xref: /freebsd/sys/fs/tmpfs/tmpfs_subr.c (revision 8fa5e0f21fd14bb3f5d977ae9130dae3e197f2ba)
1 /*	$NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 2005 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
11  * 2005 program.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Efficient memory file system supporting functions.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/dirent.h>
42 #include <sys/fnv_hash.h>
43 #include <sys/lock.h>
44 #include <sys/limits.h>
45 #include <sys/mount.h>
46 #include <sys/namei.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/random.h>
50 #include <sys/refcount.h>
51 #include <sys/rwlock.h>
52 #include <sys/smr.h>
53 #include <sys/stat.h>
54 #include <sys/sysctl.h>
55 #include <sys/user.h>
56 #include <sys/vnode.h>
57 #include <sys/vmmeter.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_pager.h>
65 #include <vm/vm_extern.h>
66 #include <vm/swap_pager.h>
67 #include <vm/uma.h>
68 
69 #include <fs/tmpfs/tmpfs.h>
70 #include <fs/tmpfs/tmpfs_fifoops.h>
71 #include <fs/tmpfs/tmpfs_vnops.h>
72 
73 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
74     "tmpfs file system");
75 
76 static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED;
77 static long tmpfs_pages_avail_init;
78 static int tmpfs_mem_percent = TMPFS_MEM_PERCENT;
79 static void tmpfs_set_reserve_from_percent(void);
80 
81 MALLOC_DEFINE(M_TMPFSDIR, "tmpfs dir", "tmpfs dirent structure");
82 static uma_zone_t tmpfs_node_pool;
83 VFS_SMR_DECLARE;
84 
85 int tmpfs_pager_type = -1;
86 
87 static vm_object_t
tmpfs_pager_alloc(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t offset,struct ucred * cred)88 tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
89     vm_ooffset_t offset, struct ucred *cred)
90 {
91 	vm_object_t object;
92 
93 	MPASS(handle == NULL);
94 	MPASS(offset == 0);
95 	object = vm_object_allocate_dyn(tmpfs_pager_type, size,
96 	    OBJ_COLORED | OBJ_SWAP);
97 	if (!swap_pager_init_object(object, NULL, NULL, size, 0)) {
98 		vm_object_deallocate(object);
99 		object = NULL;
100 	}
101 	return (object);
102 }
103 
104 /*
105  * Make sure tmpfs vnodes with writable mappings can be found on the lazy list.
106  *
107  * This allows for periodic mtime updates while only scanning vnodes which are
108  * plausibly dirty, see tmpfs_update_mtime_lazy.
109  */
110 static void
tmpfs_pager_writecount_recalc(vm_object_t object,vm_offset_t old,vm_offset_t new)111 tmpfs_pager_writecount_recalc(vm_object_t object, vm_offset_t old,
112     vm_offset_t new)
113 {
114 	struct vnode *vp;
115 
116 	VM_OBJECT_ASSERT_WLOCKED(object);
117 
118 	vp = VM_TO_TMPFS_VP(object);
119 
120 	/*
121 	 * Forced unmount?
122 	 */
123 	if (vp == NULL || vp->v_object == NULL) {
124 		KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
125 		    ("object %p with OBJ_TMPFS_VREF but without vnode",
126 		    object));
127 		VM_OBJECT_WUNLOCK(object);
128 		return;
129 	}
130 
131 	if (old == 0) {
132 		VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
133 		    ("object without writable mappings has a reference"));
134 		VNPASS(vp->v_usecount > 0, vp);
135 	} else {
136 		VNASSERT((object->flags & OBJ_TMPFS_VREF) != 0, vp,
137 		    ("object with writable mappings does not "
138 		    "have a reference"));
139 	}
140 
141 	if (old == new) {
142 		VM_OBJECT_WUNLOCK(object);
143 		return;
144 	}
145 
146 	if (new == 0) {
147 		vm_object_clear_flag(object, OBJ_TMPFS_VREF);
148 		VM_OBJECT_WUNLOCK(object);
149 		vrele(vp);
150 	} else {
151 		if ((object->flags & OBJ_TMPFS_VREF) == 0) {
152 			vref(vp);
153 			vlazy(vp);
154 			vm_object_set_flag(object, OBJ_TMPFS_VREF);
155 		}
156 		VM_OBJECT_WUNLOCK(object);
157 	}
158 }
159 
160 static void
tmpfs_pager_update_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)161 tmpfs_pager_update_writecount(vm_object_t object, vm_offset_t start,
162     vm_offset_t end)
163 {
164 	vm_offset_t new, old;
165 
166 	VM_OBJECT_WLOCK(object);
167 	KASSERT((object->flags & OBJ_ANON) == 0,
168 	    ("%s: object %p with OBJ_ANON", __func__, object));
169 	old = object->un_pager.swp.writemappings;
170 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
171 	new = object->un_pager.swp.writemappings;
172 	tmpfs_pager_writecount_recalc(object, old, new);
173 	VM_OBJECT_ASSERT_UNLOCKED(object);
174 }
175 
176 static void
tmpfs_pager_release_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)177 tmpfs_pager_release_writecount(vm_object_t object, vm_offset_t start,
178     vm_offset_t end)
179 {
180 	vm_offset_t new, old;
181 
182 	VM_OBJECT_WLOCK(object);
183 	KASSERT((object->flags & OBJ_ANON) == 0,
184 	    ("%s: object %p with OBJ_ANON", __func__, object));
185 	old = object->un_pager.swp.writemappings;
186 	KASSERT(old >= (vm_ooffset_t)end - start,
187 	    ("tmpfs obj %p writecount %jx dec %jx", object, (uintmax_t)old,
188 	    (uintmax_t)((vm_ooffset_t)end - start)));
189 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
190 	new = object->un_pager.swp.writemappings;
191 	tmpfs_pager_writecount_recalc(object, old, new);
192 	VM_OBJECT_ASSERT_UNLOCKED(object);
193 }
194 
195 static void
tmpfs_pager_getvp(vm_object_t object,struct vnode ** vpp,bool * vp_heldp)196 tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
197 {
198 	struct vnode *vp;
199 
200 	/*
201 	 * Tmpfs VREG node, which was reclaimed, has tmpfs_pager_type
202 	 * type.  In this case there is no v_writecount to adjust.
203 	 */
204 	if (vp_heldp != NULL)
205 		VM_OBJECT_RLOCK(object);
206 	else
207 		VM_OBJECT_ASSERT_LOCKED(object);
208 	if ((object->flags & OBJ_TMPFS) != 0) {
209 		vp = VM_TO_TMPFS_VP(object);
210 		if (vp != NULL) {
211 			*vpp = vp;
212 			if (vp_heldp != NULL) {
213 				vhold(vp);
214 				*vp_heldp = true;
215 			}
216 		}
217 	}
218 	if (vp_heldp != NULL)
219 		VM_OBJECT_RUNLOCK(object);
220 }
221 
222 static void
tmpfs_pager_freespace(vm_object_t obj,vm_pindex_t start,vm_size_t size)223 tmpfs_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
224 {
225 	struct tmpfs_node *node;
226 	struct tmpfs_mount *tm;
227 	vm_size_t c;
228 
229 	swap_pager_freespace(obj, start, size, &c);
230 	if ((obj->flags & OBJ_TMPFS) == 0 || c == 0)
231 		return;
232 
233 	node = obj->un_pager.swp.swp_priv;
234 	MPASS(node->tn_type == VREG);
235 	tm = node->tn_reg.tn_tmp;
236 
237 	KASSERT(tm->tm_pages_used >= c,
238 	    ("tmpfs tm %p pages %jd free %jd", tm,
239 	    (uintmax_t)tm->tm_pages_used, (uintmax_t)c));
240 	atomic_add_long(&tm->tm_pages_used, -c);
241 	KASSERT(node->tn_reg.tn_pages >= c,
242 	    ("tmpfs node %p pages %jd free %jd", node,
243 	    (uintmax_t)node->tn_reg.tn_pages, (uintmax_t)c));
244 	node->tn_reg.tn_pages -= c;
245 }
246 
247 static void
tmpfs_page_inserted(vm_object_t obj,vm_page_t m)248 tmpfs_page_inserted(vm_object_t obj, vm_page_t m)
249 {
250 	struct tmpfs_node *node;
251 	struct tmpfs_mount *tm;
252 
253 	if ((obj->flags & OBJ_TMPFS) == 0)
254 		return;
255 
256 	node = obj->un_pager.swp.swp_priv;
257 	MPASS(node->tn_type == VREG);
258 	tm = node->tn_reg.tn_tmp;
259 
260 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
261 		atomic_add_long(&tm->tm_pages_used, 1);
262 		node->tn_reg.tn_pages += 1;
263 	}
264 }
265 
266 static void
tmpfs_page_removed(vm_object_t obj,vm_page_t m)267 tmpfs_page_removed(vm_object_t obj, vm_page_t m)
268 {
269 	struct tmpfs_node *node;
270 	struct tmpfs_mount *tm;
271 
272 	if ((obj->flags & OBJ_TMPFS) == 0)
273 		return;
274 
275 	node = obj->un_pager.swp.swp_priv;
276 	MPASS(node->tn_type == VREG);
277 	tm = node->tn_reg.tn_tmp;
278 
279 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
280 		KASSERT(tm->tm_pages_used >= 1,
281 		    ("tmpfs tm %p pages %jd free 1", tm,
282 		    (uintmax_t)tm->tm_pages_used));
283 		atomic_add_long(&tm->tm_pages_used, -1);
284 		KASSERT(node->tn_reg.tn_pages >= 1,
285 		    ("tmpfs node %p pages %jd free 1", node,
286 		    (uintmax_t)node->tn_reg.tn_pages));
287 		node->tn_reg.tn_pages -= 1;
288 	}
289 }
290 
291 static boolean_t
tmpfs_can_alloc_page(vm_object_t obj,vm_pindex_t pindex)292 tmpfs_can_alloc_page(vm_object_t obj, vm_pindex_t pindex)
293 {
294 	struct tmpfs_mount *tm;
295 
296 	tm = VM_TO_TMPFS_MP(obj);
297 	if (tm == NULL || vm_pager_has_page(obj, pindex, NULL, NULL) ||
298 	    tm->tm_pages_max == 0)
299 		return (true);
300 	if (tm->tm_pages_max == ULONG_MAX)
301 		return (tmpfs_mem_avail() >= 1);
302 	return (tm->tm_pages_max > atomic_load_long(&tm->tm_pages_used));
303 }
304 
305 struct pagerops tmpfs_pager_ops = {
306 	.pgo_kvme_type = KVME_TYPE_VNODE,
307 	.pgo_alloc = tmpfs_pager_alloc,
308 	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
309 	.pgo_update_writecount = tmpfs_pager_update_writecount,
310 	.pgo_release_writecount = tmpfs_pager_release_writecount,
311 	.pgo_mightbedirty = vm_object_mightbedirty_,
312 	.pgo_getvp = tmpfs_pager_getvp,
313 	.pgo_freespace = tmpfs_pager_freespace,
314 	.pgo_page_inserted = tmpfs_page_inserted,
315 	.pgo_page_removed = tmpfs_page_removed,
316 	.pgo_can_alloc_page = tmpfs_can_alloc_page,
317 };
318 
319 static int
tmpfs_node_ctor(void * mem,int size,void * arg,int flags)320 tmpfs_node_ctor(void *mem, int size, void *arg, int flags)
321 {
322 	struct tmpfs_node *node;
323 
324 	node = mem;
325 	node->tn_gen++;
326 	node->tn_size = 0;
327 	node->tn_status = 0;
328 	node->tn_accessed = false;
329 	node->tn_flags = 0;
330 	node->tn_links = 0;
331 	node->tn_vnode = NULL;
332 	node->tn_vpstate = 0;
333 	return (0);
334 }
335 
336 static void
tmpfs_node_dtor(void * mem,int size,void * arg)337 tmpfs_node_dtor(void *mem, int size, void *arg)
338 {
339 	struct tmpfs_node *node;
340 
341 	node = mem;
342 	node->tn_type = VNON;
343 }
344 
345 static int
tmpfs_node_init(void * mem,int size,int flags)346 tmpfs_node_init(void *mem, int size, int flags)
347 {
348 	struct tmpfs_node *node;
349 
350 	node = mem;
351 	node->tn_id = 0;
352 	mtx_init(&node->tn_interlock, "tmpfsni", NULL, MTX_DEF | MTX_NEW);
353 	node->tn_gen = arc4random();
354 	return (0);
355 }
356 
357 static void
tmpfs_node_fini(void * mem,int size)358 tmpfs_node_fini(void *mem, int size)
359 {
360 	struct tmpfs_node *node;
361 
362 	node = mem;
363 	mtx_destroy(&node->tn_interlock);
364 }
365 
366 int
tmpfs_subr_init(void)367 tmpfs_subr_init(void)
368 {
369 	tmpfs_pager_type = vm_pager_alloc_dyn_type(&tmpfs_pager_ops,
370 	    OBJT_SWAP);
371 	if (tmpfs_pager_type == -1)
372 		return (EINVAL);
373 	tmpfs_node_pool = uma_zcreate("TMPFS node",
374 	    sizeof(struct tmpfs_node), tmpfs_node_ctor, tmpfs_node_dtor,
375 	    tmpfs_node_init, tmpfs_node_fini, UMA_ALIGN_PTR, 0);
376 	VFS_SMR_ZONE_SET(tmpfs_node_pool);
377 
378 	tmpfs_pages_avail_init = tmpfs_mem_avail();
379 	tmpfs_set_reserve_from_percent();
380 	return (0);
381 }
382 
383 void
tmpfs_subr_uninit(void)384 tmpfs_subr_uninit(void)
385 {
386 	if (tmpfs_pager_type != -1)
387 		vm_pager_free_dyn_type(tmpfs_pager_type);
388 	tmpfs_pager_type = -1;
389 	uma_zdestroy(tmpfs_node_pool);
390 }
391 
392 static int
sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)393 sysctl_mem_reserved(SYSCTL_HANDLER_ARGS)
394 {
395 	int error;
396 	long pages, bytes;
397 
398 	pages = *(long *)arg1;
399 	bytes = pages * PAGE_SIZE;
400 
401 	error = sysctl_handle_long(oidp, &bytes, 0, req);
402 	if (error || !req->newptr)
403 		return (error);
404 
405 	pages = bytes / PAGE_SIZE;
406 	if (pages < TMPFS_PAGES_MINRESERVED)
407 		return (EINVAL);
408 
409 	*(long *)arg1 = pages;
410 	return (0);
411 }
412 
413 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved,
414     CTLTYPE_LONG | CTLFLAG_MPSAFE | CTLFLAG_RW, &tmpfs_pages_reserved, 0,
415     sysctl_mem_reserved, "L",
416     "Amount of available memory and swap below which tmpfs growth stops");
417 
418 static int
sysctl_mem_percent(SYSCTL_HANDLER_ARGS)419 sysctl_mem_percent(SYSCTL_HANDLER_ARGS)
420 {
421 	int error, percent;
422 
423 	percent = *(int *)arg1;
424 	error = sysctl_handle_int(oidp, &percent, 0, req);
425 	if (error || !req->newptr)
426 		return (error);
427 
428 	if ((unsigned) percent > 100)
429 		return (EINVAL);
430 
431 	*(int *)arg1 = percent;
432 	tmpfs_set_reserve_from_percent();
433 	return (0);
434 }
435 
436 static void
tmpfs_set_reserve_from_percent(void)437 tmpfs_set_reserve_from_percent(void)
438 {
439 	size_t reserved;
440 
441 	reserved = tmpfs_pages_avail_init * (100 - tmpfs_mem_percent) / 100;
442 	tmpfs_pages_reserved = max(reserved, TMPFS_PAGES_MINRESERVED);
443 }
444 
445 SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_percent,
446     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &tmpfs_mem_percent, 0,
447     sysctl_mem_percent, "I",
448     "Percent of available memory that can be used if no size limit");
449 
450 static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a,
451     struct tmpfs_dirent *b);
452 RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
453 
454 size_t
tmpfs_mem_avail(void)455 tmpfs_mem_avail(void)
456 {
457 	size_t avail;
458 	long reserved;
459 
460 	avail = swap_pager_avail + vm_free_count();
461 	reserved = atomic_load_long(&tmpfs_pages_reserved);
462 	if (__predict_false(avail < reserved))
463 		return (0);
464 	return (avail - reserved);
465 }
466 
467 size_t
tmpfs_pages_used(struct tmpfs_mount * tmp)468 tmpfs_pages_used(struct tmpfs_mount *tmp)
469 {
470 	const size_t node_size = sizeof(struct tmpfs_node) +
471 	    sizeof(struct tmpfs_dirent);
472 	size_t meta_pages;
473 
474 	meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size,
475 	    PAGE_SIZE);
476 	return (meta_pages + tmp->tm_pages_used);
477 }
478 
479 bool
tmpfs_pages_check_avail(struct tmpfs_mount * tmp,size_t req_pages)480 tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages)
481 {
482 	if (tmpfs_mem_avail() < req_pages)
483 		return (false);
484 
485 	if (tmp->tm_pages_max != ULONG_MAX &&
486 	    tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp))
487 		return (false);
488 
489 	return (true);
490 }
491 
492 static int
tmpfs_partial_page_invalidate(vm_object_t object,vm_pindex_t idx,int base,int end,boolean_t ignerr)493 tmpfs_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
494     int end, boolean_t ignerr)
495 {
496 	vm_page_t m;
497 	int rv, error;
498 
499 	VM_OBJECT_ASSERT_WLOCKED(object);
500 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
501 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
502 	    end));
503 	error = 0;
504 
505 retry:
506 	m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
507 	if (m != NULL) {
508 		MPASS(vm_page_all_valid(m));
509 	} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
510 		m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL |
511 		    VM_ALLOC_WAITFAIL);
512 		if (m == NULL)
513 			goto retry;
514 		vm_object_pip_add(object, 1);
515 		VM_OBJECT_WUNLOCK(object);
516 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
517 		VM_OBJECT_WLOCK(object);
518 		vm_object_pip_wakeup(object);
519 		if (rv == VM_PAGER_OK) {
520 			/*
521 			 * Since the page was not resident, and therefore not
522 			 * recently accessed, immediately enqueue it for
523 			 * asynchronous laundering.  The current operation is
524 			 * not regarded as an access.
525 			 */
526 			vm_page_launder(m);
527 		} else {
528 			vm_page_free(m);
529 			m = NULL;
530 			if (!ignerr)
531 				error = EIO;
532 		}
533 	}
534 	if (m != NULL) {
535 		pmap_zero_page_area(m, base, end - base);
536 		vm_page_set_dirty(m);
537 		vm_page_xunbusy(m);
538 	}
539 
540 	return (error);
541 }
542 
543 void
tmpfs_ref_node(struct tmpfs_node * node)544 tmpfs_ref_node(struct tmpfs_node *node)
545 {
546 #ifdef INVARIANTS
547 	u_int old;
548 
549 	old =
550 #endif
551 	refcount_acquire(&node->tn_refcount);
552 #ifdef INVARIANTS
553 	KASSERT(old > 0, ("node %p zero refcount", node));
554 #endif
555 }
556 
557 /*
558  * Allocates a new node of type 'type' inside the 'tmp' mount point, with
559  * its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
560  * using the credentials of the process 'p'.
561  *
562  * If the node type is set to 'VDIR', then the parent parameter must point
563  * to the parent directory of the node being created.  It may only be NULL
564  * while allocating the root node.
565  *
566  * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
567  * specifies the device the node represents.
568  *
569  * If the node type is set to 'VLNK', then the parameter target specifies
570  * the file name of the target file for the symbolic link that is being
571  * created.
572  *
573  * Note that new nodes are retrieved from the available list if it has
574  * items or, if it is empty, from the node pool as long as there is enough
575  * space to create them.
576  *
577  * Returns zero on success or an appropriate error code on failure.
578  */
579 int
tmpfs_alloc_node(struct mount * mp,struct tmpfs_mount * tmp,__enum_uint8 (vtype)type,uid_t uid,gid_t gid,mode_t mode,struct tmpfs_node * parent,const char * target,dev_t rdev,struct tmpfs_node ** node)580 tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, __enum_uint8(vtype) type,
581     uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
582     const char *target, dev_t rdev, struct tmpfs_node **node)
583 {
584 	struct tmpfs_node *nnode;
585 	char *symlink;
586 	char symlink_smr;
587 
588 	/* If the root directory of the 'tmp' file system is not yet
589 	 * allocated, this must be the request to do it. */
590 	MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
591 
592 	MPASS((type == VLNK) ^ (target == NULL));
593 	MPASS((type == VBLK || type == VCHR) ^ (rdev == VNOVAL));
594 
595 	if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
596 		return (ENOSPC);
597 	if (!tmpfs_pages_check_avail(tmp, 1))
598 		return (ENOSPC);
599 
600 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
601 		/*
602 		 * When a new tmpfs node is created for fully
603 		 * constructed mount point, there must be a parent
604 		 * node, which vnode is locked exclusively.  As
605 		 * consequence, if the unmount is executing in
606 		 * parallel, vflush() cannot reclaim the parent vnode.
607 		 * Due to this, the check for MNTK_UNMOUNT flag is not
608 		 * racy: if we did not see MNTK_UNMOUNT flag, then tmp
609 		 * cannot be destroyed until node construction is
610 		 * finished and the parent vnode unlocked.
611 		 *
612 		 * Tmpfs does not need to instantiate new nodes during
613 		 * unmount.
614 		 */
615 		return (EBUSY);
616 	}
617 	if ((mp->mnt_kern_flag & MNT_RDONLY) != 0)
618 		return (EROFS);
619 
620 	nnode = uma_zalloc_smr(tmpfs_node_pool, M_WAITOK);
621 
622 	/* Generic initialization. */
623 	nnode->tn_type = type;
624 	vfs_timestamp(&nnode->tn_atime);
625 	nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
626 	    nnode->tn_atime;
627 	nnode->tn_uid = uid;
628 	nnode->tn_gid = gid;
629 	nnode->tn_mode = mode;
630 	nnode->tn_id = alloc_unr64(&tmp->tm_ino_unr);
631 	nnode->tn_refcount = 1;
632 	LIST_INIT(&nnode->tn_extattrs);
633 
634 	/* Type-specific initialization. */
635 	switch (nnode->tn_type) {
636 	case VBLK:
637 	case VCHR:
638 		nnode->tn_rdev = rdev;
639 		break;
640 
641 	case VDIR:
642 		RB_INIT(&nnode->tn_dir.tn_dirhead);
643 		LIST_INIT(&nnode->tn_dir.tn_dupindex);
644 		MPASS(parent != nnode);
645 		MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
646 		nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
647 		nnode->tn_dir.tn_readdir_lastn = 0;
648 		nnode->tn_dir.tn_readdir_lastp = NULL;
649 		nnode->tn_dir.tn_wht_size = 0;
650 		nnode->tn_links++;
651 		TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
652 		nnode->tn_dir.tn_parent->tn_links++;
653 		TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
654 		break;
655 
656 	case VFIFO:
657 		/* FALLTHROUGH */
658 	case VSOCK:
659 		break;
660 
661 	case VLNK:
662 		MPASS(strlen(target) < MAXPATHLEN);
663 		nnode->tn_size = strlen(target);
664 
665 		symlink = NULL;
666 		if (!tmp->tm_nonc) {
667 			symlink = cache_symlink_alloc(nnode->tn_size + 1,
668 			    M_WAITOK);
669 			symlink_smr = true;
670 		}
671 		if (symlink == NULL) {
672 			symlink = malloc(nnode->tn_size + 1, M_TMPFSNAME,
673 			    M_WAITOK);
674 			symlink_smr = false;
675 		}
676 		memcpy(symlink, target, nnode->tn_size + 1);
677 
678 		/*
679 		 * Allow safe symlink resolving for lockless lookup.
680 		 * tmpfs_fplookup_symlink references this comment.
681 		 *
682 		 * 1. nnode is not yet visible to the world
683 		 * 2. both tn_link_target and tn_link_smr get populated
684 		 * 3. release fence publishes their content
685 		 * 4. tn_link_target content is immutable until node
686 		 *    destruction, where the pointer gets set to NULL
687 		 * 5. tn_link_smr is never changed once set
688 		 *
689 		 * As a result it is sufficient to issue load consume
690 		 * on the node pointer to also get the above content
691 		 * in a stable manner.  Worst case tn_link_smr flag
692 		 * may be set to true despite being stale, while the
693 		 * target buffer is already cleared out.
694 		 */
695 		atomic_store_ptr(&nnode->tn_link_target, symlink);
696 		atomic_store_char((char *)&nnode->tn_link_smr, symlink_smr);
697 		atomic_thread_fence_rel();
698 		break;
699 
700 	case VREG:
701 		nnode->tn_reg.tn_aobj =
702 		    vm_pager_allocate(tmpfs_pager_type, NULL, 0,
703 		    VM_PROT_DEFAULT, 0,
704 		    NULL /* XXXKIB - tmpfs needs swap reservation */);
705 		nnode->tn_reg.tn_aobj->un_pager.swp.swp_priv = nnode;
706 		vm_object_set_flag(nnode->tn_reg.tn_aobj, OBJ_TMPFS);
707 		nnode->tn_reg.tn_tmp = tmp;
708 		nnode->tn_reg.tn_pages = 0;
709 		break;
710 
711 	default:
712 		panic("tmpfs_alloc_node: type %p %d", nnode,
713 		    (int)nnode->tn_type);
714 	}
715 
716 	TMPFS_LOCK(tmp);
717 	LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
718 	nnode->tn_attached = true;
719 	tmp->tm_nodes_inuse++;
720 	tmp->tm_refcount++;
721 	TMPFS_UNLOCK(tmp);
722 
723 	*node = nnode;
724 	return (0);
725 }
726 
727 /*
728  * Destroys the node pointed to by node from the file system 'tmp'.
729  * If the node references a directory, no entries are allowed.
730  */
731 void
tmpfs_free_node(struct tmpfs_mount * tmp,struct tmpfs_node * node)732 tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
733 {
734 	if (refcount_release_if_not_last(&node->tn_refcount))
735 		return;
736 
737 	TMPFS_LOCK(tmp);
738 	TMPFS_NODE_LOCK(node);
739 	if (!tmpfs_free_node_locked(tmp, node, false)) {
740 		TMPFS_NODE_UNLOCK(node);
741 		TMPFS_UNLOCK(tmp);
742 	}
743 }
744 
745 bool
tmpfs_free_node_locked(struct tmpfs_mount * tmp,struct tmpfs_node * node,bool detach)746 tmpfs_free_node_locked(struct tmpfs_mount *tmp, struct tmpfs_node *node,
747     bool detach)
748 {
749 	struct tmpfs_extattr *ea;
750 	vm_object_t uobj;
751 	char *symlink;
752 	bool last;
753 
754 	TMPFS_MP_ASSERT_LOCKED(tmp);
755 	TMPFS_NODE_ASSERT_LOCKED(node);
756 
757 	last = refcount_release(&node->tn_refcount);
758 	if (node->tn_attached && (detach || last)) {
759 		MPASS(tmp->tm_nodes_inuse > 0);
760 		tmp->tm_nodes_inuse--;
761 		LIST_REMOVE(node, tn_entries);
762 		node->tn_attached = false;
763 	}
764 	if (!last)
765 		return (false);
766 
767 	TMPFS_NODE_UNLOCK(node);
768 
769 #ifdef INVARIANTS
770 	MPASS(node->tn_vnode == NULL);
771 	MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
772 
773 	/*
774 	 * Make sure this is a node type we can deal with. Everything
775 	 * is explicitly enumerated without the 'default' clause so
776 	 * the compiler can throw an error in case a new type is
777 	 * added.
778 	 */
779 	switch (node->tn_type) {
780 	case VBLK:
781 	case VCHR:
782 	case VDIR:
783 	case VFIFO:
784 	case VSOCK:
785 	case VLNK:
786 	case VREG:
787 		break;
788 	case VNON:
789 	case VBAD:
790 	case VMARKER:
791 		panic("%s: bad type %d for node %p", __func__,
792 		    (int)node->tn_type, node);
793 	}
794 #endif
795 
796 	while ((ea = LIST_FIRST(&node->tn_extattrs)) != NULL) {
797 		LIST_REMOVE(ea, ea_extattrs);
798 		tmpfs_extattr_free(ea);
799 	}
800 
801 	switch (node->tn_type) {
802 	case VREG:
803 		uobj = node->tn_reg.tn_aobj;
804 		node->tn_reg.tn_aobj = NULL;
805 		if (uobj != NULL) {
806 			VM_OBJECT_WLOCK(uobj);
807 			KASSERT((uobj->flags & OBJ_TMPFS) != 0,
808 			    ("tmpfs node %p uobj %p not tmpfs", node, uobj));
809 			vm_object_clear_flag(uobj, OBJ_TMPFS);
810 			KASSERT(tmp->tm_pages_used >= node->tn_reg.tn_pages,
811 			    ("tmpfs tmp %p node %p pages %jd free %jd", tmp,
812 			    node, (uintmax_t)tmp->tm_pages_used,
813 			    (uintmax_t)node->tn_reg.tn_pages));
814 			atomic_add_long(&tmp->tm_pages_used,
815 			    -node->tn_reg.tn_pages);
816 			VM_OBJECT_WUNLOCK(uobj);
817 		}
818 		tmpfs_free_tmp(tmp);
819 
820 		/*
821 		 * vm_object_deallocate() must not be called while
822 		 * owning tm_allnode_lock, because deallocate might
823 		 * sleep.  Call it after tmpfs_free_tmp() does the
824 		 * unlock.
825 		 */
826 		if (uobj != NULL)
827 			vm_object_deallocate(uobj);
828 
829 		break;
830 	case VLNK:
831 		tmpfs_free_tmp(tmp);
832 
833 		symlink = node->tn_link_target;
834 		atomic_store_ptr(&node->tn_link_target, NULL);
835 		if (atomic_load_char(&node->tn_link_smr)) {
836 			cache_symlink_free(symlink, node->tn_size + 1);
837 		} else {
838 			free(symlink, M_TMPFSNAME);
839 		}
840 		break;
841 	default:
842 		tmpfs_free_tmp(tmp);
843 		break;
844 	}
845 
846 	uma_zfree_smr(tmpfs_node_pool, node);
847 	return (true);
848 }
849 
850 static __inline uint32_t
tmpfs_dirent_hash(const char * name,u_int len)851 tmpfs_dirent_hash(const char *name, u_int len)
852 {
853 	uint32_t hash;
854 
855 	hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK;
856 #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP
857 	hash &= 0xf;
858 #endif
859 	if (hash < TMPFS_DIRCOOKIE_MIN)
860 		hash += TMPFS_DIRCOOKIE_MIN;
861 
862 	return (hash);
863 }
864 
865 static __inline off_t
tmpfs_dirent_cookie(struct tmpfs_dirent * de)866 tmpfs_dirent_cookie(struct tmpfs_dirent *de)
867 {
868 	if (de == NULL)
869 		return (TMPFS_DIRCOOKIE_EOF);
870 
871 	MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN);
872 
873 	return (de->td_cookie);
874 }
875 
876 static __inline boolean_t
tmpfs_dirent_dup(struct tmpfs_dirent * de)877 tmpfs_dirent_dup(struct tmpfs_dirent *de)
878 {
879 	return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0);
880 }
881 
882 static __inline boolean_t
tmpfs_dirent_duphead(struct tmpfs_dirent * de)883 tmpfs_dirent_duphead(struct tmpfs_dirent *de)
884 {
885 	return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0);
886 }
887 
888 void
tmpfs_dirent_init(struct tmpfs_dirent * de,const char * name,u_int namelen)889 tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen)
890 {
891 	de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen);
892 	memcpy(de->ud.td_name, name, namelen);
893 	de->td_namelen = namelen;
894 }
895 
896 /*
897  * Allocates a new directory entry for the node node with a name of name.
898  * The new directory entry is returned in *de.
899  *
900  * The link count of node is increased by one to reflect the new object
901  * referencing it.
902  *
903  * Returns zero on success or an appropriate error code on failure.
904  */
905 int
tmpfs_alloc_dirent(struct tmpfs_mount * tmp,struct tmpfs_node * node,const char * name,u_int len,struct tmpfs_dirent ** de)906 tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
907     const char *name, u_int len, struct tmpfs_dirent **de)
908 {
909 	struct tmpfs_dirent *nde;
910 
911 	nde = malloc(sizeof(*nde), M_TMPFSDIR, M_WAITOK);
912 	nde->td_node = node;
913 	if (name != NULL) {
914 		nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
915 		tmpfs_dirent_init(nde, name, len);
916 	} else
917 		nde->td_namelen = 0;
918 	if (node != NULL)
919 		node->tn_links++;
920 
921 	*de = nde;
922 
923 	return (0);
924 }
925 
926 /*
927  * Frees a directory entry.  It is the caller's responsibility to destroy
928  * the node referenced by it if needed.
929  *
930  * The link count of node is decreased by one to reflect the removal of an
931  * object that referenced it.  This only happens if 'node_exists' is true;
932  * otherwise the function will not access the node referred to by the
933  * directory entry, as it may already have been released from the outside.
934  */
935 void
tmpfs_free_dirent(struct tmpfs_mount * tmp,struct tmpfs_dirent * de)936 tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de)
937 {
938 	struct tmpfs_node *node;
939 
940 	node = de->td_node;
941 	if (node != NULL) {
942 		MPASS(node->tn_links > 0);
943 		node->tn_links--;
944 	}
945 	if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL)
946 		free(de->ud.td_name, M_TMPFSNAME);
947 	free(de, M_TMPFSDIR);
948 }
949 
950 void
tmpfs_destroy_vobject(struct vnode * vp,vm_object_t obj)951 tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj)
952 {
953 	bool want_vrele;
954 
955 	ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject");
956 	if (vp->v_type != VREG || obj == NULL)
957 		return;
958 
959 	VM_OBJECT_WLOCK(obj);
960 	VI_LOCK(vp);
961 	vp->v_object = NULL;
962 
963 	/*
964 	 * May be going through forced unmount.
965 	 */
966 	want_vrele = false;
967 	if ((obj->flags & OBJ_TMPFS_VREF) != 0) {
968 		vm_object_clear_flag(obj, OBJ_TMPFS_VREF);
969 		want_vrele = true;
970 	}
971 
972 	if (vp->v_writecount < 0)
973 		vp->v_writecount = 0;
974 	VI_UNLOCK(vp);
975 	VM_OBJECT_WUNLOCK(obj);
976 	if (want_vrele) {
977 		vrele(vp);
978 	}
979 }
980 
981 /*
982  * Allocates a new vnode for the node node or returns a new reference to
983  * an existing one if the node had already a vnode referencing it.  The
984  * resulting locked vnode is returned in *vpp.
985  *
986  * Returns zero on success or an appropriate error code on failure.
987  */
988 int
tmpfs_alloc_vp(struct mount * mp,struct tmpfs_node * node,int lkflag,struct vnode ** vpp)989 tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
990     struct vnode **vpp)
991 {
992 	struct vnode *vp;
993 	enum vgetstate vs;
994 	struct tmpfs_mount *tm;
995 	vm_object_t object;
996 	int error;
997 
998 	error = 0;
999 	tm = VFS_TO_TMPFS(mp);
1000 	TMPFS_NODE_LOCK(node);
1001 	tmpfs_ref_node(node);
1002 loop:
1003 	TMPFS_NODE_ASSERT_LOCKED(node);
1004 	if ((vp = node->tn_vnode) != NULL) {
1005 		MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
1006 		if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) ||
1007 		    (VN_IS_DOOMED(vp) &&
1008 		     (lkflag & LK_NOWAIT) != 0)) {
1009 			TMPFS_NODE_UNLOCK(node);
1010 			error = ENOENT;
1011 			vp = NULL;
1012 			goto out;
1013 		}
1014 		if (VN_IS_DOOMED(vp)) {
1015 			node->tn_vpstate |= TMPFS_VNODE_WRECLAIM;
1016 			while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) {
1017 				msleep(&node->tn_vnode, TMPFS_NODE_MTX(node),
1018 				    0, "tmpfsE", 0);
1019 			}
1020 			goto loop;
1021 		}
1022 		vs = vget_prep(vp);
1023 		TMPFS_NODE_UNLOCK(node);
1024 		error = vget_finish(vp, lkflag, vs);
1025 		if (error == ENOENT) {
1026 			TMPFS_NODE_LOCK(node);
1027 			goto loop;
1028 		}
1029 		if (error != 0) {
1030 			vp = NULL;
1031 			goto out;
1032 		}
1033 
1034 		/*
1035 		 * Make sure the vnode is still there after
1036 		 * getting the interlock to avoid racing a free.
1037 		 */
1038 		if (node->tn_vnode != vp) {
1039 			vput(vp);
1040 			TMPFS_NODE_LOCK(node);
1041 			goto loop;
1042 		}
1043 
1044 		goto out;
1045 	}
1046 
1047 	if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
1048 	    (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
1049 		TMPFS_NODE_UNLOCK(node);
1050 		error = ENOENT;
1051 		vp = NULL;
1052 		goto out;
1053 	}
1054 
1055 	/*
1056 	 * otherwise lock the vp list while we call getnewvnode
1057 	 * since that can block.
1058 	 */
1059 	if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
1060 		node->tn_vpstate |= TMPFS_VNODE_WANT;
1061 		error = msleep((caddr_t) &node->tn_vpstate,
1062 		    TMPFS_NODE_MTX(node), 0, "tmpfs_alloc_vp", 0);
1063 		if (error != 0)
1064 			goto out;
1065 		goto loop;
1066 	} else
1067 		node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
1068 
1069 	TMPFS_NODE_UNLOCK(node);
1070 
1071 	/* Get a new vnode and associate it with our node. */
1072 	error = getnewvnode("tmpfs", mp, VFS_TO_TMPFS(mp)->tm_nonc ?
1073 	    &tmpfs_vnodeop_nonc_entries : &tmpfs_vnodeop_entries, &vp);
1074 	if (error != 0)
1075 		goto unlock;
1076 	MPASS(vp != NULL);
1077 
1078 	/* lkflag is ignored, the lock is exclusive */
1079 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1080 
1081 	vp->v_data = node;
1082 	vp->v_type = node->tn_type;
1083 
1084 	/* Type-specific initialization. */
1085 	switch (node->tn_type) {
1086 	case VBLK:
1087 		/* FALLTHROUGH */
1088 	case VCHR:
1089 		/* FALLTHROUGH */
1090 	case VLNK:
1091 		/* FALLTHROUGH */
1092 	case VSOCK:
1093 		break;
1094 	case VFIFO:
1095 		vp->v_op = &tmpfs_fifoop_entries;
1096 		break;
1097 	case VREG:
1098 		object = node->tn_reg.tn_aobj;
1099 		VM_OBJECT_WLOCK(object);
1100 		KASSERT((object->flags & OBJ_TMPFS_VREF) == 0,
1101 		    ("%s: object %p with OBJ_TMPFS_VREF but without vnode",
1102 		    __func__, object));
1103 		VI_LOCK(vp);
1104 		KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs"));
1105 		vp->v_object = object;
1106 		vn_irflag_set_locked(vp, (tm->tm_pgread ? VIRF_PGREAD : 0) |
1107 		    VIRF_TEXT_REF);
1108 		VI_UNLOCK(vp);
1109 		VNASSERT((object->flags & OBJ_TMPFS_VREF) == 0, vp,
1110 		    ("leaked OBJ_TMPFS_VREF"));
1111 		if (object->un_pager.swp.writemappings > 0) {
1112 			vrefact(vp);
1113 			vlazy(vp);
1114 			vm_object_set_flag(object, OBJ_TMPFS_VREF);
1115 		}
1116 		VM_OBJECT_WUNLOCK(object);
1117 		break;
1118 	case VDIR:
1119 		MPASS(node->tn_dir.tn_parent != NULL);
1120 		if (node->tn_dir.tn_parent == node)
1121 			vp->v_vflag |= VV_ROOT;
1122 		break;
1123 
1124 	default:
1125 		panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
1126 	}
1127 	if (vp->v_type != VFIFO)
1128 		VN_LOCK_ASHARE(vp);
1129 
1130 	error = insmntque1(vp, mp);
1131 	if (error != 0) {
1132 		/* Need to clear v_object for insmntque failure. */
1133 		tmpfs_destroy_vobject(vp, vp->v_object);
1134 		vp->v_object = NULL;
1135 		vp->v_data = NULL;
1136 		vp->v_op = &dead_vnodeops;
1137 		vgone(vp);
1138 		vput(vp);
1139 		vp = NULL;
1140 	} else {
1141 		vn_set_state(vp, VSTATE_CONSTRUCTED);
1142 	}
1143 
1144 unlock:
1145 	TMPFS_NODE_LOCK(node);
1146 
1147 	MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
1148 	node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
1149 	node->tn_vnode = vp;
1150 
1151 	if (node->tn_vpstate & TMPFS_VNODE_WANT) {
1152 		node->tn_vpstate &= ~TMPFS_VNODE_WANT;
1153 		TMPFS_NODE_UNLOCK(node);
1154 		wakeup((caddr_t) &node->tn_vpstate);
1155 	} else
1156 		TMPFS_NODE_UNLOCK(node);
1157 
1158 out:
1159 	if (error == 0) {
1160 		*vpp = vp;
1161 
1162 #ifdef INVARIANTS
1163 		MPASS(*vpp != NULL);
1164 		ASSERT_VOP_LOCKED(*vpp, __func__);
1165 		TMPFS_NODE_LOCK(node);
1166 		MPASS(*vpp == node->tn_vnode);
1167 		TMPFS_NODE_UNLOCK(node);
1168 #endif
1169 	}
1170 	tmpfs_free_node(tm, node);
1171 
1172 	return (error);
1173 }
1174 
1175 /*
1176  * Destroys the association between the vnode vp and the node it
1177  * references.
1178  */
1179 void
tmpfs_free_vp(struct vnode * vp)1180 tmpfs_free_vp(struct vnode *vp)
1181 {
1182 	struct tmpfs_node *node;
1183 
1184 	node = VP_TO_TMPFS_NODE(vp);
1185 
1186 	TMPFS_NODE_ASSERT_LOCKED(node);
1187 	node->tn_vnode = NULL;
1188 	if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0)
1189 		wakeup(&node->tn_vnode);
1190 	node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM;
1191 	vp->v_data = NULL;
1192 }
1193 
1194 /*
1195  * Allocates a new file of type 'type' and adds it to the parent directory
1196  * 'dvp'; this addition is done using the component name given in 'cnp'.
1197  * The ownership of the new file is automatically assigned based on the
1198  * credentials of the caller (through 'cnp'), the group is set based on
1199  * the parent directory and the mode is determined from the 'vap' argument.
1200  * If successful, *vpp holds a vnode to the newly created file and zero
1201  * is returned.  Otherwise *vpp is NULL and the function returns an
1202  * appropriate error code.
1203  */
1204 int
tmpfs_alloc_file(struct vnode * dvp,struct vnode ** vpp,struct vattr * vap,struct componentname * cnp,const char * target)1205 tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
1206     struct componentname *cnp, const char *target)
1207 {
1208 	int error;
1209 	struct tmpfs_dirent *de;
1210 	struct tmpfs_mount *tmp;
1211 	struct tmpfs_node *dnode;
1212 	struct tmpfs_node *node;
1213 	struct tmpfs_node *parent;
1214 
1215 	ASSERT_VOP_ELOCKED(dvp, "tmpfs_alloc_file");
1216 
1217 	tmp = VFS_TO_TMPFS(dvp->v_mount);
1218 	dnode = VP_TO_TMPFS_DIR(dvp);
1219 	*vpp = NULL;
1220 
1221 	/* If the entry we are creating is a directory, we cannot overflow
1222 	 * the number of links of its parent, because it will get a new
1223 	 * link. */
1224 	if (vap->va_type == VDIR) {
1225 		/* Ensure that we do not overflow the maximum number of links
1226 		 * imposed by the system. */
1227 		MPASS(dnode->tn_links <= TMPFS_LINK_MAX);
1228 		if (dnode->tn_links == TMPFS_LINK_MAX) {
1229 			return (EMLINK);
1230 		}
1231 
1232 		parent = dnode;
1233 		MPASS(parent != NULL);
1234 	} else
1235 		parent = NULL;
1236 
1237 	/* Allocate a node that represents the new file. */
1238 	error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type,
1239 	    cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent,
1240 	    target, vap->va_rdev, &node);
1241 	if (error != 0)
1242 		return (error);
1243 
1244 	/* Allocate a directory entry that points to the new file. */
1245 	error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
1246 	    &de);
1247 	if (error != 0) {
1248 		tmpfs_free_node(tmp, node);
1249 		return (error);
1250 	}
1251 
1252 	/* Allocate a vnode for the new file. */
1253 	error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
1254 	if (error != 0) {
1255 		tmpfs_free_dirent(tmp, de);
1256 		tmpfs_free_node(tmp, node);
1257 		return (error);
1258 	}
1259 
1260 	/* Now that all required items are allocated, we can proceed to
1261 	 * insert the new node into the directory, an operation that
1262 	 * cannot fail. */
1263 	if (cnp->cn_flags & ISWHITEOUT)
1264 		tmpfs_dir_whiteout_remove(dvp, cnp);
1265 	tmpfs_dir_attach(dvp, de);
1266 	return (0);
1267 }
1268 
1269 struct tmpfs_dirent *
tmpfs_dir_first(struct tmpfs_node * dnode,struct tmpfs_dir_cursor * dc)1270 tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1271 {
1272 	struct tmpfs_dirent *de;
1273 
1274 	de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead);
1275 	dc->tdc_tree = de;
1276 	if (de != NULL && tmpfs_dirent_duphead(de))
1277 		de = LIST_FIRST(&de->ud.td_duphead);
1278 	dc->tdc_current = de;
1279 
1280 	return (dc->tdc_current);
1281 }
1282 
1283 struct tmpfs_dirent *
tmpfs_dir_next(struct tmpfs_node * dnode,struct tmpfs_dir_cursor * dc)1284 tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc)
1285 {
1286 	struct tmpfs_dirent *de;
1287 
1288 	MPASS(dc->tdc_tree != NULL);
1289 	if (tmpfs_dirent_dup(dc->tdc_current)) {
1290 		dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries);
1291 		if (dc->tdc_current != NULL)
1292 			return (dc->tdc_current);
1293 	}
1294 	dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir,
1295 	    &dnode->tn_dir.tn_dirhead, dc->tdc_tree);
1296 	if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) {
1297 		dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1298 		MPASS(dc->tdc_current != NULL);
1299 	}
1300 
1301 	return (dc->tdc_current);
1302 }
1303 
1304 /* Lookup directory entry in RB-Tree. Function may return duphead entry. */
1305 static struct tmpfs_dirent *
tmpfs_dir_xlookup_hash(struct tmpfs_node * dnode,uint32_t hash)1306 tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash)
1307 {
1308 	struct tmpfs_dirent *de, dekey;
1309 
1310 	dekey.td_hash = hash;
1311 	de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey);
1312 	return (de);
1313 }
1314 
1315 /* Lookup directory entry by cookie, initialize directory cursor accordingly. */
1316 static struct tmpfs_dirent *
tmpfs_dir_lookup_cookie(struct tmpfs_node * node,off_t cookie,struct tmpfs_dir_cursor * dc)1317 tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie,
1318     struct tmpfs_dir_cursor *dc)
1319 {
1320 	struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead;
1321 	struct tmpfs_dirent *de, dekey;
1322 
1323 	MPASS(cookie >= TMPFS_DIRCOOKIE_MIN);
1324 
1325 	if (cookie == node->tn_dir.tn_readdir_lastn &&
1326 	    (de = node->tn_dir.tn_readdir_lastp) != NULL) {
1327 		/* Protect against possible race, tn_readdir_last[pn]
1328 		 * may be updated with only shared vnode lock held. */
1329 		if (cookie == tmpfs_dirent_cookie(de))
1330 			goto out;
1331 	}
1332 
1333 	if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) {
1334 		LIST_FOREACH(de, &node->tn_dir.tn_dupindex,
1335 		    uh.td_dup.index_entries) {
1336 			MPASS(tmpfs_dirent_dup(de));
1337 			if (de->td_cookie == cookie)
1338 				goto out;
1339 			/* dupindex list is sorted. */
1340 			if (de->td_cookie < cookie) {
1341 				de = NULL;
1342 				goto out;
1343 			}
1344 		}
1345 		MPASS(de == NULL);
1346 		goto out;
1347 	}
1348 
1349 	if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) {
1350 		de = NULL;
1351 	} else {
1352 		dekey.td_hash = cookie;
1353 		/* Recover if direntry for cookie was removed */
1354 		de = RB_NFIND(tmpfs_dir, dirhead, &dekey);
1355 	}
1356 	dc->tdc_tree = de;
1357 	dc->tdc_current = de;
1358 	if (de != NULL && tmpfs_dirent_duphead(de)) {
1359 		dc->tdc_current = LIST_FIRST(&de->ud.td_duphead);
1360 		MPASS(dc->tdc_current != NULL);
1361 	}
1362 	return (dc->tdc_current);
1363 
1364 out:
1365 	dc->tdc_tree = de;
1366 	dc->tdc_current = de;
1367 	if (de != NULL && tmpfs_dirent_dup(de))
1368 		dc->tdc_tree = tmpfs_dir_xlookup_hash(node,
1369 		    de->td_hash);
1370 	return (dc->tdc_current);
1371 }
1372 
1373 /*
1374  * Looks for a directory entry in the directory represented by node.
1375  * 'cnp' describes the name of the entry to look for.  Note that the .
1376  * and .. components are not allowed as they do not physically exist
1377  * within directories.
1378  *
1379  * Returns a pointer to the entry when found, otherwise NULL.
1380  */
1381 struct tmpfs_dirent *
tmpfs_dir_lookup(struct tmpfs_node * node,struct tmpfs_node * f,struct componentname * cnp)1382 tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
1383     struct componentname *cnp)
1384 {
1385 	struct tmpfs_dir_duphead *duphead;
1386 	struct tmpfs_dirent *de;
1387 	uint32_t hash;
1388 
1389 	MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
1390 	MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
1391 	    cnp->cn_nameptr[1] == '.')));
1392 	TMPFS_VALIDATE_DIR(node);
1393 
1394 	hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen);
1395 	de = tmpfs_dir_xlookup_hash(node, hash);
1396 	if (de != NULL && tmpfs_dirent_duphead(de)) {
1397 		duphead = &de->ud.td_duphead;
1398 		LIST_FOREACH(de, duphead, uh.td_dup.entries) {
1399 			if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1400 			    cnp->cn_namelen))
1401 				break;
1402 		}
1403 	} else if (de != NULL) {
1404 		if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr,
1405 		    cnp->cn_namelen))
1406 			de = NULL;
1407 	}
1408 	if (de != NULL && f != NULL && de->td_node != f)
1409 		de = NULL;
1410 
1411 	return (de);
1412 }
1413 
1414 /*
1415  * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex
1416  * list, allocate new cookie value.
1417  */
1418 static void
tmpfs_dir_attach_dup(struct tmpfs_node * dnode,struct tmpfs_dir_duphead * duphead,struct tmpfs_dirent * nde)1419 tmpfs_dir_attach_dup(struct tmpfs_node *dnode,
1420     struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde)
1421 {
1422 	struct tmpfs_dir_duphead *dupindex;
1423 	struct tmpfs_dirent *de, *pde;
1424 
1425 	dupindex = &dnode->tn_dir.tn_dupindex;
1426 	de = LIST_FIRST(dupindex);
1427 	if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) {
1428 		if (de == NULL)
1429 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1430 		else
1431 			nde->td_cookie = de->td_cookie + 1;
1432 		MPASS(tmpfs_dirent_dup(nde));
1433 		LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries);
1434 		LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1435 		return;
1436 	}
1437 
1438 	/*
1439 	 * Cookie numbers are near exhaustion. Scan dupindex list for unused
1440 	 * numbers. dupindex list is sorted in descending order. Keep it so
1441 	 * after inserting nde.
1442 	 */
1443 	while (1) {
1444 		pde = de;
1445 		de = LIST_NEXT(de, uh.td_dup.index_entries);
1446 		if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) {
1447 			/*
1448 			 * Last element of the index doesn't have minimal cookie
1449 			 * value, use it.
1450 			 */
1451 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN;
1452 			LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries);
1453 			LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1454 			return;
1455 		} else if (de == NULL) {
1456 			/*
1457 			 * We are so lucky have 2^30 hash duplicates in single
1458 			 * directory :) Return largest possible cookie value.
1459 			 * It should be fine except possible issues with
1460 			 * VOP_READDIR restart.
1461 			 */
1462 			nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX;
1463 			LIST_INSERT_HEAD(dupindex, nde,
1464 			    uh.td_dup.index_entries);
1465 			LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1466 			return;
1467 		}
1468 		if (de->td_cookie + 1 == pde->td_cookie ||
1469 		    de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX)
1470 			continue;	/* No hole or invalid cookie. */
1471 		nde->td_cookie = de->td_cookie + 1;
1472 		MPASS(tmpfs_dirent_dup(nde));
1473 		MPASS(pde->td_cookie > nde->td_cookie);
1474 		MPASS(nde->td_cookie > de->td_cookie);
1475 		LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries);
1476 		LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries);
1477 		return;
1478 	}
1479 }
1480 
1481 /*
1482  * Attaches the directory entry de to the directory represented by vp.
1483  * Note that this does not change the link count of the node pointed by
1484  * the directory entry, as this is done by tmpfs_alloc_dirent.
1485  */
1486 void
tmpfs_dir_attach(struct vnode * vp,struct tmpfs_dirent * de)1487 tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
1488 {
1489 	struct tmpfs_node *dnode;
1490 	struct tmpfs_dirent *xde, *nde;
1491 
1492 	ASSERT_VOP_ELOCKED(vp, __func__);
1493 	MPASS(de->td_namelen > 0);
1494 	MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN);
1495 	MPASS(de->td_cookie == de->td_hash);
1496 
1497 	dnode = VP_TO_TMPFS_DIR(vp);
1498 	dnode->tn_dir.tn_readdir_lastn = 0;
1499 	dnode->tn_dir.tn_readdir_lastp = NULL;
1500 
1501 	MPASS(!tmpfs_dirent_dup(de));
1502 	xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1503 	if (xde != NULL && tmpfs_dirent_duphead(xde))
1504 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1505 	else if (xde != NULL) {
1506 		/*
1507 		 * Allocate new duphead. Swap xde with duphead to avoid
1508 		 * adding/removing elements with the same hash.
1509 		 */
1510 		MPASS(!tmpfs_dirent_dup(xde));
1511 		tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0,
1512 		    &nde);
1513 		/* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */
1514 		memcpy(nde, xde, sizeof(*xde));
1515 		xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD;
1516 		LIST_INIT(&xde->ud.td_duphead);
1517 		xde->td_namelen = 0;
1518 		xde->td_node = NULL;
1519 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde);
1520 		tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de);
1521 	}
1522 	dnode->tn_size += sizeof(struct tmpfs_dirent);
1523 	dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1524 	dnode->tn_accessed = true;
1525 	tmpfs_update(vp);
1526 }
1527 
1528 /*
1529  * Detaches the directory entry de from the directory represented by vp.
1530  * Note that this does not change the link count of the node pointed by
1531  * the directory entry, as this is done by tmpfs_free_dirent.
1532  */
1533 void
tmpfs_dir_detach(struct vnode * vp,struct tmpfs_dirent * de)1534 tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
1535 {
1536 	struct tmpfs_mount *tmp;
1537 	struct tmpfs_dir *head;
1538 	struct tmpfs_node *dnode;
1539 	struct tmpfs_dirent *xde;
1540 
1541 	ASSERT_VOP_ELOCKED(vp, __func__);
1542 
1543 	dnode = VP_TO_TMPFS_DIR(vp);
1544 	head = &dnode->tn_dir.tn_dirhead;
1545 	dnode->tn_dir.tn_readdir_lastn = 0;
1546 	dnode->tn_dir.tn_readdir_lastp = NULL;
1547 
1548 	if (tmpfs_dirent_dup(de)) {
1549 		/* Remove duphead if de was last entry. */
1550 		if (LIST_NEXT(de, uh.td_dup.entries) == NULL) {
1551 			xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash);
1552 			MPASS(tmpfs_dirent_duphead(xde));
1553 		} else
1554 			xde = NULL;
1555 		LIST_REMOVE(de, uh.td_dup.entries);
1556 		LIST_REMOVE(de, uh.td_dup.index_entries);
1557 		if (xde != NULL) {
1558 			if (LIST_EMPTY(&xde->ud.td_duphead)) {
1559 				RB_REMOVE(tmpfs_dir, head, xde);
1560 				tmp = VFS_TO_TMPFS(vp->v_mount);
1561 				MPASS(xde->td_node == NULL);
1562 				tmpfs_free_dirent(tmp, xde);
1563 			}
1564 		}
1565 		de->td_cookie = de->td_hash;
1566 	} else
1567 		RB_REMOVE(tmpfs_dir, head, de);
1568 
1569 	dnode->tn_size -= sizeof(struct tmpfs_dirent);
1570 	dnode->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
1571 	dnode->tn_accessed = true;
1572 	tmpfs_update(vp);
1573 }
1574 
1575 void
tmpfs_dir_destroy(struct tmpfs_mount * tmp,struct tmpfs_node * dnode)1576 tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode)
1577 {
1578 	struct tmpfs_dirent *de, *dde, *nde;
1579 
1580 	RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) {
1581 		RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de);
1582 		/* Node may already be destroyed. */
1583 		de->td_node = NULL;
1584 		if (tmpfs_dirent_duphead(de)) {
1585 			while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) {
1586 				LIST_REMOVE(dde, uh.td_dup.entries);
1587 				dde->td_node = NULL;
1588 				tmpfs_free_dirent(tmp, dde);
1589 			}
1590 		}
1591 		tmpfs_free_dirent(tmp, de);
1592 	}
1593 }
1594 
1595 /*
1596  * Helper function for tmpfs_readdir.  Creates a '.' entry for the given
1597  * directory and returns it in the uio space.  The function returns 0
1598  * on success, -1 if there was not enough space in the uio structure to
1599  * hold the directory entry or an appropriate error code if another
1600  * error happens.
1601  */
1602 static int
tmpfs_dir_getdotdent(struct tmpfs_mount * tm,struct tmpfs_node * node,struct uio * uio)1603 tmpfs_dir_getdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1604     struct uio *uio)
1605 {
1606 	int error;
1607 	struct dirent dent;
1608 
1609 	TMPFS_VALIDATE_DIR(node);
1610 	MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
1611 
1612 	dent.d_fileno = node->tn_id;
1613 	dent.d_off = TMPFS_DIRCOOKIE_DOTDOT;
1614 	dent.d_type = DT_DIR;
1615 	dent.d_namlen = 1;
1616 	dent.d_name[0] = '.';
1617 	dent.d_reclen = GENERIC_DIRSIZ(&dent);
1618 	dirent_terminate(&dent);
1619 
1620 	if (dent.d_reclen > uio->uio_resid)
1621 		error = EJUSTRETURN;
1622 	else
1623 		error = uiomove(&dent, dent.d_reclen, uio);
1624 
1625 	tmpfs_set_accessed(tm, node);
1626 
1627 	return (error);
1628 }
1629 
1630 /*
1631  * Helper function for tmpfs_readdir.  Creates a '..' entry for the given
1632  * directory and returns it in the uio space.  The function returns 0
1633  * on success, -1 if there was not enough space in the uio structure to
1634  * hold the directory entry or an appropriate error code if another
1635  * error happens.
1636  */
1637 static int
tmpfs_dir_getdotdotdent(struct tmpfs_mount * tm,struct tmpfs_node * node,struct uio * uio,off_t next)1638 tmpfs_dir_getdotdotdent(struct tmpfs_mount *tm, struct tmpfs_node *node,
1639     struct uio *uio, off_t next)
1640 {
1641 	struct tmpfs_node *parent;
1642 	struct dirent dent;
1643 	int error;
1644 
1645 	TMPFS_VALIDATE_DIR(node);
1646 	MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
1647 
1648 	/*
1649 	 * Return ENOENT if the current node is already removed.
1650 	 */
1651 	TMPFS_ASSERT_LOCKED(node);
1652 	parent = node->tn_dir.tn_parent;
1653 	if (parent == NULL)
1654 		return (ENOENT);
1655 
1656 	dent.d_fileno = parent->tn_id;
1657 	dent.d_off = next;
1658 	dent.d_type = DT_DIR;
1659 	dent.d_namlen = 2;
1660 	dent.d_name[0] = '.';
1661 	dent.d_name[1] = '.';
1662 	dent.d_reclen = GENERIC_DIRSIZ(&dent);
1663 	dirent_terminate(&dent);
1664 
1665 	if (dent.d_reclen > uio->uio_resid)
1666 		error = EJUSTRETURN;
1667 	else
1668 		error = uiomove(&dent, dent.d_reclen, uio);
1669 
1670 	tmpfs_set_accessed(tm, node);
1671 
1672 	return (error);
1673 }
1674 
1675 /*
1676  * Helper function for tmpfs_readdir.  Returns as much directory entries
1677  * as can fit in the uio space.  The read starts at uio->uio_offset.
1678  * The function returns 0 on success, -1 if there was not enough space
1679  * in the uio structure to hold the directory entry or an appropriate
1680  * error code if another error happens.
1681  */
1682 int
tmpfs_dir_getdents(struct tmpfs_mount * tm,struct tmpfs_node * node,struct uio * uio,int maxcookies,uint64_t * cookies,int * ncookies)1683 tmpfs_dir_getdents(struct tmpfs_mount *tm, struct tmpfs_node *node,
1684     struct uio *uio, int maxcookies, uint64_t *cookies, int *ncookies)
1685 {
1686 	struct tmpfs_dir_cursor dc;
1687 	struct tmpfs_dirent *de, *nde;
1688 	off_t off;
1689 	int error;
1690 
1691 	TMPFS_VALIDATE_DIR(node);
1692 
1693 	off = 0;
1694 
1695 	/*
1696 	 * Lookup the node from the current offset.  The starting offset of
1697 	 * 0 will lookup both '.' and '..', and then the first real entry,
1698 	 * or EOF if there are none.  Then find all entries for the dir that
1699 	 * fit into the buffer.  Once no more entries are found (de == NULL),
1700 	 * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next
1701 	 * call to return 0.
1702 	 */
1703 	switch (uio->uio_offset) {
1704 	case TMPFS_DIRCOOKIE_DOT:
1705 		error = tmpfs_dir_getdotdent(tm, node, uio);
1706 		if (error != 0)
1707 			return (error);
1708 		uio->uio_offset = off = TMPFS_DIRCOOKIE_DOTDOT;
1709 		if (cookies != NULL)
1710 			cookies[(*ncookies)++] = off;
1711 		/* FALLTHROUGH */
1712 	case TMPFS_DIRCOOKIE_DOTDOT:
1713 		de = tmpfs_dir_first(node, &dc);
1714 		off = tmpfs_dirent_cookie(de);
1715 		error = tmpfs_dir_getdotdotdent(tm, node, uio, off);
1716 		if (error != 0)
1717 			return (error);
1718 		uio->uio_offset = off;
1719 		if (cookies != NULL)
1720 			cookies[(*ncookies)++] = off;
1721 		/* EOF. */
1722 		if (de == NULL)
1723 			return (0);
1724 		break;
1725 	case TMPFS_DIRCOOKIE_EOF:
1726 		return (0);
1727 	default:
1728 		de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc);
1729 		if (de == NULL)
1730 			return (EINVAL);
1731 		if (cookies != NULL)
1732 			off = tmpfs_dirent_cookie(de);
1733 	}
1734 
1735 	/*
1736 	 * Read as much entries as possible; i.e., until we reach the end of the
1737 	 * directory or we exhaust uio space.
1738 	 */
1739 	do {
1740 		struct dirent d;
1741 
1742 		/*
1743 		 * Create a dirent structure representing the current tmpfs_node
1744 		 * and fill it.
1745 		 */
1746 		if (de->td_node == NULL) {
1747 			d.d_fileno = 1;
1748 			d.d_type = DT_WHT;
1749 		} else {
1750 			d.d_fileno = de->td_node->tn_id;
1751 			switch (de->td_node->tn_type) {
1752 			case VBLK:
1753 				d.d_type = DT_BLK;
1754 				break;
1755 
1756 			case VCHR:
1757 				d.d_type = DT_CHR;
1758 				break;
1759 
1760 			case VDIR:
1761 				d.d_type = DT_DIR;
1762 				break;
1763 
1764 			case VFIFO:
1765 				d.d_type = DT_FIFO;
1766 				break;
1767 
1768 			case VLNK:
1769 				d.d_type = DT_LNK;
1770 				break;
1771 
1772 			case VREG:
1773 				d.d_type = DT_REG;
1774 				break;
1775 
1776 			case VSOCK:
1777 				d.d_type = DT_SOCK;
1778 				break;
1779 
1780 			default:
1781 				panic("tmpfs_dir_getdents: type %p %d",
1782 				    de->td_node, (int)de->td_node->tn_type);
1783 			}
1784 		}
1785 		d.d_namlen = de->td_namelen;
1786 		MPASS(de->td_namelen < sizeof(d.d_name));
1787 		(void)memcpy(d.d_name, de->ud.td_name, de->td_namelen);
1788 		d.d_reclen = GENERIC_DIRSIZ(&d);
1789 
1790 		/*
1791 		 * Stop reading if the directory entry we are treating is bigger
1792 		 * than the amount of data that can be returned.
1793 		 */
1794 		if (d.d_reclen > uio->uio_resid) {
1795 			error = EJUSTRETURN;
1796 			break;
1797 		}
1798 
1799 		nde = tmpfs_dir_next(node, &dc);
1800 		d.d_off = tmpfs_dirent_cookie(nde);
1801 		dirent_terminate(&d);
1802 
1803 		/*
1804 		 * Copy the new dirent structure into the output buffer and
1805 		 * advance pointers.
1806 		 */
1807 		error = uiomove(&d, d.d_reclen, uio);
1808 		if (error == 0) {
1809 			de = nde;
1810 			if (cookies != NULL) {
1811 				off = tmpfs_dirent_cookie(de);
1812 				MPASS(*ncookies < maxcookies);
1813 				cookies[(*ncookies)++] = off;
1814 			}
1815 		}
1816 	} while (error == 0 && uio->uio_resid > 0 && de != NULL);
1817 
1818 	/* Skip setting off when using cookies as it is already done above. */
1819 	if (cookies == NULL)
1820 		off = tmpfs_dirent_cookie(de);
1821 
1822 	/* Update the offset and cache. */
1823 	uio->uio_offset = off;
1824 	node->tn_dir.tn_readdir_lastn = off;
1825 	node->tn_dir.tn_readdir_lastp = de;
1826 
1827 	tmpfs_set_accessed(tm, node);
1828 	return (error);
1829 }
1830 
1831 int
tmpfs_dir_whiteout_add(struct vnode * dvp,struct componentname * cnp)1832 tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
1833 {
1834 	struct tmpfs_dirent *de;
1835 	struct tmpfs_node *dnode;
1836 	int error;
1837 
1838 	error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
1839 	    cnp->cn_nameptr, cnp->cn_namelen, &de);
1840 	if (error != 0)
1841 		return (error);
1842 	dnode = VP_TO_TMPFS_DIR(dvp);
1843 	tmpfs_dir_attach(dvp, de);
1844 	dnode->tn_dir.tn_wht_size += sizeof(*de);
1845 	return (0);
1846 }
1847 
1848 void
tmpfs_dir_whiteout_remove(struct vnode * dvp,struct componentname * cnp)1849 tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
1850 {
1851 	struct tmpfs_dirent *de;
1852 	struct tmpfs_node *dnode;
1853 
1854 	dnode = VP_TO_TMPFS_DIR(dvp);
1855 	de = tmpfs_dir_lookup(dnode, NULL, cnp);
1856 	MPASS(de != NULL && de->td_node == NULL);
1857 	MPASS(dnode->tn_dir.tn_wht_size >= sizeof(*de));
1858 	dnode->tn_dir.tn_wht_size -= sizeof(*de);
1859 	tmpfs_dir_detach(dvp, de);
1860 	tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1861 }
1862 
1863 /*
1864  * Frees any dirents still associated with the directory represented
1865  * by dvp in preparation for the removal of the directory.  This is
1866  * required when removing a directory which contains only whiteout
1867  * entries.
1868  */
1869 void
tmpfs_dir_clear_whiteouts(struct vnode * dvp)1870 tmpfs_dir_clear_whiteouts(struct vnode *dvp)
1871 {
1872 	struct tmpfs_dir_cursor dc;
1873 	struct tmpfs_dirent *de;
1874 	struct tmpfs_node *dnode;
1875 
1876 	dnode = VP_TO_TMPFS_DIR(dvp);
1877 
1878 	while ((de = tmpfs_dir_first(dnode, &dc)) != NULL) {
1879 		KASSERT(de->td_node == NULL, ("%s: non-whiteout dirent %p",
1880 		    __func__, de));
1881 		dnode->tn_dir.tn_wht_size -= sizeof(*de);
1882 		tmpfs_dir_detach(dvp, de);
1883 		tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de);
1884 	}
1885 	MPASS(dnode->tn_size == 0);
1886 	MPASS(dnode->tn_dir.tn_wht_size == 0);
1887 }
1888 
1889 /*
1890  * Resizes the aobj associated with the regular file pointed to by 'vp' to the
1891  * size 'newsize'.  'vp' must point to a vnode that represents a regular file.
1892  * 'newsize' must be positive.
1893  *
1894  * Returns zero on success or an appropriate error code on failure.
1895  */
1896 int
tmpfs_reg_resize(struct vnode * vp,off_t newsize,boolean_t ignerr)1897 tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
1898 {
1899 	struct tmpfs_node *node;
1900 	vm_object_t uobj;
1901 	vm_pindex_t idx, newpages, oldpages;
1902 	off_t oldsize;
1903 	int base, error;
1904 
1905 	MPASS(vp->v_type == VREG);
1906 	MPASS(newsize >= 0);
1907 
1908 	node = VP_TO_TMPFS_NODE(vp);
1909 	uobj = node->tn_reg.tn_aobj;
1910 
1911 	/*
1912 	 * Convert the old and new sizes to the number of pages needed to
1913 	 * store them.  It may happen that we do not need to do anything
1914 	 * because the last allocated page can accommodate the change on
1915 	 * its own.
1916 	 */
1917 	oldsize = node->tn_size;
1918 	oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
1919 	MPASS(oldpages == uobj->size);
1920 	newpages = OFF_TO_IDX(newsize + PAGE_MASK);
1921 
1922 	if (__predict_true(newpages == oldpages && newsize >= oldsize)) {
1923 		node->tn_size = newsize;
1924 		return (0);
1925 	}
1926 
1927 	VM_OBJECT_WLOCK(uobj);
1928 	if (newsize < oldsize) {
1929 		/*
1930 		 * Zero the truncated part of the last page.
1931 		 */
1932 		base = newsize & PAGE_MASK;
1933 		if (base != 0) {
1934 			idx = OFF_TO_IDX(newsize);
1935 			error = tmpfs_partial_page_invalidate(uobj, idx, base,
1936 			    PAGE_SIZE, ignerr);
1937 			if (error != 0) {
1938 				VM_OBJECT_WUNLOCK(uobj);
1939 				return (error);
1940 			}
1941 		}
1942 
1943 		/*
1944 		 * Release any swap space and free any whole pages.
1945 		 */
1946 		if (newpages < oldpages)
1947 			vm_object_page_remove(uobj, newpages, 0, 0);
1948 	}
1949 	uobj->size = newpages;
1950 	VM_OBJECT_WUNLOCK(uobj);
1951 
1952 	node->tn_size = newsize;
1953 	return (0);
1954 }
1955 
1956 /*
1957  * Punch hole in the aobj associated with the regular file pointed to by 'vp'.
1958  * Requests completely beyond the end-of-file are converted to no-op.
1959  *
1960  * Returns 0 on success or error code from tmpfs_partial_page_invalidate() on
1961  * failure.
1962  */
1963 int
tmpfs_reg_punch_hole(struct vnode * vp,off_t * offset,off_t * length)1964 tmpfs_reg_punch_hole(struct vnode *vp, off_t *offset, off_t *length)
1965 {
1966 	struct tmpfs_node *node;
1967 	vm_object_t object;
1968 	vm_pindex_t pistart, pi, piend;
1969 	int startofs, endofs, end;
1970 	off_t off, len;
1971 	int error;
1972 
1973 	KASSERT(*length <= OFF_MAX - *offset, ("%s: offset + length overflows",
1974 	    __func__));
1975 	node = VP_TO_TMPFS_NODE(vp);
1976 	KASSERT(node->tn_type == VREG, ("%s: node is not regular file",
1977 	    __func__));
1978 	object = node->tn_reg.tn_aobj;
1979 	off = *offset;
1980 	len = omin(node->tn_size - off, *length);
1981 	startofs = off & PAGE_MASK;
1982 	endofs = (off + len) & PAGE_MASK;
1983 	pistart = OFF_TO_IDX(off);
1984 	piend = OFF_TO_IDX(off + len);
1985 	pi = OFF_TO_IDX((vm_ooffset_t)off + PAGE_MASK);
1986 	error = 0;
1987 
1988 	/* Handle the case when offset is on or beyond file size. */
1989 	if (len <= 0) {
1990 		*length = 0;
1991 		return (0);
1992 	}
1993 
1994 	VM_OBJECT_WLOCK(object);
1995 
1996 	/*
1997 	 * If there is a partial page at the beginning of the hole-punching
1998 	 * request, fill the partial page with zeroes.
1999 	 */
2000 	if (startofs != 0) {
2001 		end = pistart != piend ? PAGE_SIZE : endofs;
2002 		error = tmpfs_partial_page_invalidate(object, pistart, startofs,
2003 		    end, FALSE);
2004 		if (error != 0)
2005 			goto out;
2006 		off += end - startofs;
2007 		len -= end - startofs;
2008 	}
2009 
2010 	/*
2011 	 * Toss away the full pages in the affected area.
2012 	 */
2013 	if (pi < piend) {
2014 		vm_object_page_remove(object, pi, piend, 0);
2015 		off += IDX_TO_OFF(piend - pi);
2016 		len -= IDX_TO_OFF(piend - pi);
2017 	}
2018 
2019 	/*
2020 	 * If there is a partial page at the end of the hole-punching request,
2021 	 * fill the partial page with zeroes.
2022 	 */
2023 	if (endofs != 0 && pistart != piend) {
2024 		error = tmpfs_partial_page_invalidate(object, piend, 0, endofs,
2025 		    FALSE);
2026 		if (error != 0)
2027 			goto out;
2028 		off += endofs;
2029 		len -= endofs;
2030 	}
2031 
2032 out:
2033 	VM_OBJECT_WUNLOCK(object);
2034 	*offset = off;
2035 	*length = len;
2036 	return (error);
2037 }
2038 
2039 void
tmpfs_check_mtime(struct vnode * vp)2040 tmpfs_check_mtime(struct vnode *vp)
2041 {
2042 	struct tmpfs_node *node;
2043 	struct vm_object *obj;
2044 
2045 	ASSERT_VOP_ELOCKED(vp, "check_mtime");
2046 	if (vp->v_type != VREG)
2047 		return;
2048 	obj = vp->v_object;
2049 	KASSERT(obj->type == tmpfs_pager_type &&
2050 	    (obj->flags & (OBJ_SWAP | OBJ_TMPFS)) ==
2051 	    (OBJ_SWAP | OBJ_TMPFS), ("non-tmpfs obj"));
2052 	/* unlocked read */
2053 	if (obj->generation != obj->cleangeneration) {
2054 		VM_OBJECT_WLOCK(obj);
2055 		if (obj->generation != obj->cleangeneration) {
2056 			obj->cleangeneration = obj->generation;
2057 			node = VP_TO_TMPFS_NODE(vp);
2058 			node->tn_status |= TMPFS_NODE_MODIFIED |
2059 			    TMPFS_NODE_CHANGED;
2060 		}
2061 		VM_OBJECT_WUNLOCK(obj);
2062 	}
2063 }
2064 
2065 /*
2066  * Change flags of the given vnode.
2067  * Caller should execute tmpfs_update on vp after a successful execution.
2068  * The vnode must be locked on entry and remain locked on exit.
2069  */
2070 int
tmpfs_chflags(struct vnode * vp,u_long flags,struct ucred * cred,struct thread * td)2071 tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred,
2072     struct thread *td)
2073 {
2074 	int error;
2075 	struct tmpfs_node *node;
2076 
2077 	ASSERT_VOP_ELOCKED(vp, "chflags");
2078 
2079 	node = VP_TO_TMPFS_NODE(vp);
2080 
2081 	if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK |
2082 	    UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP |
2083 	    UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE |
2084 	    UF_SPARSE | UF_SYSTEM)) != 0)
2085 		return (EOPNOTSUPP);
2086 
2087 	/* Disallow this operation if the file system is mounted read-only. */
2088 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2089 		return (EROFS);
2090 
2091 	/*
2092 	 * Callers may only modify the file flags on objects they
2093 	 * have VADMIN rights for.
2094 	 */
2095 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2096 		return (error);
2097 	/*
2098 	 * Unprivileged processes are not permitted to unset system
2099 	 * flags, or modify flags if any system flags are set.
2100 	 */
2101 	if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) {
2102 		if (node->tn_flags &
2103 		    (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
2104 			error = securelevel_gt(cred, 0);
2105 			if (error)
2106 				return (error);
2107 		}
2108 	} else {
2109 		if (node->tn_flags &
2110 		    (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
2111 		    ((flags ^ node->tn_flags) & SF_SETTABLE))
2112 			return (EPERM);
2113 	}
2114 	node->tn_flags = flags;
2115 	node->tn_status |= TMPFS_NODE_CHANGED;
2116 
2117 	ASSERT_VOP_ELOCKED(vp, "chflags2");
2118 
2119 	return (0);
2120 }
2121 
2122 /*
2123  * Change access mode on the given vnode.
2124  * Caller should execute tmpfs_update on vp after a successful execution.
2125  * The vnode must be locked on entry and remain locked on exit.
2126  */
2127 int
tmpfs_chmod(struct vnode * vp,mode_t mode,struct ucred * cred,struct thread * td)2128 tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred,
2129     struct thread *td)
2130 {
2131 	int error;
2132 	struct tmpfs_node *node;
2133 	mode_t newmode;
2134 
2135 	ASSERT_VOP_ELOCKED(vp, "chmod");
2136 	ASSERT_VOP_IN_SEQC(vp);
2137 
2138 	node = VP_TO_TMPFS_NODE(vp);
2139 
2140 	/* Disallow this operation if the file system is mounted read-only. */
2141 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2142 		return (EROFS);
2143 
2144 	/* Immutable or append-only files cannot be modified, either. */
2145 	if (node->tn_flags & (IMMUTABLE | APPEND))
2146 		return (EPERM);
2147 
2148 	/*
2149 	 * To modify the permissions on a file, must possess VADMIN
2150 	 * for that file.
2151 	 */
2152 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2153 		return (error);
2154 
2155 	/*
2156 	 * Privileged processes may set the sticky bit on non-directories,
2157 	 * as well as set the setgid bit on a file with a group that the
2158 	 * process is not a member of.
2159 	 */
2160 	if (vp->v_type != VDIR && (mode & S_ISTXT)) {
2161 		if (priv_check_cred(cred, PRIV_VFS_STICKYFILE))
2162 			return (EFTYPE);
2163 	}
2164 	if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
2165 		error = priv_check_cred(cred, PRIV_VFS_SETGID);
2166 		if (error)
2167 			return (error);
2168 	}
2169 
2170 	newmode = node->tn_mode & ~ALLPERMS;
2171 	newmode |= mode & ALLPERMS;
2172 	atomic_store_short(&node->tn_mode, newmode);
2173 
2174 	node->tn_status |= TMPFS_NODE_CHANGED;
2175 
2176 	ASSERT_VOP_ELOCKED(vp, "chmod2");
2177 
2178 	return (0);
2179 }
2180 
2181 /*
2182  * Change ownership of the given vnode.  At least one of uid or gid must
2183  * be different than VNOVAL.  If one is set to that value, the attribute
2184  * is unchanged.
2185  * Caller should execute tmpfs_update on vp after a successful execution.
2186  * The vnode must be locked on entry and remain locked on exit.
2187  */
2188 int
tmpfs_chown(struct vnode * vp,uid_t uid,gid_t gid,struct ucred * cred,struct thread * td)2189 tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
2190     struct thread *td)
2191 {
2192 	int error;
2193 	struct tmpfs_node *node;
2194 	uid_t ouid;
2195 	gid_t ogid;
2196 	mode_t newmode;
2197 
2198 	ASSERT_VOP_ELOCKED(vp, "chown");
2199 	ASSERT_VOP_IN_SEQC(vp);
2200 
2201 	node = VP_TO_TMPFS_NODE(vp);
2202 
2203 	/* Assign default values if they are unknown. */
2204 	MPASS(uid != VNOVAL || gid != VNOVAL);
2205 	if (uid == VNOVAL)
2206 		uid = node->tn_uid;
2207 	if (gid == VNOVAL)
2208 		gid = node->tn_gid;
2209 	MPASS(uid != VNOVAL && gid != VNOVAL);
2210 
2211 	/* Disallow this operation if the file system is mounted read-only. */
2212 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2213 		return (EROFS);
2214 
2215 	/* Immutable or append-only files cannot be modified, either. */
2216 	if (node->tn_flags & (IMMUTABLE | APPEND))
2217 		return (EPERM);
2218 
2219 	/*
2220 	 * To modify the ownership of a file, must possess VADMIN for that
2221 	 * file.
2222 	 */
2223 	if ((error = VOP_ACCESS(vp, VADMIN, cred, td)))
2224 		return (error);
2225 
2226 	/*
2227 	 * To change the owner of a file, or change the group of a file to a
2228 	 * group of which we are not a member, the caller must have
2229 	 * privilege.
2230 	 */
2231 	if ((uid != node->tn_uid ||
2232 	    (gid != node->tn_gid && !groupmember(gid, cred))) &&
2233 	    (error = priv_check_cred(cred, PRIV_VFS_CHOWN)))
2234 		return (error);
2235 
2236 	ogid = node->tn_gid;
2237 	ouid = node->tn_uid;
2238 
2239 	node->tn_uid = uid;
2240 	node->tn_gid = gid;
2241 
2242 	node->tn_status |= TMPFS_NODE_CHANGED;
2243 
2244 	if ((node->tn_mode & (S_ISUID | S_ISGID)) != 0 &&
2245 	    (ouid != uid || ogid != gid)) {
2246 		if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) {
2247 			newmode = node->tn_mode & ~(S_ISUID | S_ISGID);
2248 			atomic_store_short(&node->tn_mode, newmode);
2249 		}
2250 	}
2251 
2252 	ASSERT_VOP_ELOCKED(vp, "chown2");
2253 
2254 	return (0);
2255 }
2256 
2257 /*
2258  * Change size of the given vnode.
2259  * Caller should execute tmpfs_update on vp after a successful execution.
2260  * The vnode must be locked on entry and remain locked on exit.
2261  */
2262 int
tmpfs_chsize(struct vnode * vp,u_quad_t size,struct ucred * cred,struct thread * td)2263 tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
2264     struct thread *td)
2265 {
2266 	int error;
2267 	struct tmpfs_node *node;
2268 
2269 	ASSERT_VOP_ELOCKED(vp, "chsize");
2270 
2271 	node = VP_TO_TMPFS_NODE(vp);
2272 
2273 	/* Decide whether this is a valid operation based on the file type. */
2274 	error = 0;
2275 	switch (vp->v_type) {
2276 	case VDIR:
2277 		return (EISDIR);
2278 
2279 	case VREG:
2280 		if (vp->v_mount->mnt_flag & MNT_RDONLY)
2281 			return (EROFS);
2282 		break;
2283 
2284 	case VBLK:
2285 		/* FALLTHROUGH */
2286 	case VCHR:
2287 		/* FALLTHROUGH */
2288 	case VFIFO:
2289 		/*
2290 		 * Allow modifications of special files even if in the file
2291 		 * system is mounted read-only (we are not modifying the
2292 		 * files themselves, but the objects they represent).
2293 		 */
2294 		return (0);
2295 
2296 	default:
2297 		/* Anything else is unsupported. */
2298 		return (EOPNOTSUPP);
2299 	}
2300 
2301 	/* Immutable or append-only files cannot be modified, either. */
2302 	if (node->tn_flags & (IMMUTABLE | APPEND))
2303 		return (EPERM);
2304 
2305 	error = vn_rlimit_trunc(size, td);
2306 	if (error != 0)
2307 		return (error);
2308 
2309 	error = tmpfs_truncate(vp, size);
2310 	/*
2311 	 * tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
2312 	 * for us, as will update tn_status; no need to do that here.
2313 	 */
2314 
2315 	ASSERT_VOP_ELOCKED(vp, "chsize2");
2316 
2317 	return (error);
2318 }
2319 
2320 /*
2321  * Change access and modification times of the given vnode.
2322  * Caller should execute tmpfs_update on vp after a successful execution.
2323  * The vnode must be locked on entry and remain locked on exit.
2324  */
2325 int
tmpfs_chtimes(struct vnode * vp,struct vattr * vap,struct ucred * cred,struct thread * td)2326 tmpfs_chtimes(struct vnode *vp, struct vattr *vap,
2327     struct ucred *cred, struct thread *td)
2328 {
2329 	int error;
2330 	struct tmpfs_node *node;
2331 
2332 	ASSERT_VOP_ELOCKED(vp, "chtimes");
2333 
2334 	node = VP_TO_TMPFS_NODE(vp);
2335 
2336 	/* Disallow this operation if the file system is mounted read-only. */
2337 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
2338 		return (EROFS);
2339 
2340 	/* Immutable or append-only files cannot be modified, either. */
2341 	if (node->tn_flags & (IMMUTABLE | APPEND))
2342 		return (EPERM);
2343 
2344 	error = vn_utimes_perm(vp, vap, cred, td);
2345 	if (error != 0)
2346 		return (error);
2347 
2348 	if (vap->va_atime.tv_sec != VNOVAL)
2349 		node->tn_accessed = true;
2350 	if (vap->va_mtime.tv_sec != VNOVAL)
2351 		node->tn_status |= TMPFS_NODE_MODIFIED;
2352 	if (vap->va_birthtime.tv_sec != VNOVAL)
2353 		node->tn_status |= TMPFS_NODE_MODIFIED;
2354 	tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime);
2355 	if (vap->va_birthtime.tv_sec != VNOVAL)
2356 		node->tn_birthtime = vap->va_birthtime;
2357 	ASSERT_VOP_ELOCKED(vp, "chtimes2");
2358 
2359 	return (0);
2360 }
2361 
2362 void
tmpfs_set_status(struct tmpfs_mount * tm,struct tmpfs_node * node,int status)2363 tmpfs_set_status(struct tmpfs_mount *tm, struct tmpfs_node *node, int status)
2364 {
2365 
2366 	if ((node->tn_status & status) == status || tm->tm_ronly)
2367 		return;
2368 	TMPFS_NODE_LOCK(node);
2369 	node->tn_status |= status;
2370 	TMPFS_NODE_UNLOCK(node);
2371 }
2372 
2373 void
tmpfs_set_accessed(struct tmpfs_mount * tm,struct tmpfs_node * node)2374 tmpfs_set_accessed(struct tmpfs_mount *tm, struct tmpfs_node *node)
2375 {
2376 	if (node->tn_accessed || tm->tm_ronly)
2377 		return;
2378 	atomic_store_8(&node->tn_accessed, true);
2379 }
2380 
2381 /* Sync timestamps */
2382 void
tmpfs_itimes(struct vnode * vp,const struct timespec * acc,const struct timespec * mod)2383 tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
2384     const struct timespec *mod)
2385 {
2386 	struct tmpfs_node *node;
2387 	struct timespec now;
2388 
2389 	ASSERT_VOP_LOCKED(vp, "tmpfs_itimes");
2390 	node = VP_TO_TMPFS_NODE(vp);
2391 
2392 	if (!node->tn_accessed &&
2393 	    (node->tn_status & (TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0)
2394 		return;
2395 
2396 	vfs_timestamp(&now);
2397 	TMPFS_NODE_LOCK(node);
2398 	if (node->tn_accessed) {
2399 		if (acc == NULL)
2400 			 acc = &now;
2401 		node->tn_atime = *acc;
2402 	}
2403 	if (node->tn_status & TMPFS_NODE_MODIFIED) {
2404 		if (mod == NULL)
2405 			mod = &now;
2406 		node->tn_mtime = *mod;
2407 	}
2408 	if (node->tn_status & TMPFS_NODE_CHANGED)
2409 		node->tn_ctime = now;
2410 	node->tn_status &= ~(TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
2411 	node->tn_accessed = false;
2412 	TMPFS_NODE_UNLOCK(node);
2413 
2414 	/* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */
2415 	random_harvest_queue(node, sizeof(*node), RANDOM_FS_ATIME);
2416 }
2417 
2418 int
tmpfs_truncate(struct vnode * vp,off_t length)2419 tmpfs_truncate(struct vnode *vp, off_t length)
2420 {
2421 	struct tmpfs_node *node;
2422 	int error;
2423 
2424 	if (length < 0)
2425 		return (EINVAL);
2426 	if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
2427 		return (EFBIG);
2428 
2429 	node = VP_TO_TMPFS_NODE(vp);
2430 	error = node->tn_size == length ? 0 : tmpfs_reg_resize(vp, length,
2431 	    FALSE);
2432 	if (error == 0)
2433 		node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
2434 	tmpfs_update(vp);
2435 
2436 	return (error);
2437 }
2438 
2439 static __inline int
tmpfs_dirtree_cmp(struct tmpfs_dirent * a,struct tmpfs_dirent * b)2440 tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b)
2441 {
2442 	if (a->td_hash > b->td_hash)
2443 		return (1);
2444 	else if (a->td_hash < b->td_hash)
2445 		return (-1);
2446 	return (0);
2447 }
2448 
2449 RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp);
2450