xref: /linux/kernel/rcu/tasks.h (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @lazy_timer: Timer to unlazify callbacks.
29  * @urgent_gp: Number of additional non-lazy grace periods.
30  * @rtp_n_lock_retries: Rough lock-contention statistic.
31  * @rtp_work: Work queue for invoking callbacks.
32  * @rtp_irq_work: IRQ work queue for deferred wakeups.
33  * @barrier_q_head: RCU callback for barrier operation.
34  * @rtp_blkd_tasks: List of tasks blocked as readers.
35  * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36  * @cpu: CPU number corresponding to this entry.
37  * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure.
38  * @rtpp: Pointer to the rcu_tasks structure.
39  */
40 struct rcu_tasks_percpu {
41 	struct rcu_segcblist cblist;
42 	raw_spinlock_t __private lock;
43 	unsigned long rtp_jiffies;
44 	unsigned long rtp_n_lock_retries;
45 	struct timer_list lazy_timer;
46 	unsigned int urgent_gp;
47 	struct work_struct rtp_work;
48 	struct irq_work rtp_irq_work;
49 	struct rcu_head barrier_q_head;
50 	struct list_head rtp_blkd_tasks;
51 	struct list_head rtp_exit_list;
52 	int cpu;
53 	int index;
54 	struct rcu_tasks *rtpp;
55 };
56 
57 /**
58  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
59  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
60  * @cbs_gbl_lock: Lock protecting callback list.
61  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
62  * @gp_func: This flavor's grace-period-wait function.
63  * @gp_state: Grace period's most recent state transition (debugging).
64  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
65  * @init_fract: Initial backoff sleep interval.
66  * @gp_jiffies: Time of last @gp_state transition.
67  * @gp_start: Most recent grace-period start in jiffies.
68  * @tasks_gp_seq: Number of grace periods completed since boot in upper bits.
69  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
70  * @n_ipis_fails: Number of IPI-send failures.
71  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
72  * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
73  * @pregp_func: This flavor's pre-grace-period function (optional).
74  * @pertask_func: This flavor's per-task scan function (optional).
75  * @postscan_func: This flavor's post-task scan function (optional).
76  * @holdouts_func: This flavor's holdout-list scan function (optional).
77  * @postgp_func: This flavor's post-grace-period function (optional).
78  * @call_func: This flavor's call_rcu()-equivalent function.
79  * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE).
80  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
81  * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask.
82  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
83  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
84  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
85  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
86  * @barrier_q_mutex: Serialize barrier operations.
87  * @barrier_q_count: Number of queues being waited on.
88  * @barrier_q_completion: Barrier wait/wakeup mechanism.
89  * @barrier_q_seq: Sequence number for barrier operations.
90  * @barrier_q_start: Most recent barrier start in jiffies.
91  * @name: This flavor's textual name.
92  * @kname: This flavor's kthread name.
93  */
94 struct rcu_tasks {
95 	struct rcuwait cbs_wait;
96 	raw_spinlock_t cbs_gbl_lock;
97 	struct mutex tasks_gp_mutex;
98 	int gp_state;
99 	int gp_sleep;
100 	int init_fract;
101 	unsigned long gp_jiffies;
102 	unsigned long gp_start;
103 	unsigned long tasks_gp_seq;
104 	unsigned long n_ipis;
105 	unsigned long n_ipis_fails;
106 	struct task_struct *kthread_ptr;
107 	unsigned long lazy_jiffies;
108 	rcu_tasks_gp_func_t gp_func;
109 	pregp_func_t pregp_func;
110 	pertask_func_t pertask_func;
111 	postscan_func_t postscan_func;
112 	holdouts_func_t holdouts_func;
113 	postgp_func_t postgp_func;
114 	call_rcu_func_t call_func;
115 	unsigned int wait_state;
116 	struct rcu_tasks_percpu __percpu *rtpcpu;
117 	struct rcu_tasks_percpu **rtpcp_array;
118 	int percpu_enqueue_shift;
119 	int percpu_enqueue_lim;
120 	int percpu_dequeue_lim;
121 	unsigned long percpu_dequeue_gpseq;
122 	struct mutex barrier_q_mutex;
123 	atomic_t barrier_q_count;
124 	struct completion barrier_q_completion;
125 	unsigned long barrier_q_seq;
126 	unsigned long barrier_q_start;
127 	char *name;
128 	char *kname;
129 };
130 
131 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
132 
133 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
134 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
135 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
136 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
137 };											\
138 static struct rcu_tasks rt_name =							\
139 {											\
140 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
141 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
142 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
143 	.gp_func = gp,									\
144 	.call_func = call,								\
145 	.wait_state = TASK_UNINTERRUPTIBLE,						\
146 	.rtpcpu = &rt_name ## __percpu,							\
147 	.lazy_jiffies = DIV_ROUND_UP(HZ, 4),						\
148 	.name = n,									\
149 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
150 	.percpu_enqueue_lim = 1,							\
151 	.percpu_dequeue_lim = 1,							\
152 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
153 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
154 	.kname = #rt_name,								\
155 }
156 
157 #ifdef CONFIG_TASKS_RCU
158 
159 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */
160 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
161 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
162 #endif
163 
164 /* Avoid IPIing CPUs early in the grace period. */
165 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
166 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
167 module_param(rcu_task_ipi_delay, int, 0644);
168 
169 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
170 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
171 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
172 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
173 module_param(rcu_task_stall_timeout, int, 0644);
174 #define RCU_TASK_STALL_INFO (HZ * 10)
175 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
176 module_param(rcu_task_stall_info, int, 0644);
177 static int rcu_task_stall_info_mult __read_mostly = 3;
178 module_param(rcu_task_stall_info_mult, int, 0444);
179 
180 static int rcu_task_enqueue_lim __read_mostly = -1;
181 module_param(rcu_task_enqueue_lim, int, 0444);
182 
183 static bool rcu_task_cb_adjust;
184 static int rcu_task_contend_lim __read_mostly = 100;
185 module_param(rcu_task_contend_lim, int, 0444);
186 static int rcu_task_collapse_lim __read_mostly = 10;
187 module_param(rcu_task_collapse_lim, int, 0444);
188 static int rcu_task_lazy_lim __read_mostly = 32;
189 module_param(rcu_task_lazy_lim, int, 0444);
190 
191 static int rcu_task_cpu_ids;
192 
193 /* RCU tasks grace-period state for debugging. */
194 #define RTGS_INIT		 0
195 #define RTGS_WAIT_WAIT_CBS	 1
196 #define RTGS_WAIT_GP		 2
197 #define RTGS_PRE_WAIT_GP	 3
198 #define RTGS_SCAN_TASKLIST	 4
199 #define RTGS_POST_SCAN_TASKLIST	 5
200 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
201 #define RTGS_SCAN_HOLDOUTS	 7
202 #define RTGS_POST_GP		 8
203 #define RTGS_WAIT_READERS	 9
204 #define RTGS_INVOKE_CBS		10
205 #define RTGS_WAIT_CBS		11
206 #ifndef CONFIG_TINY_RCU
207 static const char * const rcu_tasks_gp_state_names[] = {
208 	"RTGS_INIT",
209 	"RTGS_WAIT_WAIT_CBS",
210 	"RTGS_WAIT_GP",
211 	"RTGS_PRE_WAIT_GP",
212 	"RTGS_SCAN_TASKLIST",
213 	"RTGS_POST_SCAN_TASKLIST",
214 	"RTGS_WAIT_SCAN_HOLDOUTS",
215 	"RTGS_SCAN_HOLDOUTS",
216 	"RTGS_POST_GP",
217 	"RTGS_WAIT_READERS",
218 	"RTGS_INVOKE_CBS",
219 	"RTGS_WAIT_CBS",
220 };
221 #endif /* #ifndef CONFIG_TINY_RCU */
222 
223 ////////////////////////////////////////////////////////////////////////
224 //
225 // Generic code.
226 
227 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
228 
229 /* Record grace-period phase and time. */
set_tasks_gp_state(struct rcu_tasks * rtp,int newstate)230 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
231 {
232 	rtp->gp_state = newstate;
233 	rtp->gp_jiffies = jiffies;
234 }
235 
236 #ifndef CONFIG_TINY_RCU
237 /* Return state name. */
tasks_gp_state_getname(struct rcu_tasks * rtp)238 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
239 {
240 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
241 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
242 
243 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
244 		return "???";
245 	return rcu_tasks_gp_state_names[j];
246 }
247 #endif /* #ifndef CONFIG_TINY_RCU */
248 
249 // Initialize per-CPU callback lists for the specified flavor of
250 // Tasks RCU.  Do not enqueue callbacks before this function is invoked.
cblist_init_generic(struct rcu_tasks * rtp)251 static void cblist_init_generic(struct rcu_tasks *rtp)
252 {
253 	int cpu;
254 	int lim;
255 	int shift;
256 	int maxcpu;
257 	int index = 0;
258 
259 	if (rcu_task_enqueue_lim < 0) {
260 		rcu_task_enqueue_lim = 1;
261 		rcu_task_cb_adjust = true;
262 	} else if (rcu_task_enqueue_lim == 0) {
263 		rcu_task_enqueue_lim = 1;
264 	}
265 	lim = rcu_task_enqueue_lim;
266 
267 	rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL);
268 	BUG_ON(!rtp->rtpcp_array);
269 
270 	for_each_possible_cpu(cpu) {
271 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
272 
273 		WARN_ON_ONCE(!rtpcp);
274 		if (cpu)
275 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
276 		if (rcu_segcblist_empty(&rtpcp->cblist))
277 			rcu_segcblist_init(&rtpcp->cblist);
278 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
279 		rtpcp->cpu = cpu;
280 		rtpcp->rtpp = rtp;
281 		rtpcp->index = index;
282 		rtp->rtpcp_array[index] = rtpcp;
283 		index++;
284 		if (!rtpcp->rtp_blkd_tasks.next)
285 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
286 		if (!rtpcp->rtp_exit_list.next)
287 			INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
288 		rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head;
289 		maxcpu = cpu;
290 	}
291 
292 	rcu_task_cpu_ids = maxcpu + 1;
293 	if (lim > rcu_task_cpu_ids)
294 		lim = rcu_task_cpu_ids;
295 	shift = ilog2(rcu_task_cpu_ids / lim);
296 	if (((rcu_task_cpu_ids - 1) >> shift) >= lim)
297 		shift++;
298 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
299 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
300 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
301 
302 	pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n",
303 			rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim),
304 			rcu_task_cb_adjust, rcu_task_cpu_ids);
305 }
306 
307 // Compute wakeup time for lazy callback timer.
rcu_tasks_lazy_time(struct rcu_tasks * rtp)308 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
309 {
310 	return jiffies + rtp->lazy_jiffies;
311 }
312 
313 // Timer handler that unlazifies lazy callbacks.
call_rcu_tasks_generic_timer(struct timer_list * tlp)314 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
315 {
316 	unsigned long flags;
317 	bool needwake = false;
318 	struct rcu_tasks *rtp;
319 	struct rcu_tasks_percpu *rtpcp = timer_container_of(rtpcp, tlp,
320 						            lazy_timer);
321 
322 	rtp = rtpcp->rtpp;
323 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
324 	if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
325 		if (!rtpcp->urgent_gp)
326 			rtpcp->urgent_gp = 1;
327 		needwake = true;
328 		mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
329 	}
330 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
331 	if (needwake)
332 		rcuwait_wake_up(&rtp->cbs_wait);
333 }
334 
335 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
call_rcu_tasks_iw_wakeup(struct irq_work * iwp)336 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
337 {
338 	struct rcu_tasks *rtp;
339 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
340 
341 	rtp = rtpcp->rtpp;
342 	rcuwait_wake_up(&rtp->cbs_wait);
343 }
344 
345 // Enqueue a callback for the specified flavor of Tasks RCU.
call_rcu_tasks_generic(struct rcu_head * rhp,rcu_callback_t func,struct rcu_tasks * rtp)346 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
347 				   struct rcu_tasks *rtp)
348 {
349 	int chosen_cpu;
350 	unsigned long flags;
351 	bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
352 	int ideal_cpu;
353 	unsigned long j;
354 	bool needadjust = false;
355 	bool needwake;
356 	struct rcu_tasks_percpu *rtpcp;
357 
358 	rhp->next = NULL;
359 	rhp->func = func;
360 	local_irq_save(flags);
361 	rcu_read_lock();
362 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
363 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
364 	WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids);
365 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
366 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
367 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
368 		j = jiffies;
369 		if (rtpcp->rtp_jiffies != j) {
370 			rtpcp->rtp_jiffies = j;
371 			rtpcp->rtp_n_lock_retries = 0;
372 		}
373 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
374 		    READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids)
375 			needadjust = true;  // Defer adjustment to avoid deadlock.
376 	}
377 	// Queuing callbacks before initialization not yet supported.
378 	if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
379 		rcu_segcblist_init(&rtpcp->cblist);
380 	needwake = (func == wakeme_after_rcu) ||
381 		   (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
382 	if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
383 		if (rtp->lazy_jiffies)
384 			mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
385 		else
386 			needwake = rcu_segcblist_empty(&rtpcp->cblist);
387 	}
388 	if (needwake)
389 		rtpcp->urgent_gp = 3;
390 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
391 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
392 	if (unlikely(needadjust)) {
393 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
394 		if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) {
395 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
396 			WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids);
397 			smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids);
398 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
399 		}
400 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
401 	}
402 	rcu_read_unlock();
403 	/* We can't create the thread unless interrupts are enabled. */
404 	if (needwake && READ_ONCE(rtp->kthread_ptr))
405 		irq_work_queue(&rtpcp->rtp_irq_work);
406 }
407 
408 // RCU callback function for rcu_barrier_tasks_generic().
rcu_barrier_tasks_generic_cb(struct rcu_head * rhp)409 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
410 {
411 	struct rcu_tasks *rtp;
412 	struct rcu_tasks_percpu *rtpcp;
413 
414 	rhp->next = rhp; // Mark the callback as having been invoked.
415 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
416 	rtp = rtpcp->rtpp;
417 	if (atomic_dec_and_test(&rtp->barrier_q_count))
418 		complete(&rtp->barrier_q_completion);
419 }
420 
421 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
422 // Operates in a manner similar to rcu_barrier().
rcu_barrier_tasks_generic(struct rcu_tasks * rtp)423 static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
424 {
425 	int cpu;
426 	unsigned long flags;
427 	struct rcu_tasks_percpu *rtpcp;
428 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
429 
430 	mutex_lock(&rtp->barrier_q_mutex);
431 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
432 		smp_mb();
433 		mutex_unlock(&rtp->barrier_q_mutex);
434 		return;
435 	}
436 	rtp->barrier_q_start = jiffies;
437 	rcu_seq_start(&rtp->barrier_q_seq);
438 	init_completion(&rtp->barrier_q_completion);
439 	atomic_set(&rtp->barrier_q_count, 2);
440 	for_each_possible_cpu(cpu) {
441 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
442 			break;
443 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
444 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
445 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
446 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
447 			atomic_inc(&rtp->barrier_q_count);
448 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
449 	}
450 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
451 		complete(&rtp->barrier_q_completion);
452 	wait_for_completion(&rtp->barrier_q_completion);
453 	rcu_seq_end(&rtp->barrier_q_seq);
454 	mutex_unlock(&rtp->barrier_q_mutex);
455 }
456 
457 // Advance callbacks and indicate whether either a grace period or
458 // callback invocation is needed.
rcu_tasks_need_gpcb(struct rcu_tasks * rtp)459 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
460 {
461 	int cpu;
462 	int dequeue_limit;
463 	unsigned long flags;
464 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
465 	long n;
466 	long ncbs = 0;
467 	long ncbsnz = 0;
468 	int needgpcb = 0;
469 
470 	dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
471 	for (cpu = 0; cpu < dequeue_limit; cpu++) {
472 		if (!cpu_possible(cpu))
473 			continue;
474 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
475 
476 		/* Advance and accelerate any new callbacks. */
477 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
478 			continue;
479 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
480 		// Should we shrink down to a single callback queue?
481 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
482 		if (n) {
483 			ncbs += n;
484 			if (cpu > 0)
485 				ncbsnz += n;
486 		}
487 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
488 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
489 		if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
490 			if (rtp->lazy_jiffies)
491 				rtpcp->urgent_gp--;
492 			needgpcb |= 0x3;
493 		} else if (rcu_segcblist_empty(&rtpcp->cblist)) {
494 			rtpcp->urgent_gp = 0;
495 		}
496 		if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
497 			needgpcb |= 0x1;
498 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
499 	}
500 
501 	// Shrink down to a single callback queue if appropriate.
502 	// This is done in two stages: (1) If there are no more than
503 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
504 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
505 	// if there has not been an increase in callbacks, limit dequeuing
506 	// to CPU 0.  Note the matching RCU read-side critical section in
507 	// call_rcu_tasks_generic().
508 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
509 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
510 		if (rtp->percpu_enqueue_lim > 1) {
511 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids));
512 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
513 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
514 			gpdone = false;
515 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
516 		}
517 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
518 	}
519 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
520 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
521 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
522 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
523 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
524 		}
525 		if (rtp->percpu_dequeue_lim == 1) {
526 			for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) {
527 				if (!cpu_possible(cpu))
528 					continue;
529 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
530 
531 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
532 			}
533 		}
534 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
535 	}
536 
537 	return needgpcb;
538 }
539 
540 // Advance callbacks and invoke any that are ready.
rcu_tasks_invoke_cbs(struct rcu_tasks * rtp,struct rcu_tasks_percpu * rtpcp)541 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
542 {
543 	int cpuwq;
544 	unsigned long flags;
545 	int len;
546 	int index;
547 	struct rcu_head *rhp;
548 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
549 	struct rcu_tasks_percpu *rtpcp_next;
550 
551 	index = rtpcp->index * 2 + 1;
552 	if (index < num_possible_cpus()) {
553 		rtpcp_next = rtp->rtpcp_array[index];
554 		if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
555 			cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
556 			queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
557 			index++;
558 			if (index < num_possible_cpus()) {
559 				rtpcp_next = rtp->rtpcp_array[index];
560 				if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
561 					cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
562 					queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
563 				}
564 			}
565 		}
566 	}
567 
568 	if (rcu_segcblist_empty(&rtpcp->cblist))
569 		return;
570 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
571 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
572 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
573 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
574 	len = rcl.len;
575 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
576 		debug_rcu_head_callback(rhp);
577 		local_bh_disable();
578 		rhp->func(rhp);
579 		local_bh_enable();
580 		cond_resched();
581 	}
582 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
583 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
584 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
585 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
586 }
587 
588 // Workqueue flood to advance callbacks and invoke any that are ready.
rcu_tasks_invoke_cbs_wq(struct work_struct * wp)589 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
590 {
591 	struct rcu_tasks *rtp;
592 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
593 
594 	rtp = rtpcp->rtpp;
595 	rcu_tasks_invoke_cbs(rtp, rtpcp);
596 }
597 
598 // Wait for one grace period.
rcu_tasks_one_gp(struct rcu_tasks * rtp,bool midboot)599 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
600 {
601 	int needgpcb;
602 
603 	mutex_lock(&rtp->tasks_gp_mutex);
604 
605 	// If there were none, wait a bit and start over.
606 	if (unlikely(midboot)) {
607 		needgpcb = 0x2;
608 	} else {
609 		mutex_unlock(&rtp->tasks_gp_mutex);
610 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
611 		rcuwait_wait_event(&rtp->cbs_wait,
612 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
613 				   TASK_IDLE);
614 		mutex_lock(&rtp->tasks_gp_mutex);
615 	}
616 
617 	if (needgpcb & 0x2) {
618 		// Wait for one grace period.
619 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
620 		rtp->gp_start = jiffies;
621 		rcu_seq_start(&rtp->tasks_gp_seq);
622 		rtp->gp_func(rtp);
623 		rcu_seq_end(&rtp->tasks_gp_seq);
624 	}
625 
626 	// Invoke callbacks.
627 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
628 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
629 	mutex_unlock(&rtp->tasks_gp_mutex);
630 }
631 
632 // RCU-tasks kthread that detects grace periods and invokes callbacks.
rcu_tasks_kthread(void * arg)633 static int __noreturn rcu_tasks_kthread(void *arg)
634 {
635 	int cpu;
636 	struct rcu_tasks *rtp = arg;
637 
638 	for_each_possible_cpu(cpu) {
639 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
640 
641 		timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
642 		rtpcp->urgent_gp = 1;
643 	}
644 
645 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
646 	housekeeping_affine(current, HK_TYPE_RCU);
647 	smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
648 
649 	/*
650 	 * Each pass through the following loop makes one check for
651 	 * newly arrived callbacks, and, if there are some, waits for
652 	 * one RCU-tasks grace period and then invokes the callbacks.
653 	 * This loop is terminated by the system going down.  ;-)
654 	 */
655 	for (;;) {
656 		// Wait for one grace period and invoke any callbacks
657 		// that are ready.
658 		rcu_tasks_one_gp(rtp, false);
659 
660 		// Paranoid sleep to keep this from entering a tight loop.
661 		schedule_timeout_idle(rtp->gp_sleep);
662 	}
663 }
664 
665 // Wait for a grace period for the specified flavor of Tasks RCU.
synchronize_rcu_tasks_generic(struct rcu_tasks * rtp)666 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
667 {
668 	/* Complain if the scheduler has not started.  */
669 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
670 			 "synchronize_%s() called too soon", rtp->name))
671 		return;
672 
673 	// If the grace-period kthread is running, use it.
674 	if (READ_ONCE(rtp->kthread_ptr)) {
675 		wait_rcu_gp_state(rtp->wait_state, rtp->call_func);
676 		return;
677 	}
678 	rcu_tasks_one_gp(rtp, true);
679 }
680 
681 /* Spawn RCU-tasks grace-period kthread. */
rcu_spawn_tasks_kthread_generic(struct rcu_tasks * rtp)682 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
683 {
684 	struct task_struct *t;
685 
686 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
687 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
688 		return;
689 	smp_mb(); /* Ensure others see full kthread. */
690 }
691 
692 #ifndef CONFIG_TINY_RCU
693 
694 /*
695  * Print any non-default Tasks RCU settings.
696  */
rcu_tasks_bootup_oddness(void)697 static void __init rcu_tasks_bootup_oddness(void)
698 {
699 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
700 	int rtsimc;
701 
702 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
703 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
704 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
705 	if (rtsimc != rcu_task_stall_info_mult) {
706 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
707 		rcu_task_stall_info_mult = rtsimc;
708 	}
709 #endif /* #ifdef CONFIG_TASKS_RCU */
710 #ifdef CONFIG_TASKS_RCU
711 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
712 #endif /* #ifdef CONFIG_TASKS_RCU */
713 #ifdef CONFIG_TASKS_RUDE_RCU
714 	pr_info("\tRude variant of Tasks RCU enabled.\n");
715 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
716 #ifdef CONFIG_TASKS_TRACE_RCU
717 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
718 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
719 }
720 
721 
722 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
show_rcu_tasks_generic_gp_kthread(struct rcu_tasks * rtp,char * s)723 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
724 {
725 	int cpu;
726 	bool havecbs = false;
727 	bool haveurgent = false;
728 	bool haveurgentcbs = false;
729 
730 	for_each_possible_cpu(cpu) {
731 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
732 
733 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
734 			havecbs = true;
735 		if (data_race(rtpcp->urgent_gp))
736 			haveurgent = true;
737 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
738 			haveurgentcbs = true;
739 		if (havecbs && haveurgent && haveurgentcbs)
740 			break;
741 	}
742 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
743 		rtp->kname,
744 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
745 		jiffies - data_race(rtp->gp_jiffies),
746 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
747 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
748 		".k"[!!data_race(rtp->kthread_ptr)],
749 		".C"[havecbs],
750 		".u"[haveurgent],
751 		".U"[haveurgentcbs],
752 		rtp->lazy_jiffies,
753 		s);
754 }
755 
756 /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */
rcu_tasks_torture_stats_print_generic(struct rcu_tasks * rtp,char * tt,char * tf,char * tst)757 static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt,
758 						  char *tf, char *tst)
759 {
760 	cpumask_var_t cm;
761 	int cpu;
762 	bool gotcb = false;
763 	unsigned long j = jiffies;
764 
765 	pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n",
766 		 tt, tf, tst, data_race(rtp->tasks_gp_seq),
767 		 j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies),
768 		 data_race(rtp->gp_state), tasks_gp_state_getname(rtp));
769 	pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n",
770 		 data_race(rtp->percpu_enqueue_shift),
771 		 data_race(rtp->percpu_enqueue_lim),
772 		 data_race(rtp->percpu_dequeue_lim),
773 		 data_race(rtp->percpu_dequeue_gpseq));
774 	(void)zalloc_cpumask_var(&cm, GFP_KERNEL);
775 	pr_alert("\tCallback counts:");
776 	for_each_possible_cpu(cpu) {
777 		long n;
778 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
779 
780 		if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head))
781 			cpumask_set_cpu(cpu, cm);
782 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
783 		if (!n)
784 			continue;
785 		pr_cont(" %d:%ld", cpu, n);
786 		gotcb = true;
787 	}
788 	if (gotcb)
789 		pr_cont(".\n");
790 	else
791 		pr_cont(" (none).\n");
792 	pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ",
793 		 data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start),
794 		 atomic_read(&rtp->barrier_q_count));
795 	if (cpumask_available(cm) && !cpumask_empty(cm))
796 		pr_cont(" %*pbl.\n", cpumask_pr_args(cm));
797 	else
798 		pr_cont("(none).\n");
799 	free_cpumask_var(cm);
800 }
801 
802 #endif // #ifndef CONFIG_TINY_RCU
803 
804 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
805 
806 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
807 
808 ////////////////////////////////////////////////////////////////////////
809 //
810 // Shared code between task-list-scanning variants of Tasks RCU.
811 
812 /* Wait for one RCU-tasks grace period. */
rcu_tasks_wait_gp(struct rcu_tasks * rtp)813 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
814 {
815 	struct task_struct *g;
816 	int fract;
817 	LIST_HEAD(holdouts);
818 	unsigned long j;
819 	unsigned long lastinfo;
820 	unsigned long lastreport;
821 	bool reported = false;
822 	int rtsi;
823 	struct task_struct *t;
824 
825 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
826 	rtp->pregp_func(&holdouts);
827 
828 	/*
829 	 * There were callbacks, so we need to wait for an RCU-tasks
830 	 * grace period.  Start off by scanning the task list for tasks
831 	 * that are not already voluntarily blocked.  Mark these tasks
832 	 * and make a list of them in holdouts.
833 	 */
834 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
835 	if (rtp->pertask_func) {
836 		rcu_read_lock();
837 		for_each_process_thread(g, t)
838 			rtp->pertask_func(t, &holdouts);
839 		rcu_read_unlock();
840 	}
841 
842 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
843 	rtp->postscan_func(&holdouts);
844 
845 	/*
846 	 * Each pass through the following loop scans the list of holdout
847 	 * tasks, removing any that are no longer holdouts.  When the list
848 	 * is empty, we are done.
849 	 */
850 	lastreport = jiffies;
851 	lastinfo = lastreport;
852 	rtsi = READ_ONCE(rcu_task_stall_info);
853 
854 	// Start off with initial wait and slowly back off to 1 HZ wait.
855 	fract = rtp->init_fract;
856 
857 	while (!list_empty(&holdouts)) {
858 		ktime_t exp;
859 		bool firstreport;
860 		bool needreport;
861 		int rtst;
862 
863 		// Slowly back off waiting for holdouts
864 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
865 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
866 			schedule_timeout_idle(fract);
867 		} else {
868 			exp = jiffies_to_nsecs(fract);
869 			__set_current_state(TASK_IDLE);
870 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
871 		}
872 
873 		if (fract < HZ)
874 			fract++;
875 
876 		rtst = READ_ONCE(rcu_task_stall_timeout);
877 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
878 		if (needreport) {
879 			lastreport = jiffies;
880 			reported = true;
881 		}
882 		firstreport = true;
883 		WARN_ON(signal_pending(current));
884 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
885 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
886 
887 		// Print pre-stall informational messages if needed.
888 		j = jiffies;
889 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
890 			lastinfo = j;
891 			rtsi = rtsi * rcu_task_stall_info_mult;
892 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
893 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
894 		}
895 	}
896 
897 	set_tasks_gp_state(rtp, RTGS_POST_GP);
898 	rtp->postgp_func(rtp);
899 }
900 
901 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
902 
903 #ifdef CONFIG_TASKS_RCU
904 
905 ////////////////////////////////////////////////////////////////////////
906 //
907 // Simple variant of RCU whose quiescent states are voluntary context
908 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
909 // As such, grace periods can take one good long time.  There are no
910 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
911 // because this implementation is intended to get the system into a safe
912 // state for some of the manipulations involved in tracing and the like.
913 // Finally, this implementation does not support high call_rcu_tasks()
914 // rates from multiple CPUs.  If this is required, per-CPU callback lists
915 // will be needed.
916 //
917 // The implementation uses rcu_tasks_wait_gp(), which relies on function
918 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
919 // function sets these function pointers up so that rcu_tasks_wait_gp()
920 // invokes these functions in this order:
921 //
922 // rcu_tasks_pregp_step():
923 //	Invokes synchronize_rcu() in order to wait for all in-flight
924 //	t->on_rq and t->nvcsw transitions to complete.	This works because
925 //	all such transitions are carried out with interrupts disabled.
926 // rcu_tasks_pertask(), invoked on every non-idle task:
927 //	For every runnable non-idle task other than the current one, use
928 //	get_task_struct() to pin down that task, snapshot that task's
929 //	number of voluntary context switches, and add that task to the
930 //	holdout list.
931 // rcu_tasks_postscan():
932 //	Gather per-CPU lists of tasks in do_exit() to ensure that all
933 //	tasks that were in the process of exiting (and which thus might
934 //	not know to synchronize with this RCU Tasks grace period) have
935 //	completed exiting.  The synchronize_rcu() in rcu_tasks_postgp()
936 //	will take care of any tasks stuck in the non-preemptible region
937 //	of do_exit() following its call to exit_tasks_rcu_finish().
938 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
939 //	Scans the holdout list, attempting to identify a quiescent state
940 //	for each task on the list.  If there is a quiescent state, the
941 //	corresponding task is removed from the holdout list.
942 // rcu_tasks_postgp():
943 //	Invokes synchronize_rcu() in order to ensure that all prior
944 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
945 //	to have happened before the end of this RCU Tasks grace period.
946 //	Again, this works because all such transitions are carried out
947 //	with interrupts disabled.
948 //
949 // For each exiting task, the exit_tasks_rcu_start() and
950 // exit_tasks_rcu_finish() functions add and remove, respectively, the
951 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must
952 // wait on.  This is necessary because rcu_tasks_postscan() must wait on
953 // tasks that have already been removed from the global list of tasks.
954 //
955 // Pre-grace-period update-side code is ordered before the grace
956 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
957 // is ordered before the grace period via synchronize_rcu() call in
958 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
959 // disabling.
960 
961 /* Pre-grace-period preparation. */
rcu_tasks_pregp_step(struct list_head * hop)962 static void rcu_tasks_pregp_step(struct list_head *hop)
963 {
964 	/*
965 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
966 	 * to complete.  Invoking synchronize_rcu() suffices because all
967 	 * these transitions occur with interrupts disabled.  Without this
968 	 * synchronize_rcu(), a read-side critical section that started
969 	 * before the grace period might be incorrectly seen as having
970 	 * started after the grace period.
971 	 *
972 	 * This synchronize_rcu() also dispenses with the need for a
973 	 * memory barrier on the first store to t->rcu_tasks_holdout,
974 	 * as it forces the store to happen after the beginning of the
975 	 * grace period.
976 	 */
977 	synchronize_rcu();
978 }
979 
980 /* Check for quiescent states since the pregp's synchronize_rcu() */
rcu_tasks_is_holdout(struct task_struct * t)981 static bool rcu_tasks_is_holdout(struct task_struct *t)
982 {
983 	int cpu;
984 
985 	/* Has the task been seen voluntarily sleeping? */
986 	if (!READ_ONCE(t->on_rq))
987 		return false;
988 
989 	/*
990 	 * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but
991 	 * since it is a spurious state (it will transition into the
992 	 * traditional blocked state or get woken up without outside
993 	 * dependencies), not considering it such should only affect timing.
994 	 *
995 	 * Be conservative for now and not include it.
996 	 */
997 
998 	/*
999 	 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
1000 	 * quiescent states. But CPU boot code performed by the idle task
1001 	 * isn't a quiescent state.
1002 	 */
1003 	if (is_idle_task(t))
1004 		return false;
1005 
1006 	cpu = task_cpu(t);
1007 
1008 	/* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
1009 	if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
1010 		return false;
1011 
1012 	return true;
1013 }
1014 
1015 /* Per-task initial processing. */
rcu_tasks_pertask(struct task_struct * t,struct list_head * hop)1016 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
1017 {
1018 	if (t != current && rcu_tasks_is_holdout(t)) {
1019 		get_task_struct(t);
1020 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
1021 		WRITE_ONCE(t->rcu_tasks_holdout, true);
1022 		list_add(&t->rcu_tasks_holdout_list, hop);
1023 	}
1024 }
1025 
1026 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
1027 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
1028 
1029 /* Processing between scanning taskslist and draining the holdout list. */
rcu_tasks_postscan(struct list_head * hop)1030 static void rcu_tasks_postscan(struct list_head *hop)
1031 {
1032 	int cpu;
1033 	int rtsi = READ_ONCE(rcu_task_stall_info);
1034 
1035 	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
1036 		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1037 		add_timer(&tasks_rcu_exit_srcu_stall_timer);
1038 	}
1039 
1040 	/*
1041 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
1042 	 * until their final schedule() with TASK_DEAD state. To cope with
1043 	 * this, divide the fragile exit path part in two intersecting
1044 	 * read side critical sections:
1045 	 *
1046 	 * 1) A task_struct list addition before calling exit_notify(),
1047 	 *    which may remove the task from the tasklist, with the
1048 	 *    removal after the final preempt_disable() call in do_exit().
1049 	 *
1050 	 * 2) An _RCU_ read side starting with the final preempt_disable()
1051 	 *    call in do_exit() and ending with the final call to schedule()
1052 	 *    with TASK_DEAD state.
1053 	 *
1054 	 * This handles the part 1). And postgp will handle part 2) with a
1055 	 * call to synchronize_rcu().
1056 	 */
1057 
1058 	for_each_possible_cpu(cpu) {
1059 		unsigned long j = jiffies + 1;
1060 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
1061 		struct task_struct *t;
1062 		struct task_struct *t1;
1063 		struct list_head tmp;
1064 
1065 		raw_spin_lock_irq_rcu_node(rtpcp);
1066 		list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
1067 			if (list_empty(&t->rcu_tasks_holdout_list))
1068 				rcu_tasks_pertask(t, hop);
1069 
1070 			// RT kernels need frequent pauses, otherwise
1071 			// pause at least once per pair of jiffies.
1072 			if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
1073 				continue;
1074 
1075 			// Keep our place in the list while pausing.
1076 			// Nothing else traverses this list, so adding a
1077 			// bare list_head is OK.
1078 			list_add(&tmp, &t->rcu_tasks_exit_list);
1079 			raw_spin_unlock_irq_rcu_node(rtpcp);
1080 			cond_resched(); // For CONFIG_PREEMPT=n kernels
1081 			raw_spin_lock_irq_rcu_node(rtpcp);
1082 			t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
1083 			list_del(&tmp);
1084 			j = jiffies + 1;
1085 		}
1086 		raw_spin_unlock_irq_rcu_node(rtpcp);
1087 	}
1088 
1089 	if (!IS_ENABLED(CONFIG_TINY_RCU))
1090 		timer_delete_sync(&tasks_rcu_exit_srcu_stall_timer);
1091 }
1092 
1093 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)1094 static void check_holdout_task(struct task_struct *t,
1095 			       bool needreport, bool *firstreport)
1096 {
1097 	int cpu;
1098 
1099 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
1100 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1101 	    !rcu_tasks_is_holdout(t) ||
1102 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1103 	     !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1104 		WRITE_ONCE(t->rcu_tasks_holdout, false);
1105 		list_del_init(&t->rcu_tasks_holdout_list);
1106 		put_task_struct(t);
1107 		return;
1108 	}
1109 	rcu_request_urgent_qs_task(t);
1110 	if (!needreport)
1111 		return;
1112 	if (*firstreport) {
1113 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1114 		*firstreport = false;
1115 	}
1116 	cpu = task_cpu(t);
1117 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1118 		 t, ".I"[is_idle_task(t)],
1119 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1120 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1121 		 data_race(t->rcu_tasks_idle_cpu), cpu);
1122 	sched_show_task(t);
1123 }
1124 
1125 /* Scan the holdout lists for tasks no longer holding out. */
check_all_holdout_tasks(struct list_head * hop,bool needreport,bool * firstreport)1126 static void check_all_holdout_tasks(struct list_head *hop,
1127 				    bool needreport, bool *firstreport)
1128 {
1129 	struct task_struct *t, *t1;
1130 
1131 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1132 		check_holdout_task(t, needreport, firstreport);
1133 		cond_resched();
1134 	}
1135 }
1136 
1137 /* Finish off the Tasks-RCU grace period. */
rcu_tasks_postgp(struct rcu_tasks * rtp)1138 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1139 {
1140 	/*
1141 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1142 	 * memory barriers prior to them in the schedule() path, memory
1143 	 * reordering on other CPUs could cause their RCU-tasks read-side
1144 	 * critical sections to extend past the end of the grace period.
1145 	 * However, because these ->nvcsw updates are carried out with
1146 	 * interrupts disabled, we can use synchronize_rcu() to force the
1147 	 * needed ordering on all such CPUs.
1148 	 *
1149 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1150 	 * accesses to be within the grace period, avoiding the need for
1151 	 * memory barriers for ->rcu_tasks_holdout accesses.
1152 	 *
1153 	 * In addition, this synchronize_rcu() waits for exiting tasks
1154 	 * to complete their final preempt_disable() region of execution,
1155 	 * enforcing the whole region before tasklist removal until
1156 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1157 	 * read side critical section.
1158 	 */
1159 	synchronize_rcu();
1160 }
1161 
tasks_rcu_exit_srcu_stall(struct timer_list * unused)1162 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1163 {
1164 #ifndef CONFIG_TINY_RCU
1165 	int rtsi;
1166 
1167 	rtsi = READ_ONCE(rcu_task_stall_info);
1168 	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1169 		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1170 		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1171 	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1172 	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1173 	add_timer(&tasks_rcu_exit_srcu_stall_timer);
1174 #endif // #ifndef CONFIG_TINY_RCU
1175 }
1176 
1177 /**
1178  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1179  * @rhp: structure to be used for queueing the RCU updates.
1180  * @func: actual callback function to be invoked after the grace period
1181  *
1182  * The callback function will be invoked some time after a full grace
1183  * period elapses, in other words after all currently executing RCU
1184  * read-side critical sections have completed. call_rcu_tasks() assumes
1185  * that the read-side critical sections end at a voluntary context
1186  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1187  * or transition to usermode execution.  As such, there are no read-side
1188  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1189  * this primitive is intended to determine that all tasks have passed
1190  * through a safe state, not so much for data-structure synchronization.
1191  *
1192  * See the description of call_rcu() for more detailed information on
1193  * memory ordering guarantees.
1194  */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)1195 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1196 {
1197 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1198 }
1199 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1200 
1201 /**
1202  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1203  *
1204  * Control will return to the caller some time after a full rcu-tasks
1205  * grace period has elapsed, in other words after all currently
1206  * executing rcu-tasks read-side critical sections have elapsed.  These
1207  * read-side critical sections are delimited by calls to schedule(),
1208  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1209  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1210  *
1211  * This is a very specialized primitive, intended only for a few uses in
1212  * tracing and other situations requiring manipulation of function
1213  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
1214  * is not (yet) intended for heavy use from multiple CPUs.
1215  *
1216  * See the description of synchronize_rcu() for more detailed information
1217  * on memory ordering guarantees.
1218  */
synchronize_rcu_tasks(void)1219 void synchronize_rcu_tasks(void)
1220 {
1221 	synchronize_rcu_tasks_generic(&rcu_tasks);
1222 }
1223 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1224 
1225 /**
1226  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1227  *
1228  * Although the current implementation is guaranteed to wait, it is not
1229  * obligated to, for example, if there are no pending callbacks.
1230  */
rcu_barrier_tasks(void)1231 void rcu_barrier_tasks(void)
1232 {
1233 	rcu_barrier_tasks_generic(&rcu_tasks);
1234 }
1235 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1236 
1237 static int rcu_tasks_lazy_ms = -1;
1238 module_param(rcu_tasks_lazy_ms, int, 0444);
1239 
rcu_spawn_tasks_kthread(void)1240 static int __init rcu_spawn_tasks_kthread(void)
1241 {
1242 	rcu_tasks.gp_sleep = HZ / 10;
1243 	rcu_tasks.init_fract = HZ / 10;
1244 	if (rcu_tasks_lazy_ms >= 0)
1245 		rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1246 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1247 	rcu_tasks.pertask_func = rcu_tasks_pertask;
1248 	rcu_tasks.postscan_func = rcu_tasks_postscan;
1249 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
1250 	rcu_tasks.postgp_func = rcu_tasks_postgp;
1251 	rcu_tasks.wait_state = TASK_IDLE;
1252 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1253 	return 0;
1254 }
1255 
1256 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_classic_gp_kthread(void)1257 void show_rcu_tasks_classic_gp_kthread(void)
1258 {
1259 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1260 }
1261 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1262 
rcu_tasks_torture_stats_print(char * tt,char * tf)1263 void rcu_tasks_torture_stats_print(char *tt, char *tf)
1264 {
1265 	rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, "");
1266 }
1267 EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print);
1268 #endif // !defined(CONFIG_TINY_RCU)
1269 
get_rcu_tasks_gp_kthread(void)1270 struct task_struct *get_rcu_tasks_gp_kthread(void)
1271 {
1272 	return rcu_tasks.kthread_ptr;
1273 }
1274 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1275 
rcu_tasks_get_gp_data(int * flags,unsigned long * gp_seq)1276 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq)
1277 {
1278 	*flags = 0;
1279 	*gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq);
1280 }
1281 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data);
1282 
1283 /*
1284  * Protect against tasklist scan blind spot while the task is exiting and
1285  * may be removed from the tasklist.  Do this by adding the task to yet
1286  * another list.
1287  *
1288  * Note that the task will remove itself from this list, so there is no
1289  * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1290  * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1291  * the needed get_task_struct().
1292  */
exit_tasks_rcu_start(void)1293 void exit_tasks_rcu_start(void)
1294 {
1295 	unsigned long flags;
1296 	struct rcu_tasks_percpu *rtpcp;
1297 	struct task_struct *t = current;
1298 
1299 	WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1300 	preempt_disable();
1301 	rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1302 	t->rcu_tasks_exit_cpu = smp_processor_id();
1303 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1304 	WARN_ON_ONCE(!rtpcp->rtp_exit_list.next);
1305 	list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1306 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1307 	preempt_enable();
1308 }
1309 
1310 /*
1311  * Remove the task from the "yet another list" because do_exit() is now
1312  * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1313  */
exit_tasks_rcu_finish(void)1314 void exit_tasks_rcu_finish(void)
1315 {
1316 	unsigned long flags;
1317 	struct rcu_tasks_percpu *rtpcp;
1318 	struct task_struct *t = current;
1319 
1320 	WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1321 	rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1322 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1323 	list_del_init(&t->rcu_tasks_exit_list);
1324 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1325 
1326 	exit_tasks_rcu_finish_trace(t);
1327 }
1328 
1329 #else /* #ifdef CONFIG_TASKS_RCU */
exit_tasks_rcu_start(void)1330 void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)1331 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1332 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1333 
1334 #ifdef CONFIG_TASKS_RUDE_RCU
1335 
1336 ////////////////////////////////////////////////////////////////////////
1337 //
1338 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's
1339 // trick of passing an empty function to schedule_on_each_cpu().
1340 // This approach provides batching of concurrent calls to the synchronous
1341 // synchronize_rcu_tasks_rude() API.  This invokes schedule_on_each_cpu()
1342 // in order to send IPIs far and wide and induces otherwise unnecessary
1343 // context switches on all online CPUs, whether idle or not.
1344 //
1345 // Callback handling is provided by the rcu_tasks_kthread() function.
1346 //
1347 // Ordering is provided by the scheduler's context-switch code.
1348 
1349 // Empty function to allow workqueues to force a context switch.
rcu_tasks_be_rude(struct work_struct * work)1350 static void rcu_tasks_be_rude(struct work_struct *work)
1351 {
1352 }
1353 
1354 // Wait for one rude RCU-tasks grace period.
rcu_tasks_rude_wait_gp(struct rcu_tasks * rtp)1355 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1356 {
1357 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1358 	schedule_on_each_cpu(rcu_tasks_be_rude);
1359 }
1360 
1361 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1362 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1363 		 "RCU Tasks Rude");
1364 
1365 /*
1366  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1367  * @rhp: structure to be used for queueing the RCU updates.
1368  * @func: actual callback function to be invoked after the grace period
1369  *
1370  * The callback function will be invoked some time after a full grace
1371  * period elapses, in other words after all currently executing RCU
1372  * read-side critical sections have completed. call_rcu_tasks_rude()
1373  * assumes that the read-side critical sections end at context switch,
1374  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1375  * usermode execution is schedulable). As such, there are no read-side
1376  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1377  * this primitive is intended to determine that all tasks have passed
1378  * through a safe state, not so much for data-structure synchronization.
1379  *
1380  * See the description of call_rcu() for more detailed information on
1381  * memory ordering guarantees.
1382  *
1383  * This is no longer exported, and is instead reserved for use by
1384  * synchronize_rcu_tasks_rude().
1385  */
call_rcu_tasks_rude(struct rcu_head * rhp,rcu_callback_t func)1386 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1387 {
1388 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1389 }
1390 
1391 /**
1392  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1393  *
1394  * Control will return to the caller some time after a rude rcu-tasks
1395  * grace period has elapsed, in other words after all currently
1396  * executing rcu-tasks read-side critical sections have elapsed.  These
1397  * read-side critical sections are delimited by calls to schedule(),
1398  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1399  * context), and (in theory, anyway) cond_resched().
1400  *
1401  * This is a very specialized primitive, intended only for a few uses in
1402  * tracing and other situations requiring manipulation of function preambles
1403  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1404  * (yet) intended for heavy use from multiple CPUs.
1405  *
1406  * See the description of synchronize_rcu() for more detailed information
1407  * on memory ordering guarantees.
1408  */
synchronize_rcu_tasks_rude(void)1409 void synchronize_rcu_tasks_rude(void)
1410 {
1411 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU))
1412 		synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1413 }
1414 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1415 
rcu_spawn_tasks_rude_kthread(void)1416 static int __init rcu_spawn_tasks_rude_kthread(void)
1417 {
1418 	rcu_tasks_rude.gp_sleep = HZ / 10;
1419 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1420 	return 0;
1421 }
1422 
1423 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_rude_gp_kthread(void)1424 void show_rcu_tasks_rude_gp_kthread(void)
1425 {
1426 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1427 }
1428 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1429 
rcu_tasks_rude_torture_stats_print(char * tt,char * tf)1430 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf)
1431 {
1432 	rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, "");
1433 }
1434 EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print);
1435 #endif // !defined(CONFIG_TINY_RCU)
1436 
get_rcu_tasks_rude_gp_kthread(void)1437 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1438 {
1439 	return rcu_tasks_rude.kthread_ptr;
1440 }
1441 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1442 
rcu_tasks_rude_get_gp_data(int * flags,unsigned long * gp_seq)1443 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq)
1444 {
1445 	*flags = 0;
1446 	*gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq);
1447 }
1448 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data);
1449 
1450 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1451 
1452 ////////////////////////////////////////////////////////////////////////
1453 //
1454 // Tracing variant of Tasks RCU.  This variant is designed to be used
1455 // to protect tracing hooks, including those of BPF.  This variant
1456 // therefore:
1457 //
1458 // 1.	Has explicit read-side markers to allow finite grace periods
1459 //	in the face of in-kernel loops for PREEMPT=n builds.
1460 //
1461 // 2.	Protects code in the idle loop, exception entry/exit, and
1462 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1463 //
1464 // 3.	Avoids expensive read-side instructions, having overhead similar
1465 //	to that of Preemptible RCU.
1466 //
1467 // There are of course downsides.  For example, the grace-period code
1468 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1469 // in nohz_full userspace.  If needed, these downsides can be at least
1470 // partially remedied.
1471 //
1472 // Perhaps most important, this variant of RCU does not affect the vanilla
1473 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1474 // readers can operate from idle, offline, and exception entry/exit in no
1475 // way allows rcu_preempt and rcu_sched readers to also do so.
1476 //
1477 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1478 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1479 // function sets these function pointers up so that rcu_tasks_wait_gp()
1480 // invokes these functions in this order:
1481 //
1482 // rcu_tasks_trace_pregp_step():
1483 //	Disables CPU hotplug, adds all currently executing tasks to the
1484 //	holdout list, then checks the state of all tasks that blocked
1485 //	or were preempted within their current RCU Tasks Trace read-side
1486 //	critical section, adding them to the holdout list if appropriate.
1487 //	Finally, this function re-enables CPU hotplug.
1488 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1489 // rcu_tasks_trace_postscan():
1490 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1491 //	to finish exiting.
1492 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1493 //	Scans the holdout list, attempting to identify a quiescent state
1494 //	for each task on the list.  If there is a quiescent state, the
1495 //	corresponding task is removed from the holdout list.  Once this
1496 //	list is empty, the grace period has completed.
1497 // rcu_tasks_trace_postgp():
1498 //	Provides the needed full memory barrier and does debug checks.
1499 //
1500 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1501 //
1502 // Pre-grace-period update-side code is ordered before the grace period
1503 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1504 // read-side code is ordered before the grace period by atomic operations
1505 // on .b.need_qs flag of each task involved in this process, or by scheduler
1506 // context-switch ordering (for locked-down non-running readers).
1507 
1508 // The lockdep state must be outside of #ifdef to be useful.
1509 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1510 static struct lock_class_key rcu_lock_trace_key;
1511 struct lockdep_map rcu_trace_lock_map =
1512 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1513 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1514 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1515 
1516 #ifdef CONFIG_TASKS_TRACE_RCU
1517 
1518 // Record outstanding IPIs to each CPU.  No point in sending two...
1519 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1520 
1521 // The number of detections of task quiescent state relying on
1522 // heavyweight readers executing explicit memory barriers.
1523 static unsigned long n_heavy_reader_attempts;
1524 static unsigned long n_heavy_reader_updates;
1525 static unsigned long n_heavy_reader_ofl_updates;
1526 static unsigned long n_trc_holdouts;
1527 
1528 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1529 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1530 		 "RCU Tasks Trace");
1531 
1532 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
rcu_ld_need_qs(struct task_struct * t)1533 static u8 rcu_ld_need_qs(struct task_struct *t)
1534 {
1535 	smp_mb(); // Enforce full grace-period ordering.
1536 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1537 }
1538 
1539 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
rcu_st_need_qs(struct task_struct * t,u8 v)1540 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1541 {
1542 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1543 	smp_mb(); // Enforce full grace-period ordering.
1544 }
1545 
1546 /*
1547  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1548  * the four-byte operand-size restriction of some platforms.
1549  *
1550  * Returns the old value, which is often ignored.
1551  */
rcu_trc_cmpxchg_need_qs(struct task_struct * t,u8 old,u8 new)1552 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1553 {
1554 	return cmpxchg(&t->trc_reader_special.b.need_qs, old, new);
1555 }
1556 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1557 
1558 /*
1559  * If we are the last reader, signal the grace-period kthread.
1560  * Also remove from the per-CPU list of blocked tasks.
1561  */
rcu_read_unlock_trace_special(struct task_struct * t)1562 void rcu_read_unlock_trace_special(struct task_struct *t)
1563 {
1564 	unsigned long flags;
1565 	struct rcu_tasks_percpu *rtpcp;
1566 	union rcu_special trs;
1567 
1568 	// Open-coded full-word version of rcu_ld_need_qs().
1569 	smp_mb(); // Enforce full grace-period ordering.
1570 	trs = smp_load_acquire(&t->trc_reader_special);
1571 
1572 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1573 		smp_mb(); // Pairs with update-side barriers.
1574 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1575 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1576 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1577 						       TRC_NEED_QS_CHECKED);
1578 
1579 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1580 	}
1581 	if (trs.b.blocked) {
1582 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1583 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1584 		list_del_init(&t->trc_blkd_node);
1585 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1586 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1587 	}
1588 	WRITE_ONCE(t->trc_reader_nesting, 0);
1589 }
1590 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1591 
1592 /* Add a newly blocked reader task to its CPU's list. */
rcu_tasks_trace_qs_blkd(struct task_struct * t)1593 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1594 {
1595 	unsigned long flags;
1596 	struct rcu_tasks_percpu *rtpcp;
1597 
1598 	local_irq_save(flags);
1599 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1600 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1601 	t->trc_blkd_cpu = smp_processor_id();
1602 	if (!rtpcp->rtp_blkd_tasks.next)
1603 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1604 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1605 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1606 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1607 }
1608 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1609 
1610 /* Add a task to the holdout list, if it is not already on the list. */
trc_add_holdout(struct task_struct * t,struct list_head * bhp)1611 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1612 {
1613 	if (list_empty(&t->trc_holdout_list)) {
1614 		get_task_struct(t);
1615 		list_add(&t->trc_holdout_list, bhp);
1616 		n_trc_holdouts++;
1617 	}
1618 }
1619 
1620 /* Remove a task from the holdout list, if it is in fact present. */
trc_del_holdout(struct task_struct * t)1621 static void trc_del_holdout(struct task_struct *t)
1622 {
1623 	if (!list_empty(&t->trc_holdout_list)) {
1624 		list_del_init(&t->trc_holdout_list);
1625 		put_task_struct(t);
1626 		n_trc_holdouts--;
1627 	}
1628 }
1629 
1630 /* IPI handler to check task state. */
trc_read_check_handler(void * t_in)1631 static void trc_read_check_handler(void *t_in)
1632 {
1633 	int nesting;
1634 	struct task_struct *t = current;
1635 	struct task_struct *texp = t_in;
1636 
1637 	// If the task is no longer running on this CPU, leave.
1638 	if (unlikely(texp != t))
1639 		goto reset_ipi; // Already on holdout list, so will check later.
1640 
1641 	// If the task is not in a read-side critical section, and
1642 	// if this is the last reader, awaken the grace-period kthread.
1643 	nesting = READ_ONCE(t->trc_reader_nesting);
1644 	if (likely(!nesting)) {
1645 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1646 		goto reset_ipi;
1647 	}
1648 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1649 	if (unlikely(nesting < 0))
1650 		goto reset_ipi;
1651 
1652 	// Get here if the task is in a read-side critical section.
1653 	// Set its state so that it will update state for the grace-period
1654 	// kthread upon exit from that critical section.
1655 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1656 
1657 reset_ipi:
1658 	// Allow future IPIs to be sent on CPU and for task.
1659 	// Also order this IPI handler against any later manipulations of
1660 	// the intended task.
1661 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1662 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1663 }
1664 
1665 /* Callback function for scheduler to check locked-down task.  */
trc_inspect_reader(struct task_struct * t,void * bhp_in)1666 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1667 {
1668 	struct list_head *bhp = bhp_in;
1669 	int cpu = task_cpu(t);
1670 	int nesting;
1671 	bool ofl = cpu_is_offline(cpu);
1672 
1673 	if (task_curr(t) && !ofl) {
1674 		// If no chance of heavyweight readers, do it the hard way.
1675 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1676 			return -EINVAL;
1677 
1678 		// If heavyweight readers are enabled on the remote task,
1679 		// we can inspect its state despite its currently running.
1680 		// However, we cannot safely change its state.
1681 		n_heavy_reader_attempts++;
1682 		// Check for "running" idle tasks on offline CPUs.
1683 		if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting))
1684 			return -EINVAL; // No quiescent state, do it the hard way.
1685 		n_heavy_reader_updates++;
1686 		nesting = 0;
1687 	} else {
1688 		// The task is not running, so C-language access is safe.
1689 		nesting = t->trc_reader_nesting;
1690 		WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1691 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1692 			n_heavy_reader_ofl_updates++;
1693 	}
1694 
1695 	// If not exiting a read-side critical section, mark as checked
1696 	// so that the grace-period kthread will remove it from the
1697 	// holdout list.
1698 	if (!nesting) {
1699 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1700 		return 0;  // In QS, so done.
1701 	}
1702 	if (nesting < 0)
1703 		return -EINVAL; // Reader transitioning, try again later.
1704 
1705 	// The task is in a read-side critical section, so set up its
1706 	// state so that it will update state upon exit from that critical
1707 	// section.
1708 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1709 		trc_add_holdout(t, bhp);
1710 	return 0;
1711 }
1712 
1713 /* Attempt to extract the state for the specified task. */
trc_wait_for_one_reader(struct task_struct * t,struct list_head * bhp)1714 static void trc_wait_for_one_reader(struct task_struct *t,
1715 				    struct list_head *bhp)
1716 {
1717 	int cpu;
1718 
1719 	// If a previous IPI is still in flight, let it complete.
1720 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1721 		return;
1722 
1723 	// The current task had better be in a quiescent state.
1724 	if (t == current) {
1725 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1726 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1727 		return;
1728 	}
1729 
1730 	// Attempt to nail down the task for inspection.
1731 	get_task_struct(t);
1732 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1733 		put_task_struct(t);
1734 		return;
1735 	}
1736 	put_task_struct(t);
1737 
1738 	// If this task is not yet on the holdout list, then we are in
1739 	// an RCU read-side critical section.  Otherwise, the invocation of
1740 	// trc_add_holdout() that added it to the list did the necessary
1741 	// get_task_struct().  Either way, the task cannot be freed out
1742 	// from under this code.
1743 
1744 	// If currently running, send an IPI, either way, add to list.
1745 	trc_add_holdout(t, bhp);
1746 	if (task_curr(t) &&
1747 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1748 		// The task is currently running, so try IPIing it.
1749 		cpu = task_cpu(t);
1750 
1751 		// If there is already an IPI outstanding, let it happen.
1752 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1753 			return;
1754 
1755 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1756 		t->trc_ipi_to_cpu = cpu;
1757 		rcu_tasks_trace.n_ipis++;
1758 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1759 			// Just in case there is some other reason for
1760 			// failure than the target CPU being offline.
1761 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1762 				  __func__, cpu);
1763 			rcu_tasks_trace.n_ipis_fails++;
1764 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1765 			t->trc_ipi_to_cpu = -1;
1766 		}
1767 	}
1768 }
1769 
1770 /*
1771  * Initialize for first-round processing for the specified task.
1772  * Return false if task is NULL or already taken care of, true otherwise.
1773  */
rcu_tasks_trace_pertask_prep(struct task_struct * t,bool notself)1774 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1775 {
1776 	// During early boot when there is only the one boot CPU, there
1777 	// is no idle task for the other CPUs.	Also, the grace-period
1778 	// kthread is always in a quiescent state.  In addition, just return
1779 	// if this task is already on the list.
1780 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1781 		return false;
1782 
1783 	rcu_st_need_qs(t, 0);
1784 	t->trc_ipi_to_cpu = -1;
1785 	return true;
1786 }
1787 
1788 /* Do first-round processing for the specified task. */
rcu_tasks_trace_pertask(struct task_struct * t,struct list_head * hop)1789 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1790 {
1791 	if (rcu_tasks_trace_pertask_prep(t, true))
1792 		trc_wait_for_one_reader(t, hop);
1793 }
1794 
1795 /* Initialize for a new RCU-tasks-trace grace period. */
rcu_tasks_trace_pregp_step(struct list_head * hop)1796 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1797 {
1798 	LIST_HEAD(blkd_tasks);
1799 	int cpu;
1800 	unsigned long flags;
1801 	struct rcu_tasks_percpu *rtpcp;
1802 	struct task_struct *t;
1803 
1804 	// There shouldn't be any old IPIs, but...
1805 	for_each_possible_cpu(cpu)
1806 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1807 
1808 	// Disable CPU hotplug across the CPU scan for the benefit of
1809 	// any IPIs that might be needed.  This also waits for all readers
1810 	// in CPU-hotplug code paths.
1811 	cpus_read_lock();
1812 
1813 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1814 	// allow safe access to the hop list.
1815 	for_each_online_cpu(cpu) {
1816 		rcu_read_lock();
1817 		// Note that cpu_curr_snapshot() picks up the target
1818 		// CPU's current task while its runqueue is locked with
1819 		// an smp_mb__after_spinlock().  This ensures that either
1820 		// the grace-period kthread will see that task's read-side
1821 		// critical section or the task will see the updater's pre-GP
1822 		// accesses.  The trailing smp_mb() in cpu_curr_snapshot()
1823 		// does not currently play a role other than simplify
1824 		// that function's ordering semantics.  If these simplified
1825 		// ordering semantics continue to be redundant, that smp_mb()
1826 		// might be removed.
1827 		t = cpu_curr_snapshot(cpu);
1828 		if (rcu_tasks_trace_pertask_prep(t, true))
1829 			trc_add_holdout(t, hop);
1830 		rcu_read_unlock();
1831 		cond_resched_tasks_rcu_qs();
1832 	}
1833 
1834 	// Only after all running tasks have been accounted for is it
1835 	// safe to take care of the tasks that have blocked within their
1836 	// current RCU tasks trace read-side critical section.
1837 	for_each_possible_cpu(cpu) {
1838 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1839 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1840 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1841 		while (!list_empty(&blkd_tasks)) {
1842 			rcu_read_lock();
1843 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1844 			list_del_init(&t->trc_blkd_node);
1845 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1846 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1847 			rcu_tasks_trace_pertask(t, hop);
1848 			rcu_read_unlock();
1849 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1850 		}
1851 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1852 		cond_resched_tasks_rcu_qs();
1853 	}
1854 
1855 	// Re-enable CPU hotplug now that the holdout list is populated.
1856 	cpus_read_unlock();
1857 }
1858 
1859 /*
1860  * Do intermediate processing between task and holdout scans.
1861  */
rcu_tasks_trace_postscan(struct list_head * hop)1862 static void rcu_tasks_trace_postscan(struct list_head *hop)
1863 {
1864 	// Wait for late-stage exiting tasks to finish exiting.
1865 	// These might have passed the call to exit_tasks_rcu_finish().
1866 
1867 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1868 	synchronize_rcu();
1869 	// Any tasks that exit after this point will set
1870 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1871 }
1872 
1873 /* Communicate task state back to the RCU tasks trace stall warning request. */
1874 struct trc_stall_chk_rdr {
1875 	int nesting;
1876 	int ipi_to_cpu;
1877 	u8 needqs;
1878 };
1879 
trc_check_slow_task(struct task_struct * t,void * arg)1880 static int trc_check_slow_task(struct task_struct *t, void *arg)
1881 {
1882 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1883 
1884 	if (task_curr(t) && cpu_online(task_cpu(t)))
1885 		return false; // It is running, so decline to inspect it.
1886 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1887 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1888 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1889 	return true;
1890 }
1891 
1892 /* Show the state of a task stalling the current RCU tasks trace GP. */
show_stalled_task_trace(struct task_struct * t,bool * firstreport)1893 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1894 {
1895 	int cpu;
1896 	struct trc_stall_chk_rdr trc_rdr;
1897 	bool is_idle_tsk = is_idle_task(t);
1898 
1899 	if (*firstreport) {
1900 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1901 		*firstreport = false;
1902 	}
1903 	cpu = task_cpu(t);
1904 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1905 		pr_alert("P%d: %c%c\n",
1906 			 t->pid,
1907 			 ".I"[t->trc_ipi_to_cpu >= 0],
1908 			 ".i"[is_idle_tsk]);
1909 	else
1910 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1911 			 t->pid,
1912 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1913 			 ".i"[is_idle_tsk],
1914 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1915 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1916 			 trc_rdr.nesting,
1917 			 " !CN"[trc_rdr.needqs & 0x3],
1918 			 " ?"[trc_rdr.needqs > 0x3],
1919 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1920 	sched_show_task(t);
1921 }
1922 
1923 /* List stalled IPIs for RCU tasks trace. */
show_stalled_ipi_trace(void)1924 static void show_stalled_ipi_trace(void)
1925 {
1926 	int cpu;
1927 
1928 	for_each_possible_cpu(cpu)
1929 		if (per_cpu(trc_ipi_to_cpu, cpu))
1930 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1931 }
1932 
1933 /* Do one scan of the holdout list. */
check_all_holdout_tasks_trace(struct list_head * hop,bool needreport,bool * firstreport)1934 static void check_all_holdout_tasks_trace(struct list_head *hop,
1935 					  bool needreport, bool *firstreport)
1936 {
1937 	struct task_struct *g, *t;
1938 
1939 	// Disable CPU hotplug across the holdout list scan for IPIs.
1940 	cpus_read_lock();
1941 
1942 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1943 		// If safe and needed, try to check the current task.
1944 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1945 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1946 			trc_wait_for_one_reader(t, hop);
1947 
1948 		// If check succeeded, remove this task from the list.
1949 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1950 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1951 			trc_del_holdout(t);
1952 		else if (needreport)
1953 			show_stalled_task_trace(t, firstreport);
1954 		cond_resched_tasks_rcu_qs();
1955 	}
1956 
1957 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1958 	cpus_read_unlock();
1959 
1960 	if (needreport) {
1961 		if (*firstreport)
1962 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1963 		show_stalled_ipi_trace();
1964 	}
1965 }
1966 
rcu_tasks_trace_empty_fn(void * unused)1967 static void rcu_tasks_trace_empty_fn(void *unused)
1968 {
1969 }
1970 
1971 /* Wait for grace period to complete and provide ordering. */
rcu_tasks_trace_postgp(struct rcu_tasks * rtp)1972 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1973 {
1974 	int cpu;
1975 
1976 	// Wait for any lingering IPI handlers to complete.  Note that
1977 	// if a CPU has gone offline or transitioned to userspace in the
1978 	// meantime, all IPI handlers should have been drained beforehand.
1979 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1980 	// changes, there will need to be a recheck and/or timed wait.
1981 	for_each_online_cpu(cpu)
1982 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1983 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1984 
1985 	smp_mb(); // Caller's code must be ordered after wakeup.
1986 		  // Pairs with pretty much every ordering primitive.
1987 }
1988 
1989 /* Report any needed quiescent state for this exiting task. */
exit_tasks_rcu_finish_trace(struct task_struct * t)1990 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1991 {
1992 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
1993 
1994 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1995 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1996 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1997 		rcu_read_unlock_trace_special(t);
1998 	else
1999 		WRITE_ONCE(t->trc_reader_nesting, 0);
2000 }
2001 
2002 /**
2003  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
2004  * @rhp: structure to be used for queueing the RCU updates.
2005  * @func: actual callback function to be invoked after the grace period
2006  *
2007  * The callback function will be invoked some time after a trace rcu-tasks
2008  * grace period elapses, in other words after all currently executing
2009  * trace rcu-tasks read-side critical sections have completed. These
2010  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
2011  * and rcu_read_unlock_trace().
2012  *
2013  * See the description of call_rcu() for more detailed information on
2014  * memory ordering guarantees.
2015  */
call_rcu_tasks_trace(struct rcu_head * rhp,rcu_callback_t func)2016 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
2017 {
2018 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
2019 }
2020 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
2021 
2022 /**
2023  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
2024  *
2025  * Control will return to the caller some time after a trace rcu-tasks
2026  * grace period has elapsed, in other words after all currently executing
2027  * trace rcu-tasks read-side critical sections have elapsed. These read-side
2028  * critical sections are delimited by calls to rcu_read_lock_trace()
2029  * and rcu_read_unlock_trace().
2030  *
2031  * This is a very specialized primitive, intended only for a few uses in
2032  * tracing and other situations requiring manipulation of function preambles
2033  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
2034  * (yet) intended for heavy use from multiple CPUs.
2035  *
2036  * See the description of synchronize_rcu() for more detailed information
2037  * on memory ordering guarantees.
2038  */
synchronize_rcu_tasks_trace(void)2039 void synchronize_rcu_tasks_trace(void)
2040 {
2041 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
2042 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
2043 }
2044 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
2045 
2046 /**
2047  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
2048  *
2049  * Although the current implementation is guaranteed to wait, it is not
2050  * obligated to, for example, if there are no pending callbacks.
2051  */
rcu_barrier_tasks_trace(void)2052 void rcu_barrier_tasks_trace(void)
2053 {
2054 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
2055 }
2056 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
2057 
2058 int rcu_tasks_trace_lazy_ms = -1;
2059 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
2060 
rcu_spawn_tasks_trace_kthread(void)2061 static int __init rcu_spawn_tasks_trace_kthread(void)
2062 {
2063 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
2064 		rcu_tasks_trace.gp_sleep = HZ / 10;
2065 		rcu_tasks_trace.init_fract = HZ / 10;
2066 	} else {
2067 		rcu_tasks_trace.gp_sleep = HZ / 200;
2068 		if (rcu_tasks_trace.gp_sleep <= 0)
2069 			rcu_tasks_trace.gp_sleep = 1;
2070 		rcu_tasks_trace.init_fract = HZ / 200;
2071 		if (rcu_tasks_trace.init_fract <= 0)
2072 			rcu_tasks_trace.init_fract = 1;
2073 	}
2074 	if (rcu_tasks_trace_lazy_ms >= 0)
2075 		rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
2076 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
2077 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
2078 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
2079 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
2080 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
2081 	return 0;
2082 }
2083 
2084 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_trace_gp_kthread(void)2085 void show_rcu_tasks_trace_gp_kthread(void)
2086 {
2087 	char buf[64];
2088 
2089 	snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
2090 		data_race(n_trc_holdouts),
2091 		data_race(n_heavy_reader_ofl_updates),
2092 		data_race(n_heavy_reader_updates),
2093 		data_race(n_heavy_reader_attempts));
2094 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2095 }
2096 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2097 
rcu_tasks_trace_torture_stats_print(char * tt,char * tf)2098 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf)
2099 {
2100 	rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, "");
2101 }
2102 EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print);
2103 #endif // !defined(CONFIG_TINY_RCU)
2104 
get_rcu_tasks_trace_gp_kthread(void)2105 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2106 {
2107 	return rcu_tasks_trace.kthread_ptr;
2108 }
2109 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2110 
rcu_tasks_trace_get_gp_data(int * flags,unsigned long * gp_seq)2111 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq)
2112 {
2113 	*flags = 0;
2114 	*gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq);
2115 }
2116 EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data);
2117 
2118 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
exit_tasks_rcu_finish_trace(struct task_struct * t)2119 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2120 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2121 
2122 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_gp_kthreads(void)2123 void show_rcu_tasks_gp_kthreads(void)
2124 {
2125 	show_rcu_tasks_classic_gp_kthread();
2126 	show_rcu_tasks_rude_gp_kthread();
2127 	show_rcu_tasks_trace_gp_kthread();
2128 }
2129 #endif /* #ifndef CONFIG_TINY_RCU */
2130 
2131 #ifdef CONFIG_PROVE_RCU
2132 struct rcu_tasks_test_desc {
2133 	struct rcu_head rh;
2134 	const char *name;
2135 	bool notrun;
2136 	unsigned long runstart;
2137 };
2138 
2139 static struct rcu_tasks_test_desc tests[] = {
2140 	{
2141 		.name = "call_rcu_tasks()",
2142 		/* If not defined, the test is skipped. */
2143 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2144 	},
2145 	{
2146 		.name = "call_rcu_tasks_trace()",
2147 		/* If not defined, the test is skipped. */
2148 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2149 	}
2150 };
2151 
2152 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
test_rcu_tasks_callback(struct rcu_head * rhp)2153 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2154 {
2155 	struct rcu_tasks_test_desc *rttd =
2156 		container_of(rhp, struct rcu_tasks_test_desc, rh);
2157 
2158 	pr_info("Callback from %s invoked.\n", rttd->name);
2159 
2160 	rttd->notrun = false;
2161 }
2162 #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2163 
rcu_tasks_initiate_self_tests(void)2164 static void rcu_tasks_initiate_self_tests(void)
2165 {
2166 #ifdef CONFIG_TASKS_RCU
2167 	pr_info("Running RCU Tasks wait API self tests\n");
2168 	tests[0].runstart = jiffies;
2169 	synchronize_rcu_tasks();
2170 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2171 #endif
2172 
2173 #ifdef CONFIG_TASKS_RUDE_RCU
2174 	pr_info("Running RCU Tasks Rude wait API self tests\n");
2175 	synchronize_rcu_tasks_rude();
2176 #endif
2177 
2178 #ifdef CONFIG_TASKS_TRACE_RCU
2179 	pr_info("Running RCU Tasks Trace wait API self tests\n");
2180 	tests[1].runstart = jiffies;
2181 	synchronize_rcu_tasks_trace();
2182 	call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback);
2183 #endif
2184 }
2185 
2186 /*
2187  * Return:  0 - test passed
2188  *	    1 - test failed, but have not timed out yet
2189  *	   -1 - test failed and timed out
2190  */
rcu_tasks_verify_self_tests(void)2191 static int rcu_tasks_verify_self_tests(void)
2192 {
2193 	int ret = 0;
2194 	int i;
2195 	unsigned long bst = rcu_task_stall_timeout;
2196 
2197 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2198 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2199 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
2200 		while (tests[i].notrun) {		// still hanging.
2201 			if (time_after(jiffies, tests[i].runstart + bst)) {
2202 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
2203 				ret = -1;
2204 				break;
2205 			}
2206 			ret = 1;
2207 			break;
2208 		}
2209 	}
2210 	WARN_ON(ret < 0);
2211 
2212 	return ret;
2213 }
2214 
2215 /*
2216  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2217  * test passes or has timed out.
2218  */
2219 static struct delayed_work rcu_tasks_verify_work;
rcu_tasks_verify_work_fn(struct work_struct * work __maybe_unused)2220 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2221 {
2222 	int ret = rcu_tasks_verify_self_tests();
2223 
2224 	if (ret <= 0)
2225 		return;
2226 
2227 	/* Test fails but not timed out yet, reschedule another check */
2228 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2229 }
2230 
rcu_tasks_verify_schedule_work(void)2231 static int rcu_tasks_verify_schedule_work(void)
2232 {
2233 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2234 	rcu_tasks_verify_work_fn(NULL);
2235 	return 0;
2236 }
2237 late_initcall(rcu_tasks_verify_schedule_work);
2238 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_tasks_initiate_self_tests(void)2239 static void rcu_tasks_initiate_self_tests(void) { }
2240 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2241 
tasks_cblist_init_generic(void)2242 void __init tasks_cblist_init_generic(void)
2243 {
2244 	lockdep_assert_irqs_disabled();
2245 	WARN_ON(num_online_cpus() > 1);
2246 
2247 #ifdef CONFIG_TASKS_RCU
2248 	cblist_init_generic(&rcu_tasks);
2249 #endif
2250 
2251 #ifdef CONFIG_TASKS_RUDE_RCU
2252 	cblist_init_generic(&rcu_tasks_rude);
2253 #endif
2254 
2255 #ifdef CONFIG_TASKS_TRACE_RCU
2256 	cblist_init_generic(&rcu_tasks_trace);
2257 #endif
2258 }
2259 
rcu_init_tasks_generic(void)2260 static int __init rcu_init_tasks_generic(void)
2261 {
2262 #ifdef CONFIG_TASKS_RCU
2263 	rcu_spawn_tasks_kthread();
2264 #endif
2265 
2266 #ifdef CONFIG_TASKS_RUDE_RCU
2267 	rcu_spawn_tasks_rude_kthread();
2268 #endif
2269 
2270 #ifdef CONFIG_TASKS_TRACE_RCU
2271 	rcu_spawn_tasks_trace_kthread();
2272 #endif
2273 
2274 	// Run the self-tests.
2275 	rcu_tasks_initiate_self_tests();
2276 
2277 	return 0;
2278 }
2279 core_initcall(rcu_init_tasks_generic);
2280 
2281 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
rcu_tasks_bootup_oddness(void)2282 static inline void rcu_tasks_bootup_oddness(void) {}
2283 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
2284