1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 McAfee, Inc.
5 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Jonathan Lemon
9 * and McAfee Research, the Security Research Division of McAfee, Inc. under
10 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11 * DARPA CHATS research program. [2001 McAfee, Inc.]
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/refcount.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/proc.h> /* for proc0 declaration */
52 #include <sys/random.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/syslog.h>
56 #include <sys/ucred.h>
57
58 #include <sys/md5.h>
59 #include <crypto/siphash/siphash.h>
60
61 #include <vm/uma.h>
62
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/route.h>
66 #include <net/vnet.h>
67
68 #include <netinet/in.h>
69 #include <netinet/in_kdtrace.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_var.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_options.h>
76 #ifdef INET6
77 #include <netinet/ip6.h>
78 #include <netinet/icmp6.h>
79 #include <netinet6/nd6.h>
80 #include <netinet6/ip6_var.h>
81 #include <netinet6/in6_pcb.h>
82 #endif
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fastopen.h>
85 #include <netinet/tcp_fsm.h>
86 #include <netinet/tcp_seq.h>
87 #include <netinet/tcp_timer.h>
88 #include <netinet/tcp_var.h>
89 #include <netinet/tcp_syncache.h>
90 #include <netinet/tcp_ecn.h>
91 #ifdef TCP_BLACKBOX
92 #include <netinet/tcp_log_buf.h>
93 #endif
94 #ifdef TCP_OFFLOAD
95 #include <netinet/toecore.h>
96 #endif
97 #include <netinet/udp.h>
98
99 #include <netipsec/ipsec_support.h>
100
101 #include <machine/in_cksum.h>
102
103 #include <security/mac/mac_framework.h>
104
105 VNET_DEFINE_STATIC(bool, tcp_syncookies) = true;
106 #define V_tcp_syncookies VNET(tcp_syncookies)
107 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108 &VNET_NAME(tcp_syncookies), 0,
109 "Use TCP SYN cookies if the syncache overflows");
110
111 VNET_DEFINE_STATIC(bool, tcp_syncookiesonly) = false;
112 #define V_tcp_syncookiesonly VNET(tcp_syncookiesonly)
113 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114 &VNET_NAME(tcp_syncookiesonly), 0,
115 "Use only TCP SYN cookies");
116
117 #ifdef TCP_OFFLOAD
118 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
119 #endif
120
121 static void syncache_drop(struct syncache *, struct syncache_head *);
122 static void syncache_free(struct syncache *);
123 static void syncache_insert(struct syncache *, struct syncache_head *);
124 static int syncache_respond(struct syncache *, const struct mbuf *, int);
125 static struct socket *syncache_socket(struct syncache *, struct socket *,
126 struct mbuf *m);
127 static void syncache_timeout(struct syncache *sc, struct syncache_head *sch,
128 int docallout);
129 static void syncache_timer(void *);
130
131 static uint32_t syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
132 uint8_t *, uintptr_t);
133 static tcp_seq syncookie_generate(struct syncache_head *, struct syncache *);
134 static bool syncookie_expand(struct in_conninfo *,
135 const struct syncache_head *, struct syncache *,
136 struct tcphdr *, struct tcpopt *, struct socket *,
137 uint16_t);
138 static void syncache_pause(struct in_conninfo *);
139 static void syncache_unpause(void *);
140 static void syncookie_reseed(void *);
141 #ifdef INVARIANTS
142 static void syncookie_cmp(struct in_conninfo *,
143 const struct syncache_head *, struct syncache *,
144 struct tcphdr *, struct tcpopt *, struct socket *,
145 uint16_t);
146 #endif
147
148 /*
149 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
150 * 3 retransmits corresponds to a timeout with default values of
151 * tcp_rexmit_initial * ( 1 +
152 * tcp_backoff[1] +
153 * tcp_backoff[2] +
154 * tcp_backoff[3]) + 3 * tcp_rexmit_slop,
155 * 1000 ms * (1 + 2 + 4 + 8) + 3 * 200 ms = 15600 ms,
156 * the odds are that the user has given up attempting to connect by then.
157 */
158 #define SYNCACHE_MAXREXMTS 3
159
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE 512
162 #define TCP_SYNCACHE_BUCKETLIMIT 30
163
164 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
165 #define V_tcp_syncache VNET(tcp_syncache)
166
167 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169 "TCP SYN cache");
170
171 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
172 &VNET_NAME(tcp_syncache.bucket_limit), 0,
173 "Per-bucket hash limit for syncache");
174
175 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
176 &VNET_NAME(tcp_syncache.cache_limit), 0,
177 "Overall entry limit for syncache");
178
179 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
180 &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
181
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
183 &VNET_NAME(tcp_syncache.hashsize), 0,
184 "Size of TCP syncache hashtable");
185
186 SYSCTL_BOOL(_net_inet_tcp_syncache, OID_AUTO, see_other, CTLFLAG_VNET |
187 CTLFLAG_RW, &VNET_NAME(tcp_syncache.see_other), 0,
188 "All syncache(4) entries are visible, ignoring UID/GID, jail(2) "
189 "and mac(4) checks");
190
191 static int
sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)192 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
193 {
194 int error;
195 u_int new;
196
197 new = V_tcp_syncache.rexmt_limit;
198 error = sysctl_handle_int(oidp, &new, 0, req);
199 if ((error == 0) && (req->newptr != NULL)) {
200 if (new > TCP_MAXRXTSHIFT)
201 error = EINVAL;
202 else
203 V_tcp_syncache.rexmt_limit = new;
204 }
205 return (error);
206 }
207
208 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
209 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
210 &VNET_NAME(tcp_syncache.rexmt_limit), 0,
211 sysctl_net_inet_tcp_syncache_rexmtlimit_check, "IU",
212 "Limit on SYN/ACK retransmissions");
213
214 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
215 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
216 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
217 "Send reset on socket allocation failure");
218
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
220
221 #define SCH_LOCK(sch) mtx_lock(&(sch)->sch_mtx)
222 #define SCH_UNLOCK(sch) mtx_unlock(&(sch)->sch_mtx)
223 #define SCH_LOCK_ASSERT(sch) mtx_assert(&(sch)->sch_mtx, MA_OWNED)
224
225 /*
226 * Requires the syncache entry to be already removed from the bucket list.
227 */
228 static void
syncache_free(struct syncache * sc)229 syncache_free(struct syncache *sc)
230 {
231
232 if (sc->sc_ipopts)
233 (void)m_free(sc->sc_ipopts);
234 if (sc->sc_cred)
235 crfree(sc->sc_cred);
236 #ifdef MAC
237 mac_syncache_destroy(&sc->sc_label);
238 #endif
239
240 uma_zfree(V_tcp_syncache.zone, sc);
241 }
242
243 void
syncache_init(void)244 syncache_init(void)
245 {
246 int i;
247
248 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
249 V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
250 V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
251 V_tcp_syncache.hash_secret = arc4random();
252
253 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
254 &V_tcp_syncache.hashsize);
255 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
256 &V_tcp_syncache.bucket_limit);
257 if (!powerof2(V_tcp_syncache.hashsize) ||
258 V_tcp_syncache.hashsize == 0) {
259 printf("WARNING: syncache hash size is not a power of 2.\n");
260 V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
261 }
262 V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
263
264 /* Set limits. */
265 V_tcp_syncache.cache_limit =
266 V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
267 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
268 &V_tcp_syncache.cache_limit);
269
270 /* Allocate the hash table. */
271 V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
272 sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
273
274 #ifdef VIMAGE
275 V_tcp_syncache.vnet = curvnet;
276 #endif
277
278 /* Initialize the hash buckets. */
279 for (i = 0; i < V_tcp_syncache.hashsize; i++) {
280 TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
281 mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
282 NULL, MTX_DEF);
283 callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
284 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
285 V_tcp_syncache.hashbase[i].sch_length = 0;
286 V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
287 V_tcp_syncache.hashbase[i].sch_last_overflow =
288 -(SYNCOOKIE_LIFETIME + 1);
289 }
290
291 /* Create the syncache entry zone. */
292 V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
293 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
294 V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
295 V_tcp_syncache.cache_limit);
296
297 /* Start the SYN cookie reseeder callout. */
298 callout_init(&V_tcp_syncache.secret.reseed, 1);
299 arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
300 arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
301 callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
302 syncookie_reseed, &V_tcp_syncache);
303
304 /* Initialize the pause machinery. */
305 mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
306 callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
307 0);
308 V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
309 V_tcp_syncache.pause_backoff = 0;
310 V_tcp_syncache.paused = false;
311 }
312
313 #ifdef VIMAGE
314 void
syncache_destroy(void)315 syncache_destroy(void)
316 {
317 struct syncache_head *sch;
318 struct syncache *sc, *nsc;
319 int i;
320
321 /*
322 * Stop the re-seed timer before freeing resources. No need to
323 * possibly schedule it another time.
324 */
325 callout_drain(&V_tcp_syncache.secret.reseed);
326
327 /* Stop the SYN cache pause callout. */
328 mtx_lock(&V_tcp_syncache.pause_mtx);
329 if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
330 mtx_unlock(&V_tcp_syncache.pause_mtx);
331 callout_drain(&V_tcp_syncache.pause_co);
332 } else
333 mtx_unlock(&V_tcp_syncache.pause_mtx);
334
335 /* Cleanup hash buckets: stop timers, free entries, destroy locks. */
336 for (i = 0; i < V_tcp_syncache.hashsize; i++) {
337 sch = &V_tcp_syncache.hashbase[i];
338 callout_drain(&sch->sch_timer);
339
340 SCH_LOCK(sch);
341 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
342 syncache_drop(sc, sch);
343 SCH_UNLOCK(sch);
344 KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
345 ("%s: sch->sch_bucket not empty", __func__));
346 KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
347 __func__, sch->sch_length));
348 mtx_destroy(&sch->sch_mtx);
349 }
350
351 KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
352 ("%s: cache_count not 0", __func__));
353
354 /* Free the allocated global resources. */
355 uma_zdestroy(V_tcp_syncache.zone);
356 free(V_tcp_syncache.hashbase, M_SYNCACHE);
357 mtx_destroy(&V_tcp_syncache.pause_mtx);
358 }
359 #endif
360
361 /*
362 * Inserts a syncache entry into the specified bucket row.
363 * Locks and unlocks the syncache_head autonomously.
364 */
365 static void
syncache_insert(struct syncache * sc,struct syncache_head * sch)366 syncache_insert(struct syncache *sc, struct syncache_head *sch)
367 {
368 struct syncache *sc2;
369
370 SCH_LOCK(sch);
371
372 /*
373 * Make sure that we don't overflow the per-bucket limit.
374 * If the bucket is full, toss the oldest element.
375 */
376 if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
377 KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
378 ("sch->sch_length incorrect"));
379 syncache_pause(&sc->sc_inc);
380 sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
381 sch->sch_last_overflow = time_uptime;
382 syncache_drop(sc2, sch);
383 }
384
385 /* Put it into the bucket. */
386 TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
387 sch->sch_length++;
388
389 #ifdef TCP_OFFLOAD
390 if (ADDED_BY_TOE(sc)) {
391 struct toedev *tod = sc->sc_tod;
392
393 tod->tod_syncache_added(tod, sc->sc_todctx);
394 }
395 #endif
396
397 /* Reinitialize the bucket row's timer. */
398 if (sch->sch_length == 1)
399 sch->sch_nextc = ticks + INT_MAX;
400 syncache_timeout(sc, sch, 1);
401
402 SCH_UNLOCK(sch);
403
404 TCPSTATES_INC(TCPS_SYN_RECEIVED);
405 TCPSTAT_INC(tcps_sc_added);
406 }
407
408 /*
409 * Remove and free entry from syncache bucket row.
410 * Expects locked syncache head.
411 */
412 static void
syncache_drop(struct syncache * sc,struct syncache_head * sch)413 syncache_drop(struct syncache *sc, struct syncache_head *sch)
414 {
415
416 SCH_LOCK_ASSERT(sch);
417
418 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
419 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
420 sch->sch_length--;
421
422 #ifdef TCP_OFFLOAD
423 if (ADDED_BY_TOE(sc)) {
424 struct toedev *tod = sc->sc_tod;
425
426 tod->tod_syncache_removed(tod, sc->sc_todctx);
427 }
428 #endif
429
430 syncache_free(sc);
431 }
432
433 /*
434 * Engage/reengage time on bucket row.
435 */
436 static void
syncache_timeout(struct syncache * sc,struct syncache_head * sch,int docallout)437 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
438 {
439 int rexmt;
440
441 if (sc->sc_rxmits == 0)
442 rexmt = tcp_rexmit_initial;
443 else
444 TCPT_RANGESET(rexmt,
445 tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
446 tcp_rexmit_min, tcp_rexmit_max);
447 sc->sc_rxttime = ticks + rexmt;
448 sc->sc_rxmits++;
449 if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
450 sch->sch_nextc = sc->sc_rxttime;
451 if (docallout)
452 callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
453 syncache_timer, (void *)sch);
454 }
455 }
456
457 /*
458 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
459 * If we have retransmitted an entry the maximum number of times, expire it.
460 * One separate timer for each bucket row.
461 */
462 static void
syncache_timer(void * xsch)463 syncache_timer(void *xsch)
464 {
465 struct syncache_head *sch = (struct syncache_head *)xsch;
466 struct syncache *sc, *nsc;
467 struct epoch_tracker et;
468 int tick = ticks;
469 char *s;
470 bool paused;
471
472 CURVNET_SET(sch->sch_sc->vnet);
473
474 /* NB: syncache_head has already been locked by the callout. */
475 SCH_LOCK_ASSERT(sch);
476
477 /*
478 * In the following cycle we may remove some entries and/or
479 * advance some timeouts, so re-initialize the bucket timer.
480 */
481 sch->sch_nextc = tick + INT_MAX;
482
483 /*
484 * If we have paused processing, unconditionally remove
485 * all syncache entries.
486 */
487 mtx_lock(&V_tcp_syncache.pause_mtx);
488 paused = V_tcp_syncache.paused;
489 mtx_unlock(&V_tcp_syncache.pause_mtx);
490
491 TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
492 if (paused) {
493 syncache_drop(sc, sch);
494 continue;
495 }
496 /*
497 * We do not check if the listen socket still exists
498 * and accept the case where the listen socket may be
499 * gone by the time we resend the SYN/ACK. We do
500 * not expect this to happens often. If it does,
501 * then the RST will be sent by the time the remote
502 * host does the SYN/ACK->ACK.
503 */
504 if (TSTMP_GT(sc->sc_rxttime, tick)) {
505 if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
506 sch->sch_nextc = sc->sc_rxttime;
507 continue;
508 }
509 if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
510 sc->sc_flags &= ~SCF_ECN_MASK;
511 }
512 if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
513 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
514 log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
515 "giving up and removing syncache entry\n",
516 s, __func__);
517 free(s, M_TCPLOG);
518 }
519 syncache_drop(sc, sch);
520 TCPSTAT_INC(tcps_sc_stale);
521 continue;
522 }
523 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
524 log(LOG_DEBUG, "%s; %s: Response timeout, "
525 "retransmitting (%u) SYN|ACK\n",
526 s, __func__, sc->sc_rxmits);
527 free(s, M_TCPLOG);
528 }
529
530 NET_EPOCH_ENTER(et);
531 if (syncache_respond(sc, NULL, TH_SYN|TH_ACK) == 0) {
532 syncache_timeout(sc, sch, 0);
533 TCPSTAT_INC(tcps_sndacks);
534 TCPSTAT_INC(tcps_sndtotal);
535 TCPSTAT_INC(tcps_sc_retransmitted);
536 } else {
537 syncache_drop(sc, sch);
538 TCPSTAT_INC(tcps_sc_dropped);
539 }
540 NET_EPOCH_EXIT(et);
541 }
542 if (!TAILQ_EMPTY(&(sch)->sch_bucket))
543 callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
544 syncache_timer, (void *)(sch));
545 CURVNET_RESTORE();
546 }
547
548 /*
549 * Returns true if the system is only using cookies at the moment.
550 * This could be due to a sysadmin decision to only use cookies, or it
551 * could be due to the system detecting an attack.
552 */
553 static inline bool
syncache_cookiesonly(void)554 syncache_cookiesonly(void)
555 {
556 return ((V_tcp_syncookies && V_tcp_syncache.paused) ||
557 V_tcp_syncookiesonly);
558 }
559
560 /*
561 * Find the hash bucket for the given connection.
562 */
563 static struct syncache_head *
syncache_hashbucket(struct in_conninfo * inc)564 syncache_hashbucket(struct in_conninfo *inc)
565 {
566 uint32_t hash;
567
568 /*
569 * The hash is built on foreign port + local port + foreign address.
570 * We rely on the fact that struct in_conninfo starts with 16 bits
571 * of foreign port, then 16 bits of local port then followed by 128
572 * bits of foreign address. In case of IPv4 address, the first 3
573 * 32-bit words of the address always are zeroes.
574 */
575 hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
576 V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
577
578 return (&V_tcp_syncache.hashbase[hash]);
579 }
580
581 /*
582 * Find an entry in the syncache.
583 * Returns always with locked syncache_head plus a matching entry or NULL.
584 */
585 static struct syncache *
syncache_lookup(struct in_conninfo * inc,struct syncache_head ** schp)586 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
587 {
588 struct syncache *sc;
589 struct syncache_head *sch;
590
591 *schp = sch = syncache_hashbucket(inc);
592 SCH_LOCK(sch);
593
594 /* Circle through bucket row to find matching entry. */
595 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
596 if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
597 sizeof(struct in_endpoints)) == 0)
598 break;
599
600 return (sc); /* Always returns with locked sch. */
601 }
602
603 /*
604 * This function is called when we get a RST for a
605 * non-existent connection, so that we can see if the
606 * connection is in the syn cache. If it is, zap it.
607 * If required send a challenge ACK.
608 */
609 void
syncache_chkrst(struct in_conninfo * inc,struct tcphdr * th,struct mbuf * m,uint16_t port)610 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m,
611 uint16_t port)
612 {
613 struct syncache *sc;
614 struct syncache_head *sch;
615 char *s = NULL;
616
617 if (syncache_cookiesonly())
618 return;
619 sc = syncache_lookup(inc, &sch); /* returns locked sch */
620 SCH_LOCK_ASSERT(sch);
621
622 /*
623 * No corresponding connection was found in syncache.
624 * If syncookies are enabled and possibly exclusively
625 * used, or we are under memory pressure, a valid RST
626 * may not find a syncache entry. In that case we're
627 * done and no SYN|ACK retransmissions will happen.
628 * Otherwise the RST was misdirected or spoofed.
629 */
630 if (sc == NULL) {
631 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
632 log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
633 "syncache entry (possibly syncookie only), "
634 "segment ignored\n", s, __func__);
635 TCPSTAT_INC(tcps_badrst);
636 goto done;
637 }
638
639 /* The remote UDP encaps port does not match. */
640 if (sc->sc_port != port) {
641 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
642 log(LOG_DEBUG, "%s; %s: Spurious RST with matching "
643 "syncache entry but non-matching UDP encaps port, "
644 "segment ignored\n", s, __func__);
645 TCPSTAT_INC(tcps_badrst);
646 goto done;
647 }
648
649 /*
650 * If the RST bit is set, check the sequence number to see
651 * if this is a valid reset segment.
652 *
653 * RFC 793 page 37:
654 * In all states except SYN-SENT, all reset (RST) segments
655 * are validated by checking their SEQ-fields. A reset is
656 * valid if its sequence number is in the window.
657 *
658 * RFC 793 page 69:
659 * There are four cases for the acceptability test for an incoming
660 * segment:
661 *
662 * Segment Receive Test
663 * Length Window
664 * ------- ------- -------------------------------------------
665 * 0 0 SEG.SEQ = RCV.NXT
666 * 0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
667 * >0 0 not acceptable
668 * >0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
669 * or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
670 *
671 * Note that when receiving a SYN segment in the LISTEN state,
672 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
673 * described in RFC 793, page 66.
674 */
675 if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
676 SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
677 (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
678 if (V_tcp_insecure_rst ||
679 th->th_seq == sc->sc_irs + 1) {
680 syncache_drop(sc, sch);
681 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
682 log(LOG_DEBUG,
683 "%s; %s: Our SYN|ACK was rejected, "
684 "connection attempt aborted by remote "
685 "endpoint\n",
686 s, __func__);
687 TCPSTAT_INC(tcps_sc_reset);
688 } else {
689 TCPSTAT_INC(tcps_badrst);
690 /* Send challenge ACK. */
691 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
692 log(LOG_DEBUG, "%s; %s: RST with invalid "
693 " SEQ %u != NXT %u (+WND %u), "
694 "sending challenge ACK\n",
695 s, __func__,
696 th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
697 if (syncache_respond(sc, m, TH_ACK) == 0) {
698 TCPSTAT_INC(tcps_sndacks);
699 TCPSTAT_INC(tcps_sndtotal);
700 } else {
701 syncache_drop(sc, sch);
702 TCPSTAT_INC(tcps_sc_dropped);
703 }
704 }
705 } else {
706 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
707 log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
708 "NXT %u (+WND %u), segment ignored\n",
709 s, __func__,
710 th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
711 TCPSTAT_INC(tcps_badrst);
712 }
713
714 done:
715 if (s != NULL)
716 free(s, M_TCPLOG);
717 SCH_UNLOCK(sch);
718 }
719
720 void
syncache_badack(struct in_conninfo * inc,uint16_t port)721 syncache_badack(struct in_conninfo *inc, uint16_t port)
722 {
723 struct syncache *sc;
724 struct syncache_head *sch;
725
726 if (syncache_cookiesonly())
727 return;
728 sc = syncache_lookup(inc, &sch); /* returns locked sch */
729 SCH_LOCK_ASSERT(sch);
730 if ((sc != NULL) && (sc->sc_port == port)) {
731 syncache_drop(sc, sch);
732 TCPSTAT_INC(tcps_sc_badack);
733 }
734 SCH_UNLOCK(sch);
735 }
736
737 void
syncache_unreach(struct in_conninfo * inc,tcp_seq th_seq,uint16_t port)738 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port)
739 {
740 struct syncache *sc;
741 struct syncache_head *sch;
742
743 if (syncache_cookiesonly())
744 return;
745 sc = syncache_lookup(inc, &sch); /* returns locked sch */
746 SCH_LOCK_ASSERT(sch);
747 if (sc == NULL)
748 goto done;
749
750 /* If the port != sc_port, then it's a bogus ICMP msg */
751 if (port != sc->sc_port)
752 goto done;
753
754 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
755 if (ntohl(th_seq) != sc->sc_iss)
756 goto done;
757
758 /*
759 * If we've rertransmitted 3 times and this is our second error,
760 * we remove the entry. Otherwise, we allow it to continue on.
761 * This prevents us from incorrectly nuking an entry during a
762 * spurious network outage.
763 *
764 * See tcp_notify().
765 */
766 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
767 sc->sc_flags |= SCF_UNREACH;
768 goto done;
769 }
770 syncache_drop(sc, sch);
771 TCPSTAT_INC(tcps_sc_unreach);
772 done:
773 SCH_UNLOCK(sch);
774 }
775
776 /*
777 * Build a new TCP socket structure from a syncache entry.
778 *
779 * On success return the newly created socket with its underlying inp locked.
780 */
781 static struct socket *
syncache_socket(struct syncache * sc,struct socket * lso,struct mbuf * m)782 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
783 {
784 struct inpcb *inp = NULL;
785 struct socket *so;
786 struct tcpcb *tp;
787 int error;
788 char *s;
789
790 NET_EPOCH_ASSERT();
791
792 /*
793 * Ok, create the full blown connection, and set things up
794 * as they would have been set up if we had created the
795 * connection when the SYN arrived.
796 */
797 if ((so = solisten_clone(lso)) == NULL)
798 goto allocfail;
799 #ifdef MAC
800 mac_socketpeer_set_from_mbuf(m, so);
801 #endif
802 error = in_pcballoc(so, &V_tcbinfo);
803 if (error) {
804 sodealloc(so);
805 goto allocfail;
806 }
807 inp = sotoinpcb(so);
808 if ((tp = tcp_newtcpcb(inp, sototcpcb(lso))) == NULL) {
809 in_pcbfree(inp);
810 sodealloc(so);
811 goto allocfail;
812 }
813 inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
814 #ifdef INET6
815 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
816 inp->inp_vflag &= ~INP_IPV4;
817 inp->inp_vflag |= INP_IPV6;
818 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
819 } else {
820 inp->inp_vflag &= ~INP_IPV6;
821 inp->inp_vflag |= INP_IPV4;
822 #endif
823 inp->inp_ip_ttl = sc->sc_ip_ttl;
824 inp->inp_ip_tos = sc->sc_ip_tos;
825 inp->inp_laddr = sc->sc_inc.inc_laddr;
826 #ifdef INET6
827 }
828 #endif
829
830 /*
831 * If there's an mbuf and it has a flowid, then let's initialise the
832 * inp with that particular flowid.
833 */
834 if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
835 inp->inp_flowid = m->m_pkthdr.flowid;
836 inp->inp_flowtype = M_HASHTYPE_GET(m);
837 #ifdef NUMA
838 inp->inp_numa_domain = m->m_pkthdr.numa_domain;
839 #endif
840 }
841
842 inp->inp_lport = sc->sc_inc.inc_lport;
843 #ifdef INET6
844 if (inp->inp_vflag & INP_IPV6PROTO) {
845 struct inpcb *oinp = sotoinpcb(lso);
846
847 /*
848 * Inherit socket options from the listening socket.
849 * Note that in6p_inputopts are not (and should not be)
850 * copied, since it stores previously received options and is
851 * used to detect if each new option is different than the
852 * previous one and hence should be passed to a user.
853 * If we copied in6p_inputopts, a user would not be able to
854 * receive options just after calling the accept system call.
855 */
856 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
857 if (oinp->in6p_outputopts)
858 inp->in6p_outputopts =
859 ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
860 inp->in6p_hops = oinp->in6p_hops;
861 }
862
863 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
864 struct sockaddr_in6 sin6;
865
866 sin6.sin6_family = AF_INET6;
867 sin6.sin6_len = sizeof(sin6);
868 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
869 sin6.sin6_port = sc->sc_inc.inc_fport;
870 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
871 INP_HASH_WLOCK(&V_tcbinfo);
872 error = in6_pcbconnect(inp, &sin6, thread0.td_ucred, false);
873 INP_HASH_WUNLOCK(&V_tcbinfo);
874 if (error != 0)
875 goto abort;
876 /* Override flowlabel from in6_pcbconnect. */
877 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
878 inp->inp_flow |= sc->sc_flowlabel;
879 }
880 #endif /* INET6 */
881 #if defined(INET) && defined(INET6)
882 else
883 #endif
884 #ifdef INET
885 {
886 struct sockaddr_in sin;
887
888 inp->inp_options = (m) ? ip_srcroute(m) : NULL;
889
890 if (inp->inp_options == NULL) {
891 inp->inp_options = sc->sc_ipopts;
892 sc->sc_ipopts = NULL;
893 }
894
895 sin.sin_family = AF_INET;
896 sin.sin_len = sizeof(sin);
897 sin.sin_addr = sc->sc_inc.inc_faddr;
898 sin.sin_port = sc->sc_inc.inc_fport;
899 bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
900 INP_HASH_WLOCK(&V_tcbinfo);
901 error = in_pcbconnect(inp, &sin, thread0.td_ucred);
902 INP_HASH_WUNLOCK(&V_tcbinfo);
903 if (error != 0)
904 goto abort;
905 }
906 #endif /* INET */
907 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
908 /* Copy old policy into new socket's. */
909 if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
910 printf("syncache_socket: could not copy policy\n");
911 #endif
912 tp->t_state = TCPS_SYN_RECEIVED;
913 tp->iss = sc->sc_iss;
914 tp->irs = sc->sc_irs;
915 tp->t_port = sc->sc_port;
916 tcp_rcvseqinit(tp);
917 tcp_sendseqinit(tp);
918 tp->snd_wl1 = sc->sc_irs;
919 tp->snd_max = tp->iss + 1;
920 tp->snd_nxt = tp->iss + 1;
921 tp->rcv_up = sc->sc_irs + 1;
922 tp->rcv_wnd = sc->sc_wnd;
923 tp->rcv_adv += tp->rcv_wnd;
924 tp->last_ack_sent = tp->rcv_nxt;
925
926 tp->t_flags = sototcpcb(lso)->t_flags &
927 (TF_LRD|TF_NOPUSH|TF_NODELAY);
928 if (sc->sc_flags & SCF_NOOPT)
929 tp->t_flags |= TF_NOOPT;
930 else {
931 if (sc->sc_flags & SCF_WINSCALE) {
932 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
933 tp->snd_scale = sc->sc_requested_s_scale;
934 tp->request_r_scale = sc->sc_requested_r_scale;
935 }
936 if (sc->sc_flags & SCF_TIMESTAMP) {
937 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
938 tp->ts_recent = sc->sc_tsreflect;
939 tp->ts_recent_age = tcp_ts_getticks();
940 tp->ts_offset = sc->sc_tsoff;
941 }
942 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
943 if (sc->sc_flags & SCF_SIGNATURE)
944 tp->t_flags |= TF_SIGNATURE;
945 #endif
946 if (sc->sc_flags & SCF_SACK)
947 tp->t_flags |= TF_SACK_PERMIT;
948 }
949
950 tcp_ecn_syncache_socket(tp, sc);
951
952 /*
953 * Set up MSS and get cached values from tcp_hostcache.
954 * This might overwrite some of the defaults we just set.
955 */
956 tcp_mss(tp, sc->sc_peer_mss);
957
958 /*
959 * If the SYN,ACK was retransmitted, indicate that CWND to be
960 * limited to one segment in cc_conn_init().
961 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
962 */
963 if (sc->sc_rxmits > 1)
964 tp->snd_cwnd = 1;
965
966 #ifdef TCP_OFFLOAD
967 /*
968 * Allow a TOE driver to install its hooks. Note that we hold the
969 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
970 * new connection before the TOE driver has done its thing.
971 */
972 if (ADDED_BY_TOE(sc)) {
973 struct toedev *tod = sc->sc_tod;
974
975 tod->tod_offload_socket(tod, sc->sc_todctx, so);
976 }
977 #endif
978 #ifdef TCP_BLACKBOX
979 /*
980 * Inherit the log state from the listening socket, if
981 * - the log state of the listening socket is not off and
982 * - the listening socket was not auto selected from all sessions and
983 * - a log id is not set on the listening socket.
984 * This avoids inheriting a log state which was automatically set.
985 */
986 if ((tcp_get_bblog_state(sototcpcb(lso)) != TCP_LOG_STATE_OFF) &&
987 ((sototcpcb(lso)->t_flags2 & TF2_LOG_AUTO) == 0) &&
988 (sototcpcb(lso)->t_lib == NULL)) {
989 tcp_log_state_change(tp, tcp_get_bblog_state(sototcpcb(lso)));
990 }
991 #endif
992 /*
993 * Copy and activate timers.
994 */
995 tp->t_maxunacktime = sototcpcb(lso)->t_maxunacktime;
996 tp->t_keepinit = sototcpcb(lso)->t_keepinit;
997 tp->t_keepidle = sototcpcb(lso)->t_keepidle;
998 tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
999 tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1000 tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1001
1002 TCPSTAT_INC(tcps_accepts);
1003 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, TCPS_LISTEN);
1004
1005 if (!solisten_enqueue(so, SS_ISCONNECTED))
1006 tp->t_flags |= TF_SONOTCONN;
1007 /* Can we inherit anything from the listener? */
1008 if (tp->t_fb->tfb_inherit != NULL) {
1009 (*tp->t_fb->tfb_inherit)(tp, sotoinpcb(lso));
1010 }
1011 return (so);
1012
1013 allocfail:
1014 /*
1015 * Drop the connection; we will either send a RST or have the peer
1016 * retransmit its SYN again after its RTO and try again.
1017 */
1018 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1019 log(LOG_DEBUG, "%s; %s: Socket create failed "
1020 "due to limits or memory shortage\n",
1021 s, __func__);
1022 free(s, M_TCPLOG);
1023 }
1024 TCPSTAT_INC(tcps_listendrop);
1025 return (NULL);
1026
1027 abort:
1028 tcp_discardcb(tp);
1029 in_pcbfree(inp);
1030 sodealloc(so);
1031 if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1032 log(LOG_DEBUG, "%s; %s: in%s_pcbconnect failed with error %i\n",
1033 s, __func__, (sc->sc_inc.inc_flags & INC_ISIPV6) ? "6" : "",
1034 error);
1035 free(s, M_TCPLOG);
1036 }
1037 TCPSTAT_INC(tcps_listendrop);
1038 return (NULL);
1039 }
1040
1041 /*
1042 * This function gets called when we receive an ACK for a
1043 * socket in the LISTEN state. We look up the connection
1044 * in the syncache, and if its there, we pull it out of
1045 * the cache and turn it into a full-blown connection in
1046 * the SYN-RECEIVED state.
1047 *
1048 * On syncache_socket() success the newly created socket
1049 * has its underlying inp locked.
1050 */
1051 int
syncache_expand(struct in_conninfo * inc,struct tcpopt * to,struct tcphdr * th,struct socket ** lsop,struct mbuf * m,uint16_t port)1052 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1053 struct socket **lsop, struct mbuf *m, uint16_t port)
1054 {
1055 struct syncache *sc;
1056 struct syncache_head *sch;
1057 struct syncache scs;
1058 char *s;
1059 bool locked;
1060
1061 NET_EPOCH_ASSERT();
1062 KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1063 ("%s: can handle only ACK", __func__));
1064
1065 if (syncache_cookiesonly()) {
1066 sc = NULL;
1067 sch = syncache_hashbucket(inc);
1068 locked = false;
1069 } else {
1070 sc = syncache_lookup(inc, &sch); /* returns locked sch */
1071 locked = true;
1072 SCH_LOCK_ASSERT(sch);
1073 }
1074
1075 #ifdef INVARIANTS
1076 /*
1077 * Test code for syncookies comparing the syncache stored
1078 * values with the reconstructed values from the cookie.
1079 */
1080 if (sc != NULL)
1081 syncookie_cmp(inc, sch, sc, th, to, *lsop, port);
1082 #endif
1083
1084 if (sc == NULL) {
1085 if (locked) {
1086 /*
1087 * The syncache is currently in use (neither disabled,
1088 * nor paused), but no entry was found.
1089 */
1090 if (!V_tcp_syncookies) {
1091 /*
1092 * Since no syncookies are used in case of
1093 * a bucket overflow, don't even check for
1094 * a valid syncookie.
1095 */
1096 SCH_UNLOCK(sch);
1097 TCPSTAT_INC(tcps_sc_spurcookie);
1098 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1099 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1100 "segment rejected "
1101 "(syncookies disabled)\n",
1102 s, __func__);
1103 goto failed;
1104 }
1105 if (sch->sch_last_overflow <
1106 time_uptime - SYNCOOKIE_LIFETIME) {
1107 /*
1108 * Since the bucket did not overflow recently,
1109 * don't even check for a valid syncookie.
1110 */
1111 SCH_UNLOCK(sch);
1112 TCPSTAT_INC(tcps_sc_spurcookie);
1113 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1114 log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1115 "segment rejected "
1116 "(no syncache entry)\n",
1117 s, __func__);
1118 goto failed;
1119 }
1120 SCH_UNLOCK(sch);
1121 }
1122 bzero(&scs, sizeof(scs));
1123 /*
1124 * Now check, if the syncookie is valid. If it is, create an on
1125 * stack syncache entry.
1126 */
1127 if (syncookie_expand(inc, sch, &scs, th, to, *lsop, port)) {
1128 sc = &scs;
1129 TCPSTAT_INC(tcps_sc_recvcookie);
1130 } else {
1131 TCPSTAT_INC(tcps_sc_failcookie);
1132 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1133 log(LOG_DEBUG, "%s; %s: Segment failed "
1134 "SYNCOOKIE authentication, segment rejected "
1135 "(probably spoofed)\n", s, __func__);
1136 goto failed;
1137 }
1138 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1139 /* If received ACK has MD5 signature, check it. */
1140 if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1141 (!TCPMD5_ENABLED() ||
1142 TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1143 /* Drop the ACK. */
1144 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1145 log(LOG_DEBUG, "%s; %s: Segment rejected, "
1146 "MD5 signature doesn't match.\n",
1147 s, __func__);
1148 free(s, M_TCPLOG);
1149 }
1150 TCPSTAT_INC(tcps_sig_err_sigopt);
1151 return (-1); /* Do not send RST */
1152 }
1153 #endif /* TCP_SIGNATURE */
1154 TCPSTATES_INC(TCPS_SYN_RECEIVED);
1155 } else {
1156 if (sc->sc_port != port) {
1157 SCH_UNLOCK(sch);
1158 return (0);
1159 }
1160 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1161 /*
1162 * If listening socket requested TCP digests, check that
1163 * received ACK has signature and it is correct.
1164 * If not, drop the ACK and leave sc entry in th cache,
1165 * because SYN was received with correct signature.
1166 */
1167 if (sc->sc_flags & SCF_SIGNATURE) {
1168 if ((to->to_flags & TOF_SIGNATURE) == 0) {
1169 /* No signature */
1170 TCPSTAT_INC(tcps_sig_err_nosigopt);
1171 SCH_UNLOCK(sch);
1172 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1173 log(LOG_DEBUG, "%s; %s: Segment "
1174 "rejected, MD5 signature wasn't "
1175 "provided.\n", s, __func__);
1176 free(s, M_TCPLOG);
1177 }
1178 return (-1); /* Do not send RST */
1179 }
1180 if (!TCPMD5_ENABLED() ||
1181 TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1182 /* Doesn't match or no SA */
1183 SCH_UNLOCK(sch);
1184 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1185 log(LOG_DEBUG, "%s; %s: Segment "
1186 "rejected, MD5 signature doesn't "
1187 "match.\n", s, __func__);
1188 free(s, M_TCPLOG);
1189 }
1190 return (-1); /* Do not send RST */
1191 }
1192 }
1193 #endif /* TCP_SIGNATURE */
1194
1195 /*
1196 * RFC 7323 PAWS: If we have a timestamp on this segment and
1197 * it's less than ts_recent, drop it.
1198 * XXXMT: RFC 7323 also requires to send an ACK.
1199 * In tcp_input.c this is only done for TCP segments
1200 * with user data, so be consistent here and just drop
1201 * the segment.
1202 */
1203 if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1204 TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1205 SCH_UNLOCK(sch);
1206 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1207 log(LOG_DEBUG,
1208 "%s; %s: SEG.TSval %u < TS.Recent %u, "
1209 "segment dropped\n", s, __func__,
1210 to->to_tsval, sc->sc_tsreflect);
1211 free(s, M_TCPLOG);
1212 }
1213 return (-1); /* Do not send RST */
1214 }
1215
1216 /*
1217 * If timestamps were not negotiated during SYN/ACK and a
1218 * segment with a timestamp is received, ignore the
1219 * timestamp and process the packet normally.
1220 * See section 3.2 of RFC 7323.
1221 */
1222 if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1223 (to->to_flags & TOF_TS)) {
1224 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1225 log(LOG_DEBUG, "%s; %s: Timestamp not "
1226 "expected, segment processed normally\n",
1227 s, __func__);
1228 free(s, M_TCPLOG);
1229 s = NULL;
1230 }
1231 }
1232
1233 /*
1234 * If timestamps were negotiated during SYN/ACK and a
1235 * segment without a timestamp is received, silently drop
1236 * the segment, unless the missing timestamps are tolerated.
1237 * See section 3.2 of RFC 7323.
1238 */
1239 if ((sc->sc_flags & SCF_TIMESTAMP) &&
1240 !(to->to_flags & TOF_TS)) {
1241 if (V_tcp_tolerate_missing_ts) {
1242 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1243 log(LOG_DEBUG,
1244 "%s; %s: Timestamp missing, "
1245 "segment processed normally\n",
1246 s, __func__);
1247 free(s, M_TCPLOG);
1248 }
1249 } else {
1250 SCH_UNLOCK(sch);
1251 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1252 log(LOG_DEBUG,
1253 "%s; %s: Timestamp missing, "
1254 "segment silently dropped\n",
1255 s, __func__);
1256 free(s, M_TCPLOG);
1257 }
1258 return (-1); /* Do not send RST */
1259 }
1260 }
1261 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1262 sch->sch_length--;
1263 #ifdef TCP_OFFLOAD
1264 if (ADDED_BY_TOE(sc)) {
1265 struct toedev *tod = sc->sc_tod;
1266
1267 tod->tod_syncache_removed(tod, sc->sc_todctx);
1268 }
1269 #endif
1270 SCH_UNLOCK(sch);
1271 }
1272
1273 /*
1274 * Segment validation:
1275 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1276 */
1277 if (th->th_ack != sc->sc_iss + 1) {
1278 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1279 log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1280 "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1281 goto failed;
1282 }
1283
1284 /*
1285 * The SEQ must fall in the window starting at the received
1286 * initial receive sequence number + 1 (the SYN).
1287 */
1288 if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1289 SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1290 if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1291 log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1292 "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1293 goto failed;
1294 }
1295
1296 *lsop = syncache_socket(sc, *lsop, m);
1297
1298 if (__predict_false(*lsop == NULL)) {
1299 TCPSTAT_INC(tcps_sc_aborted);
1300 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1301 } else if (sc != &scs)
1302 TCPSTAT_INC(tcps_sc_completed);
1303
1304 if (sc != &scs)
1305 syncache_free(sc);
1306 return (1);
1307 failed:
1308 if (sc != NULL) {
1309 TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1310 if (sc != &scs)
1311 syncache_free(sc);
1312 }
1313 if (s != NULL)
1314 free(s, M_TCPLOG);
1315 *lsop = NULL;
1316 return (0);
1317 }
1318
1319 static struct socket *
syncache_tfo_expand(struct syncache * sc,struct socket * lso,struct mbuf * m,uint64_t response_cookie)1320 syncache_tfo_expand(struct syncache *sc, struct socket *lso, struct mbuf *m,
1321 uint64_t response_cookie)
1322 {
1323 struct inpcb *inp;
1324 struct tcpcb *tp;
1325 unsigned int *pending_counter;
1326 struct socket *so;
1327
1328 NET_EPOCH_ASSERT();
1329
1330 pending_counter = intotcpcb(sotoinpcb(lso))->t_tfo_pending;
1331 so = syncache_socket(sc, lso, m);
1332 if (so == NULL) {
1333 TCPSTAT_INC(tcps_sc_aborted);
1334 atomic_subtract_int(pending_counter, 1);
1335 } else {
1336 soisconnected(so);
1337 inp = sotoinpcb(so);
1338 tp = intotcpcb(inp);
1339 tp->t_flags |= TF_FASTOPEN;
1340 tp->t_tfo_cookie.server = response_cookie;
1341 tp->snd_max = tp->iss;
1342 tp->snd_nxt = tp->iss;
1343 tp->t_tfo_pending = pending_counter;
1344 TCPSTATES_INC(TCPS_SYN_RECEIVED);
1345 TCPSTAT_INC(tcps_sc_completed);
1346 }
1347
1348 return (so);
1349 }
1350
1351 /*
1352 * Given a LISTEN socket and an inbound SYN request, add
1353 * this to the syn cache, and send back a segment:
1354 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1355 * to the source.
1356 *
1357 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1358 * Doing so would require that we hold onto the data and deliver it
1359 * to the application. However, if we are the target of a SYN-flood
1360 * DoS attack, an attacker could send data which would eventually
1361 * consume all available buffer space if it were ACKed. By not ACKing
1362 * the data, we avoid this DoS scenario.
1363 *
1364 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1365 * cookie is processed and a new socket is created. In this case, any data
1366 * accompanying the SYN will be queued to the socket by tcp_input() and will
1367 * be ACKed either when the application sends response data or the delayed
1368 * ACK timer expires, whichever comes first.
1369 */
1370 struct socket *
syncache_add(struct in_conninfo * inc,struct tcpopt * to,struct tcphdr * th,struct inpcb * inp,struct socket * so,struct mbuf * m,void * tod,void * todctx,uint8_t iptos,uint16_t port)1371 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1372 struct inpcb *inp, struct socket *so, struct mbuf *m, void *tod,
1373 void *todctx, uint8_t iptos, uint16_t port)
1374 {
1375 struct tcpcb *tp;
1376 struct socket *rv = NULL;
1377 struct syncache *sc = NULL;
1378 struct syncache_head *sch;
1379 struct mbuf *ipopts = NULL;
1380 u_int ltflags;
1381 int win, ip_ttl, ip_tos;
1382 char *s;
1383 #ifdef INET6
1384 int autoflowlabel = 0;
1385 #endif
1386 #ifdef MAC
1387 struct label *maclabel = NULL;
1388 #endif
1389 struct syncache scs;
1390 uint64_t tfo_response_cookie;
1391 unsigned int *tfo_pending = NULL;
1392 int tfo_cookie_valid = 0;
1393 int tfo_response_cookie_valid = 0;
1394 bool locked;
1395
1396 INP_RLOCK_ASSERT(inp); /* listen socket */
1397 KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1398 ("%s: unexpected tcp flags", __func__));
1399
1400 /*
1401 * Combine all so/tp operations very early to drop the INP lock as
1402 * soon as possible.
1403 */
1404 KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1405 tp = sototcpcb(so);
1406
1407 #ifdef INET6
1408 if (inc->inc_flags & INC_ISIPV6) {
1409 if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1410 autoflowlabel = 1;
1411 }
1412 ip_ttl = in6_selecthlim(inp, NULL);
1413 if ((inp->in6p_outputopts == NULL) ||
1414 (inp->in6p_outputopts->ip6po_tclass == -1)) {
1415 ip_tos = 0;
1416 } else {
1417 ip_tos = inp->in6p_outputopts->ip6po_tclass;
1418 }
1419 }
1420 #endif
1421 #if defined(INET6) && defined(INET)
1422 else
1423 #endif
1424 #ifdef INET
1425 {
1426 ip_ttl = inp->inp_ip_ttl;
1427 ip_tos = inp->inp_ip_tos;
1428 }
1429 #endif
1430 win = so->sol_sbrcv_hiwat;
1431 ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1432
1433 if (V_tcp_fastopen_server_enable && (tp->t_flags & TF_FASTOPEN) &&
1434 (tp->t_tfo_pending != NULL) &&
1435 (to->to_flags & TOF_FASTOPEN)) {
1436 /*
1437 * Limit the number of pending TFO connections to
1438 * approximately half of the queue limit. This prevents TFO
1439 * SYN floods from starving the service by filling the
1440 * listen queue with bogus TFO connections.
1441 */
1442 if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1443 (so->sol_qlimit / 2)) {
1444 int result;
1445
1446 result = tcp_fastopen_check_cookie(inc,
1447 to->to_tfo_cookie, to->to_tfo_len,
1448 &tfo_response_cookie);
1449 tfo_cookie_valid = (result > 0);
1450 tfo_response_cookie_valid = (result >= 0);
1451 }
1452
1453 /*
1454 * Remember the TFO pending counter as it will have to be
1455 * decremented below if we don't make it to syncache_tfo_expand().
1456 */
1457 tfo_pending = tp->t_tfo_pending;
1458 }
1459
1460 #ifdef MAC
1461 if (mac_syncache_init(&maclabel) != 0) {
1462 INP_RUNLOCK(inp);
1463 goto done;
1464 } else
1465 mac_syncache_create(maclabel, inp);
1466 #endif
1467 if (!tfo_cookie_valid)
1468 INP_RUNLOCK(inp);
1469
1470 /*
1471 * Remember the IP options, if any.
1472 */
1473 #ifdef INET6
1474 if (!(inc->inc_flags & INC_ISIPV6))
1475 #endif
1476 #ifdef INET
1477 ipopts = (m) ? ip_srcroute(m) : NULL;
1478 #else
1479 ipopts = NULL;
1480 #endif
1481
1482 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1483 /*
1484 * When the socket is TCP-MD5 enabled check that,
1485 * - a signed packet is valid
1486 * - a non-signed packet does not have a security association
1487 *
1488 * If a signed packet fails validation or a non-signed packet has a
1489 * security association, the packet will be dropped.
1490 */
1491 if (ltflags & TF_SIGNATURE) {
1492 if (to->to_flags & TOF_SIGNATURE) {
1493 if (!TCPMD5_ENABLED() ||
1494 TCPMD5_INPUT(m, th, to->to_signature) != 0)
1495 goto done;
1496 } else {
1497 if (TCPMD5_ENABLED() &&
1498 TCPMD5_INPUT(m, NULL, NULL) != ENOENT)
1499 goto done;
1500 }
1501 } else if (to->to_flags & TOF_SIGNATURE)
1502 goto done;
1503 #endif /* TCP_SIGNATURE */
1504 /*
1505 * See if we already have an entry for this connection.
1506 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1507 *
1508 * XXX: should the syncache be re-initialized with the contents
1509 * of the new SYN here (which may have different options?)
1510 *
1511 * XXX: We do not check the sequence number to see if this is a
1512 * real retransmit or a new connection attempt. The question is
1513 * how to handle such a case; either ignore it as spoofed, or
1514 * drop the current entry and create a new one?
1515 */
1516 if (syncache_cookiesonly()) {
1517 sc = NULL;
1518 sch = syncache_hashbucket(inc);
1519 locked = false;
1520 } else {
1521 sc = syncache_lookup(inc, &sch); /* returns locked sch */
1522 locked = true;
1523 SCH_LOCK_ASSERT(sch);
1524 }
1525 if (sc != NULL) {
1526 if (tfo_cookie_valid)
1527 INP_RUNLOCK(inp);
1528 TCPSTAT_INC(tcps_sc_dupsyn);
1529 if (ipopts) {
1530 /*
1531 * If we were remembering a previous source route,
1532 * forget it and use the new one we've been given.
1533 */
1534 if (sc->sc_ipopts)
1535 (void)m_free(sc->sc_ipopts);
1536 sc->sc_ipopts = ipopts;
1537 }
1538 /*
1539 * Update timestamp if present.
1540 */
1541 if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1542 sc->sc_tsreflect = to->to_tsval;
1543 else
1544 sc->sc_flags &= ~SCF_TIMESTAMP;
1545 /*
1546 * Adjust ECN response if needed, e.g. different
1547 * IP ECN field, or a fallback by the remote host.
1548 */
1549 if (sc->sc_flags & SCF_ECN_MASK) {
1550 sc->sc_flags &= ~SCF_ECN_MASK;
1551 sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1552 }
1553 #ifdef MAC
1554 /*
1555 * Since we have already unconditionally allocated label
1556 * storage, free it up. The syncache entry will already
1557 * have an initialized label we can use.
1558 */
1559 mac_syncache_destroy(&maclabel);
1560 #endif
1561 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1562 /* Retransmit SYN|ACK and reset retransmit count. */
1563 if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1564 log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1565 "resetting timer and retransmitting SYN|ACK\n",
1566 s, __func__);
1567 free(s, M_TCPLOG);
1568 }
1569 if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1570 sc->sc_rxmits = 0;
1571 syncache_timeout(sc, sch, 1);
1572 TCPSTAT_INC(tcps_sndacks);
1573 TCPSTAT_INC(tcps_sndtotal);
1574 } else {
1575 syncache_drop(sc, sch);
1576 TCPSTAT_INC(tcps_sc_dropped);
1577 }
1578 SCH_UNLOCK(sch);
1579 goto donenoprobe;
1580 }
1581
1582 KASSERT(sc == NULL, ("sc(%p) != NULL", sc));
1583 /*
1584 * Skip allocating a syncache entry if we are just going to discard
1585 * it later.
1586 */
1587 if (!locked || tfo_cookie_valid) {
1588 bzero(&scs, sizeof(scs));
1589 sc = &scs;
1590 } else {
1591 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1592 if (sc == NULL) {
1593 /*
1594 * The zone allocator couldn't provide more entries.
1595 * Treat this as if the cache was full; drop the oldest
1596 * entry and insert the new one.
1597 */
1598 TCPSTAT_INC(tcps_sc_zonefail);
1599 sc = TAILQ_LAST(&sch->sch_bucket, sch_head);
1600 if (sc != NULL) {
1601 sch->sch_last_overflow = time_uptime;
1602 syncache_drop(sc, sch);
1603 syncache_pause(inc);
1604 }
1605 sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1606 if (sc == NULL) {
1607 if (V_tcp_syncookies) {
1608 bzero(&scs, sizeof(scs));
1609 sc = &scs;
1610 } else {
1611 KASSERT(locked,
1612 ("%s: bucket unexpectedly unlocked",
1613 __func__));
1614 SCH_UNLOCK(sch);
1615 goto done;
1616 }
1617 }
1618 }
1619 }
1620
1621 KASSERT(sc != NULL, ("sc == NULL"));
1622 if (!tfo_cookie_valid && tfo_response_cookie_valid)
1623 sc->sc_tfo_cookie = &tfo_response_cookie;
1624
1625 /*
1626 * Fill in the syncache values.
1627 */
1628 #ifdef MAC
1629 sc->sc_label = maclabel;
1630 #endif
1631 /*
1632 * sc_cred is only used in syncache_pcblist() to list TCP endpoints in
1633 * TCPS_SYN_RECEIVED state when V_tcp_syncache.see_other is false.
1634 * Therefore, store the credentials and take a reference count only
1635 * when needed:
1636 * - sc is allocated from the zone and not using the on stack instance.
1637 * - the sysctl variable net.inet.tcp.syncache.see_other is false.
1638 * The reference count is decremented when a zone allocated sc is
1639 * freed in syncache_free().
1640 */
1641 if (sc != &scs && !V_tcp_syncache.see_other)
1642 sc->sc_cred = crhold(so->so_cred);
1643 else
1644 sc->sc_cred = NULL;
1645 sc->sc_port = port;
1646 sc->sc_ipopts = ipopts;
1647 bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1648 sc->sc_ip_tos = ip_tos;
1649 sc->sc_ip_ttl = ip_ttl;
1650 #ifdef TCP_OFFLOAD
1651 sc->sc_tod = tod;
1652 sc->sc_todctx = todctx;
1653 #endif
1654 sc->sc_irs = th->th_seq;
1655 sc->sc_flags = 0;
1656 sc->sc_flowlabel = 0;
1657
1658 /*
1659 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1660 * win was derived from socket earlier in the function.
1661 */
1662 win = imax(win, 0);
1663 win = imin(win, TCP_MAXWIN);
1664 sc->sc_wnd = win;
1665
1666 if (V_tcp_do_rfc1323 &&
1667 !(ltflags & TF_NOOPT)) {
1668 /*
1669 * A timestamp received in a SYN makes
1670 * it ok to send timestamp requests and replies.
1671 */
1672 if ((to->to_flags & TOF_TS) && (V_tcp_do_rfc1323 != 2)) {
1673 sc->sc_tsreflect = to->to_tsval;
1674 sc->sc_flags |= SCF_TIMESTAMP;
1675 sc->sc_tsoff = tcp_new_ts_offset(inc);
1676 }
1677 if ((to->to_flags & TOF_SCALE) && (V_tcp_do_rfc1323 != 3)) {
1678 u_int wscale = 0;
1679
1680 /*
1681 * Pick the smallest possible scaling factor that
1682 * will still allow us to scale up to sb_max, aka
1683 * kern.ipc.maxsockbuf.
1684 *
1685 * We do this because there are broken firewalls that
1686 * will corrupt the window scale option, leading to
1687 * the other endpoint believing that our advertised
1688 * window is unscaled. At scale factors larger than
1689 * 5 the unscaled window will drop below 1500 bytes,
1690 * leading to serious problems when traversing these
1691 * broken firewalls.
1692 *
1693 * With the default maxsockbuf of 256K, a scale factor
1694 * of 3 will be chosen by this algorithm. Those who
1695 * choose a larger maxsockbuf should watch out
1696 * for the compatibility problems mentioned above.
1697 *
1698 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1699 * or <SYN,ACK>) segment itself is never scaled.
1700 */
1701 while (wscale < TCP_MAX_WINSHIFT &&
1702 (TCP_MAXWIN << wscale) < sb_max)
1703 wscale++;
1704 sc->sc_requested_r_scale = wscale;
1705 sc->sc_requested_s_scale = to->to_wscale;
1706 sc->sc_flags |= SCF_WINSCALE;
1707 }
1708 }
1709 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1710 /*
1711 * If incoming packet has an MD5 signature, flag this in the
1712 * syncache so that syncache_respond() will do the right thing
1713 * with the SYN+ACK.
1714 */
1715 if (to->to_flags & TOF_SIGNATURE)
1716 sc->sc_flags |= SCF_SIGNATURE;
1717 #endif /* TCP_SIGNATURE */
1718 if (to->to_flags & TOF_SACKPERM)
1719 sc->sc_flags |= SCF_SACK;
1720 if (to->to_flags & TOF_MSS)
1721 sc->sc_peer_mss = to->to_mss; /* peer mss may be zero */
1722 if (ltflags & TF_NOOPT)
1723 sc->sc_flags |= SCF_NOOPT;
1724 /* ECN Handshake */
1725 if (V_tcp_do_ecn && (tp->t_flags2 & TF2_CANNOT_DO_ECN) == 0)
1726 sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1727
1728 if (V_tcp_syncookies || V_tcp_syncookiesonly)
1729 sc->sc_iss = syncookie_generate(sch, sc);
1730 else
1731 sc->sc_iss = arc4random();
1732 #ifdef INET6
1733 if (autoflowlabel) {
1734 if (V_tcp_syncookies || V_tcp_syncookiesonly)
1735 sc->sc_flowlabel = sc->sc_iss;
1736 else
1737 sc->sc_flowlabel = ip6_randomflowlabel();
1738 sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1739 }
1740 #endif
1741 if (locked)
1742 SCH_UNLOCK(sch);
1743
1744 if (tfo_cookie_valid) {
1745 rv = syncache_tfo_expand(sc, so, m, tfo_response_cookie);
1746 /* INP_RUNLOCK(inp) will be performed by the caller */
1747 goto tfo_expanded;
1748 }
1749
1750 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1751 /*
1752 * Do a standard 3-way handshake.
1753 */
1754 if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1755 if (sc != &scs)
1756 syncache_insert(sc, sch); /* locks and unlocks sch */
1757 TCPSTAT_INC(tcps_sndacks);
1758 TCPSTAT_INC(tcps_sndtotal);
1759 } else {
1760 if (sc != &scs)
1761 syncache_free(sc);
1762 TCPSTAT_INC(tcps_sc_dropped);
1763 }
1764 goto donenoprobe;
1765
1766 done:
1767 TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1768 donenoprobe:
1769 if (m)
1770 m_freem(m);
1771 /*
1772 * If tfo_pending is not NULL here, then a TFO SYN that did not
1773 * result in a new socket was processed and the associated pending
1774 * counter has not yet been decremented. All such TFO processing paths
1775 * transit this point.
1776 */
1777 if (tfo_pending != NULL)
1778 tcp_fastopen_decrement_counter(tfo_pending);
1779
1780 tfo_expanded:
1781 if (sc == NULL || sc == &scs) {
1782 #ifdef MAC
1783 mac_syncache_destroy(&maclabel);
1784 #endif
1785 if (ipopts)
1786 (void)m_free(ipopts);
1787 }
1788 return (rv);
1789 }
1790
1791 /*
1792 * Send SYN|ACK or ACK to the peer. Either in response to a peer's segment,
1793 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1794 */
1795 static int
syncache_respond(struct syncache * sc,const struct mbuf * m0,int flags)1796 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1797 {
1798 struct ip *ip = NULL;
1799 struct mbuf *m;
1800 struct tcphdr *th = NULL;
1801 struct udphdr *udp = NULL;
1802 int optlen, error = 0; /* Make compiler happy */
1803 u_int16_t hlen, tlen, mssopt, ulen;
1804 struct tcpopt to;
1805 #ifdef INET6
1806 struct ip6_hdr *ip6 = NULL;
1807 #endif
1808
1809 NET_EPOCH_ASSERT();
1810
1811 hlen =
1812 #ifdef INET6
1813 (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1814 #endif
1815 sizeof(struct ip);
1816 tlen = hlen + sizeof(struct tcphdr);
1817 if (sc->sc_port) {
1818 tlen += sizeof(struct udphdr);
1819 }
1820 /* Determine MSS we advertize to other end of connection. */
1821 mssopt = tcp_mssopt(&sc->sc_inc);
1822 if (sc->sc_port)
1823 mssopt -= V_tcp_udp_tunneling_overhead;
1824 mssopt = max(mssopt, V_tcp_minmss);
1825
1826 /* XXX: Assume that the entire packet will fit in a header mbuf. */
1827 KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1828 ("syncache: mbuf too small: hlen %u, sc_port %u, max_linkhdr %d + "
1829 "tlen %d + TCP_MAXOLEN %ju <= MHLEN %d", hlen, sc->sc_port,
1830 max_linkhdr, tlen, (uintmax_t)TCP_MAXOLEN, MHLEN));
1831
1832 /* Create the IP+TCP header from scratch. */
1833 m = m_gethdr(M_NOWAIT, MT_DATA);
1834 if (m == NULL)
1835 return (ENOBUFS);
1836 #ifdef MAC
1837 mac_syncache_create_mbuf(sc->sc_label, m);
1838 #endif
1839 m->m_data += max_linkhdr;
1840 m->m_len = tlen;
1841 m->m_pkthdr.len = tlen;
1842 m->m_pkthdr.rcvif = NULL;
1843
1844 #ifdef INET6
1845 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1846 ip6 = mtod(m, struct ip6_hdr *);
1847 ip6->ip6_vfc = IPV6_VERSION;
1848 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1849 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1850 ip6->ip6_plen = htons(tlen - hlen);
1851 /* ip6_hlim is set after checksum */
1852 /* Zero out traffic class and flow label. */
1853 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1854 ip6->ip6_flow |= sc->sc_flowlabel;
1855 if (sc->sc_port != 0) {
1856 ip6->ip6_nxt = IPPROTO_UDP;
1857 udp = (struct udphdr *)(ip6 + 1);
1858 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1859 udp->uh_dport = sc->sc_port;
1860 ulen = (tlen - sizeof(struct ip6_hdr));
1861 th = (struct tcphdr *)(udp + 1);
1862 } else {
1863 ip6->ip6_nxt = IPPROTO_TCP;
1864 th = (struct tcphdr *)(ip6 + 1);
1865 }
1866 ip6->ip6_flow |= htonl(sc->sc_ip_tos << IPV6_FLOWLABEL_LEN);
1867 }
1868 #endif
1869 #if defined(INET6) && defined(INET)
1870 else
1871 #endif
1872 #ifdef INET
1873 {
1874 ip = mtod(m, struct ip *);
1875 ip->ip_v = IPVERSION;
1876 ip->ip_hl = sizeof(struct ip) >> 2;
1877 ip->ip_len = htons(tlen);
1878 ip->ip_id = 0;
1879 ip->ip_off = 0;
1880 ip->ip_sum = 0;
1881 ip->ip_src = sc->sc_inc.inc_laddr;
1882 ip->ip_dst = sc->sc_inc.inc_faddr;
1883 ip->ip_ttl = sc->sc_ip_ttl;
1884 ip->ip_tos = sc->sc_ip_tos;
1885
1886 /*
1887 * See if we should do MTU discovery. Route lookups are
1888 * expensive, so we will only unset the DF bit if:
1889 *
1890 * 1) path_mtu_discovery is disabled
1891 * 2) the SCF_UNREACH flag has been set
1892 */
1893 if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1894 ip->ip_off |= htons(IP_DF);
1895 if (sc->sc_port == 0) {
1896 ip->ip_p = IPPROTO_TCP;
1897 th = (struct tcphdr *)(ip + 1);
1898 } else {
1899 ip->ip_p = IPPROTO_UDP;
1900 udp = (struct udphdr *)(ip + 1);
1901 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1902 udp->uh_dport = sc->sc_port;
1903 ulen = (tlen - sizeof(struct ip));
1904 th = (struct tcphdr *)(udp + 1);
1905 }
1906 }
1907 #endif /* INET */
1908 th->th_sport = sc->sc_inc.inc_lport;
1909 th->th_dport = sc->sc_inc.inc_fport;
1910
1911 if (flags & TH_SYN)
1912 th->th_seq = htonl(sc->sc_iss);
1913 else
1914 th->th_seq = htonl(sc->sc_iss + 1);
1915 th->th_ack = htonl(sc->sc_irs + 1);
1916 th->th_off = sizeof(struct tcphdr) >> 2;
1917 th->th_win = htons(sc->sc_wnd);
1918 th->th_urp = 0;
1919
1920 flags = tcp_ecn_syncache_respond(flags, sc);
1921 tcp_set_flags(th, flags);
1922
1923 /* Tack on the TCP options. */
1924 if ((sc->sc_flags & SCF_NOOPT) == 0) {
1925 to.to_flags = 0;
1926
1927 if (flags & TH_SYN) {
1928 to.to_mss = mssopt;
1929 to.to_flags = TOF_MSS;
1930 if (sc->sc_flags & SCF_WINSCALE) {
1931 to.to_wscale = sc->sc_requested_r_scale;
1932 to.to_flags |= TOF_SCALE;
1933 }
1934 if (sc->sc_flags & SCF_SACK)
1935 to.to_flags |= TOF_SACKPERM;
1936 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1937 if (sc->sc_flags & SCF_SIGNATURE)
1938 to.to_flags |= TOF_SIGNATURE;
1939 #endif
1940 if (sc->sc_tfo_cookie) {
1941 to.to_flags |= TOF_FASTOPEN;
1942 to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1943 to.to_tfo_cookie = sc->sc_tfo_cookie;
1944 /* don't send cookie again when retransmitting response */
1945 sc->sc_tfo_cookie = NULL;
1946 }
1947 }
1948 if (sc->sc_flags & SCF_TIMESTAMP) {
1949 to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1950 to.to_tsecr = sc->sc_tsreflect;
1951 to.to_flags |= TOF_TS;
1952 }
1953 optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1954
1955 /* Adjust headers by option size. */
1956 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1957 m->m_len += optlen;
1958 m->m_pkthdr.len += optlen;
1959 #ifdef INET6
1960 if (sc->sc_inc.inc_flags & INC_ISIPV6)
1961 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1962 else
1963 #endif
1964 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1965 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1966 if (sc->sc_flags & SCF_SIGNATURE) {
1967 KASSERT(to.to_flags & TOF_SIGNATURE,
1968 ("tcp_addoptions() didn't set tcp_signature"));
1969
1970 /* NOTE: to.to_signature is inside of mbuf */
1971 if (!TCPMD5_ENABLED() ||
1972 TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1973 m_freem(m);
1974 return (EACCES);
1975 }
1976 }
1977 #endif
1978 } else
1979 optlen = 0;
1980
1981 if (udp) {
1982 ulen += optlen;
1983 udp->uh_ulen = htons(ulen);
1984 }
1985 M_SETFIB(m, sc->sc_inc.inc_fibnum);
1986 /*
1987 * If we have peer's SYN and it has a flowid, then let's assign it to
1988 * our SYN|ACK. ip6_output() and ip_output() will not assign flowid
1989 * to SYN|ACK due to lack of inp here.
1990 */
1991 if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1992 m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1993 M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1994 }
1995 #ifdef INET6
1996 if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1997 if (sc->sc_port) {
1998 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
1999 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2000 udp->uh_sum = in6_cksum_pseudo(ip6, ulen,
2001 IPPROTO_UDP, 0);
2002 th->th_sum = htons(0);
2003 } else {
2004 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2005 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2006 th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2007 IPPROTO_TCP, 0);
2008 }
2009 ip6->ip6_hlim = sc->sc_ip_ttl;
2010 #ifdef TCP_OFFLOAD
2011 if (ADDED_BY_TOE(sc)) {
2012 struct toedev *tod = sc->sc_tod;
2013
2014 error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2015
2016 return (error);
2017 }
2018 #endif
2019 TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2020 error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2021 }
2022 #endif
2023 #if defined(INET6) && defined(INET)
2024 else
2025 #endif
2026 #ifdef INET
2027 {
2028 if (sc->sc_port) {
2029 m->m_pkthdr.csum_flags = CSUM_UDP;
2030 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2031 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
2032 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
2033 th->th_sum = htons(0);
2034 } else {
2035 m->m_pkthdr.csum_flags = CSUM_TCP;
2036 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2037 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2038 htons(tlen + optlen - hlen + IPPROTO_TCP));
2039 }
2040 #ifdef TCP_OFFLOAD
2041 if (ADDED_BY_TOE(sc)) {
2042 struct toedev *tod = sc->sc_tod;
2043
2044 error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2045
2046 return (error);
2047 }
2048 #endif
2049 TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2050 error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2051 }
2052 #endif
2053 return (error);
2054 }
2055
2056 /*
2057 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2058 * that exceed the capacity of the syncache by avoiding the storage of any
2059 * of the SYNs we receive. Syncookies defend against blind SYN flooding
2060 * attacks where the attacker does not have access to our responses.
2061 *
2062 * Syncookies encode and include all necessary information about the
2063 * connection setup within the SYN|ACK that we send back. That way we
2064 * can avoid keeping any local state until the ACK to our SYN|ACK returns
2065 * (if ever). Normally the syncache and syncookies are running in parallel
2066 * with the latter taking over when the former is exhausted. When matching
2067 * syncache entry is found the syncookie is ignored.
2068 *
2069 * The only reliable information persisting the 3WHS is our initial sequence
2070 * number ISS of 32 bits. Syncookies embed a cryptographically sufficient
2071 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2072 * of our SYN|ACK. The MAC can be recomputed when the ACK to our SYN|ACK
2073 * returns and signifies a legitimate connection if it matches the ACK.
2074 *
2075 * The available space of 32 bits to store the hash and to encode the SYN
2076 * option information is very tight and we should have at least 24 bits for
2077 * the MAC to keep the number of guesses by blind spoofing reasonably high.
2078 *
2079 * SYN option information we have to encode to fully restore a connection:
2080 * MSS: is imporant to chose an optimal segment size to avoid IP level
2081 * fragmentation along the path. The common MSS values can be encoded
2082 * in a 3-bit table. Uncommon values are captured by the next lower value
2083 * in the table leading to a slight increase in packetization overhead.
2084 * WSCALE: is necessary to allow large windows to be used for high delay-
2085 * bandwidth product links. Not scaling the window when it was initially
2086 * negotiated is bad for performance as lack of scaling further decreases
2087 * the apparent available send window. We only need to encode the WSCALE
2088 * we received from the remote end. Our end can be recalculated at any
2089 * time. The common WSCALE values can be encoded in a 3-bit table.
2090 * Uncommon values are captured by the next lower value in the table
2091 * making us under-estimate the available window size halving our
2092 * theoretically possible maximum throughput for that connection.
2093 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2094 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2095 * that are included in all segments on a connection. We enable them when
2096 * the ACK has them.
2097 *
2098 * Security of syncookies and attack vectors:
2099 *
2100 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2101 * together with the gloabl secret to make it unique per connection attempt.
2102 * Thus any change of any of those parameters results in a different MAC output
2103 * in an unpredictable way unless a collision is encountered. 24 bits of the
2104 * MAC are embedded into the ISS.
2105 *
2106 * To prevent replay attacks two rotating global secrets are updated with a
2107 * new random value every 15 seconds. The life-time of a syncookie is thus
2108 * 15-30 seconds.
2109 *
2110 * Vector 1: Attacking the secret. This requires finding a weakness in the
2111 * MAC itself or the way it is used here. The attacker can do a chosen plain
2112 * text attack by varying and testing the all parameters under his control.
2113 * The strength depends on the size and randomness of the secret, and the
2114 * cryptographic security of the MAC function. Due to the constant updating
2115 * of the secret the attacker has at most 29.999 seconds to find the secret
2116 * and launch spoofed connections. After that he has to start all over again.
2117 *
2118 * Vector 2: Collision attack on the MAC of a single ACK. With a 24 bit MAC
2119 * size an average of 4,823 attempts are required for a 50% chance of success
2120 * to spoof a single syncookie (birthday collision paradox). However the
2121 * attacker is blind and doesn't know if one of his attempts succeeded unless
2122 * he has a side channel to interfere success from. A single connection setup
2123 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2124 * This many attempts are required for each one blind spoofed connection. For
2125 * every additional spoofed connection he has to launch another N attempts.
2126 * Thus for a sustained rate 100 spoofed connections per second approximately
2127 * 1,800,000 packets per second would have to be sent.
2128 *
2129 * NB: The MAC function should be fast so that it doesn't become a CPU
2130 * exhaustion attack vector itself.
2131 *
2132 * References:
2133 * RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2134 * SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2135 * http://cr.yp.to/syncookies.html (overview)
2136 * http://cr.yp.to/syncookies/archive (details)
2137 *
2138 *
2139 * Schematic construction of a syncookie enabled Initial Sequence Number:
2140 * 0 1 2 3
2141 * 12345678901234567890123456789012
2142 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2143 *
2144 * x 24 MAC (truncated)
2145 * W 3 Send Window Scale index
2146 * M 3 MSS index
2147 * S 1 SACK permitted
2148 * P 1 Odd/even secret
2149 */
2150
2151 /*
2152 * Distribution and probability of certain MSS values. Those in between are
2153 * rounded down to the next lower one.
2154 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2155 * .2% .3% 5% 7% 7% 20% 15% 45%
2156 */
2157 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2158
2159 /*
2160 * Distribution and probability of certain WSCALE values. We have to map the
2161 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2162 * bits based on prevalence of certain values. Where we don't have an exact
2163 * match for are rounded down to the next lower one letting us under-estimate
2164 * the true available window. At the moment this would happen only for the
2165 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2166 * and window size). The absence of the WSCALE option (no scaling in either
2167 * direction) is encoded with index zero.
2168 * [WSCALE values histograms, Allman, 2012]
2169 * X 10 10 35 5 6 14 10% by host
2170 * X 11 4 5 5 18 49 3% by connections
2171 */
2172 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2173
2174 /*
2175 * Compute the MAC for the SYN cookie. SIPHASH-2-4 is chosen for its speed
2176 * and good cryptographic properties.
2177 */
2178 static uint32_t
syncookie_mac(struct in_conninfo * inc,tcp_seq irs,uint8_t flags,uint8_t * secbits,uintptr_t secmod)2179 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2180 uint8_t *secbits, uintptr_t secmod)
2181 {
2182 SIPHASH_CTX ctx;
2183 uint32_t siphash[2];
2184
2185 SipHash24_Init(&ctx);
2186 SipHash_SetKey(&ctx, secbits);
2187 switch (inc->inc_flags & INC_ISIPV6) {
2188 #ifdef INET
2189 case 0:
2190 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2191 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2192 break;
2193 #endif
2194 #ifdef INET6
2195 case INC_ISIPV6:
2196 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2197 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2198 break;
2199 #endif
2200 }
2201 SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2202 SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2203 SipHash_Update(&ctx, &irs, sizeof(irs));
2204 SipHash_Update(&ctx, &flags, sizeof(flags));
2205 SipHash_Update(&ctx, &secmod, sizeof(secmod));
2206 SipHash_Final((u_int8_t *)&siphash, &ctx);
2207
2208 return (siphash[0] ^ siphash[1]);
2209 }
2210
2211 static tcp_seq
syncookie_generate(struct syncache_head * sch,struct syncache * sc)2212 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2213 {
2214 u_int i, secbit, wscale;
2215 uint32_t iss, hash;
2216 uint8_t *secbits;
2217 union syncookie cookie;
2218
2219 cookie.cookie = 0;
2220
2221 /* Map our computed MSS into the 3-bit index. */
2222 for (i = nitems(tcp_sc_msstab) - 1;
2223 tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2224 i--)
2225 ;
2226 cookie.flags.mss_idx = i;
2227
2228 /*
2229 * Map the send window scale into the 3-bit index but only if
2230 * the wscale option was received.
2231 */
2232 if (sc->sc_flags & SCF_WINSCALE) {
2233 wscale = sc->sc_requested_s_scale;
2234 for (i = nitems(tcp_sc_wstab) - 1;
2235 tcp_sc_wstab[i] > wscale && i > 0;
2236 i--)
2237 ;
2238 cookie.flags.wscale_idx = i;
2239 }
2240
2241 /* Can we do SACK? */
2242 if (sc->sc_flags & SCF_SACK)
2243 cookie.flags.sack_ok = 1;
2244
2245 /* Which of the two secrets to use. */
2246 secbit = V_tcp_syncache.secret.oddeven & 0x1;
2247 cookie.flags.odd_even = secbit;
2248
2249 secbits = V_tcp_syncache.secret.key[secbit];
2250 hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2251 (uintptr_t)sch);
2252
2253 /*
2254 * Put the flags into the hash and XOR them to get better ISS number
2255 * variance. This doesn't enhance the cryptographic strength and is
2256 * done to prevent the 8 cookie bits from showing up directly on the
2257 * wire.
2258 */
2259 iss = hash & ~0xff;
2260 iss |= cookie.cookie ^ (hash >> 24);
2261
2262 TCPSTAT_INC(tcps_sc_sendcookie);
2263 return (iss);
2264 }
2265
2266 static bool
syncookie_expand(struct in_conninfo * inc,const struct syncache_head * sch,struct syncache * sc,struct tcphdr * th,struct tcpopt * to,struct socket * lso,uint16_t port)2267 syncookie_expand(struct in_conninfo *inc, const struct syncache_head *sch,
2268 struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2269 struct socket *lso, uint16_t port)
2270 {
2271 uint32_t hash;
2272 uint8_t *secbits;
2273 tcp_seq ack, seq;
2274 int wnd;
2275 union syncookie cookie;
2276
2277 /*
2278 * Pull information out of SYN-ACK/ACK and revert sequence number
2279 * advances.
2280 */
2281 ack = th->th_ack - 1;
2282 seq = th->th_seq - 1;
2283
2284 /*
2285 * Unpack the flags containing enough information to restore the
2286 * connection.
2287 */
2288 cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2289
2290 /* Which of the two secrets to use. */
2291 secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2292
2293 hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2294
2295 /* The recomputed hash matches the ACK if this was a genuine cookie. */
2296 if ((ack & ~0xff) != (hash & ~0xff))
2297 return (false);
2298
2299 /* Fill in the syncache values. */
2300 sc->sc_flags = 0;
2301 bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2302 sc->sc_ipopts = NULL;
2303
2304 sc->sc_irs = seq;
2305 sc->sc_iss = ack;
2306
2307 switch (inc->inc_flags & INC_ISIPV6) {
2308 #ifdef INET
2309 case 0:
2310 sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2311 sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2312 break;
2313 #endif
2314 #ifdef INET6
2315 case INC_ISIPV6:
2316 if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2317 sc->sc_flowlabel =
2318 htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2319 break;
2320 #endif
2321 }
2322
2323 sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2324
2325 /* Only use wscale if it was enabled in the orignal SYN. */
2326 if (cookie.flags.wscale_idx > 0) {
2327 u_int wscale = 0;
2328
2329 /* Recompute the receive window scale that was sent earlier. */
2330 while (wscale < TCP_MAX_WINSHIFT &&
2331 (TCP_MAXWIN << wscale) < sb_max)
2332 wscale++;
2333 sc->sc_requested_r_scale = wscale;
2334 sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2335 sc->sc_flags |= SCF_WINSCALE;
2336 }
2337
2338 wnd = lso->sol_sbrcv_hiwat;
2339 wnd = imax(wnd, 0);
2340 wnd = imin(wnd, TCP_MAXWIN);
2341 sc->sc_wnd = wnd;
2342
2343 if (cookie.flags.sack_ok)
2344 sc->sc_flags |= SCF_SACK;
2345
2346 if (to->to_flags & TOF_TS) {
2347 sc->sc_flags |= SCF_TIMESTAMP;
2348 sc->sc_tsreflect = to->to_tsval;
2349 sc->sc_tsoff = tcp_new_ts_offset(inc);
2350 }
2351
2352 if (to->to_flags & TOF_SIGNATURE)
2353 sc->sc_flags |= SCF_SIGNATURE;
2354
2355 sc->sc_rxmits = 0;
2356
2357 sc->sc_port = port;
2358
2359 return (true);
2360 }
2361
2362 #ifdef INVARIANTS
2363 static void
syncookie_cmp(struct in_conninfo * inc,const struct syncache_head * sch,struct syncache * sc,struct tcphdr * th,struct tcpopt * to,struct socket * lso,uint16_t port)2364 syncookie_cmp(struct in_conninfo *inc, const struct syncache_head *sch,
2365 struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2366 struct socket *lso, uint16_t port)
2367 {
2368 struct syncache scs;
2369 char *s;
2370
2371 bzero(&scs, sizeof(scs));
2372 if (syncookie_expand(inc, sch, &scs, th, to, lso, port) &&
2373 (sc->sc_peer_mss != scs.sc_peer_mss ||
2374 sc->sc_requested_r_scale != scs.sc_requested_r_scale ||
2375 sc->sc_requested_s_scale != scs.sc_requested_s_scale ||
2376 (sc->sc_flags & SCF_SACK) != (scs.sc_flags & SCF_SACK))) {
2377
2378 if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2379 return;
2380
2381 if (sc->sc_peer_mss != scs.sc_peer_mss)
2382 log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2383 s, __func__, sc->sc_peer_mss, scs.sc_peer_mss);
2384
2385 if (sc->sc_requested_r_scale != scs.sc_requested_r_scale)
2386 log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2387 s, __func__, sc->sc_requested_r_scale,
2388 scs.sc_requested_r_scale);
2389
2390 if (sc->sc_requested_s_scale != scs.sc_requested_s_scale)
2391 log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2392 s, __func__, sc->sc_requested_s_scale,
2393 scs.sc_requested_s_scale);
2394
2395 if ((sc->sc_flags & SCF_SACK) != (scs.sc_flags & SCF_SACK))
2396 log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2397
2398 free(s, M_TCPLOG);
2399 }
2400 }
2401 #endif /* INVARIANTS */
2402
2403 static void
syncookie_reseed(void * arg)2404 syncookie_reseed(void *arg)
2405 {
2406 struct tcp_syncache *sc = arg;
2407 uint8_t *secbits;
2408 int secbit;
2409
2410 /*
2411 * Reseeding the secret doesn't have to be protected by a lock.
2412 * It only must be ensured that the new random values are visible
2413 * to all CPUs in a SMP environment. The atomic with release
2414 * semantics ensures that.
2415 */
2416 secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2417 secbits = sc->secret.key[secbit];
2418 arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2419 atomic_add_rel_int(&sc->secret.oddeven, 1);
2420
2421 /* Reschedule ourself. */
2422 callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2423 }
2424
2425 /*
2426 * We have overflowed a bucket. Let's pause dealing with the syncache.
2427 * This function will increment the bucketoverflow statistics appropriately
2428 * (once per pause when pausing is enabled; otherwise, once per overflow).
2429 */
2430 static void
syncache_pause(struct in_conninfo * inc)2431 syncache_pause(struct in_conninfo *inc)
2432 {
2433 time_t delta;
2434 const char *s;
2435
2436 /* XXX:
2437 * 2. Add sysctl read here so we don't get the benefit of this
2438 * change without the new sysctl.
2439 */
2440
2441 /*
2442 * Try an unlocked read. If we already know that another thread
2443 * has activated the feature, there is no need to proceed.
2444 */
2445 if (V_tcp_syncache.paused)
2446 return;
2447
2448 /* Are cookied enabled? If not, we can't pause. */
2449 if (!V_tcp_syncookies) {
2450 TCPSTAT_INC(tcps_sc_bucketoverflow);
2451 return;
2452 }
2453
2454 /*
2455 * We may be the first thread to find an overflow. Get the lock
2456 * and evaluate if we need to take action.
2457 */
2458 mtx_lock(&V_tcp_syncache.pause_mtx);
2459 if (V_tcp_syncache.paused) {
2460 mtx_unlock(&V_tcp_syncache.pause_mtx);
2461 return;
2462 }
2463
2464 /* Activate protection. */
2465 V_tcp_syncache.paused = true;
2466 TCPSTAT_INC(tcps_sc_bucketoverflow);
2467
2468 /*
2469 * Determine the last backoff time. If we are seeing a re-newed
2470 * attack within that same time after last reactivating the syncache,
2471 * consider it an extension of the same attack.
2472 */
2473 delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2474 if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2475 if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2476 delta <<= 1;
2477 V_tcp_syncache.pause_backoff++;
2478 }
2479 } else {
2480 delta = TCP_SYNCACHE_PAUSE_TIME;
2481 V_tcp_syncache.pause_backoff = 0;
2482 }
2483
2484 /* Log a warning, including IP addresses, if able. */
2485 if (inc != NULL)
2486 s = tcp_log_addrs(inc, NULL, NULL, NULL);
2487 else
2488 s = (const char *)NULL;
2489 log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2490 "the next %lld seconds%s%s%s\n", (long long)delta,
2491 (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2492 (s != NULL) ? ")" : "");
2493 free(__DECONST(void *, s), M_TCPLOG);
2494
2495 /* Use the calculated delta to set a new pause time. */
2496 V_tcp_syncache.pause_until = time_uptime + delta;
2497 callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2498 &V_tcp_syncache);
2499 mtx_unlock(&V_tcp_syncache.pause_mtx);
2500 }
2501
2502 /* Evaluate whether we need to unpause. */
2503 static void
syncache_unpause(void * arg)2504 syncache_unpause(void *arg)
2505 {
2506 struct tcp_syncache *sc;
2507 time_t delta;
2508
2509 sc = arg;
2510 mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2511 callout_deactivate(&sc->pause_co);
2512
2513 /*
2514 * Check to make sure we are not running early. If the pause
2515 * time has expired, then deactivate the protection.
2516 */
2517 if ((delta = sc->pause_until - time_uptime) > 0)
2518 callout_schedule(&sc->pause_co, delta * hz);
2519 else
2520 sc->paused = false;
2521 }
2522
2523 /*
2524 * Exports the syncache entries to userland so that netstat can display
2525 * them alongside the other sockets. This function is intended to be
2526 * called only from tcp_pcblist.
2527 *
2528 * Due to concurrency on an active system, the number of pcbs exported
2529 * may have no relation to max_pcbs. max_pcbs merely indicates the
2530 * amount of space the caller allocated for this function to use.
2531 */
2532 int
syncache_pcblist(struct sysctl_req * req)2533 syncache_pcblist(struct sysctl_req *req)
2534 {
2535 struct xtcpcb xt;
2536 struct syncache *sc;
2537 struct syncache_head *sch;
2538 int error, i;
2539
2540 bzero(&xt, sizeof(xt));
2541 xt.xt_len = sizeof(xt);
2542 xt.t_state = TCPS_SYN_RECEIVED;
2543 xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2544 xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2545 xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2546 xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2547
2548 for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2549 sch = &V_tcp_syncache.hashbase[i];
2550 SCH_LOCK(sch);
2551 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2552 if (sc->sc_cred != NULL &&
2553 cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2554 continue;
2555 if (sc->sc_inc.inc_flags & INC_ISIPV6)
2556 xt.xt_inp.inp_vflag = INP_IPV6;
2557 else
2558 xt.xt_inp.inp_vflag = INP_IPV4;
2559 xt.xt_encaps_port = sc->sc_port;
2560 bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2561 sizeof (struct in_conninfo));
2562 error = SYSCTL_OUT(req, &xt, sizeof xt);
2563 if (error) {
2564 SCH_UNLOCK(sch);
2565 return (0);
2566 }
2567 }
2568 SCH_UNLOCK(sch);
2569 }
2570
2571 return (0);
2572 }
2573