xref: /freebsd/contrib/jemalloc/include/jemalloc/internal/sz.h (revision c43cad87172039ccf38172129c79755ea79e6102)
1 #ifndef JEMALLOC_INTERNAL_SIZE_H
2 #define JEMALLOC_INTERNAL_SIZE_H
3 
4 #include "jemalloc/internal/bit_util.h"
5 #include "jemalloc/internal/pages.h"
6 #include "jemalloc/internal/sc.h"
7 #include "jemalloc/internal/util.h"
8 
9 /*
10  * sz module: Size computations.
11  *
12  * Some abbreviations used here:
13  *   p: Page
14  *   ind: Index
15  *   s, sz: Size
16  *   u: Usable size
17  *   a: Aligned
18  *
19  * These are not always used completely consistently, but should be enough to
20  * interpret function names.  E.g. sz_psz2ind converts page size to page size
21  * index; sz_sa2u converts a (size, alignment) allocation request to the usable
22  * size that would result from such an allocation.
23  */
24 
25 /* Page size index type. */
26 typedef unsigned pszind_t;
27 
28 /* Size class index type. */
29 typedef unsigned szind_t;
30 
31 /*
32  * sz_pind2sz_tab encodes the same information as could be computed by
33  * sz_pind2sz_compute().
34  */
35 extern size_t sz_pind2sz_tab[SC_NPSIZES + 1];
36 /*
37  * sz_index2size_tab encodes the same information as could be computed (at
38  * unacceptable cost in some code paths) by sz_index2size_compute().
39  */
40 extern size_t sz_index2size_tab[SC_NSIZES];
41 /*
42  * sz_size2index_tab is a compact lookup table that rounds request sizes up to
43  * size classes.  In order to reduce cache footprint, the table is compressed,
44  * and all accesses are via sz_size2index().
45  */
46 extern uint8_t sz_size2index_tab[];
47 
48 /*
49  * Padding for large allocations: PAGE when opt_cache_oblivious == true (to
50  * enable cache index randomization); 0 otherwise.
51  */
52 extern size_t sz_large_pad;
53 
54 extern void sz_boot(const sc_data_t *sc_data, bool cache_oblivious);
55 
56 JEMALLOC_ALWAYS_INLINE pszind_t
57 sz_psz2ind(size_t psz) {
58 	assert(psz > 0);
59 	if (unlikely(psz > SC_LARGE_MAXCLASS)) {
60 		return SC_NPSIZES;
61 	}
62 	/* x is the lg of the first base >= psz. */
63 	pszind_t x = lg_ceil(psz);
64 	/*
65 	 * sc.h introduces a lot of size classes. These size classes are divided
66 	 * into different size class groups. There is a very special size class
67 	 * group, each size class in or after it is an integer multiple of PAGE.
68 	 * We call it first_ps_rg. It means first page size regular group. The
69 	 * range of first_ps_rg is (base, base * 2], and base == PAGE *
70 	 * SC_NGROUP. off_to_first_ps_rg begins from 1, instead of 0. e.g.
71 	 * off_to_first_ps_rg is 1 when psz is (PAGE * SC_NGROUP + 1).
72 	 */
73 	pszind_t off_to_first_ps_rg = (x < SC_LG_NGROUP + LG_PAGE) ?
74 	    0 : x - (SC_LG_NGROUP + LG_PAGE);
75 
76 	/*
77 	 * Same as sc_s::lg_delta.
78 	 * Delta for off_to_first_ps_rg == 1 is PAGE,
79 	 * for each increase in offset, it's multiplied by two.
80 	 * Therefore, lg_delta = LG_PAGE + (off_to_first_ps_rg - 1).
81 	 */
82 	pszind_t lg_delta = (off_to_first_ps_rg == 0) ?
83 	    LG_PAGE : LG_PAGE + (off_to_first_ps_rg - 1);
84 
85 	/*
86 	 * Let's write psz in binary, e.g. 0011 for 0x3, 0111 for 0x7.
87 	 * The leftmost bits whose len is lg_base decide the base of psz.
88 	 * The rightmost bits whose len is lg_delta decide (pgz % PAGE).
89 	 * The middle bits whose len is SC_LG_NGROUP decide ndelta.
90 	 * ndelta is offset to the first size class in the size class group,
91 	 * starts from 1.
92 	 * If you don't know lg_base, ndelta or lg_delta, see sc.h.
93 	 * |xxxxxxxxxxxxxxxxxxxx|------------------------|yyyyyyyyyyyyyyyyyyyyy|
94 	 * |<-- len: lg_base -->|<-- len: SC_LG_NGROUP-->|<-- len: lg_delta -->|
95 	 *                      |<--      ndelta      -->|
96 	 * rg_inner_off = ndelta - 1
97 	 * Why use (psz - 1)?
98 	 * To handle case: psz % (1 << lg_delta) == 0.
99 	 */
100 	pszind_t rg_inner_off = (((psz - 1)) >> lg_delta) & (SC_NGROUP - 1);
101 
102 	pszind_t base_ind = off_to_first_ps_rg << SC_LG_NGROUP;
103 	pszind_t ind = base_ind + rg_inner_off;
104 	return ind;
105 }
106 
107 static inline size_t
108 sz_pind2sz_compute(pszind_t pind) {
109 	if (unlikely(pind == SC_NPSIZES)) {
110 		return SC_LARGE_MAXCLASS + PAGE;
111 	}
112 	size_t grp = pind >> SC_LG_NGROUP;
113 	size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1);
114 
115 	size_t grp_size_mask = ~((!!grp)-1);
116 	size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp)
117 	    & grp_size_mask;
118 
119 	size_t shift = (grp == 0) ? 1 : grp;
120 	size_t lg_delta = shift + (LG_PAGE-1);
121 	size_t mod_size = (mod+1) << lg_delta;
122 
123 	size_t sz = grp_size + mod_size;
124 	return sz;
125 }
126 
127 static inline size_t
128 sz_pind2sz_lookup(pszind_t pind) {
129 	size_t ret = (size_t)sz_pind2sz_tab[pind];
130 	assert(ret == sz_pind2sz_compute(pind));
131 	return ret;
132 }
133 
134 static inline size_t
135 sz_pind2sz(pszind_t pind) {
136 	assert(pind < SC_NPSIZES + 1);
137 	return sz_pind2sz_lookup(pind);
138 }
139 
140 static inline size_t
141 sz_psz2u(size_t psz) {
142 	if (unlikely(psz > SC_LARGE_MAXCLASS)) {
143 		return SC_LARGE_MAXCLASS + PAGE;
144 	}
145 	size_t x = lg_floor((psz<<1)-1);
146 	size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ?
147 	    LG_PAGE : x - SC_LG_NGROUP - 1;
148 	size_t delta = ZU(1) << lg_delta;
149 	size_t delta_mask = delta - 1;
150 	size_t usize = (psz + delta_mask) & ~delta_mask;
151 	return usize;
152 }
153 
154 static inline szind_t
155 sz_size2index_compute(size_t size) {
156 	if (unlikely(size > SC_LARGE_MAXCLASS)) {
157 		return SC_NSIZES;
158 	}
159 
160 	if (size == 0) {
161 		return 0;
162 	}
163 #if (SC_NTINY != 0)
164 	if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
165 		szind_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
166 		szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
167 		return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
168 	}
169 #endif
170 	{
171 		szind_t x = lg_floor((size<<1)-1);
172 		szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 :
173 		    x - (SC_LG_NGROUP + LG_QUANTUM);
174 		szind_t grp = shift << SC_LG_NGROUP;
175 
176 		szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
177 		    ? LG_QUANTUM : x - SC_LG_NGROUP - 1;
178 
179 		size_t delta_inverse_mask = ZU(-1) << lg_delta;
180 		szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
181 		    ((ZU(1) << SC_LG_NGROUP) - 1);
182 
183 		szind_t index = SC_NTINY + grp + mod;
184 		return index;
185 	}
186 }
187 
188 JEMALLOC_ALWAYS_INLINE szind_t
189 sz_size2index_lookup_impl(size_t size) {
190 	assert(size <= SC_LOOKUP_MAXCLASS);
191 	return sz_size2index_tab[(size + (ZU(1) << SC_LG_TINY_MIN) - 1)
192 	    >> SC_LG_TINY_MIN];
193 }
194 
195 JEMALLOC_ALWAYS_INLINE szind_t
196 sz_size2index_lookup(size_t size) {
197 	szind_t ret = sz_size2index_lookup_impl(size);
198 	assert(ret == sz_size2index_compute(size));
199 	return ret;
200 }
201 
202 JEMALLOC_ALWAYS_INLINE szind_t
203 sz_size2index(size_t size) {
204 	if (likely(size <= SC_LOOKUP_MAXCLASS)) {
205 		return sz_size2index_lookup(size);
206 	}
207 	return sz_size2index_compute(size);
208 }
209 
210 static inline size_t
211 sz_index2size_compute(szind_t index) {
212 #if (SC_NTINY > 0)
213 	if (index < SC_NTINY) {
214 		return (ZU(1) << (SC_LG_TINY_MAXCLASS - SC_NTINY + 1 + index));
215 	}
216 #endif
217 	{
218 		size_t reduced_index = index - SC_NTINY;
219 		size_t grp = reduced_index >> SC_LG_NGROUP;
220 		size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) -
221 		    1);
222 
223 		size_t grp_size_mask = ~((!!grp)-1);
224 		size_t grp_size = ((ZU(1) << (LG_QUANTUM +
225 		    (SC_LG_NGROUP-1))) << grp) & grp_size_mask;
226 
227 		size_t shift = (grp == 0) ? 1 : grp;
228 		size_t lg_delta = shift + (LG_QUANTUM-1);
229 		size_t mod_size = (mod+1) << lg_delta;
230 
231 		size_t usize = grp_size + mod_size;
232 		return usize;
233 	}
234 }
235 
236 JEMALLOC_ALWAYS_INLINE size_t
237 sz_index2size_lookup_impl(szind_t index) {
238 	return sz_index2size_tab[index];
239 }
240 
241 JEMALLOC_ALWAYS_INLINE size_t
242 sz_index2size_lookup(szind_t index) {
243 	size_t ret = sz_index2size_lookup_impl(index);
244 	assert(ret == sz_index2size_compute(index));
245 	return ret;
246 }
247 
248 JEMALLOC_ALWAYS_INLINE size_t
249 sz_index2size(szind_t index) {
250 	assert(index < SC_NSIZES);
251 	return sz_index2size_lookup(index);
252 }
253 
254 JEMALLOC_ALWAYS_INLINE void
255 sz_size2index_usize_fastpath(size_t size, szind_t *ind, size_t *usize) {
256 	*ind = sz_size2index_lookup_impl(size);
257 	*usize = sz_index2size_lookup_impl(*ind);
258 }
259 
260 JEMALLOC_ALWAYS_INLINE size_t
261 sz_s2u_compute(size_t size) {
262 	if (unlikely(size > SC_LARGE_MAXCLASS)) {
263 		return 0;
264 	}
265 
266 	if (size == 0) {
267 		size++;
268 	}
269 #if (SC_NTINY > 0)
270 	if (size <= (ZU(1) << SC_LG_TINY_MAXCLASS)) {
271 		size_t lg_tmin = SC_LG_TINY_MAXCLASS - SC_NTINY + 1;
272 		size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
273 		return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
274 		    (ZU(1) << lg_ceil));
275 	}
276 #endif
277 	{
278 		size_t x = lg_floor((size<<1)-1);
279 		size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
280 		    ?  LG_QUANTUM : x - SC_LG_NGROUP - 1;
281 		size_t delta = ZU(1) << lg_delta;
282 		size_t delta_mask = delta - 1;
283 		size_t usize = (size + delta_mask) & ~delta_mask;
284 		return usize;
285 	}
286 }
287 
288 JEMALLOC_ALWAYS_INLINE size_t
289 sz_s2u_lookup(size_t size) {
290 	size_t ret = sz_index2size_lookup(sz_size2index_lookup(size));
291 
292 	assert(ret == sz_s2u_compute(size));
293 	return ret;
294 }
295 
296 /*
297  * Compute usable size that would result from allocating an object with the
298  * specified size.
299  */
300 JEMALLOC_ALWAYS_INLINE size_t
301 sz_s2u(size_t size) {
302 	if (likely(size <= SC_LOOKUP_MAXCLASS)) {
303 		return sz_s2u_lookup(size);
304 	}
305 	return sz_s2u_compute(size);
306 }
307 
308 /*
309  * Compute usable size that would result from allocating an object with the
310  * specified size and alignment.
311  */
312 JEMALLOC_ALWAYS_INLINE size_t
313 sz_sa2u(size_t size, size_t alignment) {
314 	size_t usize;
315 
316 	assert(alignment != 0 && ((alignment - 1) & alignment) == 0);
317 
318 	/* Try for a small size class. */
319 	if (size <= SC_SMALL_MAXCLASS && alignment <= PAGE) {
320 		/*
321 		 * Round size up to the nearest multiple of alignment.
322 		 *
323 		 * This done, we can take advantage of the fact that for each
324 		 * small size class, every object is aligned at the smallest
325 		 * power of two that is non-zero in the base two representation
326 		 * of the size.  For example:
327 		 *
328 		 *   Size |   Base 2 | Minimum alignment
329 		 *   -----+----------+------------------
330 		 *     96 |  1100000 |  32
331 		 *    144 | 10100000 |  32
332 		 *    192 | 11000000 |  64
333 		 */
334 		usize = sz_s2u(ALIGNMENT_CEILING(size, alignment));
335 		if (usize < SC_LARGE_MINCLASS) {
336 			return usize;
337 		}
338 	}
339 
340 	/* Large size class.  Beware of overflow. */
341 
342 	if (unlikely(alignment > SC_LARGE_MAXCLASS)) {
343 		return 0;
344 	}
345 
346 	/* Make sure result is a large size class. */
347 	if (size <= SC_LARGE_MINCLASS) {
348 		usize = SC_LARGE_MINCLASS;
349 	} else {
350 		usize = sz_s2u(size);
351 		if (usize < size) {
352 			/* size_t overflow. */
353 			return 0;
354 		}
355 	}
356 
357 	/*
358 	 * Calculate the multi-page mapping that large_palloc() would need in
359 	 * order to guarantee the alignment.
360 	 */
361 	if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
362 		/* size_t overflow. */
363 		return 0;
364 	}
365 	return usize;
366 }
367 
368 size_t sz_psz_quantize_floor(size_t size);
369 size_t sz_psz_quantize_ceil(size_t size);
370 
371 #endif /* JEMALLOC_INTERNAL_SIZE_H */
372