xref: /linux/rust/kernel/workqueue.rs (revision 58809f614e0e3f4e12b489bddf680bfeb31c0a20)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
23 //!
24 //!  * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
25 //!  * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
26 //!  * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
27 //!    that implements [`WorkItem`].
28 //!
29 //! ## Examples
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::sync::Arc;
37 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
38 //!
39 //! #[pin_data]
40 //! struct MyStruct {
41 //!     value: i32,
42 //!     #[pin]
43 //!     work: Work<MyStruct>,
44 //! }
45 //!
46 //! impl_has_work! {
47 //!     impl HasWork<Self> for MyStruct { self.work }
48 //! }
49 //!
50 //! impl MyStruct {
51 //!     fn new(value: i32) -> Result<Arc<Self>> {
52 //!         Arc::pin_init(pin_init!(MyStruct {
53 //!             value,
54 //!             work <- new_work!("MyStruct::work"),
55 //!         }), GFP_KERNEL)
56 //!     }
57 //! }
58 //!
59 //! impl WorkItem for MyStruct {
60 //!     type Pointer = Arc<MyStruct>;
61 //!
62 //!     fn run(this: Arc<MyStruct>) {
63 //!         pr_info!("The value is: {}\n", this.value);
64 //!     }
65 //! }
66 //!
67 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
68 //! /// will be printed.
69 //! fn print_later(val: Arc<MyStruct>) {
70 //!     let _ = workqueue::system().enqueue(val);
71 //! }
72 //! # print_later(MyStruct::new(42).unwrap());
73 //! ```
74 //!
75 //! The following example shows how multiple `work_struct` fields can be used:
76 //!
77 //! ```
78 //! use kernel::sync::Arc;
79 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
80 //!
81 //! #[pin_data]
82 //! struct MyStruct {
83 //!     value_1: i32,
84 //!     value_2: i32,
85 //!     #[pin]
86 //!     work_1: Work<MyStruct, 1>,
87 //!     #[pin]
88 //!     work_2: Work<MyStruct, 2>,
89 //! }
90 //!
91 //! impl_has_work! {
92 //!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
93 //!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
94 //! }
95 //!
96 //! impl MyStruct {
97 //!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
98 //!         Arc::pin_init(pin_init!(MyStruct {
99 //!             value_1,
100 //!             value_2,
101 //!             work_1 <- new_work!("MyStruct::work_1"),
102 //!             work_2 <- new_work!("MyStruct::work_2"),
103 //!         }), GFP_KERNEL)
104 //!     }
105 //! }
106 //!
107 //! impl WorkItem<1> for MyStruct {
108 //!     type Pointer = Arc<MyStruct>;
109 //!
110 //!     fn run(this: Arc<MyStruct>) {
111 //!         pr_info!("The value is: {}\n", this.value_1);
112 //!     }
113 //! }
114 //!
115 //! impl WorkItem<2> for MyStruct {
116 //!     type Pointer = Arc<MyStruct>;
117 //!
118 //!     fn run(this: Arc<MyStruct>) {
119 //!         pr_info!("The second value is: {}\n", this.value_2);
120 //!     }
121 //! }
122 //!
123 //! fn print_1_later(val: Arc<MyStruct>) {
124 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
125 //! }
126 //!
127 //! fn print_2_later(val: Arc<MyStruct>) {
128 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
129 //! }
130 //! # print_1_later(MyStruct::new(24, 25).unwrap());
131 //! # print_2_later(MyStruct::new(41, 42).unwrap());
132 //! ```
133 //!
134 //! This example shows how you can schedule delayed work items:
135 //!
136 //! ```
137 //! use kernel::sync::Arc;
138 //! use kernel::workqueue::{self, impl_has_delayed_work, new_delayed_work, DelayedWork, WorkItem};
139 //!
140 //! #[pin_data]
141 //! struct MyStruct {
142 //!     value: i32,
143 //!     #[pin]
144 //!     work: DelayedWork<MyStruct>,
145 //! }
146 //!
147 //! impl_has_delayed_work! {
148 //!     impl HasDelayedWork<Self> for MyStruct { self.work }
149 //! }
150 //!
151 //! impl MyStruct {
152 //!     fn new(value: i32) -> Result<Arc<Self>> {
153 //!         Arc::pin_init(
154 //!             pin_init!(MyStruct {
155 //!                 value,
156 //!                 work <- new_delayed_work!("MyStruct::work"),
157 //!             }),
158 //!             GFP_KERNEL,
159 //!         )
160 //!     }
161 //! }
162 //!
163 //! impl WorkItem for MyStruct {
164 //!     type Pointer = Arc<MyStruct>;
165 //!
166 //!     fn run(this: Arc<MyStruct>) {
167 //!         pr_info!("The value is: {}\n", this.value);
168 //!     }
169 //! }
170 //!
171 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
172 //! /// will be printed 12 jiffies later.
173 //! fn print_later(val: Arc<MyStruct>) {
174 //!     let _ = workqueue::system().enqueue_delayed(val, 12);
175 //! }
176 //!
177 //! /// It is also possible to use the ordinary `enqueue` method together with `DelayedWork`. This
178 //! /// is equivalent to calling `enqueue_delayed` with a delay of zero.
179 //! fn print_now(val: Arc<MyStruct>) {
180 //!     let _ = workqueue::system().enqueue(val);
181 //! }
182 //! # print_later(MyStruct::new(42).unwrap());
183 //! # print_now(MyStruct::new(42).unwrap());
184 //! ```
185 //!
186 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
187 
188 use crate::{
189     alloc::{AllocError, Flags},
190     container_of,
191     prelude::*,
192     sync::Arc,
193     sync::LockClassKey,
194     time::Jiffies,
195     types::Opaque,
196 };
197 use core::marker::PhantomData;
198 
199 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
200 #[macro_export]
201 macro_rules! new_work {
202     ($($name:literal)?) => {
203         $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
204     };
205 }
206 pub use new_work;
207 
208 /// Creates a [`DelayedWork`] initialiser with the given name and a newly-created lock class.
209 #[macro_export]
210 macro_rules! new_delayed_work {
211     () => {
212         $crate::workqueue::DelayedWork::new(
213             $crate::optional_name!(),
214             $crate::static_lock_class!(),
215             $crate::c_str!(::core::concat!(
216                 ::core::file!(),
217                 ":",
218                 ::core::line!(),
219                 "_timer"
220             )),
221             $crate::static_lock_class!(),
222         )
223     };
224     ($name:literal) => {
225         $crate::workqueue::DelayedWork::new(
226             $crate::c_str!($name),
227             $crate::static_lock_class!(),
228             $crate::c_str!(::core::concat!($name, "_timer")),
229             $crate::static_lock_class!(),
230         )
231     };
232 }
233 pub use new_delayed_work;
234 
235 /// A kernel work queue.
236 ///
237 /// Wraps the kernel's C `struct workqueue_struct`.
238 ///
239 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
240 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
241 #[repr(transparent)]
242 pub struct Queue(Opaque<bindings::workqueue_struct>);
243 
244 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
245 unsafe impl Send for Queue {}
246 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
247 unsafe impl Sync for Queue {}
248 
249 impl Queue {
250     /// Use the provided `struct workqueue_struct` with Rust.
251     ///
252     /// # Safety
253     ///
254     /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
255     /// valid workqueue, and that it remains valid until the end of `'a`.
256     pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
257         // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
258         // caller promises that the pointer is not dangling.
259         unsafe { &*ptr.cast::<Queue>() }
260     }
261 
262     /// Enqueues a work item.
263     ///
264     /// This may fail if the work item is already enqueued in a workqueue.
265     ///
266     /// The work item will be submitted using `WORK_CPU_UNBOUND`.
267     pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
268     where
269         W: RawWorkItem<ID> + Send + 'static,
270     {
271         let queue_ptr = self.0.get();
272 
273         // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
274         // `__enqueue` requirements are not relevant since `W` is `Send` and static.
275         //
276         // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
277         // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
278         // closure.
279         //
280         // Furthermore, if the C workqueue code accesses the pointer after this call to
281         // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
282         // will have returned true. In this case, `__enqueue` promises that the raw pointer will
283         // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
284         unsafe {
285             w.__enqueue(move |work_ptr| {
286                 bindings::queue_work_on(
287                     bindings::wq_misc_consts_WORK_CPU_UNBOUND as ffi::c_int,
288                     queue_ptr,
289                     work_ptr,
290                 )
291             })
292         }
293     }
294 
295     /// Enqueues a delayed work item.
296     ///
297     /// This may fail if the work item is already enqueued in a workqueue.
298     ///
299     /// The work item will be submitted using `WORK_CPU_UNBOUND`.
300     pub fn enqueue_delayed<W, const ID: u64>(&self, w: W, delay: Jiffies) -> W::EnqueueOutput
301     where
302         W: RawDelayedWorkItem<ID> + Send + 'static,
303     {
304         let queue_ptr = self.0.get();
305 
306         // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
307         // `__enqueue` requirements are not relevant since `W` is `Send` and static.
308         //
309         // The call to `bindings::queue_delayed_work_on` will dereference the provided raw pointer,
310         // which is ok because `__enqueue` guarantees that the pointer is valid for the duration of
311         // this closure, and the safety requirements of `RawDelayedWorkItem` expands this
312         // requirement to apply to the entire `delayed_work`.
313         //
314         // Furthermore, if the C workqueue code accesses the pointer after this call to
315         // `__enqueue`, then the work item was successfully enqueued, and
316         // `bindings::queue_delayed_work_on` will have returned true. In this case, `__enqueue`
317         // promises that the raw pointer will stay valid until we call the function pointer in the
318         // `work_struct`, so the access is ok.
319         unsafe {
320             w.__enqueue(move |work_ptr| {
321                 bindings::queue_delayed_work_on(
322                     bindings::wq_misc_consts_WORK_CPU_UNBOUND as ffi::c_int,
323                     queue_ptr,
324                     container_of!(work_ptr, bindings::delayed_work, work),
325                     delay,
326                 )
327             })
328         }
329     }
330 
331     /// Tries to spawn the given function or closure as a work item.
332     ///
333     /// This method can fail because it allocates memory to store the work item.
334     pub fn try_spawn<T: 'static + Send + FnOnce()>(
335         &self,
336         flags: Flags,
337         func: T,
338     ) -> Result<(), AllocError> {
339         let init = pin_init!(ClosureWork {
340             work <- new_work!("Queue::try_spawn"),
341             func: Some(func),
342         });
343 
344         self.enqueue(KBox::pin_init(init, flags).map_err(|_| AllocError)?);
345         Ok(())
346     }
347 }
348 
349 /// A helper type used in [`try_spawn`].
350 ///
351 /// [`try_spawn`]: Queue::try_spawn
352 #[pin_data]
353 struct ClosureWork<T> {
354     #[pin]
355     work: Work<ClosureWork<T>>,
356     func: Option<T>,
357 }
358 
359 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
360     type Pointer = Pin<KBox<Self>>;
361 
362     fn run(mut this: Pin<KBox<Self>>) {
363         if let Some(func) = this.as_mut().project().func.take() {
364             (func)()
365         }
366     }
367 }
368 
369 /// A raw work item.
370 ///
371 /// This is the low-level trait that is designed for being as general as possible.
372 ///
373 /// The `ID` parameter to this trait exists so that a single type can provide multiple
374 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
375 /// you will implement this trait once for each field, using a different id for each field. The
376 /// actual value of the id is not important as long as you use different ids for different fields
377 /// of the same struct. (Fields of different structs need not use different ids.)
378 ///
379 /// Note that the id is used only to select the right method to call during compilation. It won't be
380 /// part of the final executable.
381 ///
382 /// # Safety
383 ///
384 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
385 /// remain valid for the duration specified in the guarantees section of the documentation for
386 /// [`__enqueue`].
387 ///
388 /// [`__enqueue`]: RawWorkItem::__enqueue
389 pub unsafe trait RawWorkItem<const ID: u64> {
390     /// The return type of [`Queue::enqueue`].
391     type EnqueueOutput;
392 
393     /// Enqueues this work item on a queue using the provided `queue_work_on` method.
394     ///
395     /// # Guarantees
396     ///
397     /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
398     /// valid `work_struct` for the duration of the call to the closure. If the closure returns
399     /// true, then it is further guaranteed that the pointer remains valid until someone calls the
400     /// function pointer stored in the `work_struct`.
401     ///
402     /// # Safety
403     ///
404     /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
405     ///
406     /// If the work item type is annotated with any lifetimes, then you must not call the function
407     /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
408     ///
409     /// If the work item type is not [`Send`], then the function pointer must be called on the same
410     /// thread as the call to `__enqueue`.
411     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
412     where
413         F: FnOnce(*mut bindings::work_struct) -> bool;
414 }
415 
416 /// A raw delayed work item.
417 ///
418 /// # Safety
419 ///
420 /// If the `__enqueue` method in the `RawWorkItem` implementation calls the closure, then the
421 /// provided pointer must point at the `work` field of a valid `delayed_work`, and the guarantees
422 /// that `__enqueue` provides about accessing the `work_struct` must also apply to the rest of the
423 /// `delayed_work` struct.
424 pub unsafe trait RawDelayedWorkItem<const ID: u64>: RawWorkItem<ID> {}
425 
426 /// Defines the method that should be called directly when a work item is executed.
427 ///
428 /// This trait is implemented by `Pin<KBox<T>>` and [`Arc<T>`], and is mainly intended to be
429 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
430 /// instead. The [`run`] method on this trait will usually just perform the appropriate
431 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
432 /// [`WorkItem`] trait.
433 ///
434 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
435 ///
436 /// # Safety
437 ///
438 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
439 /// method of this trait as the function pointer.
440 ///
441 /// [`__enqueue`]: RawWorkItem::__enqueue
442 /// [`run`]: WorkItemPointer::run
443 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
444     /// Run this work item.
445     ///
446     /// # Safety
447     ///
448     /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
449     /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
450     ///
451     /// [`__enqueue`]: RawWorkItem::__enqueue
452     unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
453 }
454 
455 /// Defines the method that should be called when this work item is executed.
456 ///
457 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
458 pub trait WorkItem<const ID: u64 = 0> {
459     /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
460     /// `Pin<KBox<Self>>`.
461     type Pointer: WorkItemPointer<ID>;
462 
463     /// The method that should be called when this work item is executed.
464     fn run(this: Self::Pointer);
465 }
466 
467 /// Links for a work item.
468 ///
469 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
470 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
471 ///
472 /// Wraps the kernel's C `struct work_struct`.
473 ///
474 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
475 ///
476 /// [`run`]: WorkItemPointer::run
477 #[pin_data]
478 #[repr(transparent)]
479 pub struct Work<T: ?Sized, const ID: u64 = 0> {
480     #[pin]
481     work: Opaque<bindings::work_struct>,
482     _inner: PhantomData<T>,
483 }
484 
485 // SAFETY: Kernel work items are usable from any thread.
486 //
487 // We do not need to constrain `T` since the work item does not actually contain a `T`.
488 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
489 // SAFETY: Kernel work items are usable from any thread.
490 //
491 // We do not need to constrain `T` since the work item does not actually contain a `T`.
492 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
493 
494 impl<T: ?Sized, const ID: u64> Work<T, ID> {
495     /// Creates a new instance of [`Work`].
496     #[inline]
497     pub fn new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self>
498     where
499         T: WorkItem<ID>,
500     {
501         pin_init!(Self {
502             work <- Opaque::ffi_init(|slot| {
503                 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
504                 // the work item function.
505                 unsafe {
506                     bindings::init_work_with_key(
507                         slot,
508                         Some(T::Pointer::run),
509                         false,
510                         name.as_char_ptr(),
511                         key.as_ptr(),
512                     )
513                 }
514             }),
515             _inner: PhantomData,
516         })
517     }
518 
519     /// Get a pointer to the inner `work_struct`.
520     ///
521     /// # Safety
522     ///
523     /// The provided pointer must not be dangling and must be properly aligned. (But the memory
524     /// need not be initialized.)
525     #[inline]
526     pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
527         // SAFETY: The caller promises that the pointer is aligned and not dangling.
528         //
529         // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
530         // the compiler does not complain that the `work` field is unused.
531         unsafe { Opaque::cast_into(core::ptr::addr_of!((*ptr).work)) }
532     }
533 }
534 
535 /// Declares that a type contains a [`Work<T, ID>`].
536 ///
537 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
538 /// like this:
539 ///
540 /// ```no_run
541 /// use kernel::workqueue::{impl_has_work, Work};
542 ///
543 /// struct MyWorkItem {
544 ///     work_field: Work<MyWorkItem, 1>,
545 /// }
546 ///
547 /// impl_has_work! {
548 ///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
549 /// }
550 /// ```
551 ///
552 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
553 /// fields by using a different id for each one.
554 ///
555 /// # Safety
556 ///
557 /// The methods [`raw_get_work`] and [`work_container_of`] must return valid pointers and must be
558 /// true inverses of each other; that is, they must satisfy the following invariants:
559 /// - `work_container_of(raw_get_work(ptr)) == ptr` for any `ptr: *mut Self`.
560 /// - `raw_get_work(work_container_of(ptr)) == ptr` for any `ptr: *mut Work<T, ID>`.
561 ///
562 /// [`impl_has_work!`]: crate::impl_has_work
563 /// [`raw_get_work`]: HasWork::raw_get_work
564 /// [`work_container_of`]: HasWork::work_container_of
565 pub unsafe trait HasWork<T, const ID: u64 = 0> {
566     /// Returns a pointer to the [`Work<T, ID>`] field.
567     ///
568     /// # Safety
569     ///
570     /// The provided pointer must point at a valid struct of type `Self`.
571     unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID>;
572 
573     /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
574     ///
575     /// # Safety
576     ///
577     /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
578     unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self;
579 }
580 
581 /// Used to safely implement the [`HasWork<T, ID>`] trait.
582 ///
583 /// # Examples
584 ///
585 /// ```
586 /// use kernel::sync::Arc;
587 /// use kernel::workqueue::{self, impl_has_work, Work};
588 ///
589 /// struct MyStruct<'a, T, const N: usize> {
590 ///     work_field: Work<MyStruct<'a, T, N>, 17>,
591 ///     f: fn(&'a [T; N]),
592 /// }
593 ///
594 /// impl_has_work! {
595 ///     impl{'a, T, const N: usize} HasWork<MyStruct<'a, T, N>, 17>
596 ///     for MyStruct<'a, T, N> { self.work_field }
597 /// }
598 /// ```
599 #[macro_export]
600 macro_rules! impl_has_work {
601     ($(impl$({$($generics:tt)*})?
602        HasWork<$work_type:ty $(, $id:tt)?>
603        for $self:ty
604        { self.$field:ident }
605     )*) => {$(
606         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
607         // type.
608         unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self {
609             #[inline]
610             unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
611                 // SAFETY: The caller promises that the pointer is not dangling.
612                 unsafe {
613                     ::core::ptr::addr_of_mut!((*ptr).$field)
614                 }
615             }
616 
617             #[inline]
618             unsafe fn work_container_of(
619                 ptr: *mut $crate::workqueue::Work<$work_type $(, $id)?>,
620             ) -> *mut Self {
621                 // SAFETY: The caller promises that the pointer points at a field of the right type
622                 // in the right kind of struct.
623                 unsafe { $crate::container_of!(ptr, Self, $field) }
624             }
625         }
626     )*};
627 }
628 pub use impl_has_work;
629 
630 impl_has_work! {
631     impl{T} HasWork<Self> for ClosureWork<T> { self.work }
632 }
633 
634 /// Links for a delayed work item.
635 ///
636 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
637 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue in
638 /// a delayed manner.
639 ///
640 /// Wraps the kernel's C `struct delayed_work`.
641 ///
642 /// This is a helper type used to associate a `delayed_work` with the [`WorkItem`] that uses it.
643 ///
644 /// [`run`]: WorkItemPointer::run
645 #[pin_data]
646 #[repr(transparent)]
647 pub struct DelayedWork<T: ?Sized, const ID: u64 = 0> {
648     #[pin]
649     dwork: Opaque<bindings::delayed_work>,
650     _inner: PhantomData<T>,
651 }
652 
653 // SAFETY: Kernel work items are usable from any thread.
654 //
655 // We do not need to constrain `T` since the work item does not actually contain a `T`.
656 unsafe impl<T: ?Sized, const ID: u64> Send for DelayedWork<T, ID> {}
657 // SAFETY: Kernel work items are usable from any thread.
658 //
659 // We do not need to constrain `T` since the work item does not actually contain a `T`.
660 unsafe impl<T: ?Sized, const ID: u64> Sync for DelayedWork<T, ID> {}
661 
662 impl<T: ?Sized, const ID: u64> DelayedWork<T, ID> {
663     /// Creates a new instance of [`DelayedWork`].
664     #[inline]
665     pub fn new(
666         work_name: &'static CStr,
667         work_key: Pin<&'static LockClassKey>,
668         timer_name: &'static CStr,
669         timer_key: Pin<&'static LockClassKey>,
670     ) -> impl PinInit<Self>
671     where
672         T: WorkItem<ID>,
673     {
674         pin_init!(Self {
675             dwork <- Opaque::ffi_init(|slot: *mut bindings::delayed_work| {
676                 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
677                 // the work item function.
678                 unsafe {
679                     bindings::init_work_with_key(
680                         core::ptr::addr_of_mut!((*slot).work),
681                         Some(T::Pointer::run),
682                         false,
683                         work_name.as_char_ptr(),
684                         work_key.as_ptr(),
685                     )
686                 }
687 
688                 // SAFETY: The `delayed_work_timer_fn` function pointer can be used here because
689                 // the timer is embedded in a `struct delayed_work`, and only ever scheduled via
690                 // the core workqueue code, and configured to run in irqsafe context.
691                 unsafe {
692                     bindings::timer_init_key(
693                         core::ptr::addr_of_mut!((*slot).timer),
694                         Some(bindings::delayed_work_timer_fn),
695                         bindings::TIMER_IRQSAFE,
696                         timer_name.as_char_ptr(),
697                         timer_key.as_ptr(),
698                     )
699                 }
700             }),
701             _inner: PhantomData,
702         })
703     }
704 
705     /// Get a pointer to the inner `delayed_work`.
706     ///
707     /// # Safety
708     ///
709     /// The provided pointer must not be dangling and must be properly aligned. (But the memory
710     /// need not be initialized.)
711     #[inline]
712     pub unsafe fn raw_as_work(ptr: *const Self) -> *mut Work<T, ID> {
713         // SAFETY: The caller promises that the pointer is aligned and not dangling.
714         let dw: *mut bindings::delayed_work =
715             unsafe { Opaque::cast_into(core::ptr::addr_of!((*ptr).dwork)) };
716         // SAFETY: The caller promises that the pointer is aligned and not dangling.
717         let wrk: *mut bindings::work_struct = unsafe { core::ptr::addr_of_mut!((*dw).work) };
718         // CAST: Work and work_struct have compatible layouts.
719         wrk.cast()
720     }
721 }
722 
723 /// Declares that a type contains a [`DelayedWork<T, ID>`].
724 ///
725 /// # Safety
726 ///
727 /// The `HasWork<T, ID>` implementation must return a `work_struct` that is stored in the `work`
728 /// field of a `delayed_work` with the same access rules as the `work_struct`.
729 pub unsafe trait HasDelayedWork<T, const ID: u64 = 0>: HasWork<T, ID> {}
730 
731 /// Used to safely implement the [`HasDelayedWork<T, ID>`] trait.
732 ///
733 /// This macro also implements the [`HasWork`] trait, so you do not need to use [`impl_has_work!`]
734 /// when using this macro.
735 ///
736 /// # Examples
737 ///
738 /// ```
739 /// use kernel::sync::Arc;
740 /// use kernel::workqueue::{self, impl_has_delayed_work, DelayedWork};
741 ///
742 /// struct MyStruct<'a, T, const N: usize> {
743 ///     work_field: DelayedWork<MyStruct<'a, T, N>, 17>,
744 ///     f: fn(&'a [T; N]),
745 /// }
746 ///
747 /// impl_has_delayed_work! {
748 ///     impl{'a, T, const N: usize} HasDelayedWork<MyStruct<'a, T, N>, 17>
749 ///     for MyStruct<'a, T, N> { self.work_field }
750 /// }
751 /// ```
752 #[macro_export]
753 macro_rules! impl_has_delayed_work {
754     ($(impl$({$($generics:tt)*})?
755        HasDelayedWork<$work_type:ty $(, $id:tt)?>
756        for $self:ty
757        { self.$field:ident }
758     )*) => {$(
759         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
760         // type.
761         unsafe impl$(<$($generics)+>)?
762             $crate::workqueue::HasDelayedWork<$work_type $(, $id)?> for $self {}
763 
764         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
765         // type.
766         unsafe impl$(<$($generics)+>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self {
767             #[inline]
768             unsafe fn raw_get_work(
769                 ptr: *mut Self
770             ) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
771                 // SAFETY: The caller promises that the pointer is not dangling.
772                 let ptr: *mut $crate::workqueue::DelayedWork<$work_type $(, $id)?> = unsafe {
773                     ::core::ptr::addr_of_mut!((*ptr).$field)
774                 };
775 
776                 // SAFETY: The caller promises that the pointer is not dangling.
777                 unsafe { $crate::workqueue::DelayedWork::raw_as_work(ptr) }
778             }
779 
780             #[inline]
781             unsafe fn work_container_of(
782                 ptr: *mut $crate::workqueue::Work<$work_type $(, $id)?>,
783             ) -> *mut Self {
784                 // SAFETY: The caller promises that the pointer points at a field of the right type
785                 // in the right kind of struct.
786                 let ptr = unsafe { $crate::workqueue::Work::raw_get(ptr) };
787 
788                 // SAFETY: The caller promises that the pointer points at a field of the right type
789                 // in the right kind of struct.
790                 let delayed_work = unsafe {
791                     $crate::container_of!(ptr, $crate::bindings::delayed_work, work)
792                 };
793 
794                 let delayed_work: *mut $crate::workqueue::DelayedWork<$work_type $(, $id)?> =
795                     delayed_work.cast();
796 
797                 // SAFETY: The caller promises that the pointer points at a field of the right type
798                 // in the right kind of struct.
799                 unsafe { $crate::container_of!(delayed_work, Self, $field) }
800             }
801         }
802     )*};
803 }
804 pub use impl_has_delayed_work;
805 
806 // SAFETY: The `__enqueue` implementation in RawWorkItem uses a `work_struct` initialized with the
807 // `run` method of this trait as the function pointer because:
808 //   - `__enqueue` gets the `work_struct` from the `Work` field, using `T::raw_get_work`.
809 //   - The only safe way to create a `Work` object is through `Work::new`.
810 //   - `Work::new` makes sure that `T::Pointer::run` is passed to `init_work_with_key`.
811 //   - Finally `Work` and `RawWorkItem` guarantee that the correct `Work` field
812 //     will be used because of the ID const generic bound. This makes sure that `T::raw_get_work`
813 //     uses the correct offset for the `Work` field, and `Work::new` picks the correct
814 //     implementation of `WorkItemPointer` for `Arc<T>`.
815 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
816 where
817     T: WorkItem<ID, Pointer = Self>,
818     T: HasWork<T, ID>,
819 {
820     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
821         // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
822         let ptr = ptr.cast::<Work<T, ID>>();
823         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
824         let ptr = unsafe { T::work_container_of(ptr) };
825         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
826         let arc = unsafe { Arc::from_raw(ptr) };
827 
828         T::run(arc)
829     }
830 }
831 
832 // SAFETY: The `work_struct` raw pointer is guaranteed to be valid for the duration of the call to
833 // the closure because we get it from an `Arc`, which means that the ref count will be at least 1,
834 // and we don't drop the `Arc` ourselves. If `queue_work_on` returns true, it is further guaranteed
835 // to be valid until a call to the function pointer in `work_struct` because we leak the memory it
836 // points to, and only reclaim it if the closure returns false, or in `WorkItemPointer::run`, which
837 // is what the function pointer in the `work_struct` must be pointing to, according to the safety
838 // requirements of `WorkItemPointer`.
839 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
840 where
841     T: WorkItem<ID, Pointer = Self>,
842     T: HasWork<T, ID>,
843 {
844     type EnqueueOutput = Result<(), Self>;
845 
846     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
847     where
848         F: FnOnce(*mut bindings::work_struct) -> bool,
849     {
850         // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
851         let ptr = Arc::into_raw(self).cast_mut();
852 
853         // SAFETY: Pointers into an `Arc` point at a valid value.
854         let work_ptr = unsafe { T::raw_get_work(ptr) };
855         // SAFETY: `raw_get_work` returns a pointer to a valid value.
856         let work_ptr = unsafe { Work::raw_get(work_ptr) };
857 
858         if queue_work_on(work_ptr) {
859             Ok(())
860         } else {
861             // SAFETY: The work queue has not taken ownership of the pointer.
862             Err(unsafe { Arc::from_raw(ptr) })
863         }
864     }
865 }
866 
867 // SAFETY: By the safety requirements of `HasDelayedWork`, the `work_struct` returned by methods in
868 // `HasWork` provides a `work_struct` that is the `work` field of a `delayed_work`, and the rest of
869 // the `delayed_work` has the same access rules as its `work` field.
870 unsafe impl<T, const ID: u64> RawDelayedWorkItem<ID> for Arc<T>
871 where
872     T: WorkItem<ID, Pointer = Self>,
873     T: HasDelayedWork<T, ID>,
874 {
875 }
876 
877 // SAFETY: TODO.
878 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<KBox<T>>
879 where
880     T: WorkItem<ID, Pointer = Self>,
881     T: HasWork<T, ID>,
882 {
883     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
884         // The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
885         let ptr = ptr.cast::<Work<T, ID>>();
886         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
887         let ptr = unsafe { T::work_container_of(ptr) };
888         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
889         let boxed = unsafe { KBox::from_raw(ptr) };
890         // SAFETY: The box was already pinned when it was enqueued.
891         let pinned = unsafe { Pin::new_unchecked(boxed) };
892 
893         T::run(pinned)
894     }
895 }
896 
897 // SAFETY: TODO.
898 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<KBox<T>>
899 where
900     T: WorkItem<ID, Pointer = Self>,
901     T: HasWork<T, ID>,
902 {
903     type EnqueueOutput = ();
904 
905     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
906     where
907         F: FnOnce(*mut bindings::work_struct) -> bool,
908     {
909         // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
910         // remove the `Pin` wrapper.
911         let boxed = unsafe { Pin::into_inner_unchecked(self) };
912         let ptr = KBox::into_raw(boxed);
913 
914         // SAFETY: Pointers into a `KBox` point at a valid value.
915         let work_ptr = unsafe { T::raw_get_work(ptr) };
916         // SAFETY: `raw_get_work` returns a pointer to a valid value.
917         let work_ptr = unsafe { Work::raw_get(work_ptr) };
918 
919         if !queue_work_on(work_ptr) {
920             // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
921             // workqueue.
922             unsafe { ::core::hint::unreachable_unchecked() }
923         }
924     }
925 }
926 
927 // SAFETY: By the safety requirements of `HasDelayedWork`, the `work_struct` returned by methods in
928 // `HasWork` provides a `work_struct` that is the `work` field of a `delayed_work`, and the rest of
929 // the `delayed_work` has the same access rules as its `work` field.
930 unsafe impl<T, const ID: u64> RawDelayedWorkItem<ID> for Pin<KBox<T>>
931 where
932     T: WorkItem<ID, Pointer = Self>,
933     T: HasDelayedWork<T, ID>,
934 {
935 }
936 
937 /// Returns the system work queue (`system_wq`).
938 ///
939 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
940 /// users which expect relatively short queue flush time.
941 ///
942 /// Callers shouldn't queue work items which can run for too long.
943 pub fn system() -> &'static Queue {
944     // SAFETY: `system_wq` is a C global, always available.
945     unsafe { Queue::from_raw(bindings::system_wq) }
946 }
947 
948 /// Returns the system high-priority work queue (`system_highpri_wq`).
949 ///
950 /// It is similar to the one returned by [`system`] but for work items which require higher
951 /// scheduling priority.
952 pub fn system_highpri() -> &'static Queue {
953     // SAFETY: `system_highpri_wq` is a C global, always available.
954     unsafe { Queue::from_raw(bindings::system_highpri_wq) }
955 }
956 
957 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
958 ///
959 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
960 /// flushing might take relatively long.
961 pub fn system_long() -> &'static Queue {
962     // SAFETY: `system_long_wq` is a C global, always available.
963     unsafe { Queue::from_raw(bindings::system_long_wq) }
964 }
965 
966 /// Returns the system unbound work queue (`system_unbound_wq`).
967 ///
968 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
969 /// are executed immediately as long as `max_active` limit is not reached and resources are
970 /// available.
971 pub fn system_unbound() -> &'static Queue {
972     // SAFETY: `system_unbound_wq` is a C global, always available.
973     unsafe { Queue::from_raw(bindings::system_unbound_wq) }
974 }
975 
976 /// Returns the system freezable work queue (`system_freezable_wq`).
977 ///
978 /// It is equivalent to the one returned by [`system`] except that it's freezable.
979 ///
980 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
981 /// items on the workqueue are drained and no new work item starts execution until thawed.
982 pub fn system_freezable() -> &'static Queue {
983     // SAFETY: `system_freezable_wq` is a C global, always available.
984     unsafe { Queue::from_raw(bindings::system_freezable_wq) }
985 }
986 
987 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
988 ///
989 /// It is inclined towards saving power and is converted to "unbound" variants if the
990 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
991 /// returned by [`system`].
992 pub fn system_power_efficient() -> &'static Queue {
993     // SAFETY: `system_power_efficient_wq` is a C global, always available.
994     unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
995 }
996 
997 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
998 ///
999 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
1000 ///
1001 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
1002 /// items on the workqueue are drained and no new work item starts execution until thawed.
1003 pub fn system_freezable_power_efficient() -> &'static Queue {
1004     // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
1005     unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
1006 }
1007 
1008 /// Returns the system bottom halves work queue (`system_bh_wq`).
1009 ///
1010 /// It is similar to the one returned by [`system`] but for work items which
1011 /// need to run from a softirq context.
1012 pub fn system_bh() -> &'static Queue {
1013     // SAFETY: `system_bh_wq` is a C global, always available.
1014     unsafe { Queue::from_raw(bindings::system_bh_wq) }
1015 }
1016 
1017 /// Returns the system bottom halves high-priority work queue (`system_bh_highpri_wq`).
1018 ///
1019 /// It is similar to the one returned by [`system_bh`] but for work items which
1020 /// require higher scheduling priority.
1021 pub fn system_bh_highpri() -> &'static Queue {
1022     // SAFETY: `system_bh_highpri_wq` is a C global, always available.
1023     unsafe { Queue::from_raw(bindings::system_bh_highpri_wq) }
1024 }
1025