xref: /freebsd/sys/kern/kern_fork.c (revision 5c2ee618d5ec21f110c4da40e9f17833b2ab8b76)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 
40 #define EXTERR_CATEGORY	EXTERR_CAT_FORK
41 #include <sys/systm.h>
42 #include <sys/acct.h>
43 #include <sys/bitstring.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exterrvar.h>
46 #include <sys/fcntl.h>
47 #include <sys/filedesc.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/kthread.h>
51 #include <sys/ktr.h>
52 #include <sys/ktrace.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/msan.h>
57 #include <sys/mutex.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/procdesc.h>
61 #include <sys/ptrace.h>
62 #include <sys/racct.h>
63 #include <sys/resourcevar.h>
64 #include <sys/sched.h>
65 #include <sys/sdt.h>
66 #include <sys/signalvar.h>
67 #include <sys/sx.h>
68 #include <sys/syscall.h>
69 #include <sys/sysent.h>
70 #include <sys/sysproto.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/unistd.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_extern.h>
82 #include <vm/uma.h>
83 
84 #ifdef KDTRACE_HOOKS
85 #include <sys/dtrace_bsd.h>
86 dtrace_fork_func_t	dtrace_fasttrap_fork;
87 #endif
88 
89 SDT_PROVIDER_DECLARE(proc);
90 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
91 
92 #ifndef _SYS_SYSPROTO_H_
93 struct fork_args {
94 	int     dummy;
95 };
96 #endif
97 
98 /* ARGSUSED */
99 int
sys_fork(struct thread * td,struct fork_args * uap)100 sys_fork(struct thread *td, struct fork_args *uap)
101 {
102 	struct fork_req fr;
103 	int error, pid;
104 
105 	bzero(&fr, sizeof(fr));
106 	fr.fr_flags = RFFDG | RFPROC;
107 	fr.fr_pidp = &pid;
108 	error = fork1(td, &fr);
109 	if (error == 0) {
110 		td->td_retval[0] = pid;
111 		td->td_retval[1] = 0;
112 	}
113 	return (error);
114 }
115 
116 /* ARGUSED */
117 int
sys_pdfork(struct thread * td,struct pdfork_args * uap)118 sys_pdfork(struct thread *td, struct pdfork_args *uap)
119 {
120 	struct fork_req fr;
121 	int error, fd, pid;
122 
123 	bzero(&fr, sizeof(fr));
124 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
125 	fr.fr_pidp = &pid;
126 	fr.fr_pd_fd = &fd;
127 	fr.fr_pd_flags = uap->flags;
128 	AUDIT_ARG_FFLAGS(uap->flags);
129 	/*
130 	 * It is necessary to return fd by reference because 0 is a valid file
131 	 * descriptor number, and the child needs to be able to distinguish
132 	 * itself from the parent using the return value.
133 	 */
134 	error = fork1(td, &fr);
135 	if (error == 0) {
136 		td->td_retval[0] = pid;
137 		td->td_retval[1] = 0;
138 		error = copyout(&fd, uap->fdp, sizeof(fd));
139 	}
140 	return (error);
141 }
142 
143 /* ARGSUSED */
144 int
sys_vfork(struct thread * td,struct vfork_args * uap)145 sys_vfork(struct thread *td, struct vfork_args *uap)
146 {
147 	struct fork_req fr;
148 	int error, pid;
149 
150 	bzero(&fr, sizeof(fr));
151 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
152 	fr.fr_pidp = &pid;
153 	error = fork1(td, &fr);
154 	if (error == 0) {
155 		td->td_retval[0] = pid;
156 		td->td_retval[1] = 0;
157 	}
158 	return (error);
159 }
160 
161 int
sys_rfork(struct thread * td,struct rfork_args * uap)162 sys_rfork(struct thread *td, struct rfork_args *uap)
163 {
164 	struct fork_req fr;
165 	int error, pid;
166 
167 	/* Don't allow kernel-only flags. */
168 	if ((uap->flags & RFKERNELONLY) != 0)
169 		return (EXTERROR(EINVAL, "Kernel-only flags %#jx", uap->flags));
170 	/* RFSPAWN must not appear with others */
171 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
172 		return (EXTERROR(EINVAL, "RFSPAWN must be the only flag %#jx",
173 		    uap->flags));
174 
175 	AUDIT_ARG_FFLAGS(uap->flags);
176 	bzero(&fr, sizeof(fr));
177 	if ((uap->flags & RFSPAWN) != 0) {
178 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
179 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
180 	} else {
181 		fr.fr_flags = uap->flags;
182 	}
183 	fr.fr_pidp = &pid;
184 	error = fork1(td, &fr);
185 	if (error == 0) {
186 		td->td_retval[0] = pid;
187 		td->td_retval[1] = 0;
188 	}
189 	return (error);
190 }
191 
192 int
sys_pdrfork(struct thread * td,struct pdrfork_args * uap)193 sys_pdrfork(struct thread *td, struct pdrfork_args *uap)
194 {
195 	struct fork_req fr;
196 	int error, fd, pid;
197 
198 	bzero(&fr, sizeof(fr));
199 	fd = -1;
200 
201 	AUDIT_ARG_FFLAGS(uap->pdflags);
202 	AUDIT_ARG_CMD(uap->rfflags);
203 
204 	if ((uap->rfflags & (RFSTOPPED | RFHIGHPID)) != 0)
205 		return (EXTERROR(EINVAL,
206 		    "Kernel-only flags %#jx", uap->rfflags));
207 
208 	/* RFSPAWN must not appear with others */
209 	if ((uap->rfflags & RFSPAWN) != 0) {
210 		if (uap->rfflags != RFSPAWN)
211 			return (EXTERROR(EINVAL,
212 			    "RFSPAWN must be the only flag %#jx",
213 			    uap->rfflags));
214 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPROCDESC;
215 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
216 	} else {
217 		fr.fr_flags = uap->rfflags;
218 	}
219 
220 	fr.fr_pidp = &pid;
221 	fr.fr_pd_fd = &fd;
222 	fr.fr_pd_flags = uap->pdflags;
223 	error = fork1(td, &fr);
224 	if (error == 0) {
225 		td->td_retval[0] = pid;
226 		td->td_retval[1] = 0;
227 		if ((fr.fr_flags & (RFPROC | RFPROCDESC)) ==
228 		    (RFPROC | RFPROCDESC) || uap->rfflags == RFSPAWN)
229 			error = copyout(&fd, uap->fdp, sizeof(fd));
230 	}
231 	return (error);
232 }
233 
234 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
235 int	lastpid = 0;
236 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
237     "Last used PID");
238 
239 /*
240  * Random component to lastpid generation.  We mix in a random factor to make
241  * it a little harder to predict.  We sanity check the modulus value to avoid
242  * doing it in critical paths.  Don't let it be too small or we pointlessly
243  * waste randomness entropy, and don't let it be impossibly large.  Using a
244  * modulus that is too big causes a LOT more process table scans and slows
245  * down fork processing as the pidchecked caching is defeated.
246  */
247 static int randompid = 0;
248 
249 static int
sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)250 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
251 {
252 	int error, pid;
253 
254 	error = sysctl_wire_old_buffer(req, sizeof(int));
255 	if (error != 0)
256 		return(error);
257 	sx_xlock(&allproc_lock);
258 	pid = randompid;
259 	error = sysctl_handle_int(oidp, &pid, 0, req);
260 	if (error == 0 && req->newptr != NULL) {
261 		if (pid == 0)
262 			randompid = 0;
263 		else if (pid == 1)
264 			/* generate a random PID modulus between 100 and 1123 */
265 			randompid = 100 + arc4random() % 1024;
266 		else if (pid < 0 || pid > pid_max - 100)
267 			/* out of range */
268 			randompid = pid_max - 100;
269 		else if (pid < 100)
270 			/* Make it reasonable */
271 			randompid = 100;
272 		else
273 			randompid = pid;
274 	}
275 	sx_xunlock(&allproc_lock);
276 	return (error);
277 }
278 
279 SYSCTL_PROC(_kern, OID_AUTO, randompid,
280     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
281     sysctl_kern_randompid, "I",
282     "Random PID modulus. Special values: 0: disable, 1: choose random value");
283 
284 extern bitstr_t proc_id_pidmap;
285 extern bitstr_t proc_id_grpidmap;
286 extern bitstr_t proc_id_sessidmap;
287 extern bitstr_t proc_id_reapmap;
288 
289 /*
290  * Find an unused process ID
291  *
292  * If RFHIGHPID is set (used during system boot), do not allocate
293  * low-numbered pids.
294  */
295 static int
fork_findpid(int flags)296 fork_findpid(int flags)
297 {
298 	pid_t result;
299 	int trypid, random;
300 
301 	/*
302 	 * Avoid calling arc4random with procid_lock held.
303 	 */
304 	random = 0;
305 	if (__predict_false(randompid))
306 		random = arc4random() % randompid;
307 
308 	mtx_lock(&procid_lock);
309 
310 	trypid = lastpid + 1;
311 	if (flags & RFHIGHPID) {
312 		if (trypid < 10)
313 			trypid = 10;
314 	} else {
315 		trypid += random;
316 	}
317 retry:
318 	if (trypid >= pid_max)
319 		trypid = 2;
320 
321 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
322 	if (result == -1) {
323 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
324 		trypid = 2;
325 		goto retry;
326 	}
327 	if (bit_test(&proc_id_grpidmap, result) ||
328 	    bit_test(&proc_id_sessidmap, result) ||
329 	    bit_test(&proc_id_reapmap, result)) {
330 		trypid = result + 1;
331 		goto retry;
332 	}
333 
334 	/*
335 	 * RFHIGHPID does not mess with the lastpid counter during boot.
336 	 */
337 	if ((flags & RFHIGHPID) == 0)
338 		lastpid = result;
339 
340 	bit_set(&proc_id_pidmap, result);
341 	mtx_unlock(&procid_lock);
342 
343 	return (result);
344 }
345 
346 static int
fork_norfproc(struct thread * td,int flags)347 fork_norfproc(struct thread *td, int flags)
348 {
349 	struct proc *p1;
350 	int error;
351 
352 	KASSERT((flags & RFPROC) == 0,
353 	    ("fork_norfproc called with RFPROC set"));
354 	p1 = td->td_proc;
355 
356 	/*
357 	 * Quiesce other threads if necessary.  If RFMEM is not specified we
358 	 * must ensure that other threads do not concurrently create a second
359 	 * process sharing the vmspace, see vmspace_unshare().
360 	 */
361 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
362 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
363 		PROC_LOCK(p1);
364 		if (thread_single(p1, SINGLE_BOUNDARY)) {
365 			PROC_UNLOCK(p1);
366 			return (ERESTART);
367 		}
368 		PROC_UNLOCK(p1);
369 	}
370 
371 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
372 	if (error != 0)
373 		goto fail;
374 
375 	/*
376 	 * Close all file descriptors.
377 	 */
378 	if ((flags & RFCFDG) != 0) {
379 		struct filedesc *fdtmp;
380 		struct pwddesc *pdtmp;
381 
382 		pdtmp = pdinit(td->td_proc->p_pd, false);
383 		fdtmp = fdinit();
384 		pdescfree(td);
385 		fdescfree(td);
386 		p1->p_fd = fdtmp;
387 		p1->p_pd = pdtmp;
388 	}
389 
390 	/*
391 	 * Unshare file descriptors (from parent).
392 	 */
393 	if ((flags & RFFDG) != 0) {
394 		fdunshare(td);
395 		pdunshare(td);
396 	}
397 
398 fail:
399 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
400 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
401 		PROC_LOCK(p1);
402 		thread_single_end(p1, SINGLE_BOUNDARY);
403 		PROC_UNLOCK(p1);
404 	}
405 	return (error);
406 }
407 
408 static void
do_fork(struct thread * td,struct fork_req * fr,struct proc * p2,struct thread * td2,struct vmspace * vm2,struct file * fp_procdesc)409 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
410     struct vmspace *vm2, struct file *fp_procdesc)
411 {
412 	struct proc *p1, *pptr;
413 	struct filedesc *fd;
414 	struct filedesc_to_leader *fdtol;
415 	struct pwddesc *pd;
416 	struct sigacts *newsigacts;
417 
418 	p1 = td->td_proc;
419 
420 	PROC_LOCK(p1);
421 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
422 	    __rangeof(struct proc, p_startcopy, p_endcopy));
423 	pargs_hold(p2->p_args);
424 	PROC_UNLOCK(p1);
425 
426 	bzero(&p2->p_startzero,
427 	    __rangeof(struct proc, p_startzero, p_endzero));
428 
429 	/* Tell the prison that we exist. */
430 	prison_proc_hold(p2->p_ucred->cr_prison);
431 
432 	p2->p_state = PRS_NEW;		/* protect against others */
433 	p2->p_pid = fork_findpid(fr->fr_flags);
434 	AUDIT_ARG_PID(p2->p_pid);
435 	TSFORK(p2->p_pid, p1->p_pid);
436 
437 	sx_xlock(&allproc_lock);
438 	LIST_INSERT_HEAD(&allproc, p2, p_list);
439 	allproc_gen++;
440 	prison_proc_link(p2->p_ucred->cr_prison, p2);
441 	sx_xunlock(&allproc_lock);
442 
443 	sx_xlock(PIDHASHLOCK(p2->p_pid));
444 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
445 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
446 
447 	tidhash_add(td2);
448 
449 	/*
450 	 * Malloc things while we don't hold any locks.
451 	 */
452 	if (fr->fr_flags & RFSIGSHARE)
453 		newsigacts = NULL;
454 	else
455 		newsigacts = sigacts_alloc();
456 
457 	/*
458 	 * Copy filedesc.
459 	 */
460 	if (fr->fr_flags & RFCFDG) {
461 		pd = pdinit(p1->p_pd, false);
462 		fd = fdinit();
463 		fdtol = NULL;
464 	} else if (fr->fr_flags & RFFDG) {
465 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
466 			pd = pdshare(p1->p_pd);
467 		else
468 			pd = pdcopy(p1->p_pd);
469 		fd = fdcopy(p1->p_fd, p2);
470 		fdtol = NULL;
471 	} else {
472 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
473 			pd = pdcopy(p1->p_pd);
474 		else
475 			pd = pdshare(p1->p_pd);
476 		fd = fdshare(p1->p_fd);
477 		if (p1->p_fdtol == NULL)
478 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
479 			    p1->p_leader);
480 		if ((fr->fr_flags & RFTHREAD) != 0) {
481 			/*
482 			 * Shared file descriptor table, and shared
483 			 * process leaders.
484 			 */
485 			fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
486 		} else {
487 			/*
488 			 * Shared file descriptor table, and different
489 			 * process leaders.
490 			 */
491 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
492 			    p1->p_fd, p2);
493 		}
494 	}
495 	/*
496 	 * Make a proc table entry for the new process.
497 	 * Start by zeroing the section of proc that is zero-initialized,
498 	 * then copy the section that is copied directly from the parent.
499 	 */
500 
501 	PROC_LOCK(p2);
502 	PROC_LOCK(p1);
503 
504 	bzero(&td2->td_startzero,
505 	    __rangeof(struct thread, td_startzero, td_endzero));
506 
507 	bcopy(&td->td_startcopy, &td2->td_startcopy,
508 	    __rangeof(struct thread, td_startcopy, td_endcopy));
509 
510 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
511 	td2->td_sigstk = td->td_sigstk;
512 	td2->td_flags = TDF_INMEM;
513 	td2->td_lend_user_pri = PRI_MAX;
514 
515 #ifdef VIMAGE
516 	td2->td_vnet = NULL;
517 	td2->td_vnet_lpush = NULL;
518 #endif
519 
520 	/*
521 	 * Allow the scheduler to initialize the child.
522 	 */
523 	thread_lock(td);
524 	sched_fork(td, td2);
525 	/*
526 	 * Request AST to check for TDP_RFPPWAIT.  Do it here
527 	 * to avoid calling thread_lock() again.
528 	 */
529 	if ((fr->fr_flags & RFPPWAIT) != 0)
530 		ast_sched_locked(td, TDA_VFORK);
531 	thread_unlock(td);
532 
533 	/*
534 	 * Duplicate sub-structures as needed.
535 	 * Increase reference counts on shared objects.
536 	 */
537 	p2->p_flag = P_INMEM;
538 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
539 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
540 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
541 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
542 	    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC | P2_LOGSIGEXIT_CTL |
543 	    P2_LOGSIGEXIT_ENABLE);
544 	p2->p_swtick = ticks;
545 	if (p1->p_flag & P_PROFIL)
546 		startprofclock(p2);
547 
548 	if (fr->fr_flags & RFSIGSHARE) {
549 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
550 	} else {
551 		sigacts_copy(newsigacts, p1->p_sigacts);
552 		p2->p_sigacts = newsigacts;
553 		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
554 			mtx_lock(&p2->p_sigacts->ps_mtx);
555 			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
556 				sig_drop_caught(p2);
557 			if ((fr->fr_flags2 & FR2_KPROC) != 0)
558 				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
559 			mtx_unlock(&p2->p_sigacts->ps_mtx);
560 		}
561 	}
562 
563 	if (fr->fr_flags & RFTSIGZMB)
564 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
565 	else if (fr->fr_flags & RFLINUXTHPN)
566 	        p2->p_sigparent = SIGUSR1;
567 	else
568 	        p2->p_sigparent = SIGCHLD;
569 
570 	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
571 		p2->p_flag |= P_SYSTEM | P_KPROC;
572 		td2->td_pflags |= TDP_KTHREAD;
573 	}
574 
575 	p2->p_textvp = p1->p_textvp;
576 	p2->p_textdvp = p1->p_textdvp;
577 	p2->p_fd = fd;
578 	p2->p_fdtol = fdtol;
579 	p2->p_pd = pd;
580 
581 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
582 		p2->p_flag |= P_PROTECTED;
583 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
584 	}
585 
586 	/*
587 	 * p_limit is copy-on-write.  Bump its refcount.
588 	 */
589 	lim_fork(p1, p2);
590 
591 	thread_cow_get_proc(td2, p2);
592 
593 	pstats_fork(p1->p_stats, p2->p_stats);
594 
595 	PROC_UNLOCK(p1);
596 	PROC_UNLOCK(p2);
597 
598 	/*
599 	 * Bump references to the text vnode and directory, and copy
600 	 * the hardlink name.
601 	 */
602 	if (p2->p_textvp != NULL)
603 		vrefact(p2->p_textvp);
604 	if (p2->p_textdvp != NULL)
605 		vrefact(p2->p_textdvp);
606 	p2->p_binname = p1->p_binname == NULL ? NULL :
607 	    strdup(p1->p_binname, M_PARGS);
608 
609 	/*
610 	 * Set up linkage for kernel based threading.
611 	 */
612 	if ((fr->fr_flags & RFTHREAD) != 0) {
613 		mtx_lock(&ppeers_lock);
614 		p2->p_peers = p1->p_peers;
615 		p1->p_peers = p2;
616 		p2->p_leader = p1->p_leader;
617 		mtx_unlock(&ppeers_lock);
618 		PROC_LOCK(p1->p_leader);
619 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
620 			PROC_UNLOCK(p1->p_leader);
621 			/*
622 			 * The task leader is exiting, so process p1 is
623 			 * going to be killed shortly.  Since p1 obviously
624 			 * isn't dead yet, we know that the leader is either
625 			 * sending SIGKILL's to all the processes in this
626 			 * task or is sleeping waiting for all the peers to
627 			 * exit.  We let p1 complete the fork, but we need
628 			 * to go ahead and kill the new process p2 since
629 			 * the task leader may not get a chance to send
630 			 * SIGKILL to it.  We leave it on the list so that
631 			 * the task leader will wait for this new process
632 			 * to commit suicide.
633 			 */
634 			PROC_LOCK(p2);
635 			kern_psignal(p2, SIGKILL);
636 			PROC_UNLOCK(p2);
637 		} else
638 			PROC_UNLOCK(p1->p_leader);
639 	} else {
640 		p2->p_peers = NULL;
641 		p2->p_leader = p2;
642 	}
643 
644 	sx_xlock(&proctree_lock);
645 	PGRP_LOCK(p1->p_pgrp);
646 	PROC_LOCK(p2);
647 	PROC_LOCK(p1);
648 
649 	/*
650 	 * Preserve some more flags in subprocess.  P_PROFIL has already
651 	 * been preserved.
652 	 */
653 	p2->p_flag |= p1->p_flag & P_SUGID;
654 	td2->td_pflags |= td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK);
655 	td2->td_pflags2 |= td->td_pflags2 & TDP2_UEXTERR;
656 	if (p1->p_flag & P_CONTROLT) {
657 		SESS_LOCK(p1->p_session);
658 		if (p1->p_session->s_ttyvp != NULL)
659 			p2->p_flag |= P_CONTROLT;
660 		SESS_UNLOCK(p1->p_session);
661 	}
662 	if (fr->fr_flags & RFPPWAIT)
663 		p2->p_flag |= P_PPWAIT;
664 
665 	p2->p_pgrp = p1->p_pgrp;
666 	LIST_INSERT_AFTER(p1, p2, p_pglist);
667 	PGRP_UNLOCK(p1->p_pgrp);
668 	LIST_INIT(&p2->p_children);
669 	LIST_INIT(&p2->p_orphans);
670 
671 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
672 
673 	/*
674 	 * This begins the section where we must prevent the parent
675 	 * from being swapped.
676 	 */
677 	_PHOLD(p1);
678 	PROC_UNLOCK(p1);
679 
680 	/*
681 	 * Attach the new process to its parent.
682 	 *
683 	 * If RFNOWAIT is set, the newly created process becomes a child
684 	 * of init.  This effectively disassociates the child from the
685 	 * parent.
686 	 */
687 	if ((fr->fr_flags & RFNOWAIT) != 0) {
688 		pptr = p1->p_reaper;
689 		p2->p_reaper = pptr;
690 	} else {
691 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
692 		    p1 : p1->p_reaper;
693 		pptr = p1;
694 	}
695 	p2->p_pptr = pptr;
696 	p2->p_oppid = pptr->p_pid;
697 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
698 	LIST_INIT(&p2->p_reaplist);
699 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
700 	if (p2->p_reaper == p1 && p1 != initproc) {
701 		p2->p_reapsubtree = p2->p_pid;
702 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
703 	}
704 	sx_xunlock(&proctree_lock);
705 
706 	/* Inform accounting that we have forked. */
707 	p2->p_acflag = AFORK;
708 	PROC_UNLOCK(p2);
709 
710 #ifdef KTRACE
711 	ktrprocfork(p1, p2);
712 #endif
713 
714 	/*
715 	 * Finish creating the child process.  It will return via a different
716 	 * execution path later.  (ie: directly into user mode)
717 	 */
718 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
719 
720 	if (fr->fr_flags == (RFFDG | RFPROC)) {
721 		VM_CNT_INC(v_forks);
722 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
723 		    p2->p_vmspace->vm_ssize);
724 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
725 		VM_CNT_INC(v_vforks);
726 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
727 		    p2->p_vmspace->vm_ssize);
728 	} else if (p1 == &proc0) {
729 		VM_CNT_INC(v_kthreads);
730 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
731 		    p2->p_vmspace->vm_ssize);
732 	} else {
733 		VM_CNT_INC(v_rforks);
734 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
735 		    p2->p_vmspace->vm_ssize);
736 	}
737 
738 	/*
739 	 * Associate the process descriptor with the process before anything
740 	 * can happen that might cause that process to need the descriptor.
741 	 * However, don't do this until after fork(2) can no longer fail.
742 	 */
743 	if (fr->fr_flags & RFPROCDESC)
744 		procdesc_new(p2, fr->fr_pd_flags);
745 
746 	/*
747 	 * Both processes are set up, now check if any loadable modules want
748 	 * to adjust anything.
749 	 */
750 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
751 
752 	/*
753 	 * Set the child start time and mark the process as being complete.
754 	 */
755 	PROC_LOCK(p2);
756 	PROC_LOCK(p1);
757 	microuptime(&p2->p_stats->p_start);
758 	PROC_SLOCK(p2);
759 	p2->p_state = PRS_NORMAL;
760 	PROC_SUNLOCK(p2);
761 
762 #ifdef KDTRACE_HOOKS
763 	/*
764 	 * Tell the DTrace fasttrap provider about the new process so that any
765 	 * tracepoints inherited from the parent can be removed. We have to do
766 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
767 	 * use pfind() later on.
768 	 */
769 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
770 		dtrace_fasttrap_fork(p1, p2);
771 #endif
772 	if (fr->fr_flags & RFPPWAIT) {
773 		td->td_pflags |= TDP_RFPPWAIT;
774 		td->td_rfppwait_p = p2;
775 		td->td_dbgflags |= TDB_VFORK;
776 	}
777 	PROC_UNLOCK(p2);
778 
779 	/*
780 	 * Tell any interested parties about the new process.
781 	 */
782 	knote_fork(p1->p_klist, p2->p_pid);
783 
784 	/*
785 	 * Now can be swapped.
786 	 */
787 	_PRELE(p1);
788 	PROC_UNLOCK(p1);
789 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
790 
791 	if (fr->fr_flags & RFPROCDESC) {
792 		procdesc_finit(p2->p_procdesc, fp_procdesc);
793 		fdrop(fp_procdesc, td);
794 	}
795 
796 	/*
797 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
798 	 * synced with forks in progress so it is OK if we miss it
799 	 * if being set atm.
800 	 */
801 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
802 		sx_xlock(&proctree_lock);
803 		PROC_LOCK(p2);
804 
805 		/*
806 		 * p1->p_ptevents & p1->p_pptr are protected by both
807 		 * process and proctree locks for modifications,
808 		 * so owning proctree_lock allows the race-free read.
809 		 */
810 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
811 			/*
812 			 * Arrange for debugger to receive the fork event.
813 			 *
814 			 * We can report PL_FLAG_FORKED regardless of
815 			 * P_FOLLOWFORK settings, but it does not make a sense
816 			 * for runaway child.
817 			 */
818 			td->td_dbgflags |= TDB_FORK;
819 			td->td_dbg_forked = p2->p_pid;
820 			td2->td_dbgflags |= TDB_STOPATFORK;
821 			proc_set_traced(p2, true);
822 			CTR2(KTR_PTRACE,
823 			    "do_fork: attaching to new child pid %d: oppid %d",
824 			    p2->p_pid, p2->p_oppid);
825 			proc_reparent(p2, p1->p_pptr, false);
826 		}
827 		PROC_UNLOCK(p2);
828 		sx_xunlock(&proctree_lock);
829 	}
830 
831 	racct_proc_fork_done(p2);
832 
833 	if ((fr->fr_flags & RFSTOPPED) == 0) {
834 		if (fr->fr_pidp != NULL)
835 			*fr->fr_pidp = p2->p_pid;
836 		/*
837 		 * If RFSTOPPED not requested, make child runnable and
838 		 * add to run queue.
839 		 */
840 		thread_lock(td2);
841 		TD_SET_CAN_RUN(td2);
842 		sched_add(td2, SRQ_BORING);
843 	} else {
844 		*fr->fr_procp = p2;
845 	}
846 }
847 
848 static void
ast_vfork(struct thread * td,int tda __unused)849 ast_vfork(struct thread *td, int tda __unused)
850 {
851 	struct proc *p, *p2;
852 
853 	MPASS(td->td_pflags & TDP_RFPPWAIT);
854 
855 	p = td->td_proc;
856 	/*
857 	 * Preserve synchronization semantics of vfork.  If
858 	 * waiting for child to exec or exit, fork set
859 	 * P_PPWAIT on child, and there we sleep on our proc
860 	 * (in case of exit).
861 	 *
862 	 * Do it after the ptracestop() above is finished, to
863 	 * not block our debugger until child execs or exits
864 	 * to finish vfork wait.
865 	 */
866 	td->td_pflags &= ~TDP_RFPPWAIT;
867 	p2 = td->td_rfppwait_p;
868 again:
869 	PROC_LOCK(p2);
870 	while (p2->p_flag & P_PPWAIT) {
871 		PROC_LOCK(p);
872 		if (thread_suspend_check_needed()) {
873 			PROC_UNLOCK(p2);
874 			thread_suspend_check(0);
875 			PROC_UNLOCK(p);
876 			goto again;
877 		} else {
878 			PROC_UNLOCK(p);
879 		}
880 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
881 	}
882 	PROC_UNLOCK(p2);
883 
884 	if (td->td_dbgflags & TDB_VFORK) {
885 		PROC_LOCK(p);
886 		if (p->p_ptevents & PTRACE_VFORK)
887 			ptracestop(td, SIGTRAP, NULL);
888 		td->td_dbgflags &= ~TDB_VFORK;
889 		PROC_UNLOCK(p);
890 	}
891 }
892 
893 int
fork1(struct thread * td,struct fork_req * fr)894 fork1(struct thread *td, struct fork_req *fr)
895 {
896 	struct proc *p1, *newproc;
897 	struct thread *td2;
898 	struct vmspace *vm2;
899 	struct ucred *cred;
900 	struct file *fp_procdesc;
901 	struct pgrp *pg;
902 	vm_ooffset_t mem_charged;
903 	int error, nprocs_new;
904 	static int curfail;
905 	static struct timeval lastfail;
906 	int flags, pages;
907 	bool killsx_locked, singlethreaded;
908 
909 	flags = fr->fr_flags;
910 	pages = fr->fr_pages;
911 
912 	if ((flags & RFSTOPPED) != 0)
913 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
914 	else
915 		MPASS(fr->fr_procp == NULL);
916 
917 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
918 		return (EXTERROR(EINVAL,
919 		    "Undef or unimplemented flags %#jx", flags));
920 
921 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
922 		return (EXTERROR(EINVAL,
923 		    "Signal value requires RFTSIGZMB", flags));
924 
925 	if ((flags & (RFFDG | RFCFDG)) == (RFFDG | RFCFDG))
926 		return (EXTERROR(EINVAL, "Can not copy and clear"));
927 
928 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
929 		return (EXTERROR(EINVAL, "Invalid signal", RFTSIGNUM(flags)));
930 
931 	if ((flags & RFPROCDESC) != 0) {
932 		if ((flags & RFPROC) == 0)
933 			return (EXTERROR(EINVAL,
934 	    "Can not not create a process yet get a process descriptor"));
935 
936 		if (fr->fr_pd_fd == NULL)
937 			return (EXTERROR(EINVAL,
938 		    "Must provide a place to put a procdesc if creating one"));
939 
940 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
941 			return (EXTERROR(EINVAL,
942 			    "Invallid pdflags at fork %#jx", fr->fr_pd_flags));
943 	}
944 
945 	p1 = td->td_proc;
946 
947 	/*
948 	 * Here we don't create a new process, but we divorce
949 	 * certain parts of a process from itself.
950 	 */
951 	if ((flags & RFPROC) == 0) {
952 		if (fr->fr_procp != NULL)
953 			*fr->fr_procp = NULL;
954 		else if (fr->fr_pidp != NULL)
955 			*fr->fr_pidp = 0;
956 		return (fork_norfproc(td, flags));
957 	}
958 
959 	fp_procdesc = NULL;
960 	newproc = NULL;
961 	vm2 = NULL;
962 	killsx_locked = false;
963 	singlethreaded = false;
964 
965 	/*
966 	 * Increment the nprocs resource before allocations occur.
967 	 * Although process entries are dynamically created, we still
968 	 * keep a global limit on the maximum number we will
969 	 * create. There are hard-limits as to the number of processes
970 	 * that can run, established by the KVA and memory usage for
971 	 * the process data.
972 	 *
973 	 * Don't allow a nonprivileged user to use the last ten
974 	 * processes; don't let root exceed the limit.
975 	 */
976 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
977 	if (nprocs_new >= maxproc - 10) {
978 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
979 		    nprocs_new >= maxproc) {
980 			error = EAGAIN;
981 			sx_xlock(&allproc_lock);
982 			if (ppsratecheck(&lastfail, &curfail, 1)) {
983 				printf("maxproc limit exceeded by uid %u "
984 				    "(pid %d); see tuning(7) and "
985 				    "login.conf(5)\n",
986 				    td->td_ucred->cr_ruid, p1->p_pid);
987 			}
988 			sx_xunlock(&allproc_lock);
989 			goto fail2;
990 		}
991 	}
992 
993 	/*
994 	 * If we are possibly multi-threaded, and there is a process
995 	 * sending a signal to our group right now, ensure that our
996 	 * other threads cannot be chosen for the signal queueing.
997 	 * Otherwise, this might delay signal action, and make the new
998 	 * child escape the signaling.
999 	 */
1000 	pg = p1->p_pgrp;
1001 	if (p1->p_numthreads > 1) {
1002 		if (sx_try_slock(&pg->pg_killsx) != 0) {
1003 			killsx_locked = true;
1004 		} else {
1005 			PROC_LOCK(p1);
1006 			if (thread_single(p1, SINGLE_BOUNDARY)) {
1007 				PROC_UNLOCK(p1);
1008 				error = ERESTART;
1009 				goto fail2;
1010 			}
1011 			PROC_UNLOCK(p1);
1012 			singlethreaded = true;
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Atomically check for signals and block processes from sending
1018 	 * a signal to our process group until the child is visible.
1019 	 */
1020 	if (!killsx_locked && sx_slock_sig(&pg->pg_killsx) != 0) {
1021 		error = ERESTART;
1022 		goto fail2;
1023 	}
1024 	if (__predict_false(p1->p_pgrp != pg || sig_intr() != 0)) {
1025 		/*
1026 		 * Either the process was moved to other process
1027 		 * group, or there is pending signal.  sx_slock_sig()
1028 		 * does not check for signals if not sleeping for the
1029 		 * lock.
1030 		 */
1031 		sx_sunlock(&pg->pg_killsx);
1032 		killsx_locked = false;
1033 		error = ERESTART;
1034 		goto fail2;
1035 	} else {
1036 		killsx_locked = true;
1037 	}
1038 
1039 	/*
1040 	 * If required, create a process descriptor in the parent first; we
1041 	 * will abandon it if something goes wrong. We don't finit() until
1042 	 * later.
1043 	 */
1044 	if (flags & RFPROCDESC) {
1045 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
1046 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
1047 		if (error != 0)
1048 			goto fail2;
1049 		AUDIT_ARG_FD(*fr->fr_pd_fd);
1050 	}
1051 
1052 	mem_charged = 0;
1053 	if (pages == 0)
1054 		pages = kstack_pages;
1055 	/* Allocate new proc. */
1056 	newproc = uma_zalloc(proc_zone, M_WAITOK);
1057 	td2 = FIRST_THREAD_IN_PROC(newproc);
1058 	if (td2 == NULL) {
1059 		td2 = thread_alloc(pages);
1060 		if (td2 == NULL) {
1061 			error = ENOMEM;
1062 			goto fail2;
1063 		}
1064 		proc_linkup(newproc, td2);
1065 	} else {
1066 		error = thread_recycle(td2, pages);
1067 		if (error != 0)
1068 			goto fail2;
1069 	}
1070 
1071 	if ((flags & RFMEM) == 0) {
1072 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
1073 		if (vm2 == NULL) {
1074 			error = ENOMEM;
1075 			goto fail2;
1076 		}
1077 		if (!swap_reserve(mem_charged)) {
1078 			/*
1079 			 * The swap reservation failed. The accounting
1080 			 * from the entries of the copied vm2 will be
1081 			 * subtracted in vmspace_free(), so force the
1082 			 * reservation there.
1083 			 */
1084 			swap_reserve_force(mem_charged);
1085 			error = ENOMEM;
1086 			goto fail2;
1087 		}
1088 	} else
1089 		vm2 = NULL;
1090 
1091 	/*
1092 	 * XXX: This is ugly; when we copy resource usage, we need to bump
1093 	 *      per-cred resource counters.
1094 	 */
1095 	newproc->p_ucred = crcowget(td->td_ucred);
1096 
1097 	/*
1098 	 * Initialize resource accounting for the child process.
1099 	 */
1100 	error = racct_proc_fork(p1, newproc);
1101 	if (error != 0) {
1102 		error = EAGAIN;
1103 		goto fail1;
1104 	}
1105 
1106 #ifdef MAC
1107 	mac_proc_init(newproc);
1108 #endif
1109 
1110 	/*
1111 	 * Increment the count of procs running with this uid. Don't allow
1112 	 * a nonprivileged user to exceed their current limit.
1113 	 */
1114 	cred = td->td_ucred;
1115 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1116 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1117 			goto fail0;
1118 		chgproccnt(cred->cr_ruidinfo, 1, 0);
1119 	}
1120 
1121 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1122 
1123 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1124 	error = 0;
1125 	goto cleanup;
1126 fail0:
1127 	error = EAGAIN;
1128 #ifdef MAC
1129 	mac_proc_destroy(newproc);
1130 #endif
1131 	racct_proc_exit(newproc);
1132 fail1:
1133 	proc_unset_cred(newproc, false);
1134 fail2:
1135 	if (vm2 != NULL)
1136 		vmspace_free(vm2);
1137 	uma_zfree(proc_zone, newproc);
1138 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1139 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1140 		fdrop(fp_procdesc, td);
1141 	}
1142 	atomic_add_int(&nprocs, -1);
1143 cleanup:
1144 	if (killsx_locked)
1145 		sx_sunlock(&pg->pg_killsx);
1146 	if (singlethreaded) {
1147 		PROC_LOCK(p1);
1148 		thread_single_end(p1, SINGLE_BOUNDARY);
1149 		PROC_UNLOCK(p1);
1150 	}
1151 	if (error != 0)
1152 		pause("fork", hz / 2);
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Handle the return of a child process from fork1().  This function
1158  * is called from the MD fork_trampoline() entry point.
1159  */
1160 void
fork_exit(void (* callout)(void *,struct trapframe *),void * arg,struct trapframe * frame)1161 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1162     struct trapframe *frame)
1163 {
1164 	struct proc *p;
1165 	struct thread *td;
1166 	struct thread *dtd;
1167 
1168 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1169 
1170 	td = curthread;
1171 	p = td->td_proc;
1172 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1173 
1174 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1175 	    td, td_get_sched(td), p->p_pid, td->td_name);
1176 
1177 	sched_fork_exit(td);
1178 
1179 	/*
1180 	 * Processes normally resume in mi_switch() after being
1181 	 * cpu_switch()'ed to, but when children start up they arrive here
1182 	 * instead, so we must do much the same things as mi_switch() would.
1183 	 */
1184 	if ((dtd = PCPU_GET(deadthread))) {
1185 		PCPU_SET(deadthread, NULL);
1186 		thread_stash(dtd);
1187 	}
1188 	thread_unlock(td);
1189 
1190 	/*
1191 	 * cpu_fork_kthread_handler intercepts this function call to
1192 	 * have this call a non-return function to stay in kernel mode.
1193 	 * initproc has its own fork handler, but it does return.
1194 	 */
1195 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1196 	callout(arg, frame);
1197 
1198 	/*
1199 	 * Check if a kernel thread misbehaved and returned from its main
1200 	 * function.
1201 	 */
1202 	if (p->p_flag & P_KPROC) {
1203 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1204 		    td->td_name, p->p_pid);
1205 		kthread_exit();
1206 	}
1207 	mtx_assert(&Giant, MA_NOTOWNED);
1208 
1209 	/*
1210 	 * Now going to return to userland.
1211 	 */
1212 
1213 	if (p->p_sysent->sv_schedtail != NULL)
1214 		(p->p_sysent->sv_schedtail)(td);
1215 
1216 	userret(td, frame);
1217 }
1218 
1219 /*
1220  * Simplified back end of syscall(), used when returning from fork()
1221  * directly into user mode.  This function is passed in to fork_exit()
1222  * as the first parameter and is called when returning to a new
1223  * userland process.
1224  */
1225 void
fork_return(struct thread * td,struct trapframe * frame)1226 fork_return(struct thread *td, struct trapframe *frame)
1227 {
1228 	struct proc *p;
1229 
1230 	p = td->td_proc;
1231 	if (td->td_dbgflags & TDB_STOPATFORK) {
1232 		PROC_LOCK(p);
1233 		if ((p->p_flag & P_TRACED) != 0) {
1234 			/*
1235 			 * Inform the debugger if one is still present.
1236 			 */
1237 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1238 			ptracestop(td, SIGSTOP, NULL);
1239 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1240 		} else {
1241 			/*
1242 			 * ... otherwise clear the request.
1243 			 */
1244 			td->td_dbgflags &= ~TDB_STOPATFORK;
1245 		}
1246 		PROC_UNLOCK(p);
1247 	} else if (p->p_flag & P_TRACED) {
1248  		/*
1249 		 * This is the start of a new thread in a traced
1250 		 * process.  Report a system call exit event.
1251 		 */
1252 		PROC_LOCK(p);
1253 		td->td_dbgflags |= TDB_SCX;
1254 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1255 		    (td->td_dbgflags & TDB_BORN) != 0)
1256 			ptracestop(td, SIGTRAP, NULL);
1257 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1258 		PROC_UNLOCK(p);
1259 	}
1260 
1261 	/*
1262 	 * If the prison was killed mid-fork, die along with it.
1263 	 */
1264 	if (!prison_isalive(td->td_ucred->cr_prison))
1265 		exit1(td, 0, SIGKILL);
1266 
1267 #ifdef KTRACE
1268 	if (KTRPOINT(td, KTR_SYSRET))
1269 		ktrsysret(td->td_sa.code, 0, 0);
1270 #endif
1271 }
1272 
1273 static void
fork_init(void * arg __unused)1274 fork_init(void *arg __unused)
1275 {
1276 	ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
1277 	    ast_vfork);
1278 }
1279 SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);
1280