xref: /freebsd/sys/kern/sys_generic.c (revision 3b1c4cb1bfff6efa363919de6c05765c24607b83)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include "opt_capsicum.h"
38 #include "opt_ktrace.h"
39 
40 #define	EXTERR_CATEGORY	EXTERR_CAT_GENIO
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/capsicum.h>
45 #include <sys/exterrvar.h>
46 #include <sys/filedesc.h>
47 #include <sys/filio.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/inotify.h>
51 #include <sys/lock.h>
52 #include <sys/proc.h>
53 #include <sys/signalvar.h>
54 #include <sys/protosw.h>
55 #include <sys/socketvar.h>
56 #include <sys/uio.h>
57 #include <sys/eventfd.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/malloc.h>
62 #include <sys/poll.h>
63 #include <sys/resourcevar.h>
64 #include <sys/selinfo.h>
65 #include <sys/sleepqueue.h>
66 #include <sys/specialfd.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/unistd.h>
72 #include <sys/bio.h>
73 #include <sys/buf.h>
74 #include <sys/condvar.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 
79 #include <security/audit/audit.h>
80 
81 /*
82  * The following macro defines how many bytes will be allocated from
83  * the stack instead of memory allocated when passing the IOCTL data
84  * structures from userspace and to the kernel. Some IOCTLs having
85  * small data structures are used very frequently and this small
86  * buffer on the stack gives a significant speedup improvement for
87  * those requests. The value of this define should be greater or equal
88  * to 64 bytes and should also be power of two. The data structure is
89  * currently hard-aligned to a 8-byte boundary on the stack. This
90  * should currently be sufficient for all supported platforms.
91  */
92 #define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
93 #define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
94 
95 #ifdef __LP64__
96 static int iosize_max_clamp = 0;
97 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
98     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
99 static int devfs_iosize_max_clamp = 1;
100 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
101     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
102 #endif
103 
104 /*
105  * Assert that the return value of read(2) and write(2) syscalls fits
106  * into a register.  If not, an architecture will need to provide the
107  * usermode wrappers to reconstruct the result.
108  */
109 CTASSERT(sizeof(register_t) >= sizeof(size_t));
110 
111 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
112 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
113 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
114 
115 static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
116 		    u_int);
117 static int	pollscan(struct thread *, struct pollfd *, u_int);
118 static int	pollrescan(struct thread *);
119 static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
120 static int	selrescan(struct thread *, fd_mask **, fd_mask **);
121 static void	selfdalloc(struct thread *, void *);
122 static void	selfdfree(struct seltd *, struct selfd *);
123 static int	dofileread(struct thread *, int, struct file *, struct uio *,
124 		    off_t, int);
125 static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
126 		    off_t, int);
127 static void	doselwakeup(struct selinfo *, int);
128 static void	seltdinit(struct thread *);
129 static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
130 static void	seltdclear(struct thread *);
131 
132 /*
133  * One seltd per-thread allocated on demand as needed.
134  *
135  *	t - protected by st_mtx
136  * 	k - Only accessed by curthread or read-only
137  */
138 struct seltd {
139 	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
140 	struct selfd		*st_free1;	/* (k) free fd for read set. */
141 	struct selfd		*st_free2;	/* (k) free fd for write set. */
142 	struct mtx		st_mtx;		/* Protects struct seltd */
143 	struct cv		st_wait;	/* (t) Wait channel. */
144 	int			st_flags;	/* (t) SELTD_ flags. */
145 };
146 
147 #define	SELTD_PENDING	0x0001			/* We have pending events. */
148 #define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
149 
150 /*
151  * One selfd allocated per-thread per-file-descriptor.
152  *	f - protected by sf_mtx
153  */
154 struct selfd {
155 	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
156 	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
157 	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
158 	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
159 	struct seltd		*sf_td;		/* (k) owning seltd. */
160 	void			*sf_cookie;	/* (k) fd or pollfd. */
161 };
162 
163 MALLOC_DEFINE(M_SELFD, "selfd", "selfd");
164 static struct mtx_pool *mtxpool_select;
165 
166 #ifdef __LP64__
167 size_t
devfs_iosize_max(void)168 devfs_iosize_max(void)
169 {
170 
171 	return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
172 	    INT_MAX : SSIZE_MAX);
173 }
174 
175 size_t
iosize_max(void)176 iosize_max(void)
177 {
178 
179 	return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
180 	    INT_MAX : SSIZE_MAX);
181 }
182 #endif
183 
184 #ifndef _SYS_SYSPROTO_H_
185 struct read_args {
186 	int	fd;
187 	void	*buf;
188 	size_t	nbyte;
189 };
190 #endif
191 int
sys_read(struct thread * td,struct read_args * uap)192 sys_read(struct thread *td, struct read_args *uap)
193 {
194 	struct uio auio;
195 	struct iovec aiov;
196 	int error;
197 
198 	if (uap->nbyte > IOSIZE_MAX)
199 		return (EXTERROR(EINVAL, "length > iosize_max"));
200 	aiov.iov_base = uap->buf;
201 	aiov.iov_len = uap->nbyte;
202 	auio.uio_iov = &aiov;
203 	auio.uio_iovcnt = 1;
204 	auio.uio_resid = uap->nbyte;
205 	auio.uio_segflg = UIO_USERSPACE;
206 	error = kern_readv(td, uap->fd, &auio);
207 	return (error);
208 }
209 
210 /*
211  * Positioned read system call
212  */
213 #ifndef _SYS_SYSPROTO_H_
214 struct pread_args {
215 	int	fd;
216 	void	*buf;
217 	size_t	nbyte;
218 	int	pad;
219 	off_t	offset;
220 };
221 #endif
222 int
sys_pread(struct thread * td,struct pread_args * uap)223 sys_pread(struct thread *td, struct pread_args *uap)
224 {
225 
226 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
227 }
228 
229 int
kern_pread(struct thread * td,int fd,void * buf,size_t nbyte,off_t offset)230 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
231 {
232 	struct uio auio;
233 	struct iovec aiov;
234 	int error;
235 
236 	if (nbyte > IOSIZE_MAX)
237 		return (EXTERROR(EINVAL, "length > iosize_max"));
238 	aiov.iov_base = buf;
239 	aiov.iov_len = nbyte;
240 	auio.uio_iov = &aiov;
241 	auio.uio_iovcnt = 1;
242 	auio.uio_resid = nbyte;
243 	auio.uio_segflg = UIO_USERSPACE;
244 	error = kern_preadv(td, fd, &auio, offset);
245 	return (error);
246 }
247 
248 #if defined(COMPAT_FREEBSD6)
249 int
freebsd6_pread(struct thread * td,struct freebsd6_pread_args * uap)250 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
251 {
252 
253 	return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
254 }
255 #endif
256 
257 /*
258  * Scatter read system call.
259  */
260 #ifndef _SYS_SYSPROTO_H_
261 struct readv_args {
262 	int	fd;
263 	struct	iovec *iovp;
264 	u_int	iovcnt;
265 };
266 #endif
267 int
sys_readv(struct thread * td,struct readv_args * uap)268 sys_readv(struct thread *td, struct readv_args *uap)
269 {
270 	struct uio *auio;
271 	int error;
272 
273 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
274 	if (error)
275 		return (error);
276 	error = kern_readv(td, uap->fd, auio);
277 	freeuio(auio);
278 	return (error);
279 }
280 
281 int
kern_readv(struct thread * td,int fd,struct uio * auio)282 kern_readv(struct thread *td, int fd, struct uio *auio)
283 {
284 	struct file *fp;
285 	int error;
286 
287 	error = fget_read(td, fd, &cap_read_rights, &fp);
288 	if (error)
289 		return (error);
290 	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
291 	fdrop(fp, td);
292 	return (error);
293 }
294 
295 /*
296  * Scatter positioned read system call.
297  */
298 #ifndef _SYS_SYSPROTO_H_
299 struct preadv_args {
300 	int	fd;
301 	struct	iovec *iovp;
302 	u_int	iovcnt;
303 	off_t	offset;
304 };
305 #endif
306 int
sys_preadv(struct thread * td,struct preadv_args * uap)307 sys_preadv(struct thread *td, struct preadv_args *uap)
308 {
309 	struct uio *auio;
310 	int error;
311 
312 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
313 	if (error)
314 		return (error);
315 	error = kern_preadv(td, uap->fd, auio, uap->offset);
316 	freeuio(auio);
317 	return (error);
318 }
319 
320 int
kern_preadv(struct thread * td,int fd,struct uio * auio,off_t offset)321 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
322 {
323 	struct file *fp;
324 	int error;
325 
326 	error = fget_read(td, fd, &cap_pread_rights, &fp);
327 	if (error)
328 		return (error);
329 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
330 		error = ESPIPE;
331 	else if (offset < 0 &&
332 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
333 		error = EXTERROR(EINVAL, "neg offset");
334 	else
335 		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
336 	fdrop(fp, td);
337 	return (error);
338 }
339 
340 /*
341  * Common code for readv and preadv that reads data in
342  * from a file using the passed in uio, offset, and flags.
343  */
344 static int
dofileread(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)345 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
346     off_t offset, int flags)
347 {
348 	ssize_t cnt;
349 	int error;
350 #ifdef KTRACE
351 	struct uio *ktruio = NULL;
352 #endif
353 
354 	AUDIT_ARG_FD(fd);
355 
356 	/* Finish zero length reads right here */
357 	if (auio->uio_resid == 0) {
358 		td->td_retval[0] = 0;
359 		return (0);
360 	}
361 	auio->uio_rw = UIO_READ;
362 	auio->uio_offset = offset;
363 	auio->uio_td = td;
364 #ifdef KTRACE
365 	if (KTRPOINT(td, KTR_GENIO))
366 		ktruio = cloneuio(auio);
367 #endif
368 	cnt = auio->uio_resid;
369 	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
370 		if (auio->uio_resid != cnt && (error == ERESTART ||
371 		    error == EINTR || error == EWOULDBLOCK))
372 			error = 0;
373 	}
374 	cnt -= auio->uio_resid;
375 #ifdef KTRACE
376 	if (ktruio != NULL) {
377 		ktruio->uio_resid = cnt;
378 		ktrgenio(fd, UIO_READ, ktruio, error);
379 	}
380 #endif
381 	td->td_retval[0] = cnt;
382 	return (error);
383 }
384 
385 #ifndef _SYS_SYSPROTO_H_
386 struct write_args {
387 	int	fd;
388 	const void *buf;
389 	size_t	nbyte;
390 };
391 #endif
392 int
sys_write(struct thread * td,struct write_args * uap)393 sys_write(struct thread *td, struct write_args *uap)
394 {
395 	struct uio auio;
396 	struct iovec aiov;
397 	int error;
398 
399 	if (uap->nbyte > IOSIZE_MAX)
400 		return (EXTERROR(EINVAL, "length > iosize_max"));
401 	aiov.iov_base = (void *)(uintptr_t)uap->buf;
402 	aiov.iov_len = uap->nbyte;
403 	auio.uio_iov = &aiov;
404 	auio.uio_iovcnt = 1;
405 	auio.uio_resid = uap->nbyte;
406 	auio.uio_segflg = UIO_USERSPACE;
407 	error = kern_writev(td, uap->fd, &auio);
408 	return (error);
409 }
410 
411 /*
412  * Positioned write system call.
413  */
414 #ifndef _SYS_SYSPROTO_H_
415 struct pwrite_args {
416 	int	fd;
417 	const void *buf;
418 	size_t	nbyte;
419 	int	pad;
420 	off_t	offset;
421 };
422 #endif
423 int
sys_pwrite(struct thread * td,struct pwrite_args * uap)424 sys_pwrite(struct thread *td, struct pwrite_args *uap)
425 {
426 
427 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
428 }
429 
430 int
kern_pwrite(struct thread * td,int fd,const void * buf,size_t nbyte,off_t offset)431 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
432     off_t offset)
433 {
434 	struct uio auio;
435 	struct iovec aiov;
436 	int error;
437 
438 	if (nbyte > IOSIZE_MAX)
439 		return (EXTERROR(EINVAL, "length > iosize_max"));
440 	aiov.iov_base = (void *)(uintptr_t)buf;
441 	aiov.iov_len = nbyte;
442 	auio.uio_iov = &aiov;
443 	auio.uio_iovcnt = 1;
444 	auio.uio_resid = nbyte;
445 	auio.uio_segflg = UIO_USERSPACE;
446 	error = kern_pwritev(td, fd, &auio, offset);
447 	return (error);
448 }
449 
450 #if defined(COMPAT_FREEBSD6)
451 int
freebsd6_pwrite(struct thread * td,struct freebsd6_pwrite_args * uap)452 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
453 {
454 
455 	return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
456 }
457 #endif
458 
459 /*
460  * Gather write system call.
461  */
462 #ifndef _SYS_SYSPROTO_H_
463 struct writev_args {
464 	int	fd;
465 	struct	iovec *iovp;
466 	u_int	iovcnt;
467 };
468 #endif
469 int
sys_writev(struct thread * td,struct writev_args * uap)470 sys_writev(struct thread *td, struct writev_args *uap)
471 {
472 	struct uio *auio;
473 	int error;
474 
475 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
476 	if (error)
477 		return (error);
478 	error = kern_writev(td, uap->fd, auio);
479 	freeuio(auio);
480 	return (error);
481 }
482 
483 int
kern_writev(struct thread * td,int fd,struct uio * auio)484 kern_writev(struct thread *td, int fd, struct uio *auio)
485 {
486 	struct file *fp;
487 	int error;
488 
489 	error = fget_write(td, fd, &cap_write_rights, &fp);
490 	if (error)
491 		return (error);
492 	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
493 	fdrop(fp, td);
494 	return (error);
495 }
496 
497 /*
498  * Gather positioned write system call.
499  */
500 #ifndef _SYS_SYSPROTO_H_
501 struct pwritev_args {
502 	int	fd;
503 	struct	iovec *iovp;
504 	u_int	iovcnt;
505 	off_t	offset;
506 };
507 #endif
508 int
sys_pwritev(struct thread * td,struct pwritev_args * uap)509 sys_pwritev(struct thread *td, struct pwritev_args *uap)
510 {
511 	struct uio *auio;
512 	int error;
513 
514 	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
515 	if (error)
516 		return (error);
517 	error = kern_pwritev(td, uap->fd, auio, uap->offset);
518 	freeuio(auio);
519 	return (error);
520 }
521 
522 int
kern_pwritev(struct thread * td,int fd,struct uio * auio,off_t offset)523 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
524 {
525 	struct file *fp;
526 	int error;
527 
528 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
529 	if (error)
530 		return (error);
531 	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
532 		error = ESPIPE;
533 	else if (offset < 0 &&
534 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
535 		error = EXTERROR(EINVAL, "neg offset");
536 	else
537 		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
538 	fdrop(fp, td);
539 	return (error);
540 }
541 
542 /*
543  * Common code for writev and pwritev that writes data to
544  * a file using the passed in uio, offset, and flags.
545  */
546 static int
dofilewrite(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)547 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
548     off_t offset, int flags)
549 {
550 	ssize_t cnt;
551 	int error;
552 #ifdef KTRACE
553 	struct uio *ktruio = NULL;
554 #endif
555 
556 	AUDIT_ARG_FD(fd);
557 	auio->uio_rw = UIO_WRITE;
558 	auio->uio_td = td;
559 	auio->uio_offset = offset;
560 #ifdef KTRACE
561 	if (KTRPOINT(td, KTR_GENIO))
562 		ktruio = cloneuio(auio);
563 #endif
564 	cnt = auio->uio_resid;
565 	error = fo_write(fp, auio, td->td_ucred, flags, td);
566 	/*
567 	 * Socket layer is responsible for special error handling,
568 	 * see sousrsend().
569 	 */
570 	if (error != 0 && fp->f_type != DTYPE_SOCKET) {
571 		if (auio->uio_resid != cnt && (error == ERESTART ||
572 		    error == EINTR || error == EWOULDBLOCK))
573 			error = 0;
574 		if (error == EPIPE) {
575 			PROC_LOCK(td->td_proc);
576 			tdsignal(td, SIGPIPE);
577 			PROC_UNLOCK(td->td_proc);
578 		}
579 	}
580 	cnt -= auio->uio_resid;
581 #ifdef KTRACE
582 	if (ktruio != NULL) {
583 		if (error == 0)
584 			ktruio->uio_resid = cnt;
585 		ktrgenio(fd, UIO_WRITE, ktruio, error);
586 	}
587 #endif
588 	td->td_retval[0] = cnt;
589 	return (error);
590 }
591 
592 /*
593  * Truncate a file given a file descriptor.
594  *
595  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
596  * descriptor isn't writable.
597  */
598 int
kern_ftruncate(struct thread * td,int fd,off_t length)599 kern_ftruncate(struct thread *td, int fd, off_t length)
600 {
601 	struct file *fp;
602 	int error;
603 
604 	AUDIT_ARG_FD(fd);
605 	if (length < 0)
606 		return (EXTERROR(EINVAL, "negative length"));
607 	error = fget(td, fd, &cap_ftruncate_rights, &fp);
608 	if (error)
609 		return (error);
610 	AUDIT_ARG_FILE(td->td_proc, fp);
611 	if (!(fp->f_flag & FWRITE)) {
612 		fdrop(fp, td);
613 		return (EXTERROR(EINVAL, "non-writable"));
614 	}
615 	error = fo_truncate(fp, length, td->td_ucred, td);
616 	fdrop(fp, td);
617 	return (error);
618 }
619 
620 #ifndef _SYS_SYSPROTO_H_
621 struct ftruncate_args {
622 	int	fd;
623 	int	pad;
624 	off_t	length;
625 };
626 #endif
627 int
sys_ftruncate(struct thread * td,struct ftruncate_args * uap)628 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
629 {
630 
631 	return (kern_ftruncate(td, uap->fd, uap->length));
632 }
633 
634 #if defined(COMPAT_43)
635 #ifndef _SYS_SYSPROTO_H_
636 struct oftruncate_args {
637 	int	fd;
638 	long	length;
639 };
640 #endif
641 int
oftruncate(struct thread * td,struct oftruncate_args * uap)642 oftruncate(struct thread *td, struct oftruncate_args *uap)
643 {
644 
645 	return (kern_ftruncate(td, uap->fd, uap->length));
646 }
647 #endif /* COMPAT_43 */
648 
649 #ifndef _SYS_SYSPROTO_H_
650 struct ioctl_args {
651 	int	fd;
652 	u_long	com;
653 	caddr_t	data;
654 };
655 #endif
656 /* ARGSUSED */
657 int
sys_ioctl(struct thread * td,struct ioctl_args * uap)658 sys_ioctl(struct thread *td, struct ioctl_args *uap)
659 {
660 	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
661 	uint32_t com;
662 	int arg, error;
663 	u_int size;
664 	caddr_t data;
665 
666 #ifdef INVARIANTS
667 	if (uap->com > 0xffffffff) {
668 		printf(
669 		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
670 		    td->td_proc->p_pid, td->td_name, uap->com);
671 	}
672 #endif
673 	com = (uint32_t)uap->com;
674 
675 	/*
676 	 * Interpret high order word to find amount of data to be
677 	 * copied to/from the user's address space.
678 	 */
679 	size = IOCPARM_LEN(com);
680 	if ((size > IOCPARM_MAX) ||
681 	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
682 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
683 	    ((com & IOC_OUT) && size == 0) ||
684 #else
685 	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
686 #endif
687 	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
688 		return (ENOTTY);
689 
690 	if (size > 0) {
691 		if (com & IOC_VOID) {
692 			/* Integer argument. */
693 			arg = (intptr_t)uap->data;
694 			data = (void *)&arg;
695 			size = 0;
696 		} else {
697 			if (size > SYS_IOCTL_SMALL_SIZE)
698 				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
699 			else
700 				data = smalldata;
701 		}
702 	} else
703 		data = (void *)&uap->data;
704 	if (com & IOC_IN) {
705 		error = copyin(uap->data, data, (u_int)size);
706 		if (error != 0)
707 			goto out;
708 	} else if (com & IOC_OUT) {
709 		/*
710 		 * Zero the buffer so the user always
711 		 * gets back something deterministic.
712 		 */
713 		bzero(data, size);
714 	}
715 
716 	error = kern_ioctl(td, uap->fd, com, data);
717 
718 	if (error == 0 && (com & IOC_OUT))
719 		error = copyout(data, uap->data, (u_int)size);
720 
721 out:
722 	if (size > SYS_IOCTL_SMALL_SIZE)
723 		free(data, M_IOCTLOPS);
724 	return (error);
725 }
726 
727 int
kern_ioctl(struct thread * td,int fd,u_long com,caddr_t data)728 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
729 {
730 	struct file *fp;
731 	struct filedesc *fdp;
732 	int error, tmp, locked;
733 
734 	AUDIT_ARG_FD(fd);
735 	AUDIT_ARG_CMD(com);
736 
737 	fdp = td->td_proc->p_fd;
738 
739 	switch (com) {
740 	case FIONCLEX:
741 	case FIOCLEX:
742 		FILEDESC_XLOCK(fdp);
743 		locked = LA_XLOCKED;
744 		break;
745 	default:
746 #ifdef CAPABILITIES
747 		FILEDESC_SLOCK(fdp);
748 		locked = LA_SLOCKED;
749 #else
750 		locked = LA_UNLOCKED;
751 #endif
752 		break;
753 	}
754 
755 #ifdef CAPABILITIES
756 	if ((fp = fget_noref(fdp, fd)) == NULL) {
757 		error = EBADF;
758 		goto out;
759 	}
760 	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
761 		fp = NULL;	/* fhold() was not called yet */
762 		goto out;
763 	}
764 	if (!fhold(fp)) {
765 		error = EBADF;
766 		fp = NULL;
767 		goto out;
768 	}
769 	if (locked == LA_SLOCKED) {
770 		FILEDESC_SUNLOCK(fdp);
771 		locked = LA_UNLOCKED;
772 	}
773 #else
774 	error = fget(td, fd, &cap_ioctl_rights, &fp);
775 	if (error != 0) {
776 		fp = NULL;
777 		goto out;
778 	}
779 #endif
780 	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
781 		error = EBADF;
782 		goto out;
783 	}
784 
785 	switch (com) {
786 	case FIONCLEX:
787 		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
788 		goto out;
789 	case FIOCLEX:
790 		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
791 		goto out;
792 	case FIONBIO:
793 		if ((tmp = *(int *)data))
794 			atomic_set_int(&fp->f_flag, FNONBLOCK);
795 		else
796 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
797 		data = (void *)&tmp;
798 		break;
799 	case FIOASYNC:
800 		if ((tmp = *(int *)data))
801 			atomic_set_int(&fp->f_flag, FASYNC);
802 		else
803 			atomic_clear_int(&fp->f_flag, FASYNC);
804 		data = (void *)&tmp;
805 		break;
806 	}
807 
808 	error = fo_ioctl(fp, com, data, td->td_ucred, td);
809 out:
810 	switch (locked) {
811 	case LA_XLOCKED:
812 		FILEDESC_XUNLOCK(fdp);
813 		break;
814 #ifdef CAPABILITIES
815 	case LA_SLOCKED:
816 		FILEDESC_SUNLOCK(fdp);
817 		break;
818 #endif
819 	default:
820 		FILEDESC_UNLOCK_ASSERT(fdp);
821 		break;
822 	}
823 	if (fp != NULL)
824 		fdrop(fp, td);
825 	return (error);
826 }
827 
828 int
sys_posix_fallocate(struct thread * td,struct posix_fallocate_args * uap)829 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap)
830 {
831 	int error;
832 
833 	error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len);
834 	return (kern_posix_error(td, error));
835 }
836 
837 int
kern_posix_fallocate(struct thread * td,int fd,off_t offset,off_t len)838 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len)
839 {
840 	struct file *fp;
841 	int error;
842 
843 	AUDIT_ARG_FD(fd);
844 	if (offset < 0)
845 		return (EXTERROR(EINVAL, "negative offset"));
846 	if (len <= 0)
847 		return (EXTERROR(EINVAL, "negative length"));
848 	/* Check for wrap. */
849 	if (offset > OFF_MAX - len)
850 		return (EFBIG);
851 	AUDIT_ARG_FD(fd);
852 	error = fget(td, fd, &cap_pwrite_rights, &fp);
853 	if (error != 0)
854 		return (error);
855 	AUDIT_ARG_FILE(td->td_proc, fp);
856 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
857 		error = ESPIPE;
858 		goto out;
859 	}
860 	if ((fp->f_flag & FWRITE) == 0) {
861 		error = EBADF;
862 		goto out;
863 	}
864 
865 	error = fo_fallocate(fp, offset, len, td);
866  out:
867 	fdrop(fp, td);
868 	return (error);
869 }
870 
871 int
sys_fspacectl(struct thread * td,struct fspacectl_args * uap)872 sys_fspacectl(struct thread *td, struct fspacectl_args *uap)
873 {
874 	struct spacectl_range rqsr, rmsr;
875 	int error, cerror;
876 
877 	error = copyin(uap->rqsr, &rqsr, sizeof(rqsr));
878 	if (error != 0)
879 		return (error);
880 
881 	error = kern_fspacectl(td, uap->fd, uap->cmd, &rqsr, uap->flags,
882 	    &rmsr);
883 	if (uap->rmsr != NULL) {
884 		cerror = copyout(&rmsr, uap->rmsr, sizeof(rmsr));
885 		if (error == 0)
886 			error = cerror;
887 	}
888 	return (error);
889 }
890 
891 int
kern_fspacectl(struct thread * td,int fd,int cmd,const struct spacectl_range * rqsr,int flags,struct spacectl_range * rmsrp)892 kern_fspacectl(struct thread *td, int fd, int cmd,
893     const struct spacectl_range *rqsr, int flags, struct spacectl_range *rmsrp)
894 {
895 	struct file *fp;
896 	struct spacectl_range rmsr;
897 	int error;
898 
899 	AUDIT_ARG_FD(fd);
900 	AUDIT_ARG_CMD(cmd);
901 	AUDIT_ARG_FFLAGS(flags);
902 
903 	if (rqsr == NULL)
904 		return (EXTERROR(EINVAL, "no range"));
905 	rmsr = *rqsr;
906 	if (rmsrp != NULL)
907 		*rmsrp = rmsr;
908 
909 	if (cmd != SPACECTL_DEALLOC)
910 		return (EXTERROR(EINVAL, "cmd", cmd));
911 	if (rqsr->r_offset < 0)
912 		return (EXTERROR(EINVAL, "neg offset"));
913 	if (rqsr->r_len <= 0)
914 		return (EXTERROR(EINVAL, "neg len"));
915 	if (rqsr->r_offset > OFF_MAX - rqsr->r_len)
916 		return (EXTERROR(EINVAL, "offset too large"));
917 	if ((flags & ~SPACECTL_F_SUPPORTED) != 0)
918 		return (EXTERROR(EINVAL, "reserved flags", flags));
919 
920 	error = fget_write(td, fd, &cap_pwrite_rights, &fp);
921 	if (error != 0)
922 		return (error);
923 	AUDIT_ARG_FILE(td->td_proc, fp);
924 	if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
925 		error = ESPIPE;
926 		goto out;
927 	}
928 	if ((fp->f_flag & FWRITE) == 0) {
929 		error = EBADF;
930 		goto out;
931 	}
932 
933 	error = fo_fspacectl(fp, cmd, &rmsr.r_offset, &rmsr.r_len, flags,
934 	    td->td_ucred, td);
935 	/* fspacectl is not restarted after signals if the file is modified. */
936 	if (rmsr.r_len != rqsr->r_len && (error == ERESTART ||
937 	    error == EINTR || error == EWOULDBLOCK))
938 		error = 0;
939 	if (rmsrp != NULL)
940 		*rmsrp = rmsr;
941 out:
942 	fdrop(fp, td);
943 	return (error);
944 }
945 
946 int
kern_specialfd(struct thread * td,int type,void * arg)947 kern_specialfd(struct thread *td, int type, void *arg)
948 {
949 	struct file *fp;
950 	int error, fd, fflags;
951 
952 	fflags = 0;
953 	error = falloc_noinstall(td, &fp);
954 	if (error != 0)
955 		return (error);
956 
957 	switch (type) {
958 	case SPECIALFD_EVENTFD: {
959 		struct specialfd_eventfd *ae;
960 
961 		ae = arg;
962 		if ((ae->flags & EFD_CLOEXEC) != 0)
963 			fflags |= O_CLOEXEC;
964 		error = eventfd_create_file(td, fp, ae->initval, ae->flags);
965 		break;
966 	}
967 	case SPECIALFD_INOTIFY: {
968 		struct specialfd_inotify *si;
969 
970 		si = arg;
971 		error = inotify_create_file(td, fp, si->flags, &fflags);
972 		break;
973 	}
974 	default:
975 		error = EXTERROR(EINVAL, "invalid type", type);
976 		break;
977 	}
978 
979 	if (error == 0)
980 		error = finstall(td, fp, &fd, fflags, NULL);
981 	fdrop(fp, td);
982 	if (error == 0)
983 		td->td_retval[0] = fd;
984 	return (error);
985 }
986 
987 int
sys___specialfd(struct thread * td,struct __specialfd_args * args)988 sys___specialfd(struct thread *td, struct __specialfd_args *args)
989 {
990 	int error;
991 
992 	switch (args->type) {
993 	case SPECIALFD_EVENTFD: {
994 		struct specialfd_eventfd ae;
995 
996 		if (args->len != sizeof(struct specialfd_eventfd)) {
997 			error = EXTERROR(EINVAL, "eventfd params ABI");
998 			break;
999 		}
1000 		error = copyin(args->req, &ae, sizeof(ae));
1001 		if (error != 0)
1002 			break;
1003 		if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK |
1004 		    EFD_SEMAPHORE)) != 0) {
1005 			error = EXTERROR(EINVAL, "reserved flag");
1006 			break;
1007 		}
1008 		error = kern_specialfd(td, args->type, &ae);
1009 		break;
1010 	}
1011 	case SPECIALFD_INOTIFY: {
1012 		struct specialfd_inotify si;
1013 
1014 		if (args->len != sizeof(si)) {
1015 			error = EINVAL;
1016 			break;
1017 		}
1018 		error = copyin(args->req, &si, sizeof(si));
1019 		if (error != 0)
1020 			break;
1021 		error = kern_specialfd(td, args->type, &si);
1022 		break;
1023 	}
1024 	default:
1025 		error = EXTERROR(EINVAL, "unknown type", args->type);
1026 		break;
1027 	}
1028 	return (error);
1029 }
1030 
1031 int
poll_no_poll(int events)1032 poll_no_poll(int events)
1033 {
1034 	/*
1035 	 * Return true for read/write.  If the user asked for something
1036 	 * special, return POLLNVAL, so that clients have a way of
1037 	 * determining reliably whether or not the extended
1038 	 * functionality is present without hard-coding knowledge
1039 	 * of specific filesystem implementations.
1040 	 */
1041 	if (events & ~POLLSTANDARD)
1042 		return (POLLNVAL);
1043 
1044 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
1045 }
1046 
1047 int
sys_pselect(struct thread * td,struct pselect_args * uap)1048 sys_pselect(struct thread *td, struct pselect_args *uap)
1049 {
1050 	struct timespec ts;
1051 	struct timeval tv, *tvp;
1052 	sigset_t set, *uset;
1053 	int error;
1054 
1055 	if (uap->ts != NULL) {
1056 		error = copyin(uap->ts, &ts, sizeof(ts));
1057 		if (error != 0)
1058 		    return (error);
1059 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1060 		tvp = &tv;
1061 	} else
1062 		tvp = NULL;
1063 	if (uap->sm != NULL) {
1064 		error = copyin(uap->sm, &set, sizeof(set));
1065 		if (error != 0)
1066 			return (error);
1067 		uset = &set;
1068 	} else
1069 		uset = NULL;
1070 	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1071 	    uset, NFDBITS));
1072 }
1073 
1074 int
kern_pselect(struct thread * td,int nd,fd_set * in,fd_set * ou,fd_set * ex,struct timeval * tvp,sigset_t * uset,int abi_nfdbits)1075 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
1076     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
1077 {
1078 	int error;
1079 
1080 	if (uset != NULL) {
1081 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1082 		    &td->td_oldsigmask, 0);
1083 		if (error != 0)
1084 			return (error);
1085 		td->td_pflags |= TDP_OLDMASK;
1086 	}
1087 	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
1088 	if (uset != NULL) {
1089 		/*
1090 		 * Make sure that ast() is called on return to
1091 		 * usermode and TDP_OLDMASK is cleared, restoring old
1092 		 * sigmask.  If we didn't get interrupted, then the caller is
1093 		 * likely not expecting a signal to hit that should normally be
1094 		 * blocked by its signal mask, so we restore the mask before
1095 		 * any signals could be delivered.
1096 		 */
1097 		if (error == EINTR) {
1098 			ast_sched(td, TDA_SIGSUSPEND);
1099 		} else {
1100 			/* *select(2) should never restart. */
1101 			MPASS(error != ERESTART);
1102 			ast_sched(td, TDA_PSELECT);
1103 		}
1104 	}
1105 
1106 	return (error);
1107 }
1108 
1109 #ifndef _SYS_SYSPROTO_H_
1110 struct select_args {
1111 	int	nd;
1112 	fd_set	*in, *ou, *ex;
1113 	struct	timeval *tv;
1114 };
1115 #endif
1116 int
sys_select(struct thread * td,struct select_args * uap)1117 sys_select(struct thread *td, struct select_args *uap)
1118 {
1119 	struct timeval tv, *tvp;
1120 	int error;
1121 
1122 	if (uap->tv != NULL) {
1123 		error = copyin(uap->tv, &tv, sizeof(tv));
1124 		if (error)
1125 			return (error);
1126 		tvp = &tv;
1127 	} else
1128 		tvp = NULL;
1129 
1130 	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1131 	    NFDBITS));
1132 }
1133 
1134 /*
1135  * In the unlikely case when user specified n greater then the last
1136  * open file descriptor, check that no bits are set after the last
1137  * valid fd.  We must return EBADF if any is set.
1138  *
1139  * There are applications that rely on the behaviour.
1140  *
1141  * nd is fd_nfiles.
1142  */
1143 static int
select_check_badfd(fd_set * fd_in,int nd,int ndu,int abi_nfdbits)1144 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
1145 {
1146 	char *addr, *oaddr;
1147 	int b, i, res;
1148 	uint8_t bits;
1149 
1150 	if (nd >= ndu || fd_in == NULL)
1151 		return (0);
1152 
1153 	oaddr = NULL;
1154 	bits = 0; /* silence gcc */
1155 	for (i = nd; i < ndu; i++) {
1156 		b = i / NBBY;
1157 #if BYTE_ORDER == LITTLE_ENDIAN
1158 		addr = (char *)fd_in + b;
1159 #else
1160 		addr = (char *)fd_in;
1161 		if (abi_nfdbits == NFDBITS) {
1162 			addr += rounddown(b, sizeof(fd_mask)) +
1163 			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
1164 		} else {
1165 			addr += rounddown(b, sizeof(uint32_t)) +
1166 			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
1167 		}
1168 #endif
1169 		if (addr != oaddr) {
1170 			res = fubyte(addr);
1171 			if (res == -1)
1172 				return (EFAULT);
1173 			oaddr = addr;
1174 			bits = res;
1175 		}
1176 		if ((bits & (1 << (i % NBBY))) != 0)
1177 			return (EBADF);
1178 	}
1179 	return (0);
1180 }
1181 
1182 int
kern_select(struct thread * td,int nd,fd_set * fd_in,fd_set * fd_ou,fd_set * fd_ex,struct timeval * tvp,int abi_nfdbits)1183 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
1184     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
1185 {
1186 	struct filedesc *fdp;
1187 	/*
1188 	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
1189 	 * infds with the new FD_SETSIZE of 1024, and more than enough for
1190 	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
1191 	 * of 256.
1192 	 */
1193 	fd_mask s_selbits[howmany(2048, NFDBITS)];
1194 	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
1195 	struct timeval rtv;
1196 	sbintime_t asbt, precision, rsbt;
1197 	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
1198 	int error, lf, ndu;
1199 
1200 	if (nd < 0)
1201 		return (EXTERROR(EINVAL, "negative ndescs"));
1202 	fdp = td->td_proc->p_fd;
1203 	ndu = nd;
1204 	lf = fdp->fd_nfiles;
1205 	if (nd > lf)
1206 		nd = lf;
1207 
1208 	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
1209 	if (error != 0)
1210 		return (error);
1211 	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1212 	if (error != 0)
1213 		return (error);
1214 	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1215 	if (error != 0)
1216 		return (error);
1217 
1218 	/*
1219 	 * Allocate just enough bits for the non-null fd_sets.  Use the
1220 	 * preallocated auto buffer if possible.
1221 	 */
1222 	nfdbits = roundup(nd, NFDBITS);
1223 	ncpbytes = nfdbits / NBBY;
1224 	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1225 	nbufbytes = 0;
1226 	if (fd_in != NULL)
1227 		nbufbytes += 2 * ncpbytes;
1228 	if (fd_ou != NULL)
1229 		nbufbytes += 2 * ncpbytes;
1230 	if (fd_ex != NULL)
1231 		nbufbytes += 2 * ncpbytes;
1232 	if (nbufbytes <= sizeof s_selbits)
1233 		selbits = &s_selbits[0];
1234 	else
1235 		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1236 
1237 	/*
1238 	 * Assign pointers into the bit buffers and fetch the input bits.
1239 	 * Put the output buffers together so that they can be bzeroed
1240 	 * together.
1241 	 */
1242 	sbp = selbits;
1243 #define	getbits(name, x) \
1244 	do {								\
1245 		if (name == NULL) {					\
1246 			ibits[x] = NULL;				\
1247 			obits[x] = NULL;				\
1248 		} else {						\
1249 			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1250 			obits[x] = sbp;					\
1251 			sbp += ncpbytes / sizeof *sbp;			\
1252 			error = copyin(name, ibits[x], ncpubytes);	\
1253 			if (error != 0)					\
1254 				goto done;				\
1255 			if (ncpbytes != ncpubytes)			\
1256 				bzero((char *)ibits[x] + ncpubytes,	\
1257 				    ncpbytes - ncpubytes);		\
1258 		}							\
1259 	} while (0)
1260 	getbits(fd_in, 0);
1261 	getbits(fd_ou, 1);
1262 	getbits(fd_ex, 2);
1263 #undef	getbits
1264 
1265 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1266 	/*
1267 	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1268 	 * we are running under 32-bit emulation. This should be more
1269 	 * generic.
1270 	 */
1271 #define swizzle_fdset(bits)						\
1272 	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1273 		int i;							\
1274 		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1275 			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1276 	}
1277 #else
1278 #define swizzle_fdset(bits)
1279 #endif
1280 
1281 	/* Make sure the bit order makes it through an ABI transition */
1282 	swizzle_fdset(ibits[0]);
1283 	swizzle_fdset(ibits[1]);
1284 	swizzle_fdset(ibits[2]);
1285 
1286 	if (nbufbytes != 0)
1287 		bzero(selbits, nbufbytes / 2);
1288 
1289 	precision = 0;
1290 	if (tvp != NULL) {
1291 		rtv = *tvp;
1292 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1293 		    rtv.tv_usec >= 1000000) {
1294 			error = EXTERROR(EINVAL, "invalid timeval");
1295 			goto done;
1296 		}
1297 		if (!timevalisset(&rtv))
1298 			asbt = 0;
1299 		else if (rtv.tv_sec <= INT32_MAX) {
1300 			rsbt = tvtosbt(rtv);
1301 			precision = rsbt;
1302 			precision >>= tc_precexp;
1303 			if (TIMESEL(&asbt, rsbt))
1304 				asbt += tc_tick_sbt;
1305 			if (asbt <= SBT_MAX - rsbt)
1306 				asbt += rsbt;
1307 			else
1308 				asbt = -1;
1309 		} else
1310 			asbt = -1;
1311 	} else
1312 		asbt = -1;
1313 	seltdinit(td);
1314 	/* Iterate until the timeout expires or descriptors become ready. */
1315 	for (;;) {
1316 		error = selscan(td, ibits, obits, nd);
1317 		if (error || td->td_retval[0] != 0)
1318 			break;
1319 		error = seltdwait(td, asbt, precision);
1320 		if (error)
1321 			break;
1322 		error = selrescan(td, ibits, obits);
1323 		if (error || td->td_retval[0] != 0)
1324 			break;
1325 	}
1326 	seltdclear(td);
1327 
1328 done:
1329 	/* select is not restarted after signals... */
1330 	if (error == ERESTART)
1331 		error = EINTR;
1332 	if (error == EWOULDBLOCK)
1333 		error = 0;
1334 
1335 	/* swizzle bit order back, if necessary */
1336 	swizzle_fdset(obits[0]);
1337 	swizzle_fdset(obits[1]);
1338 	swizzle_fdset(obits[2]);
1339 #undef swizzle_fdset
1340 
1341 #define	putbits(name, x) \
1342 	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1343 		error = error2;
1344 	if (error == 0) {
1345 		int error2;
1346 
1347 		putbits(fd_in, 0);
1348 		putbits(fd_ou, 1);
1349 		putbits(fd_ex, 2);
1350 #undef putbits
1351 	}
1352 	if (selbits != &s_selbits[0])
1353 		free(selbits, M_SELECT);
1354 
1355 	return (error);
1356 }
1357 /*
1358  * Convert a select bit set to poll flags.
1359  *
1360  * The backend always returns POLLHUP/POLLERR if appropriate and we
1361  * return this as a set bit in any set.
1362  */
1363 static const int select_flags[3] = {
1364     POLLRDNORM | POLLHUP | POLLERR,
1365     POLLWRNORM | POLLHUP | POLLERR,
1366     POLLRDBAND | POLLERR
1367 };
1368 
1369 /*
1370  * Compute the fo_poll flags required for a fd given by the index and
1371  * bit position in the fd_mask array.
1372  */
1373 static __inline int
selflags(fd_mask ** ibits,int idx,fd_mask bit)1374 selflags(fd_mask **ibits, int idx, fd_mask bit)
1375 {
1376 	int flags;
1377 	int msk;
1378 
1379 	flags = 0;
1380 	for (msk = 0; msk < 3; msk++) {
1381 		if (ibits[msk] == NULL)
1382 			continue;
1383 		if ((ibits[msk][idx] & bit) == 0)
1384 			continue;
1385 		flags |= select_flags[msk];
1386 	}
1387 	return (flags);
1388 }
1389 
1390 /*
1391  * Set the appropriate output bits given a mask of fired events and the
1392  * input bits originally requested.
1393  */
1394 static __inline int
selsetbits(fd_mask ** ibits,fd_mask ** obits,int idx,fd_mask bit,int events)1395 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1396 {
1397 	int msk;
1398 	int n;
1399 
1400 	n = 0;
1401 	for (msk = 0; msk < 3; msk++) {
1402 		if ((events & select_flags[msk]) == 0)
1403 			continue;
1404 		if (ibits[msk] == NULL)
1405 			continue;
1406 		if ((ibits[msk][idx] & bit) == 0)
1407 			continue;
1408 		/*
1409 		 * XXX Check for a duplicate set.  This can occur because a
1410 		 * socket calls selrecord() twice for each poll() call
1411 		 * resulting in two selfds per real fd.  selrescan() will
1412 		 * call selsetbits twice as a result.
1413 		 */
1414 		if ((obits[msk][idx] & bit) != 0)
1415 			continue;
1416 		obits[msk][idx] |= bit;
1417 		n++;
1418 	}
1419 
1420 	return (n);
1421 }
1422 
1423 /*
1424  * Traverse the list of fds attached to this thread's seltd and check for
1425  * completion.
1426  */
1427 static int
selrescan(struct thread * td,fd_mask ** ibits,fd_mask ** obits)1428 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1429 {
1430 	struct filedesc *fdp;
1431 	struct selinfo *si;
1432 	struct seltd *stp;
1433 	struct selfd *sfp;
1434 	struct selfd *sfn;
1435 	struct file *fp;
1436 	fd_mask bit;
1437 	int fd, ev, n, idx;
1438 	int error;
1439 	bool only_user;
1440 
1441 	fdp = td->td_proc->p_fd;
1442 	stp = td->td_sel;
1443 	n = 0;
1444 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1445 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1446 		fd = (int)(uintptr_t)sfp->sf_cookie;
1447 		si = sfp->sf_si;
1448 		selfdfree(stp, sfp);
1449 		/* If the selinfo wasn't cleared the event didn't fire. */
1450 		if (si != NULL)
1451 			continue;
1452 		if (only_user)
1453 			error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1454 		else
1455 			error = fget_unlocked(td, fd, &cap_event_rights, &fp);
1456 		if (__predict_false(error != 0))
1457 			return (error);
1458 		idx = fd / NFDBITS;
1459 		bit = (fd_mask)1 << (fd % NFDBITS);
1460 		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1461 		if (only_user)
1462 			fput_only_user(fdp, fp);
1463 		else
1464 			fdrop(fp, td);
1465 		if (ev != 0)
1466 			n += selsetbits(ibits, obits, idx, bit, ev);
1467 	}
1468 	stp->st_flags = 0;
1469 	td->td_retval[0] = n;
1470 	return (0);
1471 }
1472 
1473 /*
1474  * Perform the initial filedescriptor scan and register ourselves with
1475  * each selinfo.
1476  */
1477 static int
selscan(struct thread * td,fd_mask ** ibits,fd_mask ** obits,int nfd)1478 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1479 {
1480 	struct filedesc *fdp;
1481 	struct file *fp;
1482 	fd_mask bit;
1483 	int ev, flags, end, fd;
1484 	int n, idx;
1485 	int error;
1486 	bool only_user;
1487 
1488 	fdp = td->td_proc->p_fd;
1489 	n = 0;
1490 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1491 	for (idx = 0, fd = 0; fd < nfd; idx++) {
1492 		end = imin(fd + NFDBITS, nfd);
1493 		for (bit = 1; fd < end; bit <<= 1, fd++) {
1494 			/* Compute the list of events we're interested in. */
1495 			flags = selflags(ibits, idx, bit);
1496 			if (flags == 0)
1497 				continue;
1498 			if (only_user)
1499 				error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1500 			else
1501 				error = fget_unlocked(td, fd, &cap_event_rights, &fp);
1502 			if (__predict_false(error != 0))
1503 				return (error);
1504 			selfdalloc(td, (void *)(uintptr_t)fd);
1505 			ev = fo_poll(fp, flags, td->td_ucred, td);
1506 			if (only_user)
1507 				fput_only_user(fdp, fp);
1508 			else
1509 				fdrop(fp, td);
1510 			if (ev != 0)
1511 				n += selsetbits(ibits, obits, idx, bit, ev);
1512 		}
1513 	}
1514 
1515 	td->td_retval[0] = n;
1516 	return (0);
1517 }
1518 
1519 int
sys_poll(struct thread * td,struct poll_args * uap)1520 sys_poll(struct thread *td, struct poll_args *uap)
1521 {
1522 	struct timespec ts, *tsp;
1523 
1524 	if (uap->timeout != INFTIM) {
1525 		if (uap->timeout < 0)
1526 			return (EXTERROR(EINVAL, "invalid timeout"));
1527 		ts.tv_sec = uap->timeout / 1000;
1528 		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1529 		tsp = &ts;
1530 	} else
1531 		tsp = NULL;
1532 
1533 	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1534 }
1535 
1536 /*
1537  * kfds points to an array in the kernel.
1538  */
1539 int
kern_poll_kfds(struct thread * td,struct pollfd * kfds,u_int nfds,struct timespec * tsp,sigset_t * uset)1540 kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds,
1541     struct timespec *tsp, sigset_t *uset)
1542 {
1543 	sbintime_t sbt, precision, tmp;
1544 	time_t over;
1545 	struct timespec ts;
1546 	int error;
1547 
1548 	precision = 0;
1549 	if (tsp != NULL) {
1550 		if (!timespecvalid_interval(tsp))
1551 			return (EXTERROR(EINVAL, "invalid timespec"));
1552 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1553 			sbt = 0;
1554 		else {
1555 			ts = *tsp;
1556 			if (ts.tv_sec > INT32_MAX / 2) {
1557 				over = ts.tv_sec - INT32_MAX / 2;
1558 				ts.tv_sec -= over;
1559 			} else
1560 				over = 0;
1561 			tmp = tstosbt(ts);
1562 			precision = tmp;
1563 			precision >>= tc_precexp;
1564 			if (TIMESEL(&sbt, tmp))
1565 				sbt += tc_tick_sbt;
1566 			sbt += tmp;
1567 		}
1568 	} else
1569 		sbt = -1;
1570 
1571 	if (uset != NULL) {
1572 		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1573 		    &td->td_oldsigmask, 0);
1574 		if (error)
1575 			return (error);
1576 		td->td_pflags |= TDP_OLDMASK;
1577 	}
1578 
1579 	seltdinit(td);
1580 	/* Iterate until the timeout expires or descriptors become ready. */
1581 	for (;;) {
1582 		error = pollscan(td, kfds, nfds);
1583 		if (error || td->td_retval[0] != 0)
1584 			break;
1585 		error = seltdwait(td, sbt, precision);
1586 		if (error)
1587 			break;
1588 		error = pollrescan(td);
1589 		if (error || td->td_retval[0] != 0)
1590 			break;
1591 	}
1592 	seltdclear(td);
1593 
1594 	/* poll is not restarted after signals... */
1595 	if (error == ERESTART)
1596 		error = EINTR;
1597 	if (error == EWOULDBLOCK)
1598 		error = 0;
1599 
1600 	if (uset != NULL) {
1601 		/*
1602 		 * Make sure that ast() is called on return to
1603 		 * usermode and TDP_OLDMASK is cleared, restoring old
1604 		 * sigmask.  If we didn't get interrupted, then the caller is
1605 		 * likely not expecting a signal to hit that should normally be
1606 		 * blocked by its signal mask, so we restore the mask before
1607 		 * any signals could be delivered.
1608 		 */
1609 		if (error == EINTR)
1610 			ast_sched(td, TDA_SIGSUSPEND);
1611 		else
1612 			ast_sched(td, TDA_PSELECT);
1613 	}
1614 
1615 	return (error);
1616 }
1617 
1618 int
sys_ppoll(struct thread * td,struct ppoll_args * uap)1619 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1620 {
1621 	struct timespec ts, *tsp;
1622 	sigset_t set, *ssp;
1623 	int error;
1624 
1625 	if (uap->ts != NULL) {
1626 		error = copyin(uap->ts, &ts, sizeof(ts));
1627 		if (error)
1628 			return (error);
1629 		tsp = &ts;
1630 	} else
1631 		tsp = NULL;
1632 	if (uap->set != NULL) {
1633 		error = copyin(uap->set, &set, sizeof(set));
1634 		if (error)
1635 			return (error);
1636 		ssp = &set;
1637 	} else
1638 		ssp = NULL;
1639 	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1640 }
1641 
1642 /*
1643  * ufds points to an array in user space.
1644  */
1645 int
kern_poll(struct thread * td,struct pollfd * ufds,u_int nfds,struct timespec * tsp,sigset_t * set)1646 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1647     struct timespec *tsp, sigset_t *set)
1648 {
1649 	struct pollfd *kfds;
1650 	struct pollfd stackfds[32];
1651 	int error;
1652 
1653 	if (kern_poll_maxfds(nfds))
1654 		return (EXTERROR(EINVAL, "too large nfds"));
1655 	if (nfds > nitems(stackfds))
1656 		kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1657 	else
1658 		kfds = stackfds;
1659 	error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1660 	if (error != 0)
1661 		goto out;
1662 
1663 	error = kern_poll_kfds(td, kfds, nfds, tsp, set);
1664 	if (error == 0)
1665 		error = pollout(td, kfds, ufds, nfds);
1666 #ifdef KTRACE
1667 	if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
1668 		ktrstructarray("pollfd", UIO_USERSPACE, ufds, nfds,
1669 		    sizeof(*ufds));
1670 #endif
1671 
1672 out:
1673 	if (nfds > nitems(stackfds))
1674 		free(kfds, M_TEMP);
1675 	return (error);
1676 }
1677 
1678 bool
kern_poll_maxfds(u_int nfds)1679 kern_poll_maxfds(u_int nfds)
1680 {
1681 
1682 	/*
1683 	 * This is kinda bogus.  We have fd limits, but that is not
1684 	 * really related to the size of the pollfd array.  Make sure
1685 	 * we let the process use at least FD_SETSIZE entries and at
1686 	 * least enough for the system-wide limits.  We want to be reasonably
1687 	 * safe, but not overly restrictive.
1688 	 */
1689 	return (nfds > maxfilesperproc && nfds > FD_SETSIZE);
1690 }
1691 
1692 static int
pollrescan(struct thread * td)1693 pollrescan(struct thread *td)
1694 {
1695 	struct seltd *stp;
1696 	struct selfd *sfp;
1697 	struct selfd *sfn;
1698 	struct selinfo *si;
1699 	struct filedesc *fdp;
1700 	struct file *fp;
1701 	struct pollfd *fd;
1702 	int n, error;
1703 	bool only_user;
1704 
1705 	n = 0;
1706 	fdp = td->td_proc->p_fd;
1707 	stp = td->td_sel;
1708 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1709 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1710 		fd = (struct pollfd *)sfp->sf_cookie;
1711 		si = sfp->sf_si;
1712 		selfdfree(stp, sfp);
1713 		/* If the selinfo wasn't cleared the event didn't fire. */
1714 		if (si != NULL)
1715 			continue;
1716 		if (only_user)
1717 			error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp);
1718 		else
1719 			error = fget_unlocked(td, fd->fd, &cap_event_rights, &fp);
1720 		if (__predict_false(error != 0)) {
1721 			fd->revents = POLLNVAL;
1722 			n++;
1723 			continue;
1724 		}
1725 		/*
1726 		 * Note: backend also returns POLLHUP and
1727 		 * POLLERR if appropriate.
1728 		 */
1729 		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1730 		if (only_user)
1731 			fput_only_user(fdp, fp);
1732 		else
1733 			fdrop(fp, td);
1734 		if (fd->revents != 0)
1735 			n++;
1736 	}
1737 	stp->st_flags = 0;
1738 	td->td_retval[0] = n;
1739 	return (0);
1740 }
1741 
1742 static int
pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)1743 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1744 {
1745 	int error = 0;
1746 	u_int i = 0;
1747 	u_int n = 0;
1748 
1749 	for (i = 0; i < nfd; i++) {
1750 		error = copyout(&fds->revents, &ufds->revents,
1751 		    sizeof(ufds->revents));
1752 		if (error)
1753 			return (error);
1754 		if (fds->revents != 0)
1755 			n++;
1756 		fds++;
1757 		ufds++;
1758 	}
1759 	td->td_retval[0] = n;
1760 	return (0);
1761 }
1762 
1763 static int
pollscan(struct thread * td,struct pollfd * fds,u_int nfd)1764 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1765 {
1766 	struct filedesc *fdp;
1767 	struct file *fp;
1768 	int i, n, error;
1769 	bool only_user;
1770 
1771 	n = 0;
1772 	fdp = td->td_proc->p_fd;
1773 	only_user = FILEDESC_IS_ONLY_USER(fdp);
1774 	for (i = 0; i < nfd; i++, fds++) {
1775 		if (fds->fd < 0) {
1776 			fds->revents = 0;
1777 			continue;
1778 		}
1779 		if (only_user)
1780 			error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp);
1781 		else
1782 			error = fget_unlocked(td, fds->fd, &cap_event_rights, &fp);
1783 		if (__predict_false(error != 0)) {
1784 			fds->revents = POLLNVAL;
1785 			n++;
1786 			continue;
1787 		}
1788 		/*
1789 		 * Note: backend also returns POLLHUP and
1790 		 * POLLERR if appropriate.
1791 		 */
1792 		selfdalloc(td, fds);
1793 		fds->revents = fo_poll(fp, fds->events,
1794 		    td->td_ucred, td);
1795 		if (only_user)
1796 			fput_only_user(fdp, fp);
1797 		else
1798 			fdrop(fp, td);
1799 		/*
1800 		 * POSIX requires POLLOUT to be never
1801 		 * set simultaneously with POLLHUP.
1802 		 */
1803 		if ((fds->revents & POLLHUP) != 0)
1804 			fds->revents &= ~POLLOUT;
1805 
1806 		if (fds->revents != 0)
1807 			n++;
1808 	}
1809 	td->td_retval[0] = n;
1810 	return (0);
1811 }
1812 
1813 /*
1814  * XXX This was created specifically to support netncp and netsmb.  This
1815  * allows the caller to specify a socket to wait for events on.  It returns
1816  * 0 if any events matched and an error otherwise.  There is no way to
1817  * determine which events fired.
1818  */
1819 int
selsocket(struct socket * so,int events,struct timeval * tvp,struct thread * td)1820 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1821 {
1822 	struct timeval rtv;
1823 	sbintime_t asbt, precision, rsbt;
1824 	int error;
1825 
1826 	precision = 0;	/* stupid gcc! */
1827 	if (tvp != NULL) {
1828 		rtv = *tvp;
1829 		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1830 		    rtv.tv_usec >= 1000000)
1831 			return (EXTERROR(EINVAL, "invalid timeval"));
1832 		if (!timevalisset(&rtv))
1833 			asbt = 0;
1834 		else if (rtv.tv_sec <= INT32_MAX) {
1835 			rsbt = tvtosbt(rtv);
1836 			precision = rsbt;
1837 			precision >>= tc_precexp;
1838 			if (TIMESEL(&asbt, rsbt))
1839 				asbt += tc_tick_sbt;
1840 			if (asbt <= SBT_MAX - rsbt)
1841 				asbt += rsbt;
1842 			else
1843 				asbt = -1;
1844 		} else
1845 			asbt = -1;
1846 	} else
1847 		asbt = -1;
1848 	seltdinit(td);
1849 	/*
1850 	 * Iterate until the timeout expires or the socket becomes ready.
1851 	 */
1852 	for (;;) {
1853 		selfdalloc(td, NULL);
1854 		if (so->so_proto->pr_sopoll(so, events, td) != 0) {
1855 			error = 0;
1856 			break;
1857 		}
1858 		error = seltdwait(td, asbt, precision);
1859 		if (error)
1860 			break;
1861 	}
1862 	seltdclear(td);
1863 	/* XXX Duplicates ncp/smb behavior. */
1864 	if (error == ERESTART)
1865 		error = 0;
1866 	return (error);
1867 }
1868 
1869 /*
1870  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1871  * have two select sets, one for read and another for write.
1872  */
1873 static void
selfdalloc(struct thread * td,void * cookie)1874 selfdalloc(struct thread *td, void *cookie)
1875 {
1876 	struct seltd *stp;
1877 
1878 	stp = td->td_sel;
1879 	if (stp->st_free1 == NULL)
1880 		stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO);
1881 	stp->st_free1->sf_td = stp;
1882 	stp->st_free1->sf_cookie = cookie;
1883 	if (stp->st_free2 == NULL)
1884 		stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO);
1885 	stp->st_free2->sf_td = stp;
1886 	stp->st_free2->sf_cookie = cookie;
1887 }
1888 
1889 static void
selfdfree(struct seltd * stp,struct selfd * sfp)1890 selfdfree(struct seltd *stp, struct selfd *sfp)
1891 {
1892 	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1893 	/*
1894 	 * Paired with doselwakeup.
1895 	 */
1896 	if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) {
1897 		mtx_lock(sfp->sf_mtx);
1898 		if (sfp->sf_si != NULL) {
1899 			TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1900 		}
1901 		mtx_unlock(sfp->sf_mtx);
1902 	}
1903 	free(sfp, M_SELFD);
1904 }
1905 
1906 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1907 void
seldrain(struct selinfo * sip)1908 seldrain(struct selinfo *sip)
1909 {
1910 
1911 	/*
1912 	 * This feature is already provided by doselwakeup(), thus it is
1913 	 * enough to go for it.
1914 	 * Eventually, the context, should take care to avoid races
1915 	 * between thread calling select()/poll() and file descriptor
1916 	 * detaching, but, again, the races are just the same as
1917 	 * selwakeup().
1918 	 */
1919         doselwakeup(sip, -1);
1920 }
1921 
1922 /*
1923  * Record a select request.
1924  */
1925 void
selrecord(struct thread * selector,struct selinfo * sip)1926 selrecord(struct thread *selector, struct selinfo *sip)
1927 {
1928 	struct selfd *sfp;
1929 	struct seltd *stp;
1930 	struct mtx *mtxp;
1931 
1932 	stp = selector->td_sel;
1933 	/*
1934 	 * Don't record when doing a rescan.
1935 	 */
1936 	if (stp->st_flags & SELTD_RESCAN)
1937 		return;
1938 	/*
1939 	 * Grab one of the preallocated descriptors.
1940 	 */
1941 	sfp = NULL;
1942 	if ((sfp = stp->st_free1) != NULL)
1943 		stp->st_free1 = NULL;
1944 	else if ((sfp = stp->st_free2) != NULL)
1945 		stp->st_free2 = NULL;
1946 	else
1947 		panic("selrecord: No free selfd on selq");
1948 	mtxp = sip->si_mtx;
1949 	if (mtxp == NULL)
1950 		mtxp = mtx_pool_find(mtxpool_select, sip);
1951 	/*
1952 	 * Initialize the sfp and queue it in the thread.
1953 	 */
1954 	sfp->sf_si = sip;
1955 	sfp->sf_mtx = mtxp;
1956 	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1957 	/*
1958 	 * Now that we've locked the sip, check for initialization.
1959 	 */
1960 	mtx_lock(mtxp);
1961 	if (sip->si_mtx == NULL) {
1962 		sip->si_mtx = mtxp;
1963 		TAILQ_INIT(&sip->si_tdlist);
1964 	}
1965 	/*
1966 	 * Add this thread to the list of selfds listening on this selinfo.
1967 	 */
1968 	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1969 	mtx_unlock(sip->si_mtx);
1970 }
1971 
1972 /* Wake up a selecting thread. */
1973 void
selwakeup(struct selinfo * sip)1974 selwakeup(struct selinfo *sip)
1975 {
1976 	doselwakeup(sip, -1);
1977 }
1978 
1979 /* Wake up a selecting thread, and set its priority. */
1980 void
selwakeuppri(struct selinfo * sip,int pri)1981 selwakeuppri(struct selinfo *sip, int pri)
1982 {
1983 	doselwakeup(sip, pri);
1984 }
1985 
1986 /*
1987  * Do a wakeup when a selectable event occurs.
1988  */
1989 static void
doselwakeup(struct selinfo * sip,int pri)1990 doselwakeup(struct selinfo *sip, int pri)
1991 {
1992 	struct selfd *sfp;
1993 	struct selfd *sfn;
1994 	struct seltd *stp;
1995 
1996 	/* If it's not initialized there can't be any waiters. */
1997 	if (sip->si_mtx == NULL)
1998 		return;
1999 	/*
2000 	 * Locking the selinfo locks all selfds associated with it.
2001 	 */
2002 	mtx_lock(sip->si_mtx);
2003 	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
2004 		/*
2005 		 * Once we remove this sfp from the list and clear the
2006 		 * sf_si seltdclear will know to ignore this si.
2007 		 */
2008 		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
2009 		stp = sfp->sf_td;
2010 		mtx_lock(&stp->st_mtx);
2011 		stp->st_flags |= SELTD_PENDING;
2012 		cv_broadcastpri(&stp->st_wait, pri);
2013 		mtx_unlock(&stp->st_mtx);
2014 		/*
2015 		 * Paired with selfdfree.
2016 		 *
2017 		 * Storing this only after the wakeup provides an invariant that
2018 		 * stp is not used after selfdfree returns.
2019 		 */
2020 		atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL);
2021 	}
2022 	mtx_unlock(sip->si_mtx);
2023 }
2024 
2025 static void
seltdinit(struct thread * td)2026 seltdinit(struct thread *td)
2027 {
2028 	struct seltd *stp;
2029 
2030 	stp = td->td_sel;
2031 	if (stp != NULL) {
2032 		MPASS(stp->st_flags == 0);
2033 		MPASS(STAILQ_EMPTY(&stp->st_selq));
2034 		return;
2035 	}
2036 	stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
2037 	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
2038 	cv_init(&stp->st_wait, "select");
2039 	stp->st_flags = 0;
2040 	STAILQ_INIT(&stp->st_selq);
2041 	td->td_sel = stp;
2042 }
2043 
2044 static int
seltdwait(struct thread * td,sbintime_t sbt,sbintime_t precision)2045 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
2046 {
2047 	struct seltd *stp;
2048 	int error;
2049 
2050 	stp = td->td_sel;
2051 	/*
2052 	 * An event of interest may occur while we do not hold the seltd
2053 	 * locked so check the pending flag before we sleep.
2054 	 */
2055 	mtx_lock(&stp->st_mtx);
2056 	/*
2057 	 * Any further calls to selrecord will be a rescan.
2058 	 */
2059 	stp->st_flags |= SELTD_RESCAN;
2060 	if (stp->st_flags & SELTD_PENDING) {
2061 		mtx_unlock(&stp->st_mtx);
2062 		return (0);
2063 	}
2064 	if (sbt == 0)
2065 		error = EWOULDBLOCK;
2066 	else if (sbt != -1)
2067 		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
2068 		    sbt, precision, C_ABSOLUTE);
2069 	else
2070 		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
2071 	mtx_unlock(&stp->st_mtx);
2072 
2073 	return (error);
2074 }
2075 
2076 void
seltdfini(struct thread * td)2077 seltdfini(struct thread *td)
2078 {
2079 	struct seltd *stp;
2080 
2081 	stp = td->td_sel;
2082 	if (stp == NULL)
2083 		return;
2084 	MPASS(stp->st_flags == 0);
2085 	MPASS(STAILQ_EMPTY(&stp->st_selq));
2086 	if (stp->st_free1)
2087 		free(stp->st_free1, M_SELFD);
2088 	if (stp->st_free2)
2089 		free(stp->st_free2, M_SELFD);
2090 	td->td_sel = NULL;
2091 	cv_destroy(&stp->st_wait);
2092 	mtx_destroy(&stp->st_mtx);
2093 	free(stp, M_SELECT);
2094 }
2095 
2096 /*
2097  * Remove the references to the thread from all of the objects we were
2098  * polling.
2099  */
2100 static void
seltdclear(struct thread * td)2101 seltdclear(struct thread *td)
2102 {
2103 	struct seltd *stp;
2104 	struct selfd *sfp;
2105 	struct selfd *sfn;
2106 
2107 	stp = td->td_sel;
2108 	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
2109 		selfdfree(stp, sfp);
2110 	stp->st_flags = 0;
2111 }
2112 
2113 static void selectinit(void *);
2114 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
2115 static void
selectinit(void * dummy __unused)2116 selectinit(void *dummy __unused)
2117 {
2118 
2119 	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
2120 }
2121 
2122 /*
2123  * Set up a syscall return value that follows the convention specified for
2124  * posix_* functions.
2125  */
2126 int
kern_posix_error(struct thread * td,int error)2127 kern_posix_error(struct thread *td, int error)
2128 {
2129 
2130 	if (error <= 0)
2131 		return (error);
2132 	td->td_errno = error;
2133 	td->td_pflags |= TDP_NERRNO;
2134 	td->td_retval[0] = error;
2135 	return (0);
2136 }
2137 
2138 int
kcmp_cmp(uintptr_t a,uintptr_t b)2139 kcmp_cmp(uintptr_t a, uintptr_t b)
2140 {
2141 	if (a == b)
2142 		return (0);
2143 	else if (a < b)
2144 		return (1);
2145 	return (2);
2146 }
2147 
2148 static int
kcmp_pget(struct thread * td,pid_t pid,struct proc ** pp)2149 kcmp_pget(struct thread *td, pid_t pid, struct proc **pp)
2150 {
2151 	int error;
2152 
2153 	if (pid == td->td_proc->p_pid) {
2154 		*pp = td->td_proc;
2155 		return (0);
2156 	}
2157 	error = pget(pid, PGET_NOTID | PGET_CANDEBUG | PGET_NOTWEXIT |
2158 	    PGET_HOLD, pp);
2159 	MPASS(*pp != td->td_proc);
2160 	return (error);
2161 }
2162 
2163 int
kern_kcmp(struct thread * td,pid_t pid1,pid_t pid2,int type,uintptr_t idx1,uintptr_t idx2)2164 kern_kcmp(struct thread *td, pid_t pid1, pid_t pid2, int type,
2165     uintptr_t idx1, uintptr_t idx2)
2166 {
2167 	struct proc *p1, *p2;
2168 	struct file *fp1, *fp2;
2169 	int error, res;
2170 
2171 	res = -1;
2172 	p1 = p2 = NULL;
2173 	error = kcmp_pget(td, pid1, &p1);
2174 	if (error == 0)
2175 		error = kcmp_pget(td, pid2, &p2);
2176 	if (error != 0)
2177 		goto out;
2178 
2179 	switch (type) {
2180 	case KCMP_FILE:
2181 	case KCMP_FILEOBJ:
2182 		error = fget_remote(td, p1, idx1, &fp1);
2183 		if (error == 0) {
2184 			error = fget_remote(td, p2, idx2, &fp2);
2185 			if (error == 0) {
2186 				if (type == KCMP_FILEOBJ)
2187 					res = fo_cmp(fp1, fp2, td);
2188 				else
2189 					res = kcmp_cmp((uintptr_t)fp1,
2190 					    (uintptr_t)fp2);
2191 				fdrop(fp2, td);
2192 			}
2193 			fdrop(fp1, td);
2194 		}
2195 		break;
2196 	case KCMP_FILES:
2197 		res = kcmp_cmp((uintptr_t)p1->p_fd, (uintptr_t)p2->p_fd);
2198 		break;
2199 	case KCMP_SIGHAND:
2200 		res = kcmp_cmp((uintptr_t)p1->p_sigacts,
2201 		    (uintptr_t)p2->p_sigacts);
2202 		break;
2203 	case KCMP_VM:
2204 		res = kcmp_cmp((uintptr_t)p1->p_vmspace,
2205 		    (uintptr_t)p2->p_vmspace);
2206 		break;
2207 	default:
2208 		error = EXTERROR(EINVAL, "unknown op");
2209 		break;
2210 	}
2211 
2212 out:
2213 	if (p1 != NULL && p1 != td->td_proc)
2214 		PRELE(p1);
2215 	if (p2 != NULL && p2 != td->td_proc)
2216 		PRELE(p2);
2217 
2218 	td->td_retval[0] = res;
2219 	return (error);
2220 }
2221 
2222 int
sys_kcmp(struct thread * td,struct kcmp_args * uap)2223 sys_kcmp(struct thread *td, struct kcmp_args *uap)
2224 {
2225 	return (kern_kcmp(td, uap->pid1, uap->pid2, uap->type,
2226 	    uap->idx1, uap->idx2));
2227 }
2228 
2229 int
file_kcmp_generic(struct file * fp1,struct file * fp2,struct thread * td)2230 file_kcmp_generic(struct file *fp1, struct file *fp2, struct thread *td)
2231 {
2232 	if (fp1->f_type != fp2->f_type)
2233 		return (3);
2234 	return (kcmp_cmp((uintptr_t)fp1->f_data, (uintptr_t)fp2->f_data));
2235 }
2236 
2237 int
exterr_to_ue(struct thread * td,struct uexterror * ue)2238 exterr_to_ue(struct thread *td, struct uexterror *ue)
2239 {
2240 	if ((td->td_pflags2 & TDP2_EXTERR) == 0)
2241 		return (ENOENT);
2242 
2243 	memset(ue, 0, sizeof(*ue));
2244 	ue->error = td->td_kexterr.error;
2245 	ue->cat = td->td_kexterr.cat;
2246 	ue->src_line = td->td_kexterr.src_line;
2247 	ue->p1 = td->td_kexterr.p1;
2248 	ue->p2 = td->td_kexterr.p2;
2249 	if (td->td_kexterr.msg != NULL)
2250 		strlcpy(ue->msg, td->td_kexterr.msg, sizeof(ue->msg));
2251 	return (0);
2252 }
2253 
2254 void
exterr_copyout(struct thread * td)2255 exterr_copyout(struct thread *td)
2256 {
2257 	struct uexterror ue;
2258 	ksiginfo_t ksi;
2259 	void *uloc;
2260 	size_t sz;
2261 	int error;
2262 
2263 	MPASS((td->td_pflags2 & TDP2_UEXTERR) != 0);
2264 
2265 	uloc = (char *)td->td_exterr_ptr + __offsetof(struct uexterror,
2266 	    error);
2267 	error = exterr_to_ue(td, &ue);
2268 	if (error != 0) {
2269 		ue.error = 0;
2270 		sz = sizeof(ue.error);
2271 	} else {
2272 		sz = sizeof(ue) - __offsetof(struct uexterror, error);
2273 	}
2274 	error = copyout(&ue.error, uloc, sz);
2275 	if (error != 0) {
2276 		td->td_pflags2 &= ~TDP2_UEXTERR;
2277 		ksiginfo_init_trap(&ksi);
2278 		ksi.ksi_signo = SIGSEGV;
2279 		ksi.ksi_code = SEGV_ACCERR;
2280 		ksi.ksi_addr = uloc;
2281 		trapsignal(td, &ksi);
2282 	}
2283 }
2284 
2285 int
sys_exterrctl(struct thread * td,struct exterrctl_args * uap)2286 sys_exterrctl(struct thread *td, struct exterrctl_args *uap)
2287 {
2288 	uint32_t ver;
2289 	int error;
2290 
2291 	if ((uap->flags & ~(EXTERRCTLF_FORCE)) != 0)
2292 		return (EINVAL);
2293 	switch (uap->op) {
2294 	case EXTERRCTL_ENABLE:
2295 		if ((td->td_pflags2 & TDP2_UEXTERR) != 0 &&
2296 		    (uap->flags & EXTERRCTLF_FORCE) == 0)
2297 			return (EBUSY);
2298 		td->td_pflags2 &= ~TDP2_UEXTERR;
2299 		error = copyin(uap->ptr, &ver, sizeof(ver));
2300 		if (error != 0)
2301 			return (error);
2302 		if (ver != UEXTERROR_VER)
2303 			return (EINVAL);
2304 		td->td_pflags2 |= TDP2_UEXTERR;
2305 		td->td_exterr_ptr = uap->ptr;
2306 		return (0);
2307 	case EXTERRCTL_DISABLE:
2308 		if ((td->td_pflags2 & TDP2_UEXTERR) == 0)
2309 			return (EINVAL);
2310 		td->td_pflags2 &= ~TDP2_UEXTERR;
2311 		return (0);
2312 	default:
2313 		return (EINVAL);
2314 	}
2315 }
2316 
2317 int
exterr_set(int eerror,int category,const char * mmsg,uintptr_t pp1,uintptr_t pp2,int line)2318 exterr_set(int eerror, int category, const char *mmsg, uintptr_t pp1,
2319     uintptr_t pp2, int line)
2320 {
2321 	struct thread *td;
2322 
2323 	td = curthread;
2324 	if ((td->td_pflags2 & TDP2_UEXTERR) != 0) {
2325 		td->td_pflags2 |= TDP2_EXTERR;
2326 		td->td_kexterr.error = eerror;
2327 		td->td_kexterr.cat = category;
2328 		td->td_kexterr.msg = mmsg;
2329 		td->td_kexterr.p1 = pp1;
2330 		td->td_kexterr.p2 = pp2;
2331 		td->td_kexterr.src_line = line;
2332 		ktrexterr(td);
2333 	}
2334 	return (eerror);
2335 }
2336