invalid and had to be fixed.
6025 */
6026 static int
fixup_link_config(struct port_info * pi)6027 fixup_link_config(struct port_info *pi)
6028 {
6029 int n = 0;
6030 struct link_config *lc = &pi->link_cfg;
6031 uint32_t fwspeed;
6032
6033 PORT_LOCK_ASSERT_OWNED(pi);
6034
6035 /* Speed (when not autonegotiating) */
6036 if (lc->requested_speed != 0) {
6037 fwspeed = speed_to_fwcap(lc->requested_speed);
6038 if ((fwspeed & lc->pcaps) == 0) {
6039 n++;
6040 lc->requested_speed = 0;
6041 }
6042 }
6043
6044 /* Link autonegotiation */
6045 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6046 lc->requested_aneg == AUTONEG_DISABLE ||
6047 lc->requested_aneg == AUTONEG_AUTO);
6048 if (lc->requested_aneg == AUTONEG_ENABLE &&
6049 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6050 n++;
6051 lc->requested_aneg = AUTONEG_AUTO;
6052 }
6053
6054 /* Flow control */
6055 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6056 if (lc->requested_fc & PAUSE_TX &&
6057 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6058 n++;
6059 lc->requested_fc &= ~PAUSE_TX;
6060 }
6061 if (lc->requested_fc & PAUSE_RX &&
6062 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6063 n++;
6064 lc->requested_fc &= ~PAUSE_RX;
6065 }
6066 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6067 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6068 n++;
6069 lc->requested_fc |= PAUSE_AUTONEG;
6070 }
6071
6072 /* FEC */
6073 if ((lc->requested_fec & FEC_RS &&
6074 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6075 (lc->requested_fec & FEC_BASER_RS &&
6076 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6077 n++;
6078 lc->requested_fec = FEC_AUTO;
6079 }
6080
6081 return (n);
6082 }
6083
6084 /*
6085 * Apply the requested L1 settings, which are expected to be valid, to the
6086 * hardware.
6087 */
6088 static int
apply_link_config(struct port_info * pi)6089 apply_link_config(struct port_info *pi)
6090 {
6091 struct adapter *sc = pi->adapter;
6092 struct link_config *lc = &pi->link_cfg;
6093 int rc;
6094
6095 #ifdef INVARIANTS
6096 ASSERT_SYNCHRONIZED_OP(sc);
6097 PORT_LOCK_ASSERT_OWNED(pi);
6098
6099 if (lc->requested_aneg == AUTONEG_ENABLE)
6100 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6101 if (!(lc->requested_fc & PAUSE_AUTONEG))
6102 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6103 if (lc->requested_fc & PAUSE_TX)
6104 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6105 if (lc->requested_fc & PAUSE_RX)
6106 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6107 if (lc->requested_fec & FEC_RS)
6108 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6109 if (lc->requested_fec & FEC_BASER_RS)
6110 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6111 #endif
6112 if (!(sc->flags & IS_VF)) {
6113 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6114 if (rc != 0) {
6115 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6116 return (rc);
6117 }
6118 }
6119
6120 /*
6121 * An L1_CFG will almost always result in a link-change event if the
6122 * link is up, and the driver will refresh the actual fec/fc/etc. when
6123 * the notification is processed. If the link is down then the actual
6124 * settings are meaningless.
6125 *
6126 * This takes care of the case where a change in the L1 settings may not
6127 * result in a notification.
6128 */
6129 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6130 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6131
6132 return (0);
6133 }
6134
6135 #define FW_MAC_EXACT_CHUNK 7
6136 struct mcaddr_ctx {
6137 if_t ifp;
6138 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6139 uint64_t hash;
6140 int i;
6141 int del;
6142 int rc;
6143 };
6144
6145 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6146 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6147 {
6148 struct mcaddr_ctx *ctx = arg;
6149 struct vi_info *vi = if_getsoftc(ctx->ifp);
6150 struct port_info *pi = vi->pi;
6151 struct adapter *sc = pi->adapter;
6152
6153 if (ctx->rc < 0)
6154 return (0);
6155
6156 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6157 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6158 ctx->i++;
6159
6160 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6161 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6162 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6163 if (ctx->rc < 0) {
6164 int j;
6165
6166 for (j = 0; j < ctx->i; j++) {
6167 if_printf(ctx->ifp,
6168 "failed to add mc address"
6169 " %02x:%02x:%02x:"
6170 "%02x:%02x:%02x rc=%d\n",
6171 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6172 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6173 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6174 -ctx->rc);
6175 }
6176 return (0);
6177 }
6178 ctx->del = 0;
6179 ctx->i = 0;
6180 }
6181
6182 return (1);
6183 }
6184
6185 /*
6186 * Program the port's XGMAC based on parameters in ifnet. The caller also
6187 * indicates which parameters should be programmed (the rest are left alone).
6188 */
6189 int
update_mac_settings(if_t ifp,int flags)6190 update_mac_settings(if_t ifp, int flags)
6191 {
6192 int rc = 0;
6193 struct vi_info *vi = if_getsoftc(ifp);
6194 struct port_info *pi = vi->pi;
6195 struct adapter *sc = pi->adapter;
6196 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6197 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6198
6199 ASSERT_SYNCHRONIZED_OP(sc);
6200 KASSERT(flags, ("%s: not told what to update.", __func__));
6201
6202 if (flags & XGMAC_MTU)
6203 mtu = if_getmtu(ifp);
6204
6205 if (flags & XGMAC_PROMISC)
6206 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6207
6208 if (flags & XGMAC_ALLMULTI)
6209 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6210
6211 if (flags & XGMAC_VLANEX)
6212 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6213
6214 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6215 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6216 allmulti, 1, vlanex, false);
6217 if (rc) {
6218 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6219 rc);
6220 return (rc);
6221 }
6222 }
6223
6224 if (flags & XGMAC_UCADDR) {
6225 uint8_t ucaddr[ETHER_ADDR_LEN];
6226
6227 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6228 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6229 ucaddr, true, &vi->smt_idx);
6230 if (rc < 0) {
6231 rc = -rc;
6232 if_printf(ifp, "change_mac failed: %d\n", rc);
6233 return (rc);
6234 } else {
6235 vi->xact_addr_filt = rc;
6236 rc = 0;
6237 }
6238 }
6239
6240 if (flags & XGMAC_MCADDRS) {
6241 struct epoch_tracker et;
6242 struct mcaddr_ctx ctx;
6243 int j;
6244
6245 ctx.ifp = ifp;
6246 ctx.hash = 0;
6247 ctx.i = 0;
6248 ctx.del = 1;
6249 ctx.rc = 0;
6250 /*
6251 * Unlike other drivers, we accumulate list of pointers into
6252 * interface address lists and we need to keep it safe even
6253 * after if_foreach_llmaddr() returns, thus we must enter the
6254 * network epoch.
6255 */
6256 NET_EPOCH_ENTER(et);
6257 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6258 if (ctx.rc < 0) {
6259 NET_EPOCH_EXIT(et);
6260 rc = -ctx.rc;
6261 return (rc);
6262 }
6263 if (ctx.i > 0) {
6264 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6265 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6266 NET_EPOCH_EXIT(et);
6267 if (rc < 0) {
6268 rc = -rc;
6269 for (j = 0; j < ctx.i; j++) {
6270 if_printf(ifp,
6271 "failed to add mcast address"
6272 " %02x:%02x:%02x:"
6273 "%02x:%02x:%02x rc=%d\n",
6274 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6275 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6276 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6277 rc);
6278 }
6279 return (rc);
6280 }
6281 ctx.del = 0;
6282 } else
6283 NET_EPOCH_EXIT(et);
6284
6285 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6286 if (rc != 0)
6287 if_printf(ifp, "failed to set mcast address hash: %d\n",
6288 rc);
6289 if (ctx.del == 0) {
6290 /* We clobbered the VXLAN entry if there was one. */
6291 pi->vxlan_tcam_entry = false;
6292 }
6293 }
6294
6295 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6296 pi->vxlan_tcam_entry == false) {
6297 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6298 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6299 true);
6300 if (rc < 0) {
6301 rc = -rc;
6302 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6303 rc);
6304 } else {
6305 MPASS(rc == sc->rawf_base + pi->port_id);
6306 rc = 0;
6307 pi->vxlan_tcam_entry = true;
6308 }
6309 }
6310
6311 return (rc);
6312 }
6313
6314 /*
6315 * {begin|end}_synchronized_op must be called from the same thread.
6316 */
6317 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6318 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6319 char *wmesg)
6320 {
6321 int rc, pri;
6322
6323 #ifdef WITNESS
6324 /* the caller thinks it's ok to sleep, but is it really? */
6325 if (flags & SLEEP_OK)
6326 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6327 "begin_synchronized_op");
6328 #endif
6329
6330 if (INTR_OK)
6331 pri = PCATCH;
6332 else
6333 pri = 0;
6334
6335 ADAPTER_LOCK(sc);
6336 for (;;) {
6337
6338 if (vi && IS_DETACHING(vi)) {
6339 rc = ENXIO;
6340 goto done;
6341 }
6342
6343 if (!IS_BUSY(sc)) {
6344 rc = 0;
6345 break;
6346 }
6347
6348 if (!(flags & SLEEP_OK)) {
6349 rc = EBUSY;
6350 goto done;
6351 }
6352
6353 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6354 rc = EINTR;
6355 goto done;
6356 }
6357 }
6358
6359 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6360 SET_BUSY(sc);
6361 #ifdef INVARIANTS
6362 sc->last_op = wmesg;
6363 sc->last_op_thr = curthread;
6364 sc->last_op_flags = flags;
6365 #endif
6366
6367 done:
6368 if (!(flags & HOLD_LOCK) || rc)
6369 ADAPTER_UNLOCK(sc);
6370
6371 return (rc);
6372 }
6373
6374 /*
6375 * Tell if_ioctl and if_init that the VI is going away. This is
6376 * special variant of begin_synchronized_op and must be paired with a
6377 * call to end_vi_detach.
6378 */
6379 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6380 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6381 {
6382 ADAPTER_LOCK(sc);
6383 SET_DETACHING(vi);
6384 wakeup(&sc->flags);
6385 while (IS_BUSY(sc))
6386 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6387 SET_BUSY(sc);
6388 #ifdef INVARIANTS
6389 sc->last_op = "t4detach";
6390 sc->last_op_thr = curthread;
6391 sc->last_op_flags = 0;
6392 #endif
6393 ADAPTER_UNLOCK(sc);
6394 }
6395
6396 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6397 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6398 {
6399 ADAPTER_LOCK(sc);
6400 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6401 CLR_BUSY(sc);
6402 CLR_DETACHING(vi);
6403 wakeup(&sc->flags);
6404 ADAPTER_UNLOCK(sc);
6405 }
6406
6407 /*
6408 * {begin|end}_synchronized_op must be called from the same thread.
6409 */
6410 void
end_synchronized_op(struct adapter * sc,int flags)6411 end_synchronized_op(struct adapter *sc, int flags)
6412 {
6413
6414 if (flags & LOCK_HELD)
6415 ADAPTER_LOCK_ASSERT_OWNED(sc);
6416 else
6417 ADAPTER_LOCK(sc);
6418
6419 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6420 CLR_BUSY(sc);
6421 wakeup(&sc->flags);
6422 ADAPTER_UNLOCK(sc);
6423 }
6424
6425 static int
cxgbe_init_synchronized(struct vi_info * vi)6426 cxgbe_init_synchronized(struct vi_info *vi)
6427 {
6428 struct port_info *pi = vi->pi;
6429 struct adapter *sc = pi->adapter;
6430 if_t ifp = vi->ifp;
6431 int rc = 0, i;
6432 struct sge_txq *txq;
6433
6434 ASSERT_SYNCHRONIZED_OP(sc);
6435
6436 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6437 return (0); /* already running */
6438
6439 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6440 return (rc); /* error message displayed already */
6441
6442 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6443 return (rc); /* error message displayed already */
6444
6445 rc = update_mac_settings(ifp, XGMAC_ALL);
6446 if (rc)
6447 goto done; /* error message displayed already */
6448
6449 PORT_LOCK(pi);
6450 if (pi->up_vis == 0) {
6451 t4_update_port_info(pi);
6452 fixup_link_config(pi);
6453 build_medialist(pi);
6454 apply_link_config(pi);
6455 }
6456
6457 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6458 if (rc != 0) {
6459 if_printf(ifp, "enable_vi failed: %d\n", rc);
6460 PORT_UNLOCK(pi);
6461 goto done;
6462 }
6463
6464 /*
6465 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6466 * if this changes.
6467 */
6468
6469 for_each_txq(vi, i, txq) {
6470 TXQ_LOCK(txq);
6471 txq->eq.flags |= EQ_ENABLED;
6472 TXQ_UNLOCK(txq);
6473 }
6474
6475 /*
6476 * The first iq of the first port to come up is used for tracing.
6477 */
6478 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6479 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6480 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL :
6481 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6482 V_QUEUENUMBER(sc->traceq));
6483 pi->flags |= HAS_TRACEQ;
6484 }
6485
6486 /* all ok */
6487 pi->up_vis++;
6488 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6489 if (pi->link_cfg.link_ok)
6490 t4_os_link_changed(pi);
6491 PORT_UNLOCK(pi);
6492
6493 mtx_lock(&vi->tick_mtx);
6494 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6495 callout_reset(&vi->tick, hz, vi_tick, vi);
6496 else
6497 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6498 mtx_unlock(&vi->tick_mtx);
6499 done:
6500 if (rc != 0)
6501 cxgbe_uninit_synchronized(vi);
6502
6503 return (rc);
6504 }
6505
6506 /*
6507 * Idempotent.
6508 */
6509 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6510 cxgbe_uninit_synchronized(struct vi_info *vi)
6511 {
6512 struct port_info *pi = vi->pi;
6513 struct adapter *sc = pi->adapter;
6514 if_t ifp = vi->ifp;
6515 int rc, i;
6516 struct sge_txq *txq;
6517
6518 ASSERT_SYNCHRONIZED_OP(sc);
6519
6520 if (!(vi->flags & VI_INIT_DONE)) {
6521 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6522 KASSERT(0, ("uninited VI is running"));
6523 if_printf(ifp, "uninited VI with running ifnet. "
6524 "vi->flags 0x%016lx, if_flags 0x%08x, "
6525 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6526 if_getdrvflags(ifp));
6527 }
6528 return (0);
6529 }
6530
6531 /*
6532 * Disable the VI so that all its data in either direction is discarded
6533 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6534 * tick) intact as the TP can deliver negative advice or data that it's
6535 * holding in its RAM (for an offloaded connection) even after the VI is
6536 * disabled.
6537 */
6538 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6539 if (rc) {
6540 if_printf(ifp, "disable_vi failed: %d\n", rc);
6541 return (rc);
6542 }
6543
6544 for_each_txq(vi, i, txq) {
6545 TXQ_LOCK(txq);
6546 txq->eq.flags &= ~EQ_ENABLED;
6547 TXQ_UNLOCK(txq);
6548 }
6549
6550 mtx_lock(&vi->tick_mtx);
6551 callout_stop(&vi->tick);
6552 mtx_unlock(&vi->tick_mtx);
6553
6554 PORT_LOCK(pi);
6555 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6556 PORT_UNLOCK(pi);
6557 return (0);
6558 }
6559 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6560 pi->up_vis--;
6561 if (pi->up_vis > 0) {
6562 PORT_UNLOCK(pi);
6563 return (0);
6564 }
6565
6566 pi->link_cfg.link_ok = false;
6567 pi->link_cfg.speed = 0;
6568 pi->link_cfg.link_down_rc = 255;
6569 t4_os_link_changed(pi);
6570 PORT_UNLOCK(pi);
6571
6572 return (0);
6573 }
6574
6575 /*
6576 * It is ok for this function to fail midway and return right away. t4_detach
6577 * will walk the entire sc->irq list and clean up whatever is valid.
6578 */
6579 int
t4_setup_intr_handlers(struct adapter * sc)6580 t4_setup_intr_handlers(struct adapter *sc)
6581 {
6582 int rc, rid, p, q, v;
6583 char s[8];
6584 struct irq *irq;
6585 struct port_info *pi;
6586 struct vi_info *vi;
6587 struct sge *sge = &sc->sge;
6588 struct sge_rxq *rxq;
6589 #ifdef TCP_OFFLOAD
6590 struct sge_ofld_rxq *ofld_rxq;
6591 #endif
6592 #ifdef DEV_NETMAP
6593 struct sge_nm_rxq *nm_rxq;
6594 #endif
6595 #ifdef RSS
6596 int nbuckets = rss_getnumbuckets();
6597 #endif
6598
6599 /*
6600 * Setup interrupts.
6601 */
6602 irq = &sc->irq[0];
6603 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6604 if (forwarding_intr_to_fwq(sc))
6605 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6606
6607 /* Multiple interrupts. */
6608 if (sc->flags & IS_VF)
6609 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6610 ("%s: too few intr.", __func__));
6611 else
6612 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6613 ("%s: too few intr.", __func__));
6614
6615 /* The first one is always error intr on PFs */
6616 if (!(sc->flags & IS_VF)) {
6617 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6618 if (rc != 0)
6619 return (rc);
6620 irq++;
6621 rid++;
6622 }
6623
6624 /* The second one is always the firmware event queue (first on VFs) */
6625 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6626 if (rc != 0)
6627 return (rc);
6628 irq++;
6629 rid++;
6630
6631 for_each_port(sc, p) {
6632 pi = sc->port[p];
6633 for_each_vi(pi, v, vi) {
6634 vi->first_intr = rid - 1;
6635
6636 if (vi->nnmrxq > 0) {
6637 int n = max(vi->nrxq, vi->nnmrxq);
6638
6639 rxq = &sge->rxq[vi->first_rxq];
6640 #ifdef DEV_NETMAP
6641 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6642 #endif
6643 for (q = 0; q < n; q++) {
6644 snprintf(s, sizeof(s), "%x%c%x", p,
6645 'a' + v, q);
6646 if (q < vi->nrxq)
6647 irq->rxq = rxq++;
6648 #ifdef DEV_NETMAP
6649 if (q < vi->nnmrxq)
6650 irq->nm_rxq = nm_rxq++;
6651
6652 if (irq->nm_rxq != NULL &&
6653 irq->rxq == NULL) {
6654 /* Netmap rx only */
6655 rc = t4_alloc_irq(sc, irq, rid,
6656 t4_nm_intr, irq->nm_rxq, s);
6657 }
6658 if (irq->nm_rxq != NULL &&
6659 irq->rxq != NULL) {
6660 /* NIC and Netmap rx */
6661 rc = t4_alloc_irq(sc, irq, rid,
6662 t4_vi_intr, irq, s);
6663 }
6664 #endif
6665 if (irq->rxq != NULL &&
6666 irq->nm_rxq == NULL) {
6667 /* NIC rx only */
6668 rc = t4_alloc_irq(sc, irq, rid,
6669 t4_intr, irq->rxq, s);
6670 }
6671 if (rc != 0)
6672 return (rc);
6673 #ifdef RSS
6674 if (q < vi->nrxq) {
6675 bus_bind_intr(sc->dev, irq->res,
6676 rss_getcpu(q % nbuckets));
6677 }
6678 #endif
6679 irq++;
6680 rid++;
6681 vi->nintr++;
6682 }
6683 } else {
6684 for_each_rxq(vi, q, rxq) {
6685 snprintf(s, sizeof(s), "%x%c%x", p,
6686 'a' + v, q);
6687 rc = t4_alloc_irq(sc, irq, rid,
6688 t4_intr, rxq, s);
6689 if (rc != 0)
6690 return (rc);
6691 #ifdef RSS
6692 bus_bind_intr(sc->dev, irq->res,
6693 rss_getcpu(q % nbuckets));
6694 #endif
6695 irq++;
6696 rid++;
6697 vi->nintr++;
6698 }
6699 }
6700 #ifdef TCP_OFFLOAD
6701 for_each_ofld_rxq(vi, q, ofld_rxq) {
6702 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6703 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6704 ofld_rxq, s);
6705 if (rc != 0)
6706 return (rc);
6707 irq++;
6708 rid++;
6709 vi->nintr++;
6710 }
6711 #endif
6712 }
6713 }
6714 MPASS(irq == &sc->irq[sc->intr_count]);
6715
6716 return (0);
6717 }
6718
6719 static void
write_global_rss_key(struct adapter * sc)6720 write_global_rss_key(struct adapter *sc)
6721 {
6722 #ifdef RSS
6723 int i;
6724 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6725 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6726
6727 CTASSERT(RSS_KEYSIZE == 40);
6728
6729 rss_getkey((void *)&raw_rss_key[0]);
6730 for (i = 0; i < nitems(rss_key); i++) {
6731 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6732 }
6733 t4_write_rss_key(sc, &rss_key[0], -1, 1);
6734 #endif
6735 }
6736
6737 /*
6738 * Idempotent.
6739 */
6740 static int
adapter_full_init(struct adapter * sc)6741 adapter_full_init(struct adapter *sc)
6742 {
6743 int rc, i;
6744
6745 ASSERT_SYNCHRONIZED_OP(sc);
6746
6747 /*
6748 * queues that belong to the adapter (not any particular port).
6749 */
6750 rc = t4_setup_adapter_queues(sc);
6751 if (rc != 0)
6752 return (rc);
6753
6754 MPASS(sc->params.nports <= nitems(sc->tq));
6755 for (i = 0; i < sc->params.nports; i++) {
6756 if (sc->tq[i] != NULL)
6757 continue;
6758 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6759 taskqueue_thread_enqueue, &sc->tq[i]);
6760 if (sc->tq[i] == NULL) {
6761 CH_ERR(sc, "failed to allocate task queue %d\n", i);
6762 return (ENOMEM);
6763 }
6764 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6765 device_get_nameunit(sc->dev), i);
6766 }
6767
6768 if (!(sc->flags & IS_VF)) {
6769 write_global_rss_key(sc);
6770 t4_intr_enable(sc);
6771 }
6772 return (0);
6773 }
6774
6775 int
adapter_init(struct adapter * sc)6776 adapter_init(struct adapter *sc)
6777 {
6778 int rc;
6779
6780 ASSERT_SYNCHRONIZED_OP(sc);
6781 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6782 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6783 ("%s: FULL_INIT_DONE already", __func__));
6784
6785 rc = adapter_full_init(sc);
6786 if (rc != 0)
6787 adapter_full_uninit(sc);
6788 else
6789 sc->flags |= FULL_INIT_DONE;
6790
6791 return (rc);
6792 }
6793
6794 /*
6795 * Idempotent.
6796 */
6797 static void
adapter_full_uninit(struct adapter * sc)6798 adapter_full_uninit(struct adapter *sc)
6799 {
6800 int i;
6801
6802 t4_teardown_adapter_queues(sc);
6803
6804 for (i = 0; i < nitems(sc->tq); i++) {
6805 if (sc->tq[i] == NULL)
6806 continue;
6807 taskqueue_free(sc->tq[i]);
6808 sc->tq[i] = NULL;
6809 }
6810
6811 sc->flags &= ~FULL_INIT_DONE;
6812 }
6813
6814 #ifdef RSS
6815 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6816 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6817 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6818 RSS_HASHTYPE_RSS_UDP_IPV6)
6819
6820 /* Translates kernel hash types to hardware. */
6821 static int
hashconfig_to_hashen(int hashconfig)6822 hashconfig_to_hashen(int hashconfig)
6823 {
6824 int hashen = 0;
6825
6826 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6827 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6828 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6829 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6830 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6831 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6832 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6833 }
6834 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6835 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6836 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6837 }
6838 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6839 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6840 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6841 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6842
6843 return (hashen);
6844 }
6845
6846 /* Translates hardware hash types to kernel. */
6847 static int
hashen_to_hashconfig(int hashen)6848 hashen_to_hashconfig(int hashen)
6849 {
6850 int hashconfig = 0;
6851
6852 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6853 /*
6854 * If UDP hashing was enabled it must have been enabled for
6855 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
6856 * enabling any 4-tuple hash is nonsense configuration.
6857 */
6858 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6859 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6860
6861 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6862 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6863 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6864 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6865 }
6866 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6867 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6868 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6869 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6870 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6871 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6872 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6873 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6874
6875 return (hashconfig);
6876 }
6877 #endif
6878
6879 /*
6880 * Idempotent.
6881 */
6882 static int
vi_full_init(struct vi_info * vi)6883 vi_full_init(struct vi_info *vi)
6884 {
6885 struct adapter *sc = vi->adapter;
6886 struct sge_rxq *rxq;
6887 int rc, i, j;
6888 #ifdef RSS
6889 int nbuckets = rss_getnumbuckets();
6890 int hashconfig = rss_gethashconfig();
6891 int extra;
6892 #endif
6893
6894 ASSERT_SYNCHRONIZED_OP(sc);
6895
6896 /*
6897 * Allocate tx/rx/fl queues for this VI.
6898 */
6899 rc = t4_setup_vi_queues(vi);
6900 if (rc != 0)
6901 return (rc);
6902
6903 /*
6904 * Setup RSS for this VI. Save a copy of the RSS table for later use.
6905 */
6906 if (vi->nrxq > vi->rss_size) {
6907 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6908 "some queues will never receive traffic.\n", vi->nrxq,
6909 vi->rss_size);
6910 } else if (vi->rss_size % vi->nrxq) {
6911 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6912 "expect uneven traffic distribution.\n", vi->nrxq,
6913 vi->rss_size);
6914 }
6915 #ifdef RSS
6916 if (vi->nrxq != nbuckets) {
6917 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6918 "performance will be impacted.\n", vi->nrxq, nbuckets);
6919 }
6920 #endif
6921 if (vi->rss == NULL)
6922 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6923 M_ZERO | M_WAITOK);
6924 for (i = 0; i < vi->rss_size;) {
6925 #ifdef RSS
6926 j = rss_get_indirection_to_bucket(i);
6927 j %= vi->nrxq;
6928 rxq = &sc->sge.rxq[vi->first_rxq + j];
6929 vi->rss[i++] = rxq->iq.abs_id;
6930 #else
6931 for_each_rxq(vi, j, rxq) {
6932 vi->rss[i++] = rxq->iq.abs_id;
6933 if (i == vi->rss_size)
6934 break;
6935 }
6936 #endif
6937 }
6938
6939 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6940 vi->rss, vi->rss_size);
6941 if (rc != 0) {
6942 CH_ERR(vi, "rss_config failed: %d\n", rc);
6943 return (rc);
6944 }
6945
6946 #ifdef RSS
6947 vi->hashen = hashconfig_to_hashen(hashconfig);
6948
6949 /*
6950 * We may have had to enable some hashes even though the global config
6951 * wants them disabled. This is a potential problem that must be
6952 * reported to the user.
6953 */
6954 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6955
6956 /*
6957 * If we consider only the supported hash types, then the enabled hashes
6958 * are a superset of the requested hashes. In other words, there cannot
6959 * be any supported hash that was requested but not enabled, but there
6960 * can be hashes that were not requested but had to be enabled.
6961 */
6962 extra &= SUPPORTED_RSS_HASHTYPES;
6963 MPASS((extra & hashconfig) == 0);
6964
6965 if (extra) {
6966 CH_ALERT(vi,
6967 "global RSS config (0x%x) cannot be accommodated.\n",
6968 hashconfig);
6969 }
6970 if (extra & RSS_HASHTYPE_RSS_IPV4)
6971 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6972 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6973 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6974 if (extra & RSS_HASHTYPE_RSS_IPV6)
6975 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6976 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6977 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6978 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6979 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6980 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6981 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6982 #else
6983 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6984 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6985 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6986 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6987 #endif
6988 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6989 0, 0);
6990 if (rc != 0) {
6991 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6992 return (rc);
6993 }
6994
6995 return (0);
6996 }
6997
6998 int
vi_init(struct vi_info * vi)6999 vi_init(struct vi_info *vi)
7000 {
7001 int rc;
7002
7003 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7004 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7005 ("%s: VI_INIT_DONE already", __func__));
7006
7007 rc = vi_full_init(vi);
7008 if (rc != 0)
7009 vi_full_uninit(vi);
7010 else
7011 vi->flags |= VI_INIT_DONE;
7012
7013 return (rc);
7014 }
7015
7016 /*
7017 * Idempotent.
7018 */
7019 static void
vi_full_uninit(struct vi_info * vi)7020 vi_full_uninit(struct vi_info *vi)
7021 {
7022
7023 if (vi->flags & VI_INIT_DONE) {
7024 quiesce_vi(vi);
7025 free(vi->rss, M_CXGBE);
7026 free(vi->nm_rss, M_CXGBE);
7027 }
7028
7029 t4_teardown_vi_queues(vi);
7030 vi->flags &= ~VI_INIT_DONE;
7031 }
7032
7033 static void
quiesce_txq(struct sge_txq * txq)7034 quiesce_txq(struct sge_txq *txq)
7035 {
7036 struct sge_eq *eq = &txq->eq;
7037 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7038
7039 MPASS(eq->flags & EQ_SW_ALLOCATED);
7040 MPASS(!(eq->flags & EQ_ENABLED));
7041
7042 /* Wait for the mp_ring to empty. */
7043 while (!mp_ring_is_idle(txq->r)) {
7044 mp_ring_check_drainage(txq->r, 4096);
7045 pause("rquiesce", 1);
7046 }
7047 MPASS(txq->txp.npkt == 0);
7048
7049 if (eq->flags & EQ_HW_ALLOCATED) {
7050 /*
7051 * Hardware is alive and working normally. Wait for it to
7052 * finish and then wait for the driver to catch up and reclaim
7053 * all descriptors.
7054 */
7055 while (spg->cidx != htobe16(eq->pidx))
7056 pause("equiesce", 1);
7057 while (eq->cidx != eq->pidx)
7058 pause("dquiesce", 1);
7059 } else {
7060 /*
7061 * Hardware is unavailable. Discard all pending tx and reclaim
7062 * descriptors directly.
7063 */
7064 TXQ_LOCK(txq);
7065 while (eq->cidx != eq->pidx) {
7066 struct mbuf *m, *nextpkt;
7067 struct tx_sdesc *txsd;
7068
7069 txsd = &txq->sdesc[eq->cidx];
7070 for (m = txsd->m; m != NULL; m = nextpkt) {
7071 nextpkt = m->m_nextpkt;
7072 m->m_nextpkt = NULL;
7073 m_freem(m);
7074 }
7075 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7076 }
7077 spg->pidx = spg->cidx = htobe16(eq->cidx);
7078 TXQ_UNLOCK(txq);
7079 }
7080 }
7081
7082 static void
quiesce_wrq(struct sge_wrq * wrq)7083 quiesce_wrq(struct sge_wrq *wrq)
7084 {
7085 struct wrqe *wr;
7086
7087 TXQ_LOCK(wrq);
7088 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7089 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7090 #ifdef INVARIANTS
7091 wrq->nwr_pending--;
7092 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7093 #endif
7094 free(wr, M_CXGBE);
7095 }
7096 MPASS(wrq->nwr_pending == 0);
7097 MPASS(wrq->ndesc_needed == 0);
7098 wrq->nwr_pending = 0;
7099 wrq->ndesc_needed = 0;
7100 TXQ_UNLOCK(wrq);
7101 }
7102
7103 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7104 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7105 {
7106 /* Synchronize with the interrupt handler */
7107 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7108 pause("iqfree", 1);
7109
7110 if (fl != NULL) {
7111 MPASS(iq->flags & IQ_HAS_FL);
7112
7113 mtx_lock(&sc->sfl_lock);
7114 FL_LOCK(fl);
7115 fl->flags |= FL_DOOMED;
7116 FL_UNLOCK(fl);
7117 callout_stop(&sc->sfl_callout);
7118 mtx_unlock(&sc->sfl_lock);
7119
7120 KASSERT((fl->flags & FL_STARVING) == 0,
7121 ("%s: still starving", __func__));
7122
7123 /* Release all buffers if hardware is no longer available. */
7124 if (!(iq->flags & IQ_HW_ALLOCATED))
7125 free_fl_buffers(sc, fl);
7126 }
7127 }
7128
7129 /*
7130 * Wait for all activity on all the queues of the VI to complete. It is assumed
7131 * that no new work is being enqueued by the hardware or the driver. That part
7132 * should be arranged before calling this function.
7133 */
7134 static void
quiesce_vi(struct vi_info * vi)7135 quiesce_vi(struct vi_info *vi)
7136 {
7137 int i;
7138 struct adapter *sc = vi->adapter;
7139 struct sge_rxq *rxq;
7140 struct sge_txq *txq;
7141 #ifdef TCP_OFFLOAD
7142 struct sge_ofld_rxq *ofld_rxq;
7143 #endif
7144 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7145 struct sge_ofld_txq *ofld_txq;
7146 #endif
7147
7148 if (!(vi->flags & VI_INIT_DONE))
7149 return;
7150
7151 for_each_txq(vi, i, txq) {
7152 quiesce_txq(txq);
7153 }
7154
7155 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7156 for_each_ofld_txq(vi, i, ofld_txq) {
7157 quiesce_wrq(&ofld_txq->wrq);
7158 }
7159 #endif
7160
7161 for_each_rxq(vi, i, rxq) {
7162 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7163 }
7164
7165 #ifdef TCP_OFFLOAD
7166 for_each_ofld_rxq(vi, i, ofld_rxq) {
7167 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7168 }
7169 #endif
7170 }
7171
7172 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7173 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7174 driver_intr_t *handler, void *arg, char *name)
7175 {
7176 int rc;
7177
7178 irq->rid = rid;
7179 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7180 RF_SHAREABLE | RF_ACTIVE);
7181 if (irq->res == NULL) {
7182 device_printf(sc->dev,
7183 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7184 return (ENOMEM);
7185 }
7186
7187 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7188 NULL, handler, arg, &irq->tag);
7189 if (rc != 0) {
7190 device_printf(sc->dev,
7191 "failed to setup interrupt for rid %d, name %s: %d\n",
7192 rid, name, rc);
7193 } else if (name)
7194 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7195
7196 return (rc);
7197 }
7198
7199 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7200 t4_free_irq(struct adapter *sc, struct irq *irq)
7201 {
7202 if (irq->tag)
7203 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7204 if (irq->res)
7205 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7206
7207 bzero(irq, sizeof(*irq));
7208
7209 return (0);
7210 }
7211
7212 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7213 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7214 {
7215
7216 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7217 t4_get_regs(sc, buf, regs->len);
7218 }
7219
7220 #define A_PL_INDIR_CMD 0x1f8
7221
7222 #define S_PL_AUTOINC 31
7223 #define M_PL_AUTOINC 0x1U
7224 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7225 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7226
7227 #define S_PL_VFID 20
7228 #define M_PL_VFID 0xffU
7229 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7230 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7231
7232 #define S_PL_ADDR 0
7233 #define M_PL_ADDR 0xfffffU
7234 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7235 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7236
7237 #define A_PL_INDIR_DATA 0x1fc
7238
7239 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7240 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7241 {
7242 u32 stats[2];
7243
7244 if (sc->flags & IS_VF) {
7245 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7246 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7247 } else {
7248 mtx_assert(&sc->reg_lock, MA_OWNED);
7249 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7250 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7251 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7252 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7253 }
7254 return (((uint64_t)stats[1]) << 32 | stats[0]);
7255 }
7256
7257 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7258 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7259 {
7260
7261 #define GET_STAT(name) \
7262 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7263
7264 if (!(sc->flags & IS_VF))
7265 mtx_lock(&sc->reg_lock);
7266 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7267 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7268 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7269 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7270 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7271 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7272 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7273 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7274 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7275 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7276 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7277 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7278 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7279 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7280 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7281 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7282 if (!(sc->flags & IS_VF))
7283 mtx_unlock(&sc->reg_lock);
7284
7285 #undef GET_STAT
7286 }
7287
7288 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7289 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7290 {
7291 int reg;
7292
7293 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7294 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7295 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7296 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7297 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7298 }
7299
7300 static void
vi_refresh_stats(struct vi_info * vi)7301 vi_refresh_stats(struct vi_info *vi)
7302 {
7303 struct timeval tv;
7304 const struct timeval interval = {0, 250000}; /* 250ms */
7305
7306 mtx_assert(&vi->tick_mtx, MA_OWNED);
7307
7308 if (vi->flags & VI_SKIP_STATS)
7309 return;
7310
7311 getmicrotime(&tv);
7312 timevalsub(&tv, &interval);
7313 if (timevalcmp(&tv, &vi->last_refreshed, <))
7314 return;
7315
7316 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7317 getmicrotime(&vi->last_refreshed);
7318 }
7319
7320 static void
cxgbe_refresh_stats(struct vi_info * vi)7321 cxgbe_refresh_stats(struct vi_info *vi)
7322 {
7323 u_int i, v, tnl_cong_drops, chan_map;
7324 struct timeval tv;
7325 const struct timeval interval = {0, 250000}; /* 250ms */
7326 struct port_info *pi;
7327 struct adapter *sc;
7328
7329 mtx_assert(&vi->tick_mtx, MA_OWNED);
7330
7331 if (vi->flags & VI_SKIP_STATS)
7332 return;
7333
7334 getmicrotime(&tv);
7335 timevalsub(&tv, &interval);
7336 if (timevalcmp(&tv, &vi->last_refreshed, <))
7337 return;
7338
7339 pi = vi->pi;
7340 sc = vi->adapter;
7341 tnl_cong_drops = 0;
7342 t4_get_port_stats(sc, pi->port_id, &pi->stats);
7343 chan_map = pi->rx_e_chan_map;
7344 while (chan_map) {
7345 i = ffs(chan_map) - 1;
7346 mtx_lock(&sc->reg_lock);
7347 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7348 A_TP_MIB_TNL_CNG_DROP_0 + i);
7349 mtx_unlock(&sc->reg_lock);
7350 tnl_cong_drops += v;
7351 chan_map &= ~(1 << i);
7352 }
7353 pi->tnl_cong_drops = tnl_cong_drops;
7354 getmicrotime(&vi->last_refreshed);
7355 }
7356
7357 static void
cxgbe_tick(void * arg)7358 cxgbe_tick(void *arg)
7359 {
7360 struct vi_info *vi = arg;
7361
7362 MPASS(IS_MAIN_VI(vi));
7363 mtx_assert(&vi->tick_mtx, MA_OWNED);
7364
7365 cxgbe_refresh_stats(vi);
7366 callout_schedule(&vi->tick, hz);
7367 }
7368
7369 static void
vi_tick(void * arg)7370 vi_tick(void *arg)
7371 {
7372 struct vi_info *vi = arg;
7373
7374 mtx_assert(&vi->tick_mtx, MA_OWNED);
7375
7376 vi_refresh_stats(vi);
7377 callout_schedule(&vi->tick, hz);
7378 }
7379
7380 /*
7381 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7382 */
7383 static char *caps_decoder[] = {
7384 "\20\001IPMI\002NCSI", /* 0: NBM */
7385 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7386 "\20\001INGRESS\002EGRESS", /* 2: switch */
7387 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7388 "\006HASHFILTER\007ETHOFLD",
7389 "\20\001TOE", /* 4: TOE */
7390 "\20\001RDDP\002RDMAC", /* 5: RDMA */
7391 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7392 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7393 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7394 "\007T10DIF"
7395 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7396 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7397 "\004TLS_HW",
7398 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7399 "\004PO_INITIATOR\005PO_TARGET",
7400 };
7401
7402 void
t4_sysctls(struct adapter * sc)7403 t4_sysctls(struct adapter *sc)
7404 {
7405 struct sysctl_ctx_list *ctx = &sc->ctx;
7406 struct sysctl_oid *oid;
7407 struct sysctl_oid_list *children, *c0;
7408 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7409
7410 /*
7411 * dev.t4nex.X.
7412 */
7413 oid = device_get_sysctl_tree(sc->dev);
7414 c0 = children = SYSCTL_CHILDREN(oid);
7415
7416 sc->sc_do_rxcopy = 1;
7417 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7418 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7419
7420 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7421 sc->params.nports, "# of ports");
7422
7423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7424 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7425 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7426 "available doorbells");
7427
7428 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7429 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7430
7431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7432 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7433 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7434 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7435
7436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7437 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7438 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7439 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7440
7441 t4_sge_sysctls(sc, ctx, children);
7442
7443 sc->lro_timeout = 100;
7444 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7445 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7446
7447 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7448 &sc->debug_flags, 0, "flags to enable runtime debugging");
7449
7450 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7451 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7452
7453 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7454 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7455
7456 if (sc->flags & IS_VF)
7457 return;
7458
7459 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7460 NULL, chip_rev(sc), "chip hardware revision");
7461
7462 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7463 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7464
7465 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7466 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7467
7468 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7469 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7470
7471 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7472 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7473
7474 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7475 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7476
7477 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7478 sc->er_version, 0, "expansion ROM version");
7479
7480 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7481 sc->bs_version, 0, "bootstrap firmware version");
7482
7483 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7484 NULL, sc->params.scfg_vers, "serial config version");
7485
7486 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7487 NULL, sc->params.vpd_vers, "VPD version");
7488
7489 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7490 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7491
7492 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7493 sc->cfcsum, "config file checksum");
7494
7495 #define SYSCTL_CAP(name, n, text) \
7496 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7497 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7498 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7499 "available " text " capabilities")
7500
7501 SYSCTL_CAP(nbmcaps, 0, "NBM");
7502 SYSCTL_CAP(linkcaps, 1, "link");
7503 SYSCTL_CAP(switchcaps, 2, "switch");
7504 SYSCTL_CAP(niccaps, 3, "NIC");
7505 SYSCTL_CAP(toecaps, 4, "TCP offload");
7506 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7507 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7508 SYSCTL_CAP(cryptocaps, 7, "crypto");
7509 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7510 #undef SYSCTL_CAP
7511
7512 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7513 NULL, sc->tids.nftids, "number of filters");
7514
7515 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7516 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7517 sysctl_temperature, "I", "chip temperature (in Celsius)");
7518 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7519 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7520 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7521
7522 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7523 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7524 sysctl_loadavg, "A",
7525 "microprocessor load averages (debug firmwares only)");
7526
7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7528 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7529 "I", "core Vdd (in mV)");
7530
7531 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7532 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7533 sysctl_cpus, "A", "local CPUs");
7534
7535 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7536 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7537 sysctl_cpus, "A", "preferred CPUs for interrupts");
7538
7539 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7540 &sc->swintr, 0, "software triggered interrupts");
7541
7542 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7543 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7544 "1 = reset adapter, 0 = zero reset counter");
7545
7546 /*
7547 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7548 */
7549 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7550 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7551 "logs and miscellaneous information");
7552 children = SYSCTL_CHILDREN(oid);
7553
7554 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7555 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7556 sysctl_cctrl, "A", "congestion control");
7557
7558 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7559 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7560 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7561
7562 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7563 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7564 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7565
7566 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7567 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7568 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7569
7570 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7571 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7572 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7573
7574 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7575 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7576 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7577
7578 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7579 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7580 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7581
7582 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7583 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7584 sysctl_cim_la, "A", "CIM logic analyzer");
7585
7586 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7587 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7588 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7589
7590 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7591 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7592 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7593
7594 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7595 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7596 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7597
7598 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7599 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7600 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7601
7602 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7603 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7604 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7605
7606 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7607 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7608 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7609
7610 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7611 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7612 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7613
7614 if (chip_id(sc) > CHELSIO_T4) {
7615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7616 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7617 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7618 "CIM OBQ 6 (SGE0-RX)");
7619
7620 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7621 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7622 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7623 "CIM OBQ 7 (SGE1-RX)");
7624 }
7625
7626 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7627 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7628 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7629
7630 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7631 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7632 sysctl_cim_qcfg, "A", "CIM queue configuration");
7633
7634 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7635 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7636 sysctl_cpl_stats, "A", "CPL statistics");
7637
7638 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7639 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7640 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7641
7642 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7643 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7644 sysctl_tid_stats, "A", "tid stats");
7645
7646 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7647 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7648 sysctl_devlog, "A", "firmware's device log");
7649
7650 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7651 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7652 sysctl_fcoe_stats, "A", "FCoE statistics");
7653
7654 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7655 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7656 sysctl_hw_sched, "A", "hardware scheduler ");
7657
7658 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7659 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7660 sysctl_l2t, "A", "hardware L2 table");
7661
7662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7663 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7664 sysctl_smt, "A", "hardware source MAC table");
7665
7666 #ifdef INET6
7667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7668 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7669 sysctl_clip, "A", "active CLIP table entries");
7670 #endif
7671
7672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7673 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7674 sysctl_lb_stats, "A", "loopback statistics");
7675
7676 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7677 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7678 sysctl_meminfo, "A", "memory regions");
7679
7680 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7681 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7682 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7683 "A", "MPS TCAM entries");
7684
7685 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7686 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7687 sysctl_path_mtus, "A", "path MTUs");
7688
7689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7690 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7691 sysctl_pm_stats, "A", "PM statistics");
7692
7693 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7694 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7695 sysctl_rdma_stats, "A", "RDMA statistics");
7696
7697 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7698 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7699 sysctl_tcp_stats, "A", "TCP statistics");
7700
7701 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7702 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7703 sysctl_tids, "A", "TID information");
7704
7705 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7706 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7707 sysctl_tp_err_stats, "A", "TP error statistics");
7708
7709 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7710 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7711 sysctl_tnl_stats, "A", "TP tunnel statistics");
7712
7713 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7714 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7715 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7716
7717 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7718 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7719 sysctl_tp_la, "A", "TP logic analyzer");
7720
7721 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7722 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7723 sysctl_tx_rate, "A", "Tx rate");
7724
7725 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7726 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7727 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7728
7729 if (chip_id(sc) >= CHELSIO_T5) {
7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7731 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7732 sysctl_wcwr_stats, "A", "write combined work requests");
7733 }
7734
7735 #ifdef KERN_TLS
7736 if (is_ktls(sc)) {
7737 /*
7738 * dev.t4nex.0.tls.
7739 */
7740 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7741 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7742 children = SYSCTL_CHILDREN(oid);
7743
7744 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7745 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7746 "keys in work requests (1) or attempt to store TLS keys "
7747 "in card memory.");
7748
7749 if (is_t6(sc))
7750 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7751 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7752 "combine TCB field updates with TLS record work "
7753 "requests.");
7754 }
7755 #endif
7756
7757 #ifdef TCP_OFFLOAD
7758 if (is_offload(sc)) {
7759 int i;
7760 char s[4];
7761
7762 /*
7763 * dev.t4nex.X.toe.
7764 */
7765 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7766 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7767 children = SYSCTL_CHILDREN(oid);
7768
7769 sc->tt.cong_algorithm = -1;
7770 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7771 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7772 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7773 "3 = highspeed)");
7774
7775 sc->tt.sndbuf = -1;
7776 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7777 &sc->tt.sndbuf, 0, "hardware send buffer");
7778
7779 sc->tt.ddp = 0;
7780 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7781 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7782 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7783 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7784
7785 sc->tt.rx_coalesce = -1;
7786 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7787 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7788
7789 sc->tt.tls = 1;
7790 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7791 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7792 "Inline TLS allowed");
7793
7794 sc->tt.tx_align = -1;
7795 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7796 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7797
7798 sc->tt.tx_zcopy = 0;
7799 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7800 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7801 "Enable zero-copy aio_write(2)");
7802
7803 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7804 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7805 "cop_managed_offloading", CTLFLAG_RW,
7806 &sc->tt.cop_managed_offloading, 0,
7807 "COP (Connection Offload Policy) controls all TOE offload");
7808
7809 sc->tt.autorcvbuf_inc = 16 * 1024;
7810 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7811 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7812 "autorcvbuf increment");
7813
7814 sc->tt.update_hc_on_pmtu_change = 1;
7815 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7816 "update_hc_on_pmtu_change", CTLFLAG_RW,
7817 &sc->tt.update_hc_on_pmtu_change, 0,
7818 "Update hostcache entry if the PMTU changes");
7819
7820 sc->tt.iso = 1;
7821 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7822 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7823
7824 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7825 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7826 sysctl_tp_tick, "A", "TP timer tick (us)");
7827
7828 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7829 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7830 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7831
7832 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7833 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7834 sysctl_tp_tick, "A", "DACK tick (us)");
7835
7836 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7837 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7838 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7839
7840 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7841 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7842 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7843 "Minimum retransmit interval (us)");
7844
7845 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7846 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7847 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7848 "Maximum retransmit interval (us)");
7849
7850 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7851 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7852 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7853 "Persist timer min (us)");
7854
7855 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7856 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7857 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7858 "Persist timer max (us)");
7859
7860 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7861 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7862 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7863 "Keepalive idle timer (us)");
7864
7865 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7866 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7867 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7868 "Keepalive interval timer (us)");
7869
7870 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7871 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7872 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7873
7874 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7875 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7876 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7877 "FINWAIT2 timer (us)");
7878
7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7880 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7881 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7882 "Number of SYN retransmissions before abort");
7883
7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7885 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7886 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7887 "Number of retransmissions before abort");
7888
7889 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7890 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7891 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7892 "Number of keepalive probes before abort");
7893
7894 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7895 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7896 "TOE retransmit backoffs");
7897 children = SYSCTL_CHILDREN(oid);
7898 for (i = 0; i < 16; i++) {
7899 snprintf(s, sizeof(s), "%u", i);
7900 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7901 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7902 i, sysctl_tp_backoff, "IU",
7903 "TOE retransmit backoff");
7904 }
7905 }
7906 #endif
7907 }
7908
7909 void
vi_sysctls(struct vi_info * vi)7910 vi_sysctls(struct vi_info *vi)
7911 {
7912 struct sysctl_ctx_list *ctx = &vi->ctx;
7913 struct sysctl_oid *oid;
7914 struct sysctl_oid_list *children;
7915
7916 /*
7917 * dev.v?(cxgbe|cxl).X.
7918 */
7919 oid = device_get_sysctl_tree(vi->dev);
7920 children = SYSCTL_CHILDREN(oid);
7921
7922 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7923 vi->viid, "VI identifer");
7924 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7925 &vi->nrxq, 0, "# of rx queues");
7926 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7927 &vi->ntxq, 0, "# of tx queues");
7928 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7929 &vi->first_rxq, 0, "index of first rx queue");
7930 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7931 &vi->first_txq, 0, "index of first tx queue");
7932 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7933 vi->rss_base, "start of RSS indirection table");
7934 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7935 vi->rss_size, "size of RSS indirection table");
7936
7937 if (IS_MAIN_VI(vi)) {
7938 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7939 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7940 sysctl_noflowq, "IU",
7941 "Reserve queue 0 for non-flowid packets");
7942 }
7943
7944 if (vi->adapter->flags & IS_VF) {
7945 MPASS(vi->flags & TX_USES_VM_WR);
7946 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7947 NULL, 1, "use VM work requests for transmit");
7948 } else {
7949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7950 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7951 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7952 }
7953
7954 #ifdef TCP_OFFLOAD
7955 if (vi->nofldrxq != 0) {
7956 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7957 &vi->nofldrxq, 0,
7958 "# of rx queues for offloaded TCP connections");
7959 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7960 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7961 "index of first TOE rx queue");
7962 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7963 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7964 sysctl_holdoff_tmr_idx_ofld, "I",
7965 "holdoff timer index for TOE queues");
7966 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7967 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7968 sysctl_holdoff_pktc_idx_ofld, "I",
7969 "holdoff packet counter index for TOE queues");
7970 }
7971 #endif
7972 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7973 if (vi->nofldtxq != 0) {
7974 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7975 &vi->nofldtxq, 0,
7976 "# of tx queues for TOE/ETHOFLD");
7977 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7978 CTLFLAG_RD, &vi->first_ofld_txq, 0,
7979 "index of first TOE/ETHOFLD tx queue");
7980 }
7981 #endif
7982 #ifdef DEV_NETMAP
7983 if (vi->nnmrxq != 0) {
7984 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7985 &vi->nnmrxq, 0, "# of netmap rx queues");
7986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7987 &vi->nnmtxq, 0, "# of netmap tx queues");
7988 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7989 CTLFLAG_RD, &vi->first_nm_rxq, 0,
7990 "index of first netmap rx queue");
7991 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7992 CTLFLAG_RD, &vi->first_nm_txq, 0,
7993 "index of first netmap tx queue");
7994 }
7995 #endif
7996
7997 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7998 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7999 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8000 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8002 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8003
8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8005 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8006 sysctl_qsize_rxq, "I", "rx queue size");
8007 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8008 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8009 sysctl_qsize_txq, "I", "tx queue size");
8010 }
8011
8012 static void
cxgbe_sysctls(struct port_info * pi)8013 cxgbe_sysctls(struct port_info *pi)
8014 {
8015 struct sysctl_ctx_list *ctx = &pi->ctx;
8016 struct sysctl_oid *oid;
8017 struct sysctl_oid_list *children, *children2;
8018 struct adapter *sc = pi->adapter;
8019 int i;
8020 char name[16];
8021 static char *tc_flags = {"\20\1USER"};
8022
8023 /*
8024 * dev.cxgbe.X.
8025 */
8026 oid = device_get_sysctl_tree(pi->dev);
8027 children = SYSCTL_CHILDREN(oid);
8028
8029 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8031 sysctl_linkdnrc, "A", "reason why link is down");
8032 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8033 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8034 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8035 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8036 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8037 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8038 sysctl_btphy, "I", "PHY firmware version");
8039 }
8040
8041 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8042 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8043 sysctl_pause_settings, "A",
8044 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8046 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8047 "FEC in use on the link");
8048 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8049 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8050 sysctl_requested_fec, "A",
8051 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8052 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8053 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8054 "FEC recommended by the cable/transceiver");
8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8056 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8057 sysctl_autoneg, "I",
8058 "autonegotiation (-1 = not supported)");
8059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8060 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8061 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8062
8063 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8064 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8065 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8066 &pi->link_cfg.pcaps, 0, "port capabilities");
8067 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8068 &pi->link_cfg.acaps, 0, "advertised capabilities");
8069 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8070 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8071
8072 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8073 port_top_speed(pi), "max speed (in Gbps)");
8074 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8075 pi->mps_bg_map, "MPS buffer group map");
8076 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8077 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8079 pi->tx_chan, "TP tx c-channel");
8080 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8081 pi->rx_chan, "TP rx c-channel");
8082
8083 if (sc->flags & IS_VF)
8084 return;
8085
8086 /*
8087 * dev.(cxgbe|cxl).X.tc.
8088 */
8089 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8090 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8091 "Tx scheduler traffic classes (cl_rl)");
8092 children2 = SYSCTL_CHILDREN(oid);
8093 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8094 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8095 "pktsize for per-flow cl-rl (0 means up to the driver )");
8096 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8097 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8098 "burstsize for per-flow cl-rl (0 means up to the driver)");
8099 for (i = 0; i < sc->params.nsched_cls; i++) {
8100 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8101
8102 snprintf(name, sizeof(name), "%d", i);
8103 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8104 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8105 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8106 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8107 CTLFLAG_RD, &tc->state, 0, "current state");
8108 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8109 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8110 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8111 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8112 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8113 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8114 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8115 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8116 "traffic class parameters");
8117 }
8118
8119 /*
8120 * dev.cxgbe.X.stats.
8121 */
8122 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8123 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8124 children = SYSCTL_CHILDREN(oid);
8125 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8126 &pi->tx_parse_error, 0,
8127 "# of tx packets with invalid length or # of segments");
8128
8129 #define T4_REGSTAT(name, stat, desc) \
8130 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8131 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8132 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8133 sysctl_handle_t4_reg64, "QU", desc)
8134
8135 /* We get these from port_stats and they may be stale by up to 1s */
8136 #define T4_PORTSTAT(name, desc) \
8137 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8138 &pi->stats.name, desc)
8139
8140 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8141 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8142 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8143 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8144 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8145 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8146 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8147 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8148 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8149 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8150 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8151 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8152 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8153 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8154 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8155 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8156 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8157 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8158 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8159 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8160 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8161 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8162 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8163
8164 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8165 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8166 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8167 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8168 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8169 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8170 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8171 if (is_t6(sc)) {
8172 T4_PORTSTAT(rx_fcs_err,
8173 "# of frames received with bad FCS since last link up");
8174 } else {
8175 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8176 "# of frames received with bad FCS");
8177 }
8178 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8179 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8180 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8181 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8182 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8183 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8184 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8185 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8186 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8187 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8188 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8189 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8190 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8191 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8192 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8193 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8194 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8195 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8196 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8197
8198 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8199 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8200 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8201 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8202 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8203 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8204 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8205 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8206
8207 #undef T4_REGSTAT
8208 #undef T4_PORTSTAT
8209 }
8210
8211 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8212 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8213 {
8214 int rc, *i, space = 0;
8215 struct sbuf sb;
8216
8217 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8218 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8219 if (space)
8220 sbuf_printf(&sb, " ");
8221 sbuf_printf(&sb, "%d", *i);
8222 space = 1;
8223 }
8224 rc = sbuf_finish(&sb);
8225 sbuf_delete(&sb);
8226 return (rc);
8227 }
8228
8229 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8230 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8231 {
8232 int rc;
8233 struct sbuf *sb;
8234
8235 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8236 if (sb == NULL)
8237 return (ENOMEM);
8238
8239 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8240 rc = sbuf_finish(sb);
8241 sbuf_delete(sb);
8242
8243 return (rc);
8244 }
8245
8246 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8247 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8248 {
8249 int rc;
8250 struct sbuf *sb;
8251
8252 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8253 if (sb == NULL)
8254 return (ENOMEM);
8255
8256 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8257 rc = sbuf_finish(sb);
8258 sbuf_delete(sb);
8259
8260 return (rc);
8261 }
8262
8263 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8264 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8265 {
8266 struct port_info *pi = arg1;
8267 int op = arg2;
8268 struct adapter *sc = pi->adapter;
8269 u_int v;
8270 int rc;
8271
8272 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8273 if (rc)
8274 return (rc);
8275 if (hw_off_limits(sc))
8276 rc = ENXIO;
8277 else {
8278 /* XXX: magic numbers */
8279 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8280 op ? 0x20 : 0xc820, &v);
8281 }
8282 end_synchronized_op(sc, 0);
8283 if (rc)
8284 return (rc);
8285 if (op == 0)
8286 v /= 256;
8287
8288 rc = sysctl_handle_int(oidp, &v, 0, req);
8289 return (rc);
8290 }
8291
8292 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8293 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8294 {
8295 struct vi_info *vi = arg1;
8296 int rc, val;
8297
8298 val = vi->rsrv_noflowq;
8299 rc = sysctl_handle_int(oidp, &val, 0, req);
8300 if (rc != 0 || req->newptr == NULL)
8301 return (rc);
8302
8303 if ((val >= 1) && (vi->ntxq > 1))
8304 vi->rsrv_noflowq = 1;
8305 else
8306 vi->rsrv_noflowq = 0;
8307
8308 return (rc);
8309 }
8310
8311 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8312 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8313 {
8314 struct vi_info *vi = arg1;
8315 struct adapter *sc = vi->adapter;
8316 int rc, val, i;
8317
8318 MPASS(!(sc->flags & IS_VF));
8319
8320 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8321 rc = sysctl_handle_int(oidp, &val, 0, req);
8322 if (rc != 0 || req->newptr == NULL)
8323 return (rc);
8324
8325 if (val != 0 && val != 1)
8326 return (EINVAL);
8327
8328 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8329 "t4txvm");
8330 if (rc)
8331 return (rc);
8332 if (hw_off_limits(sc))
8333 rc = ENXIO;
8334 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8335 /*
8336 * We don't want parse_pkt to run with one setting (VF or PF)
8337 * and then eth_tx to see a different setting but still use
8338 * stale information calculated by parse_pkt.
8339 */
8340 rc = EBUSY;
8341 } else {
8342 struct port_info *pi = vi->pi;
8343 struct sge_txq *txq;
8344 uint32_t ctrl0;
8345 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8346
8347 if (val) {
8348 vi->flags |= TX_USES_VM_WR;
8349 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8350 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8351 V_TXPKT_INTF(pi->tx_chan));
8352 if (!(sc->flags & IS_VF))
8353 npkt--;
8354 } else {
8355 vi->flags &= ~TX_USES_VM_WR;
8356 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8357 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8358 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8359 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8360 }
8361 for_each_txq(vi, i, txq) {
8362 txq->cpl_ctrl0 = ctrl0;
8363 txq->txp.max_npkt = npkt;
8364 }
8365 }
8366 end_synchronized_op(sc, LOCK_HELD);
8367 return (rc);
8368 }
8369
8370 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8371 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8372 {
8373 struct vi_info *vi = arg1;
8374 struct adapter *sc = vi->adapter;
8375 int idx, rc, i;
8376 struct sge_rxq *rxq;
8377 uint8_t v;
8378
8379 idx = vi->tmr_idx;
8380
8381 rc = sysctl_handle_int(oidp, &idx, 0, req);
8382 if (rc != 0 || req->newptr == NULL)
8383 return (rc);
8384
8385 if (idx < 0 || idx >= SGE_NTIMERS)
8386 return (EINVAL);
8387
8388 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8389 "t4tmr");
8390 if (rc)
8391 return (rc);
8392
8393 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8394 for_each_rxq(vi, i, rxq) {
8395 #ifdef atomic_store_rel_8
8396 atomic_store_rel_8(&rxq->iq.intr_params, v);
8397 #else
8398 rxq->iq.intr_params = v;
8399 #endif
8400 }
8401 vi->tmr_idx = idx;
8402
8403 end_synchronized_op(sc, LOCK_HELD);
8404 return (0);
8405 }
8406
8407 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8408 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8409 {
8410 struct vi_info *vi = arg1;
8411 struct adapter *sc = vi->adapter;
8412 int idx, rc;
8413
8414 idx = vi->pktc_idx;
8415
8416 rc = sysctl_handle_int(oidp, &idx, 0, req);
8417 if (rc != 0 || req->newptr == NULL)
8418 return (rc);
8419
8420 if (idx < -1 || idx >= SGE_NCOUNTERS)
8421 return (EINVAL);
8422
8423 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8424 "t4pktc");
8425 if (rc)
8426 return (rc);
8427
8428 if (vi->flags & VI_INIT_DONE)
8429 rc = EBUSY; /* cannot be changed once the queues are created */
8430 else
8431 vi->pktc_idx = idx;
8432
8433 end_synchronized_op(sc, LOCK_HELD);
8434 return (rc);
8435 }
8436
8437 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8438 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8439 {
8440 struct vi_info *vi = arg1;
8441 struct adapter *sc = vi->adapter;
8442 int qsize, rc;
8443
8444 qsize = vi->qsize_rxq;
8445
8446 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8447 if (rc != 0 || req->newptr == NULL)
8448 return (rc);
8449
8450 if (qsize < 128 || (qsize & 7))
8451 return (EINVAL);
8452
8453 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8454 "t4rxqs");
8455 if (rc)
8456 return (rc);
8457
8458 if (vi->flags & VI_INIT_DONE)
8459 rc = EBUSY; /* cannot be changed once the queues are created */
8460 else
8461 vi->qsize_rxq = qsize;
8462
8463 end_synchronized_op(sc, LOCK_HELD);
8464 return (rc);
8465 }
8466
8467 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8468 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8469 {
8470 struct vi_info *vi = arg1;
8471 struct adapter *sc = vi->adapter;
8472 int qsize, rc;
8473
8474 qsize = vi->qsize_txq;
8475
8476 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8477 if (rc != 0 || req->newptr == NULL)
8478 return (rc);
8479
8480 if (qsize < 128 || qsize > 65536)
8481 return (EINVAL);
8482
8483 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8484 "t4txqs");
8485 if (rc)
8486 return (rc);
8487
8488 if (vi->flags & VI_INIT_DONE)
8489 rc = EBUSY; /* cannot be changed once the queues are created */
8490 else
8491 vi->qsize_txq = qsize;
8492
8493 end_synchronized_op(sc, LOCK_HELD);
8494 return (rc);
8495 }
8496
8497 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8498 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8499 {
8500 struct port_info *pi = arg1;
8501 struct adapter *sc = pi->adapter;
8502 struct link_config *lc = &pi->link_cfg;
8503 int rc;
8504
8505 if (req->newptr == NULL) {
8506 struct sbuf *sb;
8507 static char *bits = "\20\1RX\2TX\3AUTO";
8508
8509 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8510 if (sb == NULL)
8511 return (ENOMEM);
8512
8513 if (lc->link_ok) {
8514 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8515 (lc->requested_fc & PAUSE_AUTONEG), bits);
8516 } else {
8517 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8518 PAUSE_RX | PAUSE_AUTONEG), bits);
8519 }
8520 rc = sbuf_finish(sb);
8521 sbuf_delete(sb);
8522 } else {
8523 char s[2];
8524 int n;
8525
8526 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8527 PAUSE_AUTONEG));
8528 s[1] = 0;
8529
8530 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8531 if (rc != 0)
8532 return(rc);
8533
8534 if (s[1] != 0)
8535 return (EINVAL);
8536 if (s[0] < '0' || s[0] > '9')
8537 return (EINVAL); /* not a number */
8538 n = s[0] - '0';
8539 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8540 return (EINVAL); /* some other bit is set too */
8541
8542 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8543 "t4PAUSE");
8544 if (rc)
8545 return (rc);
8546 if (!hw_off_limits(sc)) {
8547 PORT_LOCK(pi);
8548 lc->requested_fc = n;
8549 fixup_link_config(pi);
8550 if (pi->up_vis > 0)
8551 rc = apply_link_config(pi);
8552 set_current_media(pi);
8553 PORT_UNLOCK(pi);
8554 }
8555 end_synchronized_op(sc, 0);
8556 }
8557
8558 return (rc);
8559 }
8560
8561 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8562 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8563 {
8564 struct port_info *pi = arg1;
8565 struct link_config *lc = &pi->link_cfg;
8566 int rc;
8567 struct sbuf *sb;
8568 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8569
8570 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8571 if (sb == NULL)
8572 return (ENOMEM);
8573 if (lc->link_ok)
8574 sbuf_printf(sb, "%b", lc->fec, bits);
8575 else
8576 sbuf_printf(sb, "no link");
8577 rc = sbuf_finish(sb);
8578 sbuf_delete(sb);
8579
8580 return (rc);
8581 }
8582
8583 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8584 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8585 {
8586 struct port_info *pi = arg1;
8587 struct adapter *sc = pi->adapter;
8588 struct link_config *lc = &pi->link_cfg;
8589 int rc;
8590 int8_t old;
8591
8592 if (req->newptr == NULL) {
8593 struct sbuf *sb;
8594 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8595 "\5RSVD3\6auto\7module";
8596
8597 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8598 if (sb == NULL)
8599 return (ENOMEM);
8600
8601 sbuf_printf(sb, "%b", lc->requested_fec, bits);
8602 rc = sbuf_finish(sb);
8603 sbuf_delete(sb);
8604 } else {
8605 char s[8];
8606 int n;
8607
8608 snprintf(s, sizeof(s), "%d",
8609 lc->requested_fec == FEC_AUTO ? -1 :
8610 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8611
8612 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8613 if (rc != 0)
8614 return(rc);
8615
8616 n = strtol(&s[0], NULL, 0);
8617 if (n < 0 || n & FEC_AUTO)
8618 n = FEC_AUTO;
8619 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8620 return (EINVAL);/* some other bit is set too */
8621
8622 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8623 "t4reqf");
8624 if (rc)
8625 return (rc);
8626 PORT_LOCK(pi);
8627 old = lc->requested_fec;
8628 if (n == FEC_AUTO)
8629 lc->requested_fec = FEC_AUTO;
8630 else if (n == 0 || n == FEC_NONE)
8631 lc->requested_fec = FEC_NONE;
8632 else {
8633 if ((lc->pcaps |
8634 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8635 lc->pcaps) {
8636 rc = ENOTSUP;
8637 goto done;
8638 }
8639 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8640 FEC_MODULE);
8641 }
8642 if (!hw_off_limits(sc)) {
8643 fixup_link_config(pi);
8644 if (pi->up_vis > 0) {
8645 rc = apply_link_config(pi);
8646 if (rc != 0) {
8647 lc->requested_fec = old;
8648 if (rc == FW_EPROTO)
8649 rc = ENOTSUP;
8650 }
8651 }
8652 }
8653 done:
8654 PORT_UNLOCK(pi);
8655 end_synchronized_op(sc, 0);
8656 }
8657
8658 return (rc);
8659 }
8660
8661 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)8662 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8663 {
8664 struct port_info *pi = arg1;
8665 struct adapter *sc = pi->adapter;
8666 struct link_config *lc = &pi->link_cfg;
8667 int rc;
8668 int8_t fec;
8669 struct sbuf *sb;
8670 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8671
8672 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8673 if (sb == NULL)
8674 return (ENOMEM);
8675
8676 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8677 rc = EBUSY;
8678 goto done;
8679 }
8680 if (hw_off_limits(sc)) {
8681 rc = ENXIO;
8682 goto done;
8683 }
8684 PORT_LOCK(pi);
8685 if (pi->up_vis == 0) {
8686 /*
8687 * If all the interfaces are administratively down the firmware
8688 * does not report transceiver changes. Refresh port info here.
8689 * This is the only reason we have a synchronized op in this
8690 * function. Just PORT_LOCK would have been enough otherwise.
8691 */
8692 t4_update_port_info(pi);
8693 }
8694
8695 fec = lc->fec_hint;
8696 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8697 !fec_supported(lc->pcaps)) {
8698 PORT_UNLOCK(pi);
8699 sbuf_printf(sb, "n/a");
8700 } else {
8701 if (fec == 0)
8702 fec = FEC_NONE;
8703 PORT_UNLOCK(pi);
8704 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8705 }
8706 rc = sbuf_finish(sb);
8707 done:
8708 sbuf_delete(sb);
8709 end_synchronized_op(sc, 0);
8710
8711 return (rc);
8712 }
8713
8714 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)8715 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8716 {
8717 struct port_info *pi = arg1;
8718 struct adapter *sc = pi->adapter;
8719 struct link_config *lc = &pi->link_cfg;
8720 int rc, val;
8721
8722 if (lc->pcaps & FW_PORT_CAP32_ANEG)
8723 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8724 else
8725 val = -1;
8726 rc = sysctl_handle_int(oidp, &val, 0, req);
8727 if (rc != 0 || req->newptr == NULL)
8728 return (rc);
8729 if (val == 0)
8730 val = AUTONEG_DISABLE;
8731 else if (val == 1)
8732 val = AUTONEG_ENABLE;
8733 else
8734 val = AUTONEG_AUTO;
8735
8736 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8737 "t4aneg");
8738 if (rc)
8739 return (rc);
8740 PORT_LOCK(pi);
8741 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8742 rc = ENOTSUP;
8743 goto done;
8744 }
8745 lc->requested_aneg = val;
8746 if (!hw_off_limits(sc)) {
8747 fixup_link_config(pi);
8748 if (pi->up_vis > 0)
8749 rc = apply_link_config(pi);
8750 set_current_media(pi);
8751 }
8752 done:
8753 PORT_UNLOCK(pi);
8754 end_synchronized_op(sc, 0);
8755 return (rc);
8756 }
8757
8758 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)8759 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8760 {
8761 struct port_info *pi = arg1;
8762 struct adapter *sc = pi->adapter;
8763 struct link_config *lc = &pi->link_cfg;
8764 int rc, val;
8765
8766 val = lc->force_fec;
8767 MPASS(val >= -1 && val <= 1);
8768 rc = sysctl_handle_int(oidp, &val, 0, req);
8769 if (rc != 0 || req->newptr == NULL)
8770 return (rc);
8771 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8772 return (ENOTSUP);
8773 if (val < -1 || val > 1)
8774 return (EINVAL);
8775
8776 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8777 if (rc)
8778 return (rc);
8779 PORT_LOCK(pi);
8780 lc->force_fec = val;
8781 if (!hw_off_limits(sc)) {
8782 fixup_link_config(pi);
8783 if (pi->up_vis > 0)
8784 rc = apply_link_config(pi);
8785 }
8786 PORT_UNLOCK(pi);
8787 end_synchronized_op(sc, 0);
8788 return (rc);
8789 }
8790
8791 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)8792 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8793 {
8794 struct adapter *sc = arg1;
8795 int rc, reg = arg2;
8796 uint64_t val;
8797
8798 mtx_lock(&sc->reg_lock);
8799 if (hw_off_limits(sc))
8800 rc = ENXIO;
8801 else {
8802 rc = 0;
8803 val = t4_read_reg64(sc, reg);
8804 }
8805 mtx_unlock(&sc->reg_lock);
8806 if (rc == 0)
8807 rc = sysctl_handle_64(oidp, &val, 0, req);
8808 return (rc);
8809 }
8810
8811 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)8812 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8813 {
8814 struct adapter *sc = arg1;
8815 int rc, t;
8816 uint32_t param, val;
8817
8818 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8819 if (rc)
8820 return (rc);
8821 if (hw_off_limits(sc))
8822 rc = ENXIO;
8823 else {
8824 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8825 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8826 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8827 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8828 }
8829 end_synchronized_op(sc, 0);
8830 if (rc)
8831 return (rc);
8832
8833 /* unknown is returned as 0 but we display -1 in that case */
8834 t = val == 0 ? -1 : val;
8835
8836 rc = sysctl_handle_int(oidp, &t, 0, req);
8837 return (rc);
8838 }
8839
8840 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)8841 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8842 {
8843 struct adapter *sc = arg1;
8844 int rc;
8845 uint32_t param, val;
8846
8847 if (sc->params.core_vdd == 0) {
8848 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8849 "t4vdd");
8850 if (rc)
8851 return (rc);
8852 if (hw_off_limits(sc))
8853 rc = ENXIO;
8854 else {
8855 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8856 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8857 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8858 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8859 ¶m, &val);
8860 }
8861 end_synchronized_op(sc, 0);
8862 if (rc)
8863 return (rc);
8864 sc->params.core_vdd = val;
8865 }
8866
8867 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8868 }
8869
8870 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)8871 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8872 {
8873 struct adapter *sc = arg1;
8874 int rc, v;
8875 uint32_t param, val;
8876
8877 v = sc->sensor_resets;
8878 rc = sysctl_handle_int(oidp, &v, 0, req);
8879 if (rc != 0 || req->newptr == NULL || v <= 0)
8880 return (rc);
8881
8882 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8883 chip_id(sc) < CHELSIO_T5)
8884 return (ENOTSUP);
8885
8886 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8887 if (rc)
8888 return (rc);
8889 if (hw_off_limits(sc))
8890 rc = ENXIO;
8891 else {
8892 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8893 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8894 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8895 val = 1;
8896 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8897 }
8898 end_synchronized_op(sc, 0);
8899 if (rc == 0)
8900 sc->sensor_resets++;
8901 return (rc);
8902 }
8903
8904 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)8905 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8906 {
8907 struct adapter *sc = arg1;
8908 struct sbuf *sb;
8909 int rc;
8910 uint32_t param, val;
8911
8912 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8913 if (rc)
8914 return (rc);
8915 if (hw_off_limits(sc))
8916 rc = ENXIO;
8917 else {
8918 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8919 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8920 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8921 }
8922 end_synchronized_op(sc, 0);
8923 if (rc)
8924 return (rc);
8925
8926 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8927 if (sb == NULL)
8928 return (ENOMEM);
8929
8930 if (val == 0xffffffff) {
8931 /* Only debug and custom firmwares report load averages. */
8932 sbuf_printf(sb, "not available");
8933 } else {
8934 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8935 (val >> 16) & 0xff);
8936 }
8937 rc = sbuf_finish(sb);
8938 sbuf_delete(sb);
8939
8940 return (rc);
8941 }
8942
8943 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)8944 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8945 {
8946 struct adapter *sc = arg1;
8947 struct sbuf *sb;
8948 int rc, i;
8949 uint16_t incr[NMTUS][NCCTRL_WIN];
8950 static const char *dec_fac[] = {
8951 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8952 "0.9375"
8953 };
8954
8955 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8956 if (sb == NULL)
8957 return (ENOMEM);
8958
8959 rc = 0;
8960 mtx_lock(&sc->reg_lock);
8961 if (hw_off_limits(sc))
8962 rc = ENXIO;
8963 else
8964 t4_read_cong_tbl(sc, incr);
8965 mtx_unlock(&sc->reg_lock);
8966 if (rc)
8967 goto done;
8968
8969 for (i = 0; i < NCCTRL_WIN; ++i) {
8970 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8971 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8972 incr[5][i], incr[6][i], incr[7][i]);
8973 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8974 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8975 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8976 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8977 }
8978
8979 rc = sbuf_finish(sb);
8980 done:
8981 sbuf_delete(sb);
8982 return (rc);
8983 }
8984
8985 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8986 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
8987 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
8988 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
8989 };
8990
8991 static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)8992 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8993 {
8994 struct adapter *sc = arg1;
8995 struct sbuf *sb;
8996 int rc, i, n, qid = arg2;
8997 uint32_t *buf, *p;
8998 char *qtype;
8999 u_int cim_num_obq = sc->chip_params->cim_num_obq;
9000
9001 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
9002 ("%s: bad qid %d\n", __func__, qid));
9003
9004 if (qid < CIM_NUM_IBQ) {
9005 /* inbound queue */
9006 qtype = "IBQ";
9007 n = 4 * CIM_IBQ_SIZE;
9008 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9009 mtx_lock(&sc->reg_lock);
9010 if (hw_off_limits(sc))
9011 rc = -ENXIO;
9012 else
9013 rc = t4_read_cim_ibq(sc, qid, buf, n);
9014 mtx_unlock(&sc->reg_lock);
9015 } else {
9016 /* outbound queue */
9017 qtype = "OBQ";
9018 qid -= CIM_NUM_IBQ;
9019 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9020 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9021 mtx_lock(&sc->reg_lock);
9022 if (hw_off_limits(sc))
9023 rc = -ENXIO;
9024 else
9025 rc = t4_read_cim_obq(sc, qid, buf, n);
9026 mtx_unlock(&sc->reg_lock);
9027 }
9028
9029 if (rc < 0) {
9030 rc = -rc;
9031 goto done;
9032 }
9033 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9034
9035 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9036 if (sb == NULL) {
9037 rc = ENOMEM;
9038 goto done;
9039 }
9040
9041 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9042 for (i = 0, p = buf; i < n; i += 16, p += 4)
9043 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9044 p[2], p[3]);
9045
9046 rc = sbuf_finish(sb);
9047 sbuf_delete(sb);
9048 done:
9049 free(buf, M_CXGBE);
9050 return (rc);
9051 }
9052
9053 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9054 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9055 {
9056 uint32_t *p;
9057
9058 sbuf_printf(sb, "Status Data PC%s",
9059 cfg & F_UPDBGLACAPTPCONLY ? "" :
9060 " LS0Stat LS0Addr LS0Data");
9061
9062 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9063 if (cfg & F_UPDBGLACAPTPCONLY) {
9064 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9065 p[6], p[7]);
9066 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9067 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9068 p[4] & 0xff, p[5] >> 8);
9069 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9070 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9071 p[1] & 0xf, p[2] >> 4);
9072 } else {
9073 sbuf_printf(sb,
9074 "\n %02x %x%07x %x%07x %08x %08x "
9075 "%08x%08x%08x%08x",
9076 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9077 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9078 p[6], p[7]);
9079 }
9080 }
9081 }
9082
9083 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9084 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9085 {
9086 uint32_t *p;
9087
9088 sbuf_printf(sb, "Status Inst Data PC%s",
9089 cfg & F_UPDBGLACAPTPCONLY ? "" :
9090 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9091
9092 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9093 if (cfg & F_UPDBGLACAPTPCONLY) {
9094 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9095 p[3] & 0xff, p[2], p[1], p[0]);
9096 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9097 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9098 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9099 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9100 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9101 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9102 p[6] >> 16);
9103 } else {
9104 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9105 "%08x %08x %08x %08x %08x %08x",
9106 (p[9] >> 16) & 0xff,
9107 p[9] & 0xffff, p[8] >> 16,
9108 p[8] & 0xffff, p[7] >> 16,
9109 p[7] & 0xffff, p[6] >> 16,
9110 p[2], p[1], p[0], p[5], p[4], p[3]);
9111 }
9112 }
9113 }
9114
9115 static int
sbuf_cim_la(struct adapter * sc,struct sbuf * sb,int flags)9116 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9117 {
9118 uint32_t cfg, *buf;
9119 int rc;
9120
9121 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9122 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9123 M_ZERO | flags);
9124 if (buf == NULL)
9125 return (ENOMEM);
9126
9127 mtx_lock(&sc->reg_lock);
9128 if (hw_off_limits(sc))
9129 rc = ENXIO;
9130 else {
9131 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9132 if (rc == 0)
9133 rc = -t4_cim_read_la(sc, buf, NULL);
9134 }
9135 mtx_unlock(&sc->reg_lock);
9136 if (rc == 0) {
9137 if (chip_id(sc) < CHELSIO_T6)
9138 sbuf_cim_la4(sc, sb, buf, cfg);
9139 else
9140 sbuf_cim_la6(sc, sb, buf, cfg);
9141 }
9142 free(buf, M_CXGBE);
9143 return (rc);
9144 }
9145
9146 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9147 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9148 {
9149 struct adapter *sc = arg1;
9150 struct sbuf *sb;
9151 int rc;
9152
9153 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9154 if (sb == NULL)
9155 return (ENOMEM);
9156
9157 rc = sbuf_cim_la(sc, sb, M_WAITOK);
9158 if (rc == 0)
9159 rc = sbuf_finish(sb);
9160 sbuf_delete(sb);
9161 return (rc);
9162 }
9163
9164 static void
dump_cim_regs(struct adapter * sc)9165 dump_cim_regs(struct adapter *sc)
9166 {
9167 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9168 device_get_nameunit(sc->dev),
9169 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9170 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9171 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9172 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9173 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9174 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9175 device_get_nameunit(sc->dev),
9176 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9177 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9178 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9179 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9180 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9181 }
9182
9183 static void
dump_cimla(struct adapter * sc)9184 dump_cimla(struct adapter *sc)
9185 {
9186 struct sbuf sb;
9187 int rc;
9188
9189 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9190 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9191 device_get_nameunit(sc->dev));
9192 return;
9193 }
9194 rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9195 if (rc == 0) {
9196 rc = sbuf_finish(&sb);
9197 if (rc == 0) {
9198 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9199 device_get_nameunit(sc->dev), sbuf_data(&sb));
9200 }
9201 }
9202 sbuf_delete(&sb);
9203 }
9204
9205 void
t4_os_cim_err(struct adapter * sc)9206 t4_os_cim_err(struct adapter *sc)
9207 {
9208 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9209 }
9210
9211 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9212 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9213 {
9214 struct adapter *sc = arg1;
9215 u_int i;
9216 struct sbuf *sb;
9217 uint32_t *buf, *p;
9218 int rc;
9219
9220 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9221 if (sb == NULL)
9222 return (ENOMEM);
9223
9224 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9225 M_ZERO | M_WAITOK);
9226
9227 rc = 0;
9228 mtx_lock(&sc->reg_lock);
9229 if (hw_off_limits(sc))
9230 rc = ENXIO;
9231 else
9232 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9233 mtx_unlock(&sc->reg_lock);
9234 if (rc)
9235 goto done;
9236
9237 p = buf;
9238 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9239 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9240 p[1], p[0]);
9241 }
9242
9243 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9244 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9245 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9246 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9247 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9248 (p[1] >> 2) | ((p[2] & 3) << 30),
9249 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9250 p[0] & 1);
9251 }
9252 rc = sbuf_finish(sb);
9253 done:
9254 sbuf_delete(sb);
9255 free(buf, M_CXGBE);
9256 return (rc);
9257 }
9258
9259 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9260 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9261 {
9262 struct adapter *sc = arg1;
9263 u_int i;
9264 struct sbuf *sb;
9265 uint32_t *buf, *p;
9266 int rc;
9267
9268 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9269 if (sb == NULL)
9270 return (ENOMEM);
9271
9272 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9273 M_ZERO | M_WAITOK);
9274
9275 rc = 0;
9276 mtx_lock(&sc->reg_lock);
9277 if (hw_off_limits(sc))
9278 rc = ENXIO;
9279 else
9280 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9281 mtx_unlock(&sc->reg_lock);
9282 if (rc)
9283 goto done;
9284
9285 p = buf;
9286 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9287 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9288 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9289 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9290 p[4], p[3], p[2], p[1], p[0]);
9291 }
9292
9293 sbuf_printf(sb, "\n\nCntl ID Data");
9294 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9295 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9296 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9297 }
9298
9299 rc = sbuf_finish(sb);
9300 done:
9301 sbuf_delete(sb);
9302 free(buf, M_CXGBE);
9303 return (rc);
9304 }
9305
9306 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9307 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9308 {
9309 struct adapter *sc = arg1;
9310 struct sbuf *sb;
9311 int rc, i;
9312 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9313 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9314 uint16_t thres[CIM_NUM_IBQ];
9315 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9316 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9317 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9318
9319 cim_num_obq = sc->chip_params->cim_num_obq;
9320 if (is_t4(sc)) {
9321 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9322 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9323 } else {
9324 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9325 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9326 }
9327 nq = CIM_NUM_IBQ + cim_num_obq;
9328
9329 mtx_lock(&sc->reg_lock);
9330 if (hw_off_limits(sc))
9331 rc = ENXIO;
9332 else {
9333 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9334 if (rc == 0) {
9335 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9336 obq_wr);
9337 if (rc == 0)
9338 t4_read_cimq_cfg(sc, base, size, thres);
9339 }
9340 }
9341 mtx_unlock(&sc->reg_lock);
9342 if (rc)
9343 return (rc);
9344
9345 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9346 if (sb == NULL)
9347 return (ENOMEM);
9348
9349 sbuf_printf(sb,
9350 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9351
9352 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9353 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9354 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9355 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9356 G_QUEREMFLITS(p[2]) * 16);
9357 for ( ; i < nq; i++, p += 4, wr += 2)
9358 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9359 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9360 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9361 G_QUEREMFLITS(p[2]) * 16);
9362
9363 rc = sbuf_finish(sb);
9364 sbuf_delete(sb);
9365
9366 return (rc);
9367 }
9368
9369 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9370 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9371 {
9372 struct adapter *sc = arg1;
9373 struct sbuf *sb;
9374 int rc;
9375 struct tp_cpl_stats stats;
9376
9377 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9378 if (sb == NULL)
9379 return (ENOMEM);
9380
9381 rc = 0;
9382 mtx_lock(&sc->reg_lock);
9383 if (hw_off_limits(sc))
9384 rc = ENXIO;
9385 else
9386 t4_tp_get_cpl_stats(sc, &stats, 0);
9387 mtx_unlock(&sc->reg_lock);
9388 if (rc)
9389 goto done;
9390
9391 if (sc->chip_params->nchan > 2) {
9392 sbuf_printf(sb, " channel 0 channel 1"
9393 " channel 2 channel 3");
9394 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9395 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9396 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9397 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9398 } else {
9399 sbuf_printf(sb, " channel 0 channel 1");
9400 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9401 stats.req[0], stats.req[1]);
9402 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9403 stats.rsp[0], stats.rsp[1]);
9404 }
9405
9406 rc = sbuf_finish(sb);
9407 done:
9408 sbuf_delete(sb);
9409 return (rc);
9410 }
9411
9412 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9413 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9414 {
9415 struct adapter *sc = arg1;
9416 struct sbuf *sb;
9417 int rc;
9418 struct tp_usm_stats stats;
9419
9420 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9421 if (sb == NULL)
9422 return (ENOMEM);
9423
9424 rc = 0;
9425 mtx_lock(&sc->reg_lock);
9426 if (hw_off_limits(sc))
9427 rc = ENXIO;
9428 else
9429 t4_get_usm_stats(sc, &stats, 1);
9430 mtx_unlock(&sc->reg_lock);
9431 if (rc == 0) {
9432 sbuf_printf(sb, "Frames: %u\n", stats.frames);
9433 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9434 sbuf_printf(sb, "Drops: %u", stats.drops);
9435 rc = sbuf_finish(sb);
9436 }
9437 sbuf_delete(sb);
9438
9439 return (rc);
9440 }
9441
9442 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)9443 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9444 {
9445 struct adapter *sc = arg1;
9446 struct sbuf *sb;
9447 int rc;
9448 struct tp_tid_stats stats;
9449
9450 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9451 if (sb == NULL)
9452 return (ENOMEM);
9453
9454 rc = 0;
9455 mtx_lock(&sc->reg_lock);
9456 if (hw_off_limits(sc))
9457 rc = ENXIO;
9458 else
9459 t4_tp_get_tid_stats(sc, &stats, 1);
9460 mtx_unlock(&sc->reg_lock);
9461 if (rc == 0) {
9462 sbuf_printf(sb, "Delete: %u\n", stats.del);
9463 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9464 sbuf_printf(sb, "Active: %u\n", stats.act);
9465 sbuf_printf(sb, "Passive: %u", stats.pas);
9466 rc = sbuf_finish(sb);
9467 }
9468 sbuf_delete(sb);
9469
9470 return (rc);
9471 }
9472
9473 static const char * const devlog_level_strings[] = {
9474 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
9475 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
9476 [FW_DEVLOG_LEVEL_ERR] = "ERR",
9477 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
9478 [FW_DEVLOG_LEVEL_INFO] = "INFO",
9479 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
9480 };
9481
9482 static const char * const devlog_facility_strings[] = {
9483 [FW_DEVLOG_FACILITY_CORE] = "CORE",
9484 [FW_DEVLOG_FACILITY_CF] = "CF",
9485 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
9486 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
9487 [FW_DEVLOG_FACILITY_RES] = "RES",
9488 [FW_DEVLOG_FACILITY_HW] = "HW",
9489 [FW_DEVLOG_FACILITY_FLR] = "FLR",
9490 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
9491 [FW_DEVLOG_FACILITY_PHY] = "PHY",
9492 [FW_DEVLOG_FACILITY_MAC] = "MAC",
9493 [FW_DEVLOG_FACILITY_PORT] = "PORT",
9494 [FW_DEVLOG_FACILITY_VI] = "VI",
9495 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
9496 [FW_DEVLOG_FACILITY_ACL] = "ACL",
9497 [FW_DEVLOG_FACILITY_TM] = "TM",
9498 [FW_DEVLOG_FACILITY_QFC] = "QFC",
9499 [FW_DEVLOG_FACILITY_DCB] = "DCB",
9500 [FW_DEVLOG_FACILITY_ETH] = "ETH",
9501 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
9502 [FW_DEVLOG_FACILITY_RI] = "RI",
9503 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
9504 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
9505 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
9506 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
9507 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
9508 };
9509
9510 static int
sbuf_devlog(struct adapter * sc,struct sbuf * sb,int flags)9511 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9512 {
9513 int i, j, rc, nentries, first = 0;
9514 struct devlog_params *dparams = &sc->params.devlog;
9515 struct fw_devlog_e *buf, *e;
9516 uint64_t ftstamp = UINT64_MAX;
9517
9518 if (dparams->addr == 0)
9519 return (ENXIO);
9520
9521 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9522 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9523 if (buf == NULL)
9524 return (ENOMEM);
9525
9526 mtx_lock(&sc->reg_lock);
9527 if (hw_off_limits(sc))
9528 rc = ENXIO;
9529 else
9530 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9531 dparams->size);
9532 mtx_unlock(&sc->reg_lock);
9533 if (rc != 0)
9534 goto done;
9535
9536 nentries = dparams->size / sizeof(struct fw_devlog_e);
9537 for (i = 0; i < nentries; i++) {
9538 e = &buf[i];
9539
9540 if (e->timestamp == 0)
9541 break; /* end */
9542
9543 e->timestamp = be64toh(e->timestamp);
9544 e->seqno = be32toh(e->seqno);
9545 for (j = 0; j < 8; j++)
9546 e->params[j] = be32toh(e->params[j]);
9547
9548 if (e->timestamp < ftstamp) {
9549 ftstamp = e->timestamp;
9550 first = i;
9551 }
9552 }
9553
9554 if (buf[first].timestamp == 0)
9555 goto done; /* nothing in the log */
9556
9557 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
9558 "Seq#", "Tstamp", "Level", "Facility", "Message");
9559
9560 i = first;
9561 do {
9562 e = &buf[i];
9563 if (e->timestamp == 0)
9564 break; /* end */
9565
9566 sbuf_printf(sb, "%10d %15ju %8s %8s ",
9567 e->seqno, e->timestamp,
9568 (e->level < nitems(devlog_level_strings) ?
9569 devlog_level_strings[e->level] : "UNKNOWN"),
9570 (e->facility < nitems(devlog_facility_strings) ?
9571 devlog_facility_strings[e->facility] : "UNKNOWN"));
9572 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9573 e->params[2], e->params[3], e->params[4],
9574 e->params[5], e->params[6], e->params[7]);
9575
9576 if (++i == nentries)
9577 i = 0;
9578 } while (i != first);
9579 done:
9580 free(buf, M_CXGBE);
9581 return (rc);
9582 }
9583
9584 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)9585 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9586 {
9587 struct adapter *sc = arg1;
9588 int rc;
9589 struct sbuf *sb;
9590
9591 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9592 if (sb == NULL)
9593 return (ENOMEM);
9594
9595 rc = sbuf_devlog(sc, sb, M_WAITOK);
9596 if (rc == 0)
9597 rc = sbuf_finish(sb);
9598 sbuf_delete(sb);
9599 return (rc);
9600 }
9601
9602 static void
dump_devlog(struct adapter * sc)9603 dump_devlog(struct adapter *sc)
9604 {
9605 int rc;
9606 struct sbuf sb;
9607
9608 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9609 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9610 device_get_nameunit(sc->dev));
9611 return;
9612 }
9613 rc = sbuf_devlog(sc, &sb, M_WAITOK);
9614 if (rc == 0) {
9615 rc = sbuf_finish(&sb);
9616 if (rc == 0) {
9617 log(LOG_DEBUG, "%s: device log follows.\n%s",
9618 device_get_nameunit(sc->dev), sbuf_data(&sb));
9619 }
9620 }
9621 sbuf_delete(&sb);
9622 }
9623
9624 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)9625 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9626 {
9627 struct adapter *sc = arg1;
9628 struct sbuf *sb;
9629 int rc;
9630 struct tp_fcoe_stats stats[MAX_NCHAN];
9631 int i, nchan = sc->chip_params->nchan;
9632
9633 rc = 0;
9634 mtx_lock(&sc->reg_lock);
9635 if (hw_off_limits(sc))
9636 rc = ENXIO;
9637 else {
9638 for (i = 0; i < nchan; i++)
9639 t4_get_fcoe_stats(sc, i, &stats[i], 1);
9640 }
9641 mtx_unlock(&sc->reg_lock);
9642 if (rc != 0)
9643 return (rc);
9644
9645 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9646 if (sb == NULL)
9647 return (ENOMEM);
9648
9649 if (nchan > 2) {
9650 sbuf_printf(sb, " channel 0 channel 1"
9651 " channel 2 channel 3");
9652 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
9653 stats[0].octets_ddp, stats[1].octets_ddp,
9654 stats[2].octets_ddp, stats[3].octets_ddp);
9655 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
9656 stats[0].frames_ddp, stats[1].frames_ddp,
9657 stats[2].frames_ddp, stats[3].frames_ddp);
9658 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9659 stats[0].frames_drop, stats[1].frames_drop,
9660 stats[2].frames_drop, stats[3].frames_drop);
9661 } else {
9662 sbuf_printf(sb, " channel 0 channel 1");
9663 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
9664 stats[0].octets_ddp, stats[1].octets_ddp);
9665 sbuf_printf(sb, "\nframesDDP: %16u %16u",
9666 stats[0].frames_ddp, stats[1].frames_ddp);
9667 sbuf_printf(sb, "\nframesDrop: %16u %16u",
9668 stats[0].frames_drop, stats[1].frames_drop);
9669 }
9670
9671 rc = sbuf_finish(sb);
9672 sbuf_delete(sb);
9673
9674 return (rc);
9675 }
9676
9677 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)9678 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9679 {
9680 struct adapter *sc = arg1;
9681 struct sbuf *sb;
9682 int rc, i;
9683 unsigned int map, kbps, ipg, mode;
9684 unsigned int pace_tab[NTX_SCHED];
9685
9686 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9687 if (sb == NULL)
9688 return (ENOMEM);
9689
9690 mtx_lock(&sc->reg_lock);
9691 if (hw_off_limits(sc)) {
9692 mtx_unlock(&sc->reg_lock);
9693 rc = ENXIO;
9694 goto done;
9695 }
9696
9697 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9698 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9699 t4_read_pace_tbl(sc, pace_tab);
9700 mtx_unlock(&sc->reg_lock);
9701
9702 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
9703 "Class IPG (0.1 ns) Flow IPG (us)");
9704
9705 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9706 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9707 sbuf_printf(sb, "\n %u %-5s %u ", i,
9708 (mode & (1 << i)) ? "flow" : "class", map & 3);
9709 if (kbps)
9710 sbuf_printf(sb, "%9u ", kbps);
9711 else
9712 sbuf_printf(sb, " disabled ");
9713
9714 if (ipg)
9715 sbuf_printf(sb, "%13u ", ipg);
9716 else
9717 sbuf_printf(sb, " disabled ");
9718
9719 if (pace_tab[i])
9720 sbuf_printf(sb, "%10u", pace_tab[i]);
9721 else
9722 sbuf_printf(sb, " disabled");
9723 }
9724 rc = sbuf_finish(sb);
9725 done:
9726 sbuf_delete(sb);
9727 return (rc);
9728 }
9729
9730 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)9731 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9732 {
9733 struct adapter *sc = arg1;
9734 struct sbuf *sb;
9735 int rc, i, j;
9736 uint64_t *p0, *p1;
9737 struct lb_port_stats s[2];
9738 static const char *stat_name[] = {
9739 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9740 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9741 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
9742 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9743 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9744 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9745 "BG2FramesTrunc:", "BG3FramesTrunc:"
9746 };
9747
9748 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9749 if (sb == NULL)
9750 return (ENOMEM);
9751
9752 memset(s, 0, sizeof(s));
9753
9754 rc = 0;
9755 for (i = 0; i < sc->chip_params->nchan; i += 2) {
9756 mtx_lock(&sc->reg_lock);
9757 if (hw_off_limits(sc))
9758 rc = ENXIO;
9759 else {
9760 t4_get_lb_stats(sc, i, &s[0]);
9761 t4_get_lb_stats(sc, i + 1, &s[1]);
9762 }
9763 mtx_unlock(&sc->reg_lock);
9764 if (rc != 0)
9765 break;
9766
9767 p0 = &s[0].octets;
9768 p1 = &s[1].octets;
9769 sbuf_printf(sb, "%s Loopback %u"
9770 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9771
9772 for (j = 0; j < nitems(stat_name); j++)
9773 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9774 *p0++, *p1++);
9775 }
9776
9777 if (rc == 0)
9778 rc = sbuf_finish(sb);
9779 sbuf_delete(sb);
9780
9781 return (rc);
9782 }
9783
9784 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)9785 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9786 {
9787 int rc = 0;
9788 struct port_info *pi = arg1;
9789 struct link_config *lc = &pi->link_cfg;
9790 struct sbuf *sb;
9791
9792 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9793 if (sb == NULL)
9794 return (ENOMEM);
9795
9796 if (lc->link_ok || lc->link_down_rc == 255)
9797 sbuf_printf(sb, "n/a");
9798 else
9799 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9800
9801 rc = sbuf_finish(sb);
9802 sbuf_delete(sb);
9803
9804 return (rc);
9805 }
9806
9807 struct mem_desc {
9808 u_int base;
9809 u_int limit;
9810 u_int idx;
9811 };
9812
9813 static int
mem_desc_cmp(const void * a,const void * b)9814 mem_desc_cmp(const void *a, const void *b)
9815 {
9816 const u_int v1 = ((const struct mem_desc *)a)->base;
9817 const u_int v2 = ((const struct mem_desc *)b)->base;
9818
9819 if (v1 < v2)
9820 return (-1);
9821 else if (v1 > v2)
9822 return (1);
9823
9824 return (0);
9825 }
9826
9827 static void
mem_region_show(struct sbuf * sb,const char * name,unsigned int from,unsigned int to)9828 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9829 unsigned int to)
9830 {
9831 unsigned int size;
9832
9833 if (from == to)
9834 return;
9835
9836 size = to - from + 1;
9837 if (size == 0)
9838 return;
9839
9840 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9841 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9842 }
9843
9844 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)9845 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9846 {
9847 struct adapter *sc = arg1;
9848 struct sbuf *sb;
9849 int rc, i, n;
9850 uint32_t lo, hi, used, free, alloc;
9851 static const char *memory[] = {
9852 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9853 };
9854 static const char *region[] = {
9855 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9856 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9857 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9858 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9859 "RQUDP region:", "PBL region:", "TXPBL region:",
9860 "TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9861 "ULPTX state:", "On-chip queues:",
9862 };
9863 struct mem_desc avail[4];
9864 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
9865 struct mem_desc *md = mem;
9866
9867 rc = sysctl_wire_old_buffer(req, 0);
9868 if (rc != 0)
9869 return (rc);
9870
9871 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9872 if (sb == NULL)
9873 return (ENOMEM);
9874
9875 for (i = 0; i < nitems(mem); i++) {
9876 mem[i].limit = 0;
9877 mem[i].idx = i;
9878 }
9879
9880 mtx_lock(&sc->reg_lock);
9881 if (hw_off_limits(sc)) {
9882 rc = ENXIO;
9883 goto done;
9884 }
9885
9886 /* Find and sort the populated memory ranges */
9887 i = 0;
9888 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9889 if (lo & F_EDRAM0_ENABLE) {
9890 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9891 avail[i].base = G_EDRAM0_BASE(hi) << 20;
9892 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9893 avail[i].idx = 0;
9894 i++;
9895 }
9896 if (lo & F_EDRAM1_ENABLE) {
9897 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9898 avail[i].base = G_EDRAM1_BASE(hi) << 20;
9899 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9900 avail[i].idx = 1;
9901 i++;
9902 }
9903 if (lo & F_EXT_MEM_ENABLE) {
9904 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9905 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9906 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9907 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */
9908 i++;
9909 }
9910 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9911 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9912 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9913 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9914 avail[i].idx = 4;
9915 i++;
9916 }
9917 if (is_t6(sc) && lo & F_HMA_MUX) {
9918 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9919 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9920 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9921 avail[i].idx = 5;
9922 i++;
9923 }
9924 MPASS(i <= nitems(avail));
9925 if (!i) /* no memory available */
9926 goto done;
9927 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9928
9929 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9930 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9931 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9932 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9933 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9934 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9935 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9936 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9937 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9938
9939 /* the next few have explicit upper bounds */
9940 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9941 md->limit = md->base - 1 +
9942 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9943 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9944 md++;
9945
9946 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9947 md->limit = md->base - 1 +
9948 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9949 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9950 md++;
9951
9952 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9953 if (chip_id(sc) <= CHELSIO_T5)
9954 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9955 else
9956 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9957 md->limit = 0;
9958 } else {
9959 md->base = 0;
9960 md->idx = nitems(region); /* hide it */
9961 }
9962 md++;
9963
9964 #define ulp_region(reg) \
9965 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9966 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9967
9968 ulp_region(RX_ISCSI);
9969 ulp_region(RX_TDDP);
9970 ulp_region(TX_TPT);
9971 ulp_region(RX_STAG);
9972 ulp_region(RX_RQ);
9973 ulp_region(RX_RQUDP);
9974 ulp_region(RX_PBL);
9975 ulp_region(TX_PBL);
9976 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9977 ulp_region(RX_TLS_KEY);
9978 }
9979 #undef ulp_region
9980
9981 md->base = 0;
9982 if (is_t4(sc))
9983 md->idx = nitems(region);
9984 else {
9985 uint32_t size = 0;
9986 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9987 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9988
9989 if (is_t5(sc)) {
9990 if (sge_ctrl & F_VFIFO_ENABLE)
9991 size = fifo_size << 2;
9992 } else
9993 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9994
9995 if (size) {
9996 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9997 md->limit = md->base + size - 1;
9998 } else
9999 md->idx = nitems(region);
10000 }
10001 md++;
10002
10003 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10004 md->limit = 0;
10005 md++;
10006 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10007 md->limit = 0;
10008 md++;
10009
10010 md->base = sc->vres.ocq.start;
10011 if (sc->vres.ocq.size)
10012 md->limit = md->base + sc->vres.ocq.size - 1;
10013 else
10014 md->idx = nitems(region); /* hide it */
10015 md++;
10016
10017 /* add any address-space holes, there can be up to 3 */
10018 for (n = 0; n < i - 1; n++)
10019 if (avail[n].limit < avail[n + 1].base)
10020 (md++)->base = avail[n].limit;
10021 if (avail[n].limit)
10022 (md++)->base = avail[n].limit;
10023
10024 n = md - mem;
10025 MPASS(n <= nitems(mem));
10026 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10027
10028 for (lo = 0; lo < i; lo++)
10029 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10030 avail[lo].limit - 1);
10031
10032 sbuf_printf(sb, "\n");
10033 for (i = 0; i < n; i++) {
10034 if (mem[i].idx >= nitems(region))
10035 continue; /* skip holes */
10036 if (!mem[i].limit)
10037 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10038 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10039 mem[i].limit);
10040 }
10041
10042 sbuf_printf(sb, "\n");
10043 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10044 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10045 mem_region_show(sb, "uP RAM:", lo, hi);
10046
10047 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10048 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10049 mem_region_show(sb, "uP Extmem2:", lo, hi);
10050
10051 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10052 for (i = 0, free = 0; i < 2; i++)
10053 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10054 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10055 G_PMRXMAXPAGE(lo), free,
10056 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10057 (lo & F_PMRXNUMCHN) ? 2 : 1);
10058
10059 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10060 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10061 for (i = 0, free = 0; i < 4; i++)
10062 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10063 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10064 G_PMTXMAXPAGE(lo), free,
10065 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10066 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10067 sbuf_printf(sb, "%u p-structs (%u free)\n",
10068 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10069 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10070
10071 for (i = 0; i < 4; i++) {
10072 if (chip_id(sc) > CHELSIO_T5)
10073 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10074 else
10075 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10076 if (is_t5(sc)) {
10077 used = G_T5_USED(lo);
10078 alloc = G_T5_ALLOC(lo);
10079 } else {
10080 used = G_USED(lo);
10081 alloc = G_ALLOC(lo);
10082 }
10083 /* For T6 these are MAC buffer groups */
10084 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10085 i, used, alloc);
10086 }
10087 for (i = 0; i < sc->chip_params->nchan; i++) {
10088 if (chip_id(sc) > CHELSIO_T5)
10089 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10090 else
10091 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10092 if (is_t5(sc)) {
10093 used = G_T5_USED(lo);
10094 alloc = G_T5_ALLOC(lo);
10095 } else {
10096 used = G_USED(lo);
10097 alloc = G_ALLOC(lo);
10098 }
10099 /* For T6 these are MAC buffer groups */
10100 sbuf_printf(sb,
10101 "\nLoopback %d using %u pages out of %u allocated",
10102 i, used, alloc);
10103 }
10104 done:
10105 mtx_unlock(&sc->reg_lock);
10106 if (rc == 0)
10107 rc = sbuf_finish(sb);
10108 sbuf_delete(sb);
10109 return (rc);
10110 }
10111
10112 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10113 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10114 {
10115 *mask = x | y;
10116 y = htobe64(y);
10117 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10118 }
10119
10120 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10121 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10122 {
10123 struct adapter *sc = arg1;
10124 struct sbuf *sb;
10125 int rc, i;
10126
10127 MPASS(chip_id(sc) <= CHELSIO_T5);
10128
10129 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10130 if (sb == NULL)
10131 return (ENOMEM);
10132
10133 sbuf_printf(sb,
10134 "Idx Ethernet address Mask Vld Ports PF"
10135 " VF Replication P0 P1 P2 P3 ML");
10136 rc = 0;
10137 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10138 uint64_t tcamx, tcamy, mask;
10139 uint32_t cls_lo, cls_hi;
10140 uint8_t addr[ETHER_ADDR_LEN];
10141
10142 mtx_lock(&sc->reg_lock);
10143 if (hw_off_limits(sc))
10144 rc = ENXIO;
10145 else {
10146 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10147 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10148 }
10149 mtx_unlock(&sc->reg_lock);
10150 if (rc != 0)
10151 break;
10152 if (tcamx & tcamy)
10153 continue;
10154 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10155 mtx_lock(&sc->reg_lock);
10156 if (hw_off_limits(sc))
10157 rc = ENXIO;
10158 else {
10159 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10160 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10161 }
10162 mtx_unlock(&sc->reg_lock);
10163 if (rc != 0)
10164 break;
10165 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10166 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10167 addr[3], addr[4], addr[5], (uintmax_t)mask,
10168 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10169 G_PORTMAP(cls_hi), G_PF(cls_lo),
10170 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10171
10172 if (cls_lo & F_REPLICATE) {
10173 struct fw_ldst_cmd ldst_cmd;
10174
10175 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10176 ldst_cmd.op_to_addrspace =
10177 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10178 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10179 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10180 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10181 ldst_cmd.u.mps.rplc.fid_idx =
10182 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10183 V_FW_LDST_CMD_IDX(i));
10184
10185 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10186 "t4mps");
10187 if (rc)
10188 break;
10189 if (hw_off_limits(sc))
10190 rc = ENXIO;
10191 else
10192 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10193 sizeof(ldst_cmd), &ldst_cmd);
10194 end_synchronized_op(sc, 0);
10195 if (rc != 0)
10196 break;
10197 else {
10198 sbuf_printf(sb, " %08x %08x %08x %08x",
10199 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10200 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10201 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10202 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10203 }
10204 } else
10205 sbuf_printf(sb, "%36s", "");
10206
10207 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10208 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10209 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10210 }
10211
10212 if (rc)
10213 (void) sbuf_finish(sb);
10214 else
10215 rc = sbuf_finish(sb);
10216 sbuf_delete(sb);
10217
10218 return (rc);
10219 }
10220
10221 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10222 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10223 {
10224 struct adapter *sc = arg1;
10225 struct sbuf *sb;
10226 int rc, i;
10227
10228 MPASS(chip_id(sc) > CHELSIO_T5);
10229
10230 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10231 if (sb == NULL)
10232 return (ENOMEM);
10233
10234 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10235 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10236 " Replication"
10237 " P0 P1 P2 P3 ML\n");
10238
10239 rc = 0;
10240 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10241 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10242 uint16_t ivlan;
10243 uint64_t tcamx, tcamy, val, mask;
10244 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10245 uint8_t addr[ETHER_ADDR_LEN];
10246
10247 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10248 if (i < 256)
10249 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10250 else
10251 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10252 mtx_lock(&sc->reg_lock);
10253 if (hw_off_limits(sc))
10254 rc = ENXIO;
10255 else {
10256 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10257 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10258 tcamy = G_DMACH(val) << 32;
10259 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10260 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10261 }
10262 mtx_unlock(&sc->reg_lock);
10263 if (rc != 0)
10264 break;
10265
10266 lookup_type = G_DATALKPTYPE(data2);
10267 port_num = G_DATAPORTNUM(data2);
10268 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10269 /* Inner header VNI */
10270 vniy = ((data2 & F_DATAVIDH2) << 23) |
10271 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10272 dip_hit = data2 & F_DATADIPHIT;
10273 vlan_vld = 0;
10274 } else {
10275 vniy = 0;
10276 dip_hit = 0;
10277 vlan_vld = data2 & F_DATAVIDH2;
10278 ivlan = G_VIDL(val);
10279 }
10280
10281 ctl |= V_CTLXYBITSEL(1);
10282 mtx_lock(&sc->reg_lock);
10283 if (hw_off_limits(sc))
10284 rc = ENXIO;
10285 else {
10286 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10287 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10288 tcamx = G_DMACH(val) << 32;
10289 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10290 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10291 }
10292 mtx_unlock(&sc->reg_lock);
10293 if (rc != 0)
10294 break;
10295
10296 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10297 /* Inner header VNI mask */
10298 vnix = ((data2 & F_DATAVIDH2) << 23) |
10299 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10300 } else
10301 vnix = 0;
10302
10303 if (tcamx & tcamy)
10304 continue;
10305 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10306
10307 mtx_lock(&sc->reg_lock);
10308 if (hw_off_limits(sc))
10309 rc = ENXIO;
10310 else {
10311 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10312 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10313 }
10314 mtx_unlock(&sc->reg_lock);
10315 if (rc != 0)
10316 break;
10317
10318 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10319 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10320 "%012jx %06x %06x - - %3c"
10321 " I %4x %3c %#x%4u%4d", i, addr[0],
10322 addr[1], addr[2], addr[3], addr[4], addr[5],
10323 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10324 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10325 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10326 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10327 } else {
10328 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10329 "%012jx - - ", i, addr[0], addr[1],
10330 addr[2], addr[3], addr[4], addr[5],
10331 (uintmax_t)mask);
10332
10333 if (vlan_vld)
10334 sbuf_printf(sb, "%4u Y ", ivlan);
10335 else
10336 sbuf_printf(sb, " - N ");
10337
10338 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
10339 lookup_type ? 'I' : 'O', port_num,
10340 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10341 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10342 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10343 }
10344
10345
10346 if (cls_lo & F_T6_REPLICATE) {
10347 struct fw_ldst_cmd ldst_cmd;
10348
10349 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10350 ldst_cmd.op_to_addrspace =
10351 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10352 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10353 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10354 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10355 ldst_cmd.u.mps.rplc.fid_idx =
10356 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10357 V_FW_LDST_CMD_IDX(i));
10358
10359 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10360 "t6mps");
10361 if (rc)
10362 break;
10363 if (hw_off_limits(sc))
10364 rc = ENXIO;
10365 else
10366 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10367 sizeof(ldst_cmd), &ldst_cmd);
10368 end_synchronized_op(sc, 0);
10369 if (rc != 0)
10370 break;
10371 else {
10372 sbuf_printf(sb, " %08x %08x %08x %08x"
10373 " %08x %08x %08x %08x",
10374 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10375 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10376 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10377 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10378 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10379 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10380 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10381 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10382 }
10383 } else
10384 sbuf_printf(sb, "%72s", "");
10385
10386 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10387 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10388 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10389 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10390 }
10391
10392 if (rc)
10393 (void) sbuf_finish(sb);
10394 else
10395 rc = sbuf_finish(sb);
10396 sbuf_delete(sb);
10397
10398 return (rc);
10399 }
10400
10401 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)10402 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10403 {
10404 struct adapter *sc = arg1;
10405 struct sbuf *sb;
10406 int rc;
10407 uint16_t mtus[NMTUS];
10408
10409 rc = 0;
10410 mtx_lock(&sc->reg_lock);
10411 if (hw_off_limits(sc))
10412 rc = ENXIO;
10413 else
10414 t4_read_mtu_tbl(sc, mtus, NULL);
10415 mtx_unlock(&sc->reg_lock);
10416 if (rc != 0)
10417 return (rc);
10418
10419 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10420 if (sb == NULL)
10421 return (ENOMEM);
10422
10423 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10424 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10425 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10426 mtus[14], mtus[15]);
10427
10428 rc = sbuf_finish(sb);
10429 sbuf_delete(sb);
10430
10431 return (rc);
10432 }
10433
10434 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)10435 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10436 {
10437 struct adapter *sc = arg1;
10438 struct sbuf *sb;
10439 int rc, i;
10440 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10441 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10442 static const char *tx_stats[MAX_PM_NSTATS] = {
10443 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10444 "Tx FIFO wait", NULL, "Tx latency"
10445 };
10446 static const char *rx_stats[MAX_PM_NSTATS] = {
10447 "Read:", "Write bypass:", "Write mem:", "Flush:",
10448 "Rx FIFO wait", NULL, "Rx latency"
10449 };
10450
10451 rc = 0;
10452 mtx_lock(&sc->reg_lock);
10453 if (hw_off_limits(sc))
10454 rc = ENXIO;
10455 else {
10456 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10457 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10458 }
10459 mtx_unlock(&sc->reg_lock);
10460 if (rc != 0)
10461 return (rc);
10462
10463 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10464 if (sb == NULL)
10465 return (ENOMEM);
10466
10467 sbuf_printf(sb, " Tx pcmds Tx bytes");
10468 for (i = 0; i < 4; i++) {
10469 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10470 tx_cyc[i]);
10471 }
10472
10473 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
10474 for (i = 0; i < 4; i++) {
10475 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10476 rx_cyc[i]);
10477 }
10478
10479 if (chip_id(sc) > CHELSIO_T5) {
10480 sbuf_printf(sb,
10481 "\n Total wait Total occupancy");
10482 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10483 tx_cyc[i]);
10484 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10485 rx_cyc[i]);
10486
10487 i += 2;
10488 MPASS(i < nitems(tx_stats));
10489
10490 sbuf_printf(sb,
10491 "\n Reads Total wait");
10492 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10493 tx_cyc[i]);
10494 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10495 rx_cyc[i]);
10496 }
10497
10498 rc = sbuf_finish(sb);
10499 sbuf_delete(sb);
10500
10501 return (rc);
10502 }
10503
10504 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)10505 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10506 {
10507 struct adapter *sc = arg1;
10508 struct sbuf *sb;
10509 int rc;
10510 struct tp_rdma_stats stats;
10511
10512 rc = 0;
10513 mtx_lock(&sc->reg_lock);
10514 if (hw_off_limits(sc))
10515 rc = ENXIO;
10516 else
10517 t4_tp_get_rdma_stats(sc, &stats, 0);
10518 mtx_unlock(&sc->reg_lock);
10519 if (rc != 0)
10520 return (rc);
10521
10522 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10523 if (sb == NULL)
10524 return (ENOMEM);
10525
10526 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10527 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10528
10529 rc = sbuf_finish(sb);
10530 sbuf_delete(sb);
10531
10532 return (rc);
10533 }
10534
10535 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)10536 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10537 {
10538 struct adapter *sc = arg1;
10539 struct sbuf *sb;
10540 int rc;
10541 struct tp_tcp_stats v4, v6;
10542
10543 rc = 0;
10544 mtx_lock(&sc->reg_lock);
10545 if (hw_off_limits(sc))
10546 rc = ENXIO;
10547 else
10548 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10549 mtx_unlock(&sc->reg_lock);
10550 if (rc != 0)
10551 return (rc);
10552
10553 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10554 if (sb == NULL)
10555 return (ENOMEM);
10556
10557 sbuf_printf(sb,
10558 " IP IPv6\n");
10559 sbuf_printf(sb, "OutRsts: %20u %20u\n",
10560 v4.tcp_out_rsts, v6.tcp_out_rsts);
10561 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
10562 v4.tcp_in_segs, v6.tcp_in_segs);
10563 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
10564 v4.tcp_out_segs, v6.tcp_out_segs);
10565 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
10566 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10567
10568 rc = sbuf_finish(sb);
10569 sbuf_delete(sb);
10570
10571 return (rc);
10572 }
10573
10574 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)10575 sysctl_tids(SYSCTL_HANDLER_ARGS)
10576 {
10577 struct adapter *sc = arg1;
10578 struct sbuf *sb;
10579 int rc;
10580 uint32_t x, y;
10581 struct tid_info *t = &sc->tids;
10582
10583 rc = 0;
10584 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10585 if (sb == NULL)
10586 return (ENOMEM);
10587
10588 if (t->natids) {
10589 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10590 t->atids_in_use);
10591 }
10592
10593 if (t->nhpftids) {
10594 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10595 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10596 }
10597
10598 if (t->ntids) {
10599 bool hashen = false;
10600
10601 mtx_lock(&sc->reg_lock);
10602 if (hw_off_limits(sc))
10603 rc = ENXIO;
10604 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10605 hashen = true;
10606 if (chip_id(sc) <= CHELSIO_T5) {
10607 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10608 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10609 } else {
10610 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10611 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10612 }
10613 }
10614 mtx_unlock(&sc->reg_lock);
10615 if (rc != 0)
10616 goto done;
10617
10618 sbuf_printf(sb, "TID range: ");
10619 if (hashen) {
10620 if (x)
10621 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10622 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10623 } else {
10624 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10625 t->ntids - 1);
10626 }
10627 sbuf_printf(sb, ", in use: %u\n",
10628 atomic_load_acq_int(&t->tids_in_use));
10629 }
10630
10631 if (t->nstids) {
10632 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10633 t->stid_base + t->nstids - 1, t->stids_in_use);
10634 }
10635
10636 if (t->nftids) {
10637 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10638 t->ftid_end, t->ftids_in_use);
10639 }
10640
10641 if (t->netids) {
10642 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10643 t->etid_base + t->netids - 1, t->etids_in_use);
10644 }
10645
10646 mtx_lock(&sc->reg_lock);
10647 if (hw_off_limits(sc))
10648 rc = ENXIO;
10649 else {
10650 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10651 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10652 }
10653 mtx_unlock(&sc->reg_lock);
10654 if (rc != 0)
10655 goto done;
10656 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10657 done:
10658 if (rc == 0)
10659 rc = sbuf_finish(sb);
10660 else
10661 (void)sbuf_finish(sb);
10662 sbuf_delete(sb);
10663
10664 return (rc);
10665 }
10666
10667 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)10668 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10669 {
10670 struct adapter *sc = arg1;
10671 struct sbuf *sb;
10672 int rc;
10673 struct tp_err_stats stats;
10674
10675 rc = 0;
10676 mtx_lock(&sc->reg_lock);
10677 if (hw_off_limits(sc))
10678 rc = ENXIO;
10679 else
10680 t4_tp_get_err_stats(sc, &stats, 0);
10681 mtx_unlock(&sc->reg_lock);
10682 if (rc != 0)
10683 return (rc);
10684
10685 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10686 if (sb == NULL)
10687 return (ENOMEM);
10688
10689 if (sc->chip_params->nchan > 2) {
10690 sbuf_printf(sb, " channel 0 channel 1"
10691 " channel 2 channel 3\n");
10692 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
10693 stats.mac_in_errs[0], stats.mac_in_errs[1],
10694 stats.mac_in_errs[2], stats.mac_in_errs[3]);
10695 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
10696 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10697 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10698 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
10699 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10700 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10701 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
10702 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10703 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10704 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
10705 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10706 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10707 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
10708 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10709 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10710 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
10711 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10712 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10713 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
10714 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10715 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10716 } else {
10717 sbuf_printf(sb, " channel 0 channel 1\n");
10718 sbuf_printf(sb, "macInErrs: %10u %10u\n",
10719 stats.mac_in_errs[0], stats.mac_in_errs[1]);
10720 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
10721 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10722 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
10723 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10724 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
10725 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10726 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
10727 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10728 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
10729 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10730 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
10731 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10732 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
10733 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10734 }
10735
10736 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
10737 stats.ofld_no_neigh, stats.ofld_cong_defer);
10738
10739 rc = sbuf_finish(sb);
10740 sbuf_delete(sb);
10741
10742 return (rc);
10743 }
10744
10745 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)10746 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10747 {
10748 struct adapter *sc = arg1;
10749 struct sbuf *sb;
10750 int rc;
10751 struct tp_tnl_stats stats;
10752
10753 rc = 0;
10754 mtx_lock(&sc->reg_lock);
10755 if (hw_off_limits(sc))
10756 rc = ENXIO;
10757 else
10758 t4_tp_get_tnl_stats(sc, &stats, 1);
10759 mtx_unlock(&sc->reg_lock);
10760 if (rc != 0)
10761 return (rc);
10762
10763 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10764 if (sb == NULL)
10765 return (ENOMEM);
10766
10767 if (sc->chip_params->nchan > 2) {
10768 sbuf_printf(sb, " channel 0 channel 1"
10769 " channel 2 channel 3\n");
10770 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
10771 stats.out_pkt[0], stats.out_pkt[1],
10772 stats.out_pkt[2], stats.out_pkt[3]);
10773 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
10774 stats.in_pkt[0], stats.in_pkt[1],
10775 stats.in_pkt[2], stats.in_pkt[3]);
10776 } else {
10777 sbuf_printf(sb, " channel 0 channel 1\n");
10778 sbuf_printf(sb, "OutPkts: %10u %10u\n",
10779 stats.out_pkt[0], stats.out_pkt[1]);
10780 sbuf_printf(sb, "InPkts: %10u %10u",
10781 stats.in_pkt[0], stats.in_pkt[1]);
10782 }
10783
10784 rc = sbuf_finish(sb);
10785 sbuf_delete(sb);
10786
10787 return (rc);
10788 }
10789
10790 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)10791 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10792 {
10793 struct adapter *sc = arg1;
10794 struct tp_params *tpp = &sc->params.tp;
10795 u_int mask;
10796 int rc;
10797
10798 mask = tpp->la_mask >> 16;
10799 rc = sysctl_handle_int(oidp, &mask, 0, req);
10800 if (rc != 0 || req->newptr == NULL)
10801 return (rc);
10802 if (mask > 0xffff)
10803 return (EINVAL);
10804 mtx_lock(&sc->reg_lock);
10805 if (hw_off_limits(sc))
10806 rc = ENXIO;
10807 else {
10808 tpp->la_mask = mask << 16;
10809 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10810 tpp->la_mask);
10811 }
10812 mtx_unlock(&sc->reg_lock);
10813
10814 return (rc);
10815 }
10816
10817 struct field_desc {
10818 const char *name;
10819 u_int start;
10820 u_int width;
10821 };
10822
10823 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)10824 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10825 {
10826 char buf[32];
10827 int line_size = 0;
10828
10829 while (f->name) {
10830 uint64_t mask = (1ULL << f->width) - 1;
10831 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10832 ((uintmax_t)v >> f->start) & mask);
10833
10834 if (line_size + len >= 79) {
10835 line_size = 8;
10836 sbuf_printf(sb, "\n ");
10837 }
10838 sbuf_printf(sb, "%s ", buf);
10839 line_size += len + 1;
10840 f++;
10841 }
10842 sbuf_printf(sb, "\n");
10843 }
10844
10845 static const struct field_desc tp_la0[] = {
10846 { "RcfOpCodeOut", 60, 4 },
10847 { "State", 56, 4 },
10848 { "WcfState", 52, 4 },
10849 { "RcfOpcSrcOut", 50, 2 },
10850 { "CRxError", 49, 1 },
10851 { "ERxError", 48, 1 },
10852 { "SanityFailed", 47, 1 },
10853 { "SpuriousMsg", 46, 1 },
10854 { "FlushInputMsg", 45, 1 },
10855 { "FlushInputCpl", 44, 1 },
10856 { "RssUpBit", 43, 1 },
10857 { "RssFilterHit", 42, 1 },
10858 { "Tid", 32, 10 },
10859 { "InitTcb", 31, 1 },
10860 { "LineNumber", 24, 7 },
10861 { "Emsg", 23, 1 },
10862 { "EdataOut", 22, 1 },
10863 { "Cmsg", 21, 1 },
10864 { "CdataOut", 20, 1 },
10865 { "EreadPdu", 19, 1 },
10866 { "CreadPdu", 18, 1 },
10867 { "TunnelPkt", 17, 1 },
10868 { "RcfPeerFin", 16, 1 },
10869 { "RcfReasonOut", 12, 4 },
10870 { "TxCchannel", 10, 2 },
10871 { "RcfTxChannel", 8, 2 },
10872 { "RxEchannel", 6, 2 },
10873 { "RcfRxChannel", 5, 1 },
10874 { "RcfDataOutSrdy", 4, 1 },
10875 { "RxDvld", 3, 1 },
10876 { "RxOoDvld", 2, 1 },
10877 { "RxCongestion", 1, 1 },
10878 { "TxCongestion", 0, 1 },
10879 { NULL }
10880 };
10881
10882 static const struct field_desc tp_la1[] = {
10883 { "CplCmdIn", 56, 8 },
10884 { "CplCmdOut", 48, 8 },
10885 { "ESynOut", 47, 1 },
10886 { "EAckOut", 46, 1 },
10887 { "EFinOut", 45, 1 },
10888 { "ERstOut", 44, 1 },
10889 { "SynIn", 43, 1 },
10890 { "AckIn", 42, 1 },
10891 { "FinIn", 41, 1 },
10892 { "RstIn", 40, 1 },
10893 { "DataIn", 39, 1 },
10894 { "DataInVld", 38, 1 },
10895 { "PadIn", 37, 1 },
10896 { "RxBufEmpty", 36, 1 },
10897 { "RxDdp", 35, 1 },
10898 { "RxFbCongestion", 34, 1 },
10899 { "TxFbCongestion", 33, 1 },
10900 { "TxPktSumSrdy", 32, 1 },
10901 { "RcfUlpType", 28, 4 },
10902 { "Eread", 27, 1 },
10903 { "Ebypass", 26, 1 },
10904 { "Esave", 25, 1 },
10905 { "Static0", 24, 1 },
10906 { "Cread", 23, 1 },
10907 { "Cbypass", 22, 1 },
10908 { "Csave", 21, 1 },
10909 { "CPktOut", 20, 1 },
10910 { "RxPagePoolFull", 18, 2 },
10911 { "RxLpbkPkt", 17, 1 },
10912 { "TxLpbkPkt", 16, 1 },
10913 { "RxVfValid", 15, 1 },
10914 { "SynLearned", 14, 1 },
10915 { "SetDelEntry", 13, 1 },
10916 { "SetInvEntry", 12, 1 },
10917 { "CpcmdDvld", 11, 1 },
10918 { "CpcmdSave", 10, 1 },
10919 { "RxPstructsFull", 8, 2 },
10920 { "EpcmdDvld", 7, 1 },
10921 { "EpcmdFlush", 6, 1 },
10922 { "EpcmdTrimPrefix", 5, 1 },
10923 { "EpcmdTrimPostfix", 4, 1 },
10924 { "ERssIp4Pkt", 3, 1 },
10925 { "ERssIp6Pkt", 2, 1 },
10926 { "ERssTcpUdpPkt", 1, 1 },
10927 { "ERssFceFipPkt", 0, 1 },
10928 { NULL }
10929 };
10930
10931 static const struct field_desc tp_la2[] = {
10932 { "CplCmdIn", 56, 8 },
10933 { "MpsVfVld", 55, 1 },
10934 { "MpsPf", 52, 3 },
10935 { "MpsVf", 44, 8 },
10936 { "SynIn", 43, 1 },
10937 { "AckIn", 42, 1 },
10938 { "FinIn", 41, 1 },
10939 { "RstIn", 40, 1 },
10940 { "DataIn", 39, 1 },
10941 { "DataInVld", 38, 1 },
10942 { "PadIn", 37, 1 },
10943 { "RxBufEmpty", 36, 1 },
10944 { "RxDdp", 35, 1 },
10945 { "RxFbCongestion", 34, 1 },
10946 { "TxFbCongestion", 33, 1 },
10947 { "TxPktSumSrdy", 32, 1 },
10948 { "RcfUlpType", 28, 4 },
10949 { "Eread", 27, 1 },
10950 { "Ebypass", 26, 1 },
10951 { "Esave", 25, 1 },
10952 { "Static0", 24, 1 },
10953 { "Cread", 23, 1 },
10954 { "Cbypass", 22, 1 },
10955 { "Csave", 21, 1 },
10956 { "CPktOut", 20, 1 },
10957 { "RxPagePoolFull", 18, 2 },
10958 { "RxLpbkPkt", 17, 1 },
10959 { "TxLpbkPkt", 16, 1 },
10960 { "RxVfValid", 15, 1 },
10961 { "SynLearned", 14, 1 },
10962 { "SetDelEntry", 13, 1 },
10963 { "SetInvEntry", 12, 1 },
10964 { "CpcmdDvld", 11, 1 },
10965 { "CpcmdSave", 10, 1 },
10966 { "RxPstructsFull", 8, 2 },
10967 { "EpcmdDvld", 7, 1 },
10968 { "EpcmdFlush", 6, 1 },
10969 { "EpcmdTrimPrefix", 5, 1 },
10970 { "EpcmdTrimPostfix", 4, 1 },
10971 { "ERssIp4Pkt", 3, 1 },
10972 { "ERssIp6Pkt", 2, 1 },
10973 { "ERssTcpUdpPkt", 1, 1 },
10974 { "ERssFceFipPkt", 0, 1 },
10975 { NULL }
10976 };
10977
10978 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)10979 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10980 {
10981
10982 field_desc_show(sb, *p, tp_la0);
10983 }
10984
10985 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)10986 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10987 {
10988
10989 if (idx)
10990 sbuf_printf(sb, "\n");
10991 field_desc_show(sb, p[0], tp_la0);
10992 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10993 field_desc_show(sb, p[1], tp_la0);
10994 }
10995
10996 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)10997 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10998 {
10999
11000 if (idx)
11001 sbuf_printf(sb, "\n");
11002 field_desc_show(sb, p[0], tp_la0);
11003 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11004 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11005 }
11006
11007 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11008 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11009 {
11010 struct adapter *sc = arg1;
11011 struct sbuf *sb;
11012 uint64_t *buf, *p;
11013 int rc;
11014 u_int i, inc;
11015 void (*show_func)(struct sbuf *, uint64_t *, int);
11016
11017 rc = 0;
11018 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11019 if (sb == NULL)
11020 return (ENOMEM);
11021
11022 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11023
11024 mtx_lock(&sc->reg_lock);
11025 if (hw_off_limits(sc))
11026 rc = ENXIO;
11027 else {
11028 t4_tp_read_la(sc, buf, NULL);
11029 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11030 case 2:
11031 inc = 2;
11032 show_func = tp_la_show2;
11033 break;
11034 case 3:
11035 inc = 2;
11036 show_func = tp_la_show3;
11037 break;
11038 default:
11039 inc = 1;
11040 show_func = tp_la_show;
11041 }
11042 }
11043 mtx_unlock(&sc->reg_lock);
11044 if (rc != 0)
11045 goto done;
11046
11047 p = buf;
11048 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11049 (*show_func)(sb, p, i);
11050 rc = sbuf_finish(sb);
11051 done:
11052 sbuf_delete(sb);
11053 free(buf, M_CXGBE);
11054 return (rc);
11055 }
11056
11057 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)11058 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11059 {
11060 struct adapter *sc = arg1;
11061 struct sbuf *sb;
11062 int rc;
11063 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11064
11065 rc = 0;
11066 mtx_lock(&sc->reg_lock);
11067 if (hw_off_limits(sc))
11068 rc = ENXIO;
11069 else
11070 t4_get_chan_txrate(sc, nrate, orate);
11071 mtx_unlock(&sc->reg_lock);
11072 if (rc != 0)
11073 return (rc);
11074
11075 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11076 if (sb == NULL)
11077 return (ENOMEM);
11078
11079 if (sc->chip_params->nchan > 2) {
11080 sbuf_printf(sb, " channel 0 channel 1"
11081 " channel 2 channel 3\n");
11082 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
11083 nrate[0], nrate[1], nrate[2], nrate[3]);
11084 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
11085 orate[0], orate[1], orate[2], orate[3]);
11086 } else {
11087 sbuf_printf(sb, " channel 0 channel 1\n");
11088 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
11089 nrate[0], nrate[1]);
11090 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
11091 orate[0], orate[1]);
11092 }
11093
11094 rc = sbuf_finish(sb);
11095 sbuf_delete(sb);
11096
11097 return (rc);
11098 }
11099
11100 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)11101 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11102 {
11103 struct adapter *sc = arg1;
11104 struct sbuf *sb;
11105 uint32_t *buf, *p;
11106 int rc, i;
11107
11108 rc = 0;
11109 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11110 if (sb == NULL)
11111 return (ENOMEM);
11112
11113 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11114 M_ZERO | M_WAITOK);
11115
11116 mtx_lock(&sc->reg_lock);
11117 if (hw_off_limits(sc))
11118 rc = ENXIO;
11119 else
11120 t4_ulprx_read_la(sc, buf);
11121 mtx_unlock(&sc->reg_lock);
11122 if (rc != 0)
11123 goto done;
11124
11125 p = buf;
11126 sbuf_printf(sb, " Pcmd Type Message"
11127 " Data");
11128 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11129 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
11130 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11131 }
11132 rc = sbuf_finish(sb);
11133 done:
11134 sbuf_delete(sb);
11135 free(buf, M_CXGBE);
11136 return (rc);
11137 }
11138
11139 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)11140 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11141 {
11142 struct adapter *sc = arg1;
11143 struct sbuf *sb;
11144 int rc;
11145 uint32_t cfg, s1, s2;
11146
11147 MPASS(chip_id(sc) >= CHELSIO_T5);
11148
11149 rc = 0;
11150 mtx_lock(&sc->reg_lock);
11151 if (hw_off_limits(sc))
11152 rc = ENXIO;
11153 else {
11154 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11155 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11156 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11157 }
11158 mtx_unlock(&sc->reg_lock);
11159 if (rc != 0)
11160 return (rc);
11161
11162 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11163 if (sb == NULL)
11164 return (ENOMEM);
11165
11166 if (G_STATSOURCE_T5(cfg) == 7) {
11167 int mode;
11168
11169 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11170 if (mode == 0)
11171 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11172 else if (mode == 1)
11173 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11174 else
11175 sbuf_printf(sb, "unknown mode %d", mode);
11176 }
11177 rc = sbuf_finish(sb);
11178 sbuf_delete(sb);
11179
11180 return (rc);
11181 }
11182
11183 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)11184 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11185 {
11186 struct adapter *sc = arg1;
11187 enum cpu_sets op = arg2;
11188 cpuset_t cpuset;
11189 struct sbuf *sb;
11190 int i, rc;
11191
11192 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11193
11194 CPU_ZERO(&cpuset);
11195 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11196 if (rc != 0)
11197 return (rc);
11198
11199 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11200 if (sb == NULL)
11201 return (ENOMEM);
11202
11203 CPU_FOREACH(i)
11204 sbuf_printf(sb, "%d ", i);
11205 rc = sbuf_finish(sb);
11206 sbuf_delete(sb);
11207
11208 return (rc);
11209 }
11210
11211 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)11212 sysctl_reset(SYSCTL_HANDLER_ARGS)
11213 {
11214 struct adapter *sc = arg1;
11215 u_int val;
11216 int rc;
11217
11218 val = atomic_load_int(&sc->num_resets);
11219 rc = sysctl_handle_int(oidp, &val, 0, req);
11220 if (rc != 0 || req->newptr == NULL)
11221 return (rc);
11222
11223 if (val == 0) {
11224 /* Zero out the counter that tracks reset. */
11225 atomic_store_int(&sc->num_resets, 0);
11226 return (0);
11227 }
11228
11229 if (val != 1)
11230 return (EINVAL); /* 0 or 1 are the only legal values */
11231
11232 if (hw_off_limits(sc)) /* harmless race */
11233 return (EALREADY);
11234
11235 taskqueue_enqueue(reset_tq, &sc->reset_task);
11236 return (0);
11237 }
11238
11239 #ifdef TCP_OFFLOAD
11240 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)11241 sysctl_tls(SYSCTL_HANDLER_ARGS)
11242 {
11243 struct adapter *sc = arg1;
11244 int i, j, v, rc;
11245 struct vi_info *vi;
11246
11247 v = sc->tt.tls;
11248 rc = sysctl_handle_int(oidp, &v, 0, req);
11249 if (rc != 0 || req->newptr == NULL)
11250 return (rc);
11251
11252 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11253 return (ENOTSUP);
11254
11255 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11256 if (rc)
11257 return (rc);
11258 if (hw_off_limits(sc))
11259 rc = ENXIO;
11260 else {
11261 sc->tt.tls = !!v;
11262 for_each_port(sc, i) {
11263 for_each_vi(sc->port[i], j, vi) {
11264 if (vi->flags & VI_INIT_DONE)
11265 t4_update_fl_bufsize(vi->ifp);
11266 }
11267 }
11268 }
11269 end_synchronized_op(sc, 0);
11270
11271 return (rc);
11272
11273 }
11274
11275 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)11276 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11277 {
11278 u_int rem = val % factor;
11279
11280 if (rem == 0)
11281 snprintf(buf, len, "%u", val / factor);
11282 else {
11283 while (rem % 10 == 0)
11284 rem /= 10;
11285 snprintf(buf, len, "%u.%u", val / factor, rem);
11286 }
11287 }
11288
11289 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)11290 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11291 {
11292 struct adapter *sc = arg1;
11293 char buf[16];
11294 u_int res, re;
11295 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11296
11297 mtx_lock(&sc->reg_lock);
11298 if (hw_off_limits(sc))
11299 res = (u_int)-1;
11300 else
11301 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11302 mtx_unlock(&sc->reg_lock);
11303 if (res == (u_int)-1)
11304 return (ENXIO);
11305
11306 switch (arg2) {
11307 case 0:
11308 /* timer_tick */
11309 re = G_TIMERRESOLUTION(res);
11310 break;
11311 case 1:
11312 /* TCP timestamp tick */
11313 re = G_TIMESTAMPRESOLUTION(res);
11314 break;
11315 case 2:
11316 /* DACK tick */
11317 re = G_DELAYEDACKRESOLUTION(res);
11318 break;
11319 default:
11320 return (EDOOFUS);
11321 }
11322
11323 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11324
11325 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11326 }
11327
11328 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)11329 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11330 {
11331 struct adapter *sc = arg1;
11332 int rc;
11333 u_int dack_tmr, dack_re, v;
11334 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11335
11336 mtx_lock(&sc->reg_lock);
11337 if (hw_off_limits(sc))
11338 rc = ENXIO;
11339 else {
11340 rc = 0;
11341 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11342 A_TP_TIMER_RESOLUTION));
11343 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11344 }
11345 mtx_unlock(&sc->reg_lock);
11346 if (rc != 0)
11347 return (rc);
11348
11349 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11350
11351 return (sysctl_handle_int(oidp, &v, 0, req));
11352 }
11353
11354 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)11355 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11356 {
11357 struct adapter *sc = arg1;
11358 int rc, reg = arg2;
11359 u_int tre;
11360 u_long tp_tick_us, v;
11361 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11362
11363 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11364 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
11365 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11366 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11367
11368 mtx_lock(&sc->reg_lock);
11369 if (hw_off_limits(sc))
11370 rc = ENXIO;
11371 else {
11372 rc = 0;
11373 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11374 tp_tick_us = (cclk_ps << tre) / 1000000;
11375 if (reg == A_TP_INIT_SRTT)
11376 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11377 else
11378 v = tp_tick_us * t4_read_reg(sc, reg);
11379 }
11380 mtx_unlock(&sc->reg_lock);
11381 if (rc != 0)
11382 return (rc);
11383 else
11384 return (sysctl_handle_long(oidp, &v, 0, req));
11385 }
11386
11387 /*
11388 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11389 * passed to this function.
11390 */
11391 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)11392 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11393 {
11394 struct adapter *sc = arg1;
11395 int rc, idx = arg2;
11396 u_int v;
11397
11398 MPASS(idx >= 0 && idx <= 24);
11399
11400 mtx_lock(&sc->reg_lock);
11401 if (hw_off_limits(sc))
11402 rc = ENXIO;
11403 else {
11404 rc = 0;
11405 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11406 }
11407 mtx_unlock(&sc->reg_lock);
11408 if (rc != 0)
11409 return (rc);
11410 else
11411 return (sysctl_handle_int(oidp, &v, 0, req));
11412 }
11413
11414 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)11415 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11416 {
11417 struct adapter *sc = arg1;
11418 int rc, idx = arg2;
11419 u_int shift, v, r;
11420
11421 MPASS(idx >= 0 && idx < 16);
11422
11423 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11424 shift = (idx & 3) << 3;
11425 mtx_lock(&sc->reg_lock);
11426 if (hw_off_limits(sc))
11427 rc = ENXIO;
11428 else {
11429 rc = 0;
11430 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11431 }
11432 mtx_unlock(&sc->reg_lock);
11433 if (rc != 0)
11434 return (rc);
11435 else
11436 return (sysctl_handle_int(oidp, &v, 0, req));
11437 }
11438
11439 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)11440 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11441 {
11442 struct vi_info *vi = arg1;
11443 struct adapter *sc = vi->adapter;
11444 int idx, rc, i;
11445 struct sge_ofld_rxq *ofld_rxq;
11446 uint8_t v;
11447
11448 idx = vi->ofld_tmr_idx;
11449
11450 rc = sysctl_handle_int(oidp, &idx, 0, req);
11451 if (rc != 0 || req->newptr == NULL)
11452 return (rc);
11453
11454 if (idx < 0 || idx >= SGE_NTIMERS)
11455 return (EINVAL);
11456
11457 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11458 "t4otmr");
11459 if (rc)
11460 return (rc);
11461
11462 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11463 for_each_ofld_rxq(vi, i, ofld_rxq) {
11464 #ifdef atomic_store_rel_8
11465 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11466 #else
11467 ofld_rxq->iq.intr_params = v;
11468 #endif
11469 }
11470 vi->ofld_tmr_idx = idx;
11471
11472 end_synchronized_op(sc, LOCK_HELD);
11473 return (0);
11474 }
11475
11476 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)11477 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11478 {
11479 struct vi_info *vi = arg1;
11480 struct adapter *sc = vi->adapter;
11481 int idx, rc;
11482
11483 idx = vi->ofld_pktc_idx;
11484
11485 rc = sysctl_handle_int(oidp, &idx, 0, req);
11486 if (rc != 0 || req->newptr == NULL)
11487 return (rc);
11488
11489 if (idx < -1 || idx >= SGE_NCOUNTERS)
11490 return (EINVAL);
11491
11492 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11493 "t4opktc");
11494 if (rc)
11495 return (rc);
11496
11497 if (vi->flags & VI_INIT_DONE)
11498 rc = EBUSY; /* cannot be changed once the queues are created */
11499 else
11500 vi->ofld_pktc_idx = idx;
11501
11502 end_synchronized_op(sc, LOCK_HELD);
11503 return (rc);
11504 }
11505 #endif
11506
11507 static int
get_sge_context(struct adapter * sc,struct t4_sge_context * cntxt)11508 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11509 {
11510 int rc;
11511
11512 if (cntxt->cid > M_CTXTQID)
11513 return (EINVAL);
11514
11515 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11516 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11517 return (EINVAL);
11518
11519 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11520 if (rc)
11521 return (rc);
11522
11523 if (hw_off_limits(sc)) {
11524 rc = ENXIO;
11525 goto done;
11526 }
11527
11528 if (sc->flags & FW_OK) {
11529 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11530 &cntxt->data[0]);
11531 if (rc == 0)
11532 goto done;
11533 }
11534
11535 /*
11536 * Read via firmware failed or wasn't even attempted. Read directly via
11537 * the backdoor.
11538 */
11539 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11540 done:
11541 end_synchronized_op(sc, 0);
11542 return (rc);
11543 }
11544
11545 static int
load_fw(struct adapter * sc,struct t4_data * fw)11546 load_fw(struct adapter *sc, struct t4_data *fw)
11547 {
11548 int rc;
11549 uint8_t *fw_data;
11550
11551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11552 if (rc)
11553 return (rc);
11554
11555 if (hw_off_limits(sc)) {
11556 rc = ENXIO;
11557 goto done;
11558 }
11559
11560 /*
11561 * The firmware, with the sole exception of the memory parity error
11562 * handler, runs from memory and not flash. It is almost always safe to
11563 * install a new firmware on a running system. Just set bit 1 in
11564 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11565 */
11566 if (sc->flags & FULL_INIT_DONE &&
11567 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11568 rc = EBUSY;
11569 goto done;
11570 }
11571
11572 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11573
11574 rc = copyin(fw->data, fw_data, fw->len);
11575 if (rc == 0)
11576 rc = -t4_load_fw(sc, fw_data, fw->len);
11577
11578 free(fw_data, M_CXGBE);
11579 done:
11580 end_synchronized_op(sc, 0);
11581 return (rc);
11582 }
11583
11584 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)11585 load_cfg(struct adapter *sc, struct t4_data *cfg)
11586 {
11587 int rc;
11588 uint8_t *cfg_data = NULL;
11589
11590 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11591 if (rc)
11592 return (rc);
11593
11594 if (hw_off_limits(sc)) {
11595 rc = ENXIO;
11596 goto done;
11597 }
11598
11599 if (cfg->len == 0) {
11600 /* clear */
11601 rc = -t4_load_cfg(sc, NULL, 0);
11602 goto done;
11603 }
11604
11605 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11606
11607 rc = copyin(cfg->data, cfg_data, cfg->len);
11608 if (rc == 0)
11609 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11610
11611 free(cfg_data, M_CXGBE);
11612 done:
11613 end_synchronized_op(sc, 0);
11614 return (rc);
11615 }
11616
11617 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)11618 load_boot(struct adapter *sc, struct t4_bootrom *br)
11619 {
11620 int rc;
11621 uint8_t *br_data = NULL;
11622 u_int offset;
11623
11624 if (br->len > 1024 * 1024)
11625 return (EFBIG);
11626
11627 if (br->pf_offset == 0) {
11628 /* pfidx */
11629 if (br->pfidx_addr > 7)
11630 return (EINVAL);
11631 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11632 A_PCIE_PF_EXPROM_OFST)));
11633 } else if (br->pf_offset == 1) {
11634 /* offset */
11635 offset = G_OFFSET(br->pfidx_addr);
11636 } else {
11637 return (EINVAL);
11638 }
11639
11640 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11641 if (rc)
11642 return (rc);
11643
11644 if (hw_off_limits(sc)) {
11645 rc = ENXIO;
11646 goto done;
11647 }
11648
11649 if (br->len == 0) {
11650 /* clear */
11651 rc = -t4_load_boot(sc, NULL, offset, 0);
11652 goto done;
11653 }
11654
11655 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11656
11657 rc = copyin(br->data, br_data, br->len);
11658 if (rc == 0)
11659 rc = -t4_load_boot(sc, br_data, offset, br->len);
11660
11661 free(br_data, M_CXGBE);
11662 done:
11663 end_synchronized_op(sc, 0);
11664 return (rc);
11665 }
11666
11667 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)11668 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11669 {
11670 int rc;
11671 uint8_t *bc_data = NULL;
11672
11673 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11674 if (rc)
11675 return (rc);
11676
11677 if (hw_off_limits(sc)) {
11678 rc = ENXIO;
11679 goto done;
11680 }
11681
11682 if (bc->len == 0) {
11683 /* clear */
11684 rc = -t4_load_bootcfg(sc, NULL, 0);
11685 goto done;
11686 }
11687
11688 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11689
11690 rc = copyin(bc->data, bc_data, bc->len);
11691 if (rc == 0)
11692 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11693
11694 free(bc_data, M_CXGBE);
11695 done:
11696 end_synchronized_op(sc, 0);
11697 return (rc);
11698 }
11699
11700 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)11701 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11702 {
11703 int rc;
11704 struct cudbg_init *cudbg;
11705 void *handle, *buf;
11706
11707 /* buf is large, don't block if no memory is available */
11708 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11709 if (buf == NULL)
11710 return (ENOMEM);
11711
11712 handle = cudbg_alloc_handle();
11713 if (handle == NULL) {
11714 rc = ENOMEM;
11715 goto done;
11716 }
11717
11718 cudbg = cudbg_get_init(handle);
11719 cudbg->adap = sc;
11720 cudbg->print = (cudbg_print_cb)printf;
11721
11722 #ifndef notyet
11723 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11724 __func__, dump->wr_flash, dump->len, dump->data);
11725 #endif
11726
11727 if (dump->wr_flash)
11728 cudbg->use_flash = 1;
11729 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11730 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11731
11732 rc = cudbg_collect(handle, buf, &dump->len);
11733 if (rc != 0)
11734 goto done;
11735
11736 rc = copyout(buf, dump->data, dump->len);
11737 done:
11738 cudbg_free_handle(handle);
11739 free(buf, M_CXGBE);
11740 return (rc);
11741 }
11742
11743 static void
free_offload_policy(struct t4_offload_policy * op)11744 free_offload_policy(struct t4_offload_policy *op)
11745 {
11746 struct offload_rule *r;
11747 int i;
11748
11749 if (op == NULL)
11750 return;
11751
11752 r = &op->rule[0];
11753 for (i = 0; i < op->nrules; i++, r++) {
11754 free(r->bpf_prog.bf_insns, M_CXGBE);
11755 }
11756 free(op->rule, M_CXGBE);
11757 free(op, M_CXGBE);
11758 }
11759
11760 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)11761 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11762 {
11763 int i, rc, len;
11764 struct t4_offload_policy *op, *old;
11765 struct bpf_program *bf;
11766 const struct offload_settings *s;
11767 struct offload_rule *r;
11768 void *u;
11769
11770 if (!is_offload(sc))
11771 return (ENODEV);
11772
11773 if (uop->nrules == 0) {
11774 /* Delete installed policies. */
11775 op = NULL;
11776 goto set_policy;
11777 } else if (uop->nrules > 256) { /* arbitrary */
11778 return (E2BIG);
11779 }
11780
11781 /* Copy userspace offload policy to kernel */
11782 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11783 op->nrules = uop->nrules;
11784 len = op->nrules * sizeof(struct offload_rule);
11785 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11786 rc = copyin(uop->rule, op->rule, len);
11787 if (rc) {
11788 free(op->rule, M_CXGBE);
11789 free(op, M_CXGBE);
11790 return (rc);
11791 }
11792
11793 r = &op->rule[0];
11794 for (i = 0; i < op->nrules; i++, r++) {
11795
11796 /* Validate open_type */
11797 if (r->open_type != OPEN_TYPE_LISTEN &&
11798 r->open_type != OPEN_TYPE_ACTIVE &&
11799 r->open_type != OPEN_TYPE_PASSIVE &&
11800 r->open_type != OPEN_TYPE_DONTCARE) {
11801 error:
11802 /*
11803 * Rules 0 to i have malloc'd filters that need to be
11804 * freed. Rules i+1 to nrules have userspace pointers
11805 * and should be left alone.
11806 */
11807 op->nrules = i;
11808 free_offload_policy(op);
11809 return (rc);
11810 }
11811
11812 /* Validate settings */
11813 s = &r->settings;
11814 if ((s->offload != 0 && s->offload != 1) ||
11815 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11816 s->sched_class < -1 ||
11817 s->sched_class >= sc->params.nsched_cls) {
11818 rc = EINVAL;
11819 goto error;
11820 }
11821
11822 bf = &r->bpf_prog;
11823 u = bf->bf_insns; /* userspace ptr */
11824 bf->bf_insns = NULL;
11825 if (bf->bf_len == 0) {
11826 /* legal, matches everything */
11827 continue;
11828 }
11829 len = bf->bf_len * sizeof(*bf->bf_insns);
11830 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11831 rc = copyin(u, bf->bf_insns, len);
11832 if (rc != 0)
11833 goto error;
11834
11835 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11836 rc = EINVAL;
11837 goto error;
11838 }
11839 }
11840 set_policy:
11841 rw_wlock(&sc->policy_lock);
11842 old = sc->policy;
11843 sc->policy = op;
11844 rw_wunlock(&sc->policy_lock);
11845 free_offload_policy(old);
11846
11847 return (0);
11848 }
11849
11850 #define MAX_READ_BUF_SIZE (128 * 1024)
11851 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)11852 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11853 {
11854 uint32_t addr, remaining, n;
11855 uint32_t *buf;
11856 int rc;
11857 uint8_t *dst;
11858
11859 mtx_lock(&sc->reg_lock);
11860 if (hw_off_limits(sc))
11861 rc = ENXIO;
11862 else
11863 rc = validate_mem_range(sc, mr->addr, mr->len);
11864 mtx_unlock(&sc->reg_lock);
11865 if (rc != 0)
11866 return (rc);
11867
11868 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11869 addr = mr->addr;
11870 remaining = mr->len;
11871 dst = (void *)mr->data;
11872
11873 while (remaining) {
11874 n = min(remaining, MAX_READ_BUF_SIZE);
11875 mtx_lock(&sc->reg_lock);
11876 if (hw_off_limits(sc))
11877 rc = ENXIO;
11878 else
11879 read_via_memwin(sc, 2, addr, buf, n);
11880 mtx_unlock(&sc->reg_lock);
11881 if (rc != 0)
11882 break;
11883
11884 rc = copyout(buf, dst, n);
11885 if (rc != 0)
11886 break;
11887
11888 dst += n;
11889 remaining -= n;
11890 addr += n;
11891 }
11892
11893 free(buf, M_CXGBE);
11894 return (rc);
11895 }
11896 #undef MAX_READ_BUF_SIZE
11897
11898 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)11899 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11900 {
11901 int rc;
11902
11903 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11904 return (EINVAL);
11905
11906 if (i2cd->len > sizeof(i2cd->data))
11907 return (EFBIG);
11908
11909 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11910 if (rc)
11911 return (rc);
11912 if (hw_off_limits(sc))
11913 rc = ENXIO;
11914 else
11915 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11916 i2cd->offset, i2cd->len, &i2cd->data[0]);
11917 end_synchronized_op(sc, 0);
11918
11919 return (rc);
11920 }
11921
11922 static int
clear_stats(struct adapter * sc,u_int port_id)11923 clear_stats(struct adapter *sc, u_int port_id)
11924 {
11925 int i, v, chan_map;
11926 struct port_info *pi;
11927 struct vi_info *vi;
11928 struct sge_rxq *rxq;
11929 struct sge_txq *txq;
11930 struct sge_wrq *wrq;
11931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11932 struct sge_ofld_txq *ofld_txq;
11933 #endif
11934 #ifdef TCP_OFFLOAD
11935 struct sge_ofld_rxq *ofld_rxq;
11936 #endif
11937
11938 if (port_id >= sc->params.nports)
11939 return (EINVAL);
11940 pi = sc->port[port_id];
11941 if (pi == NULL)
11942 return (EIO);
11943
11944 mtx_lock(&sc->reg_lock);
11945 if (!hw_off_limits(sc)) {
11946 /* MAC stats */
11947 t4_clr_port_stats(sc, pi->tx_chan);
11948 if (is_t6(sc)) {
11949 if (pi->fcs_reg != -1)
11950 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11951 else
11952 pi->stats.rx_fcs_err = 0;
11953 }
11954 for_each_vi(pi, v, vi) {
11955 if (vi->flags & VI_INIT_DONE)
11956 t4_clr_vi_stats(sc, vi->vin);
11957 }
11958 chan_map = pi->rx_e_chan_map;
11959 v = 0; /* reuse */
11960 while (chan_map) {
11961 i = ffs(chan_map) - 1;
11962 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11963 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11964 chan_map &= ~(1 << i);
11965 }
11966 }
11967 mtx_unlock(&sc->reg_lock);
11968 pi->tx_parse_error = 0;
11969 pi->tnl_cong_drops = 0;
11970
11971 /*
11972 * Since this command accepts a port, clear stats for
11973 * all VIs on this port.
11974 */
11975 for_each_vi(pi, v, vi) {
11976 if (vi->flags & VI_INIT_DONE) {
11977
11978 for_each_rxq(vi, i, rxq) {
11979 #if defined(INET) || defined(INET6)
11980 rxq->lro.lro_queued = 0;
11981 rxq->lro.lro_flushed = 0;
11982 #endif
11983 rxq->rxcsum = 0;
11984 rxq->vlan_extraction = 0;
11985 rxq->vxlan_rxcsum = 0;
11986
11987 rxq->fl.cl_allocated = 0;
11988 rxq->fl.cl_recycled = 0;
11989 rxq->fl.cl_fast_recycled = 0;
11990 }
11991
11992 for_each_txq(vi, i, txq) {
11993 txq->txcsum = 0;
11994 txq->tso_wrs = 0;
11995 txq->vlan_insertion = 0;
11996 txq->imm_wrs = 0;
11997 txq->sgl_wrs = 0;
11998 txq->txpkt_wrs = 0;
11999 txq->txpkts0_wrs = 0;
12000 txq->txpkts1_wrs = 0;
12001 txq->txpkts0_pkts = 0;
12002 txq->txpkts1_pkts = 0;
12003 txq->txpkts_flush = 0;
12004 txq->raw_wrs = 0;
12005 txq->vxlan_tso_wrs = 0;
12006 txq->vxlan_txcsum = 0;
12007 txq->kern_tls_records = 0;
12008 txq->kern_tls_short = 0;
12009 txq->kern_tls_partial = 0;
12010 txq->kern_tls_full = 0;
12011 txq->kern_tls_octets = 0;
12012 txq->kern_tls_waste = 0;
12013 txq->kern_tls_options = 0;
12014 txq->kern_tls_header = 0;
12015 txq->kern_tls_fin = 0;
12016 txq->kern_tls_fin_short = 0;
12017 txq->kern_tls_cbc = 0;
12018 txq->kern_tls_gcm = 0;
12019 mp_ring_reset_stats(txq->r);
12020 }
12021
12022 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12023 for_each_ofld_txq(vi, i, ofld_txq) {
12024 ofld_txq->wrq.tx_wrs_direct = 0;
12025 ofld_txq->wrq.tx_wrs_copied = 0;
12026 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12027 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12028 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12029 counter_u64_zero(ofld_txq->tx_aio_jobs);
12030 counter_u64_zero(ofld_txq->tx_aio_octets);
12031 counter_u64_zero(ofld_txq->tx_toe_tls_records);
12032 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12033 }
12034 #endif
12035 #ifdef TCP_OFFLOAD
12036 for_each_ofld_rxq(vi, i, ofld_rxq) {
12037 ofld_rxq->fl.cl_allocated = 0;
12038 ofld_rxq->fl.cl_recycled = 0;
12039 ofld_rxq->fl.cl_fast_recycled = 0;
12040 counter_u64_zero(
12041 ofld_rxq->rx_iscsi_ddp_setup_ok);
12042 counter_u64_zero(
12043 ofld_rxq->rx_iscsi_ddp_setup_error);
12044 ofld_rxq->rx_iscsi_ddp_pdus = 0;
12045 ofld_rxq->rx_iscsi_ddp_octets = 0;
12046 ofld_rxq->rx_iscsi_fl_pdus = 0;
12047 ofld_rxq->rx_iscsi_fl_octets = 0;
12048 ofld_rxq->rx_aio_ddp_jobs = 0;
12049 ofld_rxq->rx_aio_ddp_octets = 0;
12050 ofld_rxq->rx_toe_tls_records = 0;
12051 ofld_rxq->rx_toe_tls_octets = 0;
12052 ofld_rxq->rx_toe_ddp_octets = 0;
12053 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12054 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12055 counter_u64_zero(ofld_rxq->ddp_buffer_free);
12056 }
12057 #endif
12058
12059 if (IS_MAIN_VI(vi)) {
12060 wrq = &sc->sge.ctrlq[pi->port_id];
12061 wrq->tx_wrs_direct = 0;
12062 wrq->tx_wrs_copied = 0;
12063 }
12064 }
12065 }
12066
12067 return (0);
12068 }
12069
12070 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12071 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12072 {
12073 #ifdef INET6
12074 struct in6_addr in6;
12075
12076 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12077 if (t4_get_clip_entry(sc, &in6, true) != NULL)
12078 return (0);
12079 else
12080 return (EIO);
12081 #else
12082 return (ENOTSUP);
12083 #endif
12084 }
12085
12086 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12087 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12088 {
12089 #ifdef INET6
12090 struct in6_addr in6;
12091
12092 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12093 return (t4_release_clip_addr(sc, &in6));
12094 #else
12095 return (ENOTSUP);
12096 #endif
12097 }
12098
12099 int
t4_os_find_pci_capability(struct adapter * sc,int cap)12100 t4_os_find_pci_capability(struct adapter *sc, int cap)
12101 {
12102 int i;
12103
12104 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12105 }
12106
12107 int
t4_os_pci_save_state(struct adapter * sc)12108 t4_os_pci_save_state(struct adapter *sc)
12109 {
12110 device_t dev;
12111 struct pci_devinfo *dinfo;
12112
12113 dev = sc->dev;
12114 dinfo = device_get_ivars(dev);
12115
12116 pci_cfg_save(dev, dinfo, 0);
12117 return (0);
12118 }
12119
12120 int
t4_os_pci_restore_state(struct adapter * sc)12121 t4_os_pci_restore_state(struct adapter *sc)
12122 {
12123 device_t dev;
12124 struct pci_devinfo *dinfo;
12125
12126 dev = sc->dev;
12127 dinfo = device_get_ivars(dev);
12128
12129 pci_cfg_restore(dev, dinfo);
12130 return (0);
12131 }
12132
12133 void
t4_os_portmod_changed(struct port_info * pi)12134 t4_os_portmod_changed(struct port_info *pi)
12135 {
12136 struct adapter *sc = pi->adapter;
12137 struct vi_info *vi;
12138 if_t ifp;
12139 static const char *mod_str[] = {
12140 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12141 };
12142
12143 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12144 ("%s: port_type %u", __func__, pi->port_type));
12145
12146 vi = &pi->vi[0];
12147 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12148 PORT_LOCK(pi);
12149 build_medialist(pi);
12150 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12151 fixup_link_config(pi);
12152 apply_link_config(pi);
12153 }
12154 PORT_UNLOCK(pi);
12155 end_synchronized_op(sc, LOCK_HELD);
12156 }
12157
12158 ifp = vi->ifp;
12159 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12160 if_printf(ifp, "transceiver unplugged.\n");
12161 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12162 if_printf(ifp, "unknown transceiver inserted.\n");
12163 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12164 if_printf(ifp, "unsupported transceiver inserted.\n");
12165 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12166 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12167 port_top_speed(pi), mod_str[pi->mod_type]);
12168 } else {
12169 if_printf(ifp, "transceiver (type %d) inserted.\n",
12170 pi->mod_type);
12171 }
12172 }
12173
12174 void
t4_os_link_changed(struct port_info * pi)12175 t4_os_link_changed(struct port_info *pi)
12176 {
12177 struct vi_info *vi;
12178 if_t ifp;
12179 struct link_config *lc = &pi->link_cfg;
12180 struct adapter *sc = pi->adapter;
12181 int v;
12182
12183 PORT_LOCK_ASSERT_OWNED(pi);
12184
12185 if (is_t6(sc)) {
12186 if (lc->link_ok) {
12187 if (lc->speed > 25000 ||
12188 (lc->speed == 25000 && lc->fec == FEC_RS)) {
12189 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12190 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12191 } else {
12192 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12193 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12194 }
12195 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12196 pi->stats.rx_fcs_err = 0;
12197 } else {
12198 pi->fcs_reg = -1;
12199 }
12200 } else {
12201 MPASS(pi->fcs_reg != -1);
12202 MPASS(pi->fcs_base == 0);
12203 }
12204
12205 for_each_vi(pi, v, vi) {
12206 ifp = vi->ifp;
12207 if (ifp == NULL || IS_DETACHING(vi))
12208 continue;
12209
12210 if (lc->link_ok) {
12211 if_setbaudrate(ifp, IF_Mbps(lc->speed));
12212 if_link_state_change(ifp, LINK_STATE_UP);
12213 } else {
12214 if_link_state_change(ifp, LINK_STATE_DOWN);
12215 }
12216 }
12217 }
12218
12219 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)12220 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12221 {
12222 struct adapter *sc;
12223
12224 sx_slock(&t4_list_lock);
12225 SLIST_FOREACH(sc, &t4_list, link) {
12226 /*
12227 * func should not make any assumptions about what state sc is
12228 * in - the only guarantee is that sc->sc_lock is a valid lock.
12229 */
12230 func(sc, arg);
12231 }
12232 sx_sunlock(&t4_list_lock);
12233 }
12234
12235 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)12236 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12237 struct thread *td)
12238 {
12239 int rc;
12240 struct adapter *sc = dev->si_drv1;
12241
12242 rc = priv_check(td, PRIV_DRIVER);
12243 if (rc != 0)
12244 return (rc);
12245
12246 switch (cmd) {
12247 case CHELSIO_T4_GETREG: {
12248 struct t4_reg *edata = (struct t4_reg *)data;
12249
12250 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12251 return (EFAULT);
12252
12253 mtx_lock(&sc->reg_lock);
12254 if (hw_off_limits(sc))
12255 rc = ENXIO;
12256 else if (edata->size == 4)
12257 edata->val = t4_read_reg(sc, edata->addr);
12258 else if (edata->size == 8)
12259 edata->val = t4_read_reg64(sc, edata->addr);
12260 else
12261 rc = EINVAL;
12262 mtx_unlock(&sc->reg_lock);
12263
12264 break;
12265 }
12266 case CHELSIO_T4_SETREG: {
12267 struct t4_reg *edata = (struct t4_reg *)data;
12268
12269 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12270 return (EFAULT);
12271
12272 mtx_lock(&sc->reg_lock);
12273 if (hw_off_limits(sc))
12274 rc = ENXIO;
12275 else if (edata->size == 4) {
12276 if (edata->val & 0xffffffff00000000)
12277 rc = EINVAL;
12278 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12279 } else if (edata->size == 8)
12280 t4_write_reg64(sc, edata->addr, edata->val);
12281 else
12282 rc = EINVAL;
12283 mtx_unlock(&sc->reg_lock);
12284
12285 break;
12286 }
12287 case CHELSIO_T4_REGDUMP: {
12288 struct t4_regdump *regs = (struct t4_regdump *)data;
12289 int reglen = t4_get_regs_len(sc);
12290 uint8_t *buf;
12291
12292 if (regs->len < reglen) {
12293 regs->len = reglen; /* hint to the caller */
12294 return (ENOBUFS);
12295 }
12296
12297 regs->len = reglen;
12298 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12299 mtx_lock(&sc->reg_lock);
12300 if (hw_off_limits(sc))
12301 rc = ENXIO;
12302 else
12303 get_regs(sc, regs, buf);
12304 mtx_unlock(&sc->reg_lock);
12305 if (rc == 0)
12306 rc = copyout(buf, regs->data, reglen);
12307 free(buf, M_CXGBE);
12308 break;
12309 }
12310 case CHELSIO_T4_GET_FILTER_MODE:
12311 rc = get_filter_mode(sc, (uint32_t *)data);
12312 break;
12313 case CHELSIO_T4_SET_FILTER_MODE:
12314 rc = set_filter_mode(sc, *(uint32_t *)data);
12315 break;
12316 case CHELSIO_T4_SET_FILTER_MASK:
12317 rc = set_filter_mask(sc, *(uint32_t *)data);
12318 break;
12319 case CHELSIO_T4_GET_FILTER:
12320 rc = get_filter(sc, (struct t4_filter *)data);
12321 break;
12322 case CHELSIO_T4_SET_FILTER:
12323 rc = set_filter(sc, (struct t4_filter *)data);
12324 break;
12325 case CHELSIO_T4_DEL_FILTER:
12326 rc = del_filter(sc, (struct t4_filter *)data);
12327 break;
12328 case CHELSIO_T4_GET_SGE_CONTEXT:
12329 rc = get_sge_context(sc, (struct t4_sge_context *)data);
12330 break;
12331 case CHELSIO_T4_LOAD_FW:
12332 rc = load_fw(sc, (struct t4_data *)data);
12333 break;
12334 case CHELSIO_T4_GET_MEM:
12335 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12336 break;
12337 case CHELSIO_T4_GET_I2C:
12338 rc = read_i2c(sc, (struct t4_i2c_data *)data);
12339 break;
12340 case CHELSIO_T4_CLEAR_STATS:
12341 rc = clear_stats(sc, *(uint32_t *)data);
12342 break;
12343 case CHELSIO_T4_SCHED_CLASS:
12344 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12345 break;
12346 case CHELSIO_T4_SCHED_QUEUE:
12347 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12348 break;
12349 case CHELSIO_T4_GET_TRACER:
12350 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12351 break;
12352 case CHELSIO_T4_SET_TRACER:
12353 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12354 break;
12355 case CHELSIO_T4_LOAD_CFG:
12356 rc = load_cfg(sc, (struct t4_data *)data);
12357 break;
12358 case CHELSIO_T4_LOAD_BOOT:
12359 rc = load_boot(sc, (struct t4_bootrom *)data);
12360 break;
12361 case CHELSIO_T4_LOAD_BOOTCFG:
12362 rc = load_bootcfg(sc, (struct t4_data *)data);
12363 break;
12364 case CHELSIO_T4_CUDBG_DUMP:
12365 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12366 break;
12367 case CHELSIO_T4_SET_OFLD_POLICY:
12368 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12369 break;
12370 case CHELSIO_T4_HOLD_CLIP_ADDR:
12371 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12372 break;
12373 case CHELSIO_T4_RELEASE_CLIP_ADDR:
12374 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12375 break;
12376 default:
12377 rc = ENOTTY;
12378 }
12379
12380 return (rc);
12381 }
12382
12383 #ifdef TCP_OFFLOAD
12384 int
toe_capability(struct vi_info * vi,bool enable)12385 toe_capability(struct vi_info *vi, bool enable)
12386 {
12387 int rc;
12388 struct port_info *pi = vi->pi;
12389 struct adapter *sc = pi->adapter;
12390
12391 ASSERT_SYNCHRONIZED_OP(sc);
12392
12393 if (!is_offload(sc))
12394 return (ENODEV);
12395 if (hw_off_limits(sc))
12396 return (ENXIO);
12397
12398 if (enable) {
12399 #ifdef KERN_TLS
12400 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12401 int i, j, n;
12402 struct port_info *p;
12403 struct vi_info *v;
12404
12405 /*
12406 * Reconfigure hardware for TOE if TXTLS is not enabled
12407 * on any ifnet.
12408 */
12409 n = 0;
12410 for_each_port(sc, i) {
12411 p = sc->port[i];
12412 for_each_vi(p, j, v) {
12413 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12414 CH_WARN(sc,
12415 "%s has NIC TLS enabled.\n",
12416 device_get_nameunit(v->dev));
12417 n++;
12418 }
12419 }
12420 }
12421 if (n > 0) {
12422 CH_WARN(sc, "Disable NIC TLS on all interfaces "
12423 "associated with this adapter before "
12424 "trying to enable TOE.\n");
12425 return (EAGAIN);
12426 }
12427 rc = t6_config_kern_tls(sc, false);
12428 if (rc)
12429 return (rc);
12430 }
12431 #endif
12432 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12433 /* TOE is already enabled. */
12434 return (0);
12435 }
12436
12437 /*
12438 * We need the port's queues around so that we're able to send
12439 * and receive CPLs to/from the TOE even if the ifnet for this
12440 * port has never been UP'd administratively.
12441 */
12442 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12443 return (rc);
12444 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12445 ((rc = vi_init(&pi->vi[0])) != 0))
12446 return (rc);
12447
12448 if (isset(&sc->offload_map, pi->port_id)) {
12449 /* TOE is enabled on another VI of this port. */
12450 MPASS(pi->uld_vis > 0);
12451 pi->uld_vis++;
12452 return (0);
12453 }
12454
12455 if (!uld_active(sc, ULD_TOM)) {
12456 rc = t4_activate_uld(sc, ULD_TOM);
12457 if (rc == EAGAIN) {
12458 log(LOG_WARNING,
12459 "You must kldload t4_tom.ko before trying "
12460 "to enable TOE on a cxgbe interface.\n");
12461 }
12462 if (rc != 0)
12463 return (rc);
12464 KASSERT(sc->tom_softc != NULL,
12465 ("%s: TOM activated but softc NULL", __func__));
12466 KASSERT(uld_active(sc, ULD_TOM),
12467 ("%s: TOM activated but flag not set", __func__));
12468 }
12469
12470 /* Activate iWARP and iSCSI too, if the modules are loaded. */
12471 if (!uld_active(sc, ULD_IWARP))
12472 (void) t4_activate_uld(sc, ULD_IWARP);
12473 if (!uld_active(sc, ULD_ISCSI))
12474 (void) t4_activate_uld(sc, ULD_ISCSI);
12475
12476 if (pi->uld_vis++ == 0)
12477 setbit(&sc->offload_map, pi->port_id);
12478 } else {
12479 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
12480 /* TOE is already disabled. */
12481 return (0);
12482 }
12483 MPASS(isset(&sc->offload_map, pi->port_id));
12484 MPASS(pi->uld_vis > 0);
12485 if (--pi->uld_vis == 0)
12486 clrbit(&sc->offload_map, pi->port_id);
12487 }
12488
12489 return (0);
12490 }
12491
12492 /*
12493 * Add an upper layer driver to the global list.
12494 */
12495 int
t4_register_uld(struct uld_info * ui,int id)12496 t4_register_uld(struct uld_info *ui, int id)
12497 {
12498 int rc;
12499
12500 if (id < 0 || id > ULD_MAX)
12501 return (EINVAL);
12502 sx_xlock(&t4_uld_list_lock);
12503 if (t4_uld_list[id] != NULL)
12504 rc = EEXIST;
12505 else {
12506 t4_uld_list[id] = ui;
12507 rc = 0;
12508 }
12509 sx_xunlock(&t4_uld_list_lock);
12510 return (rc);
12511 }
12512
12513 int
t4_unregister_uld(struct uld_info * ui,int id)12514 t4_unregister_uld(struct uld_info *ui, int id)
12515 {
12516
12517 if (id < 0 || id > ULD_MAX)
12518 return (EINVAL);
12519 sx_xlock(&t4_uld_list_lock);
12520 MPASS(t4_uld_list[id] == ui);
12521 t4_uld_list[id] = NULL;
12522 sx_xunlock(&t4_uld_list_lock);
12523 return (0);
12524 }
12525
12526 int
t4_activate_uld(struct adapter * sc,int id)12527 t4_activate_uld(struct adapter *sc, int id)
12528 {
12529 int rc;
12530
12531 ASSERT_SYNCHRONIZED_OP(sc);
12532
12533 if (id < 0 || id > ULD_MAX)
12534 return (EINVAL);
12535
12536 /* Adapter needs to be initialized before any ULD can be activated. */
12537 if (!(sc->flags & FULL_INIT_DONE)) {
12538 rc = adapter_init(sc);
12539 if (rc != 0)
12540 return (rc);
12541 }
12542
12543 sx_slock(&t4_uld_list_lock);
12544 if (t4_uld_list[id] == NULL)
12545 rc = EAGAIN; /* load the KLD with this ULD and try again. */
12546 else {
12547 rc = t4_uld_list[id]->uld_activate(sc);
12548 if (rc == 0)
12549 setbit(&sc->active_ulds, id);
12550 }
12551 sx_sunlock(&t4_uld_list_lock);
12552
12553 return (rc);
12554 }
12555
12556 int
t4_deactivate_uld(struct adapter * sc,int id)12557 t4_deactivate_uld(struct adapter *sc, int id)
12558 {
12559 int rc;
12560
12561 ASSERT_SYNCHRONIZED_OP(sc);
12562
12563 if (id < 0 || id > ULD_MAX)
12564 return (EINVAL);
12565
12566 sx_slock(&t4_uld_list_lock);
12567 if (t4_uld_list[id] == NULL)
12568 rc = ENXIO;
12569 else {
12570 rc = t4_uld_list[id]->uld_deactivate(sc);
12571 if (rc == 0)
12572 clrbit(&sc->active_ulds, id);
12573 }
12574 sx_sunlock(&t4_uld_list_lock);
12575
12576 return (rc);
12577 }
12578
12579 static int
deactivate_all_uld(struct adapter * sc)12580 deactivate_all_uld(struct adapter *sc)
12581 {
12582 int i, rc;
12583
12584 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12585 if (rc != 0)
12586 return (ENXIO);
12587 sx_slock(&t4_uld_list_lock);
12588 for (i = 0; i <= ULD_MAX; i++) {
12589 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12590 continue;
12591 rc = t4_uld_list[i]->uld_deactivate(sc);
12592 if (rc != 0)
12593 break;
12594 clrbit(&sc->active_ulds, i);
12595 }
12596 sx_sunlock(&t4_uld_list_lock);
12597 end_synchronized_op(sc, 0);
12598
12599 return (rc);
12600 }
12601
12602 static void
stop_all_uld(struct adapter * sc)12603 stop_all_uld(struct adapter *sc)
12604 {
12605 int i;
12606
12607 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12608 return;
12609 sx_slock(&t4_uld_list_lock);
12610 for (i = 0; i <= ULD_MAX; i++) {
12611 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12612 t4_uld_list[i]->uld_stop == NULL)
12613 continue;
12614 (void) t4_uld_list[i]->uld_stop(sc);
12615 }
12616 sx_sunlock(&t4_uld_list_lock);
12617 end_synchronized_op(sc, 0);
12618 }
12619
12620 static void
restart_all_uld(struct adapter * sc)12621 restart_all_uld(struct adapter *sc)
12622 {
12623 int i;
12624
12625 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12626 return;
12627 sx_slock(&t4_uld_list_lock);
12628 for (i = 0; i <= ULD_MAX; i++) {
12629 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12630 t4_uld_list[i]->uld_restart == NULL)
12631 continue;
12632 (void) t4_uld_list[i]->uld_restart(sc);
12633 }
12634 sx_sunlock(&t4_uld_list_lock);
12635 end_synchronized_op(sc, 0);
12636 }
12637
12638 int
uld_active(struct adapter * sc,int id)12639 uld_active(struct adapter *sc, int id)
12640 {
12641
12642 MPASS(id >= 0 && id <= ULD_MAX);
12643
12644 return (isset(&sc->active_ulds, id));
12645 }
12646 #endif
12647
12648 #ifdef KERN_TLS
12649 static int
ktls_capability(struct adapter * sc,bool enable)12650 ktls_capability(struct adapter *sc, bool enable)
12651 {
12652 ASSERT_SYNCHRONIZED_OP(sc);
12653
12654 if (!is_ktls(sc))
12655 return (ENODEV);
12656 if (!is_t6(sc))
12657 return (0);
12658 if (hw_off_limits(sc))
12659 return (ENXIO);
12660
12661 if (enable) {
12662 if (sc->flags & KERN_TLS_ON)
12663 return (0); /* already on */
12664 if (sc->offload_map != 0) {
12665 CH_WARN(sc,
12666 "Disable TOE on all interfaces associated with "
12667 "this adapter before trying to enable NIC TLS.\n");
12668 return (EAGAIN);
12669 }
12670 return (t6_config_kern_tls(sc, true));
12671 } else {
12672 /*
12673 * Nothing to do for disable. If TOE is enabled sometime later
12674 * then toe_capability will reconfigure the hardware.
12675 */
12676 return (0);
12677 }
12678 }
12679 #endif
12680
12681 /*
12682 * t = ptr to tunable.
12683 * nc = number of CPUs.
12684 * c = compiled in default for that tunable.
12685 */
12686 static void
calculate_nqueues(int * t,int nc,const int c)12687 calculate_nqueues(int *t, int nc, const int c)
12688 {
12689 int nq;
12690
12691 if (*t > 0)
12692 return;
12693 nq = *t < 0 ? -*t : c;
12694 *t = min(nc, nq);
12695 }
12696
12697 /*
12698 * Come up with reasonable defaults for some of the tunables, provided they're
12699 * not set by the user (in which case we'll use the values as is).
12700 */
12701 static void
tweak_tunables(void)12702 tweak_tunables(void)
12703 {
12704 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
12705
12706 if (t4_ntxq < 1) {
12707 #ifdef RSS
12708 t4_ntxq = rss_getnumbuckets();
12709 #else
12710 calculate_nqueues(&t4_ntxq, nc, NTXQ);
12711 #endif
12712 }
12713
12714 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12715
12716 if (t4_nrxq < 1) {
12717 #ifdef RSS
12718 t4_nrxq = rss_getnumbuckets();
12719 #else
12720 calculate_nqueues(&t4_nrxq, nc, NRXQ);
12721 #endif
12722 }
12723
12724 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12725
12726 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12727 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12728 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12729 #endif
12730 #ifdef TCP_OFFLOAD
12731 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12732 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12733 #endif
12734
12735 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12736 if (t4_toecaps_allowed == -1)
12737 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12738 #else
12739 if (t4_toecaps_allowed == -1)
12740 t4_toecaps_allowed = 0;
12741 #endif
12742
12743 #ifdef TCP_OFFLOAD
12744 if (t4_rdmacaps_allowed == -1) {
12745 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12746 FW_CAPS_CONFIG_RDMA_RDMAC;
12747 }
12748
12749 if (t4_iscsicaps_allowed == -1) {
12750 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12751 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12752 FW_CAPS_CONFIG_ISCSI_T10DIF;
12753 }
12754
12755 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12756 t4_tmr_idx_ofld = TMR_IDX_OFLD;
12757
12758 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12759 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12760 #else
12761 if (t4_rdmacaps_allowed == -1)
12762 t4_rdmacaps_allowed = 0;
12763
12764 if (t4_iscsicaps_allowed == -1)
12765 t4_iscsicaps_allowed = 0;
12766 #endif
12767
12768 #ifdef DEV_NETMAP
12769 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12770 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12771 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12772 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12773 #endif
12774
12775 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12776 t4_tmr_idx = TMR_IDX;
12777
12778 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12779 t4_pktc_idx = PKTC_IDX;
12780
12781 if (t4_qsize_txq < 128)
12782 t4_qsize_txq = 128;
12783
12784 if (t4_qsize_rxq < 128)
12785 t4_qsize_rxq = 128;
12786 while (t4_qsize_rxq & 7)
12787 t4_qsize_rxq++;
12788
12789 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12790
12791 /*
12792 * Number of VIs to create per-port. The first VI is the "main" regular
12793 * VI for the port. The rest are additional virtual interfaces on the
12794 * same physical port. Note that the main VI does not have native
12795 * netmap support but the extra VIs do.
12796 *
12797 * Limit the number of VIs per port to the number of available
12798 * MAC addresses per port.
12799 */
12800 if (t4_num_vis < 1)
12801 t4_num_vis = 1;
12802 if (t4_num_vis > nitems(vi_mac_funcs)) {
12803 t4_num_vis = nitems(vi_mac_funcs);
12804 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12805 }
12806
12807 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12808 pcie_relaxed_ordering = 1;
12809 #if defined(__i386__) || defined(__amd64__)
12810 if (cpu_vendor_id == CPU_VENDOR_INTEL)
12811 pcie_relaxed_ordering = 0;
12812 #endif
12813 }
12814 }
12815
12816 #ifdef DDB
12817 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)12818 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12819 {
12820 uint32_t base, j, off, pf, reg, save, win_pos;
12821
12822 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12823 save = t4_read_reg(sc, reg);
12824 base = sc->memwin[2].mw_base;
12825
12826 if (is_t4(sc)) {
12827 pf = 0;
12828 win_pos = addr & ~0xf; /* start must be 16B aligned */
12829 } else {
12830 pf = V_PFNUM(sc->pf);
12831 win_pos = addr & ~0x7f; /* start must be 128B aligned */
12832 }
12833 off = addr - win_pos;
12834 t4_write_reg(sc, reg, win_pos | pf);
12835 t4_read_reg(sc, reg);
12836
12837 while (len > 0 && !db_pager_quit) {
12838 uint32_t buf[8];
12839 for (j = 0; j < 8; j++, off += 4)
12840 buf[j] = htonl(t4_read_reg(sc, base + off));
12841
12842 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12843 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12844 buf[7]);
12845 if (len <= sizeof(buf))
12846 len = 0;
12847 else
12848 len -= sizeof(buf);
12849 }
12850
12851 t4_write_reg(sc, reg, save);
12852 t4_read_reg(sc, reg);
12853 }
12854
12855 static void
t4_dump_tcb(struct adapter * sc,int tid)12856 t4_dump_tcb(struct adapter *sc, int tid)
12857 {
12858 uint32_t tcb_addr;
12859
12860 /* Dump TCB for the tid */
12861 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12862 tcb_addr += tid * TCB_SIZE;
12863 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12864 }
12865
12866 static void
t4_dump_devlog(struct adapter * sc)12867 t4_dump_devlog(struct adapter *sc)
12868 {
12869 struct devlog_params *dparams = &sc->params.devlog;
12870 struct fw_devlog_e e;
12871 int i, first, j, m, nentries, rc;
12872 uint64_t ftstamp = UINT64_MAX;
12873
12874 if (dparams->start == 0) {
12875 db_printf("devlog params not valid\n");
12876 return;
12877 }
12878
12879 nentries = dparams->size / sizeof(struct fw_devlog_e);
12880 m = fwmtype_to_hwmtype(dparams->memtype);
12881
12882 /* Find the first entry. */
12883 first = -1;
12884 for (i = 0; i < nentries && !db_pager_quit; i++) {
12885 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12886 sizeof(e), (void *)&e);
12887 if (rc != 0)
12888 break;
12889
12890 if (e.timestamp == 0)
12891 break;
12892
12893 e.timestamp = be64toh(e.timestamp);
12894 if (e.timestamp < ftstamp) {
12895 ftstamp = e.timestamp;
12896 first = i;
12897 }
12898 }
12899
12900 if (first == -1)
12901 return;
12902
12903 i = first;
12904 do {
12905 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12906 sizeof(e), (void *)&e);
12907 if (rc != 0)
12908 return;
12909
12910 if (e.timestamp == 0)
12911 return;
12912
12913 e.timestamp = be64toh(e.timestamp);
12914 e.seqno = be32toh(e.seqno);
12915 for (j = 0; j < 8; j++)
12916 e.params[j] = be32toh(e.params[j]);
12917
12918 db_printf("%10d %15ju %8s %8s ",
12919 e.seqno, e.timestamp,
12920 (e.level < nitems(devlog_level_strings) ?
12921 devlog_level_strings[e.level] : "UNKNOWN"),
12922 (e.facility < nitems(devlog_facility_strings) ?
12923 devlog_facility_strings[e.facility] : "UNKNOWN"));
12924 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12925 e.params[3], e.params[4], e.params[5], e.params[6],
12926 e.params[7]);
12927
12928 if (++i == nentries)
12929 i = 0;
12930 } while (i != first && !db_pager_quit);
12931 }
12932
12933 static DB_DEFINE_TABLE(show, t4, show_t4);
12934
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)12935 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12936 {
12937 device_t dev;
12938 int t;
12939 bool valid;
12940
12941 valid = false;
12942 t = db_read_token();
12943 if (t == tIDENT) {
12944 dev = device_lookup_by_name(db_tok_string);
12945 valid = true;
12946 }
12947 db_skip_to_eol();
12948 if (!valid) {
12949 db_printf("usage: show t4 devlog <nexus>\n");
12950 return;
12951 }
12952
12953 if (dev == NULL) {
12954 db_printf("device not found\n");
12955 return;
12956 }
12957
12958 t4_dump_devlog(device_get_softc(dev));
12959 }
12960
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)12961 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12962 {
12963 device_t dev;
12964 int radix, tid, t;
12965 bool valid;
12966
12967 valid = false;
12968 radix = db_radix;
12969 db_radix = 10;
12970 t = db_read_token();
12971 if (t == tIDENT) {
12972 dev = device_lookup_by_name(db_tok_string);
12973 t = db_read_token();
12974 if (t == tNUMBER) {
12975 tid = db_tok_number;
12976 valid = true;
12977 }
12978 }
12979 db_radix = radix;
12980 db_skip_to_eol();
12981 if (!valid) {
12982 db_printf("usage: show t4 tcb <nexus> <tid>\n");
12983 return;
12984 }
12985
12986 if (dev == NULL) {
12987 db_printf("device not found\n");
12988 return;
12989 }
12990 if (tid < 0) {
12991 db_printf("invalid tid\n");
12992 return;
12993 }
12994
12995 t4_dump_tcb(device_get_softc(dev), tid);
12996 }
12997
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)12998 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
12999 {
13000 device_t dev;
13001 int radix, t;
13002 bool valid;
13003
13004 valid = false;
13005 radix = db_radix;
13006 db_radix = 10;
13007 t = db_read_token();
13008 if (t == tIDENT) {
13009 dev = device_lookup_by_name(db_tok_string);
13010 t = db_read_token();
13011 if (t == tNUMBER) {
13012 addr = db_tok_number;
13013 t = db_read_token();
13014 if (t == tNUMBER) {
13015 count = db_tok_number;
13016 valid = true;
13017 }
13018 }
13019 }
13020 db_radix = radix;
13021 db_skip_to_eol();
13022 if (!valid) {
13023 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
13024 return;
13025 }
13026
13027 if (dev == NULL) {
13028 db_printf("device not found\n");
13029 return;
13030 }
13031 if (addr < 0) {
13032 db_printf("invalid address\n");
13033 return;
13034 }
13035 if (count <= 0) {
13036 db_printf("invalid length\n");
13037 return;
13038 }
13039
13040 t4_dump_mem(device_get_softc(dev), addr, count);
13041 }
13042 #endif
13043
13044 static eventhandler_tag vxlan_start_evtag;
13045 static eventhandler_tag vxlan_stop_evtag;
13046
13047 struct vxlan_evargs {
13048 if_t ifp;
13049 uint16_t port;
13050 };
13051
13052 static void
enable_vxlan_rx(struct adapter * sc)13053 enable_vxlan_rx(struct adapter *sc)
13054 {
13055 int i, rc;
13056 struct port_info *pi;
13057 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13058
13059 ASSERT_SYNCHRONIZED_OP(sc);
13060
13061 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13062 F_VXLAN_EN);
13063 for_each_port(sc, i) {
13064 pi = sc->port[i];
13065 if (pi->vxlan_tcam_entry == true)
13066 continue;
13067 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13068 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13069 true);
13070 if (rc < 0) {
13071 rc = -rc;
13072 CH_ERR(&pi->vi[0],
13073 "failed to add VXLAN TCAM entry: %d.\n", rc);
13074 } else {
13075 MPASS(rc == sc->rawf_base + pi->port_id);
13076 pi->vxlan_tcam_entry = true;
13077 }
13078 }
13079 }
13080
13081 static void
t4_vxlan_start(struct adapter * sc,void * arg)13082 t4_vxlan_start(struct adapter *sc, void *arg)
13083 {
13084 struct vxlan_evargs *v = arg;
13085
13086 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13087 return;
13088 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13089 return;
13090
13091 if (sc->vxlan_refcount == 0) {
13092 sc->vxlan_port = v->port;
13093 sc->vxlan_refcount = 1;
13094 if (!hw_off_limits(sc))
13095 enable_vxlan_rx(sc);
13096 } else if (sc->vxlan_port == v->port) {
13097 sc->vxlan_refcount++;
13098 } else {
13099 CH_ERR(sc, "VXLAN already configured on port %d; "
13100 "ignoring attempt to configure it on port %d\n",
13101 sc->vxlan_port, v->port);
13102 }
13103 end_synchronized_op(sc, 0);
13104 }
13105
13106 static void
t4_vxlan_stop(struct adapter * sc,void * arg)13107 t4_vxlan_stop(struct adapter *sc, void *arg)
13108 {
13109 struct vxlan_evargs *v = arg;
13110
13111 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13112 return;
13113 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13114 return;
13115
13116 /*
13117 * VXLANs may have been configured before the driver was loaded so we
13118 * may see more stops than starts. This is not handled cleanly but at
13119 * least we keep the refcount sane.
13120 */
13121 if (sc->vxlan_port != v->port)
13122 goto done;
13123 if (sc->vxlan_refcount == 0) {
13124 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13125 "ignoring attempt to stop it again.\n", sc->vxlan_port);
13126 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13127 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13128 done:
13129 end_synchronized_op(sc, 0);
13130 }
13131
13132 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13133 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13134 sa_family_t family, u_int port)
13135 {
13136 struct vxlan_evargs v;
13137
13138 MPASS(family == AF_INET || family == AF_INET6);
13139 v.ifp = ifp;
13140 v.port = port;
13141
13142 t4_iterate(t4_vxlan_start, &v);
13143 }
13144
13145 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13146 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13147 u_int port)
13148 {
13149 struct vxlan_evargs v;
13150
13151 MPASS(family == AF_INET || family == AF_INET6);
13152 v.ifp = ifp;
13153 v.port = port;
13154
13155 t4_iterate(t4_vxlan_stop, &v);
13156 }
13157
13158
13159 static struct sx mlu; /* mod load unload */
13160 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13161
13162 static int
mod_event(module_t mod,int cmd,void * arg)13163 mod_event(module_t mod, int cmd, void *arg)
13164 {
13165 int rc = 0;
13166 static int loaded = 0;
13167
13168 switch (cmd) {
13169 case MOD_LOAD:
13170 sx_xlock(&mlu);
13171 if (loaded++ == 0) {
13172 t4_sge_modload();
13173 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13174 t4_filter_rpl, CPL_COOKIE_FILTER);
13175 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13176 do_l2t_write_rpl, CPL_COOKIE_FILTER);
13177 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13178 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13179 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13180 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13181 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13182 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13183 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13184 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13185 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13186 do_smt_write_rpl);
13187 sx_init(&t4_list_lock, "T4/T5 adapters");
13188 SLIST_INIT(&t4_list);
13189 callout_init(&fatal_callout, 1);
13190 #ifdef TCP_OFFLOAD
13191 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13192 #endif
13193 #ifdef INET6
13194 t4_clip_modload();
13195 #endif
13196 #ifdef KERN_TLS
13197 t6_ktls_modload();
13198 #endif
13199 t4_tracer_modload();
13200 tweak_tunables();
13201 vxlan_start_evtag =
13202 EVENTHANDLER_REGISTER(vxlan_start,
13203 t4_vxlan_start_handler, NULL,
13204 EVENTHANDLER_PRI_ANY);
13205 vxlan_stop_evtag =
13206 EVENTHANDLER_REGISTER(vxlan_stop,
13207 t4_vxlan_stop_handler, NULL,
13208 EVENTHANDLER_PRI_ANY);
13209 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13210 taskqueue_thread_enqueue, &reset_tq);
13211 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13212 "t4_rst_thr");
13213 }
13214 sx_xunlock(&mlu);
13215 break;
13216
13217 case MOD_UNLOAD:
13218 sx_xlock(&mlu);
13219 if (--loaded == 0) {
13220 #ifdef TCP_OFFLOAD
13221 int i;
13222 #endif
13223 int tries;
13224
13225 taskqueue_free(reset_tq);
13226
13227 tries = 0;
13228 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13229 uprintf("%ju clusters with custom free routine "
13230 "still is use.\n", t4_sge_extfree_refs());
13231 pause("t4unload", 2 * hz);
13232 }
13233
13234 sx_slock(&t4_list_lock);
13235 if (!SLIST_EMPTY(&t4_list)) {
13236 rc = EBUSY;
13237 sx_sunlock(&t4_list_lock);
13238 goto done_unload;
13239 }
13240 #ifdef TCP_OFFLOAD
13241 sx_slock(&t4_uld_list_lock);
13242 for (i = 0; i <= ULD_MAX; i++) {
13243 if (t4_uld_list[i] != NULL) {
13244 rc = EBUSY;
13245 sx_sunlock(&t4_uld_list_lock);
13246 sx_sunlock(&t4_list_lock);
13247 goto done_unload;
13248 }
13249 }
13250 sx_sunlock(&t4_uld_list_lock);
13251 #endif
13252 sx_sunlock(&t4_list_lock);
13253
13254 if (t4_sge_extfree_refs() == 0) {
13255 EVENTHANDLER_DEREGISTER(vxlan_start,
13256 vxlan_start_evtag);
13257 EVENTHANDLER_DEREGISTER(vxlan_stop,
13258 vxlan_stop_evtag);
13259 t4_tracer_modunload();
13260 #ifdef KERN_TLS
13261 t6_ktls_modunload();
13262 #endif
13263 #ifdef INET6
13264 t4_clip_modunload();
13265 #endif
13266 #ifdef TCP_OFFLOAD
13267 sx_destroy(&t4_uld_list_lock);
13268 #endif
13269 sx_destroy(&t4_list_lock);
13270 t4_sge_modunload();
13271 loaded = 0;
13272 } else {
13273 rc = EBUSY;
13274 loaded++; /* undo earlier decrement */
13275 }
13276 }
13277 done_unload:
13278 sx_xunlock(&mlu);
13279 break;
13280 }
13281
13282 return (rc);
13283 }
13284
13285 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13286 MODULE_VERSION(t4nex, 1);
13287 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13288 #ifdef DEV_NETMAP
13289 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13290 #endif /* DEV_NETMAP */
13291
13292 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13293 MODULE_VERSION(t5nex, 1);
13294 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13295 #ifdef DEV_NETMAP
13296 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13297 #endif /* DEV_NETMAP */
13298
13299 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13300 MODULE_VERSION(t6nex, 1);
13301 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13302 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13303 #ifdef DEV_NETMAP
13304 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13305 #endif /* DEV_NETMAP */
13306
13307 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13308 MODULE_VERSION(cxgbe, 1);
13309
13310 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13311 MODULE_VERSION(cxl, 1);
13312
13313 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13314 MODULE_VERSION(cc, 1);
13315
13316 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13317 MODULE_VERSION(vcxgbe, 1);
13318
13319 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13320 MODULE_VERSION(vcxl, 1);
13321
13322 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13323 MODULE_VERSION(vcc, 1);
13324