1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011, 2025 Chelsio Communications.
5 * Written by: Navdeep Parhar <np@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36
37 #include <sys/param.h>
38 #include <sys/conf.h>
39 #include <sys/priv.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/eventhandler.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #ifdef RSS
61 #include <net/rss_config.h>
62 #endif
63 #include <netinet/in.h>
64 #include <netinet/ip.h>
65 #ifdef KERN_TLS
66 #include <netinet/tcp_seq.h>
67 #endif
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #ifdef DDB
75 #include <ddb/ddb.h>
76 #include <ddb/db_lex.h>
77 #endif
78
79 #include "common/common.h"
80 #include "common/t4_msg.h"
81 #include "common/t4_regs.h"
82 #include "common/t4_regs_values.h"
83 #include "cudbg/cudbg.h"
84 #include "t4_clip.h"
85 #include "t4_ioctl.h"
86 #include "t4_l2t.h"
87 #include "t4_mp_ring.h"
88 #include "t4_if.h"
89 #include "t4_smt.h"
90
91 /* T4 bus driver interface */
92 static int t4_probe(device_t);
93 static int t4_attach(device_t);
94 static int t4_detach(device_t);
95 static int t4_child_location(device_t, device_t, struct sbuf *);
96 static int t4_ready(device_t);
97 static int t4_read_port_device(device_t, int, device_t *);
98 static int t4_suspend(device_t);
99 static int t4_resume(device_t);
100 static int t4_reset_prepare(device_t, device_t);
101 static int t4_reset_post(device_t, device_t);
102 static device_method_t t4_methods[] = {
103 DEVMETHOD(device_probe, t4_probe),
104 DEVMETHOD(device_attach, t4_attach),
105 DEVMETHOD(device_detach, t4_detach),
106 DEVMETHOD(device_suspend, t4_suspend),
107 DEVMETHOD(device_resume, t4_resume),
108
109 DEVMETHOD(bus_child_location, t4_child_location),
110 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
111 DEVMETHOD(bus_reset_post, t4_reset_post),
112
113 DEVMETHOD(t4_is_main_ready, t4_ready),
114 DEVMETHOD(t4_read_port_device, t4_read_port_device),
115
116 DEVMETHOD_END
117 };
118 static driver_t t4_driver = {
119 "t4nex",
120 t4_methods,
121 sizeof(struct adapter)
122 };
123
124
125 /* T4 port (cxgbe) interface */
126 static int cxgbe_probe(device_t);
127 static int cxgbe_attach(device_t);
128 static int cxgbe_detach(device_t);
129 device_method_t cxgbe_methods[] = {
130 DEVMETHOD(device_probe, cxgbe_probe),
131 DEVMETHOD(device_attach, cxgbe_attach),
132 DEVMETHOD(device_detach, cxgbe_detach),
133 { 0, 0 }
134 };
135 static driver_t cxgbe_driver = {
136 "cxgbe",
137 cxgbe_methods,
138 sizeof(struct port_info)
139 };
140
141 /* T4 VI (vcxgbe) interface */
142 static int vcxgbe_probe(device_t);
143 static int vcxgbe_attach(device_t);
144 static int vcxgbe_detach(device_t);
145 static device_method_t vcxgbe_methods[] = {
146 DEVMETHOD(device_probe, vcxgbe_probe),
147 DEVMETHOD(device_attach, vcxgbe_attach),
148 DEVMETHOD(device_detach, vcxgbe_detach),
149 { 0, 0 }
150 };
151 static driver_t vcxgbe_driver = {
152 "vcxgbe",
153 vcxgbe_methods,
154 sizeof(struct vi_info)
155 };
156
157 static d_ioctl_t t4_ioctl;
158
159 static struct cdevsw t4_cdevsw = {
160 .d_version = D_VERSION,
161 .d_ioctl = t4_ioctl,
162 .d_name = "t4nex",
163 };
164
165 /* T5 bus driver interface */
166 static int t5_probe(device_t);
167 static device_method_t t5_methods[] = {
168 DEVMETHOD(device_probe, t5_probe),
169 DEVMETHOD(device_attach, t4_attach),
170 DEVMETHOD(device_detach, t4_detach),
171 DEVMETHOD(device_suspend, t4_suspend),
172 DEVMETHOD(device_resume, t4_resume),
173
174 DEVMETHOD(bus_child_location, t4_child_location),
175 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
176 DEVMETHOD(bus_reset_post, t4_reset_post),
177
178 DEVMETHOD(t4_is_main_ready, t4_ready),
179 DEVMETHOD(t4_read_port_device, t4_read_port_device),
180
181 DEVMETHOD_END
182 };
183 static driver_t t5_driver = {
184 "t5nex",
185 t5_methods,
186 sizeof(struct adapter)
187 };
188
189
190 /* T5 port (cxl) interface */
191 static driver_t cxl_driver = {
192 "cxl",
193 cxgbe_methods,
194 sizeof(struct port_info)
195 };
196
197 /* T5 VI (vcxl) interface */
198 static driver_t vcxl_driver = {
199 "vcxl",
200 vcxgbe_methods,
201 sizeof(struct vi_info)
202 };
203
204 /* T6 bus driver interface */
205 static int t6_probe(device_t);
206 static device_method_t t6_methods[] = {
207 DEVMETHOD(device_probe, t6_probe),
208 DEVMETHOD(device_attach, t4_attach),
209 DEVMETHOD(device_detach, t4_detach),
210 DEVMETHOD(device_suspend, t4_suspend),
211 DEVMETHOD(device_resume, t4_resume),
212
213 DEVMETHOD(bus_child_location, t4_child_location),
214 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
215 DEVMETHOD(bus_reset_post, t4_reset_post),
216
217 DEVMETHOD(t4_is_main_ready, t4_ready),
218 DEVMETHOD(t4_read_port_device, t4_read_port_device),
219
220 DEVMETHOD_END
221 };
222 static driver_t t6_driver = {
223 "t6nex",
224 t6_methods,
225 sizeof(struct adapter)
226 };
227
228
229 /* T6 port (cc) interface */
230 static driver_t cc_driver = {
231 "cc",
232 cxgbe_methods,
233 sizeof(struct port_info)
234 };
235
236 /* T6 VI (vcc) interface */
237 static driver_t vcc_driver = {
238 "vcc",
239 vcxgbe_methods,
240 sizeof(struct vi_info)
241 };
242
243 /* T7+ bus driver interface */
244 static int ch_probe(device_t);
245 static device_method_t ch_methods[] = {
246 DEVMETHOD(device_probe, ch_probe),
247 DEVMETHOD(device_attach, t4_attach),
248 DEVMETHOD(device_detach, t4_detach),
249 DEVMETHOD(device_suspend, t4_suspend),
250 DEVMETHOD(device_resume, t4_resume),
251
252 DEVMETHOD(bus_child_location, t4_child_location),
253 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
254 DEVMETHOD(bus_reset_post, t4_reset_post),
255
256 DEVMETHOD(t4_is_main_ready, t4_ready),
257 DEVMETHOD(t4_read_port_device, t4_read_port_device),
258
259 DEVMETHOD_END
260 };
261 static driver_t ch_driver = {
262 "chnex",
263 ch_methods,
264 sizeof(struct adapter)
265 };
266
267
268 /* T7+ port (che) interface */
269 static driver_t che_driver = {
270 "che",
271 cxgbe_methods,
272 sizeof(struct port_info)
273 };
274
275 /* T7+ VI (vche) interface */
276 static driver_t vche_driver = {
277 "vche",
278 vcxgbe_methods,
279 sizeof(struct vi_info)
280 };
281
282 /* ifnet interface */
283 static void cxgbe_init(void *);
284 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
285 static int cxgbe_transmit(if_t, struct mbuf *);
286 static void cxgbe_qflush(if_t);
287 #if defined(KERN_TLS) || defined(RATELIMIT)
288 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
289 struct m_snd_tag **);
290 #endif
291
292 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
293
294 /*
295 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
296 * then ADAPTER_LOCK, then t4_uld_list_lock.
297 */
298 static struct sx t4_list_lock;
299 SLIST_HEAD(, adapter) t4_list;
300 #ifdef TCP_OFFLOAD
301 static struct sx t4_uld_list_lock;
302 struct uld_info *t4_uld_list[ULD_MAX + 1];
303 #endif
304
305 /*
306 * Tunables. See tweak_tunables() too.
307 *
308 * Each tunable is set to a default value here if it's known at compile-time.
309 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
310 * provide a reasonable default (upto n) when the driver is loaded.
311 *
312 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
313 * T5 are under hw.cxl.
314 */
315 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
316 "cxgbe(4) parameters");
317 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
318 "cxgbe(4) T5+ parameters");
319 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
320 "cxgbe(4) TOE parameters");
321
322 /*
323 * Number of queues for tx and rx, NIC and offload.
324 */
325 #define NTXQ 16
326 int t4_ntxq = -NTXQ;
327 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
328 "Number of TX queues per port");
329 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
330
331 #define NRXQ 8
332 int t4_nrxq = -NRXQ;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
334 "Number of RX queues per port");
335 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
336
337 #define NTXQ_VI 1
338 static int t4_ntxq_vi = -NTXQ_VI;
339 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
340 "Number of TX queues per VI");
341
342 #define NRXQ_VI 1
343 static int t4_nrxq_vi = -NRXQ_VI;
344 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
345 "Number of RX queues per VI");
346
347 static int t4_rsrv_noflowq = 0;
348 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
349 0, "Reserve TX queue 0 of each VI for non-flowid packets");
350
351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
352 #define NOFLDTXQ 8
353 static int t4_nofldtxq = -NOFLDTXQ;
354 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
355 "Number of offload TX queues per port");
356
357 #define NOFLDTXQ_VI 1
358 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
359 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
360 "Number of offload TX queues per VI");
361 #endif
362
363 #if defined(TCP_OFFLOAD)
364 #define NOFLDRXQ 2
365 static int t4_nofldrxq = -NOFLDRXQ;
366 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
367 "Number of offload RX queues per port");
368
369 #define NOFLDRXQ_VI 1
370 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
371 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
372 "Number of offload RX queues per VI");
373
374 #define TMR_IDX_OFLD 1
375 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
376 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
377 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
378
379 #define PKTC_IDX_OFLD (-1)
380 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
381 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
382 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
383
384 /* 0 means chip/fw default, non-zero number is value in microseconds */
385 static u_long t4_toe_keepalive_idle = 0;
386 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
387 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
388
389 /* 0 means chip/fw default, non-zero number is value in microseconds */
390 static u_long t4_toe_keepalive_interval = 0;
391 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
392 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
393
394 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
395 static int t4_toe_keepalive_count = 0;
396 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
397 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
398
399 /* 0 means chip/fw default, non-zero number is value in microseconds */
400 static u_long t4_toe_rexmt_min = 0;
401 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
403
404 /* 0 means chip/fw default, non-zero number is value in microseconds */
405 static u_long t4_toe_rexmt_max = 0;
406 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
407 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
408
409 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
410 static int t4_toe_rexmt_count = 0;
411 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
413
414 /* -1 means chip/fw default, other values are raw backoff values to use */
415 static int t4_toe_rexmt_backoff[16] = {
416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
417 };
418 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
419 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
420 "cxgbe(4) TOE retransmit backoff values");
421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
422 &t4_toe_rexmt_backoff[0], 0, "");
423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
424 &t4_toe_rexmt_backoff[1], 0, "");
425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
426 &t4_toe_rexmt_backoff[2], 0, "");
427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
428 &t4_toe_rexmt_backoff[3], 0, "");
429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
430 &t4_toe_rexmt_backoff[4], 0, "");
431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
432 &t4_toe_rexmt_backoff[5], 0, "");
433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
434 &t4_toe_rexmt_backoff[6], 0, "");
435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
436 &t4_toe_rexmt_backoff[7], 0, "");
437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
438 &t4_toe_rexmt_backoff[8], 0, "");
439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
440 &t4_toe_rexmt_backoff[9], 0, "");
441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
442 &t4_toe_rexmt_backoff[10], 0, "");
443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
444 &t4_toe_rexmt_backoff[11], 0, "");
445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
446 &t4_toe_rexmt_backoff[12], 0, "");
447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
448 &t4_toe_rexmt_backoff[13], 0, "");
449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
450 &t4_toe_rexmt_backoff[14], 0, "");
451 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
452 &t4_toe_rexmt_backoff[15], 0, "");
453
454 int t4_ddp_rcvbuf_len = 256 * 1024;
455 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
456 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
457
458 unsigned int t4_ddp_rcvbuf_cache = 4;
459 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
460 &t4_ddp_rcvbuf_cache, 0,
461 "maximum number of free DDP RX buffers to cache per connection");
462 #endif
463
464 #ifdef DEV_NETMAP
465 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
466 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
467 static int t4_native_netmap = NN_EXTRA_VI;
468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
469 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
470
471 #define NNMTXQ 8
472 static int t4_nnmtxq = -NNMTXQ;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
474 "Number of netmap TX queues");
475
476 #define NNMRXQ 8
477 static int t4_nnmrxq = -NNMRXQ;
478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
479 "Number of netmap RX queues");
480
481 #define NNMTXQ_VI 2
482 static int t4_nnmtxq_vi = -NNMTXQ_VI;
483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
484 "Number of netmap TX queues per VI");
485
486 #define NNMRXQ_VI 2
487 static int t4_nnmrxq_vi = -NNMRXQ_VI;
488 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
489 "Number of netmap RX queues per VI");
490 #endif
491
492 /*
493 * Holdoff parameters for ports.
494 */
495 #define TMR_IDX 1
496 int t4_tmr_idx = TMR_IDX;
497 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
498 0, "Holdoff timer index");
499 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
500
501 #define PKTC_IDX (-1)
502 int t4_pktc_idx = PKTC_IDX;
503 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
504 0, "Holdoff packet counter index");
505 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
506
507 /*
508 * Size (# of entries) of each tx and rx queue.
509 */
510 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
512 "Number of descriptors in each TX queue");
513
514 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
516 "Number of descriptors in each RX queue");
517
518 /*
519 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
520 */
521 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
523 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
524
525 /*
526 * Configuration file. All the _CF names here are special.
527 */
528 #define DEFAULT_CF "default"
529 #define BUILTIN_CF "built-in"
530 #define FLASH_CF "flash"
531 #define UWIRE_CF "uwire"
532 #define FPGA_CF "fpga"
533 static char t4_cfg_file[32] = DEFAULT_CF;
534 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
535 sizeof(t4_cfg_file), "Firmware configuration file");
536
537 /*
538 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
539 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
540 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
541 * mark or when signalled to do so, 0 to never emit PAUSE.
542 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
543 * negotiated settings will override rx_pause/tx_pause.
544 * Otherwise rx_pause/tx_pause are applied forcibly.
545 */
546 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
548 &t4_pause_settings, 0,
549 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
550
551 /*
552 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
553 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
554 * 0 to disable FEC.
555 */
556 static int t4_fec = -1;
557 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
558 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
559
560 static const char *
561 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module";
562
563 /*
564 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
565 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
566 * driver runs as if this is set to 0.
567 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
568 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
569 * transceiver. Multiple FEC bits may not be okay but will be passed on to
570 * the firmware anyway (may result in l1cfg errors with old firmwares).
571 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
572 * means set all FEC bits that are valid for the speed.
573 */
574 static int t4_force_fec = -1;
575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
576 "Controls the use of FORCE_FEC bit in L1 configuration.");
577
578 /*
579 * Link autonegotiation.
580 * -1 to run with the firmware default.
581 * 0 to disable.
582 * 1 to enable.
583 */
584 static int t4_autoneg = -1;
585 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
586 "Link autonegotiation");
587
588 /*
589 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
590 * encouraged respectively). '-n' is the same as 'n' except the firmware
591 * version used in the checks is read from the firmware bundled with the driver.
592 */
593 static int t4_fw_install = 1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
595 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
596
597 /*
598 * ASIC features that will be used. Disable the ones you don't want so that the
599 * chip resources aren't wasted on features that will not be used.
600 */
601 static int t4_nbmcaps_allowed = 0;
602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
603 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
604
605 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
607 &t4_linkcaps_allowed, 0, "Default link capabilities");
608
609 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
610 FW_CAPS_CONFIG_SWITCH_EGRESS;
611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
612 &t4_switchcaps_allowed, 0, "Default switch capabilities");
613
614 static int t4_nvmecaps_allowed = -1;
615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN,
616 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities");
617
618 #ifdef RATELIMIT
619 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
620 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
621 #else
622 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
623 FW_CAPS_CONFIG_NIC_HASHFILTER;
624 #endif
625 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
626 &t4_niccaps_allowed, 0, "Default NIC capabilities");
627
628 static int t4_toecaps_allowed = -1;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
630 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
631
632 static int t4_rdmacaps_allowed = -1;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
634 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
635
636 static int t4_cryptocaps_allowed = -1;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
638 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
639
640 static int t4_iscsicaps_allowed = -1;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
642 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
643
644 static int t4_fcoecaps_allowed = 0;
645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
646 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
647
648 static int t5_write_combine = 0;
649 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
650 0, "Use WC instead of UC for BAR2");
651
652 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
653 static int t4_doorbells_allowed = 0xf;
654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
655 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
656
657 static int t4_num_vis = 1;
658 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
659 "Number of VIs per port");
660
661 /*
662 * PCIe Relaxed Ordering.
663 * -1: driver should figure out a good value.
664 * 0: disable RO.
665 * 1: enable RO.
666 * 2: leave RO alone.
667 */
668 static int pcie_relaxed_ordering = -1;
669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
670 &pcie_relaxed_ordering, 0,
671 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
672
673 static int t4_panic_on_fatal_err = 0;
674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
675 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
676
677 static int t4_reset_on_fatal_err = 0;
678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
679 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
680
681 static int t4_reset_method = 1;
682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
683 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
684
685 static int t4_clock_gate_on_suspend = 0;
686 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
687 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
688
689 static int t4_tx_vm_wr = 0;
690 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
691 "Use VM work requests to transmit packets.");
692
693 /*
694 * Set to non-zero to enable the attack filter. A packet that matches any of
695 * these conditions will get dropped on ingress:
696 * 1) IP && source address == destination address.
697 * 2) TCP/IP && source address is not a unicast address.
698 * 3) TCP/IP && destination address is not a unicast address.
699 * 4) IP && source address is loopback (127.x.y.z).
700 * 5) IP && destination address is loopback (127.x.y.z).
701 * 6) IPv6 && source address == destination address.
702 * 7) IPv6 && source address is not a unicast address.
703 * 8) IPv6 && source address is loopback (::1/128).
704 * 9) IPv6 && destination address is loopback (::1/128).
705 * 10) IPv6 && source address is unspecified (::/128).
706 * 11) IPv6 && destination address is unspecified (::/128).
707 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
708 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
709 */
710 static int t4_attack_filter = 0;
711 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
712 &t4_attack_filter, 0, "Drop suspicious traffic");
713
714 static int t4_drop_ip_fragments = 0;
715 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
716 &t4_drop_ip_fragments, 0, "Drop IP fragments");
717
718 static int t4_drop_pkts_with_l2_errors = 1;
719 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
720 &t4_drop_pkts_with_l2_errors, 0,
721 "Drop all frames with Layer 2 length or checksum errors");
722
723 static int t4_drop_pkts_with_l3_errors = 0;
724 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
725 &t4_drop_pkts_with_l3_errors, 0,
726 "Drop all frames with IP version, length, or checksum errors");
727
728 static int t4_drop_pkts_with_l4_errors = 0;
729 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
730 &t4_drop_pkts_with_l4_errors, 0,
731 "Drop all frames with Layer 4 length, checksum, or other errors");
732
733 #ifdef TCP_OFFLOAD
734 /*
735 * TOE tunables.
736 */
737 static int t4_cop_managed_offloading = 0;
738 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
739 &t4_cop_managed_offloading, 0,
740 "COP (Connection Offload Policy) controls all TOE offload");
741 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
742 #endif
743
744 #ifdef KERN_TLS
745 /*
746 * This enables KERN_TLS for all adapters if set.
747 */
748 static int t4_kern_tls = 0;
749 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
750 "Enable KERN_TLS mode for T6 adapters");
751
752 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
753 "cxgbe(4) KERN_TLS parameters");
754
755 static int t4_tls_inline_keys = 0;
756 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
757 &t4_tls_inline_keys, 0,
758 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
759 "in card memory.");
760
761 static int t4_tls_combo_wrs = 0;
762 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
763 0, "Attempt to combine TCB field updates with TLS record work requests.");
764
765 static int t4_tls_short_records = 1;
766 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN,
767 &t4_tls_short_records, 0, "Use cipher-only mode for short records.");
768
769 static int t4_tls_partial_ghash = 1;
770 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN,
771 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records.");
772 #endif
773
774 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
775 static int vi_mac_funcs[] = {
776 FW_VI_FUNC_ETH,
777 FW_VI_FUNC_OFLD,
778 FW_VI_FUNC_IWARP,
779 FW_VI_FUNC_OPENISCSI,
780 FW_VI_FUNC_OPENFCOE,
781 FW_VI_FUNC_FOISCSI,
782 FW_VI_FUNC_FOFCOE,
783 };
784
785 struct intrs_and_queues {
786 uint16_t intr_type; /* INTx, MSI, or MSI-X */
787 uint16_t num_vis; /* number of VIs for each port */
788 uint16_t nirq; /* Total # of vectors */
789 uint16_t ntxq; /* # of NIC txq's for each port */
790 uint16_t nrxq; /* # of NIC rxq's for each port */
791 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
792 uint16_t nofldrxq; /* # of TOE rxq's for each port */
793 uint16_t nnmtxq; /* # of netmap txq's */
794 uint16_t nnmrxq; /* # of netmap rxq's */
795
796 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
797 uint16_t ntxq_vi; /* # of NIC txq's */
798 uint16_t nrxq_vi; /* # of NIC rxq's */
799 uint16_t nofldtxq_vi; /* # of TOE txq's */
800 uint16_t nofldrxq_vi; /* # of TOE rxq's */
801 uint16_t nnmtxq_vi; /* # of netmap txq's */
802 uint16_t nnmrxq_vi; /* # of netmap rxq's */
803 };
804
805 static void setup_memwin(struct adapter *);
806 static void position_memwin(struct adapter *, int, uint32_t);
807 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
808 static int fwmtype_to_hwmtype(int);
809 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
810 uint32_t *);
811 static int fixup_devlog_params(struct adapter *);
812 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
813 static int contact_firmware(struct adapter *);
814 static int partition_resources(struct adapter *);
815 static int get_params__pre_init(struct adapter *);
816 static int set_params__pre_init(struct adapter *);
817 static int get_params__post_init(struct adapter *);
818 static int set_params__post_init(struct adapter *);
819 static void t4_set_desc(struct adapter *);
820 static bool fixed_ifmedia(struct port_info *);
821 static void build_medialist(struct port_info *);
822 static void init_link_config(struct port_info *);
823 static int fixup_link_config(struct port_info *);
824 static int apply_link_config(struct port_info *);
825 static int cxgbe_init_synchronized(struct vi_info *);
826 static int cxgbe_uninit_synchronized(struct vi_info *);
827 static int adapter_full_init(struct adapter *);
828 static void adapter_full_uninit(struct adapter *);
829 static int vi_full_init(struct vi_info *);
830 static void vi_full_uninit(struct vi_info *);
831 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
832 static void quiesce_txq(struct sge_txq *);
833 static void quiesce_wrq(struct sge_wrq *);
834 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
835 static void quiesce_vi(struct vi_info *);
836 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
837 driver_intr_t *, void *, char *);
838 static int t4_free_irq(struct adapter *, struct irq *);
839 static void t4_init_atid_table(struct adapter *);
840 static void t4_free_atid_table(struct adapter *);
841 static void stop_atid_allocator(struct adapter *);
842 static void restart_atid_allocator(struct adapter *);
843 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
844 static void vi_refresh_stats(struct vi_info *);
845 static void cxgbe_refresh_stats(struct vi_info *);
846 static void cxgbe_tick(void *);
847 static void vi_tick(void *);
848 static void cxgbe_sysctls(struct port_info *);
849 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
850 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
851 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
852 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
853 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
854 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
855 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
856 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
857 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
858 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
859 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
860 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
861 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
862 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
863 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
864 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
865 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS);
866 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
867 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
868 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
869 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
870 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
871 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
872 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS);
873 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS);
874 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
875 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
876 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
877 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
878 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS);
879 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
880 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
881 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
882 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
883 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
884 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
885 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
886 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
887 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
888 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
889 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
890 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS);
891 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
892 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
893 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
894 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
895 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
896 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
897 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
898 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
899 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
900 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
901 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
902 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
903 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
904 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
905 #ifdef TCP_OFFLOAD
906 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
907 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
908 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
909 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
910 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
911 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
912 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
913 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
914 #endif
915 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *);
916 static int load_fw(struct adapter *, struct t4_data *);
917 static int load_cfg(struct adapter *, struct t4_data *);
918 static int load_boot(struct adapter *, struct t4_bootrom *);
919 static int load_bootcfg(struct adapter *, struct t4_data *);
920 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
921 static void free_offload_policy(struct t4_offload_policy *);
922 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
923 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
924 static int read_i2c(struct adapter *, struct t4_i2c_data *);
925 static int clear_stats(struct adapter *, u_int);
926 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
927 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
928 static inline int stop_adapter(struct adapter *);
929 static inline void set_adapter_hwstatus(struct adapter *, const bool);
930 static int stop_lld(struct adapter *);
931 static inline int restart_adapter(struct adapter *);
932 static int restart_lld(struct adapter *);
933 #ifdef TCP_OFFLOAD
934 static int deactivate_all_uld(struct adapter *);
935 static void stop_all_uld(struct adapter *);
936 static void restart_all_uld(struct adapter *);
937 #endif
938 #ifdef KERN_TLS
939 static int ktls_capability(struct adapter *, bool);
940 #endif
941 static int mod_event(module_t, int, void *);
942 static int notify_siblings(device_t, int);
943 static uint64_t vi_get_counter(if_t, ift_counter);
944 static uint64_t cxgbe_get_counter(if_t, ift_counter);
945 static void enable_vxlan_rx(struct adapter *);
946 static void reset_adapter_task(void *, int);
947 static void fatal_error_task(void *, int);
948 static void dump_devlog(struct adapter *);
949 static void dump_cim_regs(struct adapter *);
950 static void dump_cimla(struct adapter *);
951
952 struct {
953 uint16_t device;
954 char *desc;
955 } t4_pciids[] = {
956 {0xa000, "Chelsio Terminator 4 FPGA"},
957 {0x4400, "Chelsio T440-dbg"},
958 {0x4401, "Chelsio T420-CR"},
959 {0x4402, "Chelsio T422-CR"},
960 {0x4403, "Chelsio T440-CR"},
961 {0x4404, "Chelsio T420-BCH"},
962 {0x4405, "Chelsio T440-BCH"},
963 {0x4406, "Chelsio T440-CH"},
964 {0x4407, "Chelsio T420-SO"},
965 {0x4408, "Chelsio T420-CX"},
966 {0x4409, "Chelsio T420-BT"},
967 {0x440a, "Chelsio T404-BT"},
968 {0x440e, "Chelsio T440-LP-CR"},
969 }, t5_pciids[] = {
970 {0xb000, "Chelsio Terminator 5 FPGA"},
971 {0x5400, "Chelsio T580-dbg"},
972 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
973 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
974 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
975 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
976 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
977 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
978 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
979 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
980 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
981 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
982 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
983 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
984 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
985 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
986 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
987 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
988 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
989
990 /* Custom */
991 {0x5483, "Custom T540-CR"},
992 {0x5484, "Custom T540-BT"},
993 }, t6_pciids[] = {
994 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
995 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
996 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
997 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
998 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
999 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
1000 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
1001 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
1002 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
1003 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
1004 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
1005 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
1006 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
1007 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
1008 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
1009 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
1010
1011 /* Custom */
1012 {0x6480, "Custom T6225-CR"},
1013 {0x6481, "Custom T62100-CR"},
1014 {0x6482, "Custom T6225-CR"},
1015 {0x6483, "Custom T62100-CR"},
1016 {0x6484, "Custom T64100-CR"},
1017 {0x6485, "Custom T6240-SO"},
1018 {0x6486, "Custom T6225-SO-CR"},
1019 {0x6487, "Custom T6225-CR"},
1020 }, t7_pciids[] = {
1021 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */
1022 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */
1023 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */
1024 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */
1025 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */
1026 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */
1027 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */
1028 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */
1029 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */
1030 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */
1031 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */
1032 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */
1033 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */
1034 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */
1035 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */
1036 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */
1037 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */
1038 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */
1039 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */
1040
1041 /* Custom */
1042 {0x7480, "Custom T7"},
1043 };
1044
1045 #ifdef TCP_OFFLOAD
1046 /*
1047 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
1048 * be exactly the same for both rxq and ofld_rxq.
1049 */
1050 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
1051 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
1052 #endif
1053 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
1054
1055 static int
t4_probe(device_t dev)1056 t4_probe(device_t dev)
1057 {
1058 int i;
1059 uint16_t v = pci_get_vendor(dev);
1060 uint16_t d = pci_get_device(dev);
1061 uint8_t f = pci_get_function(dev);
1062
1063 if (v != PCI_VENDOR_ID_CHELSIO)
1064 return (ENXIO);
1065
1066 /* Attach only to PF0 of the FPGA */
1067 if (d == 0xa000 && f != 0)
1068 return (ENXIO);
1069
1070 for (i = 0; i < nitems(t4_pciids); i++) {
1071 if (d == t4_pciids[i].device) {
1072 device_set_desc(dev, t4_pciids[i].desc);
1073 return (BUS_PROBE_DEFAULT);
1074 }
1075 }
1076
1077 return (ENXIO);
1078 }
1079
1080 static int
t5_probe(device_t dev)1081 t5_probe(device_t dev)
1082 {
1083 int i;
1084 uint16_t v = pci_get_vendor(dev);
1085 uint16_t d = pci_get_device(dev);
1086 uint8_t f = pci_get_function(dev);
1087
1088 if (v != PCI_VENDOR_ID_CHELSIO)
1089 return (ENXIO);
1090
1091 /* Attach only to PF0 of the FPGA */
1092 if (d == 0xb000 && f != 0)
1093 return (ENXIO);
1094
1095 for (i = 0; i < nitems(t5_pciids); i++) {
1096 if (d == t5_pciids[i].device) {
1097 device_set_desc(dev, t5_pciids[i].desc);
1098 return (BUS_PROBE_DEFAULT);
1099 }
1100 }
1101
1102 return (ENXIO);
1103 }
1104
1105 static int
t6_probe(device_t dev)1106 t6_probe(device_t dev)
1107 {
1108 int i;
1109 uint16_t v = pci_get_vendor(dev);
1110 uint16_t d = pci_get_device(dev);
1111
1112 if (v != PCI_VENDOR_ID_CHELSIO)
1113 return (ENXIO);
1114
1115 for (i = 0; i < nitems(t6_pciids); i++) {
1116 if (d == t6_pciids[i].device) {
1117 device_set_desc(dev, t6_pciids[i].desc);
1118 return (BUS_PROBE_DEFAULT);
1119 }
1120 }
1121
1122 return (ENXIO);
1123 }
1124
1125 static int
ch_probe(device_t dev)1126 ch_probe(device_t dev)
1127 {
1128 int i;
1129 uint16_t v = pci_get_vendor(dev);
1130 uint16_t d = pci_get_device(dev);
1131 uint8_t f = pci_get_function(dev);
1132
1133 if (v != PCI_VENDOR_ID_CHELSIO)
1134 return (ENXIO);
1135
1136 /* Attach only to PF0 of the FPGA */
1137 if (d == 0xd000 && f != 0)
1138 return (ENXIO);
1139
1140 for (i = 0; i < nitems(t7_pciids); i++) {
1141 if (d == t7_pciids[i].device) {
1142 device_set_desc(dev, t7_pciids[i].desc);
1143 return (BUS_PROBE_DEFAULT);
1144 }
1145 }
1146
1147 return (ENXIO);
1148 }
1149
1150 static void
t5_attribute_workaround(device_t dev)1151 t5_attribute_workaround(device_t dev)
1152 {
1153 device_t root_port;
1154 uint32_t v;
1155
1156 /*
1157 * The T5 chips do not properly echo the No Snoop and Relaxed
1158 * Ordering attributes when replying to a TLP from a Root
1159 * Port. As a workaround, find the parent Root Port and
1160 * disable No Snoop and Relaxed Ordering. Note that this
1161 * affects all devices under this root port.
1162 */
1163 root_port = pci_find_pcie_root_port(dev);
1164 if (root_port == NULL) {
1165 device_printf(dev, "Unable to find parent root port\n");
1166 return;
1167 }
1168
1169 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1170 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1171 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1172 0)
1173 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1174 device_get_nameunit(root_port));
1175 }
1176
1177 static const struct devnames devnames[] = {
1178 {
1179 .nexus_name = "t4nex",
1180 .ifnet_name = "cxgbe",
1181 .vi_ifnet_name = "vcxgbe",
1182 .pf03_drv_name = "t4iov",
1183 .vf_nexus_name = "t4vf",
1184 .vf_ifnet_name = "cxgbev"
1185 }, {
1186 .nexus_name = "t5nex",
1187 .ifnet_name = "cxl",
1188 .vi_ifnet_name = "vcxl",
1189 .pf03_drv_name = "t5iov",
1190 .vf_nexus_name = "t5vf",
1191 .vf_ifnet_name = "cxlv"
1192 }, {
1193 .nexus_name = "t6nex",
1194 .ifnet_name = "cc",
1195 .vi_ifnet_name = "vcc",
1196 .pf03_drv_name = "t6iov",
1197 .vf_nexus_name = "t6vf",
1198 .vf_ifnet_name = "ccv"
1199 }, {
1200 .nexus_name = "chnex",
1201 .ifnet_name = "che",
1202 .vi_ifnet_name = "vche",
1203 .pf03_drv_name = "chiov",
1204 .vf_nexus_name = "chvf",
1205 .vf_ifnet_name = "chev"
1206 }
1207 };
1208
1209 void
t4_init_devnames(struct adapter * sc)1210 t4_init_devnames(struct adapter *sc)
1211 {
1212 int id;
1213
1214 id = chip_id(sc);
1215 if (id < CHELSIO_T4) {
1216 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1217 sc->names = NULL;
1218 } else if (id - CHELSIO_T4 < nitems(devnames))
1219 sc->names = &devnames[id - CHELSIO_T4];
1220 else
1221 sc->names = &devnames[nitems(devnames) - 1];
1222 }
1223
1224 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1225 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1226 {
1227 const char *parent, *name;
1228 long value;
1229 int line, unit;
1230
1231 line = 0;
1232 parent = device_get_nameunit(sc->dev);
1233 name = sc->names->ifnet_name;
1234 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1235 if (resource_long_value(name, unit, "port", &value) == 0 &&
1236 value == pi->port_id)
1237 return (unit);
1238 }
1239 return (-1);
1240 }
1241
1242 static void
t4_calibration(void * arg)1243 t4_calibration(void *arg)
1244 {
1245 struct adapter *sc;
1246 struct clock_sync *cur, *nex;
1247 uint64_t hw;
1248 sbintime_t sbt;
1249 int next_up;
1250
1251 sc = (struct adapter *)arg;
1252
1253 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1254 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1255 sbt = sbinuptime();
1256
1257 cur = &sc->cal_info[sc->cal_current];
1258 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1259 nex = &sc->cal_info[next_up];
1260 if (__predict_false(sc->cal_count == 0)) {
1261 /* First time in, just get the values in */
1262 cur->hw_cur = hw;
1263 cur->sbt_cur = sbt;
1264 sc->cal_count++;
1265 goto done;
1266 }
1267
1268 if (cur->hw_cur == hw) {
1269 /* The clock is not advancing? */
1270 sc->cal_count = 0;
1271 atomic_store_rel_int(&cur->gen, 0);
1272 goto done;
1273 }
1274
1275 seqc_write_begin(&nex->gen);
1276 nex->hw_prev = cur->hw_cur;
1277 nex->sbt_prev = cur->sbt_cur;
1278 nex->hw_cur = hw;
1279 nex->sbt_cur = sbt;
1280 seqc_write_end(&nex->gen);
1281 sc->cal_current = next_up;
1282 done:
1283 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1284 sc, C_DIRECT_EXEC);
1285 }
1286
1287 static void
t4_calibration_start(struct adapter * sc)1288 t4_calibration_start(struct adapter *sc)
1289 {
1290 /*
1291 * Here if we have not done a calibration
1292 * then do so otherwise start the appropriate
1293 * timer.
1294 */
1295 int i;
1296
1297 for (i = 0; i < CNT_CAL_INFO; i++) {
1298 sc->cal_info[i].gen = 0;
1299 }
1300 sc->cal_current = 0;
1301 sc->cal_count = 0;
1302 sc->cal_gen = 0;
1303 t4_calibration(sc);
1304 }
1305
1306 static int
t4_attach(device_t dev)1307 t4_attach(device_t dev)
1308 {
1309 struct adapter *sc;
1310 int rc = 0, i, j, rqidx, tqidx, nports;
1311 struct make_dev_args mda;
1312 struct intrs_and_queues iaq;
1313 struct sge *s;
1314 uint32_t *buf;
1315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1316 int ofld_tqidx;
1317 #endif
1318 #ifdef TCP_OFFLOAD
1319 int ofld_rqidx;
1320 #endif
1321 #ifdef DEV_NETMAP
1322 int nm_rqidx, nm_tqidx;
1323 #endif
1324 int num_vis;
1325
1326 sc = device_get_softc(dev);
1327 sc->dev = dev;
1328 sysctl_ctx_init(&sc->ctx);
1329 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1330
1331 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1332 t5_attribute_workaround(dev);
1333 pci_enable_busmaster(dev);
1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1335 uint32_t v;
1336
1337 pci_set_max_read_req(dev, 4096);
1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1340 if (pcie_relaxed_ordering == 0 &&
1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1344 } else if (pcie_relaxed_ordering == 1 &&
1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1348 }
1349 }
1350
1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1353 sc->traceq = -1;
1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1356 device_get_nameunit(dev));
1357
1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1359 device_get_nameunit(dev));
1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1361 t4_add_adapter(sc);
1362
1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1364 TAILQ_INIT(&sc->sfl);
1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1366
1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1368
1369 sc->policy = NULL;
1370 rw_init(&sc->policy_lock, "connection offload policy");
1371
1372 callout_init(&sc->ktls_tick, 1);
1373
1374 callout_init(&sc->cal_callout, 1);
1375
1376 refcount_init(&sc->vxlan_refcount, 0);
1377
1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1380
1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1387
1388 rc = t4_map_bars_0_and_4(sc);
1389 if (rc != 0)
1390 goto done; /* error message displayed already */
1391
1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1393 memset(sc->port_map, 0xff, sizeof(sc->port_map));
1394
1395 /* Prepare the adapter for operation. */
1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1397 rc = -t4_prep_adapter(sc, buf);
1398 free(buf, M_CXGBE);
1399 if (rc != 0) {
1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1401 goto done;
1402 }
1403
1404 /*
1405 * This is the real PF# to which we're attaching. Works from within PCI
1406 * passthrough environments too, where pci_get_function() could return a
1407 * different PF# depending on the passthrough configuration. We need to
1408 * use the real PF# in all our communication with the firmware.
1409 */
1410 j = t4_read_reg(sc, A_PL_WHOAMI);
1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1412 sc->mbox = sc->pf;
1413
1414 t4_init_devnames(sc);
1415 if (sc->names == NULL) {
1416 rc = ENOTSUP;
1417 goto done; /* error message displayed already */
1418 }
1419
1420 /*
1421 * Do this really early, with the memory windows set up even before the
1422 * character device. The userland tool's register i/o and mem read
1423 * will work even in "recovery mode".
1424 */
1425 setup_memwin(sc);
1426 if (t4_init_devlog_ncores_params(sc, 0) == 0)
1427 fixup_devlog_params(sc);
1428 make_dev_args_init(&mda);
1429 mda.mda_devsw = &t4_cdevsw;
1430 mda.mda_uid = UID_ROOT;
1431 mda.mda_gid = GID_WHEEL;
1432 mda.mda_mode = 0600;
1433 mda.mda_si_drv1 = sc;
1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1435 if (rc != 0)
1436 device_printf(dev, "failed to create nexus char device: %d.\n",
1437 rc);
1438
1439 /* Go no further if recovery mode has been requested. */
1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1441 device_printf(dev, "recovery mode.\n");
1442 goto done;
1443 }
1444
1445 #if defined(__i386__)
1446 if ((cpu_feature & CPUID_CX8) == 0) {
1447 device_printf(dev, "64 bit atomics not available.\n");
1448 rc = ENOTSUP;
1449 goto done;
1450 }
1451 #endif
1452
1453 /* Contact the firmware and try to become the master driver. */
1454 rc = contact_firmware(sc);
1455 if (rc != 0)
1456 goto done; /* error message displayed already */
1457 MPASS(sc->flags & FW_OK);
1458
1459 rc = get_params__pre_init(sc);
1460 if (rc != 0)
1461 goto done; /* error message displayed already */
1462
1463 if (sc->flags & MASTER_PF) {
1464 rc = partition_resources(sc);
1465 if (rc != 0)
1466 goto done; /* error message displayed already */
1467 }
1468
1469 rc = get_params__post_init(sc);
1470 if (rc != 0)
1471 goto done; /* error message displayed already */
1472
1473 rc = set_params__post_init(sc);
1474 if (rc != 0)
1475 goto done; /* error message displayed already */
1476
1477 rc = t4_map_bar_2(sc);
1478 if (rc != 0)
1479 goto done; /* error message displayed already */
1480
1481 rc = t4_adj_doorbells(sc);
1482 if (rc != 0)
1483 goto done; /* error message displayed already */
1484
1485 rc = t4_create_dma_tag(sc);
1486 if (rc != 0)
1487 goto done; /* error message displayed already */
1488
1489 /*
1490 * First pass over all the ports - allocate VIs and initialize some
1491 * basic parameters like mac address, port type, etc.
1492 */
1493 for_each_port(sc, i) {
1494 struct port_info *pi;
1495
1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1497 sc->port[i] = pi;
1498
1499 /* These must be set before t4_port_init */
1500 pi->adapter = sc;
1501 pi->port_id = i;
1502 /*
1503 * XXX: vi[0] is special so we can't delay this allocation until
1504 * pi->nvi's final value is known.
1505 */
1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1507 M_ZERO | M_WAITOK);
1508
1509 /*
1510 * Allocate the "main" VI and initialize parameters
1511 * like mac addr.
1512 */
1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1514 if (rc != 0) {
1515 device_printf(dev, "unable to initialize port %d: %d\n",
1516 i, rc);
1517 free(pi->vi, M_CXGBE);
1518 free(pi, M_CXGBE);
1519 sc->port[i] = NULL;
1520 goto done;
1521 }
1522
1523 if (is_bt(pi->port_type))
1524 setbit(&sc->bt_map, pi->hw_port);
1525 else
1526 MPASS(!isset(&sc->bt_map, pi->hw_port));
1527
1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1529 device_get_nameunit(dev), i);
1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1531 for (j = 0; j < sc->params.tp.lb_nchan; j++)
1532 sc->chan_map[pi->tx_chan + j] = i;
1533 sc->port_map[pi->hw_port] = i;
1534
1535 /*
1536 * The MPS counter for FCS errors doesn't work correctly on the
1537 * T6 so we use the MAC counter here. Which MAC is in use
1538 * depends on the link settings which will be known when the
1539 * link comes up.
1540 */
1541 if (is_t6(sc))
1542 pi->fcs_reg = -1;
1543 else
1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L;
1545 pi->fcs_base = 0;
1546
1547 /* All VIs on this port share this media. */
1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1549 cxgbe_media_status);
1550
1551 PORT_LOCK(pi);
1552 init_link_config(pi);
1553 fixup_link_config(pi);
1554 build_medialist(pi);
1555 if (fixed_ifmedia(pi))
1556 pi->flags |= FIXED_IFMEDIA;
1557 PORT_UNLOCK(pi);
1558
1559 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1560 t4_ifnet_unit(sc, pi));
1561 if (pi->dev == NULL) {
1562 device_printf(dev,
1563 "failed to add device for port %d.\n", i);
1564 rc = ENXIO;
1565 goto done;
1566 }
1567 pi->vi[0].dev = pi->dev;
1568 device_set_softc(pi->dev, pi);
1569 }
1570
1571 /*
1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1573 */
1574 nports = sc->params.nports;
1575 rc = cfg_itype_and_nqueues(sc, &iaq);
1576 if (rc != 0)
1577 goto done; /* error message displayed already */
1578
1579 num_vis = iaq.num_vis;
1580 sc->intr_type = iaq.intr_type;
1581 sc->intr_count = iaq.nirq;
1582
1583 s = &sc->sge;
1584 s->nctrlq = max(sc->params.nports, sc->params.ncores);
1585 s->nrxq = nports * iaq.nrxq;
1586 s->ntxq = nports * iaq.ntxq;
1587 if (num_vis > 1) {
1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1590 }
1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1592 s->neq += nports; /* ctrl queues: 1 per port */
1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1595 if (is_offload(sc) || is_ethoffload(sc)) {
1596 s->nofldtxq = nports * iaq.nofldtxq;
1597 if (num_vis > 1)
1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1599 s->neq += s->nofldtxq;
1600
1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1602 M_CXGBE, M_ZERO | M_WAITOK);
1603 }
1604 #endif
1605 #ifdef TCP_OFFLOAD
1606 if (is_offload(sc)) {
1607 s->nofldrxq = nports * iaq.nofldrxq;
1608 if (num_vis > 1)
1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1610 s->neq += s->nofldrxq; /* free list */
1611 s->niq += s->nofldrxq;
1612
1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1614 M_CXGBE, M_ZERO | M_WAITOK);
1615 }
1616 #endif
1617 #ifdef DEV_NETMAP
1618 s->nnmrxq = 0;
1619 s->nnmtxq = 0;
1620 if (t4_native_netmap & NN_MAIN_VI) {
1621 s->nnmrxq += nports * iaq.nnmrxq;
1622 s->nnmtxq += nports * iaq.nnmtxq;
1623 }
1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1627 }
1628 s->neq += s->nnmtxq + s->nnmrxq;
1629 s->niq += s->nnmrxq;
1630
1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1632 M_CXGBE, M_ZERO | M_WAITOK);
1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1634 M_CXGBE, M_ZERO | M_WAITOK);
1635 #endif
1636 MPASS(s->niq <= s->iqmap_sz);
1637 MPASS(s->neq <= s->eqmap_sz);
1638
1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE,
1640 M_ZERO | M_WAITOK);
1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1642 M_ZERO | M_WAITOK);
1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1644 M_ZERO | M_WAITOK);
1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1646 M_ZERO | M_WAITOK);
1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1648 M_ZERO | M_WAITOK);
1649
1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1651 M_ZERO | M_WAITOK);
1652
1653 t4_init_l2t(sc, M_WAITOK);
1654 t4_init_smt(sc, M_WAITOK);
1655 t4_init_tx_sched(sc);
1656 t4_init_atid_table(sc);
1657 #ifdef RATELIMIT
1658 t4_init_etid_table(sc);
1659 #endif
1660 #ifdef INET6
1661 t4_init_clip_table(sc);
1662 #endif
1663 if (sc->vres.key.size != 0)
1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1666 t4_init_tpt(sc);
1667
1668 /*
1669 * Second pass over the ports. This time we know the number of rx and
1670 * tx queues that each port should get.
1671 */
1672 rqidx = tqidx = 0;
1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1674 ofld_tqidx = 0;
1675 #endif
1676 #ifdef TCP_OFFLOAD
1677 ofld_rqidx = 0;
1678 #endif
1679 #ifdef DEV_NETMAP
1680 nm_rqidx = nm_tqidx = 0;
1681 #endif
1682 for_each_port(sc, i) {
1683 struct port_info *pi = sc->port[i];
1684 struct vi_info *vi;
1685
1686 if (pi == NULL)
1687 continue;
1688
1689 pi->nvi = num_vis;
1690 for_each_vi(pi, j, vi) {
1691 vi->pi = pi;
1692 vi->adapter = sc;
1693 vi->first_intr = -1;
1694 vi->qsize_rxq = t4_qsize_rxq;
1695 vi->qsize_txq = t4_qsize_txq;
1696
1697 vi->first_rxq = rqidx;
1698 vi->first_txq = tqidx;
1699 vi->tmr_idx = t4_tmr_idx;
1700 vi->pktc_idx = t4_pktc_idx;
1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1703
1704 rqidx += vi->nrxq;
1705 tqidx += vi->ntxq;
1706
1707 if (j == 0 && vi->ntxq > 1)
1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1709 else
1710 vi->rsrv_noflowq = 0;
1711
1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1713 vi->first_ofld_txq = ofld_tqidx;
1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1715 ofld_tqidx += vi->nofldtxq;
1716 #endif
1717 #ifdef TCP_OFFLOAD
1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1720 vi->first_ofld_rxq = ofld_rqidx;
1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1722
1723 ofld_rqidx += vi->nofldrxq;
1724 #endif
1725 #ifdef DEV_NETMAP
1726 vi->first_nm_rxq = nm_rqidx;
1727 vi->first_nm_txq = nm_tqidx;
1728 if (j == 0) {
1729 vi->nnmrxq = iaq.nnmrxq;
1730 vi->nnmtxq = iaq.nnmtxq;
1731 } else {
1732 vi->nnmrxq = iaq.nnmrxq_vi;
1733 vi->nnmtxq = iaq.nnmtxq_vi;
1734 }
1735 nm_rqidx += vi->nnmrxq;
1736 nm_tqidx += vi->nnmtxq;
1737 #endif
1738 }
1739 }
1740
1741 rc = t4_setup_intr_handlers(sc);
1742 if (rc != 0) {
1743 device_printf(dev,
1744 "failed to setup interrupt handlers: %d\n", rc);
1745 goto done;
1746 }
1747
1748 bus_identify_children(dev);
1749
1750 /*
1751 * Ensure thread-safe mailbox access (in debug builds).
1752 *
1753 * So far this was the only thread accessing the mailbox but various
1754 * ifnets and sysctls are about to be created and their handlers/ioctls
1755 * will access the mailbox from different threads.
1756 */
1757 sc->flags |= CHK_MBOX_ACCESS;
1758
1759 bus_attach_children(dev);
1760 t4_calibration_start(sc);
1761
1762 device_printf(dev,
1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1768
1769 t4_set_desc(sc);
1770
1771 notify_siblings(dev, 0);
1772
1773 done:
1774 if (rc != 0 && sc->cdev) {
1775 /* cdev was created and so cxgbetool works; recover that way. */
1776 device_printf(dev,
1777 "error during attach, adapter is now in recovery mode.\n");
1778 rc = 0;
1779 }
1780
1781 if (rc != 0)
1782 t4_detach_common(dev);
1783 else
1784 t4_sysctls(sc);
1785
1786 return (rc);
1787 }
1788
1789 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1791 {
1792 struct adapter *sc;
1793 struct port_info *pi;
1794 int i;
1795
1796 sc = device_get_softc(bus);
1797 for_each_port(sc, i) {
1798 pi = sc->port[i];
1799 if (pi != NULL && pi->dev == dev) {
1800 sbuf_printf(sb, "port=%d", pi->port_id);
1801 break;
1802 }
1803 }
1804 return (0);
1805 }
1806
1807 static int
t4_ready(device_t dev)1808 t4_ready(device_t dev)
1809 {
1810 struct adapter *sc;
1811
1812 sc = device_get_softc(dev);
1813 if (sc->flags & FW_OK)
1814 return (0);
1815 return (ENXIO);
1816 }
1817
1818 static int
t4_read_port_device(device_t dev,int port,device_t * child)1819 t4_read_port_device(device_t dev, int port, device_t *child)
1820 {
1821 struct adapter *sc;
1822 struct port_info *pi;
1823
1824 sc = device_get_softc(dev);
1825 if (port < 0 || port >= MAX_NPORTS)
1826 return (EINVAL);
1827 pi = sc->port[port];
1828 if (pi == NULL || pi->dev == NULL)
1829 return (ENXIO);
1830 *child = pi->dev;
1831 return (0);
1832 }
1833
1834 static int
notify_siblings(device_t dev,int detaching)1835 notify_siblings(device_t dev, int detaching)
1836 {
1837 device_t sibling;
1838 int error, i;
1839
1840 error = 0;
1841 for (i = 0; i < PCI_FUNCMAX; i++) {
1842 if (i == pci_get_function(dev))
1843 continue;
1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1845 pci_get_slot(dev), i);
1846 if (sibling == NULL || !device_is_attached(sibling))
1847 continue;
1848 if (detaching)
1849 error = T4_DETACH_CHILD(sibling);
1850 else
1851 (void)T4_ATTACH_CHILD(sibling);
1852 if (error)
1853 break;
1854 }
1855 return (error);
1856 }
1857
1858 /*
1859 * Idempotent
1860 */
1861 static int
t4_detach(device_t dev)1862 t4_detach(device_t dev)
1863 {
1864 int rc;
1865
1866 rc = notify_siblings(dev, 1);
1867 if (rc) {
1868 device_printf(dev,
1869 "failed to detach sibling devices: %d\n", rc);
1870 return (rc);
1871 }
1872
1873 return (t4_detach_common(dev));
1874 }
1875
1876 int
t4_detach_common(device_t dev)1877 t4_detach_common(device_t dev)
1878 {
1879 struct adapter *sc;
1880 struct port_info *pi;
1881 int i, rc;
1882
1883 sc = device_get_softc(dev);
1884
1885 #ifdef TCP_OFFLOAD
1886 rc = deactivate_all_uld(sc);
1887 if (rc) {
1888 device_printf(dev,
1889 "failed to detach upper layer drivers: %d\n", rc);
1890 return (rc);
1891 }
1892 #endif
1893
1894 if (sc->cdev) {
1895 destroy_dev(sc->cdev);
1896 sc->cdev = NULL;
1897 }
1898
1899 sx_xlock(&t4_list_lock);
1900 SLIST_REMOVE(&t4_list, sc, adapter, link);
1901 sx_xunlock(&t4_list_lock);
1902
1903 sc->flags &= ~CHK_MBOX_ACCESS;
1904 if (sc->flags & FULL_INIT_DONE) {
1905 if (!(sc->flags & IS_VF))
1906 t4_intr_disable(sc);
1907 }
1908
1909 if (device_is_attached(dev)) {
1910 rc = bus_detach_children(dev);
1911 if (rc) {
1912 device_printf(dev,
1913 "failed to detach child devices: %d\n", rc);
1914 return (rc);
1915 }
1916 }
1917
1918 for (i = 0; i < sc->intr_count; i++)
1919 t4_free_irq(sc, &sc->irq[i]);
1920
1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1922 t4_free_tx_sched(sc);
1923
1924 for (i = 0; i < MAX_NPORTS; i++) {
1925 pi = sc->port[i];
1926 if (pi) {
1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1928
1929 mtx_destroy(&pi->pi_lock);
1930 free(pi->vi, M_CXGBE);
1931 free(pi, M_CXGBE);
1932 }
1933 }
1934 callout_stop(&sc->cal_callout);
1935 callout_drain(&sc->cal_callout);
1936 device_delete_children(dev);
1937 sysctl_ctx_free(&sc->ctx);
1938 adapter_full_uninit(sc);
1939
1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1941 t4_fw_bye(sc, sc->mbox);
1942
1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1944 pci_release_msi(dev);
1945
1946 if (sc->regs_res)
1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1948 sc->regs_res);
1949
1950 if (sc->udbs_res)
1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1952 sc->udbs_res);
1953
1954 if (sc->msix_res)
1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1956 sc->msix_res);
1957
1958 if (sc->l2t)
1959 t4_free_l2t(sc);
1960 if (sc->smt)
1961 t4_free_smt(sc->smt);
1962 t4_free_atid_table(sc);
1963 #ifdef RATELIMIT
1964 t4_free_etid_table(sc);
1965 #endif
1966 if (sc->key_map)
1967 vmem_destroy(sc->key_map);
1968 t4_free_tpt(sc);
1969 #ifdef INET6
1970 t4_destroy_clip_table(sc);
1971 #endif
1972
1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1974 free(sc->sge.ofld_txq, M_CXGBE);
1975 #endif
1976 #ifdef TCP_OFFLOAD
1977 free(sc->sge.ofld_rxq, M_CXGBE);
1978 #endif
1979 #ifdef DEV_NETMAP
1980 free(sc->sge.nm_rxq, M_CXGBE);
1981 free(sc->sge.nm_txq, M_CXGBE);
1982 #endif
1983 free(sc->irq, M_CXGBE);
1984 free(sc->sge.rxq, M_CXGBE);
1985 free(sc->sge.txq, M_CXGBE);
1986 free(sc->sge.ctrlq, M_CXGBE);
1987 free(sc->sge.iqmap, M_CXGBE);
1988 free(sc->sge.eqmap, M_CXGBE);
1989 free(sc->tids.ftid_tab, M_CXGBE);
1990 free(sc->tids.hpftid_tab, M_CXGBE);
1991 free_hftid_hash(&sc->tids);
1992 free(sc->tids.tid_tab, M_CXGBE);
1993 t4_destroy_dma_tag(sc);
1994
1995 callout_drain(&sc->ktls_tick);
1996 callout_drain(&sc->sfl_callout);
1997 if (mtx_initialized(&sc->tids.ftid_lock)) {
1998 mtx_destroy(&sc->tids.ftid_lock);
1999 cv_destroy(&sc->tids.ftid_cv);
2000 }
2001 if (mtx_initialized(&sc->tids.atid_lock))
2002 mtx_destroy(&sc->tids.atid_lock);
2003 if (mtx_initialized(&sc->ifp_lock))
2004 mtx_destroy(&sc->ifp_lock);
2005
2006 if (rw_initialized(&sc->policy_lock)) {
2007 rw_destroy(&sc->policy_lock);
2008 #ifdef TCP_OFFLOAD
2009 if (sc->policy != NULL)
2010 free_offload_policy(sc->policy);
2011 #endif
2012 }
2013
2014 for (i = 0; i < NUM_MEMWIN; i++) {
2015 struct memwin *mw = &sc->memwin[i];
2016
2017 if (rw_initialized(&mw->mw_lock))
2018 rw_destroy(&mw->mw_lock);
2019 }
2020
2021 mtx_destroy(&sc->sfl_lock);
2022 mtx_destroy(&sc->reg_lock);
2023 mtx_destroy(&sc->sc_lock);
2024
2025 bzero(sc, sizeof(*sc));
2026
2027 return (0);
2028 }
2029
2030 static inline int
stop_adapter(struct adapter * sc)2031 stop_adapter(struct adapter *sc)
2032 {
2033 struct port_info *pi;
2034 int i;
2035
2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2038 __func__, curthread, sc->flags, sc->error_flags);
2039 return (EALREADY);
2040 }
2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2042 sc->flags, sc->error_flags);
2043 t4_shutdown_adapter(sc);
2044 for_each_port(sc, i) {
2045 pi = sc->port[i];
2046 if (pi == NULL)
2047 continue;
2048 PORT_LOCK(pi);
2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
2050 /*
2051 * t4_shutdown_adapter has already shut down all the
2052 * PHYs but it also disables interrupts and DMA so there
2053 * won't be a link interrupt. Update the state manually
2054 * if the link was up previously and inform the kernel.
2055 */
2056 pi->link_cfg.link_ok = false;
2057 t4_os_link_changed(pi);
2058 }
2059 PORT_UNLOCK(pi);
2060 }
2061
2062 return (0);
2063 }
2064
2065 static inline int
restart_adapter(struct adapter * sc)2066 restart_adapter(struct adapter *sc)
2067 {
2068 uint32_t val;
2069
2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2072 __func__, curthread, sc->flags, sc->error_flags);
2073 return (EALREADY);
2074 }
2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2076 sc->flags, sc->error_flags);
2077
2078 MPASS(hw_off_limits(sc));
2079 MPASS((sc->flags & FW_OK) == 0);
2080 MPASS((sc->flags & MASTER_PF) == 0);
2081 MPASS(sc->reset_thread == NULL);
2082
2083 /*
2084 * The adapter is supposed to be back on PCIE with its config space and
2085 * BARs restored to their state before reset. Register access via
2086 * t4_read_reg BAR0 should just work.
2087 */
2088 sc->reset_thread = curthread;
2089 val = t4_read_reg(sc, A_PL_WHOAMI);
2090 if (val == 0xffffffff || val == 0xeeeeeeee) {
2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
2092 sc->reset_thread = NULL;
2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
2094 return (ENXIO);
2095 }
2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
2097 atomic_add_int(&sc->incarnation, 1);
2098 atomic_add_int(&sc->num_resets, 1);
2099
2100 return (0);
2101 }
2102
2103 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)2104 set_adapter_hwstatus(struct adapter *sc, const bool usable)
2105 {
2106 if (usable) {
2107 /* Must be marked reusable by the designated thread. */
2108 ASSERT_SYNCHRONIZED_OP(sc);
2109 MPASS(sc->reset_thread == curthread);
2110 mtx_lock(&sc->reg_lock);
2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2112 mtx_unlock(&sc->reg_lock);
2113 } else {
2114 /* Mark the adapter totally off limits. */
2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2116 mtx_lock(&sc->reg_lock);
2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2118 mtx_unlock(&sc->reg_lock);
2119 sc->flags &= ~(FW_OK | MASTER_PF);
2120 sc->reset_thread = NULL;
2121 end_synchronized_op(sc, 0);
2122 }
2123 }
2124
2125 static int
stop_lld(struct adapter * sc)2126 stop_lld(struct adapter *sc)
2127 {
2128 struct port_info *pi;
2129 struct vi_info *vi;
2130 if_t ifp;
2131 struct sge_rxq *rxq;
2132 struct sge_txq *txq;
2133 struct sge_wrq *wrq;
2134 #ifdef TCP_OFFLOAD
2135 struct sge_ofld_rxq *ofld_rxq;
2136 #endif
2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2138 struct sge_ofld_txq *ofld_txq;
2139 #endif
2140 int rc, i, j, k;
2141
2142 /*
2143 * XXX: Can there be a synch_op in progress that will hang because
2144 * hardware has been stopped? We'll hang too and the solution will be
2145 * to use a version of begin_synch_op that wakes up existing synch_op
2146 * with errors. Maybe stop_adapter should do this wakeup?
2147 *
2148 * I don't think any synch_op could get stranded waiting for DMA or
2149 * interrupt so I think we're okay here. Remove this comment block
2150 * after testing.
2151 */
2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2153 if (rc != 0)
2154 return (ENXIO);
2155
2156 /* Quiesce all activity. */
2157 for_each_port(sc, i) {
2158 pi = sc->port[i];
2159 if (pi == NULL)
2160 continue;
2161 pi->vxlan_tcam_entry = false;
2162 for_each_vi(pi, j, vi) {
2163 vi->xact_addr_filt = -1;
2164 mtx_lock(&vi->tick_mtx);
2165 vi->flags |= VI_SKIP_STATS;
2166 mtx_unlock(&vi->tick_mtx);
2167 if (!(vi->flags & VI_INIT_DONE))
2168 continue;
2169
2170 ifp = vi->ifp;
2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2172 mtx_lock(&vi->tick_mtx);
2173 callout_stop(&vi->tick);
2174 mtx_unlock(&vi->tick_mtx);
2175 callout_drain(&vi->tick);
2176 }
2177
2178 /*
2179 * Note that the HW is not available.
2180 */
2181 for_each_txq(vi, k, txq) {
2182 TXQ_LOCK(txq);
2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2184 TXQ_UNLOCK(txq);
2185 }
2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2187 for_each_ofld_txq(vi, k, ofld_txq) {
2188 TXQ_LOCK(&ofld_txq->wrq);
2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2190 TXQ_UNLOCK(&ofld_txq->wrq);
2191 }
2192 #endif
2193 for_each_rxq(vi, k, rxq) {
2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2195 }
2196 #if defined(TCP_OFFLOAD)
2197 for_each_ofld_rxq(vi, k, ofld_rxq) {
2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2199 }
2200 #endif
2201
2202 quiesce_vi(vi);
2203 }
2204
2205 if (sc->flags & FULL_INIT_DONE) {
2206 /* Control queue */
2207 wrq = &sc->sge.ctrlq[i];
2208 TXQ_LOCK(wrq);
2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2210 TXQ_UNLOCK(wrq);
2211 quiesce_wrq(wrq);
2212 }
2213
2214 if (pi->flags & HAS_TRACEQ) {
2215 pi->flags &= ~HAS_TRACEQ;
2216 sc->traceq = -1;
2217 sc->tracer_valid = 0;
2218 sc->tracer_enabled = 0;
2219 }
2220 }
2221 if (sc->flags & FULL_INIT_DONE) {
2222 /* Firmware event queue */
2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2225 }
2226
2227 /* Stop calibration */
2228 callout_stop(&sc->cal_callout);
2229 callout_drain(&sc->cal_callout);
2230
2231 if (t4_clock_gate_on_suspend) {
2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2235 }
2236
2237 end_synchronized_op(sc, 0);
2238
2239 stop_atid_allocator(sc);
2240 t4_stop_l2t(sc);
2241
2242 return (rc);
2243 }
2244
2245 int
suspend_adapter(struct adapter * sc)2246 suspend_adapter(struct adapter *sc)
2247 {
2248 stop_adapter(sc);
2249 stop_lld(sc);
2250 #ifdef TCP_OFFLOAD
2251 stop_all_uld(sc);
2252 #endif
2253 set_adapter_hwstatus(sc, false);
2254
2255 return (0);
2256 }
2257
2258 static int
t4_suspend(device_t dev)2259 t4_suspend(device_t dev)
2260 {
2261 struct adapter *sc = device_get_softc(dev);
2262 int rc;
2263
2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2265 rc = suspend_adapter(sc);
2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2267
2268 return (rc);
2269 }
2270
2271 struct adapter_pre_reset_state {
2272 u_int flags;
2273 uint16_t nbmcaps;
2274 uint16_t linkcaps;
2275 uint16_t switchcaps;
2276 uint16_t nvmecaps;
2277 uint16_t niccaps;
2278 uint16_t toecaps;
2279 uint16_t rdmacaps;
2280 uint16_t cryptocaps;
2281 uint16_t iscsicaps;
2282 uint16_t fcoecaps;
2283
2284 u_int cfcsum;
2285 char cfg_file[32];
2286
2287 struct adapter_params params;
2288 struct t4_virt_res vres;
2289 struct tid_info tids;
2290 struct sge sge;
2291
2292 int rawf_base;
2293 int nrawf;
2294
2295 };
2296
2297 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2299 {
2300
2301 ASSERT_SYNCHRONIZED_OP(sc);
2302
2303 o->flags = sc->flags;
2304
2305 o->nbmcaps = sc->nbmcaps;
2306 o->linkcaps = sc->linkcaps;
2307 o->switchcaps = sc->switchcaps;
2308 o->nvmecaps = sc->nvmecaps;
2309 o->niccaps = sc->niccaps;
2310 o->toecaps = sc->toecaps;
2311 o->rdmacaps = sc->rdmacaps;
2312 o->cryptocaps = sc->cryptocaps;
2313 o->iscsicaps = sc->iscsicaps;
2314 o->fcoecaps = sc->fcoecaps;
2315
2316 o->cfcsum = sc->cfcsum;
2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2319
2320 o->params = sc->params;
2321 o->vres = sc->vres;
2322 o->tids = sc->tids;
2323 o->sge = sc->sge;
2324
2325 o->rawf_base = sc->rawf_base;
2326 o->nrawf = sc->nrawf;
2327 }
2328
2329 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2331 {
2332 int rc = 0;
2333
2334 ASSERT_SYNCHRONIZED_OP(sc);
2335
2336 /* Capabilities */
2337 #define COMPARE_CAPS(c) do { \
2338 if (o->c##caps != sc->c##caps) { \
2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2340 sc->c##caps); \
2341 rc = EINVAL; \
2342 } \
2343 } while (0)
2344 COMPARE_CAPS(nbm);
2345 COMPARE_CAPS(link);
2346 COMPARE_CAPS(switch);
2347 COMPARE_CAPS(nvme);
2348 COMPARE_CAPS(nic);
2349 COMPARE_CAPS(toe);
2350 COMPARE_CAPS(rdma);
2351 COMPARE_CAPS(crypto);
2352 COMPARE_CAPS(iscsi);
2353 COMPARE_CAPS(fcoe);
2354 #undef COMPARE_CAPS
2355
2356 /* Firmware config file */
2357 if (o->cfcsum != sc->cfcsum) {
2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2359 o->cfcsum, sc->cfg_file, sc->cfcsum);
2360 rc = EINVAL;
2361 }
2362
2363 #define COMPARE_PARAM(p, name) do { \
2364 if (o->p != sc->p) { \
2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2366 rc = EINVAL; \
2367 } \
2368 } while (0)
2369 COMPARE_PARAM(sge.iq_start, iq_start);
2370 COMPARE_PARAM(sge.eq_start, eq_start);
2371 COMPARE_PARAM(tids.ftid_base, ftid_base);
2372 COMPARE_PARAM(tids.ftid_end, ftid_end);
2373 COMPARE_PARAM(tids.nftids, nftids);
2374 COMPARE_PARAM(vres.l2t.start, l2t_start);
2375 COMPARE_PARAM(vres.l2t.size, l2t_size);
2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2378 COMPARE_PARAM(tids.tid_base, tid_base);
2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2381 COMPARE_PARAM(tids.nhpftids, nhpftids);
2382 COMPARE_PARAM(rawf_base, rawf_base);
2383 COMPARE_PARAM(nrawf, nrawf);
2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2389 COMPARE_PARAM(tids.ntids, ntids);
2390 COMPARE_PARAM(tids.etid_base, etid_base);
2391 COMPARE_PARAM(tids.etid_end, etid_end);
2392 COMPARE_PARAM(tids.netids, netids);
2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2394 COMPARE_PARAM(params.ethoffload, ethoffload);
2395 COMPARE_PARAM(tids.natids, natids);
2396 COMPARE_PARAM(tids.stid_base, stid_base);
2397 COMPARE_PARAM(vres.ddp.start, ddp_start);
2398 COMPARE_PARAM(vres.ddp.size, ddp_size);
2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2400 COMPARE_PARAM(vres.stag.start, stag_start);
2401 COMPARE_PARAM(vres.stag.size, stag_size);
2402 COMPARE_PARAM(vres.rq.start, rq_start);
2403 COMPARE_PARAM(vres.rq.size, rq_size);
2404 COMPARE_PARAM(vres.pbl.start, pbl_start);
2405 COMPARE_PARAM(vres.pbl.size, pbl_size);
2406 COMPARE_PARAM(vres.qp.start, qp_start);
2407 COMPARE_PARAM(vres.qp.size, qp_size);
2408 COMPARE_PARAM(vres.cq.start, cq_start);
2409 COMPARE_PARAM(vres.cq.size, cq_size);
2410 COMPARE_PARAM(vres.ocq.start, ocq_start);
2411 COMPARE_PARAM(vres.ocq.size, ocq_size);
2412 COMPARE_PARAM(vres.srq.start, srq_start);
2413 COMPARE_PARAM(vres.srq.size, srq_size);
2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2418 COMPARE_PARAM(vres.key.start, key_start);
2419 COMPARE_PARAM(vres.key.size, key_size);
2420 #undef COMPARE_PARAM
2421
2422 return (rc);
2423 }
2424
2425 static int
restart_lld(struct adapter * sc)2426 restart_lld(struct adapter *sc)
2427 {
2428 struct adapter_pre_reset_state *old_state = NULL;
2429 struct port_info *pi;
2430 struct vi_info *vi;
2431 if_t ifp;
2432 struct sge_txq *txq;
2433 int rc, i, j, k;
2434
2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2436 if (rc != 0)
2437 return (ENXIO);
2438
2439 /* Restore memory window. */
2440 setup_memwin(sc);
2441
2442 /* Go no further if recovery mode has been requested. */
2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2445 rc = 0;
2446 set_adapter_hwstatus(sc, true);
2447 goto done;
2448 }
2449
2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2451 save_caps_and_params(sc, old_state);
2452
2453 /* Reestablish contact with firmware and become the primary PF. */
2454 rc = contact_firmware(sc);
2455 if (rc != 0)
2456 goto done; /* error message displayed already */
2457 MPASS(sc->flags & FW_OK);
2458
2459 if (sc->flags & MASTER_PF) {
2460 rc = partition_resources(sc);
2461 if (rc != 0)
2462 goto done; /* error message displayed already */
2463 }
2464
2465 rc = get_params__post_init(sc);
2466 if (rc != 0)
2467 goto done; /* error message displayed already */
2468
2469 rc = set_params__post_init(sc);
2470 if (rc != 0)
2471 goto done; /* error message displayed already */
2472
2473 rc = compare_caps_and_params(sc, old_state);
2474 if (rc != 0)
2475 goto done; /* error message displayed already */
2476
2477 for_each_port(sc, i) {
2478 pi = sc->port[i];
2479 MPASS(pi != NULL);
2480 MPASS(pi->vi != NULL);
2481 MPASS(pi->vi[0].dev == pi->dev);
2482
2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2484 if (rc != 0) {
2485 CH_ERR(sc,
2486 "failed to re-initialize port %d: %d\n", i, rc);
2487 goto done;
2488 }
2489 MPASS(sc->chan_map[pi->tx_chan] == i);
2490
2491 PORT_LOCK(pi);
2492 fixup_link_config(pi);
2493 build_medialist(pi);
2494 PORT_UNLOCK(pi);
2495 for_each_vi(pi, j, vi) {
2496 if (IS_MAIN_VI(vi))
2497 continue;
2498 rc = alloc_extra_vi(sc, pi, vi);
2499 if (rc != 0) {
2500 CH_ERR(vi,
2501 "failed to re-allocate extra VI: %d\n", rc);
2502 goto done;
2503 }
2504 }
2505 }
2506
2507 /*
2508 * Interrupts and queues are about to be enabled and other threads will
2509 * want to access the hardware too. It is safe to do so. Note that
2510 * this thread is still in the middle of a synchronized_op.
2511 */
2512 set_adapter_hwstatus(sc, true);
2513
2514 if (sc->flags & FULL_INIT_DONE) {
2515 rc = adapter_full_init(sc);
2516 if (rc != 0) {
2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2518 goto done;
2519 }
2520
2521 if (sc->vxlan_refcount > 0)
2522 enable_vxlan_rx(sc);
2523
2524 for_each_port(sc, i) {
2525 pi = sc->port[i];
2526 for_each_vi(pi, j, vi) {
2527 mtx_lock(&vi->tick_mtx);
2528 vi->flags &= ~VI_SKIP_STATS;
2529 mtx_unlock(&vi->tick_mtx);
2530 if (!(vi->flags & VI_INIT_DONE))
2531 continue;
2532 rc = vi_full_init(vi);
2533 if (rc != 0) {
2534 CH_ERR(vi, "failed to re-initialize "
2535 "interface: %d\n", rc);
2536 goto done;
2537 }
2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
2541 pi->flags |= HAS_TRACEQ;
2542 }
2543
2544 ifp = vi->ifp;
2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2546 continue;
2547 /*
2548 * Note that we do not setup multicast addresses
2549 * in the first pass. This ensures that the
2550 * unicast DMACs for all VIs on all ports get an
2551 * MPS TCAM entry.
2552 */
2553 rc = update_mac_settings(ifp, XGMAC_ALL &
2554 ~XGMAC_MCADDRS);
2555 if (rc != 0) {
2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2557 goto done;
2558 }
2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2560 true);
2561 if (rc != 0) {
2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2563 goto done;
2564 }
2565 for_each_txq(vi, k, txq) {
2566 TXQ_LOCK(txq);
2567 txq->eq.flags |= EQ_ENABLED;
2568 TXQ_UNLOCK(txq);
2569 }
2570 mtx_lock(&vi->tick_mtx);
2571 callout_schedule(&vi->tick, hz);
2572 mtx_unlock(&vi->tick_mtx);
2573 }
2574 PORT_LOCK(pi);
2575 if (pi->up_vis > 0) {
2576 t4_update_port_info(pi);
2577 fixup_link_config(pi);
2578 build_medialist(pi);
2579 apply_link_config(pi);
2580 if (pi->link_cfg.link_ok)
2581 t4_os_link_changed(pi);
2582 }
2583 PORT_UNLOCK(pi);
2584 }
2585
2586 /* Now reprogram the L2 multicast addresses. */
2587 for_each_port(sc, i) {
2588 pi = sc->port[i];
2589 for_each_vi(pi, j, vi) {
2590 if (!(vi->flags & VI_INIT_DONE))
2591 continue;
2592 ifp = vi->ifp;
2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2594 continue;
2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2596 if (rc != 0) {
2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2598 rc = 0; /* carry on */
2599 }
2600 }
2601 }
2602 }
2603
2604 /* Reset all calibration */
2605 t4_calibration_start(sc);
2606 done:
2607 end_synchronized_op(sc, 0);
2608 free(old_state, M_CXGBE);
2609
2610 restart_atid_allocator(sc);
2611 t4_restart_l2t(sc);
2612
2613 return (rc);
2614 }
2615
2616 int
resume_adapter(struct adapter * sc)2617 resume_adapter(struct adapter *sc)
2618 {
2619 restart_adapter(sc);
2620 restart_lld(sc);
2621 #ifdef TCP_OFFLOAD
2622 restart_all_uld(sc);
2623 #endif
2624 return (0);
2625 }
2626
2627 static int
t4_resume(device_t dev)2628 t4_resume(device_t dev)
2629 {
2630 struct adapter *sc = device_get_softc(dev);
2631 int rc;
2632
2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2634 rc = resume_adapter(sc);
2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2636
2637 return (rc);
2638 }
2639
2640 static int
t4_reset_prepare(device_t dev,device_t child)2641 t4_reset_prepare(device_t dev, device_t child)
2642 {
2643 struct adapter *sc = device_get_softc(dev);
2644
2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2646 return (0);
2647 }
2648
2649 static int
t4_reset_post(device_t dev,device_t child)2650 t4_reset_post(device_t dev, device_t child)
2651 {
2652 struct adapter *sc = device_get_softc(dev);
2653
2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2655 return (0);
2656 }
2657
2658 static int
reset_adapter_with_pl_rst(struct adapter * sc)2659 reset_adapter_with_pl_rst(struct adapter *sc)
2660 {
2661 /* This is a t4_write_reg without the hw_off_limits check. */
2662 MPASS(sc->error_flags & HW_OFF_LIMITS);
2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2666 return (0);
2667 }
2668
2669 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2670 reset_adapter_with_pcie_sbr(struct adapter *sc)
2671 {
2672 device_t pdev = device_get_parent(sc->dev);
2673 device_t gpdev = device_get_parent(pdev);
2674 device_t *children;
2675 int rc, i, lcap, lsta, nchildren;
2676 uint32_t v;
2677
2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2679 if (rc != 0) {
2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2681 device_get_nameunit(gpdev), rc);
2682 return (ENOTSUP);
2683 }
2684 lcap = v + PCIER_LINK_CAP;
2685 lsta = v + PCIER_LINK_STA;
2686
2687 nchildren = 0;
2688 device_get_children(pdev, &children, &nchildren);
2689 for (i = 0; i < nchildren; i++)
2690 pci_save_state(children[i]);
2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2693 pause("pcie_sbr1", hz / 10); /* 100ms */
2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2696 v = pci_read_config(gpdev, lsta, 2);
2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2700 rc = ETIMEDOUT;
2701 else
2702 rc = 0;
2703 if (rc != 0)
2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2705 __func__, v);
2706 else {
2707 for (i = 0; i < nchildren; i++)
2708 pci_restore_state(children[i]);
2709 }
2710 free(children, M_TEMP);
2711
2712 return (rc);
2713 }
2714
2715 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2717 {
2718 device_t pdev = device_get_parent(sc->dev);
2719 device_t gpdev = device_get_parent(pdev);
2720 device_t *children;
2721 int rc, i, lcap, lctl, lsta, nchildren;
2722 uint32_t v;
2723
2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2725 if (rc != 0) {
2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2727 device_get_nameunit(gpdev), rc);
2728 return (ENOTSUP);
2729 }
2730 lcap = v + PCIER_LINK_CAP;
2731 lctl = v + PCIER_LINK_CTL;
2732 lsta = v + PCIER_LINK_STA;
2733
2734 nchildren = 0;
2735 device_get_children(pdev, &children, &nchildren);
2736 for (i = 0; i < nchildren; i++)
2737 pci_save_state(children[i]);
2738 v = pci_read_config(gpdev, lctl, 2);
2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2743 v = pci_read_config(gpdev, lsta, 2);
2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2747 rc = ETIMEDOUT;
2748 else
2749 rc = 0;
2750 if (rc != 0)
2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2752 __func__, v);
2753 else {
2754 for (i = 0; i < nchildren; i++)
2755 pci_restore_state(children[i]);
2756 }
2757 free(children, M_TEMP);
2758
2759 return (rc);
2760 }
2761
2762 static inline int
reset_adapter(struct adapter * sc)2763 reset_adapter(struct adapter *sc)
2764 {
2765 int rc;
2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2767
2768 rc = suspend_adapter(sc);
2769 if (rc != 0)
2770 return (rc);
2771
2772 switch (reset_method) {
2773 case 1:
2774 rc = reset_adapter_with_pcie_sbr(sc);
2775 break;
2776 case 2:
2777 rc = reset_adapter_with_pcie_link_bounce(sc);
2778 break;
2779 case 0:
2780 default:
2781 rc = reset_adapter_with_pl_rst(sc);
2782 break;
2783 }
2784 if (rc == 0)
2785 rc = resume_adapter(sc);
2786 return (rc);
2787 }
2788
2789 static void
reset_adapter_task(void * arg,int pending)2790 reset_adapter_task(void *arg, int pending)
2791 {
2792 struct adapter *sc = arg;
2793 const int flags = sc->flags;
2794 const int eflags = sc->error_flags;
2795 int rc;
2796
2797 if (pending > 1)
2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2799 rc = reset_adapter(sc);
2800 if (rc != 0) {
2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2803 rc, flags, sc->flags, eflags, sc->error_flags);
2804 }
2805 }
2806
2807 static int
cxgbe_probe(device_t dev)2808 cxgbe_probe(device_t dev)
2809 {
2810 struct port_info *pi = device_get_softc(dev);
2811
2812 device_set_descf(dev, "port %d", pi->port_id);
2813
2814 return (BUS_PROBE_DEFAULT);
2815 }
2816
2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2821 #define T4_CAP_ENABLE (T4_CAP)
2822
2823 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2825 {
2826 if_t ifp;
2827 struct sbuf *sb;
2828 struct sysctl_ctx_list *ctx = &vi->ctx;
2829 struct sysctl_oid_list *children;
2830 struct pfil_head_args pa;
2831 struct adapter *sc = vi->adapter;
2832
2833 sysctl_ctx_init(ctx);
2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2839 #ifdef DEV_NETMAP
2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2844 #endif
2845 #ifdef TCP_OFFLOAD
2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2848 #endif
2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2852 #endif
2853
2854 vi->xact_addr_filt = -1;
2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2858 vi->flags |= TX_USES_VM_WR;
2859
2860 /* Allocate an ifnet and set it up */
2861 ifp = if_alloc_dev(IFT_ETHER, dev);
2862 vi->ifp = ifp;
2863 if_setsoftc(ifp, vi);
2864
2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2867
2868 if_setinitfn(ifp, cxgbe_init);
2869 if_setioctlfn(ifp, cxgbe_ioctl);
2870 if_settransmitfn(ifp, cxgbe_transmit);
2871 if_setqflushfn(ifp, cxgbe_qflush);
2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2873 if_setgetcounterfn(ifp, vi_get_counter);
2874 else
2875 if_setgetcounterfn(ifp, cxgbe_get_counter);
2876 #if defined(KERN_TLS) || defined(RATELIMIT)
2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2878 #endif
2879 #ifdef RATELIMIT
2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2881 #endif
2882
2883 if_setcapabilities(ifp, T4_CAP);
2884 if_setcapenable(ifp, T4_CAP_ENABLE);
2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2887 if (chip_id(sc) >= CHELSIO_T6) {
2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2893 }
2894
2895 #ifdef TCP_OFFLOAD
2896 if (vi->nofldrxq != 0)
2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2898 #endif
2899 #ifdef RATELIMIT
2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2903 }
2904 #endif
2905
2906 if_sethwtsomax(ifp, IP_MAXPACKET);
2907 if (vi->flags & TX_USES_VM_WR)
2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2909 else
2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2911 #ifdef RATELIMIT
2912 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2914 #endif
2915 if_sethwtsomaxsegsize(ifp, 65536);
2916 #ifdef KERN_TLS
2917 if (is_ktls(sc)) {
2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2921 }
2922 #endif
2923
2924 ether_ifattach(ifp, vi->hw_addr);
2925 #ifdef DEV_NETMAP
2926 if (vi->nnmrxq != 0)
2927 cxgbe_nm_attach(vi);
2928 #endif
2929 sb = sbuf_new_auto();
2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2933 case IFCAP_TOE:
2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2935 break;
2936 case IFCAP_TOE | IFCAP_TXRTLMT:
2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2938 break;
2939 case IFCAP_TXRTLMT:
2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2941 break;
2942 }
2943 #endif
2944 #ifdef TCP_OFFLOAD
2945 if (if_getcapabilities(ifp) & IFCAP_TOE)
2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2947 #endif
2948 #ifdef DEV_NETMAP
2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2951 vi->nnmtxq, vi->nnmrxq);
2952 #endif
2953 sbuf_finish(sb);
2954 device_printf(dev, "%s\n", sbuf_data(sb));
2955 sbuf_delete(sb);
2956
2957 vi_sysctls(vi);
2958
2959 pa.pa_version = PFIL_VERSION;
2960 pa.pa_flags = PFIL_IN;
2961 pa.pa_type = PFIL_TYPE_ETHERNET;
2962 pa.pa_headname = if_name(ifp);
2963 vi->pfil = pfil_head_register(&pa);
2964 }
2965
2966 static int
cxgbe_attach(device_t dev)2967 cxgbe_attach(device_t dev)
2968 {
2969 struct port_info *pi = device_get_softc(dev);
2970 struct adapter *sc = pi->adapter;
2971 struct vi_info *vi;
2972 int i;
2973
2974 sysctl_ctx_init(&pi->ctx);
2975
2976 cxgbe_vi_attach(dev, &pi->vi[0]);
2977
2978 for_each_vi(pi, i, vi) {
2979 if (i == 0)
2980 continue;
2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2982 if (vi->dev == NULL) {
2983 device_printf(dev, "failed to add VI %d\n", i);
2984 continue;
2985 }
2986 device_set_softc(vi->dev, vi);
2987 }
2988
2989 cxgbe_sysctls(pi);
2990
2991 bus_attach_children(dev);
2992
2993 return (0);
2994 }
2995
2996 static void
cxgbe_vi_detach(struct vi_info * vi)2997 cxgbe_vi_detach(struct vi_info *vi)
2998 {
2999 if_t ifp = vi->ifp;
3000
3001 if (vi->pfil != NULL) {
3002 pfil_head_unregister(vi->pfil);
3003 vi->pfil = NULL;
3004 }
3005
3006 ether_ifdetach(ifp);
3007
3008 /* Let detach proceed even if these fail. */
3009 #ifdef DEV_NETMAP
3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
3011 cxgbe_nm_detach(vi);
3012 #endif
3013 cxgbe_uninit_synchronized(vi);
3014 callout_drain(&vi->tick);
3015 mtx_destroy(&vi->tick_mtx);
3016 sysctl_ctx_free(&vi->ctx);
3017 vi_full_uninit(vi);
3018
3019 if_free(vi->ifp);
3020 vi->ifp = NULL;
3021 }
3022
3023 static int
cxgbe_detach(device_t dev)3024 cxgbe_detach(device_t dev)
3025 {
3026 struct port_info *pi = device_get_softc(dev);
3027 struct adapter *sc = pi->adapter;
3028 int rc;
3029
3030 /* Detach the extra VIs first. */
3031 rc = bus_generic_detach(dev);
3032 if (rc)
3033 return (rc);
3034
3035 sysctl_ctx_free(&pi->ctx);
3036 begin_vi_detach(sc, &pi->vi[0]);
3037 if (pi->flags & HAS_TRACEQ) {
3038 sc->traceq = -1; /* cloner should not create ifnet */
3039 t4_tracer_port_detach(sc);
3040 }
3041 cxgbe_vi_detach(&pi->vi[0]);
3042 ifmedia_removeall(&pi->media);
3043 end_vi_detach(sc, &pi->vi[0]);
3044
3045 return (0);
3046 }
3047
3048 static void
cxgbe_init(void * arg)3049 cxgbe_init(void *arg)
3050 {
3051 struct vi_info *vi = arg;
3052 struct adapter *sc = vi->adapter;
3053
3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
3055 return;
3056 cxgbe_init_synchronized(vi);
3057 end_synchronized_op(sc, 0);
3058 }
3059
3060 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
3062 {
3063 int rc = 0, mtu, flags;
3064 struct vi_info *vi = if_getsoftc(ifp);
3065 struct port_info *pi = vi->pi;
3066 struct adapter *sc = pi->adapter;
3067 struct ifreq *ifr = (struct ifreq *)data;
3068 uint32_t mask;
3069
3070 switch (cmd) {
3071 case SIOCSIFMTU:
3072 mtu = ifr->ifr_mtu;
3073 if (mtu < ETHERMIN || mtu > MAX_MTU)
3074 return (EINVAL);
3075
3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
3077 if (rc)
3078 return (rc);
3079 if_setmtu(ifp, mtu);
3080 if (vi->flags & VI_INIT_DONE) {
3081 t4_update_fl_bufsize(ifp);
3082 if (hw_all_ok(sc) &&
3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3084 rc = update_mac_settings(ifp, XGMAC_MTU);
3085 }
3086 end_synchronized_op(sc, 0);
3087 break;
3088
3089 case SIOCSIFFLAGS:
3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
3091 if (rc)
3092 return (rc);
3093
3094 if (!hw_all_ok(sc)) {
3095 rc = ENXIO;
3096 goto fail;
3097 }
3098
3099 if (if_getflags(ifp) & IFF_UP) {
3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3101 flags = vi->if_flags;
3102 if ((if_getflags(ifp) ^ flags) &
3103 (IFF_PROMISC | IFF_ALLMULTI)) {
3104 rc = update_mac_settings(ifp,
3105 XGMAC_PROMISC | XGMAC_ALLMULTI);
3106 }
3107 } else {
3108 rc = cxgbe_init_synchronized(vi);
3109 }
3110 vi->if_flags = if_getflags(ifp);
3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3112 rc = cxgbe_uninit_synchronized(vi);
3113 }
3114 end_synchronized_op(sc, 0);
3115 break;
3116
3117 case SIOCADDMULTI:
3118 case SIOCDELMULTI:
3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3120 if (rc)
3121 return (rc);
3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3124 end_synchronized_op(sc, 0);
3125 break;
3126
3127 case SIOCSIFCAP:
3128 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3129 if (rc)
3130 return (rc);
3131
3132 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3133 if (mask & IFCAP_TXCSUM) {
3134 if_togglecapenable(ifp, IFCAP_TXCSUM);
3135 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3136
3137 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3138 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3139 mask &= ~IFCAP_TSO4;
3140 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3141 if_printf(ifp,
3142 "tso4 disabled due to -txcsum.\n");
3143 }
3144 }
3145 if (mask & IFCAP_TXCSUM_IPV6) {
3146 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3147 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3148
3149 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3150 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3151 mask &= ~IFCAP_TSO6;
3152 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3153 if_printf(ifp,
3154 "tso6 disabled due to -txcsum6.\n");
3155 }
3156 }
3157 if (mask & IFCAP_RXCSUM)
3158 if_togglecapenable(ifp, IFCAP_RXCSUM);
3159 if (mask & IFCAP_RXCSUM_IPV6)
3160 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3161
3162 /*
3163 * Note that we leave CSUM_TSO alone (it is always set). The
3164 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3165 * sending a TSO request our way, so it's sufficient to toggle
3166 * IFCAP_TSOx only.
3167 */
3168 if (mask & IFCAP_TSO4) {
3169 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3170 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3171 if_printf(ifp, "enable txcsum first.\n");
3172 rc = EAGAIN;
3173 goto fail;
3174 }
3175 if_togglecapenable(ifp, IFCAP_TSO4);
3176 }
3177 if (mask & IFCAP_TSO6) {
3178 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3179 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3180 if_printf(ifp, "enable txcsum6 first.\n");
3181 rc = EAGAIN;
3182 goto fail;
3183 }
3184 if_togglecapenable(ifp, IFCAP_TSO6);
3185 }
3186 if (mask & IFCAP_LRO) {
3187 #if defined(INET) || defined(INET6)
3188 int i;
3189 struct sge_rxq *rxq;
3190
3191 if_togglecapenable(ifp, IFCAP_LRO);
3192 for_each_rxq(vi, i, rxq) {
3193 if (if_getcapenable(ifp) & IFCAP_LRO)
3194 rxq->iq.flags |= IQ_LRO_ENABLED;
3195 else
3196 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3197 }
3198 #endif
3199 }
3200 #ifdef TCP_OFFLOAD
3201 if (mask & IFCAP_TOE) {
3202 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3203
3204 rc = toe_capability(vi, enable);
3205 if (rc != 0)
3206 goto fail;
3207
3208 if_togglecapenable(ifp, mask);
3209 }
3210 #endif
3211 if (mask & IFCAP_VLAN_HWTAGGING) {
3212 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3213 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3214 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3215 }
3216 if (mask & IFCAP_VLAN_MTU) {
3217 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3218
3219 /* Need to find out how to disable auto-mtu-inflation */
3220 }
3221 if (mask & IFCAP_VLAN_HWTSO)
3222 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3223 if (mask & IFCAP_VLAN_HWCSUM)
3224 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3225 #ifdef RATELIMIT
3226 if (mask & IFCAP_TXRTLMT)
3227 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3228 #endif
3229 if (mask & IFCAP_HWRXTSTMP) {
3230 int i;
3231 struct sge_rxq *rxq;
3232
3233 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3234 for_each_rxq(vi, i, rxq) {
3235 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3236 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3237 else
3238 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3239 }
3240 }
3241 if (mask & IFCAP_MEXTPG)
3242 if_togglecapenable(ifp, IFCAP_MEXTPG);
3243
3244 #ifdef KERN_TLS
3245 if (mask & IFCAP_TXTLS) {
3246 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3247
3248 rc = ktls_capability(sc, enable);
3249 if (rc != 0)
3250 goto fail;
3251
3252 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3253 }
3254 #endif
3255 if (mask & IFCAP_VXLAN_HWCSUM) {
3256 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3257 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3258 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3259 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3260 }
3261 if (mask & IFCAP_VXLAN_HWTSO) {
3262 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3263 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3264 CSUM_INNER_IP_TSO);
3265 }
3266
3267 #ifdef VLAN_CAPABILITIES
3268 VLAN_CAPABILITIES(ifp);
3269 #endif
3270 fail:
3271 end_synchronized_op(sc, 0);
3272 break;
3273
3274 case SIOCSIFMEDIA:
3275 case SIOCGIFMEDIA:
3276 case SIOCGIFXMEDIA:
3277 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3278 break;
3279
3280 case SIOCGI2C: {
3281 struct ifi2creq i2c;
3282
3283 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3284 if (rc != 0)
3285 break;
3286 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3287 rc = EPERM;
3288 break;
3289 }
3290 if (i2c.len > sizeof(i2c.data)) {
3291 rc = EINVAL;
3292 break;
3293 }
3294 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3295 if (rc)
3296 return (rc);
3297 if (!hw_all_ok(sc))
3298 rc = ENXIO;
3299 else
3300 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3301 i2c.offset, i2c.len, &i2c.data[0]);
3302 end_synchronized_op(sc, 0);
3303 if (rc == 0)
3304 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3305 break;
3306 }
3307
3308 default:
3309 rc = ether_ioctl(ifp, cmd, data);
3310 }
3311
3312 return (rc);
3313 }
3314
3315 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3316 cxgbe_transmit(if_t ifp, struct mbuf *m)
3317 {
3318 struct vi_info *vi = if_getsoftc(ifp);
3319 struct port_info *pi = vi->pi;
3320 struct adapter *sc;
3321 struct sge_txq *txq;
3322 void *items[1];
3323 int rc;
3324
3325 M_ASSERTPKTHDR(m);
3326 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3327 #if defined(KERN_TLS) || defined(RATELIMIT)
3328 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3329 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3330 #endif
3331
3332 if (__predict_false(pi->link_cfg.link_ok == false)) {
3333 m_freem(m);
3334 return (ENETDOWN);
3335 }
3336
3337 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3338 if (__predict_false(rc != 0)) {
3339 if (__predict_true(rc == EINPROGRESS)) {
3340 /* queued by parse_pkt */
3341 MPASS(m != NULL);
3342 return (0);
3343 }
3344
3345 MPASS(m == NULL); /* was freed already */
3346 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3347 return (rc);
3348 }
3349
3350 /* Select a txq. */
3351 sc = vi->adapter;
3352 txq = &sc->sge.txq[vi->first_txq];
3353 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3354 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3355 vi->rsrv_noflowq);
3356
3357 items[0] = m;
3358 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3359 if (__predict_false(rc != 0))
3360 m_freem(m);
3361
3362 return (rc);
3363 }
3364
3365 static void
cxgbe_qflush(if_t ifp)3366 cxgbe_qflush(if_t ifp)
3367 {
3368 struct vi_info *vi = if_getsoftc(ifp);
3369 struct sge_txq *txq;
3370 int i;
3371
3372 /* queues do not exist if !VI_INIT_DONE. */
3373 if (vi->flags & VI_INIT_DONE) {
3374 for_each_txq(vi, i, txq) {
3375 TXQ_LOCK(txq);
3376 txq->eq.flags |= EQ_QFLUSH;
3377 TXQ_UNLOCK(txq);
3378 while (!mp_ring_is_idle(txq->r)) {
3379 mp_ring_check_drainage(txq->r, 4096);
3380 pause("qflush", 1);
3381 }
3382 TXQ_LOCK(txq);
3383 txq->eq.flags &= ~EQ_QFLUSH;
3384 TXQ_UNLOCK(txq);
3385 }
3386 }
3387 if_qflush(ifp);
3388 }
3389
3390 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3391 vi_get_counter(if_t ifp, ift_counter c)
3392 {
3393 struct vi_info *vi = if_getsoftc(ifp);
3394 struct fw_vi_stats_vf *s = &vi->stats;
3395
3396 mtx_lock(&vi->tick_mtx);
3397 vi_refresh_stats(vi);
3398 mtx_unlock(&vi->tick_mtx);
3399
3400 switch (c) {
3401 case IFCOUNTER_IPACKETS:
3402 return (s->rx_bcast_frames + s->rx_mcast_frames +
3403 s->rx_ucast_frames);
3404 case IFCOUNTER_IERRORS:
3405 return (s->rx_err_frames);
3406 case IFCOUNTER_OPACKETS:
3407 return (s->tx_bcast_frames + s->tx_mcast_frames +
3408 s->tx_ucast_frames + s->tx_offload_frames);
3409 case IFCOUNTER_OERRORS:
3410 return (s->tx_drop_frames);
3411 case IFCOUNTER_IBYTES:
3412 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3413 s->rx_ucast_bytes);
3414 case IFCOUNTER_OBYTES:
3415 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3416 s->tx_ucast_bytes + s->tx_offload_bytes);
3417 case IFCOUNTER_IMCASTS:
3418 return (s->rx_mcast_frames);
3419 case IFCOUNTER_OMCASTS:
3420 return (s->tx_mcast_frames);
3421 case IFCOUNTER_OQDROPS: {
3422 uint64_t drops;
3423
3424 drops = 0;
3425 if (vi->flags & VI_INIT_DONE) {
3426 int i;
3427 struct sge_txq *txq;
3428
3429 for_each_txq(vi, i, txq)
3430 drops += counter_u64_fetch(txq->r->dropped);
3431 }
3432
3433 return (drops);
3434
3435 }
3436
3437 default:
3438 return (if_get_counter_default(ifp, c));
3439 }
3440 }
3441
3442 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3443 cxgbe_get_counter(if_t ifp, ift_counter c)
3444 {
3445 struct vi_info *vi = if_getsoftc(ifp);
3446 struct port_info *pi = vi->pi;
3447 struct port_stats *s = &pi->stats;
3448
3449 mtx_lock(&vi->tick_mtx);
3450 cxgbe_refresh_stats(vi);
3451 mtx_unlock(&vi->tick_mtx);
3452
3453 switch (c) {
3454 case IFCOUNTER_IPACKETS:
3455 return (s->rx_frames);
3456
3457 case IFCOUNTER_IERRORS:
3458 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3459 s->rx_fcs_err + s->rx_len_err);
3460
3461 case IFCOUNTER_OPACKETS:
3462 return (s->tx_frames);
3463
3464 case IFCOUNTER_OERRORS:
3465 return (s->tx_error_frames);
3466
3467 case IFCOUNTER_IBYTES:
3468 return (s->rx_octets);
3469
3470 case IFCOUNTER_OBYTES:
3471 return (s->tx_octets);
3472
3473 case IFCOUNTER_IMCASTS:
3474 return (s->rx_mcast_frames);
3475
3476 case IFCOUNTER_OMCASTS:
3477 return (s->tx_mcast_frames);
3478
3479 case IFCOUNTER_IQDROPS:
3480 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3481 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3482 s->rx_trunc3 + pi->tnl_cong_drops);
3483
3484 case IFCOUNTER_OQDROPS: {
3485 uint64_t drops;
3486
3487 drops = s->tx_drop;
3488 if (vi->flags & VI_INIT_DONE) {
3489 int i;
3490 struct sge_txq *txq;
3491
3492 for_each_txq(vi, i, txq)
3493 drops += counter_u64_fetch(txq->r->dropped);
3494 }
3495
3496 return (drops);
3497
3498 }
3499
3500 default:
3501 return (if_get_counter_default(ifp, c));
3502 }
3503 }
3504
3505 #if defined(KERN_TLS) || defined(RATELIMIT)
3506 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3507 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3508 struct m_snd_tag **pt)
3509 {
3510 int error;
3511
3512 switch (params->hdr.type) {
3513 #ifdef RATELIMIT
3514 case IF_SND_TAG_TYPE_RATE_LIMIT:
3515 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3516 break;
3517 #endif
3518 #ifdef KERN_TLS
3519 case IF_SND_TAG_TYPE_TLS:
3520 {
3521 struct vi_info *vi = if_getsoftc(ifp);
3522
3523 if (is_t6(vi->pi->adapter))
3524 error = t6_tls_tag_alloc(ifp, params, pt);
3525 else
3526 error = t7_tls_tag_alloc(ifp, params, pt);
3527 break;
3528 }
3529 #endif
3530 default:
3531 error = EOPNOTSUPP;
3532 }
3533 return (error);
3534 }
3535 #endif
3536
3537 /*
3538 * The kernel picks a media from the list we had provided but we still validate
3539 * the requeste.
3540 */
3541 int
cxgbe_media_change(if_t ifp)3542 cxgbe_media_change(if_t ifp)
3543 {
3544 struct vi_info *vi = if_getsoftc(ifp);
3545 struct port_info *pi = vi->pi;
3546 struct ifmedia *ifm = &pi->media;
3547 struct link_config *lc = &pi->link_cfg;
3548 struct adapter *sc = pi->adapter;
3549 int rc;
3550
3551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3552 if (rc != 0)
3553 return (rc);
3554 PORT_LOCK(pi);
3555 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3556 /* ifconfig .. media autoselect */
3557 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3558 rc = ENOTSUP; /* AN not supported by transceiver */
3559 goto done;
3560 }
3561 lc->requested_aneg = AUTONEG_ENABLE;
3562 lc->requested_speed = 0;
3563 lc->requested_fc |= PAUSE_AUTONEG;
3564 } else {
3565 lc->requested_aneg = AUTONEG_DISABLE;
3566 lc->requested_speed =
3567 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3568 lc->requested_fc = 0;
3569 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3570 lc->requested_fc |= PAUSE_RX;
3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3572 lc->requested_fc |= PAUSE_TX;
3573 }
3574 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3575 fixup_link_config(pi);
3576 rc = apply_link_config(pi);
3577 }
3578 done:
3579 PORT_UNLOCK(pi);
3580 end_synchronized_op(sc, 0);
3581 return (rc);
3582 }
3583
3584 /*
3585 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3586 * given speed.
3587 */
3588 static int
port_mword(struct port_info * pi,uint32_t speed)3589 port_mword(struct port_info *pi, uint32_t speed)
3590 {
3591
3592 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3593 MPASS(powerof2(speed));
3594
3595 switch(pi->port_type) {
3596 case FW_PORT_TYPE_BT_SGMII:
3597 case FW_PORT_TYPE_BT_XFI:
3598 case FW_PORT_TYPE_BT_XAUI:
3599 /* BaseT */
3600 switch (speed) {
3601 case FW_PORT_CAP32_SPEED_100M:
3602 return (IFM_100_T);
3603 case FW_PORT_CAP32_SPEED_1G:
3604 return (IFM_1000_T);
3605 case FW_PORT_CAP32_SPEED_10G:
3606 return (IFM_10G_T);
3607 }
3608 break;
3609 case FW_PORT_TYPE_KX4:
3610 if (speed == FW_PORT_CAP32_SPEED_10G)
3611 return (IFM_10G_KX4);
3612 break;
3613 case FW_PORT_TYPE_CX4:
3614 if (speed == FW_PORT_CAP32_SPEED_10G)
3615 return (IFM_10G_CX4);
3616 break;
3617 case FW_PORT_TYPE_KX:
3618 if (speed == FW_PORT_CAP32_SPEED_1G)
3619 return (IFM_1000_KX);
3620 break;
3621 case FW_PORT_TYPE_KR:
3622 case FW_PORT_TYPE_BP_AP:
3623 case FW_PORT_TYPE_BP4_AP:
3624 case FW_PORT_TYPE_BP40_BA:
3625 case FW_PORT_TYPE_KR4_100G:
3626 case FW_PORT_TYPE_KR_SFP28:
3627 case FW_PORT_TYPE_KR_XLAUI:
3628 switch (speed) {
3629 case FW_PORT_CAP32_SPEED_1G:
3630 return (IFM_1000_KX);
3631 case FW_PORT_CAP32_SPEED_10G:
3632 return (IFM_10G_KR);
3633 case FW_PORT_CAP32_SPEED_25G:
3634 return (IFM_25G_KR);
3635 case FW_PORT_CAP32_SPEED_40G:
3636 return (IFM_40G_KR4);
3637 case FW_PORT_CAP32_SPEED_50G:
3638 return (IFM_50G_KR2);
3639 case FW_PORT_CAP32_SPEED_100G:
3640 return (IFM_100G_KR4);
3641 }
3642 break;
3643 case FW_PORT_TYPE_FIBER_XFI:
3644 case FW_PORT_TYPE_FIBER_XAUI:
3645 case FW_PORT_TYPE_SFP:
3646 case FW_PORT_TYPE_QSFP_10G:
3647 case FW_PORT_TYPE_QSA:
3648 case FW_PORT_TYPE_QSFP:
3649 case FW_PORT_TYPE_CR4_QSFP:
3650 case FW_PORT_TYPE_CR_QSFP:
3651 case FW_PORT_TYPE_CR2_QSFP:
3652 case FW_PORT_TYPE_SFP28:
3653 case FW_PORT_TYPE_SFP56:
3654 case FW_PORT_TYPE_QSFP56:
3655 /* Pluggable transceiver */
3656 switch (pi->mod_type) {
3657 case FW_PORT_MOD_TYPE_LR:
3658 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3659 switch (speed) {
3660 case FW_PORT_CAP32_SPEED_1G:
3661 return (IFM_1000_LX);
3662 case FW_PORT_CAP32_SPEED_10G:
3663 return (IFM_10G_LR);
3664 case FW_PORT_CAP32_SPEED_25G:
3665 return (IFM_25G_LR);
3666 case FW_PORT_CAP32_SPEED_40G:
3667 return (IFM_40G_LR4);
3668 case FW_PORT_CAP32_SPEED_50G:
3669 return (IFM_50G_LR2);
3670 case FW_PORT_CAP32_SPEED_100G:
3671 return (IFM_100G_LR4);
3672 case FW_PORT_CAP32_SPEED_200G:
3673 return (IFM_200G_LR4);
3674 }
3675 break;
3676 case FW_PORT_MOD_TYPE_SR:
3677 switch (speed) {
3678 case FW_PORT_CAP32_SPEED_1G:
3679 return (IFM_1000_SX);
3680 case FW_PORT_CAP32_SPEED_10G:
3681 return (IFM_10G_SR);
3682 case FW_PORT_CAP32_SPEED_25G:
3683 return (IFM_25G_SR);
3684 case FW_PORT_CAP32_SPEED_40G:
3685 return (IFM_40G_SR4);
3686 case FW_PORT_CAP32_SPEED_50G:
3687 return (IFM_50G_SR2);
3688 case FW_PORT_CAP32_SPEED_100G:
3689 return (IFM_100G_SR4);
3690 case FW_PORT_CAP32_SPEED_200G:
3691 return (IFM_200G_SR4);
3692 }
3693 break;
3694 case FW_PORT_MOD_TYPE_ER:
3695 if (speed == FW_PORT_CAP32_SPEED_10G)
3696 return (IFM_10G_ER);
3697 break;
3698 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3699 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3700 switch (speed) {
3701 case FW_PORT_CAP32_SPEED_1G:
3702 return (IFM_1000_CX);
3703 case FW_PORT_CAP32_SPEED_10G:
3704 return (IFM_10G_TWINAX);
3705 case FW_PORT_CAP32_SPEED_25G:
3706 return (IFM_25G_CR);
3707 case FW_PORT_CAP32_SPEED_40G:
3708 return (IFM_40G_CR4);
3709 case FW_PORT_CAP32_SPEED_50G:
3710 return (IFM_50G_CR2);
3711 case FW_PORT_CAP32_SPEED_100G:
3712 return (IFM_100G_CR4);
3713 case FW_PORT_CAP32_SPEED_200G:
3714 return (IFM_200G_CR4_PAM4);
3715 }
3716 break;
3717 case FW_PORT_MOD_TYPE_LRM:
3718 if (speed == FW_PORT_CAP32_SPEED_10G)
3719 return (IFM_10G_LRM);
3720 break;
3721 case FW_PORT_MOD_TYPE_DR:
3722 if (speed == FW_PORT_CAP32_SPEED_100G)
3723 return (IFM_100G_DR);
3724 if (speed == FW_PORT_CAP32_SPEED_200G)
3725 return (IFM_200G_DR4);
3726 break;
3727 case FW_PORT_MOD_TYPE_NA:
3728 MPASS(0); /* Not pluggable? */
3729 /* fall throough */
3730 case FW_PORT_MOD_TYPE_ERROR:
3731 case FW_PORT_MOD_TYPE_UNKNOWN:
3732 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3733 break;
3734 case FW_PORT_MOD_TYPE_NONE:
3735 return (IFM_NONE);
3736 }
3737 break;
3738 case FW_PORT_TYPE_NONE:
3739 return (IFM_NONE);
3740 }
3741
3742 return (IFM_UNKNOWN);
3743 }
3744
3745 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3746 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3747 {
3748 struct vi_info *vi = if_getsoftc(ifp);
3749 struct port_info *pi = vi->pi;
3750 struct adapter *sc = pi->adapter;
3751 struct link_config *lc = &pi->link_cfg;
3752
3753 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3754 return;
3755 PORT_LOCK(pi);
3756
3757 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3758 /*
3759 * If all the interfaces are administratively down the firmware
3760 * does not report transceiver changes. Refresh port info here
3761 * so that ifconfig displays accurate ifmedia at all times.
3762 * This is the only reason we have a synchronized op in this
3763 * function. Just PORT_LOCK would have been enough otherwise.
3764 */
3765 t4_update_port_info(pi);
3766 build_medialist(pi);
3767 }
3768
3769 /* ifm_status */
3770 ifmr->ifm_status = IFM_AVALID;
3771 if (lc->link_ok == false)
3772 goto done;
3773 ifmr->ifm_status |= IFM_ACTIVE;
3774
3775 /* ifm_active */
3776 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3777 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3778 if (lc->fc & PAUSE_RX)
3779 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3780 if (lc->fc & PAUSE_TX)
3781 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3782 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3783 done:
3784 PORT_UNLOCK(pi);
3785 end_synchronized_op(sc, 0);
3786 }
3787
3788 static int
vcxgbe_probe(device_t dev)3789 vcxgbe_probe(device_t dev)
3790 {
3791 struct vi_info *vi = device_get_softc(dev);
3792
3793 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3794 vi - vi->pi->vi);
3795
3796 return (BUS_PROBE_DEFAULT);
3797 }
3798
3799 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3800 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3801 {
3802 int func, index, rc;
3803 uint32_t param, val;
3804
3805 ASSERT_SYNCHRONIZED_OP(sc);
3806
3807 index = vi - pi->vi;
3808 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3809 KASSERT(index < nitems(vi_mac_funcs),
3810 ("%s: VI %s doesn't have a MAC func", __func__,
3811 device_get_nameunit(vi->dev)));
3812 func = vi_mac_funcs[index];
3813 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1,
3814 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3815 if (rc < 0) {
3816 CH_ERR(vi, "failed to allocate virtual interface %d"
3817 "for port %d: %d\n", index, pi->port_id, -rc);
3818 return (-rc);
3819 }
3820 vi->viid = rc;
3821
3822 if (vi->rss_size == 1) {
3823 /*
3824 * This VI didn't get a slice of the RSS table. Reduce the
3825 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3826 * configuration file (nvi, rssnvi for this PF) if this is a
3827 * problem.
3828 */
3829 device_printf(vi->dev, "RSS table not available.\n");
3830 vi->rss_base = 0xffff;
3831
3832 return (0);
3833 }
3834
3835 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3836 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3837 V_FW_PARAMS_PARAM_YZ(vi->viid);
3838 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3839 if (rc)
3840 vi->rss_base = 0xffff;
3841 else {
3842 MPASS((val >> 16) == vi->rss_size);
3843 vi->rss_base = val & 0xffff;
3844 }
3845
3846 return (0);
3847 }
3848
3849 static int
vcxgbe_attach(device_t dev)3850 vcxgbe_attach(device_t dev)
3851 {
3852 struct vi_info *vi;
3853 struct port_info *pi;
3854 struct adapter *sc;
3855 int rc;
3856
3857 vi = device_get_softc(dev);
3858 pi = vi->pi;
3859 sc = pi->adapter;
3860
3861 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3862 if (rc)
3863 return (rc);
3864 rc = alloc_extra_vi(sc, pi, vi);
3865 end_synchronized_op(sc, 0);
3866 if (rc)
3867 return (rc);
3868
3869 cxgbe_vi_attach(dev, vi);
3870
3871 return (0);
3872 }
3873
3874 static int
vcxgbe_detach(device_t dev)3875 vcxgbe_detach(device_t dev)
3876 {
3877 struct vi_info *vi;
3878 struct adapter *sc;
3879
3880 vi = device_get_softc(dev);
3881 sc = vi->adapter;
3882
3883 begin_vi_detach(sc, vi);
3884 cxgbe_vi_detach(vi);
3885 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3886 end_vi_detach(sc, vi);
3887
3888 return (0);
3889 }
3890
3891 static struct callout fatal_callout;
3892 static struct taskqueue *reset_tq;
3893
3894 static void
delayed_panic(void * arg)3895 delayed_panic(void *arg)
3896 {
3897 struct adapter *sc = arg;
3898
3899 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3900 }
3901
3902 static void
fatal_error_task(void * arg,int pending)3903 fatal_error_task(void *arg, int pending)
3904 {
3905 struct adapter *sc = arg;
3906 int rc;
3907
3908 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3909 dump_cim_regs(sc);
3910 dump_cimla(sc);
3911 dump_devlog(sc);
3912 }
3913
3914 if (t4_reset_on_fatal_err) {
3915 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3916 rc = reset_adapter(sc);
3917 if (rc == 0 && t4_panic_on_fatal_err) {
3918 CH_ALERT(sc, "reset was successful, "
3919 "system will NOT panic.\n");
3920 return;
3921 }
3922 }
3923
3924 if (t4_panic_on_fatal_err) {
3925 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3926 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3927 }
3928 }
3929
3930 void
t4_fatal_err(struct adapter * sc,bool fw_error)3931 t4_fatal_err(struct adapter *sc, bool fw_error)
3932 {
3933 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3934
3935 stop_adapter(sc);
3936 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3937 return;
3938 if (fw_error) {
3939 /*
3940 * We are here because of a firmware error/timeout and not
3941 * because of a hardware interrupt. It is possible (although
3942 * not very likely) that an error interrupt was also raised but
3943 * this thread ran first and inhibited t4_intr_err. We walk the
3944 * main INT_CAUSE registers here to make sure we haven't missed
3945 * anything interesting.
3946 */
3947 t4_slow_intr_handler(sc, verbose);
3948 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3949 }
3950 t4_report_fw_error(sc);
3951 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3952 device_get_nameunit(sc->dev), fw_error);
3953 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3954 }
3955
3956 void
t4_add_adapter(struct adapter * sc)3957 t4_add_adapter(struct adapter *sc)
3958 {
3959 sx_xlock(&t4_list_lock);
3960 SLIST_INSERT_HEAD(&t4_list, sc, link);
3961 sx_xunlock(&t4_list_lock);
3962 }
3963
3964 int
t4_map_bars_0_and_4(struct adapter * sc)3965 t4_map_bars_0_and_4(struct adapter *sc)
3966 {
3967 sc->regs_rid = PCIR_BAR(0);
3968 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3969 &sc->regs_rid, RF_ACTIVE);
3970 if (sc->regs_res == NULL) {
3971 device_printf(sc->dev, "cannot map registers.\n");
3972 return (ENXIO);
3973 }
3974 sc->bt = rman_get_bustag(sc->regs_res);
3975 sc->bh = rman_get_bushandle(sc->regs_res);
3976 sc->mmio_len = rman_get_size(sc->regs_res);
3977 setbit(&sc->doorbells, DOORBELL_KDB);
3978
3979 sc->msix_rid = PCIR_BAR(4);
3980 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3981 &sc->msix_rid, RF_ACTIVE);
3982 if (sc->msix_res == NULL) {
3983 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3984 return (ENXIO);
3985 }
3986
3987 return (0);
3988 }
3989
3990 int
t4_map_bar_2(struct adapter * sc)3991 t4_map_bar_2(struct adapter *sc)
3992 {
3993
3994 /*
3995 * T4: only iWARP driver uses the userspace doorbells. There is no need
3996 * to map it if RDMA is disabled.
3997 */
3998 if (is_t4(sc) && sc->rdmacaps == 0)
3999 return (0);
4000
4001 sc->udbs_rid = PCIR_BAR(2);
4002 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4003 &sc->udbs_rid, RF_ACTIVE);
4004 if (sc->udbs_res == NULL) {
4005 device_printf(sc->dev, "cannot map doorbell BAR.\n");
4006 return (ENXIO);
4007 }
4008 sc->udbs_base = rman_get_virtual(sc->udbs_res);
4009
4010 if (chip_id(sc) >= CHELSIO_T5) {
4011 setbit(&sc->doorbells, DOORBELL_UDB);
4012 #if defined(__i386__) || defined(__amd64__)
4013 if (t5_write_combine) {
4014 int rc, mode;
4015
4016 /*
4017 * Enable write combining on BAR2. This is the
4018 * userspace doorbell BAR and is split into 128B
4019 * (UDBS_SEG_SIZE) doorbell regions, each associated
4020 * with an egress queue. The first 64B has the doorbell
4021 * and the second 64B can be used to submit a tx work
4022 * request with an implicit doorbell.
4023 */
4024
4025 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
4026 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
4027 if (rc == 0) {
4028 clrbit(&sc->doorbells, DOORBELL_UDB);
4029 setbit(&sc->doorbells, DOORBELL_WCWR);
4030 setbit(&sc->doorbells, DOORBELL_UDBWC);
4031 } else {
4032 device_printf(sc->dev,
4033 "couldn't enable write combining: %d\n",
4034 rc);
4035 }
4036
4037 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
4038 t4_write_reg(sc, A_SGE_STAT_CFG,
4039 V_STATSOURCE_T5(7) | mode);
4040 }
4041 #endif
4042 }
4043 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
4044
4045 return (0);
4046 }
4047
4048 int
t4_adj_doorbells(struct adapter * sc)4049 t4_adj_doorbells(struct adapter *sc)
4050 {
4051 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
4052 sc->doorbells &= t4_doorbells_allowed;
4053 return (0);
4054 }
4055 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
4056 sc->doorbells, t4_doorbells_allowed);
4057 return (EINVAL);
4058 }
4059
4060 struct memwin_init {
4061 uint32_t base;
4062 uint32_t aperture;
4063 };
4064
4065 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
4066 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4067 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4068 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
4069 };
4070
4071 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
4072 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4073 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4074 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
4075 };
4076
4077 static void
setup_memwin(struct adapter * sc)4078 setup_memwin(struct adapter *sc)
4079 {
4080 const struct memwin_init *mw_init;
4081 struct memwin *mw;
4082 int i;
4083 uint32_t bar0, reg;
4084
4085 if (is_t4(sc)) {
4086 /*
4087 * Read low 32b of bar0 indirectly via the hardware backdoor
4088 * mechanism. Works from within PCI passthrough environments
4089 * too, where rman_get_start() can return a different value. We
4090 * need to program the T4 memory window decoders with the actual
4091 * addresses that will be coming across the PCIe link.
4092 */
4093 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
4094 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
4095
4096 mw_init = &t4_memwin[0];
4097 } else {
4098 /* T5+ use the relative offset inside the PCIe BAR */
4099 bar0 = 0;
4100
4101 mw_init = &t5_memwin[0];
4102 }
4103
4104 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
4105 if (!rw_initialized(&mw->mw_lock)) {
4106 rw_init(&mw->mw_lock, "memory window access");
4107 mw->mw_base = mw_init->base;
4108 mw->mw_aperture = mw_init->aperture;
4109 mw->mw_curpos = 0;
4110 }
4111 reg = chip_id(sc) > CHELSIO_T6 ?
4112 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) :
4113 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i);
4114 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) |
4115 V_WINDOW(ilog2(mw->mw_aperture) - 10));
4116 rw_wlock(&mw->mw_lock);
4117 position_memwin(sc, i, mw->mw_curpos);
4118 rw_wunlock(&mw->mw_lock);
4119 }
4120
4121 /* flush */
4122 t4_read_reg(sc, reg);
4123 }
4124
4125 /*
4126 * Positions the memory window at the given address in the card's address space.
4127 * There are some alignment requirements and the actual position may be at an
4128 * address prior to the requested address. mw->mw_curpos always has the actual
4129 * position of the window.
4130 */
4131 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4132 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4133 {
4134 struct memwin *mw;
4135 uint32_t pf, reg, val;
4136
4137 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4138 mw = &sc->memwin[idx];
4139 rw_assert(&mw->mw_lock, RA_WLOCKED);
4140
4141 if (is_t4(sc)) {
4142 pf = 0;
4143 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4144 } else {
4145 pf = V_PFNUM(sc->pf);
4146 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4147 }
4148 if (chip_id(sc) > CHELSIO_T6) {
4149 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx);
4150 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf;
4151 } else {
4152 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4153 val = mw->mw_curpos | pf;
4154 }
4155 t4_write_reg(sc, reg, val);
4156 t4_read_reg(sc, reg); /* flush */
4157 }
4158
4159 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4160 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4161 int len, int rw)
4162 {
4163 struct memwin *mw;
4164 uint32_t mw_end, v;
4165
4166 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4167
4168 /* Memory can only be accessed in naturally aligned 4 byte units */
4169 if (addr & 3 || len & 3 || len <= 0)
4170 return (EINVAL);
4171
4172 mw = &sc->memwin[idx];
4173 while (len > 0) {
4174 rw_rlock(&mw->mw_lock);
4175 mw_end = mw->mw_curpos + mw->mw_aperture;
4176 if (addr >= mw_end || addr < mw->mw_curpos) {
4177 /* Will need to reposition the window */
4178 if (!rw_try_upgrade(&mw->mw_lock)) {
4179 rw_runlock(&mw->mw_lock);
4180 rw_wlock(&mw->mw_lock);
4181 }
4182 rw_assert(&mw->mw_lock, RA_WLOCKED);
4183 position_memwin(sc, idx, addr);
4184 rw_downgrade(&mw->mw_lock);
4185 mw_end = mw->mw_curpos + mw->mw_aperture;
4186 }
4187 rw_assert(&mw->mw_lock, RA_RLOCKED);
4188 while (addr < mw_end && len > 0) {
4189 if (rw == 0) {
4190 v = t4_read_reg(sc, mw->mw_base + addr -
4191 mw->mw_curpos);
4192 *val++ = le32toh(v);
4193 } else {
4194 v = *val++;
4195 t4_write_reg(sc, mw->mw_base + addr -
4196 mw->mw_curpos, htole32(v));
4197 }
4198 addr += 4;
4199 len -= 4;
4200 }
4201 rw_runlock(&mw->mw_lock);
4202 }
4203
4204 return (0);
4205 }
4206
4207 CTASSERT(M_TID_COOKIE == M_COOKIE);
4208 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4209
4210 static void
t4_init_atid_table(struct adapter * sc)4211 t4_init_atid_table(struct adapter *sc)
4212 {
4213 struct tid_info *t;
4214 int i;
4215
4216 t = &sc->tids;
4217 if (t->natids == 0)
4218 return;
4219
4220 MPASS(t->atid_tab == NULL);
4221
4222 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4223 M_ZERO | M_WAITOK);
4224 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4225 t->afree = t->atid_tab;
4226 t->atids_in_use = 0;
4227 t->atid_alloc_stopped = false;
4228 for (i = 1; i < t->natids; i++)
4229 t->atid_tab[i - 1].next = &t->atid_tab[i];
4230 t->atid_tab[t->natids - 1].next = NULL;
4231 }
4232
4233 static void
t4_free_atid_table(struct adapter * sc)4234 t4_free_atid_table(struct adapter *sc)
4235 {
4236 struct tid_info *t;
4237
4238 t = &sc->tids;
4239
4240 KASSERT(t->atids_in_use == 0,
4241 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4242
4243 if (mtx_initialized(&t->atid_lock))
4244 mtx_destroy(&t->atid_lock);
4245 free(t->atid_tab, M_CXGBE);
4246 t->atid_tab = NULL;
4247 }
4248
4249 static void
stop_atid_allocator(struct adapter * sc)4250 stop_atid_allocator(struct adapter *sc)
4251 {
4252 struct tid_info *t = &sc->tids;
4253
4254 if (t->natids == 0)
4255 return;
4256 mtx_lock(&t->atid_lock);
4257 t->atid_alloc_stopped = true;
4258 mtx_unlock(&t->atid_lock);
4259 }
4260
4261 static void
restart_atid_allocator(struct adapter * sc)4262 restart_atid_allocator(struct adapter *sc)
4263 {
4264 struct tid_info *t = &sc->tids;
4265
4266 if (t->natids == 0)
4267 return;
4268 mtx_lock(&t->atid_lock);
4269 KASSERT(t->atids_in_use == 0,
4270 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4271 t->atid_alloc_stopped = false;
4272 mtx_unlock(&t->atid_lock);
4273 }
4274
4275 int
alloc_atid(struct adapter * sc,void * ctx)4276 alloc_atid(struct adapter *sc, void *ctx)
4277 {
4278 struct tid_info *t = &sc->tids;
4279 int atid = -1;
4280
4281 mtx_lock(&t->atid_lock);
4282 if (t->afree && !t->atid_alloc_stopped) {
4283 union aopen_entry *p = t->afree;
4284
4285 atid = p - t->atid_tab;
4286 MPASS(atid <= M_TID_TID);
4287 t->afree = p->next;
4288 p->data = ctx;
4289 t->atids_in_use++;
4290 }
4291 mtx_unlock(&t->atid_lock);
4292 return (atid);
4293 }
4294
4295 void *
lookup_atid(struct adapter * sc,int atid)4296 lookup_atid(struct adapter *sc, int atid)
4297 {
4298 struct tid_info *t = &sc->tids;
4299
4300 return (t->atid_tab[atid].data);
4301 }
4302
4303 void
free_atid(struct adapter * sc,int atid)4304 free_atid(struct adapter *sc, int atid)
4305 {
4306 struct tid_info *t = &sc->tids;
4307 union aopen_entry *p = &t->atid_tab[atid];
4308
4309 mtx_lock(&t->atid_lock);
4310 p->next = t->afree;
4311 t->afree = p;
4312 t->atids_in_use--;
4313 mtx_unlock(&t->atid_lock);
4314 }
4315
4316 static void
queue_tid_release(struct adapter * sc,int tid)4317 queue_tid_release(struct adapter *sc, int tid)
4318 {
4319
4320 CXGBE_UNIMPLEMENTED("deferred tid release");
4321 }
4322
4323 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4324 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4325 {
4326 struct wrqe *wr;
4327 struct cpl_tid_release *req;
4328
4329 wr = alloc_wrqe(sizeof(*req), ctrlq);
4330 if (wr == NULL) {
4331 queue_tid_release(sc, tid); /* defer */
4332 return;
4333 }
4334 req = wrtod(wr);
4335
4336 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4337
4338 t4_wrq_tx(sc, wr);
4339 }
4340
4341 static int
t4_range_cmp(const void * a,const void * b)4342 t4_range_cmp(const void *a, const void *b)
4343 {
4344 return ((const struct t4_range *)a)->start -
4345 ((const struct t4_range *)b)->start;
4346 }
4347
4348 /*
4349 * Verify that the memory range specified by the addr/len pair is valid within
4350 * the card's address space.
4351 */
4352 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4353 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4354 {
4355 struct t4_range mem_ranges[4], *r, *next;
4356 uint32_t em, addr_len;
4357 int i, n, remaining;
4358
4359 /* Memory can only be accessed in naturally aligned 4 byte units */
4360 if (addr & 3 || len & 3 || len == 0)
4361 return (EINVAL);
4362
4363 /* Enabled memories */
4364 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4365
4366 r = &mem_ranges[0];
4367 n = 0;
4368 bzero(r, sizeof(mem_ranges));
4369 if (em & F_EDRAM0_ENABLE) {
4370 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4371 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4372 if (r->size > 0) {
4373 r->start = G_EDRAM0_BASE(addr_len) << 20;
4374 if (addr >= r->start &&
4375 addr + len <= r->start + r->size)
4376 return (0);
4377 r++;
4378 n++;
4379 }
4380 }
4381 if (em & F_EDRAM1_ENABLE) {
4382 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4383 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4384 if (r->size > 0) {
4385 r->start = G_EDRAM1_BASE(addr_len) << 20;
4386 if (addr >= r->start &&
4387 addr + len <= r->start + r->size)
4388 return (0);
4389 r++;
4390 n++;
4391 }
4392 }
4393 if (em & F_EXT_MEM_ENABLE) {
4394 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4395 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4396 if (r->size > 0) {
4397 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4398 if (addr >= r->start &&
4399 addr + len <= r->start + r->size)
4400 return (0);
4401 r++;
4402 n++;
4403 }
4404 }
4405 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4406 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4407 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4408 if (r->size > 0) {
4409 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4410 if (addr >= r->start &&
4411 addr + len <= r->start + r->size)
4412 return (0);
4413 r++;
4414 n++;
4415 }
4416 }
4417 MPASS(n <= nitems(mem_ranges));
4418
4419 if (n > 1) {
4420 /* Sort and merge the ranges. */
4421 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4422
4423 /* Start from index 0 and examine the next n - 1 entries. */
4424 r = &mem_ranges[0];
4425 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4426
4427 MPASS(r->size > 0); /* r is a valid entry. */
4428 next = r + 1;
4429 MPASS(next->size > 0); /* and so is the next one. */
4430
4431 while (r->start + r->size >= next->start) {
4432 /* Merge the next one into the current entry. */
4433 r->size = max(r->start + r->size,
4434 next->start + next->size) - r->start;
4435 n--; /* One fewer entry in total. */
4436 if (--remaining == 0)
4437 goto done; /* short circuit */
4438 next++;
4439 }
4440 if (next != r + 1) {
4441 /*
4442 * Some entries were merged into r and next
4443 * points to the first valid entry that couldn't
4444 * be merged.
4445 */
4446 MPASS(next->size > 0); /* must be valid */
4447 memcpy(r + 1, next, remaining * sizeof(*r));
4448 #ifdef INVARIANTS
4449 /*
4450 * This so that the foo->size assertion in the
4451 * next iteration of the loop do the right
4452 * thing for entries that were pulled up and are
4453 * no longer valid.
4454 */
4455 MPASS(n < nitems(mem_ranges));
4456 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4457 sizeof(struct t4_range));
4458 #endif
4459 }
4460 }
4461 done:
4462 /* Done merging the ranges. */
4463 MPASS(n > 0);
4464 r = &mem_ranges[0];
4465 for (i = 0; i < n; i++, r++) {
4466 if (addr >= r->start &&
4467 addr + len <= r->start + r->size)
4468 return (0);
4469 }
4470 }
4471
4472 return (EFAULT);
4473 }
4474
4475 static int
fwmtype_to_hwmtype(int mtype)4476 fwmtype_to_hwmtype(int mtype)
4477 {
4478
4479 switch (mtype) {
4480 case FW_MEMTYPE_EDC0:
4481 return (MEM_EDC0);
4482 case FW_MEMTYPE_EDC1:
4483 return (MEM_EDC1);
4484 case FW_MEMTYPE_EXTMEM:
4485 return (MEM_MC0);
4486 case FW_MEMTYPE_EXTMEM1:
4487 return (MEM_MC1);
4488 default:
4489 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4490 }
4491 }
4492
4493 /*
4494 * Verify that the memory range specified by the memtype/offset/len pair is
4495 * valid and lies entirely within the memtype specified. The global address of
4496 * the start of the range is returned in addr.
4497 */
4498 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4499 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4500 uint32_t *addr)
4501 {
4502 uint32_t em, addr_len, maddr;
4503
4504 /* Memory can only be accessed in naturally aligned 4 byte units */
4505 if (off & 3 || len & 3 || len == 0)
4506 return (EINVAL);
4507
4508 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4509 switch (fwmtype_to_hwmtype(mtype)) {
4510 case MEM_EDC0:
4511 if (!(em & F_EDRAM0_ENABLE))
4512 return (EINVAL);
4513 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4514 maddr = G_EDRAM0_BASE(addr_len) << 20;
4515 break;
4516 case MEM_EDC1:
4517 if (!(em & F_EDRAM1_ENABLE))
4518 return (EINVAL);
4519 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4520 maddr = G_EDRAM1_BASE(addr_len) << 20;
4521 break;
4522 case MEM_MC:
4523 if (!(em & F_EXT_MEM_ENABLE))
4524 return (EINVAL);
4525 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4526 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4527 break;
4528 case MEM_MC1:
4529 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4530 return (EINVAL);
4531 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4532 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4533 break;
4534 default:
4535 return (EINVAL);
4536 }
4537
4538 *addr = maddr + off; /* global address */
4539 return (validate_mem_range(sc, *addr, len));
4540 }
4541
4542 static int
fixup_devlog_params(struct adapter * sc)4543 fixup_devlog_params(struct adapter *sc)
4544 {
4545 struct devlog_params *dparams = &sc->params.devlog;
4546 int rc;
4547
4548 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4549 dparams->size, &dparams->addr);
4550
4551 return (rc);
4552 }
4553
4554 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4555 update_nirq(struct intrs_and_queues *iaq, int nports)
4556 {
4557
4558 iaq->nirq = T4_EXTRA_INTR;
4559 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4560 iaq->nirq += nports * iaq->nofldrxq;
4561 iaq->nirq += nports * (iaq->num_vis - 1) *
4562 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4563 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4564 }
4565
4566 /*
4567 * Adjust requirements to fit the number of interrupts available.
4568 */
4569 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4570 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4571 int navail)
4572 {
4573 int old_nirq;
4574 const int nports = sc->params.nports;
4575
4576 MPASS(nports > 0);
4577 MPASS(navail > 0);
4578
4579 bzero(iaq, sizeof(*iaq));
4580 iaq->intr_type = itype;
4581 iaq->num_vis = t4_num_vis;
4582 iaq->ntxq = t4_ntxq;
4583 iaq->ntxq_vi = t4_ntxq_vi;
4584 iaq->nrxq = t4_nrxq;
4585 iaq->nrxq_vi = t4_nrxq_vi;
4586 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4587 if (is_offload(sc) || is_ethoffload(sc)) {
4588 if (sc->params.tid_qid_sel_mask == 0) {
4589 iaq->nofldtxq = t4_nofldtxq;
4590 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4591 } else {
4592 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores);
4593 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi,
4594 sc->params.ncores);
4595 if (iaq->nofldtxq != t4_nofldtxq)
4596 device_printf(sc->dev,
4597 "nofldtxq updated (%d -> %d) for correct"
4598 " operation with %d firmware cores.\n",
4599 t4_nofldtxq, iaq->nofldtxq,
4600 sc->params.ncores);
4601 if (iaq->num_vis > 1 &&
4602 iaq->nofldtxq_vi != t4_nofldtxq_vi)
4603 device_printf(sc->dev,
4604 "nofldtxq_vi updated (%d -> %d) for correct"
4605 " operation with %d firmware cores.\n",
4606 t4_nofldtxq_vi, iaq->nofldtxq_vi,
4607 sc->params.ncores);
4608 }
4609 }
4610 #endif
4611 #ifdef TCP_OFFLOAD
4612 if (is_offload(sc)) {
4613 iaq->nofldrxq = t4_nofldrxq;
4614 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4615 }
4616 #endif
4617 #ifdef DEV_NETMAP
4618 if (t4_native_netmap & NN_MAIN_VI) {
4619 iaq->nnmtxq = t4_nnmtxq;
4620 iaq->nnmrxq = t4_nnmrxq;
4621 }
4622 if (t4_native_netmap & NN_EXTRA_VI) {
4623 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4624 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4625 }
4626 #endif
4627
4628 update_nirq(iaq, nports);
4629 if (iaq->nirq <= navail &&
4630 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4631 /*
4632 * This is the normal case -- there are enough interrupts for
4633 * everything.
4634 */
4635 goto done;
4636 }
4637
4638 /*
4639 * If extra VIs have been configured try reducing their count and see if
4640 * that works.
4641 */
4642 while (iaq->num_vis > 1) {
4643 iaq->num_vis--;
4644 update_nirq(iaq, nports);
4645 if (iaq->nirq <= navail &&
4646 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4647 device_printf(sc->dev, "virtual interfaces per port "
4648 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4649 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4650 "itype %d, navail %u, nirq %d.\n",
4651 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4652 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4653 itype, navail, iaq->nirq);
4654 goto done;
4655 }
4656 }
4657
4658 /*
4659 * Extra VIs will not be created. Log a message if they were requested.
4660 */
4661 MPASS(iaq->num_vis == 1);
4662 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4663 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4664 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4665 if (iaq->num_vis != t4_num_vis) {
4666 device_printf(sc->dev, "extra virtual interfaces disabled. "
4667 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4668 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4669 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4670 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4671 }
4672
4673 /*
4674 * Keep reducing the number of NIC rx queues to the next lower power of
4675 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4676 * if that works.
4677 */
4678 do {
4679 if (iaq->nrxq > 1) {
4680 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4681 if (iaq->nnmrxq > iaq->nrxq)
4682 iaq->nnmrxq = iaq->nrxq;
4683 }
4684 if (iaq->nofldrxq > 1)
4685 iaq->nofldrxq >>= 1;
4686
4687 old_nirq = iaq->nirq;
4688 update_nirq(iaq, nports);
4689 if (iaq->nirq <= navail &&
4690 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4691 device_printf(sc->dev, "running with reduced number of "
4692 "rx queues because of shortage of interrupts. "
4693 "nrxq=%u, nofldrxq=%u. "
4694 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4695 iaq->nofldrxq, itype, navail, iaq->nirq);
4696 goto done;
4697 }
4698 } while (old_nirq != iaq->nirq);
4699
4700 /* One interrupt for everything. Ugh. */
4701 device_printf(sc->dev, "running with minimal number of queues. "
4702 "itype %d, navail %u.\n", itype, navail);
4703 iaq->nirq = 1;
4704 iaq->nrxq = 1;
4705 iaq->ntxq = 1;
4706 if (iaq->nofldrxq > 0) {
4707 iaq->nofldrxq = 1;
4708 iaq->nofldtxq = 1;
4709 if (sc->params.tid_qid_sel_mask == 0)
4710 iaq->nofldtxq = 1;
4711 else
4712 iaq->nofldtxq = sc->params.ncores;
4713 }
4714 iaq->nnmtxq = 0;
4715 iaq->nnmrxq = 0;
4716 done:
4717 MPASS(iaq->num_vis > 0);
4718 if (iaq->num_vis > 1) {
4719 MPASS(iaq->nrxq_vi > 0);
4720 MPASS(iaq->ntxq_vi > 0);
4721 }
4722 MPASS(iaq->nirq > 0);
4723 MPASS(iaq->nrxq > 0);
4724 MPASS(iaq->ntxq > 0);
4725 if (itype == INTR_MSI)
4726 MPASS(powerof2(iaq->nirq));
4727 if (sc->params.tid_qid_sel_mask != 0)
4728 MPASS(iaq->nofldtxq % sc->params.ncores == 0);
4729 }
4730
4731 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4732 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4733 {
4734 int rc, itype, navail, nalloc;
4735
4736 for (itype = INTR_MSIX; itype; itype >>= 1) {
4737
4738 if ((itype & t4_intr_types) == 0)
4739 continue; /* not allowed */
4740
4741 if (itype == INTR_MSIX)
4742 navail = pci_msix_count(sc->dev);
4743 else if (itype == INTR_MSI)
4744 navail = pci_msi_count(sc->dev);
4745 else
4746 navail = 1;
4747 restart:
4748 if (navail == 0)
4749 continue;
4750
4751 calculate_iaq(sc, iaq, itype, navail);
4752 nalloc = iaq->nirq;
4753 rc = 0;
4754 if (itype == INTR_MSIX)
4755 rc = pci_alloc_msix(sc->dev, &nalloc);
4756 else if (itype == INTR_MSI)
4757 rc = pci_alloc_msi(sc->dev, &nalloc);
4758
4759 if (rc == 0 && nalloc > 0) {
4760 if (nalloc == iaq->nirq)
4761 return (0);
4762
4763 /*
4764 * Didn't get the number requested. Use whatever number
4765 * the kernel is willing to allocate.
4766 */
4767 device_printf(sc->dev, "fewer vectors than requested, "
4768 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4769 itype, iaq->nirq, nalloc);
4770 pci_release_msi(sc->dev);
4771 navail = nalloc;
4772 goto restart;
4773 }
4774
4775 device_printf(sc->dev,
4776 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4777 itype, rc, iaq->nirq, nalloc);
4778 }
4779
4780 device_printf(sc->dev,
4781 "failed to find a usable interrupt type. "
4782 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4783 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4784
4785 return (ENXIO);
4786 }
4787
4788 #define FW_VERSION(chip) ( \
4789 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4790 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4791 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4792 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4793 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4794
4795 /* Just enough of fw_hdr to cover all version info. */
4796 struct fw_h {
4797 __u8 ver;
4798 __u8 chip;
4799 __be16 len512;
4800 __be32 fw_ver;
4801 __be32 tp_microcode_ver;
4802 __u8 intfver_nic;
4803 __u8 intfver_vnic;
4804 __u8 intfver_ofld;
4805 __u8 intfver_ri;
4806 __u8 intfver_iscsipdu;
4807 __u8 intfver_iscsi;
4808 __u8 intfver_fcoepdu;
4809 __u8 intfver_fcoe;
4810 };
4811 /* Spot check a couple of fields. */
4812 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4813 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4814 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4815
4816 struct fw_info {
4817 uint8_t chip;
4818 char *kld_name;
4819 char *fw_mod_name;
4820 struct fw_h fw_h;
4821 } fw_info[] = {
4822 {
4823 .chip = CHELSIO_T4,
4824 .kld_name = "t4fw_cfg",
4825 .fw_mod_name = "t4fw",
4826 .fw_h = {
4827 .chip = FW_HDR_CHIP_T4,
4828 .fw_ver = htobe32(FW_VERSION(T4)),
4829 .intfver_nic = FW_INTFVER(T4, NIC),
4830 .intfver_vnic = FW_INTFVER(T4, VNIC),
4831 .intfver_ofld = FW_INTFVER(T4, OFLD),
4832 .intfver_ri = FW_INTFVER(T4, RI),
4833 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4834 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4835 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4836 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4837 },
4838 }, {
4839 .chip = CHELSIO_T5,
4840 .kld_name = "t5fw_cfg",
4841 .fw_mod_name = "t5fw",
4842 .fw_h = {
4843 .chip = FW_HDR_CHIP_T5,
4844 .fw_ver = htobe32(FW_VERSION(T5)),
4845 .intfver_nic = FW_INTFVER(T5, NIC),
4846 .intfver_vnic = FW_INTFVER(T5, VNIC),
4847 .intfver_ofld = FW_INTFVER(T5, OFLD),
4848 .intfver_ri = FW_INTFVER(T5, RI),
4849 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4850 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4851 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4852 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4853 },
4854 }, {
4855 .chip = CHELSIO_T6,
4856 .kld_name = "t6fw_cfg",
4857 .fw_mod_name = "t6fw",
4858 .fw_h = {
4859 .chip = FW_HDR_CHIP_T6,
4860 .fw_ver = htobe32(FW_VERSION(T6)),
4861 .intfver_nic = FW_INTFVER(T6, NIC),
4862 .intfver_vnic = FW_INTFVER(T6, VNIC),
4863 .intfver_ofld = FW_INTFVER(T6, OFLD),
4864 .intfver_ri = FW_INTFVER(T6, RI),
4865 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4866 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4867 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4868 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4869 },
4870 }, {
4871 .chip = CHELSIO_T7,
4872 .kld_name = "t7fw_cfg",
4873 .fw_mod_name = "t7fw",
4874 .fw_h = {
4875 .chip = FW_HDR_CHIP_T7,
4876 .fw_ver = htobe32(FW_VERSION(T7)),
4877 .intfver_nic = FW_INTFVER(T7, NIC),
4878 .intfver_vnic = FW_INTFVER(T7, VNIC),
4879 .intfver_ofld = FW_INTFVER(T7, OFLD),
4880 .intfver_ri = FW_INTFVER(T7, RI),
4881 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU),
4882 .intfver_iscsi = FW_INTFVER(T7, ISCSI),
4883 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU),
4884 .intfver_fcoe = FW_INTFVER(T7, FCOE),
4885 },
4886 }
4887 };
4888
4889 static struct fw_info *
find_fw_info(int chip)4890 find_fw_info(int chip)
4891 {
4892 int i;
4893
4894 for (i = 0; i < nitems(fw_info); i++) {
4895 if (fw_info[i].chip == chip)
4896 return (&fw_info[i]);
4897 }
4898 return (NULL);
4899 }
4900
4901 /*
4902 * Is the given firmware API compatible with the one the driver was compiled
4903 * with?
4904 */
4905 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4906 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4907 {
4908
4909 /* short circuit if it's the exact same firmware version */
4910 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4911 return (1);
4912
4913 /*
4914 * XXX: Is this too conservative? Perhaps I should limit this to the
4915 * features that are supported in the driver.
4916 */
4917 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4918 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4919 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4920 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4921 return (1);
4922 #undef SAME_INTF
4923
4924 return (0);
4925 }
4926
4927 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4928 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4929 const struct firmware **fw)
4930 {
4931 struct fw_info *fw_info;
4932
4933 *dcfg = NULL;
4934 if (fw != NULL)
4935 *fw = NULL;
4936
4937 fw_info = find_fw_info(chip_id(sc));
4938 if (fw_info == NULL) {
4939 device_printf(sc->dev,
4940 "unable to look up firmware information for chip %d.\n",
4941 chip_id(sc));
4942 return (EINVAL);
4943 }
4944
4945 *dcfg = firmware_get(fw_info->kld_name);
4946 if (*dcfg != NULL) {
4947 if (fw != NULL)
4948 *fw = firmware_get(fw_info->fw_mod_name);
4949 return (0);
4950 }
4951
4952 return (ENOENT);
4953 }
4954
4955 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4956 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4957 const struct firmware *fw)
4958 {
4959
4960 if (fw != NULL)
4961 firmware_put(fw, FIRMWARE_UNLOAD);
4962 if (dcfg != NULL)
4963 firmware_put(dcfg, FIRMWARE_UNLOAD);
4964 }
4965
4966 /*
4967 * Return values:
4968 * 0 means no firmware install attempted.
4969 * ERESTART means a firmware install was attempted and was successful.
4970 * +ve errno means a firmware install was attempted but failed.
4971 */
4972 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4973 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4974 const struct fw_h *drv_fw, const char *reason, int *already)
4975 {
4976 const struct firmware *cfg, *fw;
4977 const uint32_t c = be32toh(card_fw->fw_ver);
4978 uint32_t d, k;
4979 int rc, fw_install;
4980 struct fw_h bundled_fw;
4981 bool load_attempted;
4982
4983 cfg = fw = NULL;
4984 load_attempted = false;
4985 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4986
4987 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4988 if (t4_fw_install < 0) {
4989 rc = load_fw_module(sc, &cfg, &fw);
4990 if (rc != 0 || fw == NULL) {
4991 device_printf(sc->dev,
4992 "failed to load firmware module: %d. cfg %p, fw %p;"
4993 " will use compiled-in firmware version for"
4994 "hw.cxgbe.fw_install checks.\n",
4995 rc, cfg, fw);
4996 } else {
4997 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4998 }
4999 load_attempted = true;
5000 }
5001 d = be32toh(bundled_fw.fw_ver);
5002
5003 if (reason != NULL)
5004 goto install;
5005
5006 if ((sc->flags & FW_OK) == 0) {
5007
5008 if (c == 0xffffffff) {
5009 reason = "missing";
5010 goto install;
5011 }
5012
5013 rc = 0;
5014 goto done;
5015 }
5016
5017 if (!fw_compatible(card_fw, &bundled_fw)) {
5018 reason = "incompatible or unusable";
5019 goto install;
5020 }
5021
5022 if (d > c) {
5023 reason = "older than the version bundled with this driver";
5024 goto install;
5025 }
5026
5027 if (fw_install == 2 && d != c) {
5028 reason = "different than the version bundled with this driver";
5029 goto install;
5030 }
5031
5032 /* No reason to do anything to the firmware already on the card. */
5033 rc = 0;
5034 goto done;
5035
5036 install:
5037 rc = 0;
5038 if ((*already)++)
5039 goto done;
5040
5041 if (fw_install == 0) {
5042 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5043 "but the driver is prohibited from installing a firmware "
5044 "on the card.\n",
5045 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5046 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5047
5048 goto done;
5049 }
5050
5051 /*
5052 * We'll attempt to install a firmware. Load the module first (if it
5053 * hasn't been loaded already).
5054 */
5055 if (!load_attempted) {
5056 rc = load_fw_module(sc, &cfg, &fw);
5057 if (rc != 0 || fw == NULL) {
5058 device_printf(sc->dev,
5059 "failed to load firmware module: %d. cfg %p, fw %p\n",
5060 rc, cfg, fw);
5061 /* carry on */
5062 }
5063 }
5064 if (fw == NULL) {
5065 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5066 "but the driver cannot take corrective action because it "
5067 "is unable to load the firmware module.\n",
5068 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5069 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5070 rc = sc->flags & FW_OK ? 0 : ENOENT;
5071 goto done;
5072 }
5073 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
5074 if (k != d) {
5075 MPASS(t4_fw_install > 0);
5076 device_printf(sc->dev,
5077 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
5078 "expecting (%u.%u.%u.%u) and will not be used.\n",
5079 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
5080 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
5081 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5082 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5083 rc = sc->flags & FW_OK ? 0 : EINVAL;
5084 goto done;
5085 }
5086
5087 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5088 "installing firmware %u.%u.%u.%u on card.\n",
5089 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5090 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
5091 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5092 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5093
5094 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
5095 if (rc != 0) {
5096 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
5097 } else {
5098 /* Installed successfully, update the cached header too. */
5099 rc = ERESTART;
5100 memcpy(card_fw, fw->data, sizeof(*card_fw));
5101 }
5102 done:
5103 unload_fw_module(sc, cfg, fw);
5104
5105 return (rc);
5106 }
5107
5108 /*
5109 * Establish contact with the firmware and attempt to become the master driver.
5110 *
5111 * A firmware will be installed to the card if needed (if the driver is allowed
5112 * to do so).
5113 */
5114 static int
contact_firmware(struct adapter * sc)5115 contact_firmware(struct adapter *sc)
5116 {
5117 int rc, already = 0;
5118 enum dev_state state;
5119 struct fw_info *fw_info;
5120 struct fw_hdr *card_fw; /* fw on the card */
5121 const struct fw_h *drv_fw;
5122
5123 fw_info = find_fw_info(chip_id(sc));
5124 if (fw_info == NULL) {
5125 device_printf(sc->dev,
5126 "unable to look up firmware information for chip %d.\n",
5127 chip_id(sc));
5128 return (EINVAL);
5129 }
5130 drv_fw = &fw_info->fw_h;
5131
5132 /* Read the header of the firmware on the card */
5133 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
5134 restart:
5135 rc = -t4_get_fw_hdr(sc, card_fw);
5136 if (rc != 0) {
5137 device_printf(sc->dev,
5138 "unable to read firmware header from card's flash: %d\n",
5139 rc);
5140 goto done;
5141 }
5142
5143 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
5144 &already);
5145 if (rc == ERESTART)
5146 goto restart;
5147 if (rc != 0)
5148 goto done;
5149
5150 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
5151 if (rc < 0 || state == DEV_STATE_ERR) {
5152 rc = -rc;
5153 device_printf(sc->dev,
5154 "failed to connect to the firmware: %d, %d. "
5155 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5156 #if 0
5157 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5158 "not responding properly to HELLO", &already) == ERESTART)
5159 goto restart;
5160 #endif
5161 goto done;
5162 }
5163 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
5164 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
5165
5166 if (rc == sc->pf) {
5167 sc->flags |= MASTER_PF;
5168 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5169 NULL, &already);
5170 if (rc == ERESTART)
5171 rc = 0;
5172 else if (rc != 0)
5173 goto done;
5174 } else if (state == DEV_STATE_UNINIT) {
5175 /*
5176 * We didn't get to be the master so we definitely won't be
5177 * configuring the chip. It's a bug if someone else hasn't
5178 * configured it already.
5179 */
5180 device_printf(sc->dev, "couldn't be master(%d), "
5181 "device not already initialized either(%d). "
5182 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5183 rc = EPROTO;
5184 goto done;
5185 } else {
5186 /*
5187 * Some other PF is the master and has configured the chip.
5188 * This is allowed but untested.
5189 */
5190 device_printf(sc->dev, "PF%d is master, device state %d. "
5191 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5192 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5193 sc->cfcsum = 0;
5194 rc = 0;
5195 }
5196 done:
5197 if (rc != 0 && sc->flags & FW_OK) {
5198 t4_fw_bye(sc, sc->mbox);
5199 sc->flags &= ~FW_OK;
5200 }
5201 free(card_fw, M_CXGBE);
5202 return (rc);
5203 }
5204
5205 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff,u_int maxlen)5206 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5207 uint32_t mtype, uint32_t moff, u_int maxlen)
5208 {
5209 struct fw_info *fw_info;
5210 const struct firmware *dcfg, *rcfg = NULL;
5211 const uint32_t *cfdata;
5212 uint32_t cflen, addr;
5213 int rc;
5214
5215 load_fw_module(sc, &dcfg, NULL);
5216
5217 /* Card specific interpretation of "default". */
5218 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5219 if (pci_get_device(sc->dev) == 0x440a)
5220 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5221 if (is_fpga(sc))
5222 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5223 }
5224
5225 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5226 if (dcfg == NULL) {
5227 device_printf(sc->dev,
5228 "KLD with default config is not available.\n");
5229 rc = ENOENT;
5230 goto done;
5231 }
5232 cfdata = dcfg->data;
5233 cflen = dcfg->datasize & ~3;
5234 } else {
5235 char s[32];
5236
5237 fw_info = find_fw_info(chip_id(sc));
5238 if (fw_info == NULL) {
5239 device_printf(sc->dev,
5240 "unable to look up firmware information for chip %d.\n",
5241 chip_id(sc));
5242 rc = EINVAL;
5243 goto done;
5244 }
5245 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5246
5247 rcfg = firmware_get(s);
5248 if (rcfg == NULL) {
5249 device_printf(sc->dev,
5250 "unable to load module \"%s\" for configuration "
5251 "profile \"%s\".\n", s, cfg_file);
5252 rc = ENOENT;
5253 goto done;
5254 }
5255 cfdata = rcfg->data;
5256 cflen = rcfg->datasize & ~3;
5257 }
5258
5259 if (cflen > maxlen) {
5260 device_printf(sc->dev,
5261 "config file too long (%d, max allowed is %d).\n",
5262 cflen, maxlen);
5263 rc = EINVAL;
5264 goto done;
5265 }
5266
5267 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5268 if (rc != 0) {
5269 device_printf(sc->dev,
5270 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5271 __func__, mtype, moff, cflen, rc);
5272 rc = EINVAL;
5273 goto done;
5274 }
5275 write_via_memwin(sc, 2, addr, cfdata, cflen);
5276 done:
5277 if (rcfg != NULL)
5278 firmware_put(rcfg, FIRMWARE_UNLOAD);
5279 unload_fw_module(sc, dcfg, NULL);
5280 return (rc);
5281 }
5282
5283 struct caps_allowed {
5284 uint16_t nbmcaps;
5285 uint16_t linkcaps;
5286 uint16_t switchcaps;
5287 uint16_t nvmecaps;
5288 uint16_t niccaps;
5289 uint16_t toecaps;
5290 uint16_t rdmacaps;
5291 uint16_t cryptocaps;
5292 uint16_t iscsicaps;
5293 uint16_t fcoecaps;
5294 };
5295
5296 #define FW_PARAM_DEV(param) \
5297 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5298 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5299 #define FW_PARAM_PFVF(param) \
5300 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5301 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5302
5303 /*
5304 * Provide a configuration profile to the firmware and have it initialize the
5305 * chip accordingly. This may involve uploading a configuration file to the
5306 * card.
5307 */
5308 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5309 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5310 const struct caps_allowed *caps_allowed)
5311 {
5312 int rc;
5313 struct fw_caps_config_cmd caps;
5314 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5315 unsigned int maxlen = 0;
5316 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen);
5317
5318 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5319 if (rc != 0) {
5320 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5321 return (rc);
5322 }
5323
5324 bzero(&caps, sizeof(caps));
5325 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5326 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5327 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5328 mtype = 0;
5329 moff = 0;
5330 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5331 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5332 mtype = FW_MEMTYPE_FLASH;
5333 moff = cfg_addr;
5334 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5335 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5336 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5337 FW_LEN16(caps));
5338 } else {
5339 /*
5340 * Ask the firmware where it wants us to upload the config file.
5341 */
5342 param = FW_PARAM_DEV(CF);
5343 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5344 if (rc != 0) {
5345 /* No support for config file? Shouldn't happen. */
5346 device_printf(sc->dev,
5347 "failed to query config file location: %d.\n", rc);
5348 goto done;
5349 }
5350 mtype = G_FW_PARAMS_PARAM_Y(val);
5351 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5352 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5353 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5354 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5355 FW_LEN16(caps));
5356
5357 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen);
5358 if (rc != 0) {
5359 device_printf(sc->dev,
5360 "failed to upload config file to card: %d.\n", rc);
5361 goto done;
5362 }
5363 }
5364 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5365 if (rc != 0) {
5366 device_printf(sc->dev, "failed to pre-process config file: %d "
5367 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5368 goto done;
5369 }
5370
5371 finicsum = be32toh(caps.finicsum);
5372 cfcsum = be32toh(caps.cfcsum); /* actual */
5373 if (finicsum != cfcsum) {
5374 device_printf(sc->dev,
5375 "WARNING: config file checksum mismatch: %08x %08x\n",
5376 finicsum, cfcsum);
5377 }
5378 sc->cfcsum = cfcsum;
5379 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5380
5381 /*
5382 * Let the firmware know what features will (not) be used so it can tune
5383 * things accordingly.
5384 */
5385 #define LIMIT_CAPS(x) do { \
5386 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5387 } while (0)
5388 LIMIT_CAPS(nbm);
5389 LIMIT_CAPS(link);
5390 LIMIT_CAPS(switch);
5391 LIMIT_CAPS(nvme);
5392 LIMIT_CAPS(nic);
5393 LIMIT_CAPS(toe);
5394 LIMIT_CAPS(rdma);
5395 LIMIT_CAPS(crypto);
5396 LIMIT_CAPS(iscsi);
5397 LIMIT_CAPS(fcoe);
5398 #undef LIMIT_CAPS
5399 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5400 /*
5401 * TOE and hashfilters are mutually exclusive. It is a config
5402 * file or firmware bug if both are reported as available. Try
5403 * to cope with the situation in non-debug builds by disabling
5404 * TOE.
5405 */
5406 MPASS(caps.toecaps == 0);
5407
5408 caps.toecaps = 0;
5409 caps.rdmacaps = 0;
5410 caps.iscsicaps = 0;
5411 caps.nvmecaps = 0;
5412 }
5413
5414 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5415 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5416 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5417 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5418 if (rc != 0) {
5419 device_printf(sc->dev,
5420 "failed to process config file: %d.\n", rc);
5421 goto done;
5422 }
5423
5424 t4_tweak_chip_settings(sc);
5425 set_params__pre_init(sc);
5426
5427 /* get basic stuff going */
5428 rc = -t4_fw_initialize(sc, sc->mbox);
5429 if (rc != 0) {
5430 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5431 goto done;
5432 }
5433 done:
5434 return (rc);
5435 }
5436
5437 /*
5438 * Partition chip resources for use between various PFs, VFs, etc.
5439 */
5440 static int
partition_resources(struct adapter * sc)5441 partition_resources(struct adapter *sc)
5442 {
5443 char cfg_file[sizeof(t4_cfg_file)];
5444 struct caps_allowed caps_allowed;
5445 int rc;
5446 bool fallback;
5447
5448 /* Only the master driver gets to configure the chip resources. */
5449 MPASS(sc->flags & MASTER_PF);
5450
5451 #define COPY_CAPS(x) do { \
5452 caps_allowed.x##caps = t4_##x##caps_allowed; \
5453 } while (0)
5454 bzero(&caps_allowed, sizeof(caps_allowed));
5455 COPY_CAPS(nbm);
5456 COPY_CAPS(link);
5457 COPY_CAPS(switch);
5458 COPY_CAPS(nvme);
5459 COPY_CAPS(nic);
5460 COPY_CAPS(toe);
5461 COPY_CAPS(rdma);
5462 COPY_CAPS(crypto);
5463 COPY_CAPS(iscsi);
5464 COPY_CAPS(fcoe);
5465 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5466 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5467 retry:
5468 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5469 if (rc != 0 && fallback) {
5470 dump_devlog(sc);
5471 device_printf(sc->dev,
5472 "failed (%d) to configure card with \"%s\" profile, "
5473 "will fall back to a basic configuration and retry.\n",
5474 rc, cfg_file);
5475 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5476 bzero(&caps_allowed, sizeof(caps_allowed));
5477 COPY_CAPS(switch);
5478 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5479 fallback = false;
5480 goto retry;
5481 }
5482 #undef COPY_CAPS
5483 return (rc);
5484 }
5485
5486 /*
5487 * Retrieve parameters that are needed (or nice to have) very early.
5488 */
5489 static int
get_params__pre_init(struct adapter * sc)5490 get_params__pre_init(struct adapter *sc)
5491 {
5492 int rc;
5493 uint32_t param[2], val[2];
5494
5495 t4_get_version_info(sc);
5496
5497 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5498 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5499 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5500 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5501 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5502
5503 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5504 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5505 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5506 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5507 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5508
5509 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5510 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5511 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5512 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5513 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5514
5515 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5516 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5517 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5518 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5519 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5520
5521 param[0] = FW_PARAM_DEV(PORTVEC);
5522 param[1] = FW_PARAM_DEV(CCLK);
5523 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5524 if (rc != 0) {
5525 device_printf(sc->dev,
5526 "failed to query parameters (pre_init): %d.\n", rc);
5527 return (rc);
5528 }
5529
5530 sc->params.portvec = val[0];
5531 sc->params.nports = bitcount32(val[0]);
5532 sc->params.vpd.cclk = val[1];
5533
5534 /* Read device log parameters. */
5535 rc = -t4_init_devlog_ncores_params(sc, 1);
5536 if (rc == 0)
5537 fixup_devlog_params(sc);
5538 else {
5539 device_printf(sc->dev,
5540 "failed to get devlog parameters: %d.\n", rc);
5541 rc = 0; /* devlog isn't critical for device operation */
5542 }
5543
5544 return (rc);
5545 }
5546
5547 /*
5548 * Any params that need to be set before FW_INITIALIZE.
5549 */
5550 static int
set_params__pre_init(struct adapter * sc)5551 set_params__pre_init(struct adapter *sc)
5552 {
5553 int rc = 0;
5554 uint32_t param, val;
5555
5556 if (chip_id(sc) >= CHELSIO_T6) {
5557 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5558 val = 1;
5559 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5560 /* firmwares < 1.20.1.0 do not have this param. */
5561 if (rc == FW_EINVAL &&
5562 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5563 rc = 0;
5564 }
5565 if (rc != 0) {
5566 device_printf(sc->dev,
5567 "failed to enable high priority filters :%d.\n",
5568 rc);
5569 }
5570
5571 param = FW_PARAM_DEV(PPOD_EDRAM);
5572 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5573 if (rc == 0 && val == 1) {
5574 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5575 &val);
5576 if (rc != 0) {
5577 device_printf(sc->dev,
5578 "failed to set PPOD_EDRAM: %d.\n", rc);
5579 }
5580 }
5581 }
5582
5583 /* Enable opaque VIIDs with firmwares that support it. */
5584 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5585 val = 1;
5586 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5587 if (rc == 0 && val == 1)
5588 sc->params.viid_smt_extn_support = true;
5589 else
5590 sc->params.viid_smt_extn_support = false;
5591
5592 return (rc);
5593 }
5594
5595 /*
5596 * Retrieve various parameters that are of interest to the driver. The device
5597 * has been initialized by the firmware at this point.
5598 */
5599 static int
get_params__post_init(struct adapter * sc)5600 get_params__post_init(struct adapter *sc)
5601 {
5602 int rc;
5603 uint32_t param[7], val[7];
5604 struct fw_caps_config_cmd caps;
5605
5606 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5607 param[1] = FW_PARAM_PFVF(EQ_START);
5608 param[2] = FW_PARAM_PFVF(FILTER_START);
5609 param[3] = FW_PARAM_PFVF(FILTER_END);
5610 param[4] = FW_PARAM_PFVF(L2T_START);
5611 param[5] = FW_PARAM_PFVF(L2T_END);
5612 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5613 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5614 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5615 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5616 if (rc != 0) {
5617 device_printf(sc->dev,
5618 "failed to query parameters (post_init): %d.\n", rc);
5619 return (rc);
5620 }
5621
5622 sc->sge.iq_start = val[0];
5623 sc->sge.eq_start = val[1];
5624 if ((int)val[3] > (int)val[2]) {
5625 sc->tids.ftid_base = val[2];
5626 sc->tids.ftid_end = val[3];
5627 sc->tids.nftids = val[3] - val[2] + 1;
5628 }
5629 sc->vres.l2t.start = val[4];
5630 sc->vres.l2t.size = val[5] - val[4] + 1;
5631 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5632 if (sc->vres.l2t.size > 0)
5633 MPASS(fls(val[5]) <= S_SYNC_WR);
5634 sc->params.core_vdd = val[6];
5635
5636 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5637 param[1] = FW_PARAM_PFVF(EQ_END);
5638 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5639 if (rc != 0) {
5640 device_printf(sc->dev,
5641 "failed to query parameters (post_init2): %d.\n", rc);
5642 return (rc);
5643 }
5644 MPASS((int)val[0] >= sc->sge.iq_start);
5645 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5646 MPASS((int)val[1] >= sc->sge.eq_start);
5647 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5648
5649 if (chip_id(sc) >= CHELSIO_T6) {
5650
5651 sc->tids.tid_base = t4_read_reg(sc,
5652 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5653
5654 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5655 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5656 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5657 if (rc != 0) {
5658 device_printf(sc->dev,
5659 "failed to query hpfilter parameters: %d.\n", rc);
5660 return (rc);
5661 }
5662 if ((int)val[1] > (int)val[0]) {
5663 sc->tids.hpftid_base = val[0];
5664 sc->tids.hpftid_end = val[1];
5665 sc->tids.nhpftids = val[1] - val[0] + 1;
5666
5667 /*
5668 * These should go off if the layout changes and the
5669 * driver needs to catch up.
5670 */
5671 MPASS(sc->tids.hpftid_base == 0);
5672 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5673 }
5674
5675 param[0] = FW_PARAM_PFVF(RAWF_START);
5676 param[1] = FW_PARAM_PFVF(RAWF_END);
5677 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5678 if (rc != 0) {
5679 device_printf(sc->dev,
5680 "failed to query rawf parameters: %d.\n", rc);
5681 return (rc);
5682 }
5683 if ((int)val[1] > (int)val[0]) {
5684 sc->rawf_base = val[0];
5685 sc->nrawf = val[1] - val[0] + 1;
5686 }
5687 }
5688
5689 if (sc->params.ncores > 1) {
5690 MPASS(chip_id(sc) >= CHELSIO_T7);
5691
5692 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK);
5693 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5694 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0;
5695 }
5696
5697 /*
5698 * The parameters that follow may not be available on all firmwares. We
5699 * query them individually rather than in a compound query because old
5700 * firmwares fail the entire query if an unknown parameter is queried.
5701 */
5702
5703 /*
5704 * MPS buffer group configuration.
5705 */
5706 param[0] = FW_PARAM_DEV(MPSBGMAP);
5707 val[0] = 0;
5708 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5709 if (rc == 0)
5710 sc->params.mps_bg_map = val[0];
5711 else
5712 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5713
5714 param[0] = FW_PARAM_DEV(TPCHMAP);
5715 val[0] = 0;
5716 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5717 if (rc == 0)
5718 sc->params.tp_ch_map = val[0];
5719 else
5720 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5721
5722 param[0] = FW_PARAM_DEV(TX_TPCHMAP);
5723 val[0] = 0;
5724 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5725 if (rc == 0)
5726 sc->params.tx_tp_ch_map = val[0];
5727 else
5728 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */
5729
5730 /*
5731 * Determine whether the firmware supports the filter2 work request.
5732 */
5733 param[0] = FW_PARAM_DEV(FILTER2_WR);
5734 val[0] = 0;
5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5736 if (rc == 0)
5737 sc->params.filter2_wr_support = val[0] != 0;
5738 else
5739 sc->params.filter2_wr_support = 0;
5740
5741 /*
5742 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5743 */
5744 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5745 val[0] = 0;
5746 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5747 if (rc == 0)
5748 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5749 else
5750 sc->params.ulptx_memwrite_dsgl = false;
5751
5752 /* FW_RI_FR_NSMR_TPTE_WR support */
5753 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5754 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5755 if (rc == 0)
5756 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5757 else
5758 sc->params.fr_nsmr_tpte_wr_support = false;
5759
5760 /* Support for 512 SGL entries per FR MR. */
5761 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5762 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5763 if (rc == 0)
5764 sc->params.dev_512sgl_mr = val[0] != 0;
5765 else
5766 sc->params.dev_512sgl_mr = false;
5767
5768 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5769 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5770 if (rc == 0)
5771 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5772 else
5773 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5774
5775 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5776 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5777 if (rc == 0) {
5778 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5779 sc->params.nsched_cls = val[0];
5780 } else
5781 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5782
5783 /* get capabilites */
5784 bzero(&caps, sizeof(caps));
5785 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5786 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5787 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5788 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5789 if (rc != 0) {
5790 device_printf(sc->dev,
5791 "failed to get card capabilities: %d.\n", rc);
5792 return (rc);
5793 }
5794
5795 #define READ_CAPS(x) do { \
5796 sc->x = htobe16(caps.x); \
5797 } while (0)
5798 READ_CAPS(nbmcaps);
5799 READ_CAPS(linkcaps);
5800 READ_CAPS(switchcaps);
5801 READ_CAPS(nvmecaps);
5802 READ_CAPS(niccaps);
5803 READ_CAPS(toecaps);
5804 READ_CAPS(rdmacaps);
5805 READ_CAPS(cryptocaps);
5806 READ_CAPS(iscsicaps);
5807 READ_CAPS(fcoecaps);
5808
5809 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5810 MPASS(chip_id(sc) > CHELSIO_T4);
5811 MPASS(sc->toecaps == 0);
5812 sc->toecaps = 0;
5813
5814 param[0] = FW_PARAM_DEV(NTID);
5815 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5816 if (rc != 0) {
5817 device_printf(sc->dev,
5818 "failed to query HASHFILTER parameters: %d.\n", rc);
5819 return (rc);
5820 }
5821 sc->tids.ntids = val[0];
5822 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5823 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5824 sc->tids.ntids -= sc->tids.nhpftids;
5825 }
5826 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5827 sc->params.hash_filter = 1;
5828 }
5829 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5830 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5831 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5832 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5833 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5834 if (rc != 0) {
5835 device_printf(sc->dev,
5836 "failed to query NIC parameters: %d.\n", rc);
5837 return (rc);
5838 }
5839 if ((int)val[1] > (int)val[0]) {
5840 sc->tids.etid_base = val[0];
5841 sc->tids.etid_end = val[1];
5842 sc->tids.netids = val[1] - val[0] + 1;
5843 sc->params.eo_wr_cred = val[2];
5844 sc->params.ethoffload = 1;
5845 }
5846 }
5847 if (sc->toecaps) {
5848 /* query offload-related parameters */
5849 param[0] = FW_PARAM_DEV(NTID);
5850 param[1] = FW_PARAM_PFVF(SERVER_START);
5851 param[2] = FW_PARAM_PFVF(SERVER_END);
5852 param[3] = FW_PARAM_PFVF(TDDP_START);
5853 param[4] = FW_PARAM_PFVF(TDDP_END);
5854 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5855 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5856 if (rc != 0) {
5857 device_printf(sc->dev,
5858 "failed to query TOE parameters: %d.\n", rc);
5859 return (rc);
5860 }
5861 sc->tids.ntids = val[0];
5862 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5863 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5864 sc->tids.ntids -= sc->tids.nhpftids;
5865 }
5866 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5867 if ((int)val[2] > (int)val[1]) {
5868 sc->tids.stid_base = val[1];
5869 sc->tids.nstids = val[2] - val[1] + 1;
5870 }
5871 sc->vres.ddp.start = val[3];
5872 sc->vres.ddp.size = val[4] - val[3] + 1;
5873 sc->params.ofldq_wr_cred = val[5];
5874 sc->params.offload = 1;
5875 } else {
5876 /*
5877 * The firmware attempts memfree TOE configuration for -SO cards
5878 * and will report toecaps=0 if it runs out of resources (this
5879 * depends on the config file). It may not report 0 for other
5880 * capabilities dependent on the TOE in this case. Set them to
5881 * 0 here so that the driver doesn't bother tracking resources
5882 * that will never be used.
5883 */
5884 sc->iscsicaps = 0;
5885 sc->nvmecaps = 0;
5886 sc->rdmacaps = 0;
5887 }
5888 if (sc->nvmecaps || sc->rdmacaps) {
5889 param[0] = FW_PARAM_PFVF(STAG_START);
5890 param[1] = FW_PARAM_PFVF(STAG_END);
5891 param[2] = FW_PARAM_PFVF(PBL_START);
5892 param[3] = FW_PARAM_PFVF(PBL_END);
5893 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5894 if (rc != 0) {
5895 device_printf(sc->dev,
5896 "failed to query NVMe/RDMA parameters: %d.\n", rc);
5897 return (rc);
5898 }
5899 sc->vres.stag.start = val[0];
5900 sc->vres.stag.size = val[1] - val[0] + 1;
5901 sc->vres.pbl.start = val[2];
5902 sc->vres.pbl.size = val[3] - val[2] + 1;
5903 }
5904 if (sc->rdmacaps) {
5905 param[0] = FW_PARAM_PFVF(RQ_START);
5906 param[1] = FW_PARAM_PFVF(RQ_END);
5907 param[2] = FW_PARAM_PFVF(SQRQ_START);
5908 param[3] = FW_PARAM_PFVF(SQRQ_END);
5909 param[4] = FW_PARAM_PFVF(CQ_START);
5910 param[5] = FW_PARAM_PFVF(CQ_END);
5911 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5912 if (rc != 0) {
5913 device_printf(sc->dev,
5914 "failed to query RDMA parameters(1): %d.\n", rc);
5915 return (rc);
5916 }
5917 sc->vres.rq.start = val[0];
5918 sc->vres.rq.size = val[1] - val[0] + 1;
5919 sc->vres.qp.start = val[2];
5920 sc->vres.qp.size = val[3] - val[2] + 1;
5921 sc->vres.cq.start = val[4];
5922 sc->vres.cq.size = val[5] - val[4] + 1;
5923
5924 param[0] = FW_PARAM_PFVF(OCQ_START);
5925 param[1] = FW_PARAM_PFVF(OCQ_END);
5926 param[2] = FW_PARAM_PFVF(SRQ_START);
5927 param[3] = FW_PARAM_PFVF(SRQ_END);
5928 param[4] = FW_PARAM_DEV(MAXORDIRD_QP);
5929 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5930 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5931 if (rc != 0) {
5932 device_printf(sc->dev,
5933 "failed to query RDMA parameters(2): %d.\n", rc);
5934 return (rc);
5935 }
5936 sc->vres.ocq.start = val[0];
5937 sc->vres.ocq.size = val[1] - val[0] + 1;
5938 sc->vres.srq.start = val[2];
5939 sc->vres.srq.size = val[3] - val[2] + 1;
5940 sc->params.max_ordird_qp = val[4];
5941 sc->params.max_ird_adapter = val[5];
5942 }
5943 if (sc->iscsicaps) {
5944 param[0] = FW_PARAM_PFVF(ISCSI_START);
5945 param[1] = FW_PARAM_PFVF(ISCSI_END);
5946 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5947 if (rc != 0) {
5948 device_printf(sc->dev,
5949 "failed to query iSCSI parameters: %d.\n", rc);
5950 return (rc);
5951 }
5952 sc->vres.iscsi.start = val[0];
5953 sc->vres.iscsi.size = val[1] - val[0] + 1;
5954 }
5955 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5956 param[0] = FW_PARAM_PFVF(TLS_START);
5957 param[1] = FW_PARAM_PFVF(TLS_END);
5958 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5959 if (rc != 0) {
5960 device_printf(sc->dev,
5961 "failed to query TLS parameters: %d.\n", rc);
5962 return (rc);
5963 }
5964 sc->vres.key.start = val[0];
5965 sc->vres.key.size = val[1] - val[0] + 1;
5966 }
5967
5968 /*
5969 * We've got the params we wanted to query directly from the firmware.
5970 * Grab some others via other means.
5971 */
5972 t4_init_sge_params(sc);
5973 t4_init_tp_params(sc);
5974 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5975 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5976
5977 rc = t4_verify_chip_settings(sc);
5978 if (rc != 0)
5979 return (rc);
5980 t4_init_rx_buf_info(sc);
5981
5982 return (rc);
5983 }
5984
5985 #ifdef KERN_TLS
5986 static void
ktls_tick(void * arg)5987 ktls_tick(void *arg)
5988 {
5989 struct adapter *sc;
5990 uint32_t tstamp;
5991
5992 sc = arg;
5993 tstamp = tcp_ts_getticks();
5994 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5995 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5996 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5997 }
5998
5999 static int
t6_config_kern_tls(struct adapter * sc,bool enable)6000 t6_config_kern_tls(struct adapter *sc, bool enable)
6001 {
6002 int rc;
6003 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6004 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
6005 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
6006 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
6007
6008 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
6009 if (rc != 0) {
6010 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
6011 enable ? "enable" : "disable", rc);
6012 return (rc);
6013 }
6014
6015 if (enable) {
6016 sc->flags |= KERN_TLS_ON;
6017 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
6018 C_HARDCLOCK);
6019 } else {
6020 sc->flags &= ~KERN_TLS_ON;
6021 callout_stop(&sc->ktls_tick);
6022 }
6023
6024 return (rc);
6025 }
6026 #endif
6027
6028 static int
set_params__post_init(struct adapter * sc)6029 set_params__post_init(struct adapter *sc)
6030 {
6031 uint32_t mask, param, val;
6032 #ifdef TCP_OFFLOAD
6033 int i, v, shift;
6034 #endif
6035
6036 /* ask for encapsulated CPLs */
6037 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
6038 val = 1;
6039 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
6040
6041 /* Enable 32b port caps if the firmware supports it. */
6042 param = FW_PARAM_PFVF(PORT_CAPS32);
6043 val = 1;
6044 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
6045 sc->params.port_caps32 = 1;
6046
6047 /* Let filter + maskhash steer to a part of the VI's RSS region. */
6048 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
6049 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
6050 V_MASKFILTER(val - 1));
6051
6052 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
6053 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
6054 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6055 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
6056 val = 0;
6057 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
6058 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
6059 F_ATTACKFILTERENABLE);
6060 val |= F_DROPERRORATTACK;
6061 }
6062 if (t4_drop_ip_fragments != 0) {
6063 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
6064 F_FRAGMENTDROP);
6065 val |= F_DROPERRORFRAG;
6066 }
6067 if (t4_drop_pkts_with_l2_errors != 0)
6068 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
6069 if (t4_drop_pkts_with_l3_errors != 0) {
6070 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
6071 F_DROPERRORCSUMIP;
6072 }
6073 if (t4_drop_pkts_with_l4_errors != 0) {
6074 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6075 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
6076 }
6077 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
6078
6079 #ifdef TCP_OFFLOAD
6080 /*
6081 * Override the TOE timers with user provided tunables. This is not the
6082 * recommended way to change the timers (the firmware config file is) so
6083 * these tunables are not documented.
6084 *
6085 * All the timer tunables are in microseconds.
6086 */
6087 if (t4_toe_keepalive_idle != 0) {
6088 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
6089 v &= M_KEEPALIVEIDLE;
6090 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
6091 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
6092 }
6093 if (t4_toe_keepalive_interval != 0) {
6094 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
6095 v &= M_KEEPALIVEINTVL;
6096 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
6097 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
6098 }
6099 if (t4_toe_keepalive_count != 0) {
6100 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
6101 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6102 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
6103 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
6104 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
6105 }
6106 if (t4_toe_rexmt_min != 0) {
6107 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
6108 v &= M_RXTMIN;
6109 t4_set_reg_field(sc, A_TP_RXT_MIN,
6110 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
6111 }
6112 if (t4_toe_rexmt_max != 0) {
6113 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
6114 v &= M_RXTMAX;
6115 t4_set_reg_field(sc, A_TP_RXT_MAX,
6116 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
6117 }
6118 if (t4_toe_rexmt_count != 0) {
6119 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
6120 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6121 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
6122 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
6123 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
6124 }
6125 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
6126 if (t4_toe_rexmt_backoff[i] != -1) {
6127 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
6128 shift = (i & 3) << 3;
6129 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
6130 M_TIMERBACKOFFINDEX0 << shift, v << shift);
6131 }
6132 }
6133 #endif
6134
6135 /*
6136 * Limit TOE connections to 2 reassembly "islands". This is
6137 * required to permit migrating TOE connections to either
6138 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
6139 */
6140 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
6141 V_PASSMODE(2));
6142
6143 #ifdef KERN_TLS
6144 if (is_ktls(sc)) {
6145 sc->tlst.inline_keys = t4_tls_inline_keys;
6146 if (t4_kern_tls != 0 && is_t6(sc)) {
6147 sc->tlst.combo_wrs = t4_tls_combo_wrs;
6148 t6_config_kern_tls(sc, true);
6149 } else {
6150 sc->tlst.short_records = t4_tls_short_records;
6151 sc->tlst.partial_ghash = t4_tls_partial_ghash;
6152 }
6153 }
6154 #endif
6155 return (0);
6156 }
6157
6158 #undef FW_PARAM_PFVF
6159 #undef FW_PARAM_DEV
6160
6161 static void
t4_set_desc(struct adapter * sc)6162 t4_set_desc(struct adapter *sc)
6163 {
6164 struct adapter_params *p = &sc->params;
6165
6166 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
6167 }
6168
6169 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)6170 ifmedia_add4(struct ifmedia *ifm, int m)
6171 {
6172
6173 ifmedia_add(ifm, m, 0, NULL);
6174 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
6175 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
6176 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
6177 }
6178
6179 /*
6180 * This is the selected media, which is not quite the same as the active media.
6181 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
6182 * and active are not the same, and "media: Ethernet selected" otherwise.
6183 */
6184 static void
set_current_media(struct port_info * pi)6185 set_current_media(struct port_info *pi)
6186 {
6187 struct link_config *lc;
6188 struct ifmedia *ifm;
6189 int mword;
6190 u_int speed;
6191
6192 PORT_LOCK_ASSERT_OWNED(pi);
6193
6194 /* Leave current media alone if it's already set to IFM_NONE. */
6195 ifm = &pi->media;
6196 if (ifm->ifm_cur != NULL &&
6197 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
6198 return;
6199
6200 lc = &pi->link_cfg;
6201 if (lc->requested_aneg != AUTONEG_DISABLE &&
6202 lc->pcaps & FW_PORT_CAP32_ANEG) {
6203 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6204 return;
6205 }
6206 mword = IFM_ETHER | IFM_FDX;
6207 if (lc->requested_fc & PAUSE_TX)
6208 mword |= IFM_ETH_TXPAUSE;
6209 if (lc->requested_fc & PAUSE_RX)
6210 mword |= IFM_ETH_RXPAUSE;
6211 if (lc->requested_speed == 0)
6212 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6213 else
6214 speed = lc->requested_speed;
6215 mword |= port_mword(pi, speed_to_fwcap(speed));
6216 ifmedia_set(ifm, mword);
6217 }
6218
6219 /*
6220 * Returns true if the ifmedia list for the port cannot change.
6221 */
6222 static bool
fixed_ifmedia(struct port_info * pi)6223 fixed_ifmedia(struct port_info *pi)
6224 {
6225
6226 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6227 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6228 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6229 pi->port_type == FW_PORT_TYPE_KX4 ||
6230 pi->port_type == FW_PORT_TYPE_KX ||
6231 pi->port_type == FW_PORT_TYPE_KR ||
6232 pi->port_type == FW_PORT_TYPE_BP_AP ||
6233 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6234 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6235 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6236 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6237 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6238 }
6239
6240 static void
build_medialist(struct port_info * pi)6241 build_medialist(struct port_info *pi)
6242 {
6243 uint32_t ss, speed;
6244 int unknown, mword, bit;
6245 struct link_config *lc;
6246 struct ifmedia *ifm;
6247
6248 PORT_LOCK_ASSERT_OWNED(pi);
6249
6250 if (pi->flags & FIXED_IFMEDIA)
6251 return;
6252
6253 /*
6254 * Rebuild the ifmedia list.
6255 */
6256 ifm = &pi->media;
6257 ifmedia_removeall(ifm);
6258 lc = &pi->link_cfg;
6259 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6260 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6261 MPASS(ss != 0);
6262 no_media:
6263 MPASS(LIST_EMPTY(&ifm->ifm_list));
6264 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6265 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6266 return;
6267 }
6268
6269 unknown = 0;
6270 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6271 speed = 1 << bit;
6272 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6273 if (ss & speed) {
6274 mword = port_mword(pi, speed);
6275 if (mword == IFM_NONE) {
6276 goto no_media;
6277 } else if (mword == IFM_UNKNOWN)
6278 unknown++;
6279 else
6280 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6281 }
6282 }
6283 if (unknown > 0) /* Add one unknown for all unknown media types. */
6284 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6285 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6286 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6287
6288 set_current_media(pi);
6289 }
6290
6291 /*
6292 * Initialize the requested fields in the link config based on driver tunables.
6293 */
6294 static void
init_link_config(struct port_info * pi)6295 init_link_config(struct port_info *pi)
6296 {
6297 struct link_config *lc = &pi->link_cfg;
6298
6299 PORT_LOCK_ASSERT_OWNED(pi);
6300
6301 lc->requested_caps = 0;
6302 lc->requested_speed = 0;
6303
6304 if (t4_autoneg == 0)
6305 lc->requested_aneg = AUTONEG_DISABLE;
6306 else if (t4_autoneg == 1)
6307 lc->requested_aneg = AUTONEG_ENABLE;
6308 else
6309 lc->requested_aneg = AUTONEG_AUTO;
6310
6311 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6312 PAUSE_AUTONEG);
6313
6314 if (t4_fec & FEC_AUTO)
6315 lc->requested_fec = FEC_AUTO;
6316 else if (t4_fec == 0)
6317 lc->requested_fec = FEC_NONE;
6318 else {
6319 /* -1 is handled by the FEC_AUTO block above and not here. */
6320 lc->requested_fec = t4_fec &
6321 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6322 if (lc->requested_fec == 0)
6323 lc->requested_fec = FEC_AUTO;
6324 }
6325 if (t4_force_fec < 0)
6326 lc->force_fec = -1;
6327 else if (t4_force_fec > 0)
6328 lc->force_fec = 1;
6329 else
6330 lc->force_fec = 0;
6331 }
6332
6333 /*
6334 * Makes sure that all requested settings comply with what's supported by the
6335 * port. Returns the number of settings that were invalid and had to be fixed.
6336 */
6337 static int
fixup_link_config(struct port_info * pi)6338 fixup_link_config(struct port_info *pi)
6339 {
6340 int n = 0;
6341 struct link_config *lc = &pi->link_cfg;
6342 uint32_t fwspeed;
6343
6344 PORT_LOCK_ASSERT_OWNED(pi);
6345
6346 /* Speed (when not autonegotiating) */
6347 if (lc->requested_speed != 0) {
6348 fwspeed = speed_to_fwcap(lc->requested_speed);
6349 if ((fwspeed & lc->pcaps) == 0) {
6350 n++;
6351 lc->requested_speed = 0;
6352 }
6353 }
6354
6355 /* Link autonegotiation */
6356 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6357 lc->requested_aneg == AUTONEG_DISABLE ||
6358 lc->requested_aneg == AUTONEG_AUTO);
6359 if (lc->requested_aneg == AUTONEG_ENABLE &&
6360 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6361 n++;
6362 lc->requested_aneg = AUTONEG_AUTO;
6363 }
6364
6365 /* Flow control */
6366 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6367 if (lc->requested_fc & PAUSE_TX &&
6368 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6369 n++;
6370 lc->requested_fc &= ~PAUSE_TX;
6371 }
6372 if (lc->requested_fc & PAUSE_RX &&
6373 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6374 n++;
6375 lc->requested_fc &= ~PAUSE_RX;
6376 }
6377 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6378 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6379 n++;
6380 lc->requested_fc |= PAUSE_AUTONEG;
6381 }
6382
6383 /* FEC */
6384 if ((lc->requested_fec & FEC_RS &&
6385 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6386 (lc->requested_fec & FEC_BASER_RS &&
6387 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6388 n++;
6389 lc->requested_fec = FEC_AUTO;
6390 }
6391
6392 return (n);
6393 }
6394
6395 /*
6396 * Apply the requested L1 settings, which are expected to be valid, to the
6397 * hardware.
6398 */
6399 static int
apply_link_config(struct port_info * pi)6400 apply_link_config(struct port_info *pi)
6401 {
6402 struct adapter *sc = pi->adapter;
6403 struct link_config *lc = &pi->link_cfg;
6404 int rc;
6405
6406 #ifdef INVARIANTS
6407 ASSERT_SYNCHRONIZED_OP(sc);
6408 PORT_LOCK_ASSERT_OWNED(pi);
6409
6410 if (lc->requested_aneg == AUTONEG_ENABLE)
6411 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6412 if (!(lc->requested_fc & PAUSE_AUTONEG))
6413 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6414 if (lc->requested_fc & PAUSE_TX)
6415 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6416 if (lc->requested_fc & PAUSE_RX)
6417 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6418 if (lc->requested_fec & FEC_RS)
6419 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6420 if (lc->requested_fec & FEC_BASER_RS)
6421 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6422 #endif
6423 if (!(sc->flags & IS_VF)) {
6424 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc);
6425 if (rc != 0) {
6426 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6427 return (rc);
6428 }
6429 }
6430
6431 /*
6432 * An L1_CFG will almost always result in a link-change event if the
6433 * link is up, and the driver will refresh the actual fec/fc/etc. when
6434 * the notification is processed. If the link is down then the actual
6435 * settings are meaningless.
6436 *
6437 * This takes care of the case where a change in the L1 settings may not
6438 * result in a notification.
6439 */
6440 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6441 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6442
6443 return (0);
6444 }
6445
6446 #define FW_MAC_EXACT_CHUNK 7
6447 struct mcaddr_ctx {
6448 if_t ifp;
6449 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6450 uint64_t hash;
6451 int i;
6452 int del;
6453 int rc;
6454 };
6455
6456 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6457 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6458 {
6459 struct mcaddr_ctx *ctx = arg;
6460 struct vi_info *vi = if_getsoftc(ctx->ifp);
6461 struct port_info *pi = vi->pi;
6462 struct adapter *sc = pi->adapter;
6463
6464 if (ctx->rc < 0)
6465 return (0);
6466
6467 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6468 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6469 ctx->i++;
6470
6471 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6472 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6473 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6474 if (ctx->rc < 0) {
6475 int j;
6476
6477 for (j = 0; j < ctx->i; j++) {
6478 if_printf(ctx->ifp,
6479 "failed to add mc address"
6480 " %02x:%02x:%02x:"
6481 "%02x:%02x:%02x rc=%d\n",
6482 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6483 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6484 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6485 -ctx->rc);
6486 }
6487 return (0);
6488 }
6489 ctx->del = 0;
6490 ctx->i = 0;
6491 }
6492
6493 return (1);
6494 }
6495
6496 /*
6497 * Program the port's XGMAC based on parameters in ifnet. The caller also
6498 * indicates which parameters should be programmed (the rest are left alone).
6499 */
6500 int
update_mac_settings(if_t ifp,int flags)6501 update_mac_settings(if_t ifp, int flags)
6502 {
6503 int rc = 0;
6504 struct vi_info *vi = if_getsoftc(ifp);
6505 struct port_info *pi = vi->pi;
6506 struct adapter *sc = pi->adapter;
6507 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6508 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6509
6510 ASSERT_SYNCHRONIZED_OP(sc);
6511 KASSERT(flags, ("%s: not told what to update.", __func__));
6512
6513 if (flags & XGMAC_MTU)
6514 mtu = if_getmtu(ifp);
6515
6516 if (flags & XGMAC_PROMISC)
6517 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6518
6519 if (flags & XGMAC_ALLMULTI)
6520 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6521
6522 if (flags & XGMAC_VLANEX)
6523 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6524
6525 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6526 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6527 allmulti, 1, vlanex, false);
6528 if (rc) {
6529 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6530 rc);
6531 return (rc);
6532 }
6533 }
6534
6535 if (flags & XGMAC_UCADDR) {
6536 uint8_t ucaddr[ETHER_ADDR_LEN];
6537
6538 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6539 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6540 ucaddr, true, &vi->smt_idx);
6541 if (rc < 0) {
6542 rc = -rc;
6543 if_printf(ifp, "change_mac failed: %d\n", rc);
6544 return (rc);
6545 } else {
6546 vi->xact_addr_filt = rc;
6547 rc = 0;
6548 }
6549 }
6550
6551 if (flags & XGMAC_MCADDRS) {
6552 struct epoch_tracker et;
6553 struct mcaddr_ctx ctx;
6554 int j;
6555
6556 ctx.ifp = ifp;
6557 ctx.hash = 0;
6558 ctx.i = 0;
6559 ctx.del = 1;
6560 ctx.rc = 0;
6561 /*
6562 * Unlike other drivers, we accumulate list of pointers into
6563 * interface address lists and we need to keep it safe even
6564 * after if_foreach_llmaddr() returns, thus we must enter the
6565 * network epoch.
6566 */
6567 NET_EPOCH_ENTER(et);
6568 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6569 if (ctx.rc < 0) {
6570 NET_EPOCH_EXIT(et);
6571 rc = -ctx.rc;
6572 return (rc);
6573 }
6574 if (ctx.i > 0) {
6575 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6576 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6577 NET_EPOCH_EXIT(et);
6578 if (rc < 0) {
6579 rc = -rc;
6580 for (j = 0; j < ctx.i; j++) {
6581 if_printf(ifp,
6582 "failed to add mcast address"
6583 " %02x:%02x:%02x:"
6584 "%02x:%02x:%02x rc=%d\n",
6585 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6586 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6587 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6588 rc);
6589 }
6590 return (rc);
6591 }
6592 ctx.del = 0;
6593 } else
6594 NET_EPOCH_EXIT(et);
6595
6596 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6597 if (rc != 0)
6598 if_printf(ifp, "failed to set mcast address hash: %d\n",
6599 rc);
6600 if (ctx.del == 0) {
6601 /* We clobbered the VXLAN entry if there was one. */
6602 pi->vxlan_tcam_entry = false;
6603 }
6604 }
6605
6606 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6607 pi->vxlan_tcam_entry == false) {
6608 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6609 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6610 true);
6611 if (rc < 0) {
6612 rc = -rc;
6613 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6614 rc);
6615 } else {
6616 MPASS(rc == sc->rawf_base + pi->port_id);
6617 rc = 0;
6618 pi->vxlan_tcam_entry = true;
6619 }
6620 }
6621
6622 return (rc);
6623 }
6624
6625 /*
6626 * {begin|end}_synchronized_op must be called from the same thread.
6627 */
6628 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6629 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6630 char *wmesg)
6631 {
6632 int rc;
6633
6634 #ifdef WITNESS
6635 /* the caller thinks it's ok to sleep, but is it really? */
6636 if (flags & SLEEP_OK)
6637 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6638 #endif
6639 ADAPTER_LOCK(sc);
6640 for (;;) {
6641
6642 if (vi && IS_DETACHING(vi)) {
6643 rc = ENXIO;
6644 goto done;
6645 }
6646
6647 if (!IS_BUSY(sc)) {
6648 rc = 0;
6649 break;
6650 }
6651
6652 if (!(flags & SLEEP_OK)) {
6653 rc = EBUSY;
6654 goto done;
6655 }
6656
6657 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6658 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6659 rc = EINTR;
6660 goto done;
6661 }
6662 }
6663
6664 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6665 SET_BUSY(sc);
6666 #ifdef INVARIANTS
6667 sc->last_op = wmesg;
6668 sc->last_op_thr = curthread;
6669 sc->last_op_flags = flags;
6670 #endif
6671
6672 done:
6673 if (!(flags & HOLD_LOCK) || rc)
6674 ADAPTER_UNLOCK(sc);
6675
6676 return (rc);
6677 }
6678
6679 /*
6680 * Tell if_ioctl and if_init that the VI is going away. This is
6681 * special variant of begin_synchronized_op and must be paired with a
6682 * call to end_vi_detach.
6683 */
6684 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6685 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6686 {
6687 ADAPTER_LOCK(sc);
6688 SET_DETACHING(vi);
6689 wakeup(&sc->flags);
6690 while (IS_BUSY(sc))
6691 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6692 SET_BUSY(sc);
6693 #ifdef INVARIANTS
6694 sc->last_op = "t4detach";
6695 sc->last_op_thr = curthread;
6696 sc->last_op_flags = 0;
6697 #endif
6698 ADAPTER_UNLOCK(sc);
6699 }
6700
6701 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6702 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6703 {
6704 ADAPTER_LOCK(sc);
6705 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6706 CLR_BUSY(sc);
6707 CLR_DETACHING(vi);
6708 wakeup(&sc->flags);
6709 ADAPTER_UNLOCK(sc);
6710 }
6711
6712 /*
6713 * {begin|end}_synchronized_op must be called from the same thread.
6714 */
6715 void
end_synchronized_op(struct adapter * sc,int flags)6716 end_synchronized_op(struct adapter *sc, int flags)
6717 {
6718
6719 if (flags & LOCK_HELD)
6720 ADAPTER_LOCK_ASSERT_OWNED(sc);
6721 else
6722 ADAPTER_LOCK(sc);
6723
6724 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6725 CLR_BUSY(sc);
6726 wakeup(&sc->flags);
6727 ADAPTER_UNLOCK(sc);
6728 }
6729
6730 static int
cxgbe_init_synchronized(struct vi_info * vi)6731 cxgbe_init_synchronized(struct vi_info *vi)
6732 {
6733 struct port_info *pi = vi->pi;
6734 struct adapter *sc = pi->adapter;
6735 if_t ifp = vi->ifp;
6736 int rc = 0, i;
6737 struct sge_txq *txq;
6738
6739 ASSERT_SYNCHRONIZED_OP(sc);
6740
6741 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6742 return (0); /* already running */
6743
6744 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6745 return (rc); /* error message displayed already */
6746
6747 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6748 return (rc); /* error message displayed already */
6749
6750 rc = update_mac_settings(ifp, XGMAC_ALL);
6751 if (rc)
6752 goto done; /* error message displayed already */
6753
6754 PORT_LOCK(pi);
6755 if (pi->up_vis == 0) {
6756 t4_update_port_info(pi);
6757 fixup_link_config(pi);
6758 build_medialist(pi);
6759 apply_link_config(pi);
6760 }
6761
6762 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6763 if (rc != 0) {
6764 if_printf(ifp, "enable_vi failed: %d\n", rc);
6765 PORT_UNLOCK(pi);
6766 goto done;
6767 }
6768
6769 /*
6770 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6771 * if this changes.
6772 */
6773
6774 for_each_txq(vi, i, txq) {
6775 TXQ_LOCK(txq);
6776 txq->eq.flags |= EQ_ENABLED;
6777 TXQ_UNLOCK(txq);
6778 }
6779
6780 /*
6781 * The first iq of the first port to come up is used for tracing.
6782 */
6783 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6784 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6785 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
6786 pi->flags |= HAS_TRACEQ;
6787 }
6788
6789 /* all ok */
6790 pi->up_vis++;
6791 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6792 if (pi->link_cfg.link_ok)
6793 t4_os_link_changed(pi);
6794 PORT_UNLOCK(pi);
6795
6796 mtx_lock(&vi->tick_mtx);
6797 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6798 callout_reset(&vi->tick, hz, vi_tick, vi);
6799 else
6800 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6801 mtx_unlock(&vi->tick_mtx);
6802 done:
6803 if (rc != 0)
6804 cxgbe_uninit_synchronized(vi);
6805
6806 return (rc);
6807 }
6808
6809 /*
6810 * Idempotent.
6811 */
6812 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6813 cxgbe_uninit_synchronized(struct vi_info *vi)
6814 {
6815 struct port_info *pi = vi->pi;
6816 struct adapter *sc = pi->adapter;
6817 if_t ifp = vi->ifp;
6818 int rc, i;
6819 struct sge_txq *txq;
6820
6821 ASSERT_SYNCHRONIZED_OP(sc);
6822
6823 if (!(vi->flags & VI_INIT_DONE)) {
6824 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6825 KASSERT(0, ("uninited VI is running"));
6826 if_printf(ifp, "uninited VI with running ifnet. "
6827 "vi->flags 0x%016lx, if_flags 0x%08x, "
6828 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6829 if_getdrvflags(ifp));
6830 }
6831 return (0);
6832 }
6833
6834 /*
6835 * Disable the VI so that all its data in either direction is discarded
6836 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6837 * tick) intact as the TP can deliver negative advice or data that it's
6838 * holding in its RAM (for an offloaded connection) even after the VI is
6839 * disabled.
6840 */
6841 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6842 if (rc) {
6843 if_printf(ifp, "disable_vi failed: %d\n", rc);
6844 return (rc);
6845 }
6846
6847 for_each_txq(vi, i, txq) {
6848 TXQ_LOCK(txq);
6849 txq->eq.flags &= ~EQ_ENABLED;
6850 TXQ_UNLOCK(txq);
6851 }
6852
6853 mtx_lock(&vi->tick_mtx);
6854 callout_stop(&vi->tick);
6855 mtx_unlock(&vi->tick_mtx);
6856
6857 PORT_LOCK(pi);
6858 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6859 PORT_UNLOCK(pi);
6860 return (0);
6861 }
6862 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6863 pi->up_vis--;
6864 if (pi->up_vis > 0) {
6865 PORT_UNLOCK(pi);
6866 return (0);
6867 }
6868
6869 pi->link_cfg.link_ok = false;
6870 pi->link_cfg.speed = 0;
6871 pi->link_cfg.link_down_rc = 255;
6872 t4_os_link_changed(pi);
6873 PORT_UNLOCK(pi);
6874
6875 return (0);
6876 }
6877
6878 /*
6879 * It is ok for this function to fail midway and return right away. t4_detach
6880 * will walk the entire sc->irq list and clean up whatever is valid.
6881 */
6882 int
t4_setup_intr_handlers(struct adapter * sc)6883 t4_setup_intr_handlers(struct adapter *sc)
6884 {
6885 int rc, rid, p, q, v;
6886 char s[8];
6887 struct irq *irq;
6888 struct port_info *pi;
6889 struct vi_info *vi;
6890 struct sge *sge = &sc->sge;
6891 struct sge_rxq *rxq;
6892 #ifdef TCP_OFFLOAD
6893 struct sge_ofld_rxq *ofld_rxq;
6894 #endif
6895 #ifdef DEV_NETMAP
6896 struct sge_nm_rxq *nm_rxq;
6897 #endif
6898 #ifdef RSS
6899 int nbuckets = rss_getnumbuckets();
6900 #endif
6901
6902 /*
6903 * Setup interrupts.
6904 */
6905 irq = &sc->irq[0];
6906 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6907 if (forwarding_intr_to_fwq(sc))
6908 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6909
6910 /* Multiple interrupts. */
6911 if (sc->flags & IS_VF)
6912 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6913 ("%s: too few intr.", __func__));
6914 else
6915 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6916 ("%s: too few intr.", __func__));
6917
6918 /* The first one is always error intr on PFs */
6919 if (!(sc->flags & IS_VF)) {
6920 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6921 if (rc != 0)
6922 return (rc);
6923 irq++;
6924 rid++;
6925 }
6926
6927 /* The second one is always the firmware event queue (first on VFs) */
6928 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6929 if (rc != 0)
6930 return (rc);
6931 irq++;
6932 rid++;
6933
6934 for_each_port(sc, p) {
6935 pi = sc->port[p];
6936 for_each_vi(pi, v, vi) {
6937 vi->first_intr = rid - 1;
6938
6939 if (vi->nnmrxq > 0) {
6940 int n = max(vi->nrxq, vi->nnmrxq);
6941
6942 rxq = &sge->rxq[vi->first_rxq];
6943 #ifdef DEV_NETMAP
6944 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6945 #endif
6946 for (q = 0; q < n; q++) {
6947 snprintf(s, sizeof(s), "%x%c%x", p,
6948 'a' + v, q);
6949 if (q < vi->nrxq)
6950 irq->rxq = rxq++;
6951 #ifdef DEV_NETMAP
6952 if (q < vi->nnmrxq)
6953 irq->nm_rxq = nm_rxq++;
6954
6955 if (irq->nm_rxq != NULL &&
6956 irq->rxq == NULL) {
6957 /* Netmap rx only */
6958 rc = t4_alloc_irq(sc, irq, rid,
6959 t4_nm_intr, irq->nm_rxq, s);
6960 }
6961 if (irq->nm_rxq != NULL &&
6962 irq->rxq != NULL) {
6963 /* NIC and Netmap rx */
6964 rc = t4_alloc_irq(sc, irq, rid,
6965 t4_vi_intr, irq, s);
6966 }
6967 #endif
6968 if (irq->rxq != NULL &&
6969 irq->nm_rxq == NULL) {
6970 /* NIC rx only */
6971 rc = t4_alloc_irq(sc, irq, rid,
6972 t4_intr, irq->rxq, s);
6973 }
6974 if (rc != 0)
6975 return (rc);
6976 #ifdef RSS
6977 if (q < vi->nrxq) {
6978 bus_bind_intr(sc->dev, irq->res,
6979 rss_getcpu(q % nbuckets));
6980 }
6981 #endif
6982 irq++;
6983 rid++;
6984 vi->nintr++;
6985 }
6986 } else {
6987 for_each_rxq(vi, q, rxq) {
6988 snprintf(s, sizeof(s), "%x%c%x", p,
6989 'a' + v, q);
6990 rc = t4_alloc_irq(sc, irq, rid,
6991 t4_intr, rxq, s);
6992 if (rc != 0)
6993 return (rc);
6994 #ifdef RSS
6995 bus_bind_intr(sc->dev, irq->res,
6996 rss_getcpu(q % nbuckets));
6997 #endif
6998 irq++;
6999 rid++;
7000 vi->nintr++;
7001 }
7002 }
7003 #ifdef TCP_OFFLOAD
7004 for_each_ofld_rxq(vi, q, ofld_rxq) {
7005 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
7006 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
7007 ofld_rxq, s);
7008 if (rc != 0)
7009 return (rc);
7010 irq++;
7011 rid++;
7012 vi->nintr++;
7013 }
7014 #endif
7015 }
7016 }
7017 MPASS(irq == &sc->irq[sc->intr_count]);
7018
7019 return (0);
7020 }
7021
7022 static void
write_global_rss_key(struct adapter * sc)7023 write_global_rss_key(struct adapter *sc)
7024 {
7025 #ifdef RSS
7026 int i;
7027 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7028 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7029
7030 CTASSERT(RSS_KEYSIZE == 40);
7031
7032 rss_getkey((void *)&raw_rss_key[0]);
7033 for (i = 0; i < nitems(rss_key); i++) {
7034 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
7035 }
7036 t4_write_rss_key(sc, &rss_key[0], -1, 1);
7037 #endif
7038 }
7039
7040 /*
7041 * Idempotent.
7042 */
7043 static int
adapter_full_init(struct adapter * sc)7044 adapter_full_init(struct adapter *sc)
7045 {
7046 int rc, i;
7047
7048 ASSERT_SYNCHRONIZED_OP(sc);
7049
7050 /*
7051 * queues that belong to the adapter (not any particular port).
7052 */
7053 rc = t4_setup_adapter_queues(sc);
7054 if (rc != 0)
7055 return (rc);
7056
7057 MPASS(sc->params.nports <= nitems(sc->tq));
7058 for (i = 0; i < sc->params.nports; i++) {
7059 if (sc->tq[i] != NULL)
7060 continue;
7061 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
7062 taskqueue_thread_enqueue, &sc->tq[i]);
7063 if (sc->tq[i] == NULL) {
7064 CH_ERR(sc, "failed to allocate task queue %d\n", i);
7065 return (ENOMEM);
7066 }
7067 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
7068 device_get_nameunit(sc->dev), i);
7069 }
7070
7071 if (!(sc->flags & IS_VF)) {
7072 write_global_rss_key(sc);
7073 t4_intr_enable(sc);
7074 }
7075 return (0);
7076 }
7077
7078 int
adapter_init(struct adapter * sc)7079 adapter_init(struct adapter *sc)
7080 {
7081 int rc;
7082
7083 ASSERT_SYNCHRONIZED_OP(sc);
7084 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
7085 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
7086 ("%s: FULL_INIT_DONE already", __func__));
7087
7088 rc = adapter_full_init(sc);
7089 if (rc != 0)
7090 adapter_full_uninit(sc);
7091 else
7092 sc->flags |= FULL_INIT_DONE;
7093
7094 return (rc);
7095 }
7096
7097 /*
7098 * Idempotent.
7099 */
7100 static void
adapter_full_uninit(struct adapter * sc)7101 adapter_full_uninit(struct adapter *sc)
7102 {
7103 int i;
7104
7105 t4_teardown_adapter_queues(sc);
7106
7107 for (i = 0; i < nitems(sc->tq); i++) {
7108 if (sc->tq[i] == NULL)
7109 continue;
7110 taskqueue_free(sc->tq[i]);
7111 sc->tq[i] = NULL;
7112 }
7113
7114 sc->flags &= ~FULL_INIT_DONE;
7115 }
7116
7117 #ifdef RSS
7118 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
7119 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
7120 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
7121 RSS_HASHTYPE_RSS_UDP_IPV6)
7122
7123 /* Translates kernel hash types to hardware. */
7124 static int
hashconfig_to_hashen(int hashconfig)7125 hashconfig_to_hashen(int hashconfig)
7126 {
7127 int hashen = 0;
7128
7129 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
7130 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
7131 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
7132 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
7133 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
7134 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7135 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7136 }
7137 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
7138 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7139 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7140 }
7141 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
7142 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7143 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
7144 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7145
7146 return (hashen);
7147 }
7148
7149 /* Translates hardware hash types to kernel. */
7150 static int
hashen_to_hashconfig(int hashen)7151 hashen_to_hashconfig(int hashen)
7152 {
7153 int hashconfig = 0;
7154
7155 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
7156 /*
7157 * If UDP hashing was enabled it must have been enabled for
7158 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
7159 * enabling any 4-tuple hash is nonsense configuration.
7160 */
7161 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7162 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
7163
7164 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7165 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
7166 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7167 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
7168 }
7169 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7170 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
7171 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7172 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
7173 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
7174 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
7175 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
7176 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
7177
7178 return (hashconfig);
7179 }
7180 #endif
7181
7182 /*
7183 * Idempotent.
7184 */
7185 static int
vi_full_init(struct vi_info * vi)7186 vi_full_init(struct vi_info *vi)
7187 {
7188 struct adapter *sc = vi->adapter;
7189 struct sge_rxq *rxq;
7190 int rc, i, j;
7191 #ifdef RSS
7192 int nbuckets = rss_getnumbuckets();
7193 int hashconfig = rss_gethashconfig();
7194 int extra;
7195 #endif
7196
7197 ASSERT_SYNCHRONIZED_OP(sc);
7198
7199 /*
7200 * Allocate tx/rx/fl queues for this VI.
7201 */
7202 rc = t4_setup_vi_queues(vi);
7203 if (rc != 0)
7204 return (rc);
7205
7206 /*
7207 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7208 */
7209 if (vi->nrxq > vi->rss_size) {
7210 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7211 "some queues will never receive traffic.\n", vi->nrxq,
7212 vi->rss_size);
7213 } else if (vi->rss_size % vi->nrxq) {
7214 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7215 "expect uneven traffic distribution.\n", vi->nrxq,
7216 vi->rss_size);
7217 }
7218 #ifdef RSS
7219 if (vi->nrxq != nbuckets) {
7220 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7221 "performance will be impacted.\n", vi->nrxq, nbuckets);
7222 }
7223 #endif
7224 if (vi->rss == NULL)
7225 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7226 M_ZERO | M_WAITOK);
7227 for (i = 0; i < vi->rss_size;) {
7228 #ifdef RSS
7229 j = rss_get_indirection_to_bucket(i);
7230 j %= vi->nrxq;
7231 rxq = &sc->sge.rxq[vi->first_rxq + j];
7232 vi->rss[i++] = rxq->iq.abs_id;
7233 #else
7234 for_each_rxq(vi, j, rxq) {
7235 vi->rss[i++] = rxq->iq.abs_id;
7236 if (i == vi->rss_size)
7237 break;
7238 }
7239 #endif
7240 }
7241
7242 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7243 vi->rss, vi->rss_size);
7244 if (rc != 0) {
7245 CH_ERR(vi, "rss_config failed: %d\n", rc);
7246 return (rc);
7247 }
7248
7249 #ifdef RSS
7250 vi->hashen = hashconfig_to_hashen(hashconfig);
7251
7252 /*
7253 * We may have had to enable some hashes even though the global config
7254 * wants them disabled. This is a potential problem that must be
7255 * reported to the user.
7256 */
7257 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7258
7259 /*
7260 * If we consider only the supported hash types, then the enabled hashes
7261 * are a superset of the requested hashes. In other words, there cannot
7262 * be any supported hash that was requested but not enabled, but there
7263 * can be hashes that were not requested but had to be enabled.
7264 */
7265 extra &= SUPPORTED_RSS_HASHTYPES;
7266 MPASS((extra & hashconfig) == 0);
7267
7268 if (extra) {
7269 CH_ALERT(vi,
7270 "global RSS config (0x%x) cannot be accommodated.\n",
7271 hashconfig);
7272 }
7273 if (extra & RSS_HASHTYPE_RSS_IPV4)
7274 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7275 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7276 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7277 if (extra & RSS_HASHTYPE_RSS_IPV6)
7278 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7279 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7280 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7281 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7282 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7283 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7284 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7285 #else
7286 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
7287 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
7288 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7289 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
7290 #endif
7291 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7292 0, 0);
7293 if (rc != 0) {
7294 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7295 return (rc);
7296 }
7297
7298 return (0);
7299 }
7300
7301 int
vi_init(struct vi_info * vi)7302 vi_init(struct vi_info *vi)
7303 {
7304 int rc;
7305
7306 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7307 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7308 ("%s: VI_INIT_DONE already", __func__));
7309
7310 rc = vi_full_init(vi);
7311 if (rc != 0)
7312 vi_full_uninit(vi);
7313 else
7314 vi->flags |= VI_INIT_DONE;
7315
7316 return (rc);
7317 }
7318
7319 /*
7320 * Idempotent.
7321 */
7322 static void
vi_full_uninit(struct vi_info * vi)7323 vi_full_uninit(struct vi_info *vi)
7324 {
7325
7326 if (vi->flags & VI_INIT_DONE) {
7327 quiesce_vi(vi);
7328 free(vi->rss, M_CXGBE);
7329 free(vi->nm_rss, M_CXGBE);
7330 }
7331
7332 t4_teardown_vi_queues(vi);
7333 vi->flags &= ~VI_INIT_DONE;
7334 }
7335
7336 static void
quiesce_txq(struct sge_txq * txq)7337 quiesce_txq(struct sge_txq *txq)
7338 {
7339 struct sge_eq *eq = &txq->eq;
7340 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7341
7342 MPASS(eq->flags & EQ_SW_ALLOCATED);
7343 MPASS(!(eq->flags & EQ_ENABLED));
7344
7345 /* Wait for the mp_ring to empty. */
7346 while (!mp_ring_is_idle(txq->r)) {
7347 mp_ring_check_drainage(txq->r, 4096);
7348 pause("rquiesce", 1);
7349 }
7350 MPASS(txq->txp.npkt == 0);
7351
7352 if (eq->flags & EQ_HW_ALLOCATED) {
7353 /*
7354 * Hardware is alive and working normally. Wait for it to
7355 * finish and then wait for the driver to catch up and reclaim
7356 * all descriptors.
7357 */
7358 while (spg->cidx != htobe16(eq->pidx))
7359 pause("equiesce", 1);
7360 while (eq->cidx != eq->pidx)
7361 pause("dquiesce", 1);
7362 } else {
7363 /*
7364 * Hardware is unavailable. Discard all pending tx and reclaim
7365 * descriptors directly.
7366 */
7367 TXQ_LOCK(txq);
7368 while (eq->cidx != eq->pidx) {
7369 struct mbuf *m, *nextpkt;
7370 struct tx_sdesc *txsd;
7371
7372 txsd = &txq->sdesc[eq->cidx];
7373 for (m = txsd->m; m != NULL; m = nextpkt) {
7374 nextpkt = m->m_nextpkt;
7375 m->m_nextpkt = NULL;
7376 m_freem(m);
7377 }
7378 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7379 }
7380 spg->pidx = spg->cidx = htobe16(eq->cidx);
7381 TXQ_UNLOCK(txq);
7382 }
7383 }
7384
7385 static void
quiesce_wrq(struct sge_wrq * wrq)7386 quiesce_wrq(struct sge_wrq *wrq)
7387 {
7388 struct wrqe *wr;
7389
7390 TXQ_LOCK(wrq);
7391 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7392 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7393 #ifdef INVARIANTS
7394 wrq->nwr_pending--;
7395 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7396 #endif
7397 free(wr, M_CXGBE);
7398 }
7399 MPASS(wrq->nwr_pending == 0);
7400 MPASS(wrq->ndesc_needed == 0);
7401 wrq->nwr_pending = 0;
7402 wrq->ndesc_needed = 0;
7403 TXQ_UNLOCK(wrq);
7404 }
7405
7406 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7407 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7408 {
7409 /* Synchronize with the interrupt handler */
7410 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7411 pause("iqfree", 1);
7412
7413 if (fl != NULL) {
7414 MPASS(iq->flags & IQ_HAS_FL);
7415
7416 mtx_lock(&sc->sfl_lock);
7417 FL_LOCK(fl);
7418 fl->flags |= FL_DOOMED;
7419 FL_UNLOCK(fl);
7420 callout_stop(&sc->sfl_callout);
7421 mtx_unlock(&sc->sfl_lock);
7422
7423 KASSERT((fl->flags & FL_STARVING) == 0,
7424 ("%s: still starving", __func__));
7425
7426 /* Release all buffers if hardware is no longer available. */
7427 if (!(iq->flags & IQ_HW_ALLOCATED))
7428 free_fl_buffers(sc, fl);
7429 }
7430 }
7431
7432 /*
7433 * Wait for all activity on all the queues of the VI to complete. It is assumed
7434 * that no new work is being enqueued by the hardware or the driver. That part
7435 * should be arranged before calling this function.
7436 */
7437 static void
quiesce_vi(struct vi_info * vi)7438 quiesce_vi(struct vi_info *vi)
7439 {
7440 int i;
7441 struct adapter *sc = vi->adapter;
7442 struct sge_rxq *rxq;
7443 struct sge_txq *txq;
7444 #ifdef TCP_OFFLOAD
7445 struct sge_ofld_rxq *ofld_rxq;
7446 #endif
7447 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7448 struct sge_ofld_txq *ofld_txq;
7449 #endif
7450
7451 if (!(vi->flags & VI_INIT_DONE))
7452 return;
7453
7454 for_each_txq(vi, i, txq) {
7455 quiesce_txq(txq);
7456 }
7457
7458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7459 for_each_ofld_txq(vi, i, ofld_txq) {
7460 quiesce_wrq(&ofld_txq->wrq);
7461 }
7462 #endif
7463
7464 for_each_rxq(vi, i, rxq) {
7465 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7466 }
7467
7468 #ifdef TCP_OFFLOAD
7469 for_each_ofld_rxq(vi, i, ofld_rxq) {
7470 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7471 }
7472 #endif
7473 }
7474
7475 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7476 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7477 driver_intr_t *handler, void *arg, char *name)
7478 {
7479 int rc;
7480
7481 irq->rid = rid;
7482 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7483 RF_SHAREABLE | RF_ACTIVE);
7484 if (irq->res == NULL) {
7485 device_printf(sc->dev,
7486 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7487 return (ENOMEM);
7488 }
7489
7490 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7491 NULL, handler, arg, &irq->tag);
7492 if (rc != 0) {
7493 device_printf(sc->dev,
7494 "failed to setup interrupt for rid %d, name %s: %d\n",
7495 rid, name, rc);
7496 } else if (name)
7497 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7498
7499 return (rc);
7500 }
7501
7502 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7503 t4_free_irq(struct adapter *sc, struct irq *irq)
7504 {
7505 if (irq->tag)
7506 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7507 if (irq->res)
7508 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7509
7510 bzero(irq, sizeof(*irq));
7511
7512 return (0);
7513 }
7514
7515 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7516 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7517 {
7518
7519 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7520 t4_get_regs(sc, buf, regs->len);
7521 }
7522
7523 #define A_PL_INDIR_CMD 0x1f8
7524
7525 #define S_PL_AUTOINC 31
7526 #define M_PL_AUTOINC 0x1U
7527 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7528 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7529
7530 #define S_PL_VFID 20
7531 #define M_PL_VFID 0xffU
7532 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7533 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7534
7535 #define S_PL_ADDR 0
7536 #define M_PL_ADDR 0xfffffU
7537 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7538 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7539
7540 #define A_PL_INDIR_DATA 0x1fc
7541
7542 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7543 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7544 {
7545 u32 stats[2];
7546
7547 if (sc->flags & IS_VF) {
7548 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7549 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7550 } else {
7551 mtx_assert(&sc->reg_lock, MA_OWNED);
7552 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7553 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7554 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7555 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7556 }
7557 return (((uint64_t)stats[1]) << 32 | stats[0]);
7558 }
7559
7560 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7561 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7562 {
7563
7564 #define GET_STAT(name) \
7565 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7566
7567 if (!(sc->flags & IS_VF))
7568 mtx_lock(&sc->reg_lock);
7569 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7570 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7571 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7572 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7573 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7574 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7575 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7576 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7577 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7578 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7579 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7580 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7581 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7582 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7583 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7584 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7585 if (!(sc->flags & IS_VF))
7586 mtx_unlock(&sc->reg_lock);
7587
7588 #undef GET_STAT
7589 }
7590
7591 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7592 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7593 {
7594 int reg;
7595
7596 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7597 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7598 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7599 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7600 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7601 }
7602
7603 static void
vi_refresh_stats(struct vi_info * vi)7604 vi_refresh_stats(struct vi_info *vi)
7605 {
7606 struct timeval tv;
7607 const struct timeval interval = {0, 250000}; /* 250ms */
7608
7609 mtx_assert(&vi->tick_mtx, MA_OWNED);
7610
7611 if (vi->flags & VI_SKIP_STATS)
7612 return;
7613
7614 getmicrotime(&tv);
7615 timevalsub(&tv, &interval);
7616 if (timevalcmp(&tv, &vi->last_refreshed, <))
7617 return;
7618
7619 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7620 getmicrotime(&vi->last_refreshed);
7621 }
7622
7623 static void
cxgbe_refresh_stats(struct vi_info * vi)7624 cxgbe_refresh_stats(struct vi_info *vi)
7625 {
7626 u_int i, v, tnl_cong_drops, chan_map;
7627 struct timeval tv;
7628 const struct timeval interval = {0, 250000}; /* 250ms */
7629 struct port_info *pi;
7630 struct adapter *sc;
7631
7632 mtx_assert(&vi->tick_mtx, MA_OWNED);
7633
7634 if (vi->flags & VI_SKIP_STATS)
7635 return;
7636
7637 getmicrotime(&tv);
7638 timevalsub(&tv, &interval);
7639 if (timevalcmp(&tv, &vi->last_refreshed, <))
7640 return;
7641
7642 pi = vi->pi;
7643 sc = vi->adapter;
7644 tnl_cong_drops = 0;
7645 t4_get_port_stats(sc, pi->hw_port, &pi->stats);
7646 chan_map = pi->rx_e_chan_map;
7647 while (chan_map) {
7648 i = ffs(chan_map) - 1;
7649 mtx_lock(&sc->reg_lock);
7650 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7651 A_TP_MIB_TNL_CNG_DROP_0 + i);
7652 mtx_unlock(&sc->reg_lock);
7653 tnl_cong_drops += v;
7654 chan_map &= ~(1 << i);
7655 }
7656 pi->tnl_cong_drops = tnl_cong_drops;
7657 getmicrotime(&vi->last_refreshed);
7658 }
7659
7660 static void
cxgbe_tick(void * arg)7661 cxgbe_tick(void *arg)
7662 {
7663 struct vi_info *vi = arg;
7664
7665 MPASS(IS_MAIN_VI(vi));
7666 mtx_assert(&vi->tick_mtx, MA_OWNED);
7667
7668 cxgbe_refresh_stats(vi);
7669 callout_schedule(&vi->tick, hz);
7670 }
7671
7672 static void
vi_tick(void * arg)7673 vi_tick(void *arg)
7674 {
7675 struct vi_info *vi = arg;
7676
7677 mtx_assert(&vi->tick_mtx, MA_OWNED);
7678
7679 vi_refresh_stats(vi);
7680 callout_schedule(&vi->tick, hz);
7681 }
7682
7683 /* CIM inbound queues */
7684 static const char *t4_ibq[CIM_NUM_IBQ] = {
7685 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi"
7686 };
7687 static const char *t7_ibq[CIM_NUM_IBQ_T7] = {
7688 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7689 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3",
7690 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7"
7691 };
7692 static const char *t7_ibq_sec[] = {
7693 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7694 NULL, NULL, NULL, "ibq_ipc0"
7695 };
7696
7697 /* CIM outbound queues */
7698 static const char *t4_obq[CIM_NUM_OBQ_T5] = {
7699 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7700 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */
7701 };
7702 static const char *t7_obq[CIM_NUM_OBQ_T7] = {
7703 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7704 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3",
7705 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7"
7706 };
7707 static const char *t7_obq_sec[] = {
7708 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL,
7709 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0"
7710 };
7711
7712 static void
cim_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * c0)7713 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
7714 struct sysctl_oid_list *c0)
7715 {
7716 struct sysctl_oid *oid;
7717 struct sysctl_oid_list *children1;
7718 int i, j, qcount;
7719 char s[16];
7720 const char **qname;
7721
7722 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim",
7723 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block");
7724 c0 = SYSCTL_CHILDREN(oid);
7725
7726 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL,
7727 sc->params.ncores, "# of active CIM cores");
7728
7729 for (i = 0; i < sc->params.ncores; i++) {
7730 snprintf(s, sizeof(s), "%u", i);
7731 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s,
7732 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core");
7733 children1 = SYSCTL_CHILDREN(oid);
7734
7735 /*
7736 * CTLFLAG_SKIP because the misc.devlog sysctl already displays
7737 * the log for all cores. Use this sysctl to get the log for a
7738 * particular core only.
7739 */
7740 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog",
7741 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7742 sc, i, sysctl_devlog, "A", "firmware's device log");
7743
7744 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg",
7745 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7746 sysctl_loadavg, "A",
7747 "microprocessor load averages (select firmwares only)");
7748
7749 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg",
7750 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7751 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg,
7752 "A", "Queue configuration");
7753
7754 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la",
7755 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7756 sysctl_cim_la, "A", "Logic analyzer");
7757
7758 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la",
7759 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7760 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7761
7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la",
7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7764 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7765
7766 /* IBQs */
7767 switch (chip_id(sc)) {
7768 case CHELSIO_T4:
7769 case CHELSIO_T5:
7770 case CHELSIO_T6:
7771 qname = &t4_ibq[0];
7772 qcount = nitems(t4_ibq);
7773 break;
7774 case CHELSIO_T7:
7775 default:
7776 if (i == 0) {
7777 qname = &t7_ibq[0];
7778 qcount = nitems(t7_ibq);
7779 } else {
7780 qname = &t7_ibq_sec[0];
7781 qcount = nitems(t7_ibq_sec);
7782 }
7783 break;
7784 }
7785 MPASS(qcount <= sc->chip_params->cim_num_ibq);
7786 for (j = 0; j < qcount; j++) {
7787 if (qname[j] == NULL)
7788 continue;
7789 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7790 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7791 (i << 16) | j, sysctl_cim_ibq, "A", NULL);
7792 }
7793
7794 /* OBQs */
7795 switch (chip_id(sc)) {
7796 case CHELSIO_T4:
7797 qname = t4_obq;
7798 qcount = CIM_NUM_OBQ;
7799 break;
7800 case CHELSIO_T5:
7801 case CHELSIO_T6:
7802 qname = t4_obq;
7803 qcount = nitems(t4_obq);
7804 break;
7805 case CHELSIO_T7:
7806 default:
7807 if (i == 0) {
7808 qname = t7_obq;
7809 qcount = nitems(t7_obq);
7810 } else {
7811 qname = t7_obq_sec;
7812 qcount = nitems(t7_obq_sec);
7813 }
7814 break;
7815 }
7816 MPASS(qcount <= sc->chip_params->cim_num_obq);
7817 for (j = 0; j < qcount; j++) {
7818 if (qname[j] == NULL)
7819 continue;
7820 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7821 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7822 (i << 16) | j, sysctl_cim_obq, "A", NULL);
7823 }
7824 }
7825 }
7826
7827 /*
7828 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7829 */
7830 static char *caps_decoder[] = {
7831 "\20\001IPMI\002NCSI", /* 0: NBM */
7832 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7833 "\20\001INGRESS\002EGRESS", /* 2: switch */
7834 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7835 "\006HASHFILTER\007ETHOFLD",
7836 "\20\001TOE\002SENDPATH", /* 4: TOE */
7837 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */
7838 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7839 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7840 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7841 "\007T10DIF"
7842 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7843 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7844 "\004TLS_HW,\005TOE_IPSEC",
7845 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7846 "\004PO_INITIATOR\005PO_TARGET",
7847 "\20\001NVMe_TCP", /* 9: NVMe */
7848 };
7849
7850 void
t4_sysctls(struct adapter * sc)7851 t4_sysctls(struct adapter *sc)
7852 {
7853 struct sysctl_ctx_list *ctx = &sc->ctx;
7854 struct sysctl_oid *oid;
7855 struct sysctl_oid_list *children, *c0;
7856 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7857
7858 /*
7859 * dev.t4nex.X.
7860 */
7861 oid = device_get_sysctl_tree(sc->dev);
7862 c0 = children = SYSCTL_CHILDREN(oid);
7863
7864 sc->sc_do_rxcopy = 1;
7865 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7866 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7867
7868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7869 sc->params.nports, "# of ports");
7870
7871 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7872 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7873 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7874 "available doorbells");
7875
7876 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7877 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7878
7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7880 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7881 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7882 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7883
7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7886 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7887 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7888
7889 t4_sge_sysctls(sc, ctx, children);
7890
7891 sc->lro_timeout = 100;
7892 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7893 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7894
7895 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7896 &sc->debug_flags, 0, "flags to enable runtime debugging");
7897
7898 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7899 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7900
7901 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7902 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7903
7904 if (sc->flags & IS_VF)
7905 return;
7906
7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7908 NULL, chip_rev(sc), "chip hardware revision");
7909
7910 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7911 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7912
7913 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7914 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7915
7916 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7917 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7918
7919 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7920 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7921
7922 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7923 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7924
7925 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7926 sc->er_version, 0, "expansion ROM version");
7927
7928 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7929 sc->bs_version, 0, "bootstrap firmware version");
7930
7931 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7932 NULL, sc->params.scfg_vers, "serial config version");
7933
7934 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7935 NULL, sc->params.vpd_vers, "VPD version");
7936
7937 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7938 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7939
7940 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7941 sc->cfcsum, "config file checksum");
7942
7943 #define SYSCTL_CAP(name, n, text) \
7944 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7945 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7946 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7947 "available " text " capabilities")
7948
7949 SYSCTL_CAP(nbmcaps, 0, "NBM");
7950 SYSCTL_CAP(linkcaps, 1, "link");
7951 SYSCTL_CAP(switchcaps, 2, "switch");
7952 SYSCTL_CAP(nvmecaps, 9, "NVMe");
7953 SYSCTL_CAP(niccaps, 3, "NIC");
7954 SYSCTL_CAP(toecaps, 4, "TCP offload");
7955 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7956 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7957 SYSCTL_CAP(cryptocaps, 7, "crypto");
7958 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7959 #undef SYSCTL_CAP
7960
7961 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7962 NULL, sc->tids.nftids, "number of filters");
7963
7964 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7965 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7966 sysctl_temperature, "I", "chip temperature (in Celsius)");
7967 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7968 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7969 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7970
7971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7972 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7973 "I", "core Vdd (in mV)");
7974
7975 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7976 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7977 sysctl_cpus, "A", "local CPUs");
7978
7979 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7980 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7981 sysctl_cpus, "A", "preferred CPUs for interrupts");
7982
7983 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7984 &sc->swintr, 0, "software triggered interrupts");
7985
7986 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7987 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7988 "1 = reset adapter, 0 = zero reset counter");
7989
7990 /*
7991 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7992 */
7993 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7994 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7995 "logs and miscellaneous information");
7996 children = SYSCTL_CHILDREN(oid);
7997
7998 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7999 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8000 sysctl_cctrl, "A", "congestion control");
8001
8002 cim_sysctls(sc, ctx, children);
8003
8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
8005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8006 sysctl_cpl_stats, "A", "CPL statistics");
8007
8008 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
8009 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8010 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
8011
8012 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
8013 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8014 sysctl_tid_stats, "A", "tid stats");
8015
8016 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
8017 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1,
8018 sysctl_devlog, "A", "firmware's device log (all cores)");
8019
8020 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
8021 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8022 sysctl_fcoe_stats, "A", "FCoE statistics");
8023
8024 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
8025 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8026 sysctl_hw_sched, "A", "hardware scheduler ");
8027
8028 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
8029 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8030 sysctl_l2t, "A", "hardware L2 table");
8031
8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8034 sysctl_smt, "A", "hardware source MAC table");
8035
8036 #ifdef INET6
8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
8038 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8039 sysctl_clip, "A", "active CLIP table entries");
8040 #endif
8041
8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
8043 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8044 sysctl_lb_stats, "A", "loopback statistics");
8045
8046 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
8047 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8048 sysctl_meminfo, "A", "memory regions");
8049
8050 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
8051 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8052 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 :
8053 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam),
8054 "A", "MPS TCAM entries");
8055
8056 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
8057 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8058 sysctl_path_mtus, "A", "path MTUs");
8059
8060 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
8061 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8062 sysctl_pm_stats, "A", "PM statistics");
8063
8064 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
8065 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8066 sysctl_rdma_stats, "A", "RDMA statistics");
8067
8068 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
8069 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8070 sysctl_tcp_stats, "A", "TCP statistics");
8071
8072 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
8073 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8074 sysctl_tids, "A", "TID information");
8075
8076 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
8077 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8078 sysctl_tp_err_stats, "A", "TP error statistics");
8079
8080 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
8081 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8082 sysctl_tnl_stats, "A", "TP tunnel statistics");
8083
8084 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
8085 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
8086 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
8087
8088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
8089 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8090 sysctl_tp_la, "A", "TP logic analyzer");
8091
8092 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
8093 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8094 sysctl_tx_rate, "A", "Tx rate");
8095
8096 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
8097 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8098 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
8099
8100 if (chip_id(sc) >= CHELSIO_T5) {
8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
8102 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8103 sysctl_wcwr_stats, "A", "write combined work requests");
8104 }
8105
8106 #ifdef KERN_TLS
8107 if (is_ktls(sc)) {
8108 /*
8109 * dev.t4nex.0.tls.
8110 */
8111 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
8112 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
8113 children = SYSCTL_CHILDREN(oid);
8114
8115 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
8116 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
8117 "keys in work requests (1) or attempt to store TLS keys "
8118 "in card memory.");
8119
8120 if (is_t6(sc))
8121 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
8122 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
8123 "combine TCB field updates with TLS record work "
8124 "requests.");
8125 else {
8126 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records",
8127 CTLFLAG_RW, &sc->tlst.short_records, 0,
8128 "Use cipher-only mode for short records.");
8129 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash",
8130 CTLFLAG_RW, &sc->tlst.partial_ghash, 0,
8131 "Use partial GHASH for AES-GCM records.");
8132 }
8133 }
8134 #endif
8135
8136 #ifdef TCP_OFFLOAD
8137 if (is_offload(sc)) {
8138 int i;
8139 char s[4];
8140
8141 /*
8142 * dev.t4nex.X.toe.
8143 */
8144 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
8145 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
8146 children = SYSCTL_CHILDREN(oid);
8147
8148 sc->tt.cong_algorithm = -1;
8149 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
8150 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
8151 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
8152 "3 = highspeed)");
8153
8154 sc->tt.sndbuf = -1;
8155 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
8156 &sc->tt.sndbuf, 0, "hardware send buffer");
8157
8158 sc->tt.ddp = 0;
8159 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
8160 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
8161 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
8162 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
8163
8164 sc->tt.rx_coalesce = -1;
8165 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
8166 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
8167
8168 sc->tt.tls = 1;
8169 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
8170 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
8171 "Inline TLS allowed");
8172
8173 sc->tt.tx_align = -1;
8174 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
8175 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
8176
8177 sc->tt.tx_zcopy = 0;
8178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
8179 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
8180 "Enable zero-copy aio_write(2)");
8181
8182 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
8183 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8184 "cop_managed_offloading", CTLFLAG_RW,
8185 &sc->tt.cop_managed_offloading, 0,
8186 "COP (Connection Offload Policy) controls all TOE offload");
8187
8188 sc->tt.autorcvbuf_inc = 16 * 1024;
8189 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
8190 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
8191 "autorcvbuf increment");
8192
8193 sc->tt.update_hc_on_pmtu_change = 1;
8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8195 "update_hc_on_pmtu_change", CTLFLAG_RW,
8196 &sc->tt.update_hc_on_pmtu_change, 0,
8197 "Update hostcache entry if the PMTU changes");
8198
8199 sc->tt.iso = 1;
8200 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
8201 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
8202
8203 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
8204 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8205 sysctl_tp_tick, "A", "TP timer tick (us)");
8206
8207 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
8208 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
8209 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
8210
8211 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
8212 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
8213 sysctl_tp_tick, "A", "DACK tick (us)");
8214
8215 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
8216 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8217 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
8218
8219 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
8220 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8221 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
8222 "Minimum retransmit interval (us)");
8223
8224 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
8225 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8226 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
8227 "Maximum retransmit interval (us)");
8228
8229 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
8230 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8231 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
8232 "Persist timer min (us)");
8233
8234 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
8235 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8236 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
8237 "Persist timer max (us)");
8238
8239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
8240 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8241 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
8242 "Keepalive idle timer (us)");
8243
8244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
8245 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8246 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
8247 "Keepalive interval timer (us)");
8248
8249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
8250 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8251 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
8252
8253 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
8254 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8255 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
8256 "FINWAIT2 timer (us)");
8257
8258 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
8259 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8260 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
8261 "Number of SYN retransmissions before abort");
8262
8263 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
8264 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8265 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
8266 "Number of retransmissions before abort");
8267
8268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
8269 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8270 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
8271 "Number of keepalive probes before abort");
8272
8273 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
8274 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8275 "TOE retransmit backoffs");
8276 children = SYSCTL_CHILDREN(oid);
8277 for (i = 0; i < 16; i++) {
8278 snprintf(s, sizeof(s), "%u", i);
8279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8280 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8281 i, sysctl_tp_backoff, "IU",
8282 "TOE retransmit backoff");
8283 }
8284 }
8285 #endif
8286 }
8287
8288 void
vi_sysctls(struct vi_info * vi)8289 vi_sysctls(struct vi_info *vi)
8290 {
8291 struct sysctl_ctx_list *ctx = &vi->ctx;
8292 struct sysctl_oid *oid;
8293 struct sysctl_oid_list *children;
8294
8295 /*
8296 * dev.v?(cxgbe|cxl).X.
8297 */
8298 oid = device_get_sysctl_tree(vi->dev);
8299 children = SYSCTL_CHILDREN(oid);
8300
8301 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8302 vi->viid, "VI identifer");
8303 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8304 &vi->nrxq, 0, "# of rx queues");
8305 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8306 &vi->ntxq, 0, "# of tx queues");
8307 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8308 &vi->first_rxq, 0, "index of first rx queue");
8309 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8310 &vi->first_txq, 0, "index of first tx queue");
8311 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8312 vi->rss_base, "start of RSS indirection table");
8313 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8314 vi->rss_size, "size of RSS indirection table");
8315
8316 if (IS_MAIN_VI(vi)) {
8317 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8318 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8319 sysctl_noflowq, "IU",
8320 "Reserve queue 0 for non-flowid packets");
8321 }
8322
8323 if (vi->adapter->flags & IS_VF) {
8324 MPASS(vi->flags & TX_USES_VM_WR);
8325 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8326 NULL, 1, "use VM work requests for transmit");
8327 } else {
8328 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8329 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8330 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8331 }
8332
8333 #ifdef TCP_OFFLOAD
8334 if (vi->nofldrxq != 0) {
8335 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8336 &vi->nofldrxq, 0,
8337 "# of rx queues for offloaded TCP connections");
8338 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8339 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8340 "index of first TOE rx queue");
8341 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8342 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8343 sysctl_holdoff_tmr_idx_ofld, "I",
8344 "holdoff timer index for TOE queues");
8345 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8346 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8347 sysctl_holdoff_pktc_idx_ofld, "I",
8348 "holdoff packet counter index for TOE queues");
8349 }
8350 #endif
8351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8352 if (vi->nofldtxq != 0) {
8353 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8354 &vi->nofldtxq, 0,
8355 "# of tx queues for TOE/ETHOFLD");
8356 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8357 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8358 "index of first TOE/ETHOFLD tx queue");
8359 }
8360 #endif
8361 #ifdef DEV_NETMAP
8362 if (vi->nnmrxq != 0) {
8363 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8364 &vi->nnmrxq, 0, "# of netmap rx queues");
8365 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8366 &vi->nnmtxq, 0, "# of netmap tx queues");
8367 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8368 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8369 "index of first netmap rx queue");
8370 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8371 CTLFLAG_RD, &vi->first_nm_txq, 0,
8372 "index of first netmap tx queue");
8373 }
8374 #endif
8375
8376 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8377 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8378 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8379 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8380 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8381 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8382
8383 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8384 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8385 sysctl_qsize_rxq, "I", "rx queue size");
8386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8387 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8388 sysctl_qsize_txq, "I", "tx queue size");
8389 }
8390
8391 static void
cxgbe_sysctls(struct port_info * pi)8392 cxgbe_sysctls(struct port_info *pi)
8393 {
8394 struct sysctl_ctx_list *ctx = &pi->ctx;
8395 struct sysctl_oid *oid;
8396 struct sysctl_oid_list *children, *children2;
8397 struct adapter *sc = pi->adapter;
8398 int i;
8399 char name[16];
8400 static char *tc_flags = {"\20\1USER"};
8401
8402 /*
8403 * dev.cxgbe.X.
8404 */
8405 oid = device_get_sysctl_tree(pi->dev);
8406 children = SYSCTL_CHILDREN(oid);
8407
8408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8409 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8410 sysctl_linkdnrc, "A", "reason why link is down");
8411 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8412 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8413 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8414 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8416 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8417 sysctl_btphy, "I", "PHY firmware version");
8418 }
8419
8420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8421 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8422 sysctl_pause_settings, "A",
8423 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8424 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8425 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8426 "FEC in use on the link");
8427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8428 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8429 sysctl_requested_fec, "A",
8430 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8432 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8433 "FEC recommended by the cable/transceiver");
8434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8435 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8436 sysctl_autoneg, "I",
8437 "autonegotiation (-1 = not supported)");
8438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8439 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8440 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8441
8442 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8443 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8444 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8445 &pi->link_cfg.pcaps, 0, "port capabilities");
8446 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8447 &pi->link_cfg.acaps, 0, "advertised capabilities");
8448 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8449 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8450
8451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8452 port_top_speed(pi), "max speed (in Gbps)");
8453 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8454 pi->mps_bg_map, "MPS buffer group map");
8455 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8456 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8457 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8458 pi->tx_chan, "TP tx c-channel");
8459 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8460 pi->rx_chan, "TP rx c-channel");
8461
8462 if (sc->flags & IS_VF)
8463 return;
8464
8465 /*
8466 * dev.(cxgbe|cxl).X.tc.
8467 */
8468 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8469 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8470 "Tx scheduler traffic classes (cl_rl)");
8471 children2 = SYSCTL_CHILDREN(oid);
8472 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8473 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8474 "pktsize for per-flow cl-rl (0 means up to the driver )");
8475 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8476 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8477 "burstsize for per-flow cl-rl (0 means up to the driver)");
8478 for (i = 0; i < sc->params.nsched_cls; i++) {
8479 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8480
8481 snprintf(name, sizeof(name), "%d", i);
8482 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8483 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8484 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8485 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8486 CTLFLAG_RD, &tc->state, 0, "current state");
8487 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8488 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8489 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8490 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8491 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8492 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8494 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8495 "traffic class parameters");
8496 }
8497
8498 /*
8499 * dev.cxgbe.X.stats.
8500 */
8501 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8502 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8503 children = SYSCTL_CHILDREN(oid);
8504 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8505 &pi->tx_parse_error, 0,
8506 "# of tx packets with invalid length or # of segments");
8507
8508 #define T4_LBSTAT(name, stat, desc) do { \
8509 if (sc->params.tp.lb_mode) { \
8510 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8511 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \
8512 A_MPS_PORT_STAT_##stat##_L, \
8513 sysctl_handle_t4_portstat64, "QU", desc); \
8514 } else { \
8515 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8516 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8517 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8518 sysctl_handle_t4_reg64, "QU", desc); \
8519 } \
8520 } while (0)
8521
8522 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8523 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8524 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8525 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8526 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8527 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8528 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8529 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8530 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8531 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8532 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8533 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8534 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8535 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8536 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8537 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8538 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8539 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8540 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8541 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8542 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8543 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8544 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8545
8546 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8547 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8548 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8549 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8550 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8551 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8552 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8553 if (is_t6(sc)) {
8554 /* Read from port_stats and may be stale by up to 1s */
8555 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err",
8556 CTLFLAG_RD, &pi->stats.rx_fcs_err,
8557 "# of frames received with bad FCS since last link up");
8558 } else {
8559 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8560 "# of frames received with bad FCS");
8561 }
8562 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8563 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8564 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8565 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8566 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8567 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8568 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8569 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8570 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8571 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8572 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8573 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8574 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8575 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8576 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8577 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8578 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8579 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8580 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8581 #undef T4_LBSTAT
8582
8583 #define T4_REGSTAT(name, stat, desc) do { \
8584 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8585 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8586 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \
8587 } while (0)
8588
8589 if (pi->mps_bg_map & 1) {
8590 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME,
8591 "# drops due to buffer-group 0 overflows");
8592 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME,
8593 "# of buffer-group 0 truncated packets");
8594 }
8595 if (pi->mps_bg_map & 2) {
8596 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME,
8597 "# drops due to buffer-group 1 overflows");
8598 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME,
8599 "# of buffer-group 1 truncated packets");
8600 }
8601 if (pi->mps_bg_map & 4) {
8602 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME,
8603 "# drops due to buffer-group 2 overflows");
8604 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME,
8605 "# of buffer-group 2 truncated packets");
8606 }
8607 if (pi->mps_bg_map & 8) {
8608 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME,
8609 "# drops due to buffer-group 3 overflows");
8610 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME,
8611 "# of buffer-group 3 truncated packets");
8612 }
8613 #undef T4_REGSTAT
8614 }
8615
8616 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8617 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8618 {
8619 int rc, *i, space = 0;
8620 struct sbuf sb;
8621
8622 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8623 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8624 if (space)
8625 sbuf_printf(&sb, " ");
8626 sbuf_printf(&sb, "%d", *i);
8627 space = 1;
8628 }
8629 rc = sbuf_finish(&sb);
8630 sbuf_delete(&sb);
8631 return (rc);
8632 }
8633
8634 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8635 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8636 {
8637 int rc;
8638 struct sbuf *sb;
8639
8640 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8641 if (sb == NULL)
8642 return (ENOMEM);
8643
8644 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8645 rc = sbuf_finish(sb);
8646 sbuf_delete(sb);
8647
8648 return (rc);
8649 }
8650
8651 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8652 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8653 {
8654 int rc;
8655 struct sbuf *sb;
8656
8657 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8658 if (sb == NULL)
8659 return (ENOMEM);
8660
8661 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8662 rc = sbuf_finish(sb);
8663 sbuf_delete(sb);
8664
8665 return (rc);
8666 }
8667
8668 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8669 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8670 {
8671 struct port_info *pi = arg1;
8672 int op = arg2;
8673 struct adapter *sc = pi->adapter;
8674 u_int v;
8675 int rc;
8676
8677 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8678 if (rc)
8679 return (rc);
8680 if (!hw_all_ok(sc))
8681 rc = ENXIO;
8682 else {
8683 /* XXX: magic numbers */
8684 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8685 op ? 0x20 : 0xc820, &v);
8686 }
8687 end_synchronized_op(sc, 0);
8688 if (rc)
8689 return (rc);
8690 if (op == 0)
8691 v /= 256;
8692
8693 rc = sysctl_handle_int(oidp, &v, 0, req);
8694 return (rc);
8695 }
8696
8697 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8698 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8699 {
8700 struct vi_info *vi = arg1;
8701 int rc, val;
8702
8703 val = vi->rsrv_noflowq;
8704 rc = sysctl_handle_int(oidp, &val, 0, req);
8705 if (rc != 0 || req->newptr == NULL)
8706 return (rc);
8707
8708 if ((val >= 1) && (vi->ntxq > 1))
8709 vi->rsrv_noflowq = 1;
8710 else
8711 vi->rsrv_noflowq = 0;
8712
8713 return (rc);
8714 }
8715
8716 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8717 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8718 {
8719 struct vi_info *vi = arg1;
8720 struct adapter *sc = vi->adapter;
8721 int rc, val, i;
8722
8723 MPASS(!(sc->flags & IS_VF));
8724
8725 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8726 rc = sysctl_handle_int(oidp, &val, 0, req);
8727 if (rc != 0 || req->newptr == NULL)
8728 return (rc);
8729
8730 if (val != 0 && val != 1)
8731 return (EINVAL);
8732
8733 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8734 "t4txvm");
8735 if (rc)
8736 return (rc);
8737 if (!hw_all_ok(sc))
8738 rc = ENXIO;
8739 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8740 /*
8741 * We don't want parse_pkt to run with one setting (VF or PF)
8742 * and then eth_tx to see a different setting but still use
8743 * stale information calculated by parse_pkt.
8744 */
8745 rc = EBUSY;
8746 } else {
8747 struct port_info *pi = vi->pi;
8748 struct sge_txq *txq;
8749 uint32_t ctrl0;
8750 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8751
8752 if (val) {
8753 vi->flags |= TX_USES_VM_WR;
8754 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8755 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8756 V_TXPKT_INTF(pi->hw_port));
8757 if (!(sc->flags & IS_VF))
8758 npkt--;
8759 } else {
8760 vi->flags &= ~TX_USES_VM_WR;
8761 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8762 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8763 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
8764 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8765 }
8766 for_each_txq(vi, i, txq) {
8767 txq->cpl_ctrl0 = ctrl0;
8768 txq->txp.max_npkt = npkt;
8769 }
8770 }
8771 end_synchronized_op(sc, LOCK_HELD);
8772 return (rc);
8773 }
8774
8775 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8776 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8777 {
8778 struct vi_info *vi = arg1;
8779 struct adapter *sc = vi->adapter;
8780 int idx, rc, i;
8781 struct sge_rxq *rxq;
8782 uint8_t v;
8783
8784 idx = vi->tmr_idx;
8785
8786 rc = sysctl_handle_int(oidp, &idx, 0, req);
8787 if (rc != 0 || req->newptr == NULL)
8788 return (rc);
8789
8790 if (idx < 0 || idx >= SGE_NTIMERS)
8791 return (EINVAL);
8792
8793 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8794 "t4tmr");
8795 if (rc)
8796 return (rc);
8797
8798 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8799 for_each_rxq(vi, i, rxq) {
8800 #ifdef atomic_store_rel_8
8801 atomic_store_rel_8(&rxq->iq.intr_params, v);
8802 #else
8803 rxq->iq.intr_params = v;
8804 #endif
8805 }
8806 vi->tmr_idx = idx;
8807
8808 end_synchronized_op(sc, LOCK_HELD);
8809 return (0);
8810 }
8811
8812 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8813 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8814 {
8815 struct vi_info *vi = arg1;
8816 struct adapter *sc = vi->adapter;
8817 int idx, rc;
8818
8819 idx = vi->pktc_idx;
8820
8821 rc = sysctl_handle_int(oidp, &idx, 0, req);
8822 if (rc != 0 || req->newptr == NULL)
8823 return (rc);
8824
8825 if (idx < -1 || idx >= SGE_NCOUNTERS)
8826 return (EINVAL);
8827
8828 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8829 "t4pktc");
8830 if (rc)
8831 return (rc);
8832
8833 if (vi->flags & VI_INIT_DONE)
8834 rc = EBUSY; /* cannot be changed once the queues are created */
8835 else
8836 vi->pktc_idx = idx;
8837
8838 end_synchronized_op(sc, LOCK_HELD);
8839 return (rc);
8840 }
8841
8842 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8843 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8844 {
8845 struct vi_info *vi = arg1;
8846 struct adapter *sc = vi->adapter;
8847 int qsize, rc;
8848
8849 qsize = vi->qsize_rxq;
8850
8851 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8852 if (rc != 0 || req->newptr == NULL)
8853 return (rc);
8854
8855 if (qsize < 128 || (qsize & 7))
8856 return (EINVAL);
8857
8858 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8859 "t4rxqs");
8860 if (rc)
8861 return (rc);
8862
8863 if (vi->flags & VI_INIT_DONE)
8864 rc = EBUSY; /* cannot be changed once the queues are created */
8865 else
8866 vi->qsize_rxq = qsize;
8867
8868 end_synchronized_op(sc, LOCK_HELD);
8869 return (rc);
8870 }
8871
8872 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8873 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8874 {
8875 struct vi_info *vi = arg1;
8876 struct adapter *sc = vi->adapter;
8877 int qsize, rc;
8878
8879 qsize = vi->qsize_txq;
8880
8881 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8882 if (rc != 0 || req->newptr == NULL)
8883 return (rc);
8884
8885 if (qsize < 128 || qsize > 65536)
8886 return (EINVAL);
8887
8888 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8889 "t4txqs");
8890 if (rc)
8891 return (rc);
8892
8893 if (vi->flags & VI_INIT_DONE)
8894 rc = EBUSY; /* cannot be changed once the queues are created */
8895 else
8896 vi->qsize_txq = qsize;
8897
8898 end_synchronized_op(sc, LOCK_HELD);
8899 return (rc);
8900 }
8901
8902 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8903 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8904 {
8905 struct port_info *pi = arg1;
8906 struct adapter *sc = pi->adapter;
8907 struct link_config *lc = &pi->link_cfg;
8908 int rc;
8909
8910 if (req->newptr == NULL) {
8911 struct sbuf *sb;
8912 static char *bits = "\20\1RX\2TX\3AUTO";
8913
8914 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8915 if (sb == NULL)
8916 return (ENOMEM);
8917
8918 if (lc->link_ok) {
8919 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8920 (lc->requested_fc & PAUSE_AUTONEG), bits);
8921 } else {
8922 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8923 PAUSE_RX | PAUSE_AUTONEG), bits);
8924 }
8925 rc = sbuf_finish(sb);
8926 sbuf_delete(sb);
8927 } else {
8928 char s[2];
8929 int n;
8930
8931 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8932 PAUSE_AUTONEG));
8933 s[1] = 0;
8934
8935 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8936 if (rc != 0)
8937 return(rc);
8938
8939 if (s[1] != 0)
8940 return (EINVAL);
8941 if (s[0] < '0' || s[0] > '9')
8942 return (EINVAL); /* not a number */
8943 n = s[0] - '0';
8944 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8945 return (EINVAL); /* some other bit is set too */
8946
8947 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8948 "t4PAUSE");
8949 if (rc)
8950 return (rc);
8951 if (hw_all_ok(sc)) {
8952 PORT_LOCK(pi);
8953 lc->requested_fc = n;
8954 fixup_link_config(pi);
8955 if (pi->up_vis > 0)
8956 rc = apply_link_config(pi);
8957 set_current_media(pi);
8958 PORT_UNLOCK(pi);
8959 }
8960 end_synchronized_op(sc, 0);
8961 }
8962
8963 return (rc);
8964 }
8965
8966 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8967 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8968 {
8969 struct port_info *pi = arg1;
8970 struct link_config *lc = &pi->link_cfg;
8971 int rc;
8972 struct sbuf *sb;
8973
8974 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8975 if (sb == NULL)
8976 return (ENOMEM);
8977 if (lc->link_ok)
8978 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits);
8979 else
8980 sbuf_printf(sb, "no link");
8981 rc = sbuf_finish(sb);
8982 sbuf_delete(sb);
8983
8984 return (rc);
8985 }
8986
8987 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8988 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8989 {
8990 struct port_info *pi = arg1;
8991 struct adapter *sc = pi->adapter;
8992 struct link_config *lc = &pi->link_cfg;
8993 int rc;
8994 int8_t old;
8995
8996 if (req->newptr == NULL) {
8997 struct sbuf *sb;
8998
8999 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9000 if (sb == NULL)
9001 return (ENOMEM);
9002
9003 sbuf_printf(sb, "%b", lc->requested_fec, t4_fec_bits);
9004 rc = sbuf_finish(sb);
9005 sbuf_delete(sb);
9006 } else {
9007 char s[8];
9008 int n;
9009
9010 snprintf(s, sizeof(s), "%d",
9011 lc->requested_fec == FEC_AUTO ? -1 :
9012 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
9013
9014 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
9015 if (rc != 0)
9016 return(rc);
9017
9018 n = strtol(&s[0], NULL, 0);
9019 if (n < 0 || n & FEC_AUTO)
9020 n = FEC_AUTO;
9021 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
9022 return (EINVAL);/* some other bit is set too */
9023
9024 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9025 "t4reqf");
9026 if (rc)
9027 return (rc);
9028 PORT_LOCK(pi);
9029 old = lc->requested_fec;
9030 if (n == FEC_AUTO)
9031 lc->requested_fec = FEC_AUTO;
9032 else if (n == 0 || n == FEC_NONE)
9033 lc->requested_fec = FEC_NONE;
9034 else {
9035 if ((lc->pcaps |
9036 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
9037 lc->pcaps) {
9038 rc = ENOTSUP;
9039 goto done;
9040 }
9041 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
9042 FEC_MODULE);
9043 }
9044 if (hw_all_ok(sc)) {
9045 fixup_link_config(pi);
9046 if (pi->up_vis > 0) {
9047 rc = apply_link_config(pi);
9048 if (rc != 0) {
9049 lc->requested_fec = old;
9050 if (rc == FW_EPROTO)
9051 rc = ENOTSUP;
9052 }
9053 }
9054 }
9055 done:
9056 PORT_UNLOCK(pi);
9057 end_synchronized_op(sc, 0);
9058 }
9059
9060 return (rc);
9061 }
9062
9063 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)9064 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
9065 {
9066 struct port_info *pi = arg1;
9067 struct adapter *sc = pi->adapter;
9068 struct link_config *lc = &pi->link_cfg;
9069 int rc;
9070 int8_t fec;
9071 struct sbuf *sb;
9072
9073 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9074 if (sb == NULL)
9075 return (ENOMEM);
9076
9077 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
9078 rc = EBUSY;
9079 goto done;
9080 }
9081 if (!hw_all_ok(sc)) {
9082 rc = ENXIO;
9083 goto done;
9084 }
9085 PORT_LOCK(pi);
9086 if (pi->up_vis == 0) {
9087 /*
9088 * If all the interfaces are administratively down the firmware
9089 * does not report transceiver changes. Refresh port info here.
9090 * This is the only reason we have a synchronized op in this
9091 * function. Just PORT_LOCK would have been enough otherwise.
9092 */
9093 t4_update_port_info(pi);
9094 }
9095
9096 fec = lc->fec_hint;
9097 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
9098 !fec_supported(lc->pcaps)) {
9099 PORT_UNLOCK(pi);
9100 sbuf_printf(sb, "n/a");
9101 } else {
9102 if (fec == 0)
9103 fec = FEC_NONE;
9104 PORT_UNLOCK(pi);
9105 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits);
9106 }
9107 rc = sbuf_finish(sb);
9108 done:
9109 sbuf_delete(sb);
9110 end_synchronized_op(sc, 0);
9111
9112 return (rc);
9113 }
9114
9115 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)9116 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
9117 {
9118 struct port_info *pi = arg1;
9119 struct adapter *sc = pi->adapter;
9120 struct link_config *lc = &pi->link_cfg;
9121 int rc, val;
9122
9123 if (lc->pcaps & FW_PORT_CAP32_ANEG)
9124 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
9125 else
9126 val = -1;
9127 rc = sysctl_handle_int(oidp, &val, 0, req);
9128 if (rc != 0 || req->newptr == NULL)
9129 return (rc);
9130 if (val == 0)
9131 val = AUTONEG_DISABLE;
9132 else if (val == 1)
9133 val = AUTONEG_ENABLE;
9134 else
9135 val = AUTONEG_AUTO;
9136
9137 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9138 "t4aneg");
9139 if (rc)
9140 return (rc);
9141 PORT_LOCK(pi);
9142 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
9143 rc = ENOTSUP;
9144 goto done;
9145 }
9146 lc->requested_aneg = val;
9147 if (hw_all_ok(sc)) {
9148 fixup_link_config(pi);
9149 if (pi->up_vis > 0)
9150 rc = apply_link_config(pi);
9151 set_current_media(pi);
9152 }
9153 done:
9154 PORT_UNLOCK(pi);
9155 end_synchronized_op(sc, 0);
9156 return (rc);
9157 }
9158
9159 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)9160 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
9161 {
9162 struct port_info *pi = arg1;
9163 struct adapter *sc = pi->adapter;
9164 struct link_config *lc = &pi->link_cfg;
9165 int rc, val;
9166
9167 val = lc->force_fec;
9168 MPASS(val >= -1 && val <= 1);
9169 rc = sysctl_handle_int(oidp, &val, 0, req);
9170 if (rc != 0 || req->newptr == NULL)
9171 return (rc);
9172 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
9173 return (ENOTSUP);
9174 if (val < -1 || val > 1)
9175 return (EINVAL);
9176
9177 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
9178 if (rc)
9179 return (rc);
9180 PORT_LOCK(pi);
9181 lc->force_fec = val;
9182 if (hw_all_ok(sc)) {
9183 fixup_link_config(pi);
9184 if (pi->up_vis > 0)
9185 rc = apply_link_config(pi);
9186 }
9187 PORT_UNLOCK(pi);
9188 end_synchronized_op(sc, 0);
9189 return (rc);
9190 }
9191
9192 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)9193 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
9194 {
9195 struct adapter *sc = arg1;
9196 int rc, reg = arg2;
9197 uint64_t val;
9198
9199 mtx_lock(&sc->reg_lock);
9200 if (hw_off_limits(sc))
9201 rc = ENXIO;
9202 else {
9203 rc = 0;
9204 val = t4_read_reg64(sc, reg);
9205 }
9206 mtx_unlock(&sc->reg_lock);
9207 if (rc == 0)
9208 rc = sysctl_handle_64(oidp, &val, 0, req);
9209 return (rc);
9210 }
9211
9212 static int
sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)9213 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)
9214 {
9215 struct port_info *pi = arg1;
9216 struct adapter *sc = pi->adapter;
9217 int rc, i, reg = arg2;
9218 uint64_t val;
9219
9220 mtx_lock(&sc->reg_lock);
9221 if (hw_off_limits(sc))
9222 rc = ENXIO;
9223 else {
9224 val = 0;
9225 for (i = 0; i < sc->params.tp.lb_nchan; i++) {
9226 val += t4_read_reg64(sc,
9227 t4_port_reg(sc, pi->tx_chan + i, reg));
9228 }
9229 rc = 0;
9230 }
9231 mtx_unlock(&sc->reg_lock);
9232 if (rc == 0)
9233 rc = sysctl_handle_64(oidp, &val, 0, req);
9234 return (rc);
9235 }
9236
9237 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)9238 sysctl_temperature(SYSCTL_HANDLER_ARGS)
9239 {
9240 struct adapter *sc = arg1;
9241 int rc, t;
9242 uint32_t param, val;
9243
9244 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
9245 if (rc)
9246 return (rc);
9247 if (!hw_all_ok(sc))
9248 rc = ENXIO;
9249 else {
9250 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9251 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9252 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
9253 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9254 }
9255 end_synchronized_op(sc, 0);
9256 if (rc)
9257 return (rc);
9258
9259 /* unknown is returned as 0 but we display -1 in that case */
9260 t = val == 0 ? -1 : val;
9261
9262 rc = sysctl_handle_int(oidp, &t, 0, req);
9263 return (rc);
9264 }
9265
9266 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)9267 sysctl_vdd(SYSCTL_HANDLER_ARGS)
9268 {
9269 struct adapter *sc = arg1;
9270 int rc;
9271 uint32_t param, val;
9272
9273 if (sc->params.core_vdd == 0) {
9274 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9275 "t4vdd");
9276 if (rc)
9277 return (rc);
9278 if (!hw_all_ok(sc))
9279 rc = ENXIO;
9280 else {
9281 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9282 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9283 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
9284 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
9285 ¶m, &val);
9286 }
9287 end_synchronized_op(sc, 0);
9288 if (rc)
9289 return (rc);
9290 sc->params.core_vdd = val;
9291 }
9292
9293 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
9294 }
9295
9296 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)9297 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
9298 {
9299 struct adapter *sc = arg1;
9300 int rc, v;
9301 uint32_t param, val;
9302
9303 v = sc->sensor_resets;
9304 rc = sysctl_handle_int(oidp, &v, 0, req);
9305 if (rc != 0 || req->newptr == NULL || v <= 0)
9306 return (rc);
9307
9308 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
9309 chip_id(sc) < CHELSIO_T5)
9310 return (ENOTSUP);
9311
9312 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
9313 if (rc)
9314 return (rc);
9315 if (!hw_all_ok(sc))
9316 rc = ENXIO;
9317 else {
9318 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9319 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9320 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
9321 val = 1;
9322 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9323 }
9324 end_synchronized_op(sc, 0);
9325 if (rc == 0)
9326 sc->sensor_resets++;
9327 return (rc);
9328 }
9329
9330 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9331 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9332 {
9333 struct adapter *sc = arg1;
9334 struct sbuf *sb;
9335 int rc;
9336 uint32_t param, val;
9337 uint8_t coreid = (uint8_t)arg2;
9338
9339 KASSERT(coreid < sc->params.ncores,
9340 ("%s: bad coreid %u\n", __func__, coreid));
9341
9342 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9343 if (rc)
9344 return (rc);
9345 if (!hw_all_ok(sc))
9346 rc = ENXIO;
9347 else {
9348 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9349 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) |
9350 V_FW_PARAMS_PARAM_Y(coreid);
9351 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9352 }
9353 end_synchronized_op(sc, 0);
9354 if (rc)
9355 return (rc);
9356
9357 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9358 if (sb == NULL)
9359 return (ENOMEM);
9360
9361 if (val == 0xffffffff) {
9362 /* Only debug and custom firmwares report load averages. */
9363 sbuf_printf(sb, "not available");
9364 } else {
9365 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9366 (val >> 16) & 0xff);
9367 }
9368 rc = sbuf_finish(sb);
9369 sbuf_delete(sb);
9370
9371 return (rc);
9372 }
9373
9374 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9375 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9376 {
9377 struct adapter *sc = arg1;
9378 struct sbuf *sb;
9379 int rc, i;
9380 uint16_t incr[NMTUS][NCCTRL_WIN];
9381 static const char *dec_fac[] = {
9382 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9383 "0.9375"
9384 };
9385
9386 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9387 if (sb == NULL)
9388 return (ENOMEM);
9389
9390 rc = 0;
9391 mtx_lock(&sc->reg_lock);
9392 if (hw_off_limits(sc))
9393 rc = ENXIO;
9394 else
9395 t4_read_cong_tbl(sc, incr);
9396 mtx_unlock(&sc->reg_lock);
9397 if (rc)
9398 goto done;
9399
9400 for (i = 0; i < NCCTRL_WIN; ++i) {
9401 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9402 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9403 incr[5][i], incr[6][i], incr[7][i]);
9404 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9405 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9406 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9407 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9408 }
9409
9410 rc = sbuf_finish(sb);
9411 done:
9412 sbuf_delete(sb);
9413 return (rc);
9414 }
9415
9416 static int
sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)9417 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)
9418 {
9419 struct adapter *sc = arg1;
9420 struct sbuf *sb;
9421 int rc, i, n, qid, coreid;
9422 uint32_t *buf, *p;
9423
9424 qid = arg2 & 0xffff;
9425 coreid = arg2 >> 16;
9426
9427 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq,
9428 ("%s: bad ibq qid %d\n", __func__, qid));
9429 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9430 ("%s: bad coreid %d\n", __func__, coreid));
9431
9432 n = 4 * CIM_IBQ_SIZE;
9433 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9434 mtx_lock(&sc->reg_lock);
9435 if (hw_off_limits(sc))
9436 rc = -ENXIO;
9437 else
9438 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n);
9439 mtx_unlock(&sc->reg_lock);
9440 if (rc < 0) {
9441 rc = -rc;
9442 goto done;
9443 }
9444 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9445
9446 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9447 if (sb == NULL) {
9448 rc = ENOMEM;
9449 goto done;
9450 }
9451 for (i = 0, p = buf; i < n; i += 16, p += 4)
9452 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9453 p[2], p[3]);
9454 rc = sbuf_finish(sb);
9455 sbuf_delete(sb);
9456 done:
9457 free(buf, M_CXGBE);
9458 return (rc);
9459 }
9460
9461 static int
sysctl_cim_obq(SYSCTL_HANDLER_ARGS)9462 sysctl_cim_obq(SYSCTL_HANDLER_ARGS)
9463 {
9464 struct adapter *sc = arg1;
9465 struct sbuf *sb;
9466 int rc, i, n, qid, coreid;
9467 uint32_t *buf, *p;
9468
9469 qid = arg2 & 0xffff;
9470 coreid = arg2 >> 16;
9471
9472 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq,
9473 ("%s: bad obq qid %d\n", __func__, qid));
9474 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9475 ("%s: bad coreid %d\n", __func__, coreid));
9476
9477 n = 6 * CIM_OBQ_SIZE * 4;
9478 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9479 mtx_lock(&sc->reg_lock);
9480 if (hw_off_limits(sc))
9481 rc = -ENXIO;
9482 else
9483 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n);
9484 mtx_unlock(&sc->reg_lock);
9485 if (rc < 0) {
9486 rc = -rc;
9487 goto done;
9488 }
9489 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9490
9491 rc = sysctl_wire_old_buffer(req, 0);
9492 if (rc != 0)
9493 goto done;
9494
9495 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9496 if (sb == NULL) {
9497 rc = ENOMEM;
9498 goto done;
9499 }
9500 for (i = 0, p = buf; i < n; i += 16, p += 4)
9501 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9502 p[2], p[3]);
9503 rc = sbuf_finish(sb);
9504 sbuf_delete(sb);
9505 done:
9506 free(buf, M_CXGBE);
9507 return (rc);
9508 }
9509
9510 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9511 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9512 {
9513 uint32_t *p;
9514
9515 sbuf_printf(sb, "Status Data PC%s",
9516 cfg & F_UPDBGLACAPTPCONLY ? "" :
9517 " LS0Stat LS0Addr LS0Data");
9518
9519 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9520 if (cfg & F_UPDBGLACAPTPCONLY) {
9521 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9522 p[6], p[7]);
9523 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9524 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9525 p[4] & 0xff, p[5] >> 8);
9526 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9527 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9528 p[1] & 0xf, p[2] >> 4);
9529 } else {
9530 sbuf_printf(sb,
9531 "\n %02x %x%07x %x%07x %08x %08x "
9532 "%08x%08x%08x%08x",
9533 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9534 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9535 p[6], p[7]);
9536 }
9537 }
9538 }
9539
9540 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9541 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9542 {
9543 uint32_t *p;
9544
9545 sbuf_printf(sb, "Status Inst Data PC%s",
9546 cfg & F_UPDBGLACAPTPCONLY ? "" :
9547 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9548
9549 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9550 if (cfg & F_UPDBGLACAPTPCONLY) {
9551 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9552 p[3] & 0xff, p[2], p[1], p[0]);
9553 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9554 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9555 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9556 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9557 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9558 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9559 p[6] >> 16);
9560 } else {
9561 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9562 "%08x %08x %08x %08x %08x %08x",
9563 (p[9] >> 16) & 0xff,
9564 p[9] & 0xffff, p[8] >> 16,
9565 p[8] & 0xffff, p[7] >> 16,
9566 p[7] & 0xffff, p[6] >> 16,
9567 p[2], p[1], p[0], p[5], p[4], p[3]);
9568 }
9569 }
9570 }
9571
9572 static int
sbuf_cim_la(struct adapter * sc,int coreid,struct sbuf * sb,int flags)9573 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
9574 {
9575 uint32_t cfg, *buf;
9576 int rc;
9577
9578 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9579 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9580 M_ZERO | flags);
9581 if (buf == NULL)
9582 return (ENOMEM);
9583
9584 mtx_lock(&sc->reg_lock);
9585 if (hw_off_limits(sc))
9586 rc = ENXIO;
9587 else {
9588 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
9589 &cfg);
9590 if (rc == 0)
9591 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL);
9592 }
9593 mtx_unlock(&sc->reg_lock);
9594 if (rc == 0) {
9595 if (chip_id(sc) < CHELSIO_T6)
9596 sbuf_cim_la4(sc, sb, buf, cfg);
9597 else
9598 sbuf_cim_la6(sc, sb, buf, cfg);
9599 }
9600 free(buf, M_CXGBE);
9601 return (rc);
9602 }
9603
9604 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9605 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9606 {
9607 struct adapter *sc = arg1;
9608 int coreid = arg2;
9609 struct sbuf *sb;
9610 int rc;
9611
9612 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9613 if (sb == NULL)
9614 return (ENOMEM);
9615
9616 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK);
9617 if (rc == 0)
9618 rc = sbuf_finish(sb);
9619 sbuf_delete(sb);
9620 return (rc);
9621 }
9622
9623 static void
dump_cim_regs(struct adapter * sc)9624 dump_cim_regs(struct adapter *sc)
9625 {
9626 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9627 device_get_nameunit(sc->dev),
9628 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9629 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9630 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9631 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9632 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9633 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9634 device_get_nameunit(sc->dev),
9635 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9636 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9637 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9638 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9639 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9640 }
9641
9642 static void
dump_cimla(struct adapter * sc)9643 dump_cimla(struct adapter *sc)
9644 {
9645 struct sbuf sb;
9646 int rc;
9647
9648 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9649 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9650 device_get_nameunit(sc->dev));
9651 return;
9652 }
9653 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK);
9654 if (rc == 0) {
9655 rc = sbuf_finish(&sb);
9656 if (rc == 0) {
9657 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9658 device_get_nameunit(sc->dev), sbuf_data(&sb));
9659 }
9660 }
9661 sbuf_delete(&sb);
9662 }
9663
9664 void
t4_os_cim_err(struct adapter * sc)9665 t4_os_cim_err(struct adapter *sc)
9666 {
9667 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9668 }
9669
9670 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9671 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9672 {
9673 struct adapter *sc = arg1;
9674 u_int i;
9675 struct sbuf *sb;
9676 uint32_t *buf, *p;
9677 int rc;
9678
9679 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9680 if (sb == NULL)
9681 return (ENOMEM);
9682
9683 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9684 M_ZERO | M_WAITOK);
9685
9686 rc = 0;
9687 mtx_lock(&sc->reg_lock);
9688 if (hw_off_limits(sc))
9689 rc = ENXIO;
9690 else
9691 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9692 mtx_unlock(&sc->reg_lock);
9693 if (rc)
9694 goto done;
9695
9696 p = buf;
9697 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9698 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9699 p[1], p[0]);
9700 }
9701
9702 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9703 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9704 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9705 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9706 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9707 (p[1] >> 2) | ((p[2] & 3) << 30),
9708 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9709 p[0] & 1);
9710 }
9711 rc = sbuf_finish(sb);
9712 done:
9713 sbuf_delete(sb);
9714 free(buf, M_CXGBE);
9715 return (rc);
9716 }
9717
9718 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9719 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9720 {
9721 struct adapter *sc = arg1;
9722 u_int i;
9723 struct sbuf *sb;
9724 uint32_t *buf, *p;
9725 int rc;
9726
9727 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9728 if (sb == NULL)
9729 return (ENOMEM);
9730
9731 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9732 M_ZERO | M_WAITOK);
9733
9734 rc = 0;
9735 mtx_lock(&sc->reg_lock);
9736 if (hw_off_limits(sc))
9737 rc = ENXIO;
9738 else
9739 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9740 mtx_unlock(&sc->reg_lock);
9741 if (rc)
9742 goto done;
9743
9744 p = buf;
9745 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9746 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9747 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9748 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9749 p[4], p[3], p[2], p[1], p[0]);
9750 }
9751
9752 sbuf_printf(sb, "\n\nCntl ID Data");
9753 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9754 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9755 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9756 }
9757
9758 rc = sbuf_finish(sb);
9759 done:
9760 sbuf_delete(sb);
9761 free(buf, M_CXGBE);
9762 return (rc);
9763 }
9764
9765 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9766 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9767 {
9768 struct adapter *sc = arg1;
9769 struct sbuf *sb;
9770 int rc, i;
9771 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9772 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9773 uint16_t thres[CIM_NUM_IBQ];
9774 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9775 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9776 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9777 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9778 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9779 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9780 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9781 };
9782
9783 MPASS(chip_id(sc) < CHELSIO_T7);
9784
9785 cim_num_obq = sc->chip_params->cim_num_obq;
9786 if (is_t4(sc)) {
9787 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9788 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9789 } else {
9790 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9791 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9792 }
9793 nq = CIM_NUM_IBQ + cim_num_obq;
9794
9795 mtx_lock(&sc->reg_lock);
9796 if (hw_off_limits(sc))
9797 rc = ENXIO;
9798 else {
9799 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9800 if (rc == 0) {
9801 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9802 obq_wr);
9803 if (rc == 0)
9804 t4_read_cimq_cfg(sc, base, size, thres);
9805 }
9806 }
9807 mtx_unlock(&sc->reg_lock);
9808 if (rc)
9809 return (rc);
9810
9811 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9812 if (sb == NULL)
9813 return (ENOMEM);
9814
9815 sbuf_printf(sb,
9816 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9817
9818 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9819 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9820 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9821 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9822 G_QUEREMFLITS(p[2]) * 16);
9823 for ( ; i < nq; i++, p += 4, wr += 2)
9824 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9825 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9826 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9827 G_QUEREMFLITS(p[2]) * 16);
9828
9829 rc = sbuf_finish(sb);
9830 sbuf_delete(sb);
9831
9832 return (rc);
9833 }
9834
9835 static int
sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)9836 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)
9837 {
9838 struct adapter *sc = arg1;
9839 u_int coreid = arg2;
9840 struct sbuf *sb;
9841 int rc, i;
9842 u_int addr;
9843 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9844 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9845 uint16_t thres[CIM_NUM_IBQ_T7];
9846 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr;
9847 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat;
9848 static const char * const qname_ibq_t7[] = {
9849 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI",
9850 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7",
9851 };
9852 static const char * const qname_obq_t7[] = {
9853 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX",
9854 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5",
9855 "IPC6", "IPC7"
9856 };
9857 static const char * const qname_ibq_sec_t7[] = {
9858 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD",
9859 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD",
9860 };
9861 static const char * const qname_obq_sec_t7[] = {
9862 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX",
9863 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD",
9864 "RSVD", "RSVD",
9865 };
9866
9867 MPASS(chip_id(sc) >= CHELSIO_T7);
9868
9869 mtx_lock(&sc->reg_lock);
9870 if (hw_off_limits(sc))
9871 rc = ENXIO;
9872 else {
9873 rc = -t4_cim_read_core(sc, 1, coreid,
9874 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat);
9875 if (rc != 0)
9876 goto unlock;
9877
9878 rc = -t4_cim_read_core(sc, 1, coreid,
9879 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7,
9880 &stat[4 * CIM_NUM_IBQ_T7]);
9881 if (rc != 0)
9882 goto unlock;
9883
9884 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR;
9885 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) {
9886 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1,
9887 &obq_wr[i]);
9888 if (rc != 0)
9889 goto unlock;
9890 }
9891 t4_read_cimq_cfg_core(sc, coreid, base, size, thres);
9892 }
9893 unlock:
9894 mtx_unlock(&sc->reg_lock);
9895 if (rc)
9896 return (rc);
9897
9898 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9899 if (sb == NULL)
9900 return (ENOMEM);
9901
9902 sbuf_printf(sb,
9903 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9904
9905 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) {
9906 if (!size[i])
9907 continue;
9908
9909 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9910 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i],
9911 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff,
9912 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]),
9913 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16);
9914 }
9915
9916 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) {
9917 if (!size[i])
9918 continue;
9919
9920 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u",
9921 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] :
9922 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7],
9923 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff,
9924 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9925 G_T7_QUEREMFLITS(p[2]) * 16);
9926 }
9927
9928 rc = sbuf_finish(sb);
9929 sbuf_delete(sb);
9930 return (rc);
9931 }
9932
9933 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9934 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9935 {
9936 struct adapter *sc = arg1;
9937 struct sbuf *sb;
9938 int rc;
9939 struct tp_cpl_stats stats;
9940
9941 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9942 if (sb == NULL)
9943 return (ENOMEM);
9944
9945 rc = 0;
9946 mtx_lock(&sc->reg_lock);
9947 if (hw_off_limits(sc))
9948 rc = ENXIO;
9949 else
9950 t4_tp_get_cpl_stats(sc, &stats, 0);
9951 mtx_unlock(&sc->reg_lock);
9952 if (rc)
9953 goto done;
9954
9955 if (sc->chip_params->nchan > 2) {
9956 sbuf_printf(sb, " channel 0 channel 1"
9957 " channel 2 channel 3");
9958 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9959 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9960 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9961 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9962 } else {
9963 sbuf_printf(sb, " channel 0 channel 1");
9964 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9965 stats.req[0], stats.req[1]);
9966 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9967 stats.rsp[0], stats.rsp[1]);
9968 }
9969
9970 rc = sbuf_finish(sb);
9971 done:
9972 sbuf_delete(sb);
9973 return (rc);
9974 }
9975
9976 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9977 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9978 {
9979 struct adapter *sc = arg1;
9980 struct sbuf *sb;
9981 int rc;
9982 struct tp_usm_stats stats;
9983
9984 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9985 if (sb == NULL)
9986 return (ENOMEM);
9987
9988 rc = 0;
9989 mtx_lock(&sc->reg_lock);
9990 if (hw_off_limits(sc))
9991 rc = ENXIO;
9992 else
9993 t4_get_usm_stats(sc, &stats, 1);
9994 mtx_unlock(&sc->reg_lock);
9995 if (rc == 0) {
9996 sbuf_printf(sb, "Frames: %u\n", stats.frames);
9997 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9998 sbuf_printf(sb, "Drops: %u", stats.drops);
9999 rc = sbuf_finish(sb);
10000 }
10001 sbuf_delete(sb);
10002
10003 return (rc);
10004 }
10005
10006 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)10007 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
10008 {
10009 struct adapter *sc = arg1;
10010 struct sbuf *sb;
10011 int rc;
10012 struct tp_tid_stats stats;
10013
10014 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10015 if (sb == NULL)
10016 return (ENOMEM);
10017
10018 rc = 0;
10019 mtx_lock(&sc->reg_lock);
10020 if (hw_off_limits(sc))
10021 rc = ENXIO;
10022 else
10023 t4_tp_get_tid_stats(sc, &stats, 1);
10024 mtx_unlock(&sc->reg_lock);
10025 if (rc == 0) {
10026 sbuf_printf(sb, "Delete: %u\n", stats.del);
10027 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
10028 sbuf_printf(sb, "Active: %u\n", stats.act);
10029 sbuf_printf(sb, "Passive: %u", stats.pas);
10030 rc = sbuf_finish(sb);
10031 }
10032 sbuf_delete(sb);
10033
10034 return (rc);
10035 }
10036
10037 static const char * const devlog_level_strings[] = {
10038 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
10039 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
10040 [FW_DEVLOG_LEVEL_ERR] = "ERR",
10041 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
10042 [FW_DEVLOG_LEVEL_INFO] = "INFO",
10043 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
10044 };
10045
10046 static const char * const devlog_facility_strings[] = {
10047 [FW_DEVLOG_FACILITY_CORE] = "CORE",
10048 [FW_DEVLOG_FACILITY_CF] = "CF",
10049 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
10050 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
10051 [FW_DEVLOG_FACILITY_RES] = "RES",
10052 [FW_DEVLOG_FACILITY_HW] = "HW",
10053 [FW_DEVLOG_FACILITY_FLR] = "FLR",
10054 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
10055 [FW_DEVLOG_FACILITY_PHY] = "PHY",
10056 [FW_DEVLOG_FACILITY_MAC] = "MAC",
10057 [FW_DEVLOG_FACILITY_PORT] = "PORT",
10058 [FW_DEVLOG_FACILITY_VI] = "VI",
10059 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
10060 [FW_DEVLOG_FACILITY_ACL] = "ACL",
10061 [FW_DEVLOG_FACILITY_TM] = "TM",
10062 [FW_DEVLOG_FACILITY_QFC] = "QFC",
10063 [FW_DEVLOG_FACILITY_DCB] = "DCB",
10064 [FW_DEVLOG_FACILITY_ETH] = "ETH",
10065 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
10066 [FW_DEVLOG_FACILITY_RI] = "RI",
10067 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
10068 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
10069 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
10070 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
10071 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
10072 };
10073
10074 static int
sbuf_devlog(struct adapter * sc,int coreid,struct sbuf * sb,int flags)10075 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
10076 {
10077 int i, j, rc, nentries, first = 0;
10078 struct devlog_params *dparams = &sc->params.devlog;
10079 struct fw_devlog_e *buf, *e;
10080 uint32_t addr, size;
10081 uint64_t ftstamp = UINT64_MAX;
10082
10083 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10084 ("%s: bad coreid %d\n", __func__, coreid));
10085
10086 if (dparams->addr == 0)
10087 return (ENXIO);
10088
10089 size = dparams->size / sc->params.ncores;
10090 addr = dparams->addr + coreid * size;
10091
10092 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
10093 buf = malloc(size, M_CXGBE, M_ZERO | flags);
10094 if (buf == NULL)
10095 return (ENOMEM);
10096
10097 mtx_lock(&sc->reg_lock);
10098 if (hw_off_limits(sc))
10099 rc = ENXIO;
10100 else
10101 rc = read_via_memwin(sc, 1, addr, (void *)buf, size);
10102 mtx_unlock(&sc->reg_lock);
10103 if (rc != 0)
10104 goto done;
10105
10106 nentries = size / sizeof(struct fw_devlog_e);
10107 for (i = 0; i < nentries; i++) {
10108 e = &buf[i];
10109
10110 if (e->timestamp == 0)
10111 break; /* end */
10112
10113 e->timestamp = be64toh(e->timestamp);
10114 e->seqno = be32toh(e->seqno);
10115 for (j = 0; j < 8; j++)
10116 e->params[j] = be32toh(e->params[j]);
10117
10118 if (e->timestamp < ftstamp) {
10119 ftstamp = e->timestamp;
10120 first = i;
10121 }
10122 }
10123
10124 if (buf[first].timestamp == 0)
10125 goto done; /* nothing in the log */
10126
10127 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
10128 "Seq#", "Tstamp", "Level", "Facility", "Message");
10129
10130 i = first;
10131 do {
10132 e = &buf[i];
10133 if (e->timestamp == 0)
10134 break; /* end */
10135
10136 sbuf_printf(sb, "%10d %15ju %8s %8s ",
10137 e->seqno, e->timestamp,
10138 (e->level < nitems(devlog_level_strings) ?
10139 devlog_level_strings[e->level] : "UNKNOWN"),
10140 (e->facility < nitems(devlog_facility_strings) ?
10141 devlog_facility_strings[e->facility] : "UNKNOWN"));
10142 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
10143 e->params[2], e->params[3], e->params[4],
10144 e->params[5], e->params[6], e->params[7]);
10145
10146 if (++i == nentries)
10147 i = 0;
10148 } while (i != first);
10149 done:
10150 free(buf, M_CXGBE);
10151 return (rc);
10152 }
10153
10154 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)10155 sysctl_devlog(SYSCTL_HANDLER_ARGS)
10156 {
10157 struct adapter *sc = arg1;
10158 int rc, i, coreid = arg2;
10159 struct sbuf *sb;
10160
10161 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10162 if (sb == NULL)
10163 return (ENOMEM);
10164 if (coreid == -1) {
10165 /* -1 means all cores */
10166 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10167 if (sc->params.ncores > 0)
10168 sbuf_printf(sb, "=== CIM core %u ===\n", i);
10169 rc = sbuf_devlog(sc, i, sb, M_WAITOK);
10170 }
10171 } else {
10172 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10173 ("%s: bad coreid %d\n", __func__, coreid));
10174 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK);
10175 }
10176 if (rc == 0)
10177 rc = sbuf_finish(sb);
10178 sbuf_delete(sb);
10179 return (rc);
10180 }
10181
10182 static void
dump_devlog(struct adapter * sc)10183 dump_devlog(struct adapter *sc)
10184 {
10185 int rc, i;
10186 struct sbuf sb;
10187
10188 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
10189 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
10190 device_get_nameunit(sc->dev));
10191 return;
10192 }
10193 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10194 if (sc->params.ncores > 0)
10195 sbuf_printf(&sb, "=== CIM core %u ===\n", i);
10196 rc = sbuf_devlog(sc, i, &sb, M_WAITOK);
10197 }
10198 if (rc == 0) {
10199 sbuf_finish(&sb);
10200 log(LOG_DEBUG, "%s: device log follows.\n%s",
10201 device_get_nameunit(sc->dev), sbuf_data(&sb));
10202 }
10203 sbuf_delete(&sb);
10204 }
10205
10206 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)10207 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
10208 {
10209 struct adapter *sc = arg1;
10210 struct sbuf *sb;
10211 int rc;
10212 struct tp_fcoe_stats stats[MAX_NCHAN];
10213 int i, nchan = sc->chip_params->nchan;
10214
10215 rc = 0;
10216 mtx_lock(&sc->reg_lock);
10217 if (hw_off_limits(sc))
10218 rc = ENXIO;
10219 else {
10220 for (i = 0; i < nchan; i++)
10221 t4_get_fcoe_stats(sc, i, &stats[i], 1);
10222 }
10223 mtx_unlock(&sc->reg_lock);
10224 if (rc != 0)
10225 return (rc);
10226
10227 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10228 if (sb == NULL)
10229 return (ENOMEM);
10230
10231 if (nchan > 2) {
10232 sbuf_printf(sb, " channel 0 channel 1"
10233 " channel 2 channel 3");
10234 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
10235 stats[0].octets_ddp, stats[1].octets_ddp,
10236 stats[2].octets_ddp, stats[3].octets_ddp);
10237 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
10238 stats[0].frames_ddp, stats[1].frames_ddp,
10239 stats[2].frames_ddp, stats[3].frames_ddp);
10240 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
10241 stats[0].frames_drop, stats[1].frames_drop,
10242 stats[2].frames_drop, stats[3].frames_drop);
10243 } else {
10244 sbuf_printf(sb, " channel 0 channel 1");
10245 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
10246 stats[0].octets_ddp, stats[1].octets_ddp);
10247 sbuf_printf(sb, "\nframesDDP: %16u %16u",
10248 stats[0].frames_ddp, stats[1].frames_ddp);
10249 sbuf_printf(sb, "\nframesDrop: %16u %16u",
10250 stats[0].frames_drop, stats[1].frames_drop);
10251 }
10252
10253 rc = sbuf_finish(sb);
10254 sbuf_delete(sb);
10255
10256 return (rc);
10257 }
10258
10259 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)10260 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
10261 {
10262 struct adapter *sc = arg1;
10263 struct sbuf *sb;
10264 int rc, i;
10265 unsigned int map, kbps, ipg, mode;
10266 unsigned int pace_tab[NTX_SCHED];
10267
10268 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
10269 if (sb == NULL)
10270 return (ENOMEM);
10271
10272 mtx_lock(&sc->reg_lock);
10273 if (hw_off_limits(sc)) {
10274 mtx_unlock(&sc->reg_lock);
10275 rc = ENXIO;
10276 goto done;
10277 }
10278
10279 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
10280 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
10281 t4_read_pace_tbl(sc, pace_tab);
10282 mtx_unlock(&sc->reg_lock);
10283
10284 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
10285 "Class IPG (0.1 ns) Flow IPG (us)");
10286
10287 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
10288 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
10289 sbuf_printf(sb, "\n %u %-5s %u ", i,
10290 (mode & (1 << i)) ? "flow" : "class", map & 3);
10291 if (kbps)
10292 sbuf_printf(sb, "%9u ", kbps);
10293 else
10294 sbuf_printf(sb, " disabled ");
10295
10296 if (ipg)
10297 sbuf_printf(sb, "%13u ", ipg);
10298 else
10299 sbuf_printf(sb, " disabled ");
10300
10301 if (pace_tab[i])
10302 sbuf_printf(sb, "%10u", pace_tab[i]);
10303 else
10304 sbuf_printf(sb, " disabled");
10305 }
10306 rc = sbuf_finish(sb);
10307 done:
10308 sbuf_delete(sb);
10309 return (rc);
10310 }
10311
10312 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)10313 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
10314 {
10315 struct adapter *sc = arg1;
10316 struct sbuf *sb;
10317 int rc, i, j;
10318 uint64_t *p0, *p1;
10319 struct lb_port_stats s[2];
10320 static const char *stat_name[] = {
10321 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
10322 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
10323 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
10324 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
10325 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
10326 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
10327 "BG2FramesTrunc:", "BG3FramesTrunc:"
10328 };
10329
10330 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10331 if (sb == NULL)
10332 return (ENOMEM);
10333
10334 memset(s, 0, sizeof(s));
10335
10336 rc = 0;
10337 for (i = 0; i < sc->chip_params->nchan; i += 2) {
10338 mtx_lock(&sc->reg_lock);
10339 if (hw_off_limits(sc))
10340 rc = ENXIO;
10341 else {
10342 t4_get_lb_stats(sc, i, &s[0]);
10343 t4_get_lb_stats(sc, i + 1, &s[1]);
10344 }
10345 mtx_unlock(&sc->reg_lock);
10346 if (rc != 0)
10347 break;
10348
10349 p0 = &s[0].octets;
10350 p1 = &s[1].octets;
10351 sbuf_printf(sb, "%s Loopback %u"
10352 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
10353
10354 for (j = 0; j < nitems(stat_name); j++)
10355 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
10356 *p0++, *p1++);
10357 }
10358
10359 if (rc == 0)
10360 rc = sbuf_finish(sb);
10361 sbuf_delete(sb);
10362
10363 return (rc);
10364 }
10365
10366 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)10367 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
10368 {
10369 int rc = 0;
10370 struct port_info *pi = arg1;
10371 struct link_config *lc = &pi->link_cfg;
10372 struct sbuf *sb;
10373
10374 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
10375 if (sb == NULL)
10376 return (ENOMEM);
10377
10378 if (lc->link_ok || lc->link_down_rc == 255)
10379 sbuf_printf(sb, "n/a");
10380 else
10381 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
10382
10383 rc = sbuf_finish(sb);
10384 sbuf_delete(sb);
10385
10386 return (rc);
10387 }
10388
10389 struct mem_desc {
10390 uint64_t base;
10391 uint64_t limit;
10392 u_int idx;
10393 };
10394
10395 static int
mem_desc_cmp(const void * a,const void * b)10396 mem_desc_cmp(const void *a, const void *b)
10397 {
10398 const uint64_t v1 = ((const struct mem_desc *)a)->base;
10399 const uint64_t v2 = ((const struct mem_desc *)b)->base;
10400
10401 if (v1 < v2)
10402 return (-1);
10403 else if (v1 > v2)
10404 return (1);
10405
10406 return (0);
10407 }
10408
10409 static void
mem_region_show(struct sbuf * sb,const char * name,uint64_t from,uint64_t to)10410 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to)
10411 {
10412 uintmax_t size;
10413
10414 if (from == to)
10415 return;
10416
10417 size = to - from + 1;
10418 if (size == 0)
10419 return;
10420
10421 if (from > UINT32_MAX || to > UINT32_MAX)
10422 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name,
10423 (uintmax_t)from, (uintmax_t)to, size);
10424 else
10425 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name,
10426 (uintmax_t)from, (uintmax_t)to, size);
10427 }
10428
10429 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)10430 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
10431 {
10432 struct adapter *sc = arg1;
10433 struct sbuf *sb;
10434 int rc, i, n, nchan;
10435 uint32_t lo, hi, used, free, alloc;
10436 static const char *memory[] = {
10437 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
10438 };
10439 static const char *region[] = {
10440 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
10441 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
10442 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
10443 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
10444 "RQUDP region:", "PBL region:", "TXPBL region:",
10445 "TLSKey region:", "RRQ region:", "NVMe STAG region:",
10446 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:",
10447 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:",
10448 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:",
10449 };
10450 struct mem_desc avail[4];
10451 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
10452 struct mem_desc *md;
10453
10454 rc = sysctl_wire_old_buffer(req, 0);
10455 if (rc != 0)
10456 return (rc);
10457
10458 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10459 if (sb == NULL)
10460 return (ENOMEM);
10461
10462 for (i = 0; i < nitems(mem); i++) {
10463 mem[i].limit = 0;
10464 mem[i].idx = i;
10465 }
10466
10467 mtx_lock(&sc->reg_lock);
10468 if (hw_off_limits(sc)) {
10469 rc = ENXIO;
10470 goto done;
10471 }
10472
10473 /* Find and sort the populated memory ranges */
10474 i = 0;
10475 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
10476 if (lo & F_EDRAM0_ENABLE) {
10477 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
10478 if (chip_id(sc) >= CHELSIO_T7) {
10479 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20;
10480 avail[i].limit = avail[i].base +
10481 (G_T7_EDRAM0_SIZE(hi) << 20);
10482 } else {
10483 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20;
10484 avail[i].limit = avail[i].base +
10485 (G_EDRAM0_SIZE(hi) << 20);
10486 }
10487 avail[i].idx = 0;
10488 i++;
10489 }
10490 if (lo & F_EDRAM1_ENABLE) {
10491 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10492 if (chip_id(sc) >= CHELSIO_T7) {
10493 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20;
10494 avail[i].limit = avail[i].base +
10495 (G_T7_EDRAM1_SIZE(hi) << 20);
10496 } else {
10497 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20;
10498 avail[i].limit = avail[i].base +
10499 (G_EDRAM1_SIZE(hi) << 20);
10500 }
10501 avail[i].idx = 1;
10502 i++;
10503 }
10504 if (lo & F_EXT_MEM_ENABLE) {
10505 switch (chip_id(sc)) {
10506 case CHELSIO_T4:
10507 case CHELSIO_T6:
10508 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10509 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20;
10510 avail[i].limit = avail[i].base +
10511 (G_EXT_MEM_SIZE(hi) << 20);
10512 avail[i].idx = 2;
10513 break;
10514 case CHELSIO_T5:
10515 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10516 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20;
10517 avail[i].limit = avail[i].base +
10518 (G_EXT_MEM0_SIZE(hi) << 20);
10519 avail[i].idx = 3; /* Call it MC0 for T5 */
10520 break;
10521 default:
10522 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10523 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20;
10524 avail[i].limit = avail[i].base +
10525 (G_T7_EXT_MEM0_SIZE(hi) << 20);
10526 avail[i].idx = 3; /* Call it MC0 for T7+ */
10527 break;
10528 }
10529 i++;
10530 }
10531 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) {
10532 /* Only T5 and T7+ have 2 MCs. */
10533 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7);
10534
10535 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10536 if (chip_id(sc) >= CHELSIO_T7) {
10537 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20;
10538 avail[i].limit = avail[i].base +
10539 (G_T7_EXT_MEM1_SIZE(hi) << 20);
10540 } else {
10541 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20;
10542 avail[i].limit = avail[i].base +
10543 (G_EXT_MEM1_SIZE(hi) << 20);
10544 }
10545 avail[i].idx = 4;
10546 i++;
10547 }
10548 if (lo & F_HMA_MUX) {
10549 /* Only T6+ have HMA. */
10550 MPASS(chip_id(sc) >= CHELSIO_T6);
10551
10552 if (chip_id(sc) >= CHELSIO_T7) {
10553 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR);
10554 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20;
10555 avail[i].limit = avail[i].base +
10556 (G_T7_HMA_SIZE(hi) << 20);
10557 } else {
10558 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10559 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10560 avail[i].limit = avail[i].base +
10561 (G_EXT_MEM1_SIZE(hi) << 20);
10562 }
10563 avail[i].idx = 5;
10564 i++;
10565 }
10566 MPASS(i <= nitems(avail));
10567 if (!i) /* no memory available */
10568 goto done;
10569 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10570
10571 md = &mem[0];
10572 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10573 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10574 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10575 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10576 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10577 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10578 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10579 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10580 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10581
10582 /* the next few have explicit upper bounds */
10583 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10584 md->limit = md->base - 1 +
10585 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10586 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10587 md++;
10588
10589 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10590 md->limit = md->base - 1 +
10591 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10592 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10593 md++;
10594
10595 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10596 if (chip_id(sc) <= CHELSIO_T5)
10597 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10598 else
10599 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10600 md->limit = 0;
10601 } else {
10602 md->base = 0;
10603 md->idx = nitems(region); /* hide it */
10604 }
10605 md++;
10606
10607 #define ulp_region(reg) do {\
10608 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \
10609 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \
10610 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \
10611 md->limit += (1 << shift) - 1; \
10612 md++; \
10613 } while (0)
10614
10615 #define hide_ulp_region() do { \
10616 md->base = 0; \
10617 md->idx = nitems(region); \
10618 md++; \
10619 } while (0)
10620
10621 ulp_region(RX_ISCSI);
10622 ulp_region(RX_TDDP);
10623 ulp_region(TX_TPT);
10624 ulp_region(RX_STAG);
10625 ulp_region(RX_RQ);
10626 if (chip_id(sc) < CHELSIO_T7)
10627 ulp_region(RX_RQUDP);
10628 else
10629 hide_ulp_region();
10630 ulp_region(RX_PBL);
10631 ulp_region(TX_PBL);
10632 if (chip_id(sc) >= CHELSIO_T6)
10633 ulp_region(RX_TLS_KEY);
10634 else
10635 hide_ulp_region();
10636 if (chip_id(sc) >= CHELSIO_T7) {
10637 ulp_region(RX_RRQ);
10638 ulp_region(RX_NVME_TCP_STAG);
10639 ulp_region(RX_NVME_TCP_RQ);
10640 ulp_region(RX_NVME_TCP_PBL);
10641 ulp_region(TX_NVME_TCP_TPT);
10642 ulp_region(TX_NVME_TCP_PBL);
10643 } else {
10644 hide_ulp_region();
10645 hide_ulp_region();
10646 hide_ulp_region();
10647 hide_ulp_region();
10648 hide_ulp_region();
10649 hide_ulp_region();
10650 }
10651 #undef ulp_region
10652 #undef hide_ulp_region
10653
10654 md->base = 0;
10655 if (is_t4(sc))
10656 md->idx = nitems(region);
10657 else {
10658 uint32_t size = 0;
10659 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10660 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10661
10662 if (is_t5(sc)) {
10663 if (sge_ctrl & F_VFIFO_ENABLE)
10664 size = fifo_size << 2;
10665 } else
10666 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10667
10668 if (size) {
10669 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10670 md->limit = md->base + size - 1;
10671 } else
10672 md->idx = nitems(region);
10673 }
10674 md++;
10675
10676 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10677 md->limit = 0;
10678 md++;
10679 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10680 md->limit = 0;
10681 md++;
10682
10683 if (chip_id(sc) >= CHELSIO_T7) {
10684 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false);
10685 md->base = lo;
10686 } else {
10687 md->base = 0;
10688 md->idx = nitems(region);
10689 }
10690 md++;
10691
10692 md->base = sc->vres.ocq.start;
10693 if (sc->vres.ocq.size)
10694 md->limit = md->base + sc->vres.ocq.size - 1;
10695 else
10696 md->idx = nitems(region); /* hide it */
10697 md++;
10698
10699 /* add any address-space holes, there can be up to 3 */
10700 for (n = 0; n < i - 1; n++)
10701 if (avail[n].limit < avail[n + 1].base)
10702 (md++)->base = avail[n].limit;
10703 if (avail[n].limit)
10704 (md++)->base = avail[n].limit;
10705
10706 n = md - mem;
10707 MPASS(n <= nitems(mem));
10708 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10709
10710 for (lo = 0; lo < i; lo++)
10711 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10712 avail[lo].limit - 1);
10713
10714 sbuf_printf(sb, "\n");
10715 for (i = 0; i < n; i++) {
10716 if (mem[i].idx >= nitems(region))
10717 continue; /* skip holes */
10718 if (!mem[i].limit)
10719 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10720 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10721 mem[i].limit);
10722 }
10723
10724 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10725 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10726 if (hi != lo - 1) {
10727 sbuf_printf(sb, "\n");
10728 mem_region_show(sb, "uP RAM:", lo, hi);
10729 }
10730
10731 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10732 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10733 if (hi != lo - 1)
10734 mem_region_show(sb, "uP Extmem2:", lo, hi);
10735
10736 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10737 if (chip_id(sc) >= CHELSIO_T7)
10738 nchan = 1 << G_T7_PMRXNUMCHN(lo);
10739 else
10740 nchan = lo & F_PMRXNUMCHN ? 2 : 1;
10741 for (i = 0, free = 0; i < nchan; i++)
10742 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10743 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10744 G_PMRXMAXPAGE(lo), free,
10745 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan);
10746
10747 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10748 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10749 if (chip_id(sc) >= CHELSIO_T7)
10750 nchan = 1 << G_T7_PMTXNUMCHN(lo);
10751 else
10752 nchan = 1 << G_PMTXNUMCHN(lo);
10753 for (i = 0, free = 0; i < nchan; i++)
10754 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10755 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10756 G_PMTXMAXPAGE(lo), free,
10757 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10758 hi >= (1 << 20) ? 'M' : 'K', nchan);
10759 sbuf_printf(sb, "%u p-structs (%u free)\n",
10760 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10761 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10762
10763 for (i = 0; i < 4; i++) {
10764 if (chip_id(sc) > CHELSIO_T5)
10765 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10766 else
10767 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10768 if (is_t5(sc)) {
10769 used = G_T5_USED(lo);
10770 alloc = G_T5_ALLOC(lo);
10771 } else {
10772 used = G_USED(lo);
10773 alloc = G_ALLOC(lo);
10774 }
10775 /* For T6+ these are MAC buffer groups */
10776 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10777 i, used, alloc);
10778 }
10779 for (i = 0; i < sc->chip_params->nchan; i++) {
10780 if (chip_id(sc) > CHELSIO_T5)
10781 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10782 else
10783 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10784 if (is_t5(sc)) {
10785 used = G_T5_USED(lo);
10786 alloc = G_T5_ALLOC(lo);
10787 } else {
10788 used = G_USED(lo);
10789 alloc = G_ALLOC(lo);
10790 }
10791 /* For T6+ these are MAC buffer groups */
10792 sbuf_printf(sb,
10793 "\nLoopback %d using %u pages out of %u allocated",
10794 i, used, alloc);
10795 }
10796 done:
10797 mtx_unlock(&sc->reg_lock);
10798 if (rc == 0)
10799 rc = sbuf_finish(sb);
10800 sbuf_delete(sb);
10801 return (rc);
10802 }
10803
10804 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10805 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10806 {
10807 *mask = x | y;
10808 y = htobe64(y);
10809 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10810 }
10811
10812 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10813 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10814 {
10815 struct adapter *sc = arg1;
10816 struct sbuf *sb;
10817 int rc, i;
10818
10819 MPASS(chip_id(sc) <= CHELSIO_T5);
10820
10821 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10822 if (sb == NULL)
10823 return (ENOMEM);
10824
10825 sbuf_printf(sb,
10826 "Idx Ethernet address Mask Vld Ports PF"
10827 " VF Replication P0 P1 P2 P3 ML");
10828 rc = 0;
10829 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10830 uint64_t tcamx, tcamy, mask;
10831 uint32_t cls_lo, cls_hi;
10832 uint8_t addr[ETHER_ADDR_LEN];
10833
10834 mtx_lock(&sc->reg_lock);
10835 if (hw_off_limits(sc))
10836 rc = ENXIO;
10837 else {
10838 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10839 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10840 }
10841 mtx_unlock(&sc->reg_lock);
10842 if (rc != 0)
10843 break;
10844 if (tcamx & tcamy)
10845 continue;
10846 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10847 mtx_lock(&sc->reg_lock);
10848 if (hw_off_limits(sc))
10849 rc = ENXIO;
10850 else {
10851 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10852 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10853 }
10854 mtx_unlock(&sc->reg_lock);
10855 if (rc != 0)
10856 break;
10857 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10858 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10859 addr[3], addr[4], addr[5], (uintmax_t)mask,
10860 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10861 G_PORTMAP(cls_hi), G_PF(cls_lo),
10862 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10863
10864 if (cls_lo & F_REPLICATE) {
10865 struct fw_ldst_cmd ldst_cmd;
10866
10867 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10868 ldst_cmd.op_to_addrspace =
10869 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10870 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10871 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10872 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10873 ldst_cmd.u.mps.rplc.fid_idx =
10874 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10875 V_FW_LDST_CMD_IDX(i));
10876
10877 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10878 "t4mps");
10879 if (rc)
10880 break;
10881 if (hw_off_limits(sc))
10882 rc = ENXIO;
10883 else
10884 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10885 sizeof(ldst_cmd), &ldst_cmd);
10886 end_synchronized_op(sc, 0);
10887 if (rc != 0)
10888 break;
10889 else {
10890 sbuf_printf(sb, " %08x %08x %08x %08x",
10891 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10892 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10893 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10894 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10895 }
10896 } else
10897 sbuf_printf(sb, "%36s", "");
10898
10899 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10900 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10901 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10902 }
10903
10904 if (rc)
10905 (void) sbuf_finish(sb);
10906 else
10907 rc = sbuf_finish(sb);
10908 sbuf_delete(sb);
10909
10910 return (rc);
10911 }
10912
10913 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10914 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10915 {
10916 struct adapter *sc = arg1;
10917 struct sbuf *sb;
10918 int rc, i;
10919
10920 MPASS(chip_id(sc) == CHELSIO_T6);
10921
10922 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10923 if (sb == NULL)
10924 return (ENOMEM);
10925
10926 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10927 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10928 " Replication"
10929 " P0 P1 P2 P3 ML");
10930
10931 rc = 0;
10932 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10933 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10934 uint16_t ivlan;
10935 uint64_t tcamx, tcamy, val, mask;
10936 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10937 uint8_t addr[ETHER_ADDR_LEN];
10938
10939 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10940 if (i < 256)
10941 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10942 else
10943 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10944 mtx_lock(&sc->reg_lock);
10945 if (hw_off_limits(sc))
10946 rc = ENXIO;
10947 else {
10948 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10949 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10950 tcamy = G_DMACH(val) << 32;
10951 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10952 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10953 }
10954 mtx_unlock(&sc->reg_lock);
10955 if (rc != 0)
10956 break;
10957
10958 lookup_type = G_DATALKPTYPE(data2);
10959 port_num = G_DATAPORTNUM(data2);
10960 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10961 /* Inner header VNI */
10962 vniy = ((data2 & F_DATAVIDH2) << 23) |
10963 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10964 dip_hit = data2 & F_DATADIPHIT;
10965 vlan_vld = 0;
10966 } else {
10967 vniy = 0;
10968 dip_hit = 0;
10969 vlan_vld = data2 & F_DATAVIDH2;
10970 ivlan = G_VIDL(val);
10971 }
10972
10973 ctl |= V_CTLXYBITSEL(1);
10974 mtx_lock(&sc->reg_lock);
10975 if (hw_off_limits(sc))
10976 rc = ENXIO;
10977 else {
10978 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10979 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10980 tcamx = G_DMACH(val) << 32;
10981 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10982 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10983 }
10984 mtx_unlock(&sc->reg_lock);
10985 if (rc != 0)
10986 break;
10987
10988 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10989 /* Inner header VNI mask */
10990 vnix = ((data2 & F_DATAVIDH2) << 23) |
10991 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10992 } else
10993 vnix = 0;
10994
10995 if (tcamx & tcamy)
10996 continue;
10997 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10998
10999 mtx_lock(&sc->reg_lock);
11000 if (hw_off_limits(sc))
11001 rc = ENXIO;
11002 else {
11003 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11004 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11005 }
11006 mtx_unlock(&sc->reg_lock);
11007 if (rc != 0)
11008 break;
11009
11010 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11011 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11012 "%012jx %06x %06x - - %3c"
11013 " I %4x %3c %#x%4u%4d", i, addr[0],
11014 addr[1], addr[2], addr[3], addr[4], addr[5],
11015 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11016 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11017 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11018 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11019 } else {
11020 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11021 "%012jx - - ", i, addr[0], addr[1],
11022 addr[2], addr[3], addr[4], addr[5],
11023 (uintmax_t)mask);
11024
11025 if (vlan_vld)
11026 sbuf_printf(sb, "%4u Y ", ivlan);
11027 else
11028 sbuf_printf(sb, " - N ");
11029
11030 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11031 lookup_type ? 'I' : 'O', port_num,
11032 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11033 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11034 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11035 }
11036
11037
11038 if (cls_lo & F_T6_REPLICATE) {
11039 struct fw_ldst_cmd ldst_cmd;
11040
11041 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11042 ldst_cmd.op_to_addrspace =
11043 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11044 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11045 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11046 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11047 ldst_cmd.u.mps.rplc.fid_idx =
11048 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11049 V_FW_LDST_CMD_IDX(i));
11050
11051 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11052 "t6mps");
11053 if (rc)
11054 break;
11055 if (hw_off_limits(sc))
11056 rc = ENXIO;
11057 else
11058 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11059 sizeof(ldst_cmd), &ldst_cmd);
11060 end_synchronized_op(sc, 0);
11061 if (rc != 0)
11062 break;
11063 else {
11064 sbuf_printf(sb, " %08x %08x %08x %08x"
11065 " %08x %08x %08x %08x",
11066 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11067 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11068 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11069 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11070 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11071 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11072 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11073 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11074 }
11075 } else
11076 sbuf_printf(sb, "%72s", "");
11077
11078 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11079 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11080 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11081 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11082 }
11083
11084 if (rc)
11085 (void) sbuf_finish(sb);
11086 else
11087 rc = sbuf_finish(sb);
11088 sbuf_delete(sb);
11089
11090 return (rc);
11091 }
11092
11093 static int
sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)11094 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)
11095 {
11096 struct adapter *sc = arg1;
11097 struct sbuf *sb;
11098 int rc, i;
11099
11100 MPASS(chip_id(sc) >= CHELSIO_T7);
11101
11102 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11103 if (sb == NULL)
11104 return (ENOMEM);
11105
11106 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
11107 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
11108 " Replication"
11109 " P0 P1 P2 P3 ML");
11110
11111 rc = 0;
11112 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
11113 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
11114 uint16_t ivlan;
11115 uint64_t tcamx, tcamy, val, mask;
11116 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
11117 uint8_t addr[ETHER_ADDR_LEN];
11118
11119 /* Read tcamy */
11120 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11121 if (chip_rev(sc) == 0) {
11122 if (i < 256)
11123 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11124 else
11125 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1);
11126 } else {
11127 #if 0
11128 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11129 #endif
11130 if (i < 512)
11131 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11132 else if (i < 1024)
11133 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1);
11134 else
11135 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2);
11136 }
11137
11138 mtx_lock(&sc->reg_lock);
11139 if (hw_off_limits(sc))
11140 rc = ENXIO;
11141 else {
11142 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11143 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11144 tcamy = G_DMACH(val) << 32;
11145 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11146 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11147 }
11148 mtx_unlock(&sc->reg_lock);
11149 if (rc != 0)
11150 break;
11151
11152 lookup_type = G_DATALKPTYPE(data2);
11153 port_num = G_DATAPORTNUM(data2);
11154 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11155 /* Inner header VNI */
11156 vniy = (((data2 & F_DATAVIDH2) |
11157 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11158 dip_hit = data2 & F_DATADIPHIT;
11159 vlan_vld = 0;
11160 } else {
11161 vniy = 0;
11162 dip_hit = 0;
11163 vlan_vld = data2 & F_DATAVIDH2;
11164 ivlan = G_VIDL(val);
11165 }
11166
11167 ctl |= V_CTLXYBITSEL(1);
11168 mtx_lock(&sc->reg_lock);
11169 if (hw_off_limits(sc))
11170 rc = ENXIO;
11171 else {
11172 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11173 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11174 tcamx = G_DMACH(val) << 32;
11175 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11176 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11177 }
11178 mtx_unlock(&sc->reg_lock);
11179 if (rc != 0)
11180 break;
11181
11182 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11183 /* Inner header VNI mask */
11184 vnix = (((data2 & F_DATAVIDH2) |
11185 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11186 } else
11187 vnix = 0;
11188
11189 if (tcamx & tcamy)
11190 continue;
11191 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11192
11193 mtx_lock(&sc->reg_lock);
11194 if (hw_off_limits(sc))
11195 rc = ENXIO;
11196 else {
11197 if (chip_rev(sc) == 0) {
11198 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11199 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11200 } else {
11201 t4_write_reg(sc, A_MPS_CLS_SRAM_H,
11202 V_SRAMWRN(0) | V_SRAMINDEX(i));
11203 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L);
11204 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H);
11205 }
11206 }
11207 mtx_unlock(&sc->reg_lock);
11208 if (rc != 0)
11209 break;
11210
11211 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11212 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11213 "%012jx %06x %06x - - %3c"
11214 " I %4x %3c %#x%4u%4d", i, addr[0],
11215 addr[1], addr[2], addr[3], addr[4], addr[5],
11216 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11217 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11218 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11219 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11220 } else {
11221 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11222 "%012jx - - ", i, addr[0], addr[1],
11223 addr[2], addr[3], addr[4], addr[5],
11224 (uintmax_t)mask);
11225
11226 if (vlan_vld)
11227 sbuf_printf(sb, "%4u Y ", ivlan);
11228 else
11229 sbuf_printf(sb, " - N ");
11230
11231 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11232 lookup_type ? 'I' : 'O', port_num,
11233 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11234 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11235 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11236 }
11237
11238 if (cls_lo & F_T6_REPLICATE) {
11239 struct fw_ldst_cmd ldst_cmd;
11240
11241 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11242 ldst_cmd.op_to_addrspace =
11243 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11244 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11245 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11246 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11247 ldst_cmd.u.mps.rplc.fid_idx =
11248 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11249 V_FW_LDST_CMD_IDX(i));
11250
11251 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11252 "t6mps");
11253 if (rc)
11254 break;
11255 if (hw_off_limits(sc))
11256 rc = ENXIO;
11257 else
11258 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11259 sizeof(ldst_cmd), &ldst_cmd);
11260 end_synchronized_op(sc, 0);
11261 if (rc != 0)
11262 break;
11263 else {
11264 sbuf_printf(sb, " %08x %08x %08x %08x"
11265 " %08x %08x %08x %08x",
11266 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11267 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11268 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11269 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11270 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11271 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11272 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11273 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11274 }
11275 } else
11276 sbuf_printf(sb, "%72s", "");
11277
11278 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11279 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11280 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11281 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11282 }
11283
11284 if (rc)
11285 (void) sbuf_finish(sb);
11286 else
11287 rc = sbuf_finish(sb);
11288 sbuf_delete(sb);
11289
11290 return (rc);
11291 }
11292
11293 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)11294 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
11295 {
11296 struct adapter *sc = arg1;
11297 struct sbuf *sb;
11298 int rc;
11299 uint16_t mtus[NMTUS];
11300
11301 rc = 0;
11302 mtx_lock(&sc->reg_lock);
11303 if (hw_off_limits(sc))
11304 rc = ENXIO;
11305 else
11306 t4_read_mtu_tbl(sc, mtus, NULL);
11307 mtx_unlock(&sc->reg_lock);
11308 if (rc != 0)
11309 return (rc);
11310
11311 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11312 if (sb == NULL)
11313 return (ENOMEM);
11314
11315 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
11316 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
11317 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
11318 mtus[14], mtus[15]);
11319
11320 rc = sbuf_finish(sb);
11321 sbuf_delete(sb);
11322
11323 return (rc);
11324 }
11325
11326 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)11327 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
11328 {
11329 struct adapter *sc = arg1;
11330 struct sbuf *sb;
11331 int rc, i;
11332 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
11333 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
11334 uint32_t stats[T7_PM_RX_CACHE_NSTATS];
11335 static const char *tx_stats[MAX_PM_NSTATS] = {
11336 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
11337 "Tx FIFO wait", NULL, "Tx latency"
11338 };
11339 static const char *rx_stats[MAX_PM_NSTATS] = {
11340 "Read:", "Write bypass:", "Write mem:", "Flush:",
11341 "Rx FIFO wait", NULL, "Rx latency"
11342 };
11343
11344 rc = 0;
11345 mtx_lock(&sc->reg_lock);
11346 if (hw_off_limits(sc))
11347 rc = ENXIO;
11348 else {
11349 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
11350 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
11351 if (chip_id(sc) >= CHELSIO_T7)
11352 t4_pmrx_cache_get_stats(sc, stats);
11353 }
11354 mtx_unlock(&sc->reg_lock);
11355 if (rc != 0)
11356 return (rc);
11357
11358 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11359 if (sb == NULL)
11360 return (ENOMEM);
11361
11362 sbuf_printf(sb, " Tx pcmds Tx bytes");
11363 for (i = 0; i < 4; i++) {
11364 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11365 tx_cyc[i]);
11366 }
11367
11368 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
11369 for (i = 0; i < 4; i++) {
11370 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11371 rx_cyc[i]);
11372 }
11373
11374 if (chip_id(sc) > CHELSIO_T5) {
11375 sbuf_printf(sb,
11376 "\n Total wait Total occupancy");
11377 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11378 tx_cyc[i]);
11379 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11380 rx_cyc[i]);
11381
11382 i += 2;
11383 MPASS(i < nitems(tx_stats));
11384
11385 sbuf_printf(sb,
11386 "\n Reads Total wait");
11387 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11388 tx_cyc[i]);
11389 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11390 rx_cyc[i]);
11391 }
11392
11393 if (chip_id(sc) >= CHELSIO_T7) {
11394 i = 0;
11395 sbuf_printf(sb, "\n\nPM RX Cache Stats\n");
11396 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]);
11397 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]);
11398 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]);
11399 sbuf_printf(sb, "%-40s %u\n", "Write Split Request",
11400 stats[i++]);
11401 sbuf_printf(sb, "%-40s %u\n",
11402 "Normal Read Split (Read Invalidate)", stats[i++]);
11403 sbuf_printf(sb, "%-40s %u\n",
11404 "Feedback Read Split (Read NoInvalidate)",
11405 stats[i++]);
11406 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]);
11407 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit",
11408 stats[i++]);
11409 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit",
11410 stats[i++]);
11411 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail",
11412 stats[i++]);
11413 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail",
11414 stats[i++]);
11415 sbuf_printf(sb, "%-40s %u\n",
11416 "Normal Read Hit Partial Avail",
11417 stats[i++]);
11418 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail",
11419 stats[i++]);
11420 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail",
11421 stats[i++]);
11422 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail",
11423 stats[i++]);
11424 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free",
11425 stats[i++]);
11426 sbuf_printf(sb, "%-40s %u\n",
11427 "Normal Read Part-avail Mul-Regions",
11428 stats[i++]);
11429 sbuf_printf(sb, "%-40s %u\n",
11430 "FB Read Part-avail Mul-Regions",
11431 stats[i++]);
11432 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used",
11433 stats[i++]);
11434 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used",
11435 stats[i++]);
11436 sbuf_printf(sb, "%-40s %u\n",
11437 "Write Miss LRU-Multiple Evict", stats[i++]);
11438 sbuf_printf(sb, "%-40s %u\n",
11439 "Write Hit Increasing Islands", stats[i++]);
11440 sbuf_printf(sb, "%-40s %u\n",
11441 "Normal Read Island Read split", stats[i++]);
11442 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction",
11443 stats[i++]);
11444 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction",
11445 stats[i++]);
11446 }
11447
11448 rc = sbuf_finish(sb);
11449 sbuf_delete(sb);
11450
11451 return (rc);
11452 }
11453
11454 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)11455 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
11456 {
11457 struct adapter *sc = arg1;
11458 struct sbuf *sb;
11459 int rc;
11460 struct tp_rdma_stats stats;
11461
11462 rc = 0;
11463 mtx_lock(&sc->reg_lock);
11464 if (hw_off_limits(sc))
11465 rc = ENXIO;
11466 else
11467 t4_tp_get_rdma_stats(sc, &stats, 0);
11468 mtx_unlock(&sc->reg_lock);
11469 if (rc != 0)
11470 return (rc);
11471
11472 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11473 if (sb == NULL)
11474 return (ENOMEM);
11475
11476 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
11477 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
11478
11479 rc = sbuf_finish(sb);
11480 sbuf_delete(sb);
11481
11482 return (rc);
11483 }
11484
11485 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)11486 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
11487 {
11488 struct adapter *sc = arg1;
11489 struct sbuf *sb;
11490 int rc;
11491 struct tp_tcp_stats v4, v6;
11492
11493 rc = 0;
11494 mtx_lock(&sc->reg_lock);
11495 if (hw_off_limits(sc))
11496 rc = ENXIO;
11497 else
11498 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
11499 mtx_unlock(&sc->reg_lock);
11500 if (rc != 0)
11501 return (rc);
11502
11503 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11504 if (sb == NULL)
11505 return (ENOMEM);
11506
11507 sbuf_printf(sb,
11508 " IP IPv6\n");
11509 sbuf_printf(sb, "OutRsts: %20u %20u\n",
11510 v4.tcp_out_rsts, v6.tcp_out_rsts);
11511 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
11512 v4.tcp_in_segs, v6.tcp_in_segs);
11513 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
11514 v4.tcp_out_segs, v6.tcp_out_segs);
11515 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
11516 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
11517
11518 rc = sbuf_finish(sb);
11519 sbuf_delete(sb);
11520
11521 return (rc);
11522 }
11523
11524 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)11525 sysctl_tids(SYSCTL_HANDLER_ARGS)
11526 {
11527 struct adapter *sc = arg1;
11528 struct sbuf *sb;
11529 int rc;
11530 uint32_t x, y;
11531 struct tid_info *t = &sc->tids;
11532
11533 rc = 0;
11534 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11535 if (sb == NULL)
11536 return (ENOMEM);
11537
11538 if (t->natids) {
11539 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
11540 t->atids_in_use);
11541 }
11542
11543 if (t->nhpftids) {
11544 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
11545 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
11546 }
11547
11548 if (t->ntids) {
11549 bool hashen = false;
11550
11551 mtx_lock(&sc->reg_lock);
11552 if (hw_off_limits(sc))
11553 rc = ENXIO;
11554 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
11555 hashen = true;
11556 if (chip_id(sc) <= CHELSIO_T5) {
11557 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
11558 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
11559 } else {
11560 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
11561 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
11562 }
11563 }
11564 mtx_unlock(&sc->reg_lock);
11565 if (rc != 0)
11566 goto done;
11567
11568 sbuf_printf(sb, "TID range: ");
11569 if (hashen) {
11570 if (x)
11571 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
11572 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
11573 } else {
11574 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
11575 t->ntids - 1);
11576 }
11577 sbuf_printf(sb, ", in use: %u\n",
11578 atomic_load_acq_int(&t->tids_in_use));
11579 }
11580
11581 if (t->nstids) {
11582 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
11583 t->stid_base + t->nstids - 1, t->stids_in_use);
11584 }
11585
11586 if (t->nftids) {
11587 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
11588 t->ftid_end, t->ftids_in_use);
11589 }
11590
11591 if (t->netids) {
11592 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
11593 t->etid_base + t->netids - 1, t->etids_in_use);
11594 }
11595
11596 mtx_lock(&sc->reg_lock);
11597 if (hw_off_limits(sc))
11598 rc = ENXIO;
11599 else {
11600 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
11601 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
11602 }
11603 mtx_unlock(&sc->reg_lock);
11604 if (rc != 0)
11605 goto done;
11606 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
11607 done:
11608 if (rc == 0)
11609 rc = sbuf_finish(sb);
11610 else
11611 (void)sbuf_finish(sb);
11612 sbuf_delete(sb);
11613
11614 return (rc);
11615 }
11616
11617 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)11618 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
11619 {
11620 struct adapter *sc = arg1;
11621 struct sbuf *sb;
11622 int rc;
11623 struct tp_err_stats stats;
11624
11625 rc = 0;
11626 mtx_lock(&sc->reg_lock);
11627 if (hw_off_limits(sc))
11628 rc = ENXIO;
11629 else
11630 t4_tp_get_err_stats(sc, &stats, 0);
11631 mtx_unlock(&sc->reg_lock);
11632 if (rc != 0)
11633 return (rc);
11634
11635 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11636 if (sb == NULL)
11637 return (ENOMEM);
11638
11639 if (sc->chip_params->nchan > 2) {
11640 sbuf_printf(sb, " channel 0 channel 1"
11641 " channel 2 channel 3\n");
11642 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
11643 stats.mac_in_errs[0], stats.mac_in_errs[1],
11644 stats.mac_in_errs[2], stats.mac_in_errs[3]);
11645 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
11646 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
11647 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
11648 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
11649 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
11650 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
11651 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
11652 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
11653 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
11654 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
11655 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
11656 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
11657 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
11658 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
11659 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
11660 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
11661 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
11662 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
11663 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
11664 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
11665 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
11666 } else {
11667 sbuf_printf(sb, " channel 0 channel 1\n");
11668 sbuf_printf(sb, "macInErrs: %10u %10u\n",
11669 stats.mac_in_errs[0], stats.mac_in_errs[1]);
11670 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
11671 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
11672 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
11673 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
11674 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
11675 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
11676 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
11677 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
11678 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
11679 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
11680 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
11681 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
11682 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
11683 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
11684 }
11685
11686 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
11687 stats.ofld_no_neigh, stats.ofld_cong_defer);
11688
11689 rc = sbuf_finish(sb);
11690 sbuf_delete(sb);
11691
11692 return (rc);
11693 }
11694
11695 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)11696 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
11697 {
11698 struct adapter *sc = arg1;
11699 struct sbuf *sb;
11700 int rc;
11701 struct tp_tnl_stats stats;
11702
11703 rc = 0;
11704 mtx_lock(&sc->reg_lock);
11705 if (hw_off_limits(sc))
11706 rc = ENXIO;
11707 else
11708 t4_tp_get_tnl_stats(sc, &stats, 1);
11709 mtx_unlock(&sc->reg_lock);
11710 if (rc != 0)
11711 return (rc);
11712
11713 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11714 if (sb == NULL)
11715 return (ENOMEM);
11716
11717 if (sc->chip_params->nchan > 2) {
11718 sbuf_printf(sb, " channel 0 channel 1"
11719 " channel 2 channel 3\n");
11720 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
11721 stats.out_pkt[0], stats.out_pkt[1],
11722 stats.out_pkt[2], stats.out_pkt[3]);
11723 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
11724 stats.in_pkt[0], stats.in_pkt[1],
11725 stats.in_pkt[2], stats.in_pkt[3]);
11726 } else {
11727 sbuf_printf(sb, " channel 0 channel 1\n");
11728 sbuf_printf(sb, "OutPkts: %10u %10u\n",
11729 stats.out_pkt[0], stats.out_pkt[1]);
11730 sbuf_printf(sb, "InPkts: %10u %10u",
11731 stats.in_pkt[0], stats.in_pkt[1]);
11732 }
11733
11734 rc = sbuf_finish(sb);
11735 sbuf_delete(sb);
11736
11737 return (rc);
11738 }
11739
11740 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)11741 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
11742 {
11743 struct adapter *sc = arg1;
11744 struct tp_params *tpp = &sc->params.tp;
11745 u_int mask;
11746 int rc;
11747
11748 mask = tpp->la_mask >> 16;
11749 rc = sysctl_handle_int(oidp, &mask, 0, req);
11750 if (rc != 0 || req->newptr == NULL)
11751 return (rc);
11752 if (mask > 0xffff)
11753 return (EINVAL);
11754 mtx_lock(&sc->reg_lock);
11755 if (hw_off_limits(sc))
11756 rc = ENXIO;
11757 else {
11758 tpp->la_mask = mask << 16;
11759 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
11760 tpp->la_mask);
11761 }
11762 mtx_unlock(&sc->reg_lock);
11763
11764 return (rc);
11765 }
11766
11767 struct field_desc {
11768 const char *name;
11769 u_int start;
11770 u_int width;
11771 };
11772
11773 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)11774 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
11775 {
11776 char buf[32];
11777 int line_size = 0;
11778
11779 while (f->name) {
11780 uint64_t mask = (1ULL << f->width) - 1;
11781 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
11782 ((uintmax_t)v >> f->start) & mask);
11783
11784 if (line_size + len >= 79) {
11785 line_size = 8;
11786 sbuf_printf(sb, "\n ");
11787 }
11788 sbuf_printf(sb, "%s ", buf);
11789 line_size += len + 1;
11790 f++;
11791 }
11792 sbuf_printf(sb, "\n");
11793 }
11794
11795 static const struct field_desc tp_la0[] = {
11796 { "RcfOpCodeOut", 60, 4 },
11797 { "State", 56, 4 },
11798 { "WcfState", 52, 4 },
11799 { "RcfOpcSrcOut", 50, 2 },
11800 { "CRxError", 49, 1 },
11801 { "ERxError", 48, 1 },
11802 { "SanityFailed", 47, 1 },
11803 { "SpuriousMsg", 46, 1 },
11804 { "FlushInputMsg", 45, 1 },
11805 { "FlushInputCpl", 44, 1 },
11806 { "RssUpBit", 43, 1 },
11807 { "RssFilterHit", 42, 1 },
11808 { "Tid", 32, 10 },
11809 { "InitTcb", 31, 1 },
11810 { "LineNumber", 24, 7 },
11811 { "Emsg", 23, 1 },
11812 { "EdataOut", 22, 1 },
11813 { "Cmsg", 21, 1 },
11814 { "CdataOut", 20, 1 },
11815 { "EreadPdu", 19, 1 },
11816 { "CreadPdu", 18, 1 },
11817 { "TunnelPkt", 17, 1 },
11818 { "RcfPeerFin", 16, 1 },
11819 { "RcfReasonOut", 12, 4 },
11820 { "TxCchannel", 10, 2 },
11821 { "RcfTxChannel", 8, 2 },
11822 { "RxEchannel", 6, 2 },
11823 { "RcfRxChannel", 5, 1 },
11824 { "RcfDataOutSrdy", 4, 1 },
11825 { "RxDvld", 3, 1 },
11826 { "RxOoDvld", 2, 1 },
11827 { "RxCongestion", 1, 1 },
11828 { "TxCongestion", 0, 1 },
11829 { NULL }
11830 };
11831
11832 static const struct field_desc tp_la1[] = {
11833 { "CplCmdIn", 56, 8 },
11834 { "CplCmdOut", 48, 8 },
11835 { "ESynOut", 47, 1 },
11836 { "EAckOut", 46, 1 },
11837 { "EFinOut", 45, 1 },
11838 { "ERstOut", 44, 1 },
11839 { "SynIn", 43, 1 },
11840 { "AckIn", 42, 1 },
11841 { "FinIn", 41, 1 },
11842 { "RstIn", 40, 1 },
11843 { "DataIn", 39, 1 },
11844 { "DataInVld", 38, 1 },
11845 { "PadIn", 37, 1 },
11846 { "RxBufEmpty", 36, 1 },
11847 { "RxDdp", 35, 1 },
11848 { "RxFbCongestion", 34, 1 },
11849 { "TxFbCongestion", 33, 1 },
11850 { "TxPktSumSrdy", 32, 1 },
11851 { "RcfUlpType", 28, 4 },
11852 { "Eread", 27, 1 },
11853 { "Ebypass", 26, 1 },
11854 { "Esave", 25, 1 },
11855 { "Static0", 24, 1 },
11856 { "Cread", 23, 1 },
11857 { "Cbypass", 22, 1 },
11858 { "Csave", 21, 1 },
11859 { "CPktOut", 20, 1 },
11860 { "RxPagePoolFull", 18, 2 },
11861 { "RxLpbkPkt", 17, 1 },
11862 { "TxLpbkPkt", 16, 1 },
11863 { "RxVfValid", 15, 1 },
11864 { "SynLearned", 14, 1 },
11865 { "SetDelEntry", 13, 1 },
11866 { "SetInvEntry", 12, 1 },
11867 { "CpcmdDvld", 11, 1 },
11868 { "CpcmdSave", 10, 1 },
11869 { "RxPstructsFull", 8, 2 },
11870 { "EpcmdDvld", 7, 1 },
11871 { "EpcmdFlush", 6, 1 },
11872 { "EpcmdTrimPrefix", 5, 1 },
11873 { "EpcmdTrimPostfix", 4, 1 },
11874 { "ERssIp4Pkt", 3, 1 },
11875 { "ERssIp6Pkt", 2, 1 },
11876 { "ERssTcpUdpPkt", 1, 1 },
11877 { "ERssFceFipPkt", 0, 1 },
11878 { NULL }
11879 };
11880
11881 static const struct field_desc tp_la2[] = {
11882 { "CplCmdIn", 56, 8 },
11883 { "MpsVfVld", 55, 1 },
11884 { "MpsPf", 52, 3 },
11885 { "MpsVf", 44, 8 },
11886 { "SynIn", 43, 1 },
11887 { "AckIn", 42, 1 },
11888 { "FinIn", 41, 1 },
11889 { "RstIn", 40, 1 },
11890 { "DataIn", 39, 1 },
11891 { "DataInVld", 38, 1 },
11892 { "PadIn", 37, 1 },
11893 { "RxBufEmpty", 36, 1 },
11894 { "RxDdp", 35, 1 },
11895 { "RxFbCongestion", 34, 1 },
11896 { "TxFbCongestion", 33, 1 },
11897 { "TxPktSumSrdy", 32, 1 },
11898 { "RcfUlpType", 28, 4 },
11899 { "Eread", 27, 1 },
11900 { "Ebypass", 26, 1 },
11901 { "Esave", 25, 1 },
11902 { "Static0", 24, 1 },
11903 { "Cread", 23, 1 },
11904 { "Cbypass", 22, 1 },
11905 { "Csave", 21, 1 },
11906 { "CPktOut", 20, 1 },
11907 { "RxPagePoolFull", 18, 2 },
11908 { "RxLpbkPkt", 17, 1 },
11909 { "TxLpbkPkt", 16, 1 },
11910 { "RxVfValid", 15, 1 },
11911 { "SynLearned", 14, 1 },
11912 { "SetDelEntry", 13, 1 },
11913 { "SetInvEntry", 12, 1 },
11914 { "CpcmdDvld", 11, 1 },
11915 { "CpcmdSave", 10, 1 },
11916 { "RxPstructsFull", 8, 2 },
11917 { "EpcmdDvld", 7, 1 },
11918 { "EpcmdFlush", 6, 1 },
11919 { "EpcmdTrimPrefix", 5, 1 },
11920 { "EpcmdTrimPostfix", 4, 1 },
11921 { "ERssIp4Pkt", 3, 1 },
11922 { "ERssIp6Pkt", 2, 1 },
11923 { "ERssTcpUdpPkt", 1, 1 },
11924 { "ERssFceFipPkt", 0, 1 },
11925 { NULL }
11926 };
11927
11928 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11929 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11930 {
11931
11932 field_desc_show(sb, *p, tp_la0);
11933 }
11934
11935 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11936 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11937 {
11938
11939 if (idx)
11940 sbuf_printf(sb, "\n");
11941 field_desc_show(sb, p[0], tp_la0);
11942 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11943 field_desc_show(sb, p[1], tp_la0);
11944 }
11945
11946 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11947 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11948 {
11949
11950 if (idx)
11951 sbuf_printf(sb, "\n");
11952 field_desc_show(sb, p[0], tp_la0);
11953 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11954 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11955 }
11956
11957 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11958 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11959 {
11960 struct adapter *sc = arg1;
11961 struct sbuf *sb;
11962 uint64_t *buf, *p;
11963 int rc;
11964 u_int i, inc;
11965 void (*show_func)(struct sbuf *, uint64_t *, int);
11966
11967 rc = 0;
11968 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11969 if (sb == NULL)
11970 return (ENOMEM);
11971
11972 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11973
11974 mtx_lock(&sc->reg_lock);
11975 if (hw_off_limits(sc))
11976 rc = ENXIO;
11977 else {
11978 t4_tp_read_la(sc, buf, NULL);
11979 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11980 case 2:
11981 inc = 2;
11982 show_func = tp_la_show2;
11983 break;
11984 case 3:
11985 inc = 2;
11986 show_func = tp_la_show3;
11987 break;
11988 default:
11989 inc = 1;
11990 show_func = tp_la_show;
11991 }
11992 }
11993 mtx_unlock(&sc->reg_lock);
11994 if (rc != 0)
11995 goto done;
11996
11997 p = buf;
11998 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11999 (*show_func)(sb, p, i);
12000 rc = sbuf_finish(sb);
12001 done:
12002 sbuf_delete(sb);
12003 free(buf, M_CXGBE);
12004 return (rc);
12005 }
12006
12007 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)12008 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
12009 {
12010 struct adapter *sc = arg1;
12011 struct sbuf *sb;
12012 int rc;
12013 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
12014
12015 rc = 0;
12016 mtx_lock(&sc->reg_lock);
12017 if (hw_off_limits(sc))
12018 rc = ENXIO;
12019 else
12020 t4_get_chan_txrate(sc, nrate, orate);
12021 mtx_unlock(&sc->reg_lock);
12022 if (rc != 0)
12023 return (rc);
12024
12025 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
12026 if (sb == NULL)
12027 return (ENOMEM);
12028
12029 if (sc->chip_params->nchan > 2) {
12030 sbuf_printf(sb, " channel 0 channel 1"
12031 " channel 2 channel 3\n");
12032 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
12033 nrate[0], nrate[1], nrate[2], nrate[3]);
12034 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
12035 orate[0], orate[1], orate[2], orate[3]);
12036 } else {
12037 sbuf_printf(sb, " channel 0 channel 1\n");
12038 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
12039 nrate[0], nrate[1]);
12040 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
12041 orate[0], orate[1]);
12042 }
12043
12044 rc = sbuf_finish(sb);
12045 sbuf_delete(sb);
12046
12047 return (rc);
12048 }
12049
12050 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)12051 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
12052 {
12053 struct adapter *sc = arg1;
12054 struct sbuf *sb;
12055 uint32_t *buf, *p;
12056 int rc, i;
12057
12058 rc = 0;
12059 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12060 if (sb == NULL)
12061 return (ENOMEM);
12062
12063 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
12064 M_ZERO | M_WAITOK);
12065
12066 mtx_lock(&sc->reg_lock);
12067 if (hw_off_limits(sc))
12068 rc = ENXIO;
12069 else
12070 t4_ulprx_read_la(sc, buf);
12071 mtx_unlock(&sc->reg_lock);
12072 if (rc != 0)
12073 goto done;
12074
12075 p = buf;
12076 sbuf_printf(sb, " Pcmd Type Message"
12077 " Data");
12078 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
12079 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
12080 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
12081 }
12082 rc = sbuf_finish(sb);
12083 done:
12084 sbuf_delete(sb);
12085 free(buf, M_CXGBE);
12086 return (rc);
12087 }
12088
12089 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)12090 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
12091 {
12092 struct adapter *sc = arg1;
12093 struct sbuf *sb;
12094 int rc;
12095 uint32_t cfg, s1, s2;
12096
12097 MPASS(chip_id(sc) >= CHELSIO_T5);
12098
12099 rc = 0;
12100 mtx_lock(&sc->reg_lock);
12101 if (hw_off_limits(sc))
12102 rc = ENXIO;
12103 else {
12104 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
12105 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
12106 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
12107 }
12108 mtx_unlock(&sc->reg_lock);
12109 if (rc != 0)
12110 return (rc);
12111
12112 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12113 if (sb == NULL)
12114 return (ENOMEM);
12115
12116 if (G_STATSOURCE_T5(cfg) == 7) {
12117 int mode;
12118
12119 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
12120 if (mode == 0)
12121 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
12122 else if (mode == 1)
12123 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
12124 else
12125 sbuf_printf(sb, "unknown mode %d", mode);
12126 }
12127 rc = sbuf_finish(sb);
12128 sbuf_delete(sb);
12129
12130 return (rc);
12131 }
12132
12133 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)12134 sysctl_cpus(SYSCTL_HANDLER_ARGS)
12135 {
12136 struct adapter *sc = arg1;
12137 enum cpu_sets op = arg2;
12138 cpuset_t cpuset;
12139 struct sbuf *sb;
12140 int i, rc;
12141
12142 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
12143
12144 CPU_ZERO(&cpuset);
12145 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
12146 if (rc != 0)
12147 return (rc);
12148
12149 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12150 if (sb == NULL)
12151 return (ENOMEM);
12152
12153 CPU_FOREACH(i)
12154 sbuf_printf(sb, "%d ", i);
12155 rc = sbuf_finish(sb);
12156 sbuf_delete(sb);
12157
12158 return (rc);
12159 }
12160
12161 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)12162 sysctl_reset(SYSCTL_HANDLER_ARGS)
12163 {
12164 struct adapter *sc = arg1;
12165 u_int val;
12166 int rc;
12167
12168 val = atomic_load_int(&sc->num_resets);
12169 rc = sysctl_handle_int(oidp, &val, 0, req);
12170 if (rc != 0 || req->newptr == NULL)
12171 return (rc);
12172
12173 if (val == 0) {
12174 /* Zero out the counter that tracks reset. */
12175 atomic_store_int(&sc->num_resets, 0);
12176 return (0);
12177 }
12178
12179 if (val != 1)
12180 return (EINVAL); /* 0 or 1 are the only legal values */
12181
12182 if (hw_off_limits(sc)) /* harmless race */
12183 return (EALREADY);
12184
12185 taskqueue_enqueue(reset_tq, &sc->reset_task);
12186 return (0);
12187 }
12188
12189 #ifdef TCP_OFFLOAD
12190 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)12191 sysctl_tls(SYSCTL_HANDLER_ARGS)
12192 {
12193 struct adapter *sc = arg1;
12194 int i, j, v, rc;
12195 struct vi_info *vi;
12196
12197 v = sc->tt.tls;
12198 rc = sysctl_handle_int(oidp, &v, 0, req);
12199 if (rc != 0 || req->newptr == NULL)
12200 return (rc);
12201
12202 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
12203 return (ENOTSUP);
12204
12205 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
12206 if (rc)
12207 return (rc);
12208 if (hw_off_limits(sc))
12209 rc = ENXIO;
12210 else {
12211 sc->tt.tls = !!v;
12212 for_each_port(sc, i) {
12213 for_each_vi(sc->port[i], j, vi) {
12214 if (vi->flags & VI_INIT_DONE)
12215 t4_update_fl_bufsize(vi->ifp);
12216 }
12217 }
12218 }
12219 end_synchronized_op(sc, 0);
12220
12221 return (rc);
12222
12223 }
12224
12225 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)12226 unit_conv(char *buf, size_t len, u_int val, u_int factor)
12227 {
12228 u_int rem = val % factor;
12229
12230 if (rem == 0)
12231 snprintf(buf, len, "%u", val / factor);
12232 else {
12233 while (rem % 10 == 0)
12234 rem /= 10;
12235 snprintf(buf, len, "%u.%u", val / factor, rem);
12236 }
12237 }
12238
12239 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)12240 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
12241 {
12242 struct adapter *sc = arg1;
12243 char buf[16];
12244 u_int res, re;
12245 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12246
12247 mtx_lock(&sc->reg_lock);
12248 if (hw_off_limits(sc))
12249 res = (u_int)-1;
12250 else
12251 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
12252 mtx_unlock(&sc->reg_lock);
12253 if (res == (u_int)-1)
12254 return (ENXIO);
12255
12256 switch (arg2) {
12257 case 0:
12258 /* timer_tick */
12259 re = G_TIMERRESOLUTION(res);
12260 break;
12261 case 1:
12262 /* TCP timestamp tick */
12263 re = G_TIMESTAMPRESOLUTION(res);
12264 break;
12265 case 2:
12266 /* DACK tick */
12267 re = G_DELAYEDACKRESOLUTION(res);
12268 break;
12269 default:
12270 return (EDOOFUS);
12271 }
12272
12273 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
12274
12275 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
12276 }
12277
12278 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)12279 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
12280 {
12281 struct adapter *sc = arg1;
12282 int rc;
12283 u_int dack_tmr, dack_re, v;
12284 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12285
12286 mtx_lock(&sc->reg_lock);
12287 if (hw_off_limits(sc))
12288 rc = ENXIO;
12289 else {
12290 rc = 0;
12291 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
12292 A_TP_TIMER_RESOLUTION));
12293 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
12294 }
12295 mtx_unlock(&sc->reg_lock);
12296 if (rc != 0)
12297 return (rc);
12298
12299 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
12300
12301 return (sysctl_handle_int(oidp, &v, 0, req));
12302 }
12303
12304 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)12305 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
12306 {
12307 struct adapter *sc = arg1;
12308 int rc, reg = arg2;
12309 u_int tre;
12310 u_long tp_tick_us, v;
12311 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12312
12313 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
12314 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
12315 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
12316 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
12317
12318 mtx_lock(&sc->reg_lock);
12319 if (hw_off_limits(sc))
12320 rc = ENXIO;
12321 else {
12322 rc = 0;
12323 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
12324 tp_tick_us = (cclk_ps << tre) / 1000000;
12325 if (reg == A_TP_INIT_SRTT)
12326 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
12327 else
12328 v = tp_tick_us * t4_read_reg(sc, reg);
12329 }
12330 mtx_unlock(&sc->reg_lock);
12331 if (rc != 0)
12332 return (rc);
12333 else
12334 return (sysctl_handle_long(oidp, &v, 0, req));
12335 }
12336
12337 /*
12338 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
12339 * passed to this function.
12340 */
12341 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)12342 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
12343 {
12344 struct adapter *sc = arg1;
12345 int rc, idx = arg2;
12346 u_int v;
12347
12348 MPASS(idx >= 0 && idx <= 24);
12349
12350 mtx_lock(&sc->reg_lock);
12351 if (hw_off_limits(sc))
12352 rc = ENXIO;
12353 else {
12354 rc = 0;
12355 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
12356 }
12357 mtx_unlock(&sc->reg_lock);
12358 if (rc != 0)
12359 return (rc);
12360 else
12361 return (sysctl_handle_int(oidp, &v, 0, req));
12362 }
12363
12364 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)12365 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
12366 {
12367 struct adapter *sc = arg1;
12368 int rc, idx = arg2;
12369 u_int shift, v, r;
12370
12371 MPASS(idx >= 0 && idx < 16);
12372
12373 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
12374 shift = (idx & 3) << 3;
12375 mtx_lock(&sc->reg_lock);
12376 if (hw_off_limits(sc))
12377 rc = ENXIO;
12378 else {
12379 rc = 0;
12380 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
12381 }
12382 mtx_unlock(&sc->reg_lock);
12383 if (rc != 0)
12384 return (rc);
12385 else
12386 return (sysctl_handle_int(oidp, &v, 0, req));
12387 }
12388
12389 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)12390 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
12391 {
12392 struct vi_info *vi = arg1;
12393 struct adapter *sc = vi->adapter;
12394 int idx, rc, i;
12395 struct sge_ofld_rxq *ofld_rxq;
12396 uint8_t v;
12397
12398 idx = vi->ofld_tmr_idx;
12399
12400 rc = sysctl_handle_int(oidp, &idx, 0, req);
12401 if (rc != 0 || req->newptr == NULL)
12402 return (rc);
12403
12404 if (idx < 0 || idx >= SGE_NTIMERS)
12405 return (EINVAL);
12406
12407 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12408 "t4otmr");
12409 if (rc)
12410 return (rc);
12411
12412 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
12413 for_each_ofld_rxq(vi, i, ofld_rxq) {
12414 #ifdef atomic_store_rel_8
12415 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
12416 #else
12417 ofld_rxq->iq.intr_params = v;
12418 #endif
12419 }
12420 vi->ofld_tmr_idx = idx;
12421
12422 end_synchronized_op(sc, LOCK_HELD);
12423 return (0);
12424 }
12425
12426 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)12427 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
12428 {
12429 struct vi_info *vi = arg1;
12430 struct adapter *sc = vi->adapter;
12431 int idx, rc;
12432
12433 idx = vi->ofld_pktc_idx;
12434
12435 rc = sysctl_handle_int(oidp, &idx, 0, req);
12436 if (rc != 0 || req->newptr == NULL)
12437 return (rc);
12438
12439 if (idx < -1 || idx >= SGE_NCOUNTERS)
12440 return (EINVAL);
12441
12442 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12443 "t4opktc");
12444 if (rc)
12445 return (rc);
12446
12447 if (vi->flags & VI_INIT_DONE)
12448 rc = EBUSY; /* cannot be changed once the queues are created */
12449 else
12450 vi->ofld_pktc_idx = idx;
12451
12452 end_synchronized_op(sc, LOCK_HELD);
12453 return (rc);
12454 }
12455 #endif
12456
12457 static int
get_sge_context(struct adapter * sc,int mem_id,uint32_t cid,int len,uint32_t * data)12458 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len,
12459 uint32_t *data)
12460 {
12461 int rc;
12462
12463 if (len < sc->chip_params->sge_ctxt_size)
12464 return (ENOBUFS);
12465 if (cid > M_CTXTQID)
12466 return (EINVAL);
12467 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS &&
12468 mem_id != CTXT_FLM && mem_id != CTXT_CNM)
12469 return (EINVAL);
12470
12471 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
12472 if (rc)
12473 return (rc);
12474
12475 if (hw_off_limits(sc)) {
12476 rc = ENXIO;
12477 goto done;
12478 }
12479
12480 if (sc->flags & FW_OK) {
12481 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data);
12482 if (rc == 0)
12483 goto done;
12484 }
12485
12486 /*
12487 * Read via firmware failed or wasn't even attempted. Read directly via
12488 * the backdoor.
12489 */
12490 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data);
12491 done:
12492 end_synchronized_op(sc, 0);
12493 return (rc);
12494 }
12495
12496 static int
load_fw(struct adapter * sc,struct t4_data * fw)12497 load_fw(struct adapter *sc, struct t4_data *fw)
12498 {
12499 int rc;
12500 uint8_t *fw_data;
12501
12502 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
12503 if (rc)
12504 return (rc);
12505
12506 if (hw_off_limits(sc)) {
12507 rc = ENXIO;
12508 goto done;
12509 }
12510
12511 /*
12512 * The firmware, with the sole exception of the memory parity error
12513 * handler, runs from memory and not flash. It is almost always safe to
12514 * install a new firmware on a running system. Just set bit 1 in
12515 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
12516 */
12517 if (sc->flags & FULL_INIT_DONE &&
12518 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
12519 rc = EBUSY;
12520 goto done;
12521 }
12522
12523 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
12524
12525 rc = copyin(fw->data, fw_data, fw->len);
12526 if (rc == 0)
12527 rc = -t4_load_fw(sc, fw_data, fw->len);
12528
12529 free(fw_data, M_CXGBE);
12530 done:
12531 end_synchronized_op(sc, 0);
12532 return (rc);
12533 }
12534
12535 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)12536 load_cfg(struct adapter *sc, struct t4_data *cfg)
12537 {
12538 int rc;
12539 uint8_t *cfg_data = NULL;
12540
12541 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12542 if (rc)
12543 return (rc);
12544
12545 if (hw_off_limits(sc)) {
12546 rc = ENXIO;
12547 goto done;
12548 }
12549
12550 if (cfg->len == 0) {
12551 /* clear */
12552 rc = -t4_load_cfg(sc, NULL, 0);
12553 goto done;
12554 }
12555
12556 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
12557
12558 rc = copyin(cfg->data, cfg_data, cfg->len);
12559 if (rc == 0)
12560 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
12561
12562 free(cfg_data, M_CXGBE);
12563 done:
12564 end_synchronized_op(sc, 0);
12565 return (rc);
12566 }
12567
12568 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)12569 load_boot(struct adapter *sc, struct t4_bootrom *br)
12570 {
12571 int rc;
12572 uint8_t *br_data = NULL;
12573 u_int offset;
12574
12575 if (br->len > 1024 * 1024)
12576 return (EFBIG);
12577
12578 if (br->pf_offset == 0) {
12579 /* pfidx */
12580 if (br->pfidx_addr > 7)
12581 return (EINVAL);
12582 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
12583 A_PCIE_PF_EXPROM_OFST)));
12584 } else if (br->pf_offset == 1) {
12585 /* offset */
12586 offset = G_OFFSET(br->pfidx_addr);
12587 } else {
12588 return (EINVAL);
12589 }
12590
12591 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
12592 if (rc)
12593 return (rc);
12594
12595 if (hw_off_limits(sc)) {
12596 rc = ENXIO;
12597 goto done;
12598 }
12599
12600 if (br->len == 0) {
12601 /* clear */
12602 rc = -t4_load_boot(sc, NULL, offset, 0);
12603 goto done;
12604 }
12605
12606 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
12607
12608 rc = copyin(br->data, br_data, br->len);
12609 if (rc == 0)
12610 rc = -t4_load_boot(sc, br_data, offset, br->len);
12611
12612 free(br_data, M_CXGBE);
12613 done:
12614 end_synchronized_op(sc, 0);
12615 return (rc);
12616 }
12617
12618 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)12619 load_bootcfg(struct adapter *sc, struct t4_data *bc)
12620 {
12621 int rc;
12622 uint8_t *bc_data = NULL;
12623
12624 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12625 if (rc)
12626 return (rc);
12627
12628 if (hw_off_limits(sc)) {
12629 rc = ENXIO;
12630 goto done;
12631 }
12632
12633 if (bc->len == 0) {
12634 /* clear */
12635 rc = -t4_load_bootcfg(sc, NULL, 0);
12636 goto done;
12637 }
12638
12639 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
12640
12641 rc = copyin(bc->data, bc_data, bc->len);
12642 if (rc == 0)
12643 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
12644
12645 free(bc_data, M_CXGBE);
12646 done:
12647 end_synchronized_op(sc, 0);
12648 return (rc);
12649 }
12650
12651 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)12652 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
12653 {
12654 int rc;
12655 struct cudbg_init *cudbg;
12656 void *handle, *buf;
12657
12658 /* buf is large, don't block if no memory is available */
12659 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
12660 if (buf == NULL)
12661 return (ENOMEM);
12662
12663 handle = cudbg_alloc_handle();
12664 if (handle == NULL) {
12665 rc = ENOMEM;
12666 goto done;
12667 }
12668
12669 cudbg = cudbg_get_init(handle);
12670 cudbg->adap = sc;
12671 cudbg->print = (cudbg_print_cb)printf;
12672
12673 #ifndef notyet
12674 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
12675 __func__, dump->wr_flash, dump->len, dump->data);
12676 #endif
12677
12678 if (dump->wr_flash)
12679 cudbg->use_flash = 1;
12680 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
12681 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
12682
12683 rc = cudbg_collect(handle, buf, &dump->len);
12684 if (rc != 0)
12685 goto done;
12686
12687 rc = copyout(buf, dump->data, dump->len);
12688 done:
12689 cudbg_free_handle(handle);
12690 free(buf, M_CXGBE);
12691 return (rc);
12692 }
12693
12694 static void
free_offload_policy(struct t4_offload_policy * op)12695 free_offload_policy(struct t4_offload_policy *op)
12696 {
12697 struct offload_rule *r;
12698 int i;
12699
12700 if (op == NULL)
12701 return;
12702
12703 r = &op->rule[0];
12704 for (i = 0; i < op->nrules; i++, r++) {
12705 free(r->bpf_prog.bf_insns, M_CXGBE);
12706 }
12707 free(op->rule, M_CXGBE);
12708 free(op, M_CXGBE);
12709 }
12710
12711 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)12712 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
12713 {
12714 int i, rc, len;
12715 struct t4_offload_policy *op, *old;
12716 struct bpf_program *bf;
12717 const struct offload_settings *s;
12718 struct offload_rule *r;
12719 void *u;
12720
12721 if (!is_offload(sc))
12722 return (ENODEV);
12723
12724 if (uop->nrules == 0) {
12725 /* Delete installed policies. */
12726 op = NULL;
12727 goto set_policy;
12728 } else if (uop->nrules > 256) { /* arbitrary */
12729 return (E2BIG);
12730 }
12731
12732 /* Copy userspace offload policy to kernel */
12733 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
12734 op->nrules = uop->nrules;
12735 len = op->nrules * sizeof(struct offload_rule);
12736 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12737 rc = copyin(uop->rule, op->rule, len);
12738 if (rc) {
12739 free(op->rule, M_CXGBE);
12740 free(op, M_CXGBE);
12741 return (rc);
12742 }
12743
12744 r = &op->rule[0];
12745 for (i = 0; i < op->nrules; i++, r++) {
12746
12747 /* Validate open_type */
12748 if (r->open_type != OPEN_TYPE_LISTEN &&
12749 r->open_type != OPEN_TYPE_ACTIVE &&
12750 r->open_type != OPEN_TYPE_PASSIVE &&
12751 r->open_type != OPEN_TYPE_DONTCARE) {
12752 error:
12753 /*
12754 * Rules 0 to i have malloc'd filters that need to be
12755 * freed. Rules i+1 to nrules have userspace pointers
12756 * and should be left alone.
12757 */
12758 op->nrules = i;
12759 free_offload_policy(op);
12760 return (rc);
12761 }
12762
12763 /* Validate settings */
12764 s = &r->settings;
12765 if ((s->offload != 0 && s->offload != 1) ||
12766 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
12767 s->sched_class < -1 ||
12768 s->sched_class >= sc->params.nsched_cls) {
12769 rc = EINVAL;
12770 goto error;
12771 }
12772
12773 bf = &r->bpf_prog;
12774 u = bf->bf_insns; /* userspace ptr */
12775 bf->bf_insns = NULL;
12776 if (bf->bf_len == 0) {
12777 /* legal, matches everything */
12778 continue;
12779 }
12780 len = bf->bf_len * sizeof(*bf->bf_insns);
12781 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12782 rc = copyin(u, bf->bf_insns, len);
12783 if (rc != 0)
12784 goto error;
12785
12786 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
12787 rc = EINVAL;
12788 goto error;
12789 }
12790 }
12791 set_policy:
12792 rw_wlock(&sc->policy_lock);
12793 old = sc->policy;
12794 sc->policy = op;
12795 rw_wunlock(&sc->policy_lock);
12796 free_offload_policy(old);
12797
12798 return (0);
12799 }
12800
12801 #define MAX_READ_BUF_SIZE (128 * 1024)
12802 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)12803 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
12804 {
12805 uint32_t addr, remaining, n;
12806 uint32_t *buf;
12807 int rc;
12808 uint8_t *dst;
12809
12810 mtx_lock(&sc->reg_lock);
12811 if (hw_off_limits(sc))
12812 rc = ENXIO;
12813 else
12814 rc = validate_mem_range(sc, mr->addr, mr->len);
12815 mtx_unlock(&sc->reg_lock);
12816 if (rc != 0)
12817 return (rc);
12818
12819 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
12820 addr = mr->addr;
12821 remaining = mr->len;
12822 dst = (void *)mr->data;
12823
12824 while (remaining) {
12825 n = min(remaining, MAX_READ_BUF_SIZE);
12826 mtx_lock(&sc->reg_lock);
12827 if (hw_off_limits(sc))
12828 rc = ENXIO;
12829 else
12830 read_via_memwin(sc, 2, addr, buf, n);
12831 mtx_unlock(&sc->reg_lock);
12832 if (rc != 0)
12833 break;
12834
12835 rc = copyout(buf, dst, n);
12836 if (rc != 0)
12837 break;
12838
12839 dst += n;
12840 remaining -= n;
12841 addr += n;
12842 }
12843
12844 free(buf, M_CXGBE);
12845 return (rc);
12846 }
12847 #undef MAX_READ_BUF_SIZE
12848
12849 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12850 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12851 {
12852 int rc;
12853
12854 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12855 return (EINVAL);
12856
12857 if (i2cd->len > sizeof(i2cd->data))
12858 return (EFBIG);
12859
12860 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12861 if (rc)
12862 return (rc);
12863 if (hw_off_limits(sc))
12864 rc = ENXIO;
12865 else
12866 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12867 i2cd->offset, i2cd->len, &i2cd->data[0]);
12868 end_synchronized_op(sc, 0);
12869
12870 return (rc);
12871 }
12872
12873 static int
clear_stats(struct adapter * sc,u_int port_id)12874 clear_stats(struct adapter *sc, u_int port_id)
12875 {
12876 int i, v, chan_map;
12877 struct port_info *pi;
12878 struct vi_info *vi;
12879 struct sge_rxq *rxq;
12880 struct sge_txq *txq;
12881 struct sge_wrq *wrq;
12882 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12883 struct sge_ofld_txq *ofld_txq;
12884 #endif
12885 #ifdef TCP_OFFLOAD
12886 struct sge_ofld_rxq *ofld_rxq;
12887 #endif
12888
12889 if (port_id >= sc->params.nports)
12890 return (EINVAL);
12891 pi = sc->port[port_id];
12892 if (pi == NULL)
12893 return (EIO);
12894
12895 mtx_lock(&sc->reg_lock);
12896 if (!hw_off_limits(sc)) {
12897 /* MAC stats */
12898 t4_clr_port_stats(sc, pi->hw_port);
12899 if (is_t6(sc)) {
12900 if (pi->fcs_reg != -1)
12901 pi->fcs_base = t4_read_reg64(sc,
12902 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
12903 else
12904 pi->stats.rx_fcs_err = 0;
12905 }
12906 for_each_vi(pi, v, vi) {
12907 if (vi->flags & VI_INIT_DONE)
12908 t4_clr_vi_stats(sc, vi->vin);
12909 }
12910 chan_map = pi->rx_e_chan_map;
12911 v = 0; /* reuse */
12912 while (chan_map) {
12913 i = ffs(chan_map) - 1;
12914 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12915 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12916 chan_map &= ~(1 << i);
12917 }
12918 }
12919 mtx_unlock(&sc->reg_lock);
12920 pi->tx_parse_error = 0;
12921 pi->tnl_cong_drops = 0;
12922
12923 /*
12924 * Since this command accepts a port, clear stats for
12925 * all VIs on this port.
12926 */
12927 for_each_vi(pi, v, vi) {
12928 if (vi->flags & VI_INIT_DONE) {
12929
12930 for_each_rxq(vi, i, rxq) {
12931 #if defined(INET) || defined(INET6)
12932 rxq->lro.lro_queued = 0;
12933 rxq->lro.lro_flushed = 0;
12934 #endif
12935 rxq->rxcsum = 0;
12936 rxq->vlan_extraction = 0;
12937 rxq->vxlan_rxcsum = 0;
12938
12939 rxq->fl.cl_allocated = 0;
12940 rxq->fl.cl_recycled = 0;
12941 rxq->fl.cl_fast_recycled = 0;
12942 }
12943
12944 for_each_txq(vi, i, txq) {
12945 txq->txcsum = 0;
12946 txq->tso_wrs = 0;
12947 txq->vlan_insertion = 0;
12948 txq->imm_wrs = 0;
12949 txq->sgl_wrs = 0;
12950 txq->txpkt_wrs = 0;
12951 txq->txpkts0_wrs = 0;
12952 txq->txpkts1_wrs = 0;
12953 txq->txpkts0_pkts = 0;
12954 txq->txpkts1_pkts = 0;
12955 txq->txpkts_flush = 0;
12956 txq->raw_wrs = 0;
12957 txq->vxlan_tso_wrs = 0;
12958 txq->vxlan_txcsum = 0;
12959 txq->kern_tls_records = 0;
12960 txq->kern_tls_short = 0;
12961 txq->kern_tls_partial = 0;
12962 txq->kern_tls_full = 0;
12963 txq->kern_tls_octets = 0;
12964 txq->kern_tls_waste = 0;
12965 txq->kern_tls_header = 0;
12966 txq->kern_tls_fin_short = 0;
12967 txq->kern_tls_cbc = 0;
12968 txq->kern_tls_gcm = 0;
12969 if (is_t6(sc)) {
12970 txq->kern_tls_options = 0;
12971 txq->kern_tls_fin = 0;
12972 } else {
12973 txq->kern_tls_ghash_received = 0;
12974 txq->kern_tls_ghash_requested = 0;
12975 txq->kern_tls_lso = 0;
12976 txq->kern_tls_partial_ghash = 0;
12977 txq->kern_tls_splitmode = 0;
12978 txq->kern_tls_trailer = 0;
12979 }
12980 mp_ring_reset_stats(txq->r);
12981 }
12982
12983 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12984 for_each_ofld_txq(vi, i, ofld_txq) {
12985 ofld_txq->wrq.tx_wrs_direct = 0;
12986 ofld_txq->wrq.tx_wrs_copied = 0;
12987 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12988 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12989 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12990 counter_u64_zero(ofld_txq->tx_nvme_pdus);
12991 counter_u64_zero(ofld_txq->tx_nvme_octets);
12992 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs);
12993 counter_u64_zero(ofld_txq->tx_aio_jobs);
12994 counter_u64_zero(ofld_txq->tx_aio_octets);
12995 counter_u64_zero(ofld_txq->tx_toe_tls_records);
12996 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12997 }
12998 #endif
12999 #ifdef TCP_OFFLOAD
13000 for_each_ofld_rxq(vi, i, ofld_rxq) {
13001 ofld_rxq->fl.cl_allocated = 0;
13002 ofld_rxq->fl.cl_recycled = 0;
13003 ofld_rxq->fl.cl_fast_recycled = 0;
13004 counter_u64_zero(
13005 ofld_rxq->rx_iscsi_ddp_setup_ok);
13006 counter_u64_zero(
13007 ofld_rxq->rx_iscsi_ddp_setup_error);
13008 ofld_rxq->rx_iscsi_ddp_pdus = 0;
13009 ofld_rxq->rx_iscsi_ddp_octets = 0;
13010 ofld_rxq->rx_iscsi_fl_pdus = 0;
13011 ofld_rxq->rx_iscsi_fl_octets = 0;
13012 counter_u64_zero(
13013 ofld_rxq->rx_nvme_ddp_setup_ok);
13014 counter_u64_zero(
13015 ofld_rxq->rx_nvme_ddp_setup_no_stag);
13016 counter_u64_zero(
13017 ofld_rxq->rx_nvme_ddp_setup_error);
13018 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus);
13019 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets);
13020 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus);
13021 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets);
13022 counter_u64_zero(
13023 ofld_rxq->rx_nvme_invalid_headers);
13024 counter_u64_zero(
13025 ofld_rxq->rx_nvme_header_digest_errors);
13026 counter_u64_zero(
13027 ofld_rxq->rx_nvme_data_digest_errors);
13028 ofld_rxq->rx_aio_ddp_jobs = 0;
13029 ofld_rxq->rx_aio_ddp_octets = 0;
13030 ofld_rxq->rx_toe_tls_records = 0;
13031 ofld_rxq->rx_toe_tls_octets = 0;
13032 ofld_rxq->rx_toe_ddp_octets = 0;
13033 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
13034 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
13035 counter_u64_zero(ofld_rxq->ddp_buffer_free);
13036 }
13037 #endif
13038
13039 if (IS_MAIN_VI(vi)) {
13040 wrq = &sc->sge.ctrlq[pi->port_id];
13041 wrq->tx_wrs_direct = 0;
13042 wrq->tx_wrs_copied = 0;
13043 }
13044 }
13045 }
13046
13047 return (0);
13048 }
13049
13050 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13051 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13052 {
13053 #ifdef INET6
13054 struct in6_addr in6;
13055
13056 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13057 if (t4_get_clip_entry(sc, &in6, true) != NULL)
13058 return (0);
13059 else
13060 return (EIO);
13061 #else
13062 return (ENOTSUP);
13063 #endif
13064 }
13065
13066 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13067 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13068 {
13069 #ifdef INET6
13070 struct in6_addr in6;
13071
13072 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13073 return (t4_release_clip_addr(sc, &in6));
13074 #else
13075 return (ENOTSUP);
13076 #endif
13077 }
13078
13079 int
t4_os_find_pci_capability(struct adapter * sc,int cap)13080 t4_os_find_pci_capability(struct adapter *sc, int cap)
13081 {
13082 int i;
13083
13084 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
13085 }
13086
13087 void
t4_os_portmod_changed(struct port_info * pi)13088 t4_os_portmod_changed(struct port_info *pi)
13089 {
13090 struct adapter *sc = pi->adapter;
13091 struct vi_info *vi;
13092 if_t ifp;
13093 static const char *mod_str[] = {
13094 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
13095 "LR_SIMPLEX", "DR"
13096 };
13097
13098 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
13099 ("%s: port_type %u", __func__, pi->port_type));
13100
13101 vi = &pi->vi[0];
13102 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
13103 PORT_LOCK(pi);
13104 build_medialist(pi);
13105 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
13106 fixup_link_config(pi);
13107 apply_link_config(pi);
13108 }
13109 PORT_UNLOCK(pi);
13110 end_synchronized_op(sc, LOCK_HELD);
13111 }
13112
13113 ifp = vi->ifp;
13114 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
13115 if_printf(ifp, "transceiver unplugged.\n");
13116 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
13117 if_printf(ifp, "unknown transceiver inserted.\n");
13118 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
13119 if_printf(ifp, "unsupported transceiver inserted.\n");
13120 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
13121 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
13122 port_top_speed(pi), mod_str[pi->mod_type]);
13123 } else {
13124 if_printf(ifp, "transceiver (type %d) inserted.\n",
13125 pi->mod_type);
13126 }
13127 }
13128
13129 void
t4_os_link_changed(struct port_info * pi)13130 t4_os_link_changed(struct port_info *pi)
13131 {
13132 struct vi_info *vi;
13133 if_t ifp;
13134 struct link_config *lc = &pi->link_cfg;
13135 struct adapter *sc = pi->adapter;
13136 int v;
13137
13138 PORT_LOCK_ASSERT_OWNED(pi);
13139
13140 if (is_t6(sc)) {
13141 if (lc->link_ok) {
13142 if (lc->speed > 25000 ||
13143 (lc->speed == 25000 && lc->fec == FEC_RS))
13144 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS;
13145 else
13146 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS;
13147 pi->fcs_base = t4_read_reg64(sc,
13148 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
13149 pi->stats.rx_fcs_err = 0;
13150 } else {
13151 pi->fcs_reg = -1;
13152 }
13153 } else {
13154 MPASS(pi->fcs_reg != -1);
13155 MPASS(pi->fcs_base == 0);
13156 }
13157
13158 for_each_vi(pi, v, vi) {
13159 ifp = vi->ifp;
13160 if (ifp == NULL || IS_DETACHING(vi))
13161 continue;
13162
13163 if (lc->link_ok) {
13164 if_setbaudrate(ifp, IF_Mbps(lc->speed));
13165 if_link_state_change(ifp, LINK_STATE_UP);
13166 } else {
13167 if_link_state_change(ifp, LINK_STATE_DOWN);
13168 }
13169 }
13170 }
13171
13172 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)13173 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
13174 {
13175 struct adapter *sc;
13176
13177 sx_slock(&t4_list_lock);
13178 SLIST_FOREACH(sc, &t4_list, link) {
13179 /*
13180 * func should not make any assumptions about what state sc is
13181 * in - the only guarantee is that sc->sc_lock is a valid lock.
13182 */
13183 func(sc, arg);
13184 }
13185 sx_sunlock(&t4_list_lock);
13186 }
13187
13188 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)13189 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
13190 struct thread *td)
13191 {
13192 int rc;
13193 struct adapter *sc = dev->si_drv1;
13194
13195 rc = priv_check(td, PRIV_DRIVER);
13196 if (rc != 0)
13197 return (rc);
13198
13199 switch (cmd) {
13200 case CHELSIO_T4_GETREG: {
13201 struct t4_reg *edata = (struct t4_reg *)data;
13202
13203 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13204 return (EFAULT);
13205
13206 mtx_lock(&sc->reg_lock);
13207 if (hw_off_limits(sc))
13208 rc = ENXIO;
13209 else if (edata->size == 4)
13210 edata->val = t4_read_reg(sc, edata->addr);
13211 else if (edata->size == 8)
13212 edata->val = t4_read_reg64(sc, edata->addr);
13213 else
13214 rc = EINVAL;
13215 mtx_unlock(&sc->reg_lock);
13216
13217 break;
13218 }
13219 case CHELSIO_T4_SETREG: {
13220 struct t4_reg *edata = (struct t4_reg *)data;
13221
13222 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13223 return (EFAULT);
13224
13225 mtx_lock(&sc->reg_lock);
13226 if (hw_off_limits(sc))
13227 rc = ENXIO;
13228 else if (edata->size == 4) {
13229 if (edata->val & 0xffffffff00000000)
13230 rc = EINVAL;
13231 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
13232 } else if (edata->size == 8)
13233 t4_write_reg64(sc, edata->addr, edata->val);
13234 else
13235 rc = EINVAL;
13236 mtx_unlock(&sc->reg_lock);
13237
13238 break;
13239 }
13240 case CHELSIO_T4_REGDUMP: {
13241 struct t4_regdump *regs = (struct t4_regdump *)data;
13242 int reglen = t4_get_regs_len(sc);
13243 uint8_t *buf;
13244
13245 if (regs->len < reglen) {
13246 regs->len = reglen; /* hint to the caller */
13247 return (ENOBUFS);
13248 }
13249
13250 regs->len = reglen;
13251 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
13252 mtx_lock(&sc->reg_lock);
13253 if (hw_off_limits(sc))
13254 rc = ENXIO;
13255 else
13256 get_regs(sc, regs, buf);
13257 mtx_unlock(&sc->reg_lock);
13258 if (rc == 0)
13259 rc = copyout(buf, regs->data, reglen);
13260 free(buf, M_CXGBE);
13261 break;
13262 }
13263 case CHELSIO_T4_GET_FILTER_MODE:
13264 rc = get_filter_mode(sc, (uint32_t *)data);
13265 break;
13266 case CHELSIO_T4_SET_FILTER_MODE:
13267 rc = set_filter_mode(sc, *(uint32_t *)data);
13268 break;
13269 case CHELSIO_T4_SET_FILTER_MASK:
13270 rc = set_filter_mask(sc, *(uint32_t *)data);
13271 break;
13272 case CHELSIO_T4_GET_FILTER:
13273 rc = get_filter(sc, (struct t4_filter *)data);
13274 break;
13275 case CHELSIO_T4_SET_FILTER:
13276 rc = set_filter(sc, (struct t4_filter *)data);
13277 break;
13278 case CHELSIO_T4_DEL_FILTER:
13279 rc = del_filter(sc, (struct t4_filter *)data);
13280 break;
13281 case CHELSIO_T4_GET_SGE_CONTEXT: {
13282 struct t4_sge_context *ctxt = (struct t4_sge_context *)data;
13283
13284 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13285 sizeof(ctxt->data), &ctxt->data[0]);
13286 break;
13287 }
13288 case CHELSIO_T4_LOAD_FW:
13289 rc = load_fw(sc, (struct t4_data *)data);
13290 break;
13291 case CHELSIO_T4_GET_MEM:
13292 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
13293 break;
13294 case CHELSIO_T4_GET_I2C:
13295 rc = read_i2c(sc, (struct t4_i2c_data *)data);
13296 break;
13297 case CHELSIO_T4_CLEAR_STATS:
13298 rc = clear_stats(sc, *(uint32_t *)data);
13299 break;
13300 case CHELSIO_T4_SCHED_CLASS:
13301 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
13302 break;
13303 case CHELSIO_T4_SCHED_QUEUE:
13304 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
13305 break;
13306 case CHELSIO_T4_GET_TRACER:
13307 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
13308 break;
13309 case CHELSIO_T4_SET_TRACER:
13310 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
13311 break;
13312 case CHELSIO_T4_LOAD_CFG:
13313 rc = load_cfg(sc, (struct t4_data *)data);
13314 break;
13315 case CHELSIO_T4_LOAD_BOOT:
13316 rc = load_boot(sc, (struct t4_bootrom *)data);
13317 break;
13318 case CHELSIO_T4_LOAD_BOOTCFG:
13319 rc = load_bootcfg(sc, (struct t4_data *)data);
13320 break;
13321 case CHELSIO_T4_CUDBG_DUMP:
13322 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
13323 break;
13324 case CHELSIO_T4_SET_OFLD_POLICY:
13325 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
13326 break;
13327 case CHELSIO_T4_HOLD_CLIP_ADDR:
13328 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
13329 break;
13330 case CHELSIO_T4_RELEASE_CLIP_ADDR:
13331 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
13332 break;
13333 case CHELSIO_T4_GET_SGE_CTXT: {
13334 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data;
13335
13336 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13337 sizeof(ctxt->data), &ctxt->data[0]);
13338 break;
13339 }
13340 default:
13341 rc = ENOTTY;
13342 }
13343
13344 return (rc);
13345 }
13346
13347 #ifdef TCP_OFFLOAD
13348 int
toe_capability(struct vi_info * vi,bool enable)13349 toe_capability(struct vi_info *vi, bool enable)
13350 {
13351 int rc;
13352 struct port_info *pi = vi->pi;
13353 struct adapter *sc = pi->adapter;
13354
13355 ASSERT_SYNCHRONIZED_OP(sc);
13356
13357 if (!is_offload(sc))
13358 return (ENODEV);
13359 if (!hw_all_ok(sc))
13360 return (ENXIO);
13361
13362 if (enable) {
13363 #ifdef KERN_TLS
13364 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
13365 int i, j, n;
13366 struct port_info *p;
13367 struct vi_info *v;
13368
13369 /*
13370 * Reconfigure hardware for TOE if TXTLS is not enabled
13371 * on any ifnet.
13372 */
13373 n = 0;
13374 for_each_port(sc, i) {
13375 p = sc->port[i];
13376 for_each_vi(p, j, v) {
13377 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
13378 CH_WARN(sc,
13379 "%s has NIC TLS enabled.\n",
13380 device_get_nameunit(v->dev));
13381 n++;
13382 }
13383 }
13384 }
13385 if (n > 0) {
13386 CH_WARN(sc, "Disable NIC TLS on all interfaces "
13387 "associated with this adapter before "
13388 "trying to enable TOE.\n");
13389 return (EAGAIN);
13390 }
13391 rc = t6_config_kern_tls(sc, false);
13392 if (rc)
13393 return (rc);
13394 }
13395 #endif
13396 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
13397 /* TOE is already enabled. */
13398 return (0);
13399 }
13400
13401 /*
13402 * We need the port's queues around so that we're able to send
13403 * and receive CPLs to/from the TOE even if the ifnet for this
13404 * port has never been UP'd administratively.
13405 */
13406 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
13407 return (rc);
13408 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
13409 ((rc = vi_init(&pi->vi[0])) != 0))
13410 return (rc);
13411
13412 if (isset(&sc->offload_map, pi->port_id)) {
13413 /* TOE is enabled on another VI of this port. */
13414 MPASS(pi->uld_vis > 0);
13415 pi->uld_vis++;
13416 return (0);
13417 }
13418
13419 if (!uld_active(sc, ULD_TOM)) {
13420 rc = t4_activate_uld(sc, ULD_TOM);
13421 if (rc == EAGAIN) {
13422 log(LOG_WARNING,
13423 "You must kldload t4_tom.ko before trying "
13424 "to enable TOE on a cxgbe interface.\n");
13425 }
13426 if (rc != 0)
13427 return (rc);
13428 KASSERT(sc->tom_softc != NULL,
13429 ("%s: TOM activated but softc NULL", __func__));
13430 KASSERT(uld_active(sc, ULD_TOM),
13431 ("%s: TOM activated but flag not set", __func__));
13432 }
13433
13434 /*
13435 * Activate iWARP, iSCSI, and NVMe too, if the modules
13436 * are loaded.
13437 */
13438 if (!uld_active(sc, ULD_IWARP))
13439 (void) t4_activate_uld(sc, ULD_IWARP);
13440 if (!uld_active(sc, ULD_ISCSI))
13441 (void) t4_activate_uld(sc, ULD_ISCSI);
13442 if (!uld_active(sc, ULD_NVME))
13443 (void) t4_activate_uld(sc, ULD_NVME);
13444
13445 if (pi->uld_vis++ == 0)
13446 setbit(&sc->offload_map, pi->port_id);
13447 } else {
13448 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
13449 /* TOE is already disabled. */
13450 return (0);
13451 }
13452 MPASS(isset(&sc->offload_map, pi->port_id));
13453 MPASS(pi->uld_vis > 0);
13454 if (--pi->uld_vis == 0)
13455 clrbit(&sc->offload_map, pi->port_id);
13456 }
13457
13458 return (0);
13459 }
13460
13461 /*
13462 * Add an upper layer driver to the global list.
13463 */
13464 int
t4_register_uld(struct uld_info * ui,int id)13465 t4_register_uld(struct uld_info *ui, int id)
13466 {
13467 int rc;
13468
13469 if (id < 0 || id > ULD_MAX)
13470 return (EINVAL);
13471 sx_xlock(&t4_uld_list_lock);
13472 if (t4_uld_list[id] != NULL)
13473 rc = EEXIST;
13474 else {
13475 t4_uld_list[id] = ui;
13476 rc = 0;
13477 }
13478 sx_xunlock(&t4_uld_list_lock);
13479 return (rc);
13480 }
13481
13482 int
t4_unregister_uld(struct uld_info * ui,int id)13483 t4_unregister_uld(struct uld_info *ui, int id)
13484 {
13485
13486 if (id < 0 || id > ULD_MAX)
13487 return (EINVAL);
13488 sx_xlock(&t4_uld_list_lock);
13489 MPASS(t4_uld_list[id] == ui);
13490 t4_uld_list[id] = NULL;
13491 sx_xunlock(&t4_uld_list_lock);
13492 return (0);
13493 }
13494
13495 int
t4_activate_uld(struct adapter * sc,int id)13496 t4_activate_uld(struct adapter *sc, int id)
13497 {
13498 int rc;
13499
13500 ASSERT_SYNCHRONIZED_OP(sc);
13501
13502 if (id < 0 || id > ULD_MAX)
13503 return (EINVAL);
13504
13505 /* Adapter needs to be initialized before any ULD can be activated. */
13506 if (!(sc->flags & FULL_INIT_DONE)) {
13507 rc = adapter_init(sc);
13508 if (rc != 0)
13509 return (rc);
13510 }
13511
13512 sx_slock(&t4_uld_list_lock);
13513 if (t4_uld_list[id] == NULL)
13514 rc = EAGAIN; /* load the KLD with this ULD and try again. */
13515 else {
13516 rc = t4_uld_list[id]->uld_activate(sc);
13517 if (rc == 0)
13518 setbit(&sc->active_ulds, id);
13519 }
13520 sx_sunlock(&t4_uld_list_lock);
13521
13522 return (rc);
13523 }
13524
13525 int
t4_deactivate_uld(struct adapter * sc,int id)13526 t4_deactivate_uld(struct adapter *sc, int id)
13527 {
13528 int rc;
13529
13530 ASSERT_SYNCHRONIZED_OP(sc);
13531
13532 if (id < 0 || id > ULD_MAX)
13533 return (EINVAL);
13534
13535 sx_slock(&t4_uld_list_lock);
13536 if (t4_uld_list[id] == NULL)
13537 rc = ENXIO;
13538 else {
13539 rc = t4_uld_list[id]->uld_deactivate(sc);
13540 if (rc == 0)
13541 clrbit(&sc->active_ulds, id);
13542 }
13543 sx_sunlock(&t4_uld_list_lock);
13544
13545 return (rc);
13546 }
13547
13548 static int
deactivate_all_uld(struct adapter * sc)13549 deactivate_all_uld(struct adapter *sc)
13550 {
13551 int i, rc;
13552
13553 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
13554 if (rc != 0)
13555 return (ENXIO);
13556 sx_slock(&t4_uld_list_lock);
13557 for (i = 0; i <= ULD_MAX; i++) {
13558 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
13559 continue;
13560 rc = t4_uld_list[i]->uld_deactivate(sc);
13561 if (rc != 0)
13562 break;
13563 clrbit(&sc->active_ulds, i);
13564 }
13565 sx_sunlock(&t4_uld_list_lock);
13566 end_synchronized_op(sc, 0);
13567
13568 return (rc);
13569 }
13570
13571 static void
stop_all_uld(struct adapter * sc)13572 stop_all_uld(struct adapter *sc)
13573 {
13574 int i;
13575
13576 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
13577 return;
13578 sx_slock(&t4_uld_list_lock);
13579 for (i = 0; i <= ULD_MAX; i++) {
13580 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13581 t4_uld_list[i]->uld_stop == NULL)
13582 continue;
13583 (void) t4_uld_list[i]->uld_stop(sc);
13584 }
13585 sx_sunlock(&t4_uld_list_lock);
13586 end_synchronized_op(sc, 0);
13587 }
13588
13589 static void
restart_all_uld(struct adapter * sc)13590 restart_all_uld(struct adapter *sc)
13591 {
13592 int i;
13593
13594 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
13595 return;
13596 sx_slock(&t4_uld_list_lock);
13597 for (i = 0; i <= ULD_MAX; i++) {
13598 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13599 t4_uld_list[i]->uld_restart == NULL)
13600 continue;
13601 (void) t4_uld_list[i]->uld_restart(sc);
13602 }
13603 sx_sunlock(&t4_uld_list_lock);
13604 end_synchronized_op(sc, 0);
13605 }
13606
13607 int
uld_active(struct adapter * sc,int id)13608 uld_active(struct adapter *sc, int id)
13609 {
13610
13611 MPASS(id >= 0 && id <= ULD_MAX);
13612
13613 return (isset(&sc->active_ulds, id));
13614 }
13615 #endif
13616
13617 #ifdef KERN_TLS
13618 static int
ktls_capability(struct adapter * sc,bool enable)13619 ktls_capability(struct adapter *sc, bool enable)
13620 {
13621 ASSERT_SYNCHRONIZED_OP(sc);
13622
13623 if (!is_ktls(sc))
13624 return (ENODEV);
13625 if (!is_t6(sc))
13626 return (0);
13627 if (!hw_all_ok(sc))
13628 return (ENXIO);
13629
13630 if (enable) {
13631 if (sc->flags & KERN_TLS_ON)
13632 return (0); /* already on */
13633 if (sc->offload_map != 0) {
13634 CH_WARN(sc,
13635 "Disable TOE on all interfaces associated with "
13636 "this adapter before trying to enable NIC TLS.\n");
13637 return (EAGAIN);
13638 }
13639 return (t6_config_kern_tls(sc, true));
13640 } else {
13641 /*
13642 * Nothing to do for disable. If TOE is enabled sometime later
13643 * then toe_capability will reconfigure the hardware.
13644 */
13645 return (0);
13646 }
13647 }
13648 #endif
13649
13650 /*
13651 * t = ptr to tunable.
13652 * nc = number of CPUs.
13653 * c = compiled in default for that tunable.
13654 */
13655 static void
calculate_nqueues(int * t,int nc,const int c)13656 calculate_nqueues(int *t, int nc, const int c)
13657 {
13658 int nq;
13659
13660 if (*t > 0)
13661 return;
13662 nq = *t < 0 ? -*t : c;
13663 *t = min(nc, nq);
13664 }
13665
13666 /*
13667 * Come up with reasonable defaults for some of the tunables, provided they're
13668 * not set by the user (in which case we'll use the values as is).
13669 */
13670 static void
tweak_tunables(void)13671 tweak_tunables(void)
13672 {
13673 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
13674
13675 if (t4_ntxq < 1) {
13676 #ifdef RSS
13677 t4_ntxq = rss_getnumbuckets();
13678 #else
13679 calculate_nqueues(&t4_ntxq, nc, NTXQ);
13680 #endif
13681 }
13682
13683 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
13684
13685 if (t4_nrxq < 1) {
13686 #ifdef RSS
13687 t4_nrxq = rss_getnumbuckets();
13688 #else
13689 calculate_nqueues(&t4_nrxq, nc, NRXQ);
13690 #endif
13691 }
13692
13693 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
13694
13695 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13696 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
13697 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
13698 #endif
13699 #ifdef TCP_OFFLOAD
13700 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
13701 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
13702 #endif
13703
13704 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
13705 if (t4_toecaps_allowed == -1)
13706 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
13707 #else
13708 if (t4_toecaps_allowed == -1)
13709 t4_toecaps_allowed = 0;
13710 #endif
13711
13712 #ifdef TCP_OFFLOAD
13713 if (t4_rdmacaps_allowed == -1) {
13714 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
13715 FW_CAPS_CONFIG_RDMA_RDMAC;
13716 }
13717
13718 if (t4_iscsicaps_allowed == -1) {
13719 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
13720 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
13721 FW_CAPS_CONFIG_ISCSI_T10DIF;
13722 }
13723
13724 if (t4_nvmecaps_allowed == -1)
13725 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP;
13726
13727 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
13728 t4_tmr_idx_ofld = TMR_IDX_OFLD;
13729
13730 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
13731 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
13732 #else
13733 if (t4_rdmacaps_allowed == -1)
13734 t4_rdmacaps_allowed = 0;
13735
13736 if (t4_iscsicaps_allowed == -1)
13737 t4_iscsicaps_allowed = 0;
13738
13739 if (t4_nvmecaps_allowed == -1)
13740 t4_nvmecaps_allowed = 0;
13741 #endif
13742
13743 #ifdef DEV_NETMAP
13744 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
13745 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
13746 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
13747 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
13748 #endif
13749
13750 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
13751 t4_tmr_idx = TMR_IDX;
13752
13753 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
13754 t4_pktc_idx = PKTC_IDX;
13755
13756 if (t4_qsize_txq < 128)
13757 t4_qsize_txq = 128;
13758
13759 if (t4_qsize_rxq < 128)
13760 t4_qsize_rxq = 128;
13761 while (t4_qsize_rxq & 7)
13762 t4_qsize_rxq++;
13763
13764 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
13765
13766 /*
13767 * Number of VIs to create per-port. The first VI is the "main" regular
13768 * VI for the port. The rest are additional virtual interfaces on the
13769 * same physical port. Note that the main VI does not have native
13770 * netmap support but the extra VIs do.
13771 *
13772 * Limit the number of VIs per port to the number of available
13773 * MAC addresses per port.
13774 */
13775 if (t4_num_vis < 1)
13776 t4_num_vis = 1;
13777 if (t4_num_vis > nitems(vi_mac_funcs)) {
13778 t4_num_vis = nitems(vi_mac_funcs);
13779 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
13780 }
13781
13782 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
13783 pcie_relaxed_ordering = 1;
13784 #if defined(__i386__) || defined(__amd64__)
13785 if (cpu_vendor_id == CPU_VENDOR_INTEL)
13786 pcie_relaxed_ordering = 0;
13787 #endif
13788 }
13789 }
13790
13791 #ifdef DDB
13792 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)13793 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
13794 {
13795 uint32_t base, j, off, pf, reg, save, win_pos;
13796
13797 reg = chip_id(sc) > CHELSIO_T6 ?
13798 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) :
13799 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
13800 save = t4_read_reg(sc, reg);
13801 base = sc->memwin[2].mw_base;
13802
13803 if (is_t4(sc)) {
13804 pf = 0;
13805 win_pos = addr & ~0xf; /* start must be 16B aligned */
13806 } else {
13807 pf = V_PFNUM(sc->pf);
13808 win_pos = addr & ~0x7f; /* start must be 128B aligned */
13809 }
13810 off = addr - win_pos;
13811 if (chip_id(sc) > CHELSIO_T6)
13812 win_pos >>= X_T7_MEMOFST_SHIFT;
13813 t4_write_reg(sc, reg, win_pos | pf);
13814 t4_read_reg(sc, reg);
13815
13816 while (len > 0 && !db_pager_quit) {
13817 uint32_t buf[8];
13818 for (j = 0; j < 8; j++, off += 4)
13819 buf[j] = htonl(t4_read_reg(sc, base + off));
13820
13821 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
13822 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
13823 buf[7]);
13824 if (len <= sizeof(buf))
13825 len = 0;
13826 else
13827 len -= sizeof(buf);
13828 }
13829
13830 t4_write_reg(sc, reg, save);
13831 t4_read_reg(sc, reg);
13832 }
13833
13834 static void
t4_dump_tcb(struct adapter * sc,int tid)13835 t4_dump_tcb(struct adapter *sc, int tid)
13836 {
13837 uint32_t tcb_addr;
13838
13839 /* Dump TCB for the tid */
13840 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
13841 tcb_addr += tid * TCB_SIZE;
13842 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
13843 }
13844
13845 static void
t4_dump_devlog(struct adapter * sc)13846 t4_dump_devlog(struct adapter *sc)
13847 {
13848 struct devlog_params *dparams = &sc->params.devlog;
13849 struct fw_devlog_e e;
13850 int i, first, j, m, nentries, rc;
13851 uint64_t ftstamp = UINT64_MAX;
13852
13853 if (dparams->start == 0) {
13854 db_printf("devlog params not valid\n");
13855 return;
13856 }
13857
13858 nentries = dparams->size / sizeof(struct fw_devlog_e);
13859 m = fwmtype_to_hwmtype(dparams->memtype);
13860
13861 /* Find the first entry. */
13862 first = -1;
13863 for (i = 0; i < nentries && !db_pager_quit; i++) {
13864 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13865 sizeof(e), (void *)&e);
13866 if (rc != 0)
13867 break;
13868
13869 if (e.timestamp == 0)
13870 break;
13871
13872 e.timestamp = be64toh(e.timestamp);
13873 if (e.timestamp < ftstamp) {
13874 ftstamp = e.timestamp;
13875 first = i;
13876 }
13877 }
13878
13879 if (first == -1)
13880 return;
13881
13882 i = first;
13883 do {
13884 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13885 sizeof(e), (void *)&e);
13886 if (rc != 0)
13887 return;
13888
13889 if (e.timestamp == 0)
13890 return;
13891
13892 e.timestamp = be64toh(e.timestamp);
13893 e.seqno = be32toh(e.seqno);
13894 for (j = 0; j < 8; j++)
13895 e.params[j] = be32toh(e.params[j]);
13896
13897 db_printf("%10d %15ju %8s %8s ",
13898 e.seqno, e.timestamp,
13899 (e.level < nitems(devlog_level_strings) ?
13900 devlog_level_strings[e.level] : "UNKNOWN"),
13901 (e.facility < nitems(devlog_facility_strings) ?
13902 devlog_facility_strings[e.facility] : "UNKNOWN"));
13903 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13904 e.params[3], e.params[4], e.params[5], e.params[6],
13905 e.params[7]);
13906
13907 if (++i == nentries)
13908 i = 0;
13909 } while (i != first && !db_pager_quit);
13910 }
13911
13912 static DB_DEFINE_TABLE(show, t4, show_t4);
13913
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13914 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13915 {
13916 device_t dev;
13917 int t;
13918 bool valid;
13919
13920 valid = false;
13921 t = db_read_token();
13922 if (t == tIDENT) {
13923 dev = device_lookup_by_name(db_tok_string);
13924 valid = true;
13925 }
13926 db_skip_to_eol();
13927 if (!valid) {
13928 db_printf("usage: show t4 devlog <nexus>\n");
13929 return;
13930 }
13931
13932 if (dev == NULL) {
13933 db_printf("device not found\n");
13934 return;
13935 }
13936
13937 t4_dump_devlog(device_get_softc(dev));
13938 }
13939
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13940 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
13941 {
13942 device_t dev;
13943 int radix, tid, t;
13944 bool valid;
13945
13946 valid = false;
13947 radix = db_radix;
13948 db_radix = 10;
13949 t = db_read_token();
13950 if (t == tIDENT) {
13951 dev = device_lookup_by_name(db_tok_string);
13952 t = db_read_token();
13953 if (t == tNUMBER) {
13954 tid = db_tok_number;
13955 valid = true;
13956 }
13957 }
13958 db_radix = radix;
13959 db_skip_to_eol();
13960 if (!valid) {
13961 db_printf("usage: show t4 tcb <nexus> <tid>\n");
13962 return;
13963 }
13964
13965 if (dev == NULL) {
13966 db_printf("device not found\n");
13967 return;
13968 }
13969 if (tid < 0) {
13970 db_printf("invalid tid\n");
13971 return;
13972 }
13973
13974 t4_dump_tcb(device_get_softc(dev), tid);
13975 }
13976
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13977 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13978 {
13979 device_t dev;
13980 int radix, t;
13981 bool valid;
13982
13983 valid = false;
13984 radix = db_radix;
13985 db_radix = 10;
13986 t = db_read_token();
13987 if (t == tIDENT) {
13988 dev = device_lookup_by_name(db_tok_string);
13989 t = db_read_token();
13990 if (t == tNUMBER) {
13991 addr = db_tok_number;
13992 t = db_read_token();
13993 if (t == tNUMBER) {
13994 count = db_tok_number;
13995 valid = true;
13996 }
13997 }
13998 }
13999 db_radix = radix;
14000 db_skip_to_eol();
14001 if (!valid) {
14002 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
14003 return;
14004 }
14005
14006 if (dev == NULL) {
14007 db_printf("device not found\n");
14008 return;
14009 }
14010 if (addr < 0) {
14011 db_printf("invalid address\n");
14012 return;
14013 }
14014 if (count <= 0) {
14015 db_printf("invalid length\n");
14016 return;
14017 }
14018
14019 t4_dump_mem(device_get_softc(dev), addr, count);
14020 }
14021 #endif
14022
14023 static eventhandler_tag vxlan_start_evtag;
14024 static eventhandler_tag vxlan_stop_evtag;
14025
14026 struct vxlan_evargs {
14027 if_t ifp;
14028 uint16_t port;
14029 };
14030
14031 static void
enable_vxlan_rx(struct adapter * sc)14032 enable_vxlan_rx(struct adapter *sc)
14033 {
14034 int i, rc;
14035 struct port_info *pi;
14036 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
14037
14038 ASSERT_SYNCHRONIZED_OP(sc);
14039
14040 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
14041 F_VXLAN_EN);
14042 for_each_port(sc, i) {
14043 pi = sc->port[i];
14044 if (pi->vxlan_tcam_entry == true)
14045 continue;
14046 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
14047 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
14048 true);
14049 if (rc < 0) {
14050 rc = -rc;
14051 CH_ERR(&pi->vi[0],
14052 "failed to add VXLAN TCAM entry: %d.\n", rc);
14053 } else {
14054 MPASS(rc == sc->rawf_base + pi->port_id);
14055 pi->vxlan_tcam_entry = true;
14056 }
14057 }
14058 }
14059
14060 static void
t4_vxlan_start(struct adapter * sc,void * arg)14061 t4_vxlan_start(struct adapter *sc, void *arg)
14062 {
14063 struct vxlan_evargs *v = arg;
14064
14065 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14066 return;
14067 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
14068 return;
14069
14070 if (sc->vxlan_refcount == 0) {
14071 sc->vxlan_port = v->port;
14072 sc->vxlan_refcount = 1;
14073 if (!hw_off_limits(sc))
14074 enable_vxlan_rx(sc);
14075 } else if (sc->vxlan_port == v->port) {
14076 sc->vxlan_refcount++;
14077 } else {
14078 CH_ERR(sc, "VXLAN already configured on port %d; "
14079 "ignoring attempt to configure it on port %d\n",
14080 sc->vxlan_port, v->port);
14081 }
14082 end_synchronized_op(sc, 0);
14083 }
14084
14085 static void
t4_vxlan_stop(struct adapter * sc,void * arg)14086 t4_vxlan_stop(struct adapter *sc, void *arg)
14087 {
14088 struct vxlan_evargs *v = arg;
14089
14090 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14091 return;
14092 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
14093 return;
14094
14095 /*
14096 * VXLANs may have been configured before the driver was loaded so we
14097 * may see more stops than starts. This is not handled cleanly but at
14098 * least we keep the refcount sane.
14099 */
14100 if (sc->vxlan_port != v->port)
14101 goto done;
14102 if (sc->vxlan_refcount == 0) {
14103 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
14104 "ignoring attempt to stop it again.\n", sc->vxlan_port);
14105 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
14106 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
14107 done:
14108 end_synchronized_op(sc, 0);
14109 }
14110
14111 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14112 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
14113 sa_family_t family, u_int port)
14114 {
14115 struct vxlan_evargs v;
14116
14117 MPASS(family == AF_INET || family == AF_INET6);
14118 v.ifp = ifp;
14119 v.port = port;
14120
14121 t4_iterate(t4_vxlan_start, &v);
14122 }
14123
14124 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14125 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
14126 u_int port)
14127 {
14128 struct vxlan_evargs v;
14129
14130 MPASS(family == AF_INET || family == AF_INET6);
14131 v.ifp = ifp;
14132 v.port = port;
14133
14134 t4_iterate(t4_vxlan_stop, &v);
14135 }
14136
14137
14138 static struct sx mlu; /* mod load unload */
14139 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
14140
14141 static int
mod_event(module_t mod,int cmd,void * arg)14142 mod_event(module_t mod, int cmd, void *arg)
14143 {
14144 int rc = 0;
14145 static int loaded = 0;
14146
14147 switch (cmd) {
14148 case MOD_LOAD:
14149 sx_xlock(&mlu);
14150 if (loaded++ == 0) {
14151 t4_sge_modload();
14152 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14153 t4_filter_rpl, CPL_COOKIE_FILTER);
14154 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
14155 do_l2t_write_rpl, CPL_COOKIE_FILTER);
14156 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
14157 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
14158 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14159 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
14160 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
14161 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
14162 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
14163 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
14164 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
14165 do_smt_write_rpl);
14166 sx_init(&t4_list_lock, "T4/T5 adapters");
14167 SLIST_INIT(&t4_list);
14168 callout_init(&fatal_callout, 1);
14169 #ifdef TCP_OFFLOAD
14170 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
14171 #endif
14172 #ifdef INET6
14173 t4_clip_modload();
14174 #endif
14175 #ifdef KERN_TLS
14176 t6_ktls_modload();
14177 t7_ktls_modload();
14178 #endif
14179 t4_tracer_modload();
14180 tweak_tunables();
14181 vxlan_start_evtag =
14182 EVENTHANDLER_REGISTER(vxlan_start,
14183 t4_vxlan_start_handler, NULL,
14184 EVENTHANDLER_PRI_ANY);
14185 vxlan_stop_evtag =
14186 EVENTHANDLER_REGISTER(vxlan_stop,
14187 t4_vxlan_stop_handler, NULL,
14188 EVENTHANDLER_PRI_ANY);
14189 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
14190 taskqueue_thread_enqueue, &reset_tq);
14191 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
14192 "t4_rst_thr");
14193 }
14194 sx_xunlock(&mlu);
14195 break;
14196
14197 case MOD_UNLOAD:
14198 sx_xlock(&mlu);
14199 if (--loaded == 0) {
14200 #ifdef TCP_OFFLOAD
14201 int i;
14202 #endif
14203 int tries;
14204
14205 taskqueue_free(reset_tq);
14206
14207 tries = 0;
14208 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
14209 uprintf("%ju clusters with custom free routine "
14210 "still is use.\n", t4_sge_extfree_refs());
14211 pause("t4unload", 2 * hz);
14212 }
14213
14214 sx_slock(&t4_list_lock);
14215 if (!SLIST_EMPTY(&t4_list)) {
14216 rc = EBUSY;
14217 sx_sunlock(&t4_list_lock);
14218 goto done_unload;
14219 }
14220 #ifdef TCP_OFFLOAD
14221 sx_slock(&t4_uld_list_lock);
14222 for (i = 0; i <= ULD_MAX; i++) {
14223 if (t4_uld_list[i] != NULL) {
14224 rc = EBUSY;
14225 sx_sunlock(&t4_uld_list_lock);
14226 sx_sunlock(&t4_list_lock);
14227 goto done_unload;
14228 }
14229 }
14230 sx_sunlock(&t4_uld_list_lock);
14231 #endif
14232 sx_sunlock(&t4_list_lock);
14233
14234 if (t4_sge_extfree_refs() == 0) {
14235 EVENTHANDLER_DEREGISTER(vxlan_start,
14236 vxlan_start_evtag);
14237 EVENTHANDLER_DEREGISTER(vxlan_stop,
14238 vxlan_stop_evtag);
14239 t4_tracer_modunload();
14240 #ifdef KERN_TLS
14241 t7_ktls_modunload();
14242 t6_ktls_modunload();
14243 #endif
14244 #ifdef INET6
14245 t4_clip_modunload();
14246 #endif
14247 #ifdef TCP_OFFLOAD
14248 sx_destroy(&t4_uld_list_lock);
14249 #endif
14250 sx_destroy(&t4_list_lock);
14251 t4_sge_modunload();
14252 loaded = 0;
14253 } else {
14254 rc = EBUSY;
14255 loaded++; /* undo earlier decrement */
14256 }
14257 }
14258 done_unload:
14259 sx_xunlock(&mlu);
14260 break;
14261 }
14262
14263 return (rc);
14264 }
14265
14266 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
14267 MODULE_VERSION(t4nex, 1);
14268 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
14269 #ifdef DEV_NETMAP
14270 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
14271 #endif /* DEV_NETMAP */
14272
14273 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
14274 MODULE_VERSION(t5nex, 1);
14275 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
14276 #ifdef DEV_NETMAP
14277 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
14278 #endif /* DEV_NETMAP */
14279
14280 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
14281 MODULE_VERSION(t6nex, 1);
14282 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
14283 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
14284 #ifdef DEV_NETMAP
14285 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
14286 #endif /* DEV_NETMAP */
14287
14288 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0);
14289 MODULE_VERSION(chnex, 1);
14290 MODULE_DEPEND(chnex, crypto, 1, 1, 1);
14291 MODULE_DEPEND(chnex, firmware, 1, 1, 1);
14292 #ifdef DEV_NETMAP
14293 MODULE_DEPEND(chnex, netmap, 1, 1, 1);
14294 #endif /* DEV_NETMAP */
14295
14296 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
14297 MODULE_VERSION(cxgbe, 1);
14298
14299 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
14300 MODULE_VERSION(cxl, 1);
14301
14302 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
14303 MODULE_VERSION(cc, 1);
14304
14305 DRIVER_MODULE(che, chnex, che_driver, 0, 0);
14306 MODULE_VERSION(che, 1);
14307
14308 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
14309 MODULE_VERSION(vcxgbe, 1);
14310
14311 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
14312 MODULE_VERSION(vcxl, 1);
14313
14314 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
14315 MODULE_VERSION(vcc, 1);
14316
14317 DRIVER_MODULE(vche, che, vche_driver, 0, 0);
14318 MODULE_VERSION(vche, 1);
14319