xref: /freebsd/sys/kern/sys_generic.c (revision b0580c7a67423efb0c2bff7081ff9747d257c830)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_capsicum.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/capsicum.h>
45 #include <sys/filedesc.h>
46 #include <sys/filio.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/lock.h>
50 #include <sys/proc.h>
51 #include <sys/signalvar.h>
52 #include <sys/protosw.h>
53 #include <sys/socketvar.h>
54 #include <sys/uio.h>
55 #include <sys/eventfd.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/limits.h>
59 #include <sys/malloc.h>
60 #include <sys/poll.h>
61 #include <sys/resourcevar.h>
62 #include <sys/selinfo.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/specialfd.h>
65 #include <sys/syscallsubr.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/vnode.h>
69 #include <sys/unistd.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/condvar.h>
73 #ifdef KTRACE
74 #include <sys/ktrace.h>
75 #endif
76 
77 #include <security/audit/audit.h>
78 
79 /*
80  * The following macro defines how many bytes will be allocated from
81  * the stack instead of memory allocated when passing the IOCTL data
82  * structures from userspace and to the kernel. Some IOCTLs having
83  * small data structures are used very frequently and this small
84  * buffer on the stack gives a significant speedup improvement for
85  * those requests. The value of this define should be greater or equal
86  * to 64 bytes and should also be power of two. The data structure is
87  * currently hard-aligned to a 8-byte boundary on the stack. This
88  * should currently be sufficient for all supported platforms.
89  */
90 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
91 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
92 
93 #ifdef __LP64__
94 static int iosize_max_clamp = 0;
95 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
96     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
97 static int devfs_iosize_max_clamp = 1;
98 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
99     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
100 #endif
101 
102 /*
103  * Assert that the return value of read(2) and write(2) syscalls fits
104  * into a register.  If not, an architecture will need to provide the
105  * usermode wrappers to reconstruct the result.
106  */
107 CTASSERT(sizeof(register_t) >= sizeof(size_t));
108 
109 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
110 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
111 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
112 
113 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
114 		    u_int);
115 static int	pollscan(struct thread *, struct pollfd *, u_int);
116 static int	pollrescan(struct thread *);
117 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
118 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
119 static void	selfdalloc(struct thread *, void *);
120 static void	selfdfree(struct seltd *, struct selfd *);
121 static int	dofileread(struct thread *, int, struct file *, struct uio *,
122 		    off_t, int);
123 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
124 		    off_t, int);
125 static void	doselwakeup(struct selinfo *, int);
126 static void	seltdinit(struct thread *);
127 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
128 static void	seltdclear(struct thread *);
129 
130 /*
131  * One seltd per-thread allocated on demand as needed.
132  *
133  *	t - protected by st_mtx
134  * 	k - Only accessed by curthread or read-only
135  */
136 struct seltd {
137 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
138 	struct selfd		*st_free1;	/* (k) free fd for read set. */
139 	struct selfd		*st_free2;	/* (k) free fd for write set. */
140 	struct mtx		st_mtx;		/* Protects struct seltd */
141 	struct cv		st_wait;	/* (t) Wait channel. */
142 	int			st_flags;	/* (t) SELTD_ flags. */
143 };
144 
145 #define	SELTD_PENDING	0x0001			/* We have pending events. */
146 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
147 
148 /*
149  * One selfd allocated per-thread per-file-descriptor.
150  *	f - protected by sf_mtx
151  */
152 struct selfd {
153 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
154 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
155 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
156 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
157 	struct seltd		*sf_td;		/* (k) owning seltd. */
158 	void			*sf_cookie;	/* (k) fd or pollfd. */
159 };
160 
161 MALLOC_DEFINE(M_SELFD, "selfd", "selfd");
162 static struct mtx_pool *mtxpool_select;
163 
164 #ifdef __LP64__
165 size_t
devfs_iosize_max(void)166 devfs_iosize_max(void)
167 {
168 
169 	return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
170 	    INT_MAX : SSIZE_MAX);
171 }
172 
173 size_t
iosize_max(void)174 iosize_max(void)
175 {
176 
177 	return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
178 	    INT_MAX : SSIZE_MAX);
179 }
180 #endif
181 
182 #ifndef _SYS_SYSPROTO_H_
183 struct read_args {
184 	int	fd;
185 	void	*buf;
186 	size_t	nbyte;
187 };
188 #endif
189 int
sys_read(struct thread * td,struct read_args * uap)190 sys_read(struct thread *td, struct read_args *uap)
191 {
192 	struct uio auio;
193 	struct iovec aiov;
194 	int error;
195 
196 	if (uap->nbyte > IOSIZE_MAX)
197 		return (EINVAL);
198 	aiov.iov_base = uap->buf;
199 	aiov.iov_len = uap->nbyte;
200 	auio.uio_iov = &aiov;
201 	auio.uio_iovcnt = 1;
202 	auio.uio_resid = uap->nbyte;
203 	auio.uio_segflg = UIO_USERSPACE;
204 	error = kern_readv(td, uap->fd, &auio);
205 	return (error);
206 }
207 
208 /*
209  * Positioned read system call
210  */
211 #ifndef _SYS_SYSPROTO_H_
212 struct pread_args {
213 	int	fd;
214 	void	*buf;
215 	size_t	nbyte;
216 	int	pad;
217 	off_t	offset;
218 };
219 #endif
220 int
sys_pread(struct thread * td,struct pread_args * uap)221 sys_pread(struct thread *td, struct pread_args *uap)
222 {
223 
224 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
225 }
226 
227 int
kern_pread(struct thread * td,int fd,void * buf,size_t nbyte,off_t offset)228 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
229 {
230 	struct uio auio;
231 	struct iovec aiov;
232 	int error;
233 
234 	if (nbyte > IOSIZE_MAX)
235 		return (EINVAL);
236 	aiov.iov_base = buf;
237 	aiov.iov_len = nbyte;
238 	auio.uio_iov = &aiov;
239 	auio.uio_iovcnt = 1;
240 	auio.uio_resid = nbyte;
241 	auio.uio_segflg = UIO_USERSPACE;
242 	error = kern_preadv(td, fd, &auio, offset);
243 	return (error);
244 }
245 
246 #if defined(COMPAT_FREEBSD6)
247 int
freebsd6_pread(struct thread * td,struct freebsd6_pread_args * uap)248 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
249 {
250 
251 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
252 }
253 #endif
254 
255 /*
256  * Scatter read system call.
257  */
258 #ifndef _SYS_SYSPROTO_H_
259 struct readv_args {
260 	int	fd;
261 	struct	iovec *iovp;
262 	u_int	iovcnt;
263 };
264 #endif
265 int
sys_readv(struct thread * td,struct readv_args * uap)266 sys_readv(struct thread *td, struct readv_args *uap)
267 {
268 	struct uio *auio;
269 	int error;
270 
271 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
272 	if (error)
273 		return (error);
274 	error = kern_readv(td, uap->fd, auio);
275 	freeuio(auio);
276 	return (error);
277 }
278 
279 int
kern_readv(struct thread * td,int fd,struct uio * auio)280 kern_readv(struct thread *td, int fd, struct uio *auio)
281 {
282 	struct file *fp;
283 	int error;
284 
285 	error = fget_read(td, fd, &cap_read_rights, &fp);
286 	if (error)
287 		return (error);
288 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
289 	fdrop(fp, td);
290 	return (error);
291 }
292 
293 /*
294  * Scatter positioned read system call.
295  */
296 #ifndef _SYS_SYSPROTO_H_
297 struct preadv_args {
298 	int	fd;
299 	struct	iovec *iovp;
300 	u_int	iovcnt;
301 	off_t	offset;
302 };
303 #endif
304 int
sys_preadv(struct thread * td,struct preadv_args * uap)305 sys_preadv(struct thread *td, struct preadv_args *uap)
306 {
307 	struct uio *auio;
308 	int error;
309 
310 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
311 	if (error)
312 		return (error);
313 	error = kern_preadv(td, uap->fd, auio, uap->offset);
314 	freeuio(auio);
315 	return (error);
316 }
317 
318 int
kern_preadv(struct thread * td,int fd,struct uio * auio,off_t offset)319 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
320 {
321 	struct file *fp;
322 	int error;
323 
324 	error = fget_read(td, fd, &cap_pread_rights, &fp);
325 	if (error)
326 		return (error);
327 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
328 		error = ESPIPE;
329 	else if (offset < 0 &&
330 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
331 		error = EINVAL;
332 	else
333 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
334 	fdrop(fp, td);
335 	return (error);
336 }
337 
338 /*
339  * Common code for readv and preadv that reads data in
340  * from a file using the passed in uio, offset, and flags.
341  */
342 static int
dofileread(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)343 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
344     off_t offset, int flags)
345 {
346 	ssize_t cnt;
347 	int error;
348 #ifdef KTRACE
349 	struct uio *ktruio = NULL;
350 #endif
351 
352 	AUDIT_ARG_FD(fd);
353 
354 	/* Finish zero length reads right here */
355 	if (auio->uio_resid == 0) {
356 		td->td_retval[0] = 0;
357 		return (0);
358 	}
359 	auio->uio_rw = UIO_READ;
360 	auio->uio_offset = offset;
361 	auio->uio_td = td;
362 #ifdef KTRACE
363 	if (KTRPOINT(td, KTR_GENIO))
364 		ktruio = cloneuio(auio);
365 #endif
366 	cnt = auio->uio_resid;
367 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
368 		if (auio->uio_resid != cnt && (error == ERESTART ||
369 		    error == EINTR || error == EWOULDBLOCK))
370 			error = 0;
371 	}
372 	cnt -= auio->uio_resid;
373 #ifdef KTRACE
374 	if (ktruio != NULL) {
375 		ktruio->uio_resid = cnt;
376 		ktrgenio(fd, UIO_READ, ktruio, error);
377 	}
378 #endif
379 	td->td_retval[0] = cnt;
380 	return (error);
381 }
382 
383 #ifndef _SYS_SYSPROTO_H_
384 struct write_args {
385 	int	fd;
386 	const void *buf;
387 	size_t	nbyte;
388 };
389 #endif
390 int
sys_write(struct thread * td,struct write_args * uap)391 sys_write(struct thread *td, struct write_args *uap)
392 {
393 	struct uio auio;
394 	struct iovec aiov;
395 	int error;
396 
397 	if (uap->nbyte > IOSIZE_MAX)
398 		return (EINVAL);
399 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
400 	aiov.iov_len = uap->nbyte;
401 	auio.uio_iov = &aiov;
402 	auio.uio_iovcnt = 1;
403 	auio.uio_resid = uap->nbyte;
404 	auio.uio_segflg = UIO_USERSPACE;
405 	error = kern_writev(td, uap->fd, &auio);
406 	return (error);
407 }
408 
409 /*
410  * Positioned write system call.
411  */
412 #ifndef _SYS_SYSPROTO_H_
413 struct pwrite_args {
414 	int	fd;
415 	const void *buf;
416 	size_t	nbyte;
417 	int	pad;
418 	off_t	offset;
419 };
420 #endif
421 int
sys_pwrite(struct thread * td,struct pwrite_args * uap)422 sys_pwrite(struct thread *td, struct pwrite_args *uap)
423 {
424 
425 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
426 }
427 
428 int
kern_pwrite(struct thread * td,int fd,const void * buf,size_t nbyte,off_t offset)429 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
430     off_t offset)
431 {
432 	struct uio auio;
433 	struct iovec aiov;
434 	int error;
435 
436 	if (nbyte > IOSIZE_MAX)
437 		return (EINVAL);
438 	aiov.iov_base = (void *)(uintptr_t)buf;
439 	aiov.iov_len = nbyte;
440 	auio.uio_iov = &aiov;
441 	auio.uio_iovcnt = 1;
442 	auio.uio_resid = nbyte;
443 	auio.uio_segflg = UIO_USERSPACE;
444 	error = kern_pwritev(td, fd, &auio, offset);
445 	return (error);
446 }
447 
448 #if defined(COMPAT_FREEBSD6)
449 int
freebsd6_pwrite(struct thread * td,struct freebsd6_pwrite_args * uap)450 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
451 {
452 
453 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
454 }
455 #endif
456 
457 /*
458  * Gather write system call.
459  */
460 #ifndef _SYS_SYSPROTO_H_
461 struct writev_args {
462 	int	fd;
463 	struct	iovec *iovp;
464 	u_int	iovcnt;
465 };
466 #endif
467 int
sys_writev(struct thread * td,struct writev_args * uap)468 sys_writev(struct thread *td, struct writev_args *uap)
469 {
470 	struct uio *auio;
471 	int error;
472 
473 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
474 	if (error)
475 		return (error);
476 	error = kern_writev(td, uap->fd, auio);
477 	freeuio(auio);
478 	return (error);
479 }
480 
481 int
kern_writev(struct thread * td,int fd,struct uio * auio)482 kern_writev(struct thread *td, int fd, struct uio *auio)
483 {
484 	struct file *fp;
485 	int error;
486 
487 	error = fget_write(td, fd, &cap_write_rights, &fp);
488 	if (error)
489 		return (error);
490 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
491 	fdrop(fp, td);
492 	return (error);
493 }
494 
495 /*
496  * Gather positioned write system call.
497  */
498 #ifndef _SYS_SYSPROTO_H_
499 struct pwritev_args {
500 	int	fd;
501 	struct	iovec *iovp;
502 	u_int	iovcnt;
503 	off_t	offset;
504 };
505 #endif
506 int
sys_pwritev(struct thread * td,struct pwritev_args * uap)507 sys_pwritev(struct thread *td, struct pwritev_args *uap)
508 {
509 	struct uio *auio;
510 	int error;
511 
512 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
513 	if (error)
514 		return (error);
515 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
516 	freeuio(auio);
517 	return (error);
518 }
519 
520 int
kern_pwritev(struct thread * td,int fd,struct uio * auio,off_t offset)521 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
522 {
523 	struct file *fp;
524 	int error;
525 
526 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
527 	if (error)
528 		return (error);
529 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
530 		error = ESPIPE;
531 	else if (offset < 0 &&
532 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
533 		error = EINVAL;
534 	else
535 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
536 	fdrop(fp, td);
537 	return (error);
538 }
539 
540 /*
541  * Common code for writev and pwritev that writes data to
542  * a file using the passed in uio, offset, and flags.
543  */
544 static int
dofilewrite(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)545 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
546     off_t offset, int flags)
547 {
548 	ssize_t cnt;
549 	int error;
550 #ifdef KTRACE
551 	struct uio *ktruio = NULL;
552 #endif
553 
554 	AUDIT_ARG_FD(fd);
555 	auio->uio_rw = UIO_WRITE;
556 	auio->uio_td = td;
557 	auio->uio_offset = offset;
558 #ifdef KTRACE
559 	if (KTRPOINT(td, KTR_GENIO))
560 		ktruio = cloneuio(auio);
561 #endif
562 	cnt = auio->uio_resid;
563 	error = fo_write(fp, auio, td->td_ucred, flags, td);
564 	/*
565 	 * Socket layer is responsible for special error handling,
566 	 * see sousrsend().
567 	 */
568 	if (error != 0 && fp->f_type != DTYPE_SOCKET) {
569 		if (auio->uio_resid != cnt && (error == ERESTART ||
570 		    error == EINTR || error == EWOULDBLOCK))
571 			error = 0;
572 		if (error == EPIPE) {
573 			PROC_LOCK(td->td_proc);
574 			tdsignal(td, SIGPIPE);
575 			PROC_UNLOCK(td->td_proc);
576 		}
577 	}
578 	cnt -= auio->uio_resid;
579 #ifdef KTRACE
580 	if (ktruio != NULL) {
581 		if (error == 0)
582 			ktruio->uio_resid = cnt;
583 		ktrgenio(fd, UIO_WRITE, ktruio, error);
584 	}
585 #endif
586 	td->td_retval[0] = cnt;
587 	return (error);
588 }
589 
590 /*
591  * Truncate a file given a file descriptor.
592  *
593  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
594  * descriptor isn't writable.
595  */
596 int
kern_ftruncate(struct thread * td,int fd,off_t length)597 kern_ftruncate(struct thread *td, int fd, off_t length)
598 {
599 	struct file *fp;
600 	int error;
601 
602 	AUDIT_ARG_FD(fd);
603 	if (length < 0)
604 		return (EINVAL);
605 	error = fget(td, fd, &cap_ftruncate_rights, &fp);
606 	if (error)
607 		return (error);
608 	AUDIT_ARG_FILE(td->td_proc, fp);
609 	if (!(fp->f_flag & FWRITE)) {
610 		fdrop(fp, td);
611 		return (EINVAL);
612 	}
613 	error = fo_truncate(fp, length, td->td_ucred, td);
614 	fdrop(fp, td);
615 	return (error);
616 }
617 
618 #ifndef _SYS_SYSPROTO_H_
619 struct ftruncate_args {
620 	int	fd;
621 	int	pad;
622 	off_t	length;
623 };
624 #endif
625 int
sys_ftruncate(struct thread * td,struct ftruncate_args * uap)626 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
627 {
628 
629 	return (kern_ftruncate(td, uap->fd, uap->length));
630 }
631 
632 #if defined(COMPAT_43)
633 #ifndef _SYS_SYSPROTO_H_
634 struct oftruncate_args {
635 	int	fd;
636 	long	length;
637 };
638 #endif
639 int
oftruncate(struct thread * td,struct oftruncate_args * uap)640 oftruncate(struct thread *td, struct oftruncate_args *uap)
641 {
642 
643 	return (kern_ftruncate(td, uap->fd, uap->length));
644 }
645 #endif /* COMPAT_43 */
646 
647 #ifndef _SYS_SYSPROTO_H_
648 struct ioctl_args {
649 	int	fd;
650 	u_long	com;
651 	caddr_t	data;
652 };
653 #endif
654 /* ARGSUSED */
655 int
sys_ioctl(struct thread * td,struct ioctl_args * uap)656 sys_ioctl(struct thread *td, struct ioctl_args *uap)
657 {
658 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
659 	uint32_t com;
660 	int arg, error;
661 	u_int size;
662 	caddr_t data;
663 
664 #ifdef INVARIANTS
665 	if (uap->com > 0xffffffff) {
666 		printf(
667 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
668 		    td->td_proc->p_pid, td->td_name, uap->com);
669 	}
670 #endif
671 	com = (uint32_t)uap->com;
672 
673 	/*
674 	 * Interpret high order word to find amount of data to be
675 	 * copied to/from the user's address space.
676 	 */
677 	size = IOCPARM_LEN(com);
678 	if ((size > IOCPARM_MAX) ||
679 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
680 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
681 	    ((com & IOC_OUT) && size == 0) ||
682 #else
683 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
684 #endif
685 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
686 		return (ENOTTY);
687 
688 	if (size > 0) {
689 		if (com & IOC_VOID) {
690 			/* Integer argument. */
691 			arg = (intptr_t)uap->data;
692 			data = (void *)&arg;
693 			size = 0;
694 		} else {
695 			if (size > SYS_IOCTL_SMALL_SIZE)
696 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
697 			else
698 				data = smalldata;
699 		}
700 	} else
701 		data = (void *)&uap->data;
702 	if (com & IOC_IN) {
703 		error = copyin(uap->data, data, (u_int)size);
704 		if (error != 0)
705 			goto out;
706 	} else if (com & IOC_OUT) {
707 		/*
708 		 * Zero the buffer so the user always
709 		 * gets back something deterministic.
710 		 */
711 		bzero(data, size);
712 	}
713 
714 	error = kern_ioctl(td, uap->fd, com, data);
715 
716 	if (error == 0 && (com & IOC_OUT))
717 		error = copyout(data, uap->data, (u_int)size);
718 
719 out:
720 	if (size > SYS_IOCTL_SMALL_SIZE)
721 		free(data, M_IOCTLOPS);
722 	return (error);
723 }
724 
725 int
kern_ioctl(struct thread * td,int fd,u_long com,caddr_t data)726 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
727 {
728 	struct file *fp;
729 	struct filedesc *fdp;
730 	int error, tmp, locked;
731 
732 	AUDIT_ARG_FD(fd);
733 	AUDIT_ARG_CMD(com);
734 
735 	fdp = td->td_proc->p_fd;
736 
737 	switch (com) {
738 	case FIONCLEX:
739 	case FIOCLEX:
740 		FILEDESC_XLOCK(fdp);
741 		locked = LA_XLOCKED;
742 		break;
743 	default:
744 #ifdef CAPABILITIES
745 		FILEDESC_SLOCK(fdp);
746 		locked = LA_SLOCKED;
747 #else
748 		locked = LA_UNLOCKED;
749 #endif
750 		break;
751 	}
752 
753 #ifdef CAPABILITIES
754 	if ((fp = fget_noref(fdp, fd)) == NULL) {
755 		error = EBADF;
756 		goto out;
757 	}
758 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
759 		fp = NULL;	/* fhold() was not called yet */
760 		goto out;
761 	}
762 	if (!fhold(fp)) {
763 		error = EBADF;
764 		fp = NULL;
765 		goto out;
766 	}
767 	if (locked == LA_SLOCKED) {
768 		FILEDESC_SUNLOCK(fdp);
769 		locked = LA_UNLOCKED;
770 	}
771 #else
772 	error = fget(td, fd, &cap_ioctl_rights, &fp);
773 	if (error != 0) {
774 		fp = NULL;
775 		goto out;
776 	}
777 #endif
778 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
779 		error = EBADF;
780 		goto out;
781 	}
782 
783 	switch (com) {
784 	case FIONCLEX:
785 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
786 		goto out;
787 	case FIOCLEX:
788 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
789 		goto out;
790 	case FIONBIO:
791 		if ((tmp = *(int *)data))
792 			atomic_set_int(&fp->f_flag, FNONBLOCK);
793 		else
794 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
795 		data = (void *)&tmp;
796 		break;
797 	case FIOASYNC:
798 		if ((tmp = *(int *)data))
799 			atomic_set_int(&fp->f_flag, FASYNC);
800 		else
801 			atomic_clear_int(&fp->f_flag, FASYNC);
802 		data = (void *)&tmp;
803 		break;
804 	}
805 
806 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
807 out:
808 	switch (locked) {
809 	case LA_XLOCKED:
810 		FILEDESC_XUNLOCK(fdp);
811 		break;
812 #ifdef CAPABILITIES
813 	case LA_SLOCKED:
814 		FILEDESC_SUNLOCK(fdp);
815 		break;
816 #endif
817 	default:
818 		FILEDESC_UNLOCK_ASSERT(fdp);
819 		break;
820 	}
821 	if (fp != NULL)
822 		fdrop(fp, td);
823 	return (error);
824 }
825 
826 int
sys_posix_fallocate(struct thread * td,struct posix_fallocate_args * uap)827 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap)
828 {
829 	int error;
830 
831 	error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len);
832 	return (kern_posix_error(td, error));
833 }
834 
835 int
kern_posix_fallocate(struct thread * td,int fd,off_t offset,off_t len)836 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len)
837 {
838 	struct file *fp;
839 	int error;
840 
841 	AUDIT_ARG_FD(fd);
842 	if (offset < 0 || len <= 0)
843 		return (EINVAL);
844 	/* Check for wrap. */
845 	if (offset > OFF_MAX - len)
846 		return (EFBIG);
847 	AUDIT_ARG_FD(fd);
848 	error = fget(td, fd, &cap_pwrite_rights, &fp);
849 	if (error != 0)
850 		return (error);
851 	AUDIT_ARG_FILE(td->td_proc, fp);
852 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
853 		error = ESPIPE;
854 		goto out;
855 	}
856 	if ((fp->f_flag & FWRITE) == 0) {
857 		error = EBADF;
858 		goto out;
859 	}
860 
861 	error = fo_fallocate(fp, offset, len, td);
862  out:
863 	fdrop(fp, td);
864 	return (error);
865 }
866 
867 int
sys_fspacectl(struct thread * td,struct fspacectl_args * uap)868 sys_fspacectl(struct thread *td, struct fspacectl_args *uap)
869 {
870 	struct spacectl_range rqsr, rmsr;
871 	int error, cerror;
872 
873 	error = copyin(uap->rqsr, &rqsr, sizeof(rqsr));
874 	if (error != 0)
875 		return (error);
876 
877 	error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags,
878 	    &rmsr);
879 	if (uap->rmsr != NULL) {
880 		cerror = copyout(&rmsr, uap->rmsr, sizeof(rmsr));
881 		if (error == 0)
882 			error = cerror;
883 	}
884 	return (error);
885 }
886 
887 int
kern_fspacectl(struct thread * td,int fd,int cmd,const struct spacectl_range * rqsr,int flags,struct spacectl_range * rmsrp)888 kern_fspacectl(struct thread *td, int fd, int cmd,
889     const struct spacectl_range *rqsr, int flags, struct spacectl_range *rmsrp)
890 {
891 	struct file *fp;
892 	struct spacectl_range rmsr;
893 	int error;
894 
895 	AUDIT_ARG_FD(fd);
896 	AUDIT_ARG_CMD(cmd);
897 	AUDIT_ARG_FFLAGS(flags);
898 
899 	if (rqsr == NULL)
900 		return (EINVAL);
901 	rmsr = *rqsr;
902 	if (rmsrp != NULL)
903 		*rmsrp = rmsr;
904 
905 	if (cmd != SPACECTL_DEALLOC ||
906 	    rqsr->r_offset < 0 || rqsr->r_len <= 0 ||
907 	    rqsr->r_offset > OFF_MAX - rqsr->r_len ||
908 	    (flags & ~SPACECTL_F_SUPPORTED) != 0)
909 		return (EINVAL);
910 
911 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
912 	if (error != 0)
913 		return (error);
914 	AUDIT_ARG_FILE(td->td_proc, fp);
915 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
916 		error = ESPIPE;
917 		goto out;
918 	}
919 	if ((fp->f_flag & FWRITE) == 0) {
920 		error = EBADF;
921 		goto out;
922 	}
923 
924 	error = fo_fspacectl(fp, cmd, &rmsr.r_offset, &rmsr.r_len, flags,
925 	    td->td_ucred, td);
926 	/* fspacectl is not restarted after signals if the file is modified. */
927 	if (rmsr.r_len != rqsr->r_len && (error == ERESTART ||
928 	    error == EINTR || error == EWOULDBLOCK))
929 		error = 0;
930 	if (rmsrp != NULL)
931 		*rmsrp = rmsr;
932 out:
933 	fdrop(fp, td);
934 	return (error);
935 }
936 
937 int
kern_specialfd(struct thread * td,int type,void * arg)938 kern_specialfd(struct thread *td, int type, void *arg)
939 {
940 	struct file *fp;
941 	struct specialfd_eventfd *ae;
942 	int error, fd, fflags;
943 
944 	fflags = 0;
945 	error = falloc_noinstall(td, &fp);
946 	if (error != 0)
947 		return (error);
948 
949 	switch (type) {
950 	case SPECIALFD_EVENTFD:
951 		ae = arg;
952 		if ((ae->flags & EFD_CLOEXEC) != 0)
953 			fflags |= O_CLOEXEC;
954 		error = eventfd_create_file(td, fp, ae->initval, ae->flags);
955 		break;
956 	default:
957 		error = EINVAL;
958 		break;
959 	}
960 
961 	if (error == 0)
962 		error = finstall(td, fp, &fd, fflags, NULL);
963 	fdrop(fp, td);
964 	if (error == 0)
965 		td->td_retval[0] = fd;
966 	return (error);
967 }
968 
969 int
sys___specialfd(struct thread * td,struct __specialfd_args * args)970 sys___specialfd(struct thread *td, struct __specialfd_args *args)
971 {
972 	struct specialfd_eventfd ae;
973 	int error;
974 
975 	switch (args->type) {
976 	case SPECIALFD_EVENTFD:
977 		if (args->len != sizeof(struct specialfd_eventfd)) {
978 			error = EINVAL;
979 			break;
980 		}
981 		error = copyin(args->req, &ae, sizeof(ae));
982 		if (error != 0)
983 			break;
984 		if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK |
985 		    EFD_SEMAPHORE)) != 0) {
986 			error = EINVAL;
987 			break;
988 		}
989 		error = kern_specialfd(td, args->type, &ae);
990 		break;
991 	default:
992 		error = EINVAL;
993 		break;
994 	}
995 	return (error);
996 }
997 
998 int
poll_no_poll(int events)999 poll_no_poll(int events)
1000 {
1001 	/*
1002 	 * Return true for read/write.  If the user asked for something
1003 	 * special, return POLLNVAL, so that clients have a way of
1004 	 * determining reliably whether or not the extended
1005 	 * functionality is present without hard-coding knowledge
1006 	 * of specific filesystem implementations.
1007 	 */
1008 	if (events & ~POLLSTANDARD)
1009 		return (POLLNVAL);
1010 
1011 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1012 }
1013 
1014 int
sys_pselect(struct thread * td,struct pselect_args * uap)1015 sys_pselect(struct thread *td, struct pselect_args *uap)
1016 {
1017 	struct timespec ts;
1018 	struct timeval tv, *tvp;
1019 	sigset_t set, *uset;
1020 	int error;
1021 
1022 	if (uap->ts != NULL) {
1023 		error = copyin(uap->ts, &ts, sizeof(ts));
1024 		if (error != 0)
1025 		    return (error);
1026 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1027 		tvp = &tv;
1028 	} else
1029 		tvp = NULL;
1030 	if (uap->sm != NULL) {
1031 		error = copyin(uap->sm, &set, sizeof(set));
1032 		if (error != 0)
1033 			return (error);
1034 		uset = &set;
1035 	} else
1036 		uset = NULL;
1037 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1038 	    uset, NFDBITS));
1039 }
1040 
1041 int
kern_pselect(struct thread * td,int nd,fd_set * in,fd_set * ou,fd_set * ex,struct timeval * tvp,sigset_t * uset,int abi_nfdbits)1042 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
1043     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
1044 {
1045 	int error;
1046 
1047 	if (uset != NULL) {
1048 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1049 		    &td->td_oldsigmask, 0);
1050 		if (error != 0)
1051 			return (error);
1052 		td->td_pflags |= TDP_OLDMASK;
1053 	}
1054 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
1055 	if (uset != NULL) {
1056 		/*
1057 		 * Make sure that ast() is called on return to
1058 		 * usermode and TDP_OLDMASK is cleared, restoring old
1059 		 * sigmask.  If we didn't get interrupted, then the caller is
1060 		 * likely not expecting a signal to hit that should normally be
1061 		 * blocked by its signal mask, so we restore the mask before
1062 		 * any signals could be delivered.
1063 		 */
1064 		if (error == EINTR) {
1065 			ast_sched(td, TDA_SIGSUSPEND);
1066 		} else {
1067 			/* *select(2) should never restart. */
1068 			MPASS(error != ERESTART);
1069 			ast_sched(td, TDA_PSELECT);
1070 		}
1071 	}
1072 
1073 	return (error);
1074 }
1075 
1076 #ifndef _SYS_SYSPROTO_H_
1077 struct select_args {
1078 	int	nd;
1079 	fd_set	*in, *ou, *ex;
1080 	struct	timeval *tv;
1081 };
1082 #endif
1083 int
sys_select(struct thread * td,struct select_args * uap)1084 sys_select(struct thread *td, struct select_args *uap)
1085 {
1086 	struct timeval tv, *tvp;
1087 	int error;
1088 
1089 	if (uap->tv != NULL) {
1090 		error = copyin(uap->tv, &tv, sizeof(tv));
1091 		if (error)
1092 			return (error);
1093 		tvp = &tv;
1094 	} else
1095 		tvp = NULL;
1096 
1097 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1098 	    NFDBITS));
1099 }
1100 
1101 /*
1102  * In the unlikely case when user specified n greater then the last
1103  * open file descriptor, check that no bits are set after the last
1104  * valid fd.  We must return EBADF if any is set.
1105  *
1106  * There are applications that rely on the behaviour.
1107  *
1108  * nd is fd_nfiles.
1109  */
1110 static int
select_check_badfd(fd_set * fd_in,int nd,int ndu,int abi_nfdbits)1111 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
1112 {
1113 	char *addr, *oaddr;
1114 	int b, i, res;
1115 	uint8_t bits;
1116 
1117 	if (nd >= ndu || fd_in == NULL)
1118 		return (0);
1119 
1120 	oaddr = NULL;
1121 	bits = 0; /* silence gcc */
1122 	for (i = nd; i < ndu; i++) {
1123 		b = i / NBBY;
1124 #if BYTE_ORDER == LITTLE_ENDIAN
1125 		addr = (char *)fd_in + b;
1126 #else
1127 		addr = (char *)fd_in;
1128 		if (abi_nfdbits == NFDBITS) {
1129 			addr += rounddown(b, sizeof(fd_mask)) +
1130 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
1131 		} else {
1132 			addr += rounddown(b, sizeof(uint32_t)) +
1133 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
1134 		}
1135 #endif
1136 		if (addr != oaddr) {
1137 			res = fubyte(addr);
1138 			if (res == -1)
1139 				return (EFAULT);
1140 			oaddr = addr;
1141 			bits = res;
1142 		}
1143 		if ((bits & (1 << (i % NBBY))) != 0)
1144 			return (EBADF);
1145 	}
1146 	return (0);
1147 }
1148 
1149 int
kern_select(struct thread * td,int nd,fd_set * fd_in,fd_set * fd_ou,fd_set * fd_ex,struct timeval * tvp,int abi_nfdbits)1150 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
1151     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
1152 {
1153 	struct filedesc *fdp;
1154 	/*
1155 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
1156 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
1157 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
1158 	 * of 256.
1159 	 */
1160 	fd_mask s_selbits[howmany(2048, NFDBITS)];
1161 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
1162 	struct timeval rtv;
1163 	sbintime_t asbt, precision, rsbt;
1164 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
1165 	int error, lf, ndu;
1166 
1167 	if (nd < 0)
1168 		return (EINVAL);
1169 	fdp = td->td_proc->p_fd;
1170 	ndu = nd;
1171 	lf = fdp->fd_nfiles;
1172 	if (nd > lf)
1173 		nd = lf;
1174 
1175 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
1176 	if (error != 0)
1177 		return (error);
1178 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1179 	if (error != 0)
1180 		return (error);
1181 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1182 	if (error != 0)
1183 		return (error);
1184 
1185 	/*
1186 	 * Allocate just enough bits for the non-null fd_sets.  Use the
1187 	 * preallocated auto buffer if possible.
1188 	 */
1189 	nfdbits = roundup(nd, NFDBITS);
1190 	ncpbytes = nfdbits / NBBY;
1191 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1192 	nbufbytes = 0;
1193 	if (fd_in != NULL)
1194 		nbufbytes += 2 * ncpbytes;
1195 	if (fd_ou != NULL)
1196 		nbufbytes += 2 * ncpbytes;
1197 	if (fd_ex != NULL)
1198 		nbufbytes += 2 * ncpbytes;
1199 	if (nbufbytes <= sizeof s_selbits)
1200 		selbits = &s_selbits[0];
1201 	else
1202 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1203 
1204 	/*
1205 	 * Assign pointers into the bit buffers and fetch the input bits.
1206 	 * Put the output buffers together so that they can be bzeroed
1207 	 * together.
1208 	 */
1209 	sbp = selbits;
1210 #define	getbits(name, x) \
1211 	do {								\
1212 		if (name == NULL) {					\
1213 			ibits[x] = NULL;				\
1214 			obits[x] = NULL;				\
1215 		} else {						\
1216 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1217 			obits[x] = sbp;					\
1218 			sbp += ncpbytes / sizeof *sbp;			\
1219 			error = copyin(name, ibits[x], ncpubytes);	\
1220 			if (error != 0)					\
1221 				goto done;				\
1222 			if (ncpbytes != ncpubytes)			\
1223 				bzero((char *)ibits[x] + ncpubytes,	\
1224 				    ncpbytes - ncpubytes);		\
1225 		}							\
1226 	} while (0)
1227 	getbits(fd_in, 0);
1228 	getbits(fd_ou, 1);
1229 	getbits(fd_ex, 2);
1230 #undef	getbits
1231 
1232 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1233 	/*
1234 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1235 	 * we are running under 32-bit emulation. This should be more
1236 	 * generic.
1237 	 */
1238 #define swizzle_fdset(bits)						\
1239 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1240 		int i;							\
1241 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1242 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1243 	}
1244 #else
1245 #define swizzle_fdset(bits)
1246 #endif
1247 
1248 	/* Make sure the bit order makes it through an ABI transition */
1249 	swizzle_fdset(ibits[0]);
1250 	swizzle_fdset(ibits[1]);
1251 	swizzle_fdset(ibits[2]);
1252 
1253 	if (nbufbytes != 0)
1254 		bzero(selbits, nbufbytes / 2);
1255 
1256 	precision = 0;
1257 	if (tvp != NULL) {
1258 		rtv = *tvp;
1259 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1260 		    rtv.tv_usec >= 1000000) {
1261 			error = EINVAL;
1262 			goto done;
1263 		}
1264 		if (!timevalisset(&rtv))
1265 			asbt = 0;
1266 		else if (rtv.tv_sec <= INT32_MAX) {
1267 			rsbt = tvtosbt(rtv);
1268 			precision = rsbt;
1269 			precision >>= tc_precexp;
1270 			if (TIMESEL(&asbt, rsbt))
1271 				asbt += tc_tick_sbt;
1272 			if (asbt <= SBT_MAX - rsbt)
1273 				asbt += rsbt;
1274 			else
1275 				asbt = -1;
1276 		} else
1277 			asbt = -1;
1278 	} else
1279 		asbt = -1;
1280 	seltdinit(td);
1281 	/* Iterate until the timeout expires or descriptors become ready. */
1282 	for (;;) {
1283 		error = selscan(td, ibits, obits, nd);
1284 		if (error || td->td_retval[0] != 0)
1285 			break;
1286 		error = seltdwait(td, asbt, precision);
1287 		if (error)
1288 			break;
1289 		error = selrescan(td, ibits, obits);
1290 		if (error || td->td_retval[0] != 0)
1291 			break;
1292 	}
1293 	seltdclear(td);
1294 
1295 done:
1296 	/* select is not restarted after signals... */
1297 	if (error == ERESTART)
1298 		error = EINTR;
1299 	if (error == EWOULDBLOCK)
1300 		error = 0;
1301 
1302 	/* swizzle bit order back, if necessary */
1303 	swizzle_fdset(obits[0]);
1304 	swizzle_fdset(obits[1]);
1305 	swizzle_fdset(obits[2]);
1306 #undef swizzle_fdset
1307 
1308 #define	putbits(name, x) \
1309 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1310 		error = error2;
1311 	if (error == 0) {
1312 		int error2;
1313 
1314 		putbits(fd_in, 0);
1315 		putbits(fd_ou, 1);
1316 		putbits(fd_ex, 2);
1317 #undef putbits
1318 	}
1319 	if (selbits != &s_selbits[0])
1320 		free(selbits, M_SELECT);
1321 
1322 	return (error);
1323 }
1324 /*
1325  * Convert a select bit set to poll flags.
1326  *
1327  * The backend always returns POLLHUP/POLLERR if appropriate and we
1328  * return this as a set bit in any set.
1329  */
1330 static const int select_flags[3] = {
1331     POLLRDNORM | POLLHUP | POLLERR,
1332     POLLWRNORM | POLLHUP | POLLERR,
1333     POLLRDBAND | POLLERR
1334 };
1335 
1336 /*
1337  * Compute the fo_poll flags required for a fd given by the index and
1338  * bit position in the fd_mask array.
1339  */
1340 static __inline int
selflags(fd_mask ** ibits,int idx,fd_mask bit)1341 selflags(fd_mask **ibits, int idx, fd_mask bit)
1342 {
1343 	int flags;
1344 	int msk;
1345 
1346 	flags = 0;
1347 	for (msk = 0; msk < 3; msk++) {
1348 		if (ibits[msk] == NULL)
1349 			continue;
1350 		if ((ibits[msk][idx] & bit) == 0)
1351 			continue;
1352 		flags |= select_flags[msk];
1353 	}
1354 	return (flags);
1355 }
1356 
1357 /*
1358  * Set the appropriate output bits given a mask of fired events and the
1359  * input bits originally requested.
1360  */
1361 static __inline int
selsetbits(fd_mask ** ibits,fd_mask ** obits,int idx,fd_mask bit,int events)1362 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1363 {
1364 	int msk;
1365 	int n;
1366 
1367 	n = 0;
1368 	for (msk = 0; msk < 3; msk++) {
1369 		if ((events & select_flags[msk]) == 0)
1370 			continue;
1371 		if (ibits[msk] == NULL)
1372 			continue;
1373 		if ((ibits[msk][idx] & bit) == 0)
1374 			continue;
1375 		/*
1376 		 * XXX Check for a duplicate set.  This can occur because a
1377 		 * socket calls selrecord() twice for each poll() call
1378 		 * resulting in two selfds per real fd.  selrescan() will
1379 		 * call selsetbits twice as a result.
1380 		 */
1381 		if ((obits[msk][idx] & bit) != 0)
1382 			continue;
1383 		obits[msk][idx] |= bit;
1384 		n++;
1385 	}
1386 
1387 	return (n);
1388 }
1389 
1390 /*
1391  * Traverse the list of fds attached to this thread's seltd and check for
1392  * completion.
1393  */
1394 static int
selrescan(struct thread * td,fd_mask ** ibits,fd_mask ** obits)1395 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1396 {
1397 	struct filedesc *fdp;
1398 	struct selinfo *si;
1399 	struct seltd *stp;
1400 	struct selfd *sfp;
1401 	struct selfd *sfn;
1402 	struct file *fp;
1403 	fd_mask bit;
1404 	int fd, ev, n, idx;
1405 	int error;
1406 	bool only_user;
1407 
1408 	fdp = td->td_proc->p_fd;
1409 	stp = td->td_sel;
1410 	n = 0;
1411 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1412 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1413 		fd = (int)(uintptr_t)sfp->sf_cookie;
1414 		si = sfp->sf_si;
1415 		selfdfree(stp, sfp);
1416 		/* If the selinfo wasn't cleared the event didn't fire. */
1417 		if (si != NULL)
1418 			continue;
1419 		if (only_user)
1420 			error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1421 		else
1422 			error = fget_unlocked(td, fd, &cap_event_rights, &fp);
1423 		if (__predict_false(error != 0))
1424 			return (error);
1425 		idx = fd / NFDBITS;
1426 		bit = (fd_mask)1 << (fd % NFDBITS);
1427 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1428 		if (only_user)
1429 			fput_only_user(fdp, fp);
1430 		else
1431 			fdrop(fp, td);
1432 		if (ev != 0)
1433 			n += selsetbits(ibits, obits, idx, bit, ev);
1434 	}
1435 	stp->st_flags = 0;
1436 	td->td_retval[0] = n;
1437 	return (0);
1438 }
1439 
1440 /*
1441  * Perform the initial filedescriptor scan and register ourselves with
1442  * each selinfo.
1443  */
1444 static int
selscan(struct thread * td,fd_mask ** ibits,fd_mask ** obits,int nfd)1445 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1446 {
1447 	struct filedesc *fdp;
1448 	struct file *fp;
1449 	fd_mask bit;
1450 	int ev, flags, end, fd;
1451 	int n, idx;
1452 	int error;
1453 	bool only_user;
1454 
1455 	fdp = td->td_proc->p_fd;
1456 	n = 0;
1457 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1458 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1459 		end = imin(fd + NFDBITS, nfd);
1460 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1461 			/* Compute the list of events we're interested in. */
1462 			flags = selflags(ibits, idx, bit);
1463 			if (flags == 0)
1464 				continue;
1465 			if (only_user)
1466 				error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1467 			else
1468 				error = fget_unlocked(td, fd, &cap_event_rights, &fp);
1469 			if (__predict_false(error != 0))
1470 				return (error);
1471 			selfdalloc(td, (void *)(uintptr_t)fd);
1472 			ev = fo_poll(fp, flags, td->td_ucred, td);
1473 			if (only_user)
1474 				fput_only_user(fdp, fp);
1475 			else
1476 				fdrop(fp, td);
1477 			if (ev != 0)
1478 				n += selsetbits(ibits, obits, idx, bit, ev);
1479 		}
1480 	}
1481 
1482 	td->td_retval[0] = n;
1483 	return (0);
1484 }
1485 
1486 int
sys_poll(struct thread * td,struct poll_args * uap)1487 sys_poll(struct thread *td, struct poll_args *uap)
1488 {
1489 	struct timespec ts, *tsp;
1490 
1491 	if (uap->timeout != INFTIM) {
1492 		if (uap->timeout < 0)
1493 			return (EINVAL);
1494 		ts.tv_sec = uap->timeout / 1000;
1495 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1496 		tsp = &ts;
1497 	} else
1498 		tsp = NULL;
1499 
1500 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1501 }
1502 
1503 /*
1504  * kfds points to an array in the kernel.
1505  */
1506 int
kern_poll_kfds(struct thread * td,struct pollfd * kfds,u_int nfds,struct timespec * tsp,sigset_t * uset)1507 kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds,
1508     struct timespec *tsp, sigset_t *uset)
1509 {
1510 	sbintime_t sbt, precision, tmp;
1511 	time_t over;
1512 	struct timespec ts;
1513 	int error;
1514 
1515 	precision = 0;
1516 	if (tsp != NULL) {
1517 		if (!timespecvalid_interval(tsp))
1518 			return (EINVAL);
1519 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1520 			sbt = 0;
1521 		else {
1522 			ts = *tsp;
1523 			if (ts.tv_sec > INT32_MAX / 2) {
1524 				over = ts.tv_sec - INT32_MAX / 2;
1525 				ts.tv_sec -= over;
1526 			} else
1527 				over = 0;
1528 			tmp = tstosbt(ts);
1529 			precision = tmp;
1530 			precision >>= tc_precexp;
1531 			if (TIMESEL(&sbt, tmp))
1532 				sbt += tc_tick_sbt;
1533 			sbt += tmp;
1534 		}
1535 	} else
1536 		sbt = -1;
1537 
1538 	if (uset != NULL) {
1539 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1540 		    &td->td_oldsigmask, 0);
1541 		if (error)
1542 			return (error);
1543 		td->td_pflags |= TDP_OLDMASK;
1544 	}
1545 
1546 	seltdinit(td);
1547 	/* Iterate until the timeout expires or descriptors become ready. */
1548 	for (;;) {
1549 		error = pollscan(td, kfds, nfds);
1550 		if (error || td->td_retval[0] != 0)
1551 			break;
1552 		error = seltdwait(td, sbt, precision);
1553 		if (error)
1554 			break;
1555 		error = pollrescan(td);
1556 		if (error || td->td_retval[0] != 0)
1557 			break;
1558 	}
1559 	seltdclear(td);
1560 
1561 	/* poll is not restarted after signals... */
1562 	if (error == ERESTART)
1563 		error = EINTR;
1564 	if (error == EWOULDBLOCK)
1565 		error = 0;
1566 
1567 	if (uset != NULL) {
1568 		/*
1569 		 * Make sure that ast() is called on return to
1570 		 * usermode and TDP_OLDMASK is cleared, restoring old
1571 		 * sigmask.  If we didn't get interrupted, then the caller is
1572 		 * likely not expecting a signal to hit that should normally be
1573 		 * blocked by its signal mask, so we restore the mask before
1574 		 * any signals could be delivered.
1575 		 */
1576 		if (error == EINTR)
1577 			ast_sched(td, TDA_SIGSUSPEND);
1578 		else
1579 			ast_sched(td, TDA_PSELECT);
1580 	}
1581 
1582 	return (error);
1583 }
1584 
1585 int
sys_ppoll(struct thread * td,struct ppoll_args * uap)1586 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1587 {
1588 	struct timespec ts, *tsp;
1589 	sigset_t set, *ssp;
1590 	int error;
1591 
1592 	if (uap->ts != NULL) {
1593 		error = copyin(uap->ts, &ts, sizeof(ts));
1594 		if (error)
1595 			return (error);
1596 		tsp = &ts;
1597 	} else
1598 		tsp = NULL;
1599 	if (uap->set != NULL) {
1600 		error = copyin(uap->set, &set, sizeof(set));
1601 		if (error)
1602 			return (error);
1603 		ssp = &set;
1604 	} else
1605 		ssp = NULL;
1606 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1607 }
1608 
1609 /*
1610  * ufds points to an array in user space.
1611  */
1612 int
kern_poll(struct thread * td,struct pollfd * ufds,u_int nfds,struct timespec * tsp,sigset_t * set)1613 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1614     struct timespec *tsp, sigset_t *set)
1615 {
1616 	struct pollfd *kfds;
1617 	struct pollfd stackfds[32];
1618 	int error;
1619 
1620 	if (kern_poll_maxfds(nfds))
1621 		return (EINVAL);
1622 	if (nfds > nitems(stackfds))
1623 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1624 	else
1625 		kfds = stackfds;
1626 	error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1627 	if (error != 0)
1628 		goto out;
1629 
1630 	error = kern_poll_kfds(td, kfds, nfds, tsp, set);
1631 	if (error == 0)
1632 		error = pollout(td, kfds, ufds, nfds);
1633 #ifdef KTRACE
1634 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1635 		ktrstructarray("pollfd", UIO_USERSPACE, ufds, nfds,
1636 		    sizeof(*ufds));
1637 #endif
1638 
1639 out:
1640 	if (nfds > nitems(stackfds))
1641 		free(kfds, M_TEMP);
1642 	return (error);
1643 }
1644 
1645 bool
kern_poll_maxfds(u_int nfds)1646 kern_poll_maxfds(u_int nfds)
1647 {
1648 
1649 	/*
1650 	 * This is kinda bogus.  We have fd limits, but that is not
1651 	 * really related to the size of the pollfd array.  Make sure
1652 	 * we let the process use at least FD_SETSIZE entries and at
1653 	 * least enough for the system-wide limits.  We want to be reasonably
1654 	 * safe, but not overly restrictive.
1655 	 */
1656 	return (nfds > maxfilesperproc && nfds > FD_SETSIZE);
1657 }
1658 
1659 static int
pollrescan(struct thread * td)1660 pollrescan(struct thread *td)
1661 {
1662 	struct seltd *stp;
1663 	struct selfd *sfp;
1664 	struct selfd *sfn;
1665 	struct selinfo *si;
1666 	struct filedesc *fdp;
1667 	struct file *fp;
1668 	struct pollfd *fd;
1669 	int n, error;
1670 	bool only_user;
1671 
1672 	n = 0;
1673 	fdp = td->td_proc->p_fd;
1674 	stp = td->td_sel;
1675 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1676 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1677 		fd = (struct pollfd *)sfp->sf_cookie;
1678 		si = sfp->sf_si;
1679 		selfdfree(stp, sfp);
1680 		/* If the selinfo wasn't cleared the event didn't fire. */
1681 		if (si != NULL)
1682 			continue;
1683 		if (only_user)
1684 			error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp);
1685 		else
1686 			error = fget_unlocked(td, fd->fd, &cap_event_rights, &fp);
1687 		if (__predict_false(error != 0)) {
1688 			fd->revents = POLLNVAL;
1689 			n++;
1690 			continue;
1691 		}
1692 		/*
1693 		 * Note: backend also returns POLLHUP and
1694 		 * POLLERR if appropriate.
1695 		 */
1696 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1697 		if (only_user)
1698 			fput_only_user(fdp, fp);
1699 		else
1700 			fdrop(fp, td);
1701 		if (fd->revents != 0)
1702 			n++;
1703 	}
1704 	stp->st_flags = 0;
1705 	td->td_retval[0] = n;
1706 	return (0);
1707 }
1708 
1709 static int
pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)1710 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1711 {
1712 	int error = 0;
1713 	u_int i = 0;
1714 	u_int n = 0;
1715 
1716 	for (i = 0; i < nfd; i++) {
1717 		error = copyout(&fds->revents, &ufds->revents,
1718 		    sizeof(ufds->revents));
1719 		if (error)
1720 			return (error);
1721 		if (fds->revents != 0)
1722 			n++;
1723 		fds++;
1724 		ufds++;
1725 	}
1726 	td->td_retval[0] = n;
1727 	return (0);
1728 }
1729 
1730 static int
pollscan(struct thread * td,struct pollfd * fds,u_int nfd)1731 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1732 {
1733 	struct filedesc *fdp;
1734 	struct file *fp;
1735 	int i, n, error;
1736 	bool only_user;
1737 
1738 	n = 0;
1739 	fdp = td->td_proc->p_fd;
1740 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1741 	for (i = 0; i < nfd; i++, fds++) {
1742 		if (fds->fd < 0) {
1743 			fds->revents = 0;
1744 			continue;
1745 		}
1746 		if (only_user)
1747 			error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp);
1748 		else
1749 			error = fget_unlocked(td, fds->fd, &cap_event_rights, &fp);
1750 		if (__predict_false(error != 0)) {
1751 			fds->revents = POLLNVAL;
1752 			n++;
1753 			continue;
1754 		}
1755 		/*
1756 		 * Note: backend also returns POLLHUP and
1757 		 * POLLERR if appropriate.
1758 		 */
1759 		selfdalloc(td, fds);
1760 		fds->revents = fo_poll(fp, fds->events,
1761 		    td->td_ucred, td);
1762 		if (only_user)
1763 			fput_only_user(fdp, fp);
1764 		else
1765 			fdrop(fp, td);
1766 		/*
1767 		 * POSIX requires POLLOUT to be never
1768 		 * set simultaneously with POLLHUP.
1769 		 */
1770 		if ((fds->revents & POLLHUP) != 0)
1771 			fds->revents &= ~POLLOUT;
1772 
1773 		if (fds->revents != 0)
1774 			n++;
1775 	}
1776 	td->td_retval[0] = n;
1777 	return (0);
1778 }
1779 
1780 /*
1781  * XXX This was created specifically to support netncp and netsmb.  This
1782  * allows the caller to specify a socket to wait for events on.  It returns
1783  * 0 if any events matched and an error otherwise.  There is no way to
1784  * determine which events fired.
1785  */
1786 int
selsocket(struct socket * so,int events,struct timeval * tvp,struct thread * td)1787 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1788 {
1789 	struct timeval rtv;
1790 	sbintime_t asbt, precision, rsbt;
1791 	int error;
1792 
1793 	precision = 0;	/* stupid gcc! */
1794 	if (tvp != NULL) {
1795 		rtv = *tvp;
1796 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1797 		    rtv.tv_usec >= 1000000)
1798 			return (EINVAL);
1799 		if (!timevalisset(&rtv))
1800 			asbt = 0;
1801 		else if (rtv.tv_sec <= INT32_MAX) {
1802 			rsbt = tvtosbt(rtv);
1803 			precision = rsbt;
1804 			precision >>= tc_precexp;
1805 			if (TIMESEL(&asbt, rsbt))
1806 				asbt += tc_tick_sbt;
1807 			if (asbt <= SBT_MAX - rsbt)
1808 				asbt += rsbt;
1809 			else
1810 				asbt = -1;
1811 		} else
1812 			asbt = -1;
1813 	} else
1814 		asbt = -1;
1815 	seltdinit(td);
1816 	/*
1817 	 * Iterate until the timeout expires or the socket becomes ready.
1818 	 */
1819 	for (;;) {
1820 		selfdalloc(td, NULL);
1821 		if (so->so_proto->pr_sopoll(so, events, td) != 0) {
1822 			error = 0;
1823 			break;
1824 		}
1825 		error = seltdwait(td, asbt, precision);
1826 		if (error)
1827 			break;
1828 	}
1829 	seltdclear(td);
1830 	/* XXX Duplicates ncp/smb behavior. */
1831 	if (error == ERESTART)
1832 		error = 0;
1833 	return (error);
1834 }
1835 
1836 /*
1837  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1838  * have two select sets, one for read and another for write.
1839  */
1840 static void
selfdalloc(struct thread * td,void * cookie)1841 selfdalloc(struct thread *td, void *cookie)
1842 {
1843 	struct seltd *stp;
1844 
1845 	stp = td->td_sel;
1846 	if (stp->st_free1 == NULL)
1847 		stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO);
1848 	stp->st_free1->sf_td = stp;
1849 	stp->st_free1->sf_cookie = cookie;
1850 	if (stp->st_free2 == NULL)
1851 		stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO);
1852 	stp->st_free2->sf_td = stp;
1853 	stp->st_free2->sf_cookie = cookie;
1854 }
1855 
1856 static void
selfdfree(struct seltd * stp,struct selfd * sfp)1857 selfdfree(struct seltd *stp, struct selfd *sfp)
1858 {
1859 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1860 	/*
1861 	 * Paired with doselwakeup.
1862 	 */
1863 	if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) {
1864 		mtx_lock(sfp->sf_mtx);
1865 		if (sfp->sf_si != NULL) {
1866 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1867 		}
1868 		mtx_unlock(sfp->sf_mtx);
1869 	}
1870 	free(sfp, M_SELFD);
1871 }
1872 
1873 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1874 void
seldrain(struct selinfo * sip)1875 seldrain(struct selinfo *sip)
1876 {
1877 
1878 	/*
1879 	 * This feature is already provided by doselwakeup(), thus it is
1880 	 * enough to go for it.
1881 	 * Eventually, the context, should take care to avoid races
1882 	 * between thread calling select()/poll() and file descriptor
1883 	 * detaching, but, again, the races are just the same as
1884 	 * selwakeup().
1885 	 */
1886         doselwakeup(sip, -1);
1887 }
1888 
1889 /*
1890  * Record a select request.
1891  */
1892 void
selrecord(struct thread * selector,struct selinfo * sip)1893 selrecord(struct thread *selector, struct selinfo *sip)
1894 {
1895 	struct selfd *sfp;
1896 	struct seltd *stp;
1897 	struct mtx *mtxp;
1898 
1899 	stp = selector->td_sel;
1900 	/*
1901 	 * Don't record when doing a rescan.
1902 	 */
1903 	if (stp->st_flags & SELTD_RESCAN)
1904 		return;
1905 	/*
1906 	 * Grab one of the preallocated descriptors.
1907 	 */
1908 	sfp = NULL;
1909 	if ((sfp = stp->st_free1) != NULL)
1910 		stp->st_free1 = NULL;
1911 	else if ((sfp = stp->st_free2) != NULL)
1912 		stp->st_free2 = NULL;
1913 	else
1914 		panic("selrecord: No free selfd on selq");
1915 	mtxp = sip->si_mtx;
1916 	if (mtxp == NULL)
1917 		mtxp = mtx_pool_find(mtxpool_select, sip);
1918 	/*
1919 	 * Initialize the sfp and queue it in the thread.
1920 	 */
1921 	sfp->sf_si = sip;
1922 	sfp->sf_mtx = mtxp;
1923 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1924 	/*
1925 	 * Now that we've locked the sip, check for initialization.
1926 	 */
1927 	mtx_lock(mtxp);
1928 	if (sip->si_mtx == NULL) {
1929 		sip->si_mtx = mtxp;
1930 		TAILQ_INIT(&sip->si_tdlist);
1931 	}
1932 	/*
1933 	 * Add this thread to the list of selfds listening on this selinfo.
1934 	 */
1935 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1936 	mtx_unlock(sip->si_mtx);
1937 }
1938 
1939 /* Wake up a selecting thread. */
1940 void
selwakeup(struct selinfo * sip)1941 selwakeup(struct selinfo *sip)
1942 {
1943 	doselwakeup(sip, -1);
1944 }
1945 
1946 /* Wake up a selecting thread, and set its priority. */
1947 void
selwakeuppri(struct selinfo * sip,int pri)1948 selwakeuppri(struct selinfo *sip, int pri)
1949 {
1950 	doselwakeup(sip, pri);
1951 }
1952 
1953 /*
1954  * Do a wakeup when a selectable event occurs.
1955  */
1956 static void
doselwakeup(struct selinfo * sip,int pri)1957 doselwakeup(struct selinfo *sip, int pri)
1958 {
1959 	struct selfd *sfp;
1960 	struct selfd *sfn;
1961 	struct seltd *stp;
1962 
1963 	/* If it's not initialized there can't be any waiters. */
1964 	if (sip->si_mtx == NULL)
1965 		return;
1966 	/*
1967 	 * Locking the selinfo locks all selfds associated with it.
1968 	 */
1969 	mtx_lock(sip->si_mtx);
1970 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1971 		/*
1972 		 * Once we remove this sfp from the list and clear the
1973 		 * sf_si seltdclear will know to ignore this si.
1974 		 */
1975 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1976 		stp = sfp->sf_td;
1977 		mtx_lock(&stp->st_mtx);
1978 		stp->st_flags |= SELTD_PENDING;
1979 		cv_broadcastpri(&stp->st_wait, pri);
1980 		mtx_unlock(&stp->st_mtx);
1981 		/*
1982 		 * Paired with selfdfree.
1983 		 *
1984 		 * Storing this only after the wakeup provides an invariant that
1985 		 * stp is not used after selfdfree returns.
1986 		 */
1987 		atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL);
1988 	}
1989 	mtx_unlock(sip->si_mtx);
1990 }
1991 
1992 static void
seltdinit(struct thread * td)1993 seltdinit(struct thread *td)
1994 {
1995 	struct seltd *stp;
1996 
1997 	stp = td->td_sel;
1998 	if (stp != NULL) {
1999 		MPASS(stp->st_flags == 0);
2000 		MPASS(STAILQ_EMPTY(&stp->st_selq));
2001 		return;
2002 	}
2003 	stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
2004 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
2005 	cv_init(&stp->st_wait, "select");
2006 	stp->st_flags = 0;
2007 	STAILQ_INIT(&stp->st_selq);
2008 	td->td_sel = stp;
2009 }
2010 
2011 static int
seltdwait(struct thread * td,sbintime_t sbt,sbintime_t precision)2012 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
2013 {
2014 	struct seltd *stp;
2015 	int error;
2016 
2017 	stp = td->td_sel;
2018 	/*
2019 	 * An event of interest may occur while we do not hold the seltd
2020 	 * locked so check the pending flag before we sleep.
2021 	 */
2022 	mtx_lock(&stp->st_mtx);
2023 	/*
2024 	 * Any further calls to selrecord will be a rescan.
2025 	 */
2026 	stp->st_flags |= SELTD_RESCAN;
2027 	if (stp->st_flags & SELTD_PENDING) {
2028 		mtx_unlock(&stp->st_mtx);
2029 		return (0);
2030 	}
2031 	if (sbt == 0)
2032 		error = EWOULDBLOCK;
2033 	else if (sbt != -1)
2034 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
2035 		    sbt, precision, C_ABSOLUTE);
2036 	else
2037 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
2038 	mtx_unlock(&stp->st_mtx);
2039 
2040 	return (error);
2041 }
2042 
2043 void
seltdfini(struct thread * td)2044 seltdfini(struct thread *td)
2045 {
2046 	struct seltd *stp;
2047 
2048 	stp = td->td_sel;
2049 	if (stp == NULL)
2050 		return;
2051 	MPASS(stp->st_flags == 0);
2052 	MPASS(STAILQ_EMPTY(&stp->st_selq));
2053 	if (stp->st_free1)
2054 		free(stp->st_free1, M_SELFD);
2055 	if (stp->st_free2)
2056 		free(stp->st_free2, M_SELFD);
2057 	td->td_sel = NULL;
2058 	cv_destroy(&stp->st_wait);
2059 	mtx_destroy(&stp->st_mtx);
2060 	free(stp, M_SELECT);
2061 }
2062 
2063 /*
2064  * Remove the references to the thread from all of the objects we were
2065  * polling.
2066  */
2067 static void
seltdclear(struct thread * td)2068 seltdclear(struct thread *td)
2069 {
2070 	struct seltd *stp;
2071 	struct selfd *sfp;
2072 	struct selfd *sfn;
2073 
2074 	stp = td->td_sel;
2075 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
2076 		selfdfree(stp, sfp);
2077 	stp->st_flags = 0;
2078 }
2079 
2080 static void selectinit(void *);
2081 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
2082 static void
selectinit(void * dummy __unused)2083 selectinit(void *dummy __unused)
2084 {
2085 
2086 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
2087 }
2088 
2089 /*
2090  * Set up a syscall return value that follows the convention specified for
2091  * posix_* functions.
2092  */
2093 int
kern_posix_error(struct thread * td,int error)2094 kern_posix_error(struct thread *td, int error)
2095 {
2096 
2097 	if (error <= 0)
2098 		return (error);
2099 	td->td_errno = error;
2100 	td->td_pflags |= TDP_NERRNO;
2101 	td->td_retval[0] = error;
2102 	return (0);
2103 }
2104 
2105 int
kcmp_cmp(uintptr_t a,uintptr_t b)2106 kcmp_cmp(uintptr_t a, uintptr_t b)
2107 {
2108 	if (a == b)
2109 		return (0);
2110 	else if (a < b)
2111 		return (1);
2112 	return (2);
2113 }
2114 
2115 static int
kcmp_pget(struct thread * td,pid_t pid,struct proc ** pp)2116 kcmp_pget(struct thread *td, pid_t pid, struct proc **pp)
2117 {
2118 	int error;
2119 
2120 	if (pid == td->td_proc->p_pid) {
2121 		*pp = td->td_proc;
2122 		return (0);
2123 	}
2124 	error = pget(pid, PGET_NOTID | PGET_CANDEBUG | PGET_NOTWEXIT |
2125 	    PGET_HOLD, pp);
2126 	MPASS(*pp != td->td_proc);
2127 	return (error);
2128 }
2129 
2130 int
kern_kcmp(struct thread * td,pid_t pid1,pid_t pid2,int type,uintptr_t idx1,uintptr_t idx2)2131 kern_kcmp(struct thread *td, pid_t pid1, pid_t pid2, int type,
2132     uintptr_t idx1, uintptr_t idx2)
2133 {
2134 	struct proc *p1, *p2;
2135 	struct file *fp1, *fp2;
2136 	int error, res;
2137 
2138 	res = -1;
2139 	p1 = p2 = NULL;
2140 	error = kcmp_pget(td, pid1, &p1);
2141 	if (error == 0)
2142 		error = kcmp_pget(td, pid2, &p2);
2143 	if (error != 0)
2144 		goto out;
2145 
2146 	switch (type) {
2147 	case KCMP_FILE:
2148 	case KCMP_FILEOBJ:
2149 		error = fget_remote(td, p1, idx1, &fp1);
2150 		if (error == 0) {
2151 			error = fget_remote(td, p2, idx2, &fp2);
2152 			if (error == 0) {
2153 				if (type == KCMP_FILEOBJ)
2154 					res = fo_cmp(fp1, fp2, td);
2155 				else
2156 					res = kcmp_cmp((uintptr_t)fp1,
2157 					    (uintptr_t)fp2);
2158 				fdrop(fp2, td);
2159 			}
2160 			fdrop(fp1, td);
2161 		}
2162 		break;
2163 	case KCMP_FILES:
2164 		res = kcmp_cmp((uintptr_t)p1->p_fd, (uintptr_t)p2->p_fd);
2165 		break;
2166 	case KCMP_SIGHAND:
2167 		res = kcmp_cmp((uintptr_t)p1->p_sigacts,
2168 		    (uintptr_t)p2->p_sigacts);
2169 		break;
2170 	case KCMP_VM:
2171 		res = kcmp_cmp((uintptr_t)p1->p_vmspace,
2172 		    (uintptr_t)p2->p_vmspace);
2173 		break;
2174 	default:
2175 		error = EINVAL;
2176 		break;
2177 	}
2178 
2179 out:
2180 	if (p1 != NULL && p1 != td->td_proc)
2181 		PRELE(p1);
2182 	if (p2 != NULL && p2 != td->td_proc)
2183 		PRELE(p2);
2184 
2185 	td->td_retval[0] = res;
2186 	return (error);
2187 }
2188 
2189 int
sys_kcmp(struct thread * td,struct kcmp_args * uap)2190 sys_kcmp(struct thread *td, struct kcmp_args *uap)
2191 {
2192 	return (kern_kcmp(td, uap->pid1, uap->pid2, uap->type,
2193 	    uap->idx1, uap->idx2));
2194 }
2195 
2196 int
file_kcmp_generic(struct file * fp1,struct file * fp2,struct thread * td)2197 file_kcmp_generic(struct file *fp1, struct file *fp2, struct thread *td)
2198 {
2199 	if (fp1->f_type != fp2->f_type)
2200 		return (3);
2201 	return (kcmp_cmp((uintptr_t)fp1->f_data, (uintptr_t)fp2->f_data));
2202 }
2203