1 // SPDX-License-Identifier: GPL-2.0
2
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
23 //!
24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
27 //! that implements [`WorkItem`].
28 //!
29 //! ## Example
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::sync::Arc;
37 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
38 //!
39 //! #[pin_data]
40 //! struct MyStruct {
41 //! value: i32,
42 //! #[pin]
43 //! work: Work<MyStruct>,
44 //! }
45 //!
46 //! impl_has_work! {
47 //! impl HasWork<Self> for MyStruct { self.work }
48 //! }
49 //!
50 //! impl MyStruct {
51 //! fn new(value: i32) -> Result<Arc<Self>> {
52 //! Arc::pin_init(pin_init!(MyStruct {
53 //! value,
54 //! work <- new_work!("MyStruct::work"),
55 //! }), GFP_KERNEL)
56 //! }
57 //! }
58 //!
59 //! impl WorkItem for MyStruct {
60 //! type Pointer = Arc<MyStruct>;
61 //!
62 //! fn run(this: Arc<MyStruct>) {
63 //! pr_info!("The value is: {}", this.value);
64 //! }
65 //! }
66 //!
67 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
68 //! /// will be printed.
69 //! fn print_later(val: Arc<MyStruct>) {
70 //! let _ = workqueue::system().enqueue(val);
71 //! }
72 //! ```
73 //!
74 //! The following example shows how multiple `work_struct` fields can be used:
75 //!
76 //! ```
77 //! use kernel::sync::Arc;
78 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
79 //!
80 //! #[pin_data]
81 //! struct MyStruct {
82 //! value_1: i32,
83 //! value_2: i32,
84 //! #[pin]
85 //! work_1: Work<MyStruct, 1>,
86 //! #[pin]
87 //! work_2: Work<MyStruct, 2>,
88 //! }
89 //!
90 //! impl_has_work! {
91 //! impl HasWork<Self, 1> for MyStruct { self.work_1 }
92 //! impl HasWork<Self, 2> for MyStruct { self.work_2 }
93 //! }
94 //!
95 //! impl MyStruct {
96 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
97 //! Arc::pin_init(pin_init!(MyStruct {
98 //! value_1,
99 //! value_2,
100 //! work_1 <- new_work!("MyStruct::work_1"),
101 //! work_2 <- new_work!("MyStruct::work_2"),
102 //! }), GFP_KERNEL)
103 //! }
104 //! }
105 //!
106 //! impl WorkItem<1> for MyStruct {
107 //! type Pointer = Arc<MyStruct>;
108 //!
109 //! fn run(this: Arc<MyStruct>) {
110 //! pr_info!("The value is: {}", this.value_1);
111 //! }
112 //! }
113 //!
114 //! impl WorkItem<2> for MyStruct {
115 //! type Pointer = Arc<MyStruct>;
116 //!
117 //! fn run(this: Arc<MyStruct>) {
118 //! pr_info!("The second value is: {}", this.value_2);
119 //! }
120 //! }
121 //!
122 //! fn print_1_later(val: Arc<MyStruct>) {
123 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
124 //! }
125 //!
126 //! fn print_2_later(val: Arc<MyStruct>) {
127 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
128 //! }
129 //! ```
130 //!
131 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
132
133 use crate::alloc::{AllocError, Flags};
134 use crate::{prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
135 use core::marker::PhantomData;
136
137 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
138 #[macro_export]
139 macro_rules! new_work {
140 ($($name:literal)?) => {
141 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
142 };
143 }
144 pub use new_work;
145
146 /// A kernel work queue.
147 ///
148 /// Wraps the kernel's C `struct workqueue_struct`.
149 ///
150 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
151 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
152 #[repr(transparent)]
153 pub struct Queue(Opaque<bindings::workqueue_struct>);
154
155 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
156 unsafe impl Send for Queue {}
157 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
158 unsafe impl Sync for Queue {}
159
160 impl Queue {
161 /// Use the provided `struct workqueue_struct` with Rust.
162 ///
163 /// # Safety
164 ///
165 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
166 /// valid workqueue, and that it remains valid until the end of `'a`.
from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue167 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
168 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
169 // caller promises that the pointer is not dangling.
170 unsafe { &*(ptr as *const Queue) }
171 }
172
173 /// Enqueues a work item.
174 ///
175 /// This may fail if the work item is already enqueued in a workqueue.
176 ///
177 /// The work item will be submitted using `WORK_CPU_UNBOUND`.
enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput where W: RawWorkItem<ID> + Send + 'static,178 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
179 where
180 W: RawWorkItem<ID> + Send + 'static,
181 {
182 let queue_ptr = self.0.get();
183
184 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
185 // `__enqueue` requirements are not relevant since `W` is `Send` and static.
186 //
187 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
188 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
189 // closure.
190 //
191 // Furthermore, if the C workqueue code accesses the pointer after this call to
192 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
193 // will have returned true. In this case, `__enqueue` promises that the raw pointer will
194 // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
195 unsafe {
196 w.__enqueue(move |work_ptr| {
197 bindings::queue_work_on(
198 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
199 queue_ptr,
200 work_ptr,
201 )
202 })
203 }
204 }
205
206 /// Tries to spawn the given function or closure as a work item.
207 ///
208 /// This method can fail because it allocates memory to store the work item.
try_spawn<T: 'static + Send + FnOnce()>( &self, flags: Flags, func: T, ) -> Result<(), AllocError>209 pub fn try_spawn<T: 'static + Send + FnOnce()>(
210 &self,
211 flags: Flags,
212 func: T,
213 ) -> Result<(), AllocError> {
214 let init = pin_init!(ClosureWork {
215 work <- new_work!("Queue::try_spawn"),
216 func: Some(func),
217 });
218
219 self.enqueue(KBox::pin_init(init, flags).map_err(|_| AllocError)?);
220 Ok(())
221 }
222 }
223
224 /// A helper type used in [`try_spawn`].
225 ///
226 /// [`try_spawn`]: Queue::try_spawn
227 #[pin_data]
228 struct ClosureWork<T> {
229 #[pin]
230 work: Work<ClosureWork<T>>,
231 func: Option<T>,
232 }
233
234 impl<T> ClosureWork<T> {
project(self: Pin<&mut Self>) -> &mut Option<T>235 fn project(self: Pin<&mut Self>) -> &mut Option<T> {
236 // SAFETY: The `func` field is not structurally pinned.
237 unsafe { &mut self.get_unchecked_mut().func }
238 }
239 }
240
241 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
242 type Pointer = Pin<KBox<Self>>;
243
run(mut this: Pin<KBox<Self>>)244 fn run(mut this: Pin<KBox<Self>>) {
245 if let Some(func) = this.as_mut().project().take() {
246 (func)()
247 }
248 }
249 }
250
251 /// A raw work item.
252 ///
253 /// This is the low-level trait that is designed for being as general as possible.
254 ///
255 /// The `ID` parameter to this trait exists so that a single type can provide multiple
256 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
257 /// you will implement this trait once for each field, using a different id for each field. The
258 /// actual value of the id is not important as long as you use different ids for different fields
259 /// of the same struct. (Fields of different structs need not use different ids.)
260 ///
261 /// Note that the id is used only to select the right method to call during compilation. It won't be
262 /// part of the final executable.
263 ///
264 /// # Safety
265 ///
266 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
267 /// remain valid for the duration specified in the guarantees section of the documentation for
268 /// [`__enqueue`].
269 ///
270 /// [`__enqueue`]: RawWorkItem::__enqueue
271 pub unsafe trait RawWorkItem<const ID: u64> {
272 /// The return type of [`Queue::enqueue`].
273 type EnqueueOutput;
274
275 /// Enqueues this work item on a queue using the provided `queue_work_on` method.
276 ///
277 /// # Guarantees
278 ///
279 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
280 /// valid `work_struct` for the duration of the call to the closure. If the closure returns
281 /// true, then it is further guaranteed that the pointer remains valid until someone calls the
282 /// function pointer stored in the `work_struct`.
283 ///
284 /// # Safety
285 ///
286 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
287 ///
288 /// If the work item type is annotated with any lifetimes, then you must not call the function
289 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
290 ///
291 /// If the work item type is not [`Send`], then the function pointer must be called on the same
292 /// thread as the call to `__enqueue`.
__enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput where F: FnOnce(*mut bindings::work_struct) -> bool293 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
294 where
295 F: FnOnce(*mut bindings::work_struct) -> bool;
296 }
297
298 /// Defines the method that should be called directly when a work item is executed.
299 ///
300 /// This trait is implemented by `Pin<KBox<T>>` and [`Arc<T>`], and is mainly intended to be
301 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
302 /// instead. The [`run`] method on this trait will usually just perform the appropriate
303 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
304 /// [`WorkItem`] trait.
305 ///
306 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
307 ///
308 /// # Safety
309 ///
310 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
311 /// method of this trait as the function pointer.
312 ///
313 /// [`__enqueue`]: RawWorkItem::__enqueue
314 /// [`run`]: WorkItemPointer::run
315 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
316 /// Run this work item.
317 ///
318 /// # Safety
319 ///
320 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
321 /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
322 ///
323 /// [`__enqueue`]: RawWorkItem::__enqueue
run(ptr: *mut bindings::work_struct)324 unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
325 }
326
327 /// Defines the method that should be called when this work item is executed.
328 ///
329 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
330 pub trait WorkItem<const ID: u64 = 0> {
331 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
332 /// `Pin<KBox<Self>>`.
333 type Pointer: WorkItemPointer<ID>;
334
335 /// The method that should be called when this work item is executed.
run(this: Self::Pointer)336 fn run(this: Self::Pointer);
337 }
338
339 /// Links for a work item.
340 ///
341 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
342 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
343 ///
344 /// Wraps the kernel's C `struct work_struct`.
345 ///
346 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
347 ///
348 /// [`run`]: WorkItemPointer::run
349 #[pin_data]
350 #[repr(transparent)]
351 pub struct Work<T: ?Sized, const ID: u64 = 0> {
352 #[pin]
353 work: Opaque<bindings::work_struct>,
354 _inner: PhantomData<T>,
355 }
356
357 // SAFETY: Kernel work items are usable from any thread.
358 //
359 // We do not need to constrain `T` since the work item does not actually contain a `T`.
360 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
361 // SAFETY: Kernel work items are usable from any thread.
362 //
363 // We do not need to constrain `T` since the work item does not actually contain a `T`.
364 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
365
366 impl<T: ?Sized, const ID: u64> Work<T, ID> {
367 /// Creates a new instance of [`Work`].
368 #[inline]
new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> where T: WorkItem<ID>,369 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
370 where
371 T: WorkItem<ID>,
372 {
373 pin_init!(Self {
374 work <- Opaque::ffi_init(|slot| {
375 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
376 // the work item function.
377 unsafe {
378 bindings::init_work_with_key(
379 slot,
380 Some(T::Pointer::run),
381 false,
382 name.as_char_ptr(),
383 key.as_ptr(),
384 )
385 }
386 }),
387 _inner: PhantomData,
388 })
389 }
390
391 /// Get a pointer to the inner `work_struct`.
392 ///
393 /// # Safety
394 ///
395 /// The provided pointer must not be dangling and must be properly aligned. (But the memory
396 /// need not be initialized.)
397 #[inline]
raw_get(ptr: *const Self) -> *mut bindings::work_struct398 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
399 // SAFETY: The caller promises that the pointer is aligned and not dangling.
400 //
401 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
402 // the compiler does not complain that the `work` field is unused.
403 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
404 }
405 }
406
407 /// Declares that a type has a [`Work<T, ID>`] field.
408 ///
409 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
410 /// like this:
411 ///
412 /// ```no_run
413 /// use kernel::workqueue::{impl_has_work, Work};
414 ///
415 /// struct MyWorkItem {
416 /// work_field: Work<MyWorkItem, 1>,
417 /// }
418 ///
419 /// impl_has_work! {
420 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
421 /// }
422 /// ```
423 ///
424 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
425 /// fields by using a different id for each one.
426 ///
427 /// # Safety
428 ///
429 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The
430 /// methods on this trait must have exactly the behavior that the definitions given below have.
431 ///
432 /// [`impl_has_work!`]: crate::impl_has_work
433 /// [`OFFSET`]: HasWork::OFFSET
434 pub unsafe trait HasWork<T, const ID: u64 = 0> {
435 /// The offset of the [`Work<T, ID>`] field.
436 const OFFSET: usize;
437
438 /// Returns the offset of the [`Work<T, ID>`] field.
439 ///
440 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not
441 /// [`Sized`].
442 ///
443 /// [`OFFSET`]: HasWork::OFFSET
444 #[inline]
get_work_offset(&self) -> usize445 fn get_work_offset(&self) -> usize {
446 Self::OFFSET
447 }
448
449 /// Returns a pointer to the [`Work<T, ID>`] field.
450 ///
451 /// # Safety
452 ///
453 /// The provided pointer must point at a valid struct of type `Self`.
454 #[inline]
raw_get_work(ptr: *mut Self) -> *mut Work<T, ID>455 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
456 // SAFETY: The caller promises that the pointer is valid.
457 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
458 }
459
460 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
461 ///
462 /// # Safety
463 ///
464 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
465 #[inline]
work_container_of(ptr: *mut Work<T, ID>) -> *mut Self where Self: Sized,466 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
467 where
468 Self: Sized,
469 {
470 // SAFETY: The caller promises that the pointer points at a field of the right type in the
471 // right kind of struct.
472 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
473 }
474 }
475
476 /// Used to safely implement the [`HasWork<T, ID>`] trait.
477 ///
478 /// # Examples
479 ///
480 /// ```
481 /// use kernel::sync::Arc;
482 /// use kernel::workqueue::{self, impl_has_work, Work};
483 ///
484 /// struct MyStruct<'a, T, const N: usize> {
485 /// work_field: Work<MyStruct<'a, T, N>, 17>,
486 /// f: fn(&'a [T; N]),
487 /// }
488 ///
489 /// impl_has_work! {
490 /// impl{'a, T, const N: usize} HasWork<MyStruct<'a, T, N>, 17>
491 /// for MyStruct<'a, T, N> { self.work_field }
492 /// }
493 /// ```
494 #[macro_export]
495 macro_rules! impl_has_work {
496 ($(impl$({$($generics:tt)*})?
497 HasWork<$work_type:ty $(, $id:tt)?>
498 for $self:ty
499 { self.$field:ident }
500 )*) => {$(
501 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
502 // type.
503 unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self {
504 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
505
506 #[inline]
507 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
508 // SAFETY: The caller promises that the pointer is not dangling.
509 unsafe {
510 ::core::ptr::addr_of_mut!((*ptr).$field)
511 }
512 }
513 }
514 )*};
515 }
516 pub use impl_has_work;
517
518 impl_has_work! {
519 impl{T} HasWork<Self> for ClosureWork<T> { self.work }
520 }
521
522 // SAFETY: The `__enqueue` implementation in RawWorkItem uses a `work_struct` initialized with the
523 // `run` method of this trait as the function pointer because:
524 // - `__enqueue` gets the `work_struct` from the `Work` field, using `T::raw_get_work`.
525 // - The only safe way to create a `Work` object is through `Work::new`.
526 // - `Work::new` makes sure that `T::Pointer::run` is passed to `init_work_with_key`.
527 // - Finally `Work` and `RawWorkItem` guarantee that the correct `Work` field
528 // will be used because of the ID const generic bound. This makes sure that `T::raw_get_work`
529 // uses the correct offset for the `Work` field, and `Work::new` picks the correct
530 // implementation of `WorkItemPointer` for `Arc<T>`.
531 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
532 where
533 T: WorkItem<ID, Pointer = Self>,
534 T: HasWork<T, ID>,
535 {
run(ptr: *mut bindings::work_struct)536 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
537 // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
538 let ptr = ptr as *mut Work<T, ID>;
539 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
540 let ptr = unsafe { T::work_container_of(ptr) };
541 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
542 let arc = unsafe { Arc::from_raw(ptr) };
543
544 T::run(arc)
545 }
546 }
547
548 // SAFETY: The `work_struct` raw pointer is guaranteed to be valid for the duration of the call to
549 // the closure because we get it from an `Arc`, which means that the ref count will be at least 1,
550 // and we don't drop the `Arc` ourselves. If `queue_work_on` returns true, it is further guaranteed
551 // to be valid until a call to the function pointer in `work_struct` because we leak the memory it
552 // points to, and only reclaim it if the closure returns false, or in `WorkItemPointer::run`, which
553 // is what the function pointer in the `work_struct` must be pointing to, according to the safety
554 // requirements of `WorkItemPointer`.
555 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
556 where
557 T: WorkItem<ID, Pointer = Self>,
558 T: HasWork<T, ID>,
559 {
560 type EnqueueOutput = Result<(), Self>;
561
__enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput where F: FnOnce(*mut bindings::work_struct) -> bool,562 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
563 where
564 F: FnOnce(*mut bindings::work_struct) -> bool,
565 {
566 // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
567 let ptr = Arc::into_raw(self).cast_mut();
568
569 // SAFETY: Pointers into an `Arc` point at a valid value.
570 let work_ptr = unsafe { T::raw_get_work(ptr) };
571 // SAFETY: `raw_get_work` returns a pointer to a valid value.
572 let work_ptr = unsafe { Work::raw_get(work_ptr) };
573
574 if queue_work_on(work_ptr) {
575 Ok(())
576 } else {
577 // SAFETY: The work queue has not taken ownership of the pointer.
578 Err(unsafe { Arc::from_raw(ptr) })
579 }
580 }
581 }
582
583 // SAFETY: TODO.
584 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<KBox<T>>
585 where
586 T: WorkItem<ID, Pointer = Self>,
587 T: HasWork<T, ID>,
588 {
run(ptr: *mut bindings::work_struct)589 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
590 // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
591 let ptr = ptr as *mut Work<T, ID>;
592 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
593 let ptr = unsafe { T::work_container_of(ptr) };
594 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
595 let boxed = unsafe { KBox::from_raw(ptr) };
596 // SAFETY: The box was already pinned when it was enqueued.
597 let pinned = unsafe { Pin::new_unchecked(boxed) };
598
599 T::run(pinned)
600 }
601 }
602
603 // SAFETY: TODO.
604 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<KBox<T>>
605 where
606 T: WorkItem<ID, Pointer = Self>,
607 T: HasWork<T, ID>,
608 {
609 type EnqueueOutput = ();
610
__enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput where F: FnOnce(*mut bindings::work_struct) -> bool,611 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
612 where
613 F: FnOnce(*mut bindings::work_struct) -> bool,
614 {
615 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
616 // remove the `Pin` wrapper.
617 let boxed = unsafe { Pin::into_inner_unchecked(self) };
618 let ptr = KBox::into_raw(boxed);
619
620 // SAFETY: Pointers into a `KBox` point at a valid value.
621 let work_ptr = unsafe { T::raw_get_work(ptr) };
622 // SAFETY: `raw_get_work` returns a pointer to a valid value.
623 let work_ptr = unsafe { Work::raw_get(work_ptr) };
624
625 if !queue_work_on(work_ptr) {
626 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
627 // workqueue.
628 unsafe { ::core::hint::unreachable_unchecked() }
629 }
630 }
631 }
632
633 /// Returns the system work queue (`system_wq`).
634 ///
635 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
636 /// users which expect relatively short queue flush time.
637 ///
638 /// Callers shouldn't queue work items which can run for too long.
system() -> &'static Queue639 pub fn system() -> &'static Queue {
640 // SAFETY: `system_wq` is a C global, always available.
641 unsafe { Queue::from_raw(bindings::system_wq) }
642 }
643
644 /// Returns the system high-priority work queue (`system_highpri_wq`).
645 ///
646 /// It is similar to the one returned by [`system`] but for work items which require higher
647 /// scheduling priority.
system_highpri() -> &'static Queue648 pub fn system_highpri() -> &'static Queue {
649 // SAFETY: `system_highpri_wq` is a C global, always available.
650 unsafe { Queue::from_raw(bindings::system_highpri_wq) }
651 }
652
653 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
654 ///
655 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
656 /// flushing might take relatively long.
system_long() -> &'static Queue657 pub fn system_long() -> &'static Queue {
658 // SAFETY: `system_long_wq` is a C global, always available.
659 unsafe { Queue::from_raw(bindings::system_long_wq) }
660 }
661
662 /// Returns the system unbound work queue (`system_unbound_wq`).
663 ///
664 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
665 /// are executed immediately as long as `max_active` limit is not reached and resources are
666 /// available.
system_unbound() -> &'static Queue667 pub fn system_unbound() -> &'static Queue {
668 // SAFETY: `system_unbound_wq` is a C global, always available.
669 unsafe { Queue::from_raw(bindings::system_unbound_wq) }
670 }
671
672 /// Returns the system freezable work queue (`system_freezable_wq`).
673 ///
674 /// It is equivalent to the one returned by [`system`] except that it's freezable.
675 ///
676 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
677 /// items on the workqueue are drained and no new work item starts execution until thawed.
system_freezable() -> &'static Queue678 pub fn system_freezable() -> &'static Queue {
679 // SAFETY: `system_freezable_wq` is a C global, always available.
680 unsafe { Queue::from_raw(bindings::system_freezable_wq) }
681 }
682
683 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
684 ///
685 /// It is inclined towards saving power and is converted to "unbound" variants if the
686 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
687 /// returned by [`system`].
system_power_efficient() -> &'static Queue688 pub fn system_power_efficient() -> &'static Queue {
689 // SAFETY: `system_power_efficient_wq` is a C global, always available.
690 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
691 }
692
693 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
694 ///
695 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
696 ///
697 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
698 /// items on the workqueue are drained and no new work item starts execution until thawed.
system_freezable_power_efficient() -> &'static Queue699 pub fn system_freezable_power_efficient() -> &'static Queue {
700 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
701 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
702 }
703