1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6 * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7 * Copyright 2012 John Marino <draco@marino.st>.
8 * Copyright 2014-2017 The FreeBSD Foundation
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Konstantin Belousov
12 * under sponsorship from the FreeBSD Foundation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Dynamic linker for ELF.
37 *
38 * John Polstra <jdp@polstra.com>.
39 */
40
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_paths.h"
64 #include "rtld_tls.h"
65 #include "rtld_printf.h"
66 #include "rtld_malloc.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 #include "rtld_libc.h"
70
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74
75
76 /* Variables that cannot be static: */
77 extern struct r_debug r_debug; /* For GDB */
78 extern int _thread_autoinit_dummy_decl;
79 extern void (*__cleanup)(void);
80
81 struct dlerror_save {
82 int seen;
83 char *msg;
84 };
85
86 /*
87 * Function declarations.
88 */
89 static const char *basename(const char *);
90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
91 const Elf_Dyn **, const Elf_Dyn **);
92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
93 const Elf_Dyn *);
94 static bool digest_dynamic(Obj_Entry *, int);
95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
96 static void distribute_static_tls(Objlist *, RtldLockState *);
97 static Obj_Entry *dlcheck(void *);
98 static int dlclose_locked(void *, RtldLockState *);
99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
100 int lo_flags, int mode, RtldLockState *lockstate);
101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
103 static bool donelist_check(DoneList *, const Obj_Entry *);
104 static void dump_auxv(Elf_Auxinfo **aux_info);
105 static void errmsg_restore(struct dlerror_save *);
106 static struct dlerror_save *errmsg_save(void);
107 static void *fill_search_info(const char *, size_t, void *);
108 static char *find_library(const char *, const Obj_Entry *, int *);
109 static const char *gethints(bool);
110 static void hold_object(Obj_Entry *);
111 static void unhold_object(Obj_Entry *);
112 static void init_dag(Obj_Entry *);
113 static void init_marker(Obj_Entry *);
114 static void init_pagesizes(Elf_Auxinfo **aux_info);
115 static void init_rtld(caddr_t, Elf_Auxinfo **);
116 static void initlist_add_neededs(Needed_Entry *, Objlist *);
117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
119 static void linkmap_add(Obj_Entry *);
120 static void linkmap_delete(Obj_Entry *);
121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
122 static void unload_filtees(Obj_Entry *, RtldLockState *);
123 static int load_needed_objects(Obj_Entry *, int);
124 static int load_preload_objects(const char *, bool);
125 static int load_kpreload(const void *addr);
126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
127 static void map_stacks_exec(RtldLockState *);
128 static int obj_disable_relro(Obj_Entry *);
129 static int obj_enforce_relro(Obj_Entry *);
130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
131 static void objlist_call_init(Objlist *, RtldLockState *);
132 static void objlist_clear(Objlist *);
133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
134 static void objlist_init(Objlist *);
135 static void objlist_push_head(Objlist *, Obj_Entry *);
136 static void objlist_push_tail(Objlist *, Obj_Entry *);
137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
138 static void objlist_remove(Objlist *, Obj_Entry *);
139 static int open_binary_fd(const char *argv0, bool search_in_path,
140 const char **binpath_res);
141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
142 const char **argv0, bool *dir_ignore);
143 static int parse_integer(const char *);
144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
145 static void print_usage(const char *argv0);
146 static void release_object(Obj_Entry *);
147 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
148 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
150 int flags, RtldLockState *lockstate);
151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
152 RtldLockState *);
153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
154 static int rtld_dirname(const char *, char *);
155 static int rtld_dirname_abs(const char *, char *);
156 static void *rtld_dlopen(const char *name, int fd, int mode);
157 static void rtld_exit(void);
158 static void rtld_nop_exit(void);
159 static char *search_library_path(const char *, const char *, const char *,
160 int *);
161 static char *search_library_pathfds(const char *, const char *, int *);
162 static const void **get_program_var_addr(const char *, RtldLockState *);
163 static void set_program_var(const char *, const void *);
164 static int symlook_default(SymLook *, const Obj_Entry *refobj);
165 static int symlook_global(SymLook *, DoneList *);
166 static void symlook_init_from_req(SymLook *, const SymLook *);
167 static int symlook_list(SymLook *, const Objlist *, DoneList *);
168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
172 static void trace_loaded_objects(Obj_Entry *, bool);
173 static void unlink_object(Obj_Entry *);
174 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
175 static void unref_dag(Obj_Entry *);
176 static void ref_dag(Obj_Entry *);
177 static char *origin_subst_one(Obj_Entry *, char *, const char *,
178 const char *, bool);
179 static char *origin_subst(Obj_Entry *, const char *);
180 static bool obj_resolve_origin(Obj_Entry *obj);
181 static void preinit_main(void);
182 static int rtld_verify_versions(const Objlist *);
183 static int rtld_verify_object_versions(Obj_Entry *);
184 static void object_add_name(Obj_Entry *, const char *);
185 static int object_match_name(const Obj_Entry *, const char *);
186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
188 struct dl_phdr_info *phdr_info);
189 static uint32_t gnu_hash(const char *);
190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
191 const unsigned long);
192
193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
194 void _r_debug_postinit(struct link_map *) __noinline __exported;
195
196 int __sys_openat(int, const char *, int, ...);
197
198 /*
199 * Data declarations.
200 */
201 struct r_debug r_debug __exported; /* for GDB; */
202 static bool libmap_disable; /* Disable libmap */
203 static bool ld_loadfltr; /* Immediate filters processing */
204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
205 static bool trust; /* False for setuid and setgid programs */
206 static bool dangerous_ld_env; /* True if environment variables have been
207 used to affect the libraries loaded */
208 bool ld_bind_not; /* Disable PLT update */
209 static const char *ld_bind_now; /* Environment variable for immediate binding */
210 static const char *ld_debug; /* Environment variable for debugging */
211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
212 weak definition */
213 static const char *ld_library_path;/* Environment variable for search path */
214 static const char *ld_library_dirs;/* Environment variable for library descriptors */
215 static const char *ld_preload; /* Environment variable for libraries to
216 load first */
217 static const char *ld_preload_fds;/* Environment variable for libraries represented by
218 descriptors */
219 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
220 static const char *ld_tracing; /* Called from ldd to print libs */
221 static const char *ld_utrace; /* Use utrace() to log events. */
222 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
223 static Obj_Entry *obj_main; /* The main program shared object */
224 static Obj_Entry obj_rtld; /* The dynamic linker shared object */
225 static unsigned int obj_count; /* Number of objects in obj_list */
226 static unsigned int obj_loads; /* Number of loads of objects (gen count) */
227 size_t ld_static_tls_extra = /* Static TLS extra space (bytes) */
228 RTLD_STATIC_TLS_EXTRA;
229
230 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
231 STAILQ_HEAD_INITIALIZER(list_global);
232 static Objlist list_main = /* Objects loaded at program startup */
233 STAILQ_HEAD_INITIALIZER(list_main);
234 static Objlist list_fini = /* Objects needing fini() calls */
235 STAILQ_HEAD_INITIALIZER(list_fini);
236
237 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
238
239 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
240
241 extern Elf_Dyn _DYNAMIC;
242 #pragma weak _DYNAMIC
243
244 int dlclose(void *) __exported;
245 char *dlerror(void) __exported;
246 void *dlopen(const char *, int) __exported;
247 void *fdlopen(int, int) __exported;
248 void *dlsym(void *, const char *) __exported;
249 dlfunc_t dlfunc(void *, const char *) __exported;
250 void *dlvsym(void *, const char *, const char *) __exported;
251 int dladdr(const void *, Dl_info *) __exported;
252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
253 void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
254 int dlinfo(void *, int , void *) __exported;
255 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 const char *rtld_get_var(const char *name) __exported;
262 int rtld_set_var(const char *name, const char *val) __exported;
263
264 /* Only here to fix -Wmissing-prototypes warnings */
265 int __getosreldate(void);
266 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
267 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
268
269 int npagesizes;
270 static int osreldate;
271 size_t *pagesizes;
272 size_t page_size;
273
274 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
275 static int max_stack_flags;
276
277 /*
278 * Global declarations normally provided by crt1. The dynamic linker is
279 * not built with crt1, so we have to provide them ourselves.
280 */
281 char *__progname;
282 char **environ;
283
284 /*
285 * Used to pass argc, argv to init functions.
286 */
287 int main_argc;
288 char **main_argv;
289
290 /*
291 * Globals to control TLS allocation.
292 */
293 size_t tls_last_offset; /* Static TLS offset of last module */
294 size_t tls_last_size; /* Static TLS size of last module */
295 size_t tls_static_space; /* Static TLS space allocated */
296 static size_t tls_static_max_align;
297 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
298 int tls_max_index = 1; /* Largest module index allocated */
299
300 static bool ld_library_path_rpath = false;
301 bool ld_fast_sigblock = false;
302
303 /*
304 * Globals for path names, and such
305 */
306 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
307 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
308 const char *ld_path_rtld = _PATH_RTLD;
309 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
310 const char *ld_env_prefix = LD_;
311
312 static void (*rtld_exit_ptr)(void);
313
314 /*
315 * Fill in a DoneList with an allocation large enough to hold all of
316 * the currently-loaded objects. Keep this as a macro since it calls
317 * alloca and we want that to occur within the scope of the caller.
318 */
319 #define donelist_init(dlp) \
320 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
321 assert((dlp)->objs != NULL), \
322 (dlp)->num_alloc = obj_count, \
323 (dlp)->num_used = 0)
324
325 #define LD_UTRACE(e, h, mb, ms, r, n) do { \
326 if (ld_utrace != NULL) \
327 ld_utrace_log(e, h, mb, ms, r, n); \
328 } while (0)
329
330 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)331 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
332 int refcnt, const char *name)
333 {
334 struct utrace_rtld ut;
335 static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
336
337 memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
338 ut.event = event;
339 ut.handle = handle;
340 ut.mapbase = mapbase;
341 ut.mapsize = mapsize;
342 ut.refcnt = refcnt;
343 bzero(ut.name, sizeof(ut.name));
344 if (name)
345 strlcpy(ut.name, name, sizeof(ut.name));
346 utrace(&ut, sizeof(ut));
347 }
348
349 struct ld_env_var_desc {
350 const char * const n;
351 const char *val;
352 const bool unsecure:1;
353 const bool can_update:1;
354 const bool debug:1;
355 bool owned:1;
356 };
357 #define LD_ENV_DESC(var, unsec, ...) \
358 [LD_##var] = { \
359 .n = #var, \
360 .unsecure = unsec, \
361 __VA_ARGS__ \
362 }
363
364 static struct ld_env_var_desc ld_env_vars[] = {
365 LD_ENV_DESC(BIND_NOW, false),
366 LD_ENV_DESC(PRELOAD, true),
367 LD_ENV_DESC(LIBMAP, true),
368 LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
369 LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
370 LD_ENV_DESC(LIBMAP_DISABLE, true),
371 LD_ENV_DESC(BIND_NOT, true),
372 LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
373 LD_ENV_DESC(ELF_HINTS_PATH, true),
374 LD_ENV_DESC(LOADFLTR, true),
375 LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
376 LD_ENV_DESC(PRELOAD_FDS, true),
377 LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
378 LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
379 LD_ENV_DESC(UTRACE, false, .can_update = true),
380 LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
381 LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
382 LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
383 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
384 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
385 LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
386 LD_ENV_DESC(SHOW_AUXV, false),
387 LD_ENV_DESC(STATIC_TLS_EXTRA, false),
388 LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
389 };
390
391 const char *
ld_get_env_var(int idx)392 ld_get_env_var(int idx)
393 {
394 return (ld_env_vars[idx].val);
395 }
396
397 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)398 rtld_get_env_val(char **env, const char *name, size_t name_len)
399 {
400 char **m, *n, *v;
401
402 for (m = env; *m != NULL; m++) {
403 n = *m;
404 v = strchr(n, '=');
405 if (v == NULL) {
406 /* corrupt environment? */
407 continue;
408 }
409 if (v - n == (ptrdiff_t)name_len &&
410 strncmp(name, n, name_len) == 0)
411 return (v + 1);
412 }
413 return (NULL);
414 }
415
416 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)417 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
418 {
419 struct ld_env_var_desc *lvd;
420 size_t prefix_len, nlen;
421 char **m, *n, *v;
422 int i;
423
424 prefix_len = strlen(env_prefix);
425 for (m = env; *m != NULL; m++) {
426 n = *m;
427 if (strncmp(env_prefix, n, prefix_len) != 0) {
428 /* Not a rtld environment variable. */
429 continue;
430 }
431 n += prefix_len;
432 v = strchr(n, '=');
433 if (v == NULL) {
434 /* corrupt environment? */
435 continue;
436 }
437 for (i = 0; i < (int)nitems(ld_env_vars); i++) {
438 lvd = &ld_env_vars[i];
439 if (lvd->val != NULL) {
440 /* Saw higher-priority variable name already. */
441 continue;
442 }
443 nlen = strlen(lvd->n);
444 if (v - n == (ptrdiff_t)nlen &&
445 strncmp(lvd->n, n, nlen) == 0) {
446 lvd->val = v + 1;
447 break;
448 }
449 }
450 }
451 }
452
453 static void
rtld_init_env_vars(char ** env)454 rtld_init_env_vars(char **env)
455 {
456 rtld_init_env_vars_for_prefix(env, ld_env_prefix);
457 }
458
459 static void
set_ld_elf_hints_path(void)460 set_ld_elf_hints_path(void)
461 {
462 if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
463 ld_elf_hints_path = ld_elf_hints_default;
464 }
465
466 uintptr_t
rtld_round_page(uintptr_t x)467 rtld_round_page(uintptr_t x)
468 {
469 return (roundup2(x, page_size));
470 }
471
472 uintptr_t
rtld_trunc_page(uintptr_t x)473 rtld_trunc_page(uintptr_t x)
474 {
475 return (rounddown2(x, page_size));
476 }
477
478 /*
479 * Main entry point for dynamic linking. The first argument is the
480 * stack pointer. The stack is expected to be laid out as described
481 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
482 * Specifically, the stack pointer points to a word containing
483 * ARGC. Following that in the stack is a null-terminated sequence
484 * of pointers to argument strings. Then comes a null-terminated
485 * sequence of pointers to environment strings. Finally, there is a
486 * sequence of "auxiliary vector" entries.
487 *
488 * The second argument points to a place to store the dynamic linker's
489 * exit procedure pointer and the third to a place to store the main
490 * program's object.
491 *
492 * The return value is the main program's entry point.
493 */
494 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)495 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
496 {
497 Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
498 Objlist_Entry *entry;
499 Obj_Entry *last_interposer, *obj, *preload_tail;
500 const Elf_Phdr *phdr;
501 Objlist initlist;
502 RtldLockState lockstate;
503 struct stat st;
504 Elf_Addr *argcp;
505 char **argv, **env, **envp, *kexecpath;
506 const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
507 struct ld_env_var_desc *lvd;
508 caddr_t imgentry;
509 char buf[MAXPATHLEN];
510 int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
511 size_t sz;
512 #ifdef __powerpc__
513 int old_auxv_format = 1;
514 #endif
515 bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
516
517 /*
518 * On entry, the dynamic linker itself has not been relocated yet.
519 * Be very careful not to reference any global data until after
520 * init_rtld has returned. It is OK to reference file-scope statics
521 * and string constants, and to call static and global functions.
522 */
523
524 /* Find the auxiliary vector on the stack. */
525 argcp = sp;
526 argc = *sp++;
527 argv = (char **) sp;
528 sp += argc + 1; /* Skip over arguments and NULL terminator */
529 env = (char **) sp;
530 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
531 ;
532 aux = (Elf_Auxinfo *) sp;
533
534 /* Digest the auxiliary vector. */
535 for (i = 0; i < AT_COUNT; i++)
536 aux_info[i] = NULL;
537 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
538 if (auxp->a_type < AT_COUNT)
539 aux_info[auxp->a_type] = auxp;
540 #ifdef __powerpc__
541 if (auxp->a_type == 23) /* AT_STACKPROT */
542 old_auxv_format = 0;
543 #endif
544 }
545
546 #ifdef __powerpc__
547 if (old_auxv_format) {
548 /* Remap from old-style auxv numbers. */
549 aux_info[23] = aux_info[21]; /* AT_STACKPROT */
550 aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */
551 aux_info[19] = aux_info[17]; /* AT_NCPUS */
552 aux_info[17] = aux_info[15]; /* AT_CANARYLEN */
553 aux_info[15] = aux_info[13]; /* AT_EXECPATH */
554 aux_info[13] = NULL; /* AT_GID */
555
556 aux_info[20] = aux_info[18]; /* AT_PAGESIZES */
557 aux_info[18] = aux_info[16]; /* AT_OSRELDATE */
558 aux_info[16] = aux_info[14]; /* AT_CANARY */
559 aux_info[14] = NULL; /* AT_EGID */
560 }
561 #endif
562
563 /* Initialize and relocate ourselves. */
564 assert(aux_info[AT_BASE] != NULL);
565 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
566
567 dlerror_dflt_init();
568
569 __progname = obj_rtld.path;
570 argv0 = argv[0] != NULL ? argv[0] : "(null)";
571 environ = env;
572 main_argc = argc;
573 main_argv = argv;
574
575 if (aux_info[AT_BSDFLAGS] != NULL &&
576 (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
577 ld_fast_sigblock = true;
578
579 trust = !issetugid();
580 direct_exec = false;
581
582 md_abi_variant_hook(aux_info);
583 rtld_init_env_vars(env);
584
585 fd = -1;
586 if (aux_info[AT_EXECFD] != NULL) {
587 fd = aux_info[AT_EXECFD]->a_un.a_val;
588 } else {
589 assert(aux_info[AT_PHDR] != NULL);
590 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
591 if (phdr == obj_rtld.phdr) {
592 if (!trust) {
593 _rtld_error("Tainted process refusing to run binary %s",
594 argv0);
595 rtld_die();
596 }
597 direct_exec = true;
598
599 dbg("opening main program in direct exec mode");
600 if (argc >= 2) {
601 rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
602 &argv0, &dir_ignore);
603 explicit_fd = (fd != -1);
604 binpath = NULL;
605 if (!explicit_fd)
606 fd = open_binary_fd(argv0, search_in_path, &binpath);
607 if (fstat(fd, &st) == -1) {
608 _rtld_error("Failed to fstat FD %d (%s): %s", fd,
609 explicit_fd ? "user-provided descriptor" : argv0,
610 rtld_strerror(errno));
611 rtld_die();
612 }
613
614 /*
615 * Rough emulation of the permission checks done by
616 * execve(2), only Unix DACs are checked, ACLs are
617 * ignored. Preserve the semantic of disabling owner
618 * to execute if owner x bit is cleared, even if
619 * others x bit is enabled.
620 * mmap(2) does not allow to mmap with PROT_EXEC if
621 * binary' file comes from noexec mount. We cannot
622 * set a text reference on the binary.
623 */
624 dir_enable = false;
625 if (st.st_uid == geteuid()) {
626 if ((st.st_mode & S_IXUSR) != 0)
627 dir_enable = true;
628 } else if (st.st_gid == getegid()) {
629 if ((st.st_mode & S_IXGRP) != 0)
630 dir_enable = true;
631 } else if ((st.st_mode & S_IXOTH) != 0) {
632 dir_enable = true;
633 }
634 if (!dir_enable && !dir_ignore) {
635 _rtld_error("No execute permission for binary %s",
636 argv0);
637 rtld_die();
638 }
639
640 /*
641 * For direct exec mode, argv[0] is the interpreter
642 * name, we must remove it and shift arguments left
643 * before invoking binary main. Since stack layout
644 * places environment pointers and aux vectors right
645 * after the terminating NULL, we must shift
646 * environment and aux as well.
647 */
648 main_argc = argc - rtld_argc;
649 for (i = 0; i <= main_argc; i++)
650 argv[i] = argv[i + rtld_argc];
651 *argcp -= rtld_argc;
652 environ = env = envp = argv + main_argc + 1;
653 dbg("move env from %p to %p", envp + rtld_argc, envp);
654 do {
655 *envp = *(envp + rtld_argc);
656 } while (*envp++ != NULL);
657 aux = auxp = (Elf_Auxinfo *)envp;
658 auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
659 dbg("move aux from %p to %p", auxpf, aux);
660 /* XXXKIB insert place for AT_EXECPATH if not present */
661 for (;; auxp++, auxpf++) {
662 *auxp = *auxpf;
663 if (auxp->a_type == AT_NULL)
664 break;
665 }
666 /* Since the auxiliary vector has moved, redigest it. */
667 for (i = 0; i < AT_COUNT; i++)
668 aux_info[i] = NULL;
669 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
670 if (auxp->a_type < AT_COUNT)
671 aux_info[auxp->a_type] = auxp;
672 }
673
674 /* Point AT_EXECPATH auxv and aux_info to the binary path. */
675 if (binpath == NULL) {
676 aux_info[AT_EXECPATH] = NULL;
677 } else {
678 if (aux_info[AT_EXECPATH] == NULL) {
679 aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
680 aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
681 }
682 aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
683 binpath);
684 }
685 } else {
686 _rtld_error("No binary");
687 rtld_die();
688 }
689 }
690 }
691
692 ld_bind_now = ld_get_env_var(LD_BIND_NOW);
693
694 /*
695 * If the process is tainted, then we un-set the dangerous environment
696 * variables. The process will be marked as tainted until setuid(2)
697 * is called. If any child process calls setuid(2) we do not want any
698 * future processes to honor the potentially un-safe variables.
699 */
700 if (!trust) {
701 for (i = 0; i < (int)nitems(ld_env_vars); i++) {
702 lvd = &ld_env_vars[i];
703 if (lvd->unsecure)
704 lvd->val = NULL;
705 }
706 }
707
708 ld_debug = ld_get_env_var(LD_DEBUG);
709 if (ld_bind_now == NULL)
710 ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
711 ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
712 libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
713 libmap_override = ld_get_env_var(LD_LIBMAP);
714 ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
715 ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
716 ld_preload = ld_get_env_var(LD_PRELOAD);
717 ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
718 ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
719 ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
720 library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
721 if (library_path_rpath != NULL) {
722 if (library_path_rpath[0] == 'y' ||
723 library_path_rpath[0] == 'Y' ||
724 library_path_rpath[0] == '1')
725 ld_library_path_rpath = true;
726 else
727 ld_library_path_rpath = false;
728 }
729 static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
730 if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
731 sz = parse_integer(static_tls_extra);
732 if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
733 ld_static_tls_extra = sz;
734 }
735 dangerous_ld_env = libmap_disable || libmap_override != NULL ||
736 ld_library_path != NULL || ld_preload != NULL ||
737 ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
738 static_tls_extra != NULL;
739 ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
740 ld_utrace = ld_get_env_var(LD_UTRACE);
741
742 set_ld_elf_hints_path();
743 if (ld_debug != NULL && *ld_debug != '\0')
744 debug = 1;
745 dbg("%s is initialized, base address = %p", __progname,
746 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
747 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
748 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
749
750 dbg("initializing thread locks");
751 lockdflt_init();
752
753 /*
754 * Load the main program, or process its program header if it is
755 * already loaded.
756 */
757 if (fd != -1) { /* Load the main program. */
758 dbg("loading main program");
759 obj_main = map_object(fd, argv0, NULL);
760 close(fd);
761 if (obj_main == NULL)
762 rtld_die();
763 max_stack_flags = obj_main->stack_flags;
764 } else { /* Main program already loaded. */
765 dbg("processing main program's program header");
766 assert(aux_info[AT_PHDR] != NULL);
767 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
768 assert(aux_info[AT_PHNUM] != NULL);
769 phnum = aux_info[AT_PHNUM]->a_un.a_val;
770 assert(aux_info[AT_PHENT] != NULL);
771 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
772 assert(aux_info[AT_ENTRY] != NULL);
773 imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
774 if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
775 rtld_die();
776 }
777
778 if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
779 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
780 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
781 if (kexecpath[0] == '/')
782 obj_main->path = kexecpath;
783 else if (getcwd(buf, sizeof(buf)) == NULL ||
784 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
785 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
786 obj_main->path = xstrdup(argv0);
787 else
788 obj_main->path = xstrdup(buf);
789 } else {
790 dbg("No AT_EXECPATH or direct exec");
791 obj_main->path = xstrdup(argv0);
792 }
793 dbg("obj_main path %s", obj_main->path);
794 obj_main->mainprog = true;
795
796 if (aux_info[AT_STACKPROT] != NULL &&
797 aux_info[AT_STACKPROT]->a_un.a_val != 0)
798 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
799
800 #ifndef COMPAT_libcompat
801 /*
802 * Get the actual dynamic linker pathname from the executable if
803 * possible. (It should always be possible.) That ensures that
804 * gdb will find the right dynamic linker even if a non-standard
805 * one is being used.
806 */
807 if (obj_main->interp != NULL &&
808 strcmp(obj_main->interp, obj_rtld.path) != 0) {
809 free(obj_rtld.path);
810 obj_rtld.path = xstrdup(obj_main->interp);
811 __progname = obj_rtld.path;
812 }
813 #endif
814
815 if (!digest_dynamic(obj_main, 0))
816 rtld_die();
817 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
818 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
819 obj_main->dynsymcount);
820
821 linkmap_add(obj_main);
822 linkmap_add(&obj_rtld);
823
824 /* Link the main program into the list of objects. */
825 TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
826 obj_count++;
827 obj_loads++;
828
829 /* Initialize a fake symbol for resolving undefined weak references. */
830 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
831 sym_zero.st_shndx = SHN_UNDEF;
832 sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
833
834 if (!libmap_disable)
835 libmap_disable = (bool)lm_init(libmap_override);
836
837 if (aux_info[AT_KPRELOAD] != NULL &&
838 aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
839 dbg("loading kernel vdso");
840 if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
841 rtld_die();
842 }
843
844 dbg("loading LD_PRELOAD_FDS libraries");
845 if (load_preload_objects(ld_preload_fds, true) == -1)
846 rtld_die();
847
848 dbg("loading LD_PRELOAD libraries");
849 if (load_preload_objects(ld_preload, false) == -1)
850 rtld_die();
851 preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
852
853 dbg("loading needed objects");
854 if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
855 0) == -1)
856 rtld_die();
857
858 /* Make a list of all objects loaded at startup. */
859 last_interposer = obj_main;
860 TAILQ_FOREACH(obj, &obj_list, next) {
861 if (obj->marker)
862 continue;
863 if (obj->z_interpose && obj != obj_main) {
864 objlist_put_after(&list_main, last_interposer, obj);
865 last_interposer = obj;
866 } else {
867 objlist_push_tail(&list_main, obj);
868 }
869 obj->refcount++;
870 }
871
872 dbg("checking for required versions");
873 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
874 rtld_die();
875
876 if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
877 dump_auxv(aux_info);
878
879 if (ld_tracing) { /* We're done */
880 trace_loaded_objects(obj_main, true);
881 exit(0);
882 }
883
884 if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
885 dump_relocations(obj_main);
886 exit (0);
887 }
888
889 /*
890 * Processing tls relocations requires having the tls offsets
891 * initialized. Prepare offsets before starting initial
892 * relocation processing.
893 */
894 dbg("initializing initial thread local storage offsets");
895 STAILQ_FOREACH(entry, &list_main, link) {
896 /*
897 * Allocate all the initial objects out of the static TLS
898 * block even if they didn't ask for it.
899 */
900 allocate_tls_offset(entry->obj);
901 }
902
903 if (relocate_objects(obj_main,
904 ld_bind_now != NULL && *ld_bind_now != '\0',
905 &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
906 rtld_die();
907
908 dbg("doing copy relocations");
909 if (do_copy_relocations(obj_main) == -1)
910 rtld_die();
911
912 if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
913 dump_relocations(obj_main);
914 exit (0);
915 }
916
917 ifunc_init(aux_info);
918
919 /*
920 * Setup TLS for main thread. This must be done after the
921 * relocations are processed, since tls initialization section
922 * might be the subject for relocations.
923 */
924 dbg("initializing initial thread local storage");
925 allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
926
927 dbg("initializing key program variables");
928 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
929 set_program_var("environ", env);
930 set_program_var("__elf_aux_vector", aux);
931
932 /* Make a list of init functions to call. */
933 objlist_init(&initlist);
934 initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
935 preload_tail, &initlist);
936
937 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
938
939 map_stacks_exec(NULL);
940
941 if (!obj_main->crt_no_init) {
942 /*
943 * Make sure we don't call the main program's init and fini
944 * functions for binaries linked with old crt1 which calls
945 * _init itself.
946 */
947 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
948 obj_main->preinit_array = obj_main->init_array =
949 obj_main->fini_array = (Elf_Addr)NULL;
950 }
951
952 if (direct_exec) {
953 /* Set osrel for direct-execed binary */
954 mib[0] = CTL_KERN;
955 mib[1] = KERN_PROC;
956 mib[2] = KERN_PROC_OSREL;
957 mib[3] = getpid();
958 osrel = obj_main->osrel;
959 sz = sizeof(old_osrel);
960 dbg("setting osrel to %d", osrel);
961 (void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
962 }
963
964 wlock_acquire(rtld_bind_lock, &lockstate);
965
966 dbg("resolving ifuncs");
967 if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
968 *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
969 rtld_die();
970
971 rtld_exit_ptr = rtld_exit;
972 if (obj_main->crt_no_init)
973 preinit_main();
974 objlist_call_init(&initlist, &lockstate);
975 _r_debug_postinit(&obj_main->linkmap);
976 objlist_clear(&initlist);
977 dbg("loading filtees");
978 TAILQ_FOREACH(obj, &obj_list, next) {
979 if (obj->marker)
980 continue;
981 if (ld_loadfltr || obj->z_loadfltr)
982 load_filtees(obj, 0, &lockstate);
983 }
984
985 dbg("enforcing main obj relro");
986 if (obj_enforce_relro(obj_main) == -1)
987 rtld_die();
988
989 lock_release(rtld_bind_lock, &lockstate);
990
991 dbg("transferring control to program entry point = %p", obj_main->entry);
992
993 /* Return the exit procedure and the program entry point. */
994 *exit_proc = rtld_exit_ptr;
995 *objp = obj_main;
996 return ((func_ptr_type)obj_main->entry);
997 }
998
999 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1000 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1001 {
1002 void *ptr;
1003 Elf_Addr target;
1004
1005 ptr = (void *)make_function_pointer(def, obj);
1006 target = call_ifunc_resolver(ptr);
1007 return ((void *)target);
1008 }
1009
1010 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1011 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1012 {
1013 const Elf_Rel *rel;
1014 const Elf_Sym *def;
1015 const Obj_Entry *defobj;
1016 Elf_Addr *where;
1017 Elf_Addr target;
1018 RtldLockState lockstate;
1019
1020 rlock_acquire(rtld_bind_lock, &lockstate);
1021 if (sigsetjmp(lockstate.env, 0) != 0)
1022 lock_upgrade(rtld_bind_lock, &lockstate);
1023 if (obj->pltrel)
1024 rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1025 else
1026 rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1027
1028 where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1029 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1030 NULL, &lockstate);
1031 if (def == NULL)
1032 rtld_die();
1033 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1034 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1035 else
1036 target = (Elf_Addr)(defobj->relocbase + def->st_value);
1037
1038 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1039 defobj->strtab + def->st_name,
1040 obj->path == NULL ? NULL : basename(obj->path),
1041 (void *)target,
1042 defobj->path == NULL ? NULL : basename(defobj->path));
1043
1044 /*
1045 * Write the new contents for the jmpslot. Note that depending on
1046 * architecture, the value which we need to return back to the
1047 * lazy binding trampoline may or may not be the target
1048 * address. The value returned from reloc_jmpslot() is the value
1049 * that the trampoline needs.
1050 */
1051 target = reloc_jmpslot(where, target, defobj, obj, rel);
1052 lock_release(rtld_bind_lock, &lockstate);
1053 return (target);
1054 }
1055
1056 /*
1057 * Error reporting function. Use it like printf. If formats the message
1058 * into a buffer, and sets things up so that the next call to dlerror()
1059 * will return the message.
1060 */
1061 void
_rtld_error(const char * fmt,...)1062 _rtld_error(const char *fmt, ...)
1063 {
1064 va_list ap;
1065
1066 va_start(ap, fmt);
1067 rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1068 fmt, ap);
1069 va_end(ap);
1070 *lockinfo.dlerror_seen() = 0;
1071 dbg("rtld_error: %s", lockinfo.dlerror_loc());
1072 LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1073 }
1074
1075 /*
1076 * Return a dynamically-allocated copy of the current error message, if any.
1077 */
1078 static struct dlerror_save *
errmsg_save(void)1079 errmsg_save(void)
1080 {
1081 struct dlerror_save *res;
1082
1083 res = xmalloc(sizeof(*res));
1084 res->seen = *lockinfo.dlerror_seen();
1085 if (res->seen == 0)
1086 res->msg = xstrdup(lockinfo.dlerror_loc());
1087 return (res);
1088 }
1089
1090 /*
1091 * Restore the current error message from a copy which was previously saved
1092 * by errmsg_save(). The copy is freed.
1093 */
1094 static void
errmsg_restore(struct dlerror_save * saved_msg)1095 errmsg_restore(struct dlerror_save *saved_msg)
1096 {
1097 if (saved_msg == NULL || saved_msg->seen == 1) {
1098 *lockinfo.dlerror_seen() = 1;
1099 } else {
1100 *lockinfo.dlerror_seen() = 0;
1101 strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1102 lockinfo.dlerror_loc_sz);
1103 free(saved_msg->msg);
1104 }
1105 free(saved_msg);
1106 }
1107
1108 static const char *
basename(const char * name)1109 basename(const char *name)
1110 {
1111 const char *p;
1112
1113 p = strrchr(name, '/');
1114 return (p != NULL ? p + 1 : name);
1115 }
1116
1117 static struct utsname uts;
1118
1119 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1120 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1121 const char *subst, bool may_free)
1122 {
1123 char *p, *p1, *res, *resp;
1124 int subst_len, kw_len, subst_count, old_len, new_len;
1125
1126 kw_len = strlen(kw);
1127
1128 /*
1129 * First, count the number of the keyword occurrences, to
1130 * preallocate the final string.
1131 */
1132 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1133 p1 = strstr(p, kw);
1134 if (p1 == NULL)
1135 break;
1136 }
1137
1138 /*
1139 * If the keyword is not found, just return.
1140 *
1141 * Return non-substituted string if resolution failed. We
1142 * cannot do anything more reasonable, the failure mode of the
1143 * caller is unresolved library anyway.
1144 */
1145 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1146 return (may_free ? real : xstrdup(real));
1147 if (obj != NULL)
1148 subst = obj->origin_path;
1149
1150 /*
1151 * There is indeed something to substitute. Calculate the
1152 * length of the resulting string, and allocate it.
1153 */
1154 subst_len = strlen(subst);
1155 old_len = strlen(real);
1156 new_len = old_len + (subst_len - kw_len) * subst_count;
1157 res = xmalloc(new_len + 1);
1158
1159 /*
1160 * Now, execute the substitution loop.
1161 */
1162 for (p = real, resp = res, *resp = '\0';;) {
1163 p1 = strstr(p, kw);
1164 if (p1 != NULL) {
1165 /* Copy the prefix before keyword. */
1166 memcpy(resp, p, p1 - p);
1167 resp += p1 - p;
1168 /* Keyword replacement. */
1169 memcpy(resp, subst, subst_len);
1170 resp += subst_len;
1171 *resp = '\0';
1172 p = p1 + kw_len;
1173 } else
1174 break;
1175 }
1176
1177 /* Copy to the end of string and finish. */
1178 strcat(resp, p);
1179 if (may_free)
1180 free(real);
1181 return (res);
1182 }
1183
1184 static const struct {
1185 const char *kw;
1186 bool pass_obj;
1187 const char *subst;
1188 } tokens[] = {
1189 { .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1190 { .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1191 { .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1192 { .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1193 { .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1194 { .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1195 { .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1196 { .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1197 { .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1198 { .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1199 };
1200
1201 static char *
origin_subst(Obj_Entry * obj,const char * real)1202 origin_subst(Obj_Entry *obj, const char *real)
1203 {
1204 char *res;
1205 int i;
1206
1207 if (obj == NULL || !trust)
1208 return (xstrdup(real));
1209 if (uts.sysname[0] == '\0') {
1210 if (uname(&uts) != 0) {
1211 _rtld_error("utsname failed: %d", errno);
1212 return (NULL);
1213 }
1214 }
1215
1216 /* __DECONST is safe here since without may_free real is unchanged */
1217 res = __DECONST(char *, real);
1218 for (i = 0; i < (int)nitems(tokens); i++) {
1219 res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1220 res, tokens[i].kw, tokens[i].subst, i != 0);
1221 }
1222 return (res);
1223 }
1224
1225 void
rtld_die(void)1226 rtld_die(void)
1227 {
1228 const char *msg = dlerror();
1229
1230 if (msg == NULL)
1231 msg = "Fatal error";
1232 rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1233 rtld_fdputstr(STDERR_FILENO, msg);
1234 rtld_fdputchar(STDERR_FILENO, '\n');
1235 _exit(1);
1236 }
1237
1238 /*
1239 * Process a shared object's DYNAMIC section, and save the important
1240 * information in its Obj_Entry structure.
1241 */
1242 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1243 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1244 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1245 {
1246 const Elf_Dyn *dynp;
1247 Needed_Entry **needed_tail = &obj->needed;
1248 Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1249 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1250 const Elf_Hashelt *hashtab;
1251 const Elf32_Word *hashval;
1252 Elf32_Word bkt, nmaskwords;
1253 int bloom_size32;
1254 int plttype = DT_REL;
1255
1256 *dyn_rpath = NULL;
1257 *dyn_soname = NULL;
1258 *dyn_runpath = NULL;
1259
1260 obj->bind_now = false;
1261 dynp = obj->dynamic;
1262 if (dynp == NULL)
1263 return;
1264 for (; dynp->d_tag != DT_NULL; dynp++) {
1265 switch (dynp->d_tag) {
1266
1267 case DT_REL:
1268 obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1269 break;
1270
1271 case DT_RELSZ:
1272 obj->relsize = dynp->d_un.d_val;
1273 break;
1274
1275 case DT_RELENT:
1276 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1277 break;
1278
1279 case DT_JMPREL:
1280 obj->pltrel = (const Elf_Rel *)
1281 (obj->relocbase + dynp->d_un.d_ptr);
1282 break;
1283
1284 case DT_PLTRELSZ:
1285 obj->pltrelsize = dynp->d_un.d_val;
1286 break;
1287
1288 case DT_RELA:
1289 obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1290 break;
1291
1292 case DT_RELASZ:
1293 obj->relasize = dynp->d_un.d_val;
1294 break;
1295
1296 case DT_RELAENT:
1297 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1298 break;
1299
1300 case DT_RELR:
1301 obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1302 break;
1303
1304 case DT_RELRSZ:
1305 obj->relrsize = dynp->d_un.d_val;
1306 break;
1307
1308 case DT_RELRENT:
1309 assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1310 break;
1311
1312 case DT_PLTREL:
1313 plttype = dynp->d_un.d_val;
1314 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1315 break;
1316
1317 case DT_SYMTAB:
1318 obj->symtab = (const Elf_Sym *)
1319 (obj->relocbase + dynp->d_un.d_ptr);
1320 break;
1321
1322 case DT_SYMENT:
1323 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1324 break;
1325
1326 case DT_STRTAB:
1327 obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1328 break;
1329
1330 case DT_STRSZ:
1331 obj->strsize = dynp->d_un.d_val;
1332 break;
1333
1334 case DT_VERNEED:
1335 obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1336 dynp->d_un.d_val);
1337 break;
1338
1339 case DT_VERNEEDNUM:
1340 obj->verneednum = dynp->d_un.d_val;
1341 break;
1342
1343 case DT_VERDEF:
1344 obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1345 dynp->d_un.d_val);
1346 break;
1347
1348 case DT_VERDEFNUM:
1349 obj->verdefnum = dynp->d_un.d_val;
1350 break;
1351
1352 case DT_VERSYM:
1353 obj->versyms = (const Elf_Versym *)(obj->relocbase +
1354 dynp->d_un.d_val);
1355 break;
1356
1357 case DT_HASH:
1358 {
1359 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1360 dynp->d_un.d_ptr);
1361 obj->nbuckets = hashtab[0];
1362 obj->nchains = hashtab[1];
1363 obj->buckets = hashtab + 2;
1364 obj->chains = obj->buckets + obj->nbuckets;
1365 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1366 obj->buckets != NULL;
1367 }
1368 break;
1369
1370 case DT_GNU_HASH:
1371 {
1372 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1373 dynp->d_un.d_ptr);
1374 obj->nbuckets_gnu = hashtab[0];
1375 obj->symndx_gnu = hashtab[1];
1376 nmaskwords = hashtab[2];
1377 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1378 obj->maskwords_bm_gnu = nmaskwords - 1;
1379 obj->shift2_gnu = hashtab[3];
1380 obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1381 obj->buckets_gnu = hashtab + 4 + bloom_size32;
1382 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1383 obj->symndx_gnu;
1384 /* Number of bitmask words is required to be power of 2 */
1385 obj->valid_hash_gnu = powerof2(nmaskwords) &&
1386 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1387 }
1388 break;
1389
1390 case DT_NEEDED:
1391 if (!obj->rtld) {
1392 Needed_Entry *nep = NEW(Needed_Entry);
1393 nep->name = dynp->d_un.d_val;
1394 nep->obj = NULL;
1395 nep->next = NULL;
1396
1397 *needed_tail = nep;
1398 needed_tail = &nep->next;
1399 }
1400 break;
1401
1402 case DT_FILTER:
1403 if (!obj->rtld) {
1404 Needed_Entry *nep = NEW(Needed_Entry);
1405 nep->name = dynp->d_un.d_val;
1406 nep->obj = NULL;
1407 nep->next = NULL;
1408
1409 *needed_filtees_tail = nep;
1410 needed_filtees_tail = &nep->next;
1411
1412 if (obj->linkmap.l_refname == NULL)
1413 obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1414 }
1415 break;
1416
1417 case DT_AUXILIARY:
1418 if (!obj->rtld) {
1419 Needed_Entry *nep = NEW(Needed_Entry);
1420 nep->name = dynp->d_un.d_val;
1421 nep->obj = NULL;
1422 nep->next = NULL;
1423
1424 *needed_aux_filtees_tail = nep;
1425 needed_aux_filtees_tail = &nep->next;
1426 }
1427 break;
1428
1429 case DT_PLTGOT:
1430 obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1431 break;
1432
1433 case DT_TEXTREL:
1434 obj->textrel = true;
1435 break;
1436
1437 case DT_SYMBOLIC:
1438 obj->symbolic = true;
1439 break;
1440
1441 case DT_RPATH:
1442 /*
1443 * We have to wait until later to process this, because we
1444 * might not have gotten the address of the string table yet.
1445 */
1446 *dyn_rpath = dynp;
1447 break;
1448
1449 case DT_SONAME:
1450 *dyn_soname = dynp;
1451 break;
1452
1453 case DT_RUNPATH:
1454 *dyn_runpath = dynp;
1455 break;
1456
1457 case DT_INIT:
1458 obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1459 break;
1460
1461 case DT_PREINIT_ARRAY:
1462 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1463 break;
1464
1465 case DT_PREINIT_ARRAYSZ:
1466 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1467 break;
1468
1469 case DT_INIT_ARRAY:
1470 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1471 break;
1472
1473 case DT_INIT_ARRAYSZ:
1474 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1475 break;
1476
1477 case DT_FINI:
1478 obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1479 break;
1480
1481 case DT_FINI_ARRAY:
1482 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1483 break;
1484
1485 case DT_FINI_ARRAYSZ:
1486 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1487 break;
1488
1489 case DT_DEBUG:
1490 if (!early)
1491 dbg("Filling in DT_DEBUG entry");
1492 (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1493 break;
1494
1495 case DT_FLAGS:
1496 if (dynp->d_un.d_val & DF_ORIGIN)
1497 obj->z_origin = true;
1498 if (dynp->d_un.d_val & DF_SYMBOLIC)
1499 obj->symbolic = true;
1500 if (dynp->d_un.d_val & DF_TEXTREL)
1501 obj->textrel = true;
1502 if (dynp->d_un.d_val & DF_BIND_NOW)
1503 obj->bind_now = true;
1504 if (dynp->d_un.d_val & DF_STATIC_TLS)
1505 obj->static_tls = true;
1506 break;
1507
1508 case DT_FLAGS_1:
1509 if (dynp->d_un.d_val & DF_1_NOOPEN)
1510 obj->z_noopen = true;
1511 if (dynp->d_un.d_val & DF_1_ORIGIN)
1512 obj->z_origin = true;
1513 if (dynp->d_un.d_val & DF_1_GLOBAL)
1514 obj->z_global = true;
1515 if (dynp->d_un.d_val & DF_1_BIND_NOW)
1516 obj->bind_now = true;
1517 if (dynp->d_un.d_val & DF_1_NODELETE)
1518 obj->z_nodelete = true;
1519 if (dynp->d_un.d_val & DF_1_LOADFLTR)
1520 obj->z_loadfltr = true;
1521 if (dynp->d_un.d_val & DF_1_INTERPOSE)
1522 obj->z_interpose = true;
1523 if (dynp->d_un.d_val & DF_1_NODEFLIB)
1524 obj->z_nodeflib = true;
1525 if (dynp->d_un.d_val & DF_1_PIE)
1526 obj->z_pie = true;
1527 break;
1528
1529 default:
1530 if (arch_digest_dynamic(obj, dynp))
1531 break;
1532
1533 if (!early) {
1534 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1535 (long)dynp->d_tag);
1536 }
1537 break;
1538 }
1539 }
1540
1541 obj->traced = false;
1542
1543 if (plttype == DT_RELA) {
1544 obj->pltrela = (const Elf_Rela *) obj->pltrel;
1545 obj->pltrel = NULL;
1546 obj->pltrelasize = obj->pltrelsize;
1547 obj->pltrelsize = 0;
1548 }
1549
1550 /* Determine size of dynsym table (equal to nchains of sysv hash) */
1551 if (obj->valid_hash_sysv)
1552 obj->dynsymcount = obj->nchains;
1553 else if (obj->valid_hash_gnu) {
1554 obj->dynsymcount = 0;
1555 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1556 if (obj->buckets_gnu[bkt] == 0)
1557 continue;
1558 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1559 do
1560 obj->dynsymcount++;
1561 while ((*hashval++ & 1u) == 0);
1562 }
1563 obj->dynsymcount += obj->symndx_gnu;
1564 }
1565
1566 if (obj->linkmap.l_refname != NULL)
1567 obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1568 linkmap.l_refname;
1569 }
1570
1571 static bool
obj_resolve_origin(Obj_Entry * obj)1572 obj_resolve_origin(Obj_Entry *obj)
1573 {
1574
1575 if (obj->origin_path != NULL)
1576 return (true);
1577 obj->origin_path = xmalloc(PATH_MAX);
1578 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1579 }
1580
1581 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1582 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1583 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1584 {
1585
1586 if (obj->z_origin && !obj_resolve_origin(obj))
1587 return (false);
1588
1589 if (dyn_runpath != NULL) {
1590 obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1591 obj->runpath = origin_subst(obj, obj->runpath);
1592 } else if (dyn_rpath != NULL) {
1593 obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1594 obj->rpath = origin_subst(obj, obj->rpath);
1595 }
1596 if (dyn_soname != NULL)
1597 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1598 return (true);
1599 }
1600
1601 static bool
digest_dynamic(Obj_Entry * obj,int early)1602 digest_dynamic(Obj_Entry *obj, int early)
1603 {
1604 const Elf_Dyn *dyn_rpath;
1605 const Elf_Dyn *dyn_soname;
1606 const Elf_Dyn *dyn_runpath;
1607
1608 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1609 return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1610 }
1611
1612 /*
1613 * Process a shared object's program header. This is used only for the
1614 * main program, when the kernel has already loaded the main program
1615 * into memory before calling the dynamic linker. It creates and
1616 * returns an Obj_Entry structure.
1617 */
1618 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1619 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1620 {
1621 Obj_Entry *obj;
1622 const Elf_Phdr *phlimit = phdr + phnum;
1623 const Elf_Phdr *ph;
1624 Elf_Addr note_start, note_end;
1625 int nsegs = 0;
1626
1627 obj = obj_new();
1628 for (ph = phdr; ph < phlimit; ph++) {
1629 if (ph->p_type != PT_PHDR)
1630 continue;
1631
1632 obj->phdr = phdr;
1633 obj->phsize = ph->p_memsz;
1634 obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1635 break;
1636 }
1637
1638 obj->stack_flags = PF_X | PF_R | PF_W;
1639
1640 for (ph = phdr; ph < phlimit; ph++) {
1641 switch (ph->p_type) {
1642
1643 case PT_INTERP:
1644 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1645 break;
1646
1647 case PT_LOAD:
1648 if (nsegs == 0) { /* First load segment */
1649 obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1650 obj->mapbase = obj->vaddrbase + obj->relocbase;
1651 } else { /* Last load segment */
1652 obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1653 obj->vaddrbase;
1654 }
1655 nsegs++;
1656 break;
1657
1658 case PT_DYNAMIC:
1659 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1660 break;
1661
1662 case PT_TLS:
1663 obj->tlsindex = 1;
1664 obj->tlssize = ph->p_memsz;
1665 obj->tlsalign = ph->p_align;
1666 obj->tlsinitsize = ph->p_filesz;
1667 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1668 obj->tlspoffset = ph->p_offset;
1669 break;
1670
1671 case PT_GNU_STACK:
1672 obj->stack_flags = ph->p_flags;
1673 break;
1674
1675 case PT_GNU_RELRO:
1676 obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1677 obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1678 rtld_trunc_page(ph->p_vaddr);
1679 break;
1680
1681 case PT_NOTE:
1682 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1683 note_end = note_start + ph->p_filesz;
1684 digest_notes(obj, note_start, note_end);
1685 break;
1686 }
1687 }
1688 if (nsegs < 1) {
1689 _rtld_error("%s: too few PT_LOAD segments", path);
1690 return (NULL);
1691 }
1692
1693 obj->entry = entry;
1694 return (obj);
1695 }
1696
1697 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1698 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1699 {
1700 const Elf_Note *note;
1701 const char *note_name;
1702 uintptr_t p;
1703
1704 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1705 note = (const Elf_Note *)((const char *)(note + 1) +
1706 roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1707 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1708 if (arch_digest_note(obj, note))
1709 continue;
1710
1711 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1712 note->n_descsz != sizeof(int32_t))
1713 continue;
1714 if (note->n_type != NT_FREEBSD_ABI_TAG &&
1715 note->n_type != NT_FREEBSD_FEATURE_CTL &&
1716 note->n_type != NT_FREEBSD_NOINIT_TAG)
1717 continue;
1718 note_name = (const char *)(note + 1);
1719 if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1720 sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1721 continue;
1722 switch (note->n_type) {
1723 case NT_FREEBSD_ABI_TAG:
1724 /* FreeBSD osrel note */
1725 p = (uintptr_t)(note + 1);
1726 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1727 obj->osrel = *(const int32_t *)(p);
1728 dbg("note osrel %d", obj->osrel);
1729 break;
1730 case NT_FREEBSD_FEATURE_CTL:
1731 /* FreeBSD ABI feature control note */
1732 p = (uintptr_t)(note + 1);
1733 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1734 obj->fctl0 = *(const uint32_t *)(p);
1735 dbg("note fctl0 %#x", obj->fctl0);
1736 break;
1737 case NT_FREEBSD_NOINIT_TAG:
1738 /* FreeBSD 'crt does not call init' note */
1739 obj->crt_no_init = true;
1740 dbg("note crt_no_init");
1741 break;
1742 }
1743 }
1744 }
1745
1746 static Obj_Entry *
dlcheck(void * handle)1747 dlcheck(void *handle)
1748 {
1749 Obj_Entry *obj;
1750
1751 TAILQ_FOREACH(obj, &obj_list, next) {
1752 if (obj == (Obj_Entry *) handle)
1753 break;
1754 }
1755
1756 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1757 _rtld_error("Invalid shared object handle %p", handle);
1758 return (NULL);
1759 }
1760 return (obj);
1761 }
1762
1763 /*
1764 * If the given object is already in the donelist, return true. Otherwise
1765 * add the object to the list and return false.
1766 */
1767 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1768 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1769 {
1770 unsigned int i;
1771
1772 for (i = 0; i < dlp->num_used; i++)
1773 if (dlp->objs[i] == obj)
1774 return (true);
1775 /*
1776 * Our donelist allocation should always be sufficient. But if
1777 * our threads locking isn't working properly, more shared objects
1778 * could have been loaded since we allocated the list. That should
1779 * never happen, but we'll handle it properly just in case it does.
1780 */
1781 if (dlp->num_used < dlp->num_alloc)
1782 dlp->objs[dlp->num_used++] = obj;
1783 return (false);
1784 }
1785
1786 /*
1787 * SysV hash function for symbol table lookup. It is a slightly optimized
1788 * version of the hash specified by the System V ABI.
1789 */
1790 Elf32_Word
elf_hash(const char * name)1791 elf_hash(const char *name)
1792 {
1793 const unsigned char *p = (const unsigned char *)name;
1794 Elf32_Word h = 0;
1795
1796 while (*p != '\0') {
1797 h = (h << 4) + *p++;
1798 h ^= (h >> 24) & 0xf0;
1799 }
1800 return (h & 0x0fffffff);
1801 }
1802
1803 /*
1804 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1805 * unsigned in case it's implemented with a wider type.
1806 */
1807 static uint32_t
gnu_hash(const char * s)1808 gnu_hash(const char *s)
1809 {
1810 uint32_t h;
1811 unsigned char c;
1812
1813 h = 5381;
1814 for (c = *s; c != '\0'; c = *++s)
1815 h = h * 33 + c;
1816 return (h & 0xffffffff);
1817 }
1818
1819
1820 /*
1821 * Find the library with the given name, and return its full pathname.
1822 * The returned string is dynamically allocated. Generates an error
1823 * message and returns NULL if the library cannot be found.
1824 *
1825 * If the second argument is non-NULL, then it refers to an already-
1826 * loaded shared object, whose library search path will be searched.
1827 *
1828 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1829 * descriptor (which is close-on-exec) will be passed out via the third
1830 * argument.
1831 *
1832 * The search order is:
1833 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1834 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1835 * LD_LIBRARY_PATH
1836 * DT_RUNPATH in the referencing file
1837 * ldconfig hints (if -z nodefaultlib, filter out default library directories
1838 * from list)
1839 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1840 *
1841 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1842 */
1843 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1844 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1845 {
1846 char *pathname, *refobj_path;
1847 const char *name;
1848 bool nodeflib, objgiven;
1849
1850 objgiven = refobj != NULL;
1851
1852 if (libmap_disable || !objgiven ||
1853 (name = lm_find(refobj->path, xname)) == NULL)
1854 name = xname;
1855
1856 if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1857 if (name[0] != '/' && !trust) {
1858 _rtld_error("Absolute pathname required "
1859 "for shared object \"%s\"", name);
1860 return (NULL);
1861 }
1862 return (origin_subst(__DECONST(Obj_Entry *, refobj),
1863 __DECONST(char *, name)));
1864 }
1865
1866 dbg(" Searching for \"%s\"", name);
1867 refobj_path = objgiven ? refobj->path : NULL;
1868
1869 /*
1870 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall
1871 * back to pre-conforming behaviour if user requested so with
1872 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1873 * nodeflib.
1874 */
1875 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1876 pathname = search_library_path(name, ld_library_path,
1877 refobj_path, fdp);
1878 if (pathname != NULL)
1879 return (pathname);
1880 if (refobj != NULL) {
1881 pathname = search_library_path(name, refobj->rpath,
1882 refobj_path, fdp);
1883 if (pathname != NULL)
1884 return (pathname);
1885 }
1886 pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1887 if (pathname != NULL)
1888 return (pathname);
1889 pathname = search_library_path(name, gethints(false),
1890 refobj_path, fdp);
1891 if (pathname != NULL)
1892 return (pathname);
1893 pathname = search_library_path(name, ld_standard_library_path,
1894 refobj_path, fdp);
1895 if (pathname != NULL)
1896 return (pathname);
1897 } else {
1898 nodeflib = objgiven ? refobj->z_nodeflib : false;
1899 if (objgiven) {
1900 pathname = search_library_path(name, refobj->rpath,
1901 refobj->path, fdp);
1902 if (pathname != NULL)
1903 return (pathname);
1904 }
1905 if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1906 pathname = search_library_path(name, obj_main->rpath,
1907 refobj_path, fdp);
1908 if (pathname != NULL)
1909 return (pathname);
1910 }
1911 pathname = search_library_path(name, ld_library_path,
1912 refobj_path, fdp);
1913 if (pathname != NULL)
1914 return (pathname);
1915 if (objgiven) {
1916 pathname = search_library_path(name, refobj->runpath,
1917 refobj_path, fdp);
1918 if (pathname != NULL)
1919 return (pathname);
1920 }
1921 pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1922 if (pathname != NULL)
1923 return (pathname);
1924 pathname = search_library_path(name, gethints(nodeflib),
1925 refobj_path, fdp);
1926 if (pathname != NULL)
1927 return (pathname);
1928 if (objgiven && !nodeflib) {
1929 pathname = search_library_path(name,
1930 ld_standard_library_path, refobj_path, fdp);
1931 if (pathname != NULL)
1932 return (pathname);
1933 }
1934 }
1935
1936 if (objgiven && refobj->path != NULL) {
1937 _rtld_error("Shared object \"%s\" not found, "
1938 "required by \"%s\"", name, basename(refobj->path));
1939 } else {
1940 _rtld_error("Shared object \"%s\" not found", name);
1941 }
1942 return (NULL);
1943 }
1944
1945 /*
1946 * Given a symbol number in a referencing object, find the corresponding
1947 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1948 * no definition was found. Returns a pointer to the Obj_Entry of the
1949 * defining object via the reference parameter DEFOBJ_OUT.
1950 */
1951 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1952 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1953 const Obj_Entry **defobj_out, int flags, SymCache *cache,
1954 RtldLockState *lockstate)
1955 {
1956 const Elf_Sym *ref;
1957 const Elf_Sym *def;
1958 const Obj_Entry *defobj;
1959 const Ver_Entry *ve;
1960 SymLook req;
1961 const char *name;
1962 int res;
1963
1964 /*
1965 * If we have already found this symbol, get the information from
1966 * the cache.
1967 */
1968 if (symnum >= refobj->dynsymcount)
1969 return (NULL); /* Bad object */
1970 if (cache != NULL && cache[symnum].sym != NULL) {
1971 *defobj_out = cache[symnum].obj;
1972 return (cache[symnum].sym);
1973 }
1974
1975 ref = refobj->symtab + symnum;
1976 name = refobj->strtab + ref->st_name;
1977 def = NULL;
1978 defobj = NULL;
1979 ve = NULL;
1980
1981 /*
1982 * We don't have to do a full scale lookup if the symbol is local.
1983 * We know it will bind to the instance in this load module; to
1984 * which we already have a pointer (ie ref). By not doing a lookup,
1985 * we not only improve performance, but it also avoids unresolvable
1986 * symbols when local symbols are not in the hash table. This has
1987 * been seen with the ia64 toolchain.
1988 */
1989 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1990 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1991 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1992 symnum);
1993 }
1994 symlook_init(&req, name);
1995 req.flags = flags;
1996 ve = req.ventry = fetch_ventry(refobj, symnum);
1997 req.lockstate = lockstate;
1998 res = symlook_default(&req, refobj);
1999 if (res == 0) {
2000 def = req.sym_out;
2001 defobj = req.defobj_out;
2002 }
2003 } else {
2004 def = ref;
2005 defobj = refobj;
2006 }
2007
2008 /*
2009 * If we found no definition and the reference is weak, treat the
2010 * symbol as having the value zero.
2011 */
2012 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2013 def = &sym_zero;
2014 defobj = obj_main;
2015 }
2016
2017 if (def != NULL) {
2018 *defobj_out = defobj;
2019 /* Record the information in the cache to avoid subsequent lookups. */
2020 if (cache != NULL) {
2021 cache[symnum].sym = def;
2022 cache[symnum].obj = defobj;
2023 }
2024 } else {
2025 if (refobj != &obj_rtld)
2026 _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2027 ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2028 }
2029 return (def);
2030 }
2031
2032 /* Convert between native byte order and forced little resp. big endian. */
2033 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2034
2035 /*
2036 * Return the search path from the ldconfig hints file, reading it if
2037 * necessary. If nostdlib is true, then the default search paths are
2038 * not added to result.
2039 *
2040 * Returns NULL if there are problems with the hints file,
2041 * or if the search path there is empty.
2042 */
2043 static const char *
gethints(bool nostdlib)2044 gethints(bool nostdlib)
2045 {
2046 static char *filtered_path;
2047 static const char *hints;
2048 static struct elfhints_hdr hdr;
2049 struct fill_search_info_args sargs, hargs;
2050 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2051 struct dl_serpath *SLPpath, *hintpath;
2052 char *p;
2053 struct stat hint_stat;
2054 unsigned int SLPndx, hintndx, fndx, fcount;
2055 int fd;
2056 size_t flen;
2057 uint32_t dl;
2058 uint32_t magic; /* Magic number */
2059 uint32_t version; /* File version (1) */
2060 uint32_t strtab; /* Offset of string table in file */
2061 uint32_t dirlist; /* Offset of directory list in string table */
2062 uint32_t dirlistlen; /* strlen(dirlist) */
2063 bool is_le; /* Does the hints file use little endian */
2064 bool skip;
2065
2066 /* First call, read the hints file */
2067 if (hints == NULL) {
2068 /* Keep from trying again in case the hints file is bad. */
2069 hints = "";
2070
2071 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2072 dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2073 return (NULL);
2074 }
2075
2076 /*
2077 * Check of hdr.dirlistlen value against type limit
2078 * intends to pacify static analyzers. Further
2079 * paranoia leads to checks that dirlist is fully
2080 * contained in the file range.
2081 */
2082 if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2083 dbg("failed to read %lu bytes from hints file \"%s\"",
2084 (u_long)sizeof hdr, ld_elf_hints_path);
2085 cleanup1:
2086 close(fd);
2087 hdr.dirlistlen = 0;
2088 return (NULL);
2089 }
2090 dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2091 dbg("hints file byte-order: %s-endian",
2092 hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2093 is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2094 magic = COND_SWAP(hdr.magic);
2095 version = COND_SWAP(hdr.version);
2096 strtab = COND_SWAP(hdr.strtab);
2097 dirlist = COND_SWAP(hdr.dirlist);
2098 dirlistlen = COND_SWAP(hdr.dirlistlen);
2099 if (magic != ELFHINTS_MAGIC) {
2100 dbg("invalid magic number %#08x (expected: %#08x)",
2101 magic, ELFHINTS_MAGIC);
2102 goto cleanup1;
2103 }
2104 if (version != 1) {
2105 dbg("hints file version %d (expected: 1)", version);
2106 goto cleanup1;
2107 }
2108 if (dirlistlen > UINT_MAX / 2) {
2109 dbg("directory list is to long: %d > %d",
2110 dirlistlen, UINT_MAX / 2);
2111 goto cleanup1;
2112 }
2113 if (fstat(fd, &hint_stat) == -1) {
2114 dbg("failed to find length of hints file \"%s\"",
2115 ld_elf_hints_path);
2116 goto cleanup1;
2117 }
2118 dl = strtab;
2119 if (dl + dirlist < dl) {
2120 dbg("invalid string table position %d", dl);
2121 goto cleanup1;
2122 }
2123 dl += dirlist;
2124 if (dl + dirlistlen < dl) {
2125 dbg("invalid directory list offset %d", dirlist);
2126 goto cleanup1;
2127 }
2128 dl += dirlistlen;
2129 if (dl > hint_stat.st_size) {
2130 dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2131 ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2132 goto cleanup1;
2133 }
2134 p = xmalloc(dirlistlen + 1);
2135 if (pread(fd, p, dirlistlen + 1,
2136 strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2137 p[dirlistlen] != '\0') {
2138 free(p);
2139 dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2140 dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2141 goto cleanup1;
2142 }
2143 hints = p;
2144 close(fd);
2145 }
2146
2147 /*
2148 * If caller agreed to receive list which includes the default
2149 * paths, we are done. Otherwise, if we still did not
2150 * calculated filtered result, do it now.
2151 */
2152 if (!nostdlib)
2153 return (hints[0] != '\0' ? hints : NULL);
2154 if (filtered_path != NULL)
2155 goto filt_ret;
2156
2157 /*
2158 * Obtain the list of all configured search paths, and the
2159 * list of the default paths.
2160 *
2161 * First estimate the size of the results.
2162 */
2163 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2164 smeta.dls_cnt = 0;
2165 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2166 hmeta.dls_cnt = 0;
2167
2168 sargs.request = RTLD_DI_SERINFOSIZE;
2169 sargs.serinfo = &smeta;
2170 hargs.request = RTLD_DI_SERINFOSIZE;
2171 hargs.serinfo = &hmeta;
2172
2173 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2174 &sargs);
2175 path_enumerate(hints, fill_search_info, NULL, &hargs);
2176
2177 SLPinfo = xmalloc(smeta.dls_size);
2178 hintinfo = xmalloc(hmeta.dls_size);
2179
2180 /*
2181 * Next fetch both sets of paths.
2182 */
2183 sargs.request = RTLD_DI_SERINFO;
2184 sargs.serinfo = SLPinfo;
2185 sargs.serpath = &SLPinfo->dls_serpath[0];
2186 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2187
2188 hargs.request = RTLD_DI_SERINFO;
2189 hargs.serinfo = hintinfo;
2190 hargs.serpath = &hintinfo->dls_serpath[0];
2191 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2192
2193 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2194 &sargs);
2195 path_enumerate(hints, fill_search_info, NULL, &hargs);
2196
2197 /*
2198 * Now calculate the difference between two sets, by excluding
2199 * standard paths from the full set.
2200 */
2201 fndx = 0;
2202 fcount = 0;
2203 filtered_path = xmalloc(dirlistlen + 1);
2204 hintpath = &hintinfo->dls_serpath[0];
2205 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2206 skip = false;
2207 SLPpath = &SLPinfo->dls_serpath[0];
2208 /*
2209 * Check each standard path against current.
2210 */
2211 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2212 /* matched, skip the path */
2213 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2214 skip = true;
2215 break;
2216 }
2217 }
2218 if (skip)
2219 continue;
2220 /*
2221 * Not matched against any standard path, add the path
2222 * to result. Separate consequtive paths with ':'.
2223 */
2224 if (fcount > 0) {
2225 filtered_path[fndx] = ':';
2226 fndx++;
2227 }
2228 fcount++;
2229 flen = strlen(hintpath->dls_name);
2230 strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2231 fndx += flen;
2232 }
2233 filtered_path[fndx] = '\0';
2234
2235 free(SLPinfo);
2236 free(hintinfo);
2237
2238 filt_ret:
2239 return (filtered_path[0] != '\0' ? filtered_path : NULL);
2240 }
2241
2242 static void
init_dag(Obj_Entry * root)2243 init_dag(Obj_Entry *root)
2244 {
2245 const Needed_Entry *needed;
2246 const Objlist_Entry *elm;
2247 DoneList donelist;
2248
2249 if (root->dag_inited)
2250 return;
2251 donelist_init(&donelist);
2252
2253 /* Root object belongs to own DAG. */
2254 objlist_push_tail(&root->dldags, root);
2255 objlist_push_tail(&root->dagmembers, root);
2256 donelist_check(&donelist, root);
2257
2258 /*
2259 * Add dependencies of root object to DAG in breadth order
2260 * by exploiting the fact that each new object get added
2261 * to the tail of the dagmembers list.
2262 */
2263 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2264 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2265 if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2266 continue;
2267 objlist_push_tail(&needed->obj->dldags, root);
2268 objlist_push_tail(&root->dagmembers, needed->obj);
2269 }
2270 }
2271 root->dag_inited = true;
2272 }
2273
2274 static void
init_marker(Obj_Entry * marker)2275 init_marker(Obj_Entry *marker)
2276 {
2277
2278 bzero(marker, sizeof(*marker));
2279 marker->marker = true;
2280 }
2281
2282 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2283 globallist_curr(const Obj_Entry *obj)
2284 {
2285
2286 for (;;) {
2287 if (obj == NULL)
2288 return (NULL);
2289 if (!obj->marker)
2290 return (__DECONST(Obj_Entry *, obj));
2291 obj = TAILQ_PREV(obj, obj_entry_q, next);
2292 }
2293 }
2294
2295 Obj_Entry *
globallist_next(const Obj_Entry * obj)2296 globallist_next(const Obj_Entry *obj)
2297 {
2298
2299 for (;;) {
2300 obj = TAILQ_NEXT(obj, next);
2301 if (obj == NULL)
2302 return (NULL);
2303 if (!obj->marker)
2304 return (__DECONST(Obj_Entry *, obj));
2305 }
2306 }
2307
2308 /* Prevent the object from being unmapped while the bind lock is dropped. */
2309 static void
hold_object(Obj_Entry * obj)2310 hold_object(Obj_Entry *obj)
2311 {
2312
2313 obj->holdcount++;
2314 }
2315
2316 static void
unhold_object(Obj_Entry * obj)2317 unhold_object(Obj_Entry *obj)
2318 {
2319
2320 assert(obj->holdcount > 0);
2321 if (--obj->holdcount == 0 && obj->unholdfree)
2322 release_object(obj);
2323 }
2324
2325 static void
process_z(Obj_Entry * root)2326 process_z(Obj_Entry *root)
2327 {
2328 const Objlist_Entry *elm;
2329 Obj_Entry *obj;
2330
2331 /*
2332 * Walk over object DAG and process every dependent object
2333 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2334 * to grow their own DAG.
2335 *
2336 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2337 * symlook_global() to work.
2338 *
2339 * For DF_1_NODELETE, the DAG should have its reference upped.
2340 */
2341 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2342 obj = elm->obj;
2343 if (obj == NULL)
2344 continue;
2345 if (obj->z_nodelete && !obj->ref_nodel) {
2346 dbg("obj %s -z nodelete", obj->path);
2347 init_dag(obj);
2348 ref_dag(obj);
2349 obj->ref_nodel = true;
2350 }
2351 if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2352 dbg("obj %s -z global", obj->path);
2353 objlist_push_tail(&list_global, obj);
2354 init_dag(obj);
2355 }
2356 }
2357 }
2358
2359 static void
parse_rtld_phdr(Obj_Entry * obj)2360 parse_rtld_phdr(Obj_Entry *obj)
2361 {
2362 const Elf_Phdr *ph;
2363 Elf_Addr note_start, note_end;
2364
2365 obj->stack_flags = PF_X | PF_R | PF_W;
2366 for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
2367 obj->phsize; ph++) {
2368 switch (ph->p_type) {
2369 case PT_GNU_STACK:
2370 obj->stack_flags = ph->p_flags;
2371 break;
2372 case PT_GNU_RELRO:
2373 obj->relro_page = obj->relocbase +
2374 rtld_trunc_page(ph->p_vaddr);
2375 obj->relro_size = rtld_round_page(ph->p_memsz);
2376 break;
2377 case PT_NOTE:
2378 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2379 note_end = note_start + ph->p_filesz;
2380 digest_notes(obj, note_start, note_end);
2381 break;
2382 }
2383 }
2384 }
2385
2386 /*
2387 * Initialize the dynamic linker. The argument is the address at which
2388 * the dynamic linker has been mapped into memory. The primary task of
2389 * this function is to relocate the dynamic linker.
2390 */
2391 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2392 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2393 {
2394 Obj_Entry objtmp; /* Temporary rtld object */
2395 const Elf_Ehdr *ehdr;
2396 const Elf_Dyn *dyn_rpath;
2397 const Elf_Dyn *dyn_soname;
2398 const Elf_Dyn *dyn_runpath;
2399
2400 /*
2401 * Conjure up an Obj_Entry structure for the dynamic linker.
2402 *
2403 * The "path" member can't be initialized yet because string constants
2404 * cannot yet be accessed. Below we will set it correctly.
2405 */
2406 memset(&objtmp, 0, sizeof(objtmp));
2407 objtmp.path = NULL;
2408 objtmp.rtld = true;
2409 objtmp.mapbase = mapbase;
2410 #ifdef PIC
2411 objtmp.relocbase = mapbase;
2412 #endif
2413
2414 objtmp.dynamic = rtld_dynamic(&objtmp);
2415 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2416 assert(objtmp.needed == NULL);
2417 assert(!objtmp.textrel);
2418 /*
2419 * Temporarily put the dynamic linker entry into the object list, so
2420 * that symbols can be found.
2421 */
2422 relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2423
2424 ehdr = (Elf_Ehdr *)mapbase;
2425 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2426 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2427
2428 /* Initialize the object list. */
2429 TAILQ_INIT(&obj_list);
2430
2431 /* Now that non-local variables can be accesses, copy out obj_rtld. */
2432 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2433
2434 /* The page size is required by the dynamic memory allocator. */
2435 init_pagesizes(aux_info);
2436
2437 if (aux_info[AT_OSRELDATE] != NULL)
2438 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2439
2440 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2441
2442 /* Replace the path with a dynamically allocated copy. */
2443 obj_rtld.path = xstrdup(ld_path_rtld);
2444
2445 parse_rtld_phdr(&obj_rtld);
2446 if (obj_enforce_relro(&obj_rtld) == -1)
2447 rtld_die();
2448
2449 r_debug.r_version = R_DEBUG_VERSION;
2450 r_debug.r_brk = r_debug_state;
2451 r_debug.r_state = RT_CONSISTENT;
2452 r_debug.r_ldbase = obj_rtld.relocbase;
2453 }
2454
2455 /*
2456 * Retrieve the array of supported page sizes. The kernel provides the page
2457 * sizes in increasing order.
2458 */
2459 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2460 init_pagesizes(Elf_Auxinfo **aux_info)
2461 {
2462 static size_t psa[MAXPAGESIZES];
2463 int mib[2];
2464 size_t len, size;
2465
2466 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2467 NULL) {
2468 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2469 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2470 } else {
2471 len = 2;
2472 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2473 size = sizeof(psa);
2474 else {
2475 /* As a fallback, retrieve the base page size. */
2476 size = sizeof(psa[0]);
2477 if (aux_info[AT_PAGESZ] != NULL) {
2478 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2479 goto psa_filled;
2480 } else {
2481 mib[0] = CTL_HW;
2482 mib[1] = HW_PAGESIZE;
2483 len = 2;
2484 }
2485 }
2486 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2487 _rtld_error("sysctl for hw.pagesize(s) failed");
2488 rtld_die();
2489 }
2490 psa_filled:
2491 pagesizes = psa;
2492 }
2493 npagesizes = size / sizeof(pagesizes[0]);
2494 /* Discard any invalid entries at the end of the array. */
2495 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2496 npagesizes--;
2497
2498 page_size = pagesizes[0];
2499 }
2500
2501 /*
2502 * Add the init functions from a needed object list (and its recursive
2503 * needed objects) to "list". This is not used directly; it is a helper
2504 * function for initlist_add_objects(). The write lock must be held
2505 * when this function is called.
2506 */
2507 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2508 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2509 {
2510 /* Recursively process the successor needed objects. */
2511 if (needed->next != NULL)
2512 initlist_add_neededs(needed->next, list);
2513
2514 /* Process the current needed object. */
2515 if (needed->obj != NULL)
2516 initlist_add_objects(needed->obj, needed->obj, list);
2517 }
2518
2519 /*
2520 * Scan all of the DAGs rooted in the range of objects from "obj" to
2521 * "tail" and add their init functions to "list". This recurses over
2522 * the DAGs and ensure the proper init ordering such that each object's
2523 * needed libraries are initialized before the object itself. At the
2524 * same time, this function adds the objects to the global finalization
2525 * list "list_fini" in the opposite order. The write lock must be
2526 * held when this function is called.
2527 */
2528 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2529 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2530 {
2531 Obj_Entry *nobj;
2532
2533 if (obj->init_scanned || obj->init_done)
2534 return;
2535 obj->init_scanned = true;
2536
2537 /* Recursively process the successor objects. */
2538 nobj = globallist_next(obj);
2539 if (nobj != NULL && obj != tail)
2540 initlist_add_objects(nobj, tail, list);
2541
2542 /* Recursively process the needed objects. */
2543 if (obj->needed != NULL)
2544 initlist_add_neededs(obj->needed, list);
2545 if (obj->needed_filtees != NULL)
2546 initlist_add_neededs(obj->needed_filtees, list);
2547 if (obj->needed_aux_filtees != NULL)
2548 initlist_add_neededs(obj->needed_aux_filtees, list);
2549
2550 /* Add the object to the init list. */
2551 objlist_push_tail(list, obj);
2552
2553 /* Add the object to the global fini list in the reverse order. */
2554 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2555 && !obj->on_fini_list) {
2556 objlist_push_head(&list_fini, obj);
2557 obj->on_fini_list = true;
2558 }
2559 }
2560
2561 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2562 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2563 {
2564 Needed_Entry *needed, *needed1;
2565
2566 for (needed = n; needed != NULL; needed = needed->next) {
2567 if (needed->obj != NULL) {
2568 dlclose_locked(needed->obj, lockstate);
2569 needed->obj = NULL;
2570 }
2571 }
2572 for (needed = n; needed != NULL; needed = needed1) {
2573 needed1 = needed->next;
2574 free(needed);
2575 }
2576 }
2577
2578 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2579 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2580 {
2581
2582 free_needed_filtees(obj->needed_filtees, lockstate);
2583 obj->needed_filtees = NULL;
2584 free_needed_filtees(obj->needed_aux_filtees, lockstate);
2585 obj->needed_aux_filtees = NULL;
2586 obj->filtees_loaded = false;
2587 }
2588
2589 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2590 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2591 RtldLockState *lockstate)
2592 {
2593
2594 for (; needed != NULL; needed = needed->next) {
2595 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2596 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2597 RTLD_LOCAL, lockstate);
2598 }
2599 }
2600
2601 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2602 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2603 {
2604 if (obj->filtees_loaded || obj->filtees_loading)
2605 return;
2606 lock_restart_for_upgrade(lockstate);
2607 obj->filtees_loading = true;
2608 load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2609 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2610 obj->filtees_loaded = true;
2611 obj->filtees_loading = false;
2612 }
2613
2614 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2615 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2616 {
2617 Obj_Entry *obj1;
2618
2619 for (; needed != NULL; needed = needed->next) {
2620 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2621 flags & ~RTLD_LO_NOLOAD);
2622 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2623 return (-1);
2624 }
2625 return (0);
2626 }
2627
2628 /*
2629 * Given a shared object, traverse its list of needed objects, and load
2630 * each of them. Returns 0 on success. Generates an error message and
2631 * returns -1 on failure.
2632 */
2633 static int
load_needed_objects(Obj_Entry * first,int flags)2634 load_needed_objects(Obj_Entry *first, int flags)
2635 {
2636 Obj_Entry *obj;
2637
2638 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2639 if (obj->marker)
2640 continue;
2641 if (process_needed(obj, obj->needed, flags) == -1)
2642 return (-1);
2643 }
2644 return (0);
2645 }
2646
2647 static int
load_preload_objects(const char * penv,bool isfd)2648 load_preload_objects(const char *penv, bool isfd)
2649 {
2650 Obj_Entry *obj;
2651 const char *name;
2652 size_t len;
2653 char savech, *p, *psave;
2654 int fd;
2655 static const char delim[] = " \t:;";
2656
2657 if (penv == NULL)
2658 return (0);
2659
2660 p = psave = xstrdup(penv);
2661 p += strspn(p, delim);
2662 while (*p != '\0') {
2663 len = strcspn(p, delim);
2664
2665 savech = p[len];
2666 p[len] = '\0';
2667 if (isfd) {
2668 name = NULL;
2669 fd = parse_integer(p);
2670 if (fd == -1) {
2671 free(psave);
2672 return (-1);
2673 }
2674 } else {
2675 name = p;
2676 fd = -1;
2677 }
2678
2679 obj = load_object(name, fd, NULL, 0);
2680 if (obj == NULL) {
2681 free(psave);
2682 return (-1); /* XXX - cleanup */
2683 }
2684 obj->z_interpose = true;
2685 p[len] = savech;
2686 p += len;
2687 p += strspn(p, delim);
2688 }
2689 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2690
2691 free(psave);
2692 return (0);
2693 }
2694
2695 static const char *
printable_path(const char * path)2696 printable_path(const char *path)
2697 {
2698
2699 return (path == NULL ? "<unknown>" : path);
2700 }
2701
2702 /*
2703 * Load a shared object into memory, if it is not already loaded. The
2704 * object may be specified by name or by user-supplied file descriptor
2705 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2706 * duplicate is.
2707 *
2708 * Returns a pointer to the Obj_Entry for the object. Returns NULL
2709 * on failure.
2710 */
2711 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2712 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2713 {
2714 Obj_Entry *obj;
2715 int fd;
2716 struct stat sb;
2717 char *path;
2718
2719 fd = -1;
2720 if (name != NULL) {
2721 TAILQ_FOREACH(obj, &obj_list, next) {
2722 if (obj->marker || obj->doomed)
2723 continue;
2724 if (object_match_name(obj, name))
2725 return (obj);
2726 }
2727
2728 path = find_library(name, refobj, &fd);
2729 if (path == NULL)
2730 return (NULL);
2731 } else
2732 path = NULL;
2733
2734 if (fd >= 0) {
2735 /*
2736 * search_library_pathfds() opens a fresh file descriptor for the
2737 * library, so there is no need to dup().
2738 */
2739 } else if (fd_u == -1) {
2740 /*
2741 * If we didn't find a match by pathname, or the name is not
2742 * supplied, open the file and check again by device and inode.
2743 * This avoids false mismatches caused by multiple links or ".."
2744 * in pathnames.
2745 *
2746 * To avoid a race, we open the file and use fstat() rather than
2747 * using stat().
2748 */
2749 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2750 _rtld_error("Cannot open \"%s\"", path);
2751 free(path);
2752 return (NULL);
2753 }
2754 } else {
2755 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2756 if (fd == -1) {
2757 _rtld_error("Cannot dup fd");
2758 free(path);
2759 return (NULL);
2760 }
2761 }
2762 if (fstat(fd, &sb) == -1) {
2763 _rtld_error("Cannot fstat \"%s\"", printable_path(path));
2764 close(fd);
2765 free(path);
2766 return (NULL);
2767 }
2768 TAILQ_FOREACH(obj, &obj_list, next) {
2769 if (obj->marker || obj->doomed)
2770 continue;
2771 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2772 break;
2773 }
2774 if (obj != NULL) {
2775 if (name != NULL)
2776 object_add_name(obj, name);
2777 free(path);
2778 close(fd);
2779 return (obj);
2780 }
2781 if (flags & RTLD_LO_NOLOAD) {
2782 free(path);
2783 close(fd);
2784 return (NULL);
2785 }
2786
2787 /* First use of this object, so we must map it in */
2788 obj = do_load_object(fd, name, path, &sb, flags);
2789 if (obj == NULL)
2790 free(path);
2791 close(fd);
2792
2793 return (obj);
2794 }
2795
2796 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2797 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2798 int flags)
2799 {
2800 Obj_Entry *obj;
2801 struct statfs fs;
2802
2803 /*
2804 * First, make sure that environment variables haven't been
2805 * used to circumvent the noexec flag on a filesystem.
2806 * We ignore fstatfs(2) failures, since fd might reference
2807 * not a file, e.g. shmfd.
2808 */
2809 if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2810 (fs.f_flags & MNT_NOEXEC) != 0) {
2811 _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2812 return (NULL);
2813 }
2814
2815 dbg("loading \"%s\"", printable_path(path));
2816 obj = map_object(fd, printable_path(path), sbp);
2817 if (obj == NULL)
2818 return (NULL);
2819
2820 /*
2821 * If DT_SONAME is present in the object, digest_dynamic2 already
2822 * added it to the object names.
2823 */
2824 if (name != NULL)
2825 object_add_name(obj, name);
2826 obj->path = path;
2827 if (!digest_dynamic(obj, 0))
2828 goto errp;
2829 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2830 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2831 if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2832 dbg("refusing to load PIE executable \"%s\"", obj->path);
2833 _rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2834 goto errp;
2835 }
2836 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2837 RTLD_LO_DLOPEN) {
2838 dbg("refusing to load non-loadable \"%s\"", obj->path);
2839 _rtld_error("Cannot dlopen non-loadable %s", obj->path);
2840 goto errp;
2841 }
2842
2843 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2844 TAILQ_INSERT_TAIL(&obj_list, obj, next);
2845 obj_count++;
2846 obj_loads++;
2847 linkmap_add(obj); /* for GDB & dlinfo() */
2848 max_stack_flags |= obj->stack_flags;
2849
2850 dbg(" %p .. %p: %s", obj->mapbase,
2851 obj->mapbase + obj->mapsize - 1, obj->path);
2852 if (obj->textrel)
2853 dbg(" WARNING: %s has impure text", obj->path);
2854 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2855 obj->path);
2856
2857 return (obj);
2858
2859 errp:
2860 munmap(obj->mapbase, obj->mapsize);
2861 obj_free(obj);
2862 return (NULL);
2863 }
2864
2865 static int
load_kpreload(const void * addr)2866 load_kpreload(const void *addr)
2867 {
2868 Obj_Entry *obj;
2869 const Elf_Ehdr *ehdr;
2870 const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2871 static const char kname[] = "[vdso]";
2872
2873 ehdr = addr;
2874 if (!check_elf_headers(ehdr, "kpreload"))
2875 return (-1);
2876 obj = obj_new();
2877 phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2878 obj->phdr = phdr;
2879 obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2880 phlimit = phdr + ehdr->e_phnum;
2881 seg0 = segn = NULL;
2882
2883 for (; phdr < phlimit; phdr++) {
2884 switch (phdr->p_type) {
2885 case PT_DYNAMIC:
2886 phdyn = phdr;
2887 break;
2888 case PT_GNU_STACK:
2889 /* Absense of PT_GNU_STACK implies stack_flags == 0. */
2890 obj->stack_flags = phdr->p_flags;
2891 break;
2892 case PT_LOAD:
2893 if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2894 seg0 = phdr;
2895 if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2896 phdr->p_vaddr + phdr->p_memsz)
2897 segn = phdr;
2898 break;
2899 }
2900 }
2901
2902 obj->mapbase = __DECONST(caddr_t, addr);
2903 obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2904 obj->vaddrbase = 0;
2905 obj->relocbase = obj->mapbase;
2906
2907 object_add_name(obj, kname);
2908 obj->path = xstrdup(kname);
2909 obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2910
2911 if (!digest_dynamic(obj, 0)) {
2912 obj_free(obj);
2913 return (-1);
2914 }
2915
2916 /*
2917 * We assume that kernel-preloaded object does not need
2918 * relocation. It is currently written into read-only page,
2919 * handling relocations would mean we need to allocate at
2920 * least one additional page per AS.
2921 */
2922 dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2923 obj->path, obj->mapbase, obj->phdr, seg0,
2924 obj->relocbase + seg0->p_vaddr, obj->dynamic);
2925
2926 TAILQ_INSERT_TAIL(&obj_list, obj, next);
2927 obj_count++;
2928 obj_loads++;
2929 linkmap_add(obj); /* for GDB & dlinfo() */
2930 max_stack_flags |= obj->stack_flags;
2931
2932 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2933 return (0);
2934 }
2935
2936 Obj_Entry *
obj_from_addr(const void * addr)2937 obj_from_addr(const void *addr)
2938 {
2939 Obj_Entry *obj;
2940
2941 TAILQ_FOREACH(obj, &obj_list, next) {
2942 if (obj->marker)
2943 continue;
2944 if (addr < (void *) obj->mapbase)
2945 continue;
2946 if (addr < (void *)(obj->mapbase + obj->mapsize))
2947 return obj;
2948 }
2949 return (NULL);
2950 }
2951
2952 static void
preinit_main(void)2953 preinit_main(void)
2954 {
2955 Elf_Addr *preinit_addr;
2956 int index;
2957
2958 preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2959 if (preinit_addr == NULL)
2960 return;
2961
2962 for (index = 0; index < obj_main->preinit_array_num; index++) {
2963 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2964 dbg("calling preinit function for %s at %p", obj_main->path,
2965 (void *)preinit_addr[index]);
2966 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2967 0, 0, obj_main->path);
2968 call_init_pointer(obj_main, preinit_addr[index]);
2969 }
2970 }
2971 }
2972
2973 /*
2974 * Call the finalization functions for each of the objects in "list"
2975 * belonging to the DAG of "root" and referenced once. If NULL "root"
2976 * is specified, every finalization function will be called regardless
2977 * of the reference count and the list elements won't be freed. All of
2978 * the objects are expected to have non-NULL fini functions.
2979 */
2980 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)2981 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2982 {
2983 Objlist_Entry *elm;
2984 struct dlerror_save *saved_msg;
2985 Elf_Addr *fini_addr;
2986 int index;
2987
2988 assert(root == NULL || root->refcount == 1);
2989
2990 if (root != NULL)
2991 root->doomed = true;
2992
2993 /*
2994 * Preserve the current error message since a fini function might
2995 * call into the dynamic linker and overwrite it.
2996 */
2997 saved_msg = errmsg_save();
2998 do {
2999 STAILQ_FOREACH(elm, list, link) {
3000 if (root != NULL && (elm->obj->refcount != 1 ||
3001 objlist_find(&root->dagmembers, elm->obj) == NULL))
3002 continue;
3003 /* Remove object from fini list to prevent recursive invocation. */
3004 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3005 /* Ensure that new references cannot be acquired. */
3006 elm->obj->doomed = true;
3007
3008 hold_object(elm->obj);
3009 lock_release(rtld_bind_lock, lockstate);
3010 /*
3011 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3012 * When this happens, DT_FINI_ARRAY is processed first.
3013 */
3014 fini_addr = (Elf_Addr *)elm->obj->fini_array;
3015 if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3016 for (index = elm->obj->fini_array_num - 1; index >= 0;
3017 index--) {
3018 if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3019 dbg("calling fini function for %s at %p",
3020 elm->obj->path, (void *)fini_addr[index]);
3021 LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3022 (void *)fini_addr[index], 0, 0, elm->obj->path);
3023 call_initfini_pointer(elm->obj, fini_addr[index]);
3024 }
3025 }
3026 }
3027 if (elm->obj->fini != (Elf_Addr)NULL) {
3028 dbg("calling fini function for %s at %p", elm->obj->path,
3029 (void *)elm->obj->fini);
3030 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3031 0, 0, elm->obj->path);
3032 call_initfini_pointer(elm->obj, elm->obj->fini);
3033 }
3034 wlock_acquire(rtld_bind_lock, lockstate);
3035 unhold_object(elm->obj);
3036 /* No need to free anything if process is going down. */
3037 if (root != NULL)
3038 free(elm);
3039 /*
3040 * We must restart the list traversal after every fini call
3041 * because a dlclose() call from the fini function or from
3042 * another thread might have modified the reference counts.
3043 */
3044 break;
3045 }
3046 } while (elm != NULL);
3047 errmsg_restore(saved_msg);
3048 }
3049
3050 /*
3051 * Call the initialization functions for each of the objects in
3052 * "list". All of the objects are expected to have non-NULL init
3053 * functions.
3054 */
3055 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3056 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3057 {
3058 Objlist_Entry *elm;
3059 Obj_Entry *obj;
3060 struct dlerror_save *saved_msg;
3061 Elf_Addr *init_addr;
3062 void (*reg)(void (*)(void));
3063 int index;
3064
3065 /*
3066 * Clean init_scanned flag so that objects can be rechecked and
3067 * possibly initialized earlier if any of vectors called below
3068 * cause the change by using dlopen.
3069 */
3070 TAILQ_FOREACH(obj, &obj_list, next) {
3071 if (obj->marker)
3072 continue;
3073 obj->init_scanned = false;
3074 }
3075
3076 /*
3077 * Preserve the current error message since an init function might
3078 * call into the dynamic linker and overwrite it.
3079 */
3080 saved_msg = errmsg_save();
3081 STAILQ_FOREACH(elm, list, link) {
3082 if (elm->obj->init_done) /* Initialized early. */
3083 continue;
3084 /*
3085 * Race: other thread might try to use this object before current
3086 * one completes the initialization. Not much can be done here
3087 * without better locking.
3088 */
3089 elm->obj->init_done = true;
3090 hold_object(elm->obj);
3091 reg = NULL;
3092 if (elm->obj == obj_main && obj_main->crt_no_init) {
3093 reg = (void (*)(void (*)(void)))get_program_var_addr(
3094 "__libc_atexit", lockstate);
3095 }
3096 lock_release(rtld_bind_lock, lockstate);
3097 if (reg != NULL) {
3098 reg(rtld_exit);
3099 rtld_exit_ptr = rtld_nop_exit;
3100 }
3101
3102 /*
3103 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3104 * When this happens, DT_INIT is processed first.
3105 */
3106 if (elm->obj->init != (Elf_Addr)NULL) {
3107 dbg("calling init function for %s at %p", elm->obj->path,
3108 (void *)elm->obj->init);
3109 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3110 0, 0, elm->obj->path);
3111 call_init_pointer(elm->obj, elm->obj->init);
3112 }
3113 init_addr = (Elf_Addr *)elm->obj->init_array;
3114 if (init_addr != NULL) {
3115 for (index = 0; index < elm->obj->init_array_num; index++) {
3116 if (init_addr[index] != 0 && init_addr[index] != 1) {
3117 dbg("calling init function for %s at %p", elm->obj->path,
3118 (void *)init_addr[index]);
3119 LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3120 (void *)init_addr[index], 0, 0, elm->obj->path);
3121 call_init_pointer(elm->obj, init_addr[index]);
3122 }
3123 }
3124 }
3125 wlock_acquire(rtld_bind_lock, lockstate);
3126 unhold_object(elm->obj);
3127 }
3128 errmsg_restore(saved_msg);
3129 }
3130
3131 static void
objlist_clear(Objlist * list)3132 objlist_clear(Objlist *list)
3133 {
3134 Objlist_Entry *elm;
3135
3136 while (!STAILQ_EMPTY(list)) {
3137 elm = STAILQ_FIRST(list);
3138 STAILQ_REMOVE_HEAD(list, link);
3139 free(elm);
3140 }
3141 }
3142
3143 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3144 objlist_find(Objlist *list, const Obj_Entry *obj)
3145 {
3146 Objlist_Entry *elm;
3147
3148 STAILQ_FOREACH(elm, list, link)
3149 if (elm->obj == obj)
3150 return elm;
3151 return (NULL);
3152 }
3153
3154 static void
objlist_init(Objlist * list)3155 objlist_init(Objlist *list)
3156 {
3157 STAILQ_INIT(list);
3158 }
3159
3160 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3161 objlist_push_head(Objlist *list, Obj_Entry *obj)
3162 {
3163 Objlist_Entry *elm;
3164
3165 elm = NEW(Objlist_Entry);
3166 elm->obj = obj;
3167 STAILQ_INSERT_HEAD(list, elm, link);
3168 }
3169
3170 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3171 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3172 {
3173 Objlist_Entry *elm;
3174
3175 elm = NEW(Objlist_Entry);
3176 elm->obj = obj;
3177 STAILQ_INSERT_TAIL(list, elm, link);
3178 }
3179
3180 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3181 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3182 {
3183 Objlist_Entry *elm, *listelm;
3184
3185 STAILQ_FOREACH(listelm, list, link) {
3186 if (listelm->obj == listobj)
3187 break;
3188 }
3189 elm = NEW(Objlist_Entry);
3190 elm->obj = obj;
3191 if (listelm != NULL)
3192 STAILQ_INSERT_AFTER(list, listelm, elm, link);
3193 else
3194 STAILQ_INSERT_TAIL(list, elm, link);
3195 }
3196
3197 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3198 objlist_remove(Objlist *list, Obj_Entry *obj)
3199 {
3200 Objlist_Entry *elm;
3201
3202 if ((elm = objlist_find(list, obj)) != NULL) {
3203 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3204 free(elm);
3205 }
3206 }
3207
3208 /*
3209 * Relocate dag rooted in the specified object.
3210 * Returns 0 on success, or -1 on failure.
3211 */
3212
3213 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3214 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3215 int flags, RtldLockState *lockstate)
3216 {
3217 Objlist_Entry *elm;
3218 int error;
3219
3220 error = 0;
3221 STAILQ_FOREACH(elm, &root->dagmembers, link) {
3222 error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3223 lockstate);
3224 if (error == -1)
3225 break;
3226 }
3227 return (error);
3228 }
3229
3230 /*
3231 * Prepare for, or clean after, relocating an object marked with
3232 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only
3233 * segments are remapped read-write. After relocations are done, the
3234 * segment's permissions are returned back to the modes specified in
3235 * the phdrs. If any relocation happened, or always for wired
3236 * program, COW is triggered.
3237 */
3238 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3239 reloc_textrel_prot(Obj_Entry *obj, bool before)
3240 {
3241 const Elf_Phdr *ph;
3242 void *base;
3243 size_t l, sz;
3244 int prot;
3245
3246 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3247 l--, ph++) {
3248 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3249 continue;
3250 base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3251 sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3252 rtld_trunc_page(ph->p_vaddr);
3253 prot = before ? (PROT_READ | PROT_WRITE) :
3254 convert_prot(ph->p_flags);
3255 if (mprotect(base, sz, prot) == -1) {
3256 _rtld_error("%s: Cannot write-%sable text segment: %s",
3257 obj->path, before ? "en" : "dis",
3258 rtld_strerror(errno));
3259 return (-1);
3260 }
3261 }
3262 return (0);
3263 }
3264
3265 /* Process RELR relative relocations. */
3266 static void
reloc_relr(Obj_Entry * obj)3267 reloc_relr(Obj_Entry *obj)
3268 {
3269 const Elf_Relr *relr, *relrlim;
3270 Elf_Addr *where;
3271
3272 relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3273 for (relr = obj->relr; relr < relrlim; relr++) {
3274 Elf_Relr entry = *relr;
3275
3276 if ((entry & 1) == 0) {
3277 where = (Elf_Addr *)(obj->relocbase + entry);
3278 *where++ += (Elf_Addr)obj->relocbase;
3279 } else {
3280 for (long i = 0; (entry >>= 1) != 0; i++)
3281 if ((entry & 1) != 0)
3282 where[i] += (Elf_Addr)obj->relocbase;
3283 where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3284 }
3285 }
3286 }
3287
3288 /*
3289 * Relocate single object.
3290 * Returns 0 on success, or -1 on failure.
3291 */
3292 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3293 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3294 int flags, RtldLockState *lockstate)
3295 {
3296
3297 if (obj->relocated)
3298 return (0);
3299 obj->relocated = true;
3300 if (obj != rtldobj)
3301 dbg("relocating \"%s\"", obj->path);
3302
3303 if (obj->symtab == NULL || obj->strtab == NULL ||
3304 !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3305 dbg("object %s has no run-time symbol table", obj->path);
3306
3307 /* There are relocations to the write-protected text segment. */
3308 if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3309 return (-1);
3310
3311 /* Process the non-PLT non-IFUNC relocations. */
3312 if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3313 return (-1);
3314 reloc_relr(obj);
3315
3316 /* Re-protected the text segment. */
3317 if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3318 return (-1);
3319
3320 /* Set the special PLT or GOT entries. */
3321 init_pltgot(obj);
3322
3323 /* Process the PLT relocations. */
3324 if (reloc_plt(obj, flags, lockstate) == -1)
3325 return (-1);
3326 /* Relocate the jump slots if we are doing immediate binding. */
3327 if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3328 lockstate) == -1)
3329 return (-1);
3330
3331 if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3332 return (-1);
3333
3334 /*
3335 * Set up the magic number and version in the Obj_Entry. These
3336 * were checked in the crt1.o from the original ElfKit, so we
3337 * set them for backward compatibility.
3338 */
3339 obj->magic = RTLD_MAGIC;
3340 obj->version = RTLD_VERSION;
3341
3342 return (0);
3343 }
3344
3345 /*
3346 * Relocate newly-loaded shared objects. The argument is a pointer to
3347 * the Obj_Entry for the first such object. All objects from the first
3348 * to the end of the list of objects are relocated. Returns 0 on success,
3349 * or -1 on failure.
3350 */
3351 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3352 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3353 int flags, RtldLockState *lockstate)
3354 {
3355 Obj_Entry *obj;
3356 int error;
3357
3358 for (error = 0, obj = first; obj != NULL;
3359 obj = TAILQ_NEXT(obj, next)) {
3360 if (obj->marker)
3361 continue;
3362 error = relocate_object(obj, bind_now, rtldobj, flags,
3363 lockstate);
3364 if (error == -1)
3365 break;
3366 }
3367 return (error);
3368 }
3369
3370 /*
3371 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3372 * referencing STT_GNU_IFUNC symbols is postponed till the other
3373 * relocations are done. The indirect functions specified as
3374 * ifunc are allowed to call other symbols, so we need to have
3375 * objects relocated before asking for resolution from indirects.
3376 *
3377 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3378 * instead of the usual lazy handling of PLT slots. It is
3379 * consistent with how GNU does it.
3380 */
3381 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3382 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3383 RtldLockState *lockstate)
3384 {
3385
3386 if (obj->ifuncs_resolved)
3387 return (0);
3388 obj->ifuncs_resolved = true;
3389 if (!obj->irelative && !obj->irelative_nonplt &&
3390 !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3391 !obj->non_plt_gnu_ifunc)
3392 return (0);
3393 if (obj_disable_relro(obj) == -1 ||
3394 (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3395 (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3396 lockstate) == -1) ||
3397 ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3398 reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3399 (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3400 flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3401 obj_enforce_relro(obj) == -1)
3402 return (-1);
3403 return (0);
3404 }
3405
3406 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3407 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3408 RtldLockState *lockstate)
3409 {
3410 Objlist_Entry *elm;
3411 Obj_Entry *obj;
3412
3413 STAILQ_FOREACH(elm, list, link) {
3414 obj = elm->obj;
3415 if (obj->marker)
3416 continue;
3417 if (resolve_object_ifunc(obj, bind_now, flags,
3418 lockstate) == -1)
3419 return (-1);
3420 }
3421 return (0);
3422 }
3423
3424 /*
3425 * Cleanup procedure. It will be called (by the atexit mechanism) just
3426 * before the process exits.
3427 */
3428 static void
rtld_exit(void)3429 rtld_exit(void)
3430 {
3431 RtldLockState lockstate;
3432
3433 wlock_acquire(rtld_bind_lock, &lockstate);
3434 dbg("rtld_exit()");
3435 objlist_call_fini(&list_fini, NULL, &lockstate);
3436 /* No need to remove the items from the list, since we are exiting. */
3437 if (!libmap_disable)
3438 lm_fini();
3439 lock_release(rtld_bind_lock, &lockstate);
3440 }
3441
3442 static void
rtld_nop_exit(void)3443 rtld_nop_exit(void)
3444 {
3445 }
3446
3447 /*
3448 * Iterate over a search path, translate each element, and invoke the
3449 * callback on the result.
3450 */
3451 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3452 path_enumerate(const char *path, path_enum_proc callback,
3453 const char *refobj_path, void *arg)
3454 {
3455 const char *trans;
3456 if (path == NULL)
3457 return (NULL);
3458
3459 path += strspn(path, ":;");
3460 while (*path != '\0') {
3461 size_t len;
3462 char *res;
3463
3464 len = strcspn(path, ":;");
3465 trans = lm_findn(refobj_path, path, len);
3466 if (trans)
3467 res = callback(trans, strlen(trans), arg);
3468 else
3469 res = callback(path, len, arg);
3470
3471 if (res != NULL)
3472 return (res);
3473
3474 path += len;
3475 path += strspn(path, ":;");
3476 }
3477
3478 return (NULL);
3479 }
3480
3481 struct try_library_args {
3482 const char *name;
3483 size_t namelen;
3484 char *buffer;
3485 size_t buflen;
3486 int fd;
3487 };
3488
3489 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3490 try_library_path(const char *dir, size_t dirlen, void *param)
3491 {
3492 struct try_library_args *arg;
3493 int fd;
3494
3495 arg = param;
3496 if (*dir == '/' || trust) {
3497 char *pathname;
3498
3499 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3500 return (NULL);
3501
3502 pathname = arg->buffer;
3503 strncpy(pathname, dir, dirlen);
3504 pathname[dirlen] = '/';
3505 strcpy(pathname + dirlen + 1, arg->name);
3506
3507 dbg(" Trying \"%s\"", pathname);
3508 fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3509 if (fd >= 0) {
3510 dbg(" Opened \"%s\", fd %d", pathname, fd);
3511 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3512 strcpy(pathname, arg->buffer);
3513 arg->fd = fd;
3514 return (pathname);
3515 } else {
3516 dbg(" Failed to open \"%s\": %s",
3517 pathname, rtld_strerror(errno));
3518 }
3519 }
3520 return (NULL);
3521 }
3522
3523 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3524 search_library_path(const char *name, const char *path,
3525 const char *refobj_path, int *fdp)
3526 {
3527 char *p;
3528 struct try_library_args arg;
3529
3530 if (path == NULL)
3531 return (NULL);
3532
3533 arg.name = name;
3534 arg.namelen = strlen(name);
3535 arg.buffer = xmalloc(PATH_MAX);
3536 arg.buflen = PATH_MAX;
3537 arg.fd = -1;
3538
3539 p = path_enumerate(path, try_library_path, refobj_path, &arg);
3540 *fdp = arg.fd;
3541
3542 free(arg.buffer);
3543
3544 return (p);
3545 }
3546
3547
3548 /*
3549 * Finds the library with the given name using the directory descriptors
3550 * listed in the LD_LIBRARY_PATH_FDS environment variable.
3551 *
3552 * Returns a freshly-opened close-on-exec file descriptor for the library,
3553 * or -1 if the library cannot be found.
3554 */
3555 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3556 search_library_pathfds(const char *name, const char *path, int *fdp)
3557 {
3558 char *envcopy, *fdstr, *found, *last_token;
3559 size_t len;
3560 int dirfd, fd;
3561
3562 dbg("%s('%s', '%s', fdp)", __func__, name, path);
3563
3564 /* Don't load from user-specified libdirs into setuid binaries. */
3565 if (!trust)
3566 return (NULL);
3567
3568 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3569 if (path == NULL)
3570 return (NULL);
3571
3572 /* LD_LIBRARY_PATH_FDS only works with relative paths. */
3573 if (name[0] == '/') {
3574 dbg("Absolute path (%s) passed to %s", name, __func__);
3575 return (NULL);
3576 }
3577
3578 /*
3579 * Use strtok_r() to walk the FD:FD:FD list. This requires a local
3580 * copy of the path, as strtok_r rewrites separator tokens
3581 * with '\0'.
3582 */
3583 found = NULL;
3584 envcopy = xstrdup(path);
3585 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3586 fdstr = strtok_r(NULL, ":", &last_token)) {
3587 dirfd = parse_integer(fdstr);
3588 if (dirfd < 0) {
3589 _rtld_error("failed to parse directory FD: '%s'",
3590 fdstr);
3591 break;
3592 }
3593 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3594 if (fd >= 0) {
3595 *fdp = fd;
3596 len = strlen(fdstr) + strlen(name) + 3;
3597 found = xmalloc(len);
3598 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3599 _rtld_error("error generating '%d/%s'",
3600 dirfd, name);
3601 rtld_die();
3602 }
3603 dbg("open('%s') => %d", found, fd);
3604 break;
3605 }
3606 }
3607 free(envcopy);
3608
3609 return (found);
3610 }
3611
3612
3613 int
dlclose(void * handle)3614 dlclose(void *handle)
3615 {
3616 RtldLockState lockstate;
3617 int error;
3618
3619 wlock_acquire(rtld_bind_lock, &lockstate);
3620 error = dlclose_locked(handle, &lockstate);
3621 lock_release(rtld_bind_lock, &lockstate);
3622 return (error);
3623 }
3624
3625 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3626 dlclose_locked(void *handle, RtldLockState *lockstate)
3627 {
3628 Obj_Entry *root;
3629
3630 root = dlcheck(handle);
3631 if (root == NULL)
3632 return (-1);
3633 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3634 root->path);
3635
3636 /* Unreference the object and its dependencies. */
3637 root->dl_refcount--;
3638
3639 if (root->refcount == 1) {
3640 /*
3641 * The object will be no longer referenced, so we must unload it.
3642 * First, call the fini functions.
3643 */
3644 objlist_call_fini(&list_fini, root, lockstate);
3645
3646 unref_dag(root);
3647
3648 /* Finish cleaning up the newly-unreferenced objects. */
3649 GDB_STATE(RT_DELETE,&root->linkmap);
3650 unload_object(root, lockstate);
3651 GDB_STATE(RT_CONSISTENT,NULL);
3652 } else
3653 unref_dag(root);
3654
3655 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3656 return (0);
3657 }
3658
3659 char *
dlerror(void)3660 dlerror(void)
3661 {
3662 if (*(lockinfo.dlerror_seen()) != 0)
3663 return (NULL);
3664 *lockinfo.dlerror_seen() = 1;
3665 return (lockinfo.dlerror_loc());
3666 }
3667
3668 /*
3669 * This function is deprecated and has no effect.
3670 */
3671 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3672 dllockinit(void *context,
3673 void *(*_lock_create)(void *context) __unused,
3674 void (*_rlock_acquire)(void *lock) __unused,
3675 void (*_wlock_acquire)(void *lock) __unused,
3676 void (*_lock_release)(void *lock) __unused,
3677 void (*_lock_destroy)(void *lock) __unused,
3678 void (*context_destroy)(void *context))
3679 {
3680 static void *cur_context;
3681 static void (*cur_context_destroy)(void *);
3682
3683 /* Just destroy the context from the previous call, if necessary. */
3684 if (cur_context_destroy != NULL)
3685 cur_context_destroy(cur_context);
3686 cur_context = context;
3687 cur_context_destroy = context_destroy;
3688 }
3689
3690 void *
dlopen(const char * name,int mode)3691 dlopen(const char *name, int mode)
3692 {
3693
3694 return (rtld_dlopen(name, -1, mode));
3695 }
3696
3697 void *
fdlopen(int fd,int mode)3698 fdlopen(int fd, int mode)
3699 {
3700
3701 return (rtld_dlopen(NULL, fd, mode));
3702 }
3703
3704 static void *
rtld_dlopen(const char * name,int fd,int mode)3705 rtld_dlopen(const char *name, int fd, int mode)
3706 {
3707 RtldLockState lockstate;
3708 int lo_flags;
3709
3710 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3711 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3712 if (ld_tracing != NULL) {
3713 rlock_acquire(rtld_bind_lock, &lockstate);
3714 if (sigsetjmp(lockstate.env, 0) != 0)
3715 lock_upgrade(rtld_bind_lock, &lockstate);
3716 environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3717 lock_release(rtld_bind_lock, &lockstate);
3718 }
3719 lo_flags = RTLD_LO_DLOPEN;
3720 if (mode & RTLD_NODELETE)
3721 lo_flags |= RTLD_LO_NODELETE;
3722 if (mode & RTLD_NOLOAD)
3723 lo_flags |= RTLD_LO_NOLOAD;
3724 if (mode & RTLD_DEEPBIND)
3725 lo_flags |= RTLD_LO_DEEPBIND;
3726 if (ld_tracing != NULL)
3727 lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3728
3729 return (dlopen_object(name, fd, obj_main, lo_flags,
3730 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3731 }
3732
3733 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3734 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3735 {
3736
3737 obj->dl_refcount--;
3738 unref_dag(obj);
3739 if (obj->refcount == 0)
3740 unload_object(obj, lockstate);
3741 }
3742
3743 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3744 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3745 int mode, RtldLockState *lockstate)
3746 {
3747 Obj_Entry *obj;
3748 Objlist initlist;
3749 RtldLockState mlockstate;
3750 int result;
3751
3752 dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3753 name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3754 refobj->path, lo_flags, mode);
3755 objlist_init(&initlist);
3756
3757 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3758 wlock_acquire(rtld_bind_lock, &mlockstate);
3759 lockstate = &mlockstate;
3760 }
3761 GDB_STATE(RT_ADD,NULL);
3762
3763 obj = NULL;
3764 if (name == NULL && fd == -1) {
3765 obj = obj_main;
3766 obj->refcount++;
3767 } else {
3768 obj = load_object(name, fd, refobj, lo_flags);
3769 }
3770
3771 if (obj) {
3772 obj->dl_refcount++;
3773 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3774 objlist_push_tail(&list_global, obj);
3775
3776 if (!obj->init_done) {
3777 /* We loaded something new and have to init something. */
3778 if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3779 obj->deepbind = true;
3780 result = 0;
3781 if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3782 obj->static_tls && !allocate_tls_offset(obj)) {
3783 _rtld_error("%s: No space available "
3784 "for static Thread Local Storage", obj->path);
3785 result = -1;
3786 }
3787 if (result != -1)
3788 result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3789 RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3790 init_dag(obj);
3791 ref_dag(obj);
3792 if (result != -1)
3793 result = rtld_verify_versions(&obj->dagmembers);
3794 if (result != -1 && ld_tracing)
3795 goto trace;
3796 if (result == -1 || relocate_object_dag(obj,
3797 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3798 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3799 lockstate) == -1) {
3800 dlopen_cleanup(obj, lockstate);
3801 obj = NULL;
3802 } else if (lo_flags & RTLD_LO_EARLY) {
3803 /*
3804 * Do not call the init functions for early loaded
3805 * filtees. The image is still not initialized enough
3806 * for them to work.
3807 *
3808 * Our object is found by the global object list and
3809 * will be ordered among all init calls done right
3810 * before transferring control to main.
3811 */
3812 } else {
3813 /* Make list of init functions to call. */
3814 initlist_add_objects(obj, obj, &initlist);
3815 }
3816 /*
3817 * Process all no_delete or global objects here, given
3818 * them own DAGs to prevent their dependencies from being
3819 * unloaded. This has to be done after we have loaded all
3820 * of the dependencies, so that we do not miss any.
3821 */
3822 if (obj != NULL)
3823 process_z(obj);
3824 } else {
3825 /*
3826 * Bump the reference counts for objects on this DAG. If
3827 * this is the first dlopen() call for the object that was
3828 * already loaded as a dependency, initialize the dag
3829 * starting at it.
3830 */
3831 init_dag(obj);
3832 ref_dag(obj);
3833
3834 if ((lo_flags & RTLD_LO_TRACE) != 0)
3835 goto trace;
3836 }
3837 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3838 obj->z_nodelete) && !obj->ref_nodel) {
3839 dbg("obj %s nodelete", obj->path);
3840 ref_dag(obj);
3841 obj->z_nodelete = obj->ref_nodel = true;
3842 }
3843 }
3844
3845 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3846 name);
3847 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3848
3849 if ((lo_flags & RTLD_LO_EARLY) == 0) {
3850 map_stacks_exec(lockstate);
3851 if (obj != NULL)
3852 distribute_static_tls(&initlist, lockstate);
3853 }
3854
3855 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3856 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3857 lockstate) == -1) {
3858 objlist_clear(&initlist);
3859 dlopen_cleanup(obj, lockstate);
3860 if (lockstate == &mlockstate)
3861 lock_release(rtld_bind_lock, lockstate);
3862 return (NULL);
3863 }
3864
3865 if (!(lo_flags & RTLD_LO_EARLY)) {
3866 /* Call the init functions. */
3867 objlist_call_init(&initlist, lockstate);
3868 }
3869 objlist_clear(&initlist);
3870 if (lockstate == &mlockstate)
3871 lock_release(rtld_bind_lock, lockstate);
3872 return (obj);
3873 trace:
3874 trace_loaded_objects(obj, false);
3875 if (lockstate == &mlockstate)
3876 lock_release(rtld_bind_lock, lockstate);
3877 exit(0);
3878 }
3879
3880 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3881 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3882 int flags)
3883 {
3884 DoneList donelist;
3885 const Obj_Entry *obj, *defobj;
3886 const Elf_Sym *def;
3887 SymLook req;
3888 RtldLockState lockstate;
3889 tls_index ti;
3890 void *sym;
3891 int res;
3892
3893 def = NULL;
3894 defobj = NULL;
3895 symlook_init(&req, name);
3896 req.ventry = ve;
3897 req.flags = flags | SYMLOOK_IN_PLT;
3898 req.lockstate = &lockstate;
3899
3900 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3901 rlock_acquire(rtld_bind_lock, &lockstate);
3902 if (sigsetjmp(lockstate.env, 0) != 0)
3903 lock_upgrade(rtld_bind_lock, &lockstate);
3904 if (handle == NULL || handle == RTLD_NEXT ||
3905 handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3906
3907 if ((obj = obj_from_addr(retaddr)) == NULL) {
3908 _rtld_error("Cannot determine caller's shared object");
3909 lock_release(rtld_bind_lock, &lockstate);
3910 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3911 return (NULL);
3912 }
3913 if (handle == NULL) { /* Just the caller's shared object. */
3914 res = symlook_obj(&req, obj);
3915 if (res == 0) {
3916 def = req.sym_out;
3917 defobj = req.defobj_out;
3918 }
3919 } else if (handle == RTLD_NEXT || /* Objects after caller's */
3920 handle == RTLD_SELF) { /* ... caller included */
3921 if (handle == RTLD_NEXT)
3922 obj = globallist_next(obj);
3923 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3924 if (obj->marker)
3925 continue;
3926 res = symlook_obj(&req, obj);
3927 if (res == 0) {
3928 if (def == NULL || (ld_dynamic_weak &&
3929 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3930 def = req.sym_out;
3931 defobj = req.defobj_out;
3932 if (!ld_dynamic_weak ||
3933 ELF_ST_BIND(def->st_info) != STB_WEAK)
3934 break;
3935 }
3936 }
3937 }
3938 /*
3939 * Search the dynamic linker itself, and possibly resolve the
3940 * symbol from there. This is how the application links to
3941 * dynamic linker services such as dlopen.
3942 * Note that we ignore ld_dynamic_weak == false case,
3943 * always overriding weak symbols by rtld definitions.
3944 */
3945 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3946 res = symlook_obj(&req, &obj_rtld);
3947 if (res == 0) {
3948 def = req.sym_out;
3949 defobj = req.defobj_out;
3950 }
3951 }
3952 } else {
3953 assert(handle == RTLD_DEFAULT);
3954 res = symlook_default(&req, obj);
3955 if (res == 0) {
3956 defobj = req.defobj_out;
3957 def = req.sym_out;
3958 }
3959 }
3960 } else {
3961 if ((obj = dlcheck(handle)) == NULL) {
3962 lock_release(rtld_bind_lock, &lockstate);
3963 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3964 return (NULL);
3965 }
3966
3967 donelist_init(&donelist);
3968 if (obj->mainprog) {
3969 /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3970 res = symlook_global(&req, &donelist);
3971 if (res == 0) {
3972 def = req.sym_out;
3973 defobj = req.defobj_out;
3974 }
3975 /*
3976 * Search the dynamic linker itself, and possibly resolve the
3977 * symbol from there. This is how the application links to
3978 * dynamic linker services such as dlopen.
3979 */
3980 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3981 res = symlook_obj(&req, &obj_rtld);
3982 if (res == 0) {
3983 def = req.sym_out;
3984 defobj = req.defobj_out;
3985 }
3986 }
3987 }
3988 else {
3989 /* Search the whole DAG rooted at the given object. */
3990 res = symlook_list(&req, &obj->dagmembers, &donelist);
3991 if (res == 0) {
3992 def = req.sym_out;
3993 defobj = req.defobj_out;
3994 }
3995 }
3996 }
3997
3998 if (def != NULL) {
3999 lock_release(rtld_bind_lock, &lockstate);
4000
4001 /*
4002 * The value required by the caller is derived from the value
4003 * of the symbol. this is simply the relocated value of the
4004 * symbol.
4005 */
4006 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4007 sym = make_function_pointer(def, defobj);
4008 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4009 sym = rtld_resolve_ifunc(defobj, def);
4010 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4011 ti.ti_module = defobj->tlsindex;
4012 ti.ti_offset = def->st_value;
4013 sym = __tls_get_addr(&ti);
4014 } else
4015 sym = defobj->relocbase + def->st_value;
4016 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4017 return (sym);
4018 }
4019
4020 _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4021 ve != NULL ? ve->name : "");
4022 lock_release(rtld_bind_lock, &lockstate);
4023 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4024 return (NULL);
4025 }
4026
4027 void *
dlsym(void * handle,const char * name)4028 dlsym(void *handle, const char *name)
4029 {
4030 return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4031 SYMLOOK_DLSYM));
4032 }
4033
4034 dlfunc_t
dlfunc(void * handle,const char * name)4035 dlfunc(void *handle, const char *name)
4036 {
4037 union {
4038 void *d;
4039 dlfunc_t f;
4040 } rv;
4041
4042 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4043 SYMLOOK_DLSYM);
4044 return (rv.f);
4045 }
4046
4047 void *
dlvsym(void * handle,const char * name,const char * version)4048 dlvsym(void *handle, const char *name, const char *version)
4049 {
4050 Ver_Entry ventry;
4051
4052 ventry.name = version;
4053 ventry.file = NULL;
4054 ventry.hash = elf_hash(version);
4055 ventry.flags= 0;
4056 return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4057 SYMLOOK_DLSYM));
4058 }
4059
4060 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4061 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4062 {
4063 const Obj_Entry *obj;
4064 RtldLockState lockstate;
4065
4066 rlock_acquire(rtld_bind_lock, &lockstate);
4067 obj = obj_from_addr(addr);
4068 if (obj == NULL) {
4069 _rtld_error("No shared object contains address");
4070 lock_release(rtld_bind_lock, &lockstate);
4071 return (0);
4072 }
4073 rtld_fill_dl_phdr_info(obj, phdr_info);
4074 lock_release(rtld_bind_lock, &lockstate);
4075 return (1);
4076 }
4077
4078 int
dladdr(const void * addr,Dl_info * info)4079 dladdr(const void *addr, Dl_info *info)
4080 {
4081 const Obj_Entry *obj;
4082 const Elf_Sym *def;
4083 void *symbol_addr;
4084 unsigned long symoffset;
4085 RtldLockState lockstate;
4086
4087 rlock_acquire(rtld_bind_lock, &lockstate);
4088 obj = obj_from_addr(addr);
4089 if (obj == NULL) {
4090 _rtld_error("No shared object contains address");
4091 lock_release(rtld_bind_lock, &lockstate);
4092 return (0);
4093 }
4094 info->dli_fname = obj->path;
4095 info->dli_fbase = obj->mapbase;
4096 info->dli_saddr = (void *)0;
4097 info->dli_sname = NULL;
4098
4099 /*
4100 * Walk the symbol list looking for the symbol whose address is
4101 * closest to the address sent in.
4102 */
4103 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4104 def = obj->symtab + symoffset;
4105
4106 /*
4107 * For skip the symbol if st_shndx is either SHN_UNDEF or
4108 * SHN_COMMON.
4109 */
4110 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4111 continue;
4112
4113 /*
4114 * If the symbol is greater than the specified address, or if it
4115 * is further away from addr than the current nearest symbol,
4116 * then reject it.
4117 */
4118 symbol_addr = obj->relocbase + def->st_value;
4119 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4120 continue;
4121
4122 /* Update our idea of the nearest symbol. */
4123 info->dli_sname = obj->strtab + def->st_name;
4124 info->dli_saddr = symbol_addr;
4125
4126 /* Exact match? */
4127 if (info->dli_saddr == addr)
4128 break;
4129 }
4130 lock_release(rtld_bind_lock, &lockstate);
4131 return (1);
4132 }
4133
4134 int
dlinfo(void * handle,int request,void * p)4135 dlinfo(void *handle, int request, void *p)
4136 {
4137 const Obj_Entry *obj;
4138 RtldLockState lockstate;
4139 int error;
4140
4141 rlock_acquire(rtld_bind_lock, &lockstate);
4142
4143 if (handle == NULL || handle == RTLD_SELF) {
4144 void *retaddr;
4145
4146 retaddr = __builtin_return_address(0); /* __GNUC__ only */
4147 if ((obj = obj_from_addr(retaddr)) == NULL)
4148 _rtld_error("Cannot determine caller's shared object");
4149 } else
4150 obj = dlcheck(handle);
4151
4152 if (obj == NULL) {
4153 lock_release(rtld_bind_lock, &lockstate);
4154 return (-1);
4155 }
4156
4157 error = 0;
4158 switch (request) {
4159 case RTLD_DI_LINKMAP:
4160 *((struct link_map const **)p) = &obj->linkmap;
4161 break;
4162 case RTLD_DI_ORIGIN:
4163 error = rtld_dirname(obj->path, p);
4164 break;
4165
4166 case RTLD_DI_SERINFOSIZE:
4167 case RTLD_DI_SERINFO:
4168 error = do_search_info(obj, request, (struct dl_serinfo *)p);
4169 break;
4170
4171 default:
4172 _rtld_error("Invalid request %d passed to dlinfo()", request);
4173 error = -1;
4174 }
4175
4176 lock_release(rtld_bind_lock, &lockstate);
4177
4178 return (error);
4179 }
4180
4181 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4182 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4183 {
4184 uintptr_t **dtvp;
4185
4186 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4187 phdr_info->dlpi_name = obj->path;
4188 phdr_info->dlpi_phdr = obj->phdr;
4189 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4190 phdr_info->dlpi_tls_modid = obj->tlsindex;
4191 dtvp = &_tcb_get()->tcb_dtv;
4192 phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4193 obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4194 phdr_info->dlpi_adds = obj_loads;
4195 phdr_info->dlpi_subs = obj_loads - obj_count;
4196 }
4197
4198 /*
4199 * It's completely UB to actually use this, so extreme caution is advised. It's
4200 * probably not what you want.
4201 */
4202 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4203 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4204 {
4205 struct dl_phdr_info phdr_info;
4206 Obj_Entry *obj;
4207 int error;
4208
4209 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4210 obj = globallist_next(obj)) {
4211 rtld_fill_dl_phdr_info(obj, &phdr_info);
4212 error = callback(&phdr_info, sizeof(phdr_info), param);
4213 if (error != 0)
4214 return (error);
4215 }
4216
4217 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4218 return (callback(&phdr_info, sizeof(phdr_info), param));
4219 }
4220
4221 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4222 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4223 {
4224 struct dl_phdr_info phdr_info;
4225 Obj_Entry *obj, marker;
4226 RtldLockState bind_lockstate, phdr_lockstate;
4227 int error;
4228
4229 init_marker(&marker);
4230 error = 0;
4231
4232 wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4233 wlock_acquire(rtld_bind_lock, &bind_lockstate);
4234 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4235 TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4236 rtld_fill_dl_phdr_info(obj, &phdr_info);
4237 hold_object(obj);
4238 lock_release(rtld_bind_lock, &bind_lockstate);
4239
4240 error = callback(&phdr_info, sizeof phdr_info, param);
4241
4242 wlock_acquire(rtld_bind_lock, &bind_lockstate);
4243 unhold_object(obj);
4244 obj = globallist_next(&marker);
4245 TAILQ_REMOVE(&obj_list, &marker, next);
4246 if (error != 0) {
4247 lock_release(rtld_bind_lock, &bind_lockstate);
4248 lock_release(rtld_phdr_lock, &phdr_lockstate);
4249 return (error);
4250 }
4251 }
4252
4253 if (error == 0) {
4254 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4255 lock_release(rtld_bind_lock, &bind_lockstate);
4256 error = callback(&phdr_info, sizeof(phdr_info), param);
4257 }
4258 lock_release(rtld_phdr_lock, &phdr_lockstate);
4259 return (error);
4260 }
4261
4262 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4263 fill_search_info(const char *dir, size_t dirlen, void *param)
4264 {
4265 struct fill_search_info_args *arg;
4266
4267 arg = param;
4268
4269 if (arg->request == RTLD_DI_SERINFOSIZE) {
4270 arg->serinfo->dls_cnt ++;
4271 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4272 } else {
4273 struct dl_serpath *s_entry;
4274
4275 s_entry = arg->serpath;
4276 s_entry->dls_name = arg->strspace;
4277 s_entry->dls_flags = arg->flags;
4278
4279 strncpy(arg->strspace, dir, dirlen);
4280 arg->strspace[dirlen] = '\0';
4281
4282 arg->strspace += dirlen + 1;
4283 arg->serpath++;
4284 }
4285
4286 return (NULL);
4287 }
4288
4289 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4290 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4291 {
4292 struct dl_serinfo _info;
4293 struct fill_search_info_args args;
4294
4295 args.request = RTLD_DI_SERINFOSIZE;
4296 args.serinfo = &_info;
4297
4298 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4299 _info.dls_cnt = 0;
4300
4301 path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4302 path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4303 path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4304 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4305 if (!obj->z_nodeflib)
4306 path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4307
4308
4309 if (request == RTLD_DI_SERINFOSIZE) {
4310 info->dls_size = _info.dls_size;
4311 info->dls_cnt = _info.dls_cnt;
4312 return (0);
4313 }
4314
4315 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4316 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4317 return (-1);
4318 }
4319
4320 args.request = RTLD_DI_SERINFO;
4321 args.serinfo = info;
4322 args.serpath = &info->dls_serpath[0];
4323 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4324
4325 args.flags = LA_SER_RUNPATH;
4326 if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4327 return (-1);
4328
4329 args.flags = LA_SER_LIBPATH;
4330 if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4331 return (-1);
4332
4333 args.flags = LA_SER_RUNPATH;
4334 if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4335 return (-1);
4336
4337 args.flags = LA_SER_CONFIG;
4338 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4339 != NULL)
4340 return (-1);
4341
4342 args.flags = LA_SER_DEFAULT;
4343 if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4344 fill_search_info, NULL, &args) != NULL)
4345 return (-1);
4346 return (0);
4347 }
4348
4349 static int
rtld_dirname(const char * path,char * bname)4350 rtld_dirname(const char *path, char *bname)
4351 {
4352 const char *endp;
4353
4354 /* Empty or NULL string gets treated as "." */
4355 if (path == NULL || *path == '\0') {
4356 bname[0] = '.';
4357 bname[1] = '\0';
4358 return (0);
4359 }
4360
4361 /* Strip trailing slashes */
4362 endp = path + strlen(path) - 1;
4363 while (endp > path && *endp == '/')
4364 endp--;
4365
4366 /* Find the start of the dir */
4367 while (endp > path && *endp != '/')
4368 endp--;
4369
4370 /* Either the dir is "/" or there are no slashes */
4371 if (endp == path) {
4372 bname[0] = *endp == '/' ? '/' : '.';
4373 bname[1] = '\0';
4374 return (0);
4375 } else {
4376 do {
4377 endp--;
4378 } while (endp > path && *endp == '/');
4379 }
4380
4381 if (endp - path + 2 > PATH_MAX)
4382 {
4383 _rtld_error("Filename is too long: %s", path);
4384 return(-1);
4385 }
4386
4387 strncpy(bname, path, endp - path + 1);
4388 bname[endp - path + 1] = '\0';
4389 return (0);
4390 }
4391
4392 static int
rtld_dirname_abs(const char * path,char * base)4393 rtld_dirname_abs(const char *path, char *base)
4394 {
4395 char *last;
4396
4397 if (realpath(path, base) == NULL) {
4398 _rtld_error("realpath \"%s\" failed (%s)", path,
4399 rtld_strerror(errno));
4400 return (-1);
4401 }
4402 dbg("%s -> %s", path, base);
4403 last = strrchr(base, '/');
4404 if (last == NULL) {
4405 _rtld_error("non-abs result from realpath \"%s\"", path);
4406 return (-1);
4407 }
4408 if (last != base)
4409 *last = '\0';
4410 return (0);
4411 }
4412
4413 static void
linkmap_add(Obj_Entry * obj)4414 linkmap_add(Obj_Entry *obj)
4415 {
4416 struct link_map *l, *prev;
4417
4418 l = &obj->linkmap;
4419 l->l_name = obj->path;
4420 l->l_base = obj->mapbase;
4421 l->l_ld = obj->dynamic;
4422 l->l_addr = obj->relocbase;
4423
4424 if (r_debug.r_map == NULL) {
4425 r_debug.r_map = l;
4426 return;
4427 }
4428
4429 /*
4430 * Scan to the end of the list, but not past the entry for the
4431 * dynamic linker, which we want to keep at the very end.
4432 */
4433 for (prev = r_debug.r_map;
4434 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4435 prev = prev->l_next)
4436 ;
4437
4438 /* Link in the new entry. */
4439 l->l_prev = prev;
4440 l->l_next = prev->l_next;
4441 if (l->l_next != NULL)
4442 l->l_next->l_prev = l;
4443 prev->l_next = l;
4444 }
4445
4446 static void
linkmap_delete(Obj_Entry * obj)4447 linkmap_delete(Obj_Entry *obj)
4448 {
4449 struct link_map *l;
4450
4451 l = &obj->linkmap;
4452 if (l->l_prev == NULL) {
4453 if ((r_debug.r_map = l->l_next) != NULL)
4454 l->l_next->l_prev = NULL;
4455 return;
4456 }
4457
4458 if ((l->l_prev->l_next = l->l_next) != NULL)
4459 l->l_next->l_prev = l->l_prev;
4460 }
4461
4462 /*
4463 * Function for the debugger to set a breakpoint on to gain control.
4464 *
4465 * The two parameters allow the debugger to easily find and determine
4466 * what the runtime loader is doing and to whom it is doing it.
4467 *
4468 * When the loadhook trap is hit (r_debug_state, set at program
4469 * initialization), the arguments can be found on the stack:
4470 *
4471 * +8 struct link_map *m
4472 * +4 struct r_debug *rd
4473 * +0 RetAddr
4474 */
4475 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4476 r_debug_state(struct r_debug* rd __unused, struct link_map *m __unused)
4477 {
4478 /*
4479 * The following is a hack to force the compiler to emit calls to
4480 * this function, even when optimizing. If the function is empty,
4481 * the compiler is not obliged to emit any code for calls to it,
4482 * even when marked __noinline. However, gdb depends on those
4483 * calls being made.
4484 */
4485 __compiler_membar();
4486 }
4487
4488 /*
4489 * A function called after init routines have completed. This can be used to
4490 * break before a program's entry routine is called, and can be used when
4491 * main is not available in the symbol table.
4492 */
4493 void
_r_debug_postinit(struct link_map * m __unused)4494 _r_debug_postinit(struct link_map *m __unused)
4495 {
4496
4497 /* See r_debug_state(). */
4498 __compiler_membar();
4499 }
4500
4501 static void
release_object(Obj_Entry * obj)4502 release_object(Obj_Entry *obj)
4503 {
4504
4505 if (obj->holdcount > 0) {
4506 obj->unholdfree = true;
4507 return;
4508 }
4509 munmap(obj->mapbase, obj->mapsize);
4510 linkmap_delete(obj);
4511 obj_free(obj);
4512 }
4513
4514 /*
4515 * Get address of the pointer variable in the main program.
4516 * Prefer non-weak symbol over the weak one.
4517 */
4518 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4519 get_program_var_addr(const char *name, RtldLockState *lockstate)
4520 {
4521 SymLook req;
4522 DoneList donelist;
4523
4524 symlook_init(&req, name);
4525 req.lockstate = lockstate;
4526 donelist_init(&donelist);
4527 if (symlook_global(&req, &donelist) != 0)
4528 return (NULL);
4529 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4530 return ((const void **)make_function_pointer(req.sym_out,
4531 req.defobj_out));
4532 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4533 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4534 else
4535 return ((const void **)(req.defobj_out->relocbase +
4536 req.sym_out->st_value));
4537 }
4538
4539 /*
4540 * Set a pointer variable in the main program to the given value. This
4541 * is used to set key variables such as "environ" before any of the
4542 * init functions are called.
4543 */
4544 static void
set_program_var(const char * name,const void * value)4545 set_program_var(const char *name, const void *value)
4546 {
4547 const void **addr;
4548
4549 if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4550 dbg("\"%s\": *%p <-- %p", name, addr, value);
4551 *addr = value;
4552 }
4553 }
4554
4555 /*
4556 * Search the global objects, including dependencies and main object,
4557 * for the given symbol.
4558 */
4559 static int
symlook_global(SymLook * req,DoneList * donelist)4560 symlook_global(SymLook *req, DoneList *donelist)
4561 {
4562 SymLook req1;
4563 const Objlist_Entry *elm;
4564 int res;
4565
4566 symlook_init_from_req(&req1, req);
4567
4568 /* Search all objects loaded at program start up. */
4569 if (req->defobj_out == NULL || (ld_dynamic_weak &&
4570 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4571 res = symlook_list(&req1, &list_main, donelist);
4572 if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4573 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4574 req->sym_out = req1.sym_out;
4575 req->defobj_out = req1.defobj_out;
4576 assert(req->defobj_out != NULL);
4577 }
4578 }
4579
4580 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4581 STAILQ_FOREACH(elm, &list_global, link) {
4582 if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4583 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4584 break;
4585 res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4586 if (res == 0 && (req->defobj_out == NULL ||
4587 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4588 req->sym_out = req1.sym_out;
4589 req->defobj_out = req1.defobj_out;
4590 assert(req->defobj_out != NULL);
4591 }
4592 }
4593
4594 return (req->sym_out != NULL ? 0 : ESRCH);
4595 }
4596
4597 /*
4598 * Given a symbol name in a referencing object, find the corresponding
4599 * definition of the symbol. Returns a pointer to the symbol, or NULL if
4600 * no definition was found. Returns a pointer to the Obj_Entry of the
4601 * defining object via the reference parameter DEFOBJ_OUT.
4602 */
4603 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4604 symlook_default(SymLook *req, const Obj_Entry *refobj)
4605 {
4606 DoneList donelist;
4607 const Objlist_Entry *elm;
4608 SymLook req1;
4609 int res;
4610
4611 donelist_init(&donelist);
4612 symlook_init_from_req(&req1, req);
4613
4614 /*
4615 * Look first in the referencing object if linked symbolically,
4616 * and similarly handle protected symbols.
4617 */
4618 res = symlook_obj(&req1, refobj);
4619 if (res == 0 && (refobj->symbolic ||
4620 ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4621 req->sym_out = req1.sym_out;
4622 req->defobj_out = req1.defobj_out;
4623 assert(req->defobj_out != NULL);
4624 }
4625 if (refobj->symbolic || req->defobj_out != NULL)
4626 donelist_check(&donelist, refobj);
4627
4628 if (!refobj->deepbind)
4629 symlook_global(req, &donelist);
4630
4631 /* Search all dlopened DAGs containing the referencing object. */
4632 STAILQ_FOREACH(elm, &refobj->dldags, link) {
4633 if (req->sym_out != NULL && (!ld_dynamic_weak ||
4634 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4635 break;
4636 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4637 if (res == 0 && (req->sym_out == NULL ||
4638 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4639 req->sym_out = req1.sym_out;
4640 req->defobj_out = req1.defobj_out;
4641 assert(req->defobj_out != NULL);
4642 }
4643 }
4644
4645 if (refobj->deepbind)
4646 symlook_global(req, &donelist);
4647
4648 /*
4649 * Search the dynamic linker itself, and possibly resolve the
4650 * symbol from there. This is how the application links to
4651 * dynamic linker services such as dlopen.
4652 */
4653 if (req->sym_out == NULL ||
4654 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4655 res = symlook_obj(&req1, &obj_rtld);
4656 if (res == 0) {
4657 req->sym_out = req1.sym_out;
4658 req->defobj_out = req1.defobj_out;
4659 assert(req->defobj_out != NULL);
4660 }
4661 }
4662
4663 return (req->sym_out != NULL ? 0 : ESRCH);
4664 }
4665
4666 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4667 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4668 {
4669 const Elf_Sym *def;
4670 const Obj_Entry *defobj;
4671 const Objlist_Entry *elm;
4672 SymLook req1;
4673 int res;
4674
4675 def = NULL;
4676 defobj = NULL;
4677 STAILQ_FOREACH(elm, objlist, link) {
4678 if (donelist_check(dlp, elm->obj))
4679 continue;
4680 symlook_init_from_req(&req1, req);
4681 if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4682 if (def == NULL || (ld_dynamic_weak &&
4683 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4684 def = req1.sym_out;
4685 defobj = req1.defobj_out;
4686 if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4687 break;
4688 }
4689 }
4690 }
4691 if (def != NULL) {
4692 req->sym_out = def;
4693 req->defobj_out = defobj;
4694 return (0);
4695 }
4696 return (ESRCH);
4697 }
4698
4699 /*
4700 * Search the chain of DAGS cointed to by the given Needed_Entry
4701 * for a symbol of the given name. Each DAG is scanned completely
4702 * before advancing to the next one. Returns a pointer to the symbol,
4703 * or NULL if no definition was found.
4704 */
4705 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4706 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4707 {
4708 const Elf_Sym *def;
4709 const Needed_Entry *n;
4710 const Obj_Entry *defobj;
4711 SymLook req1;
4712 int res;
4713
4714 def = NULL;
4715 defobj = NULL;
4716 symlook_init_from_req(&req1, req);
4717 for (n = needed; n != NULL; n = n->next) {
4718 if (n->obj == NULL ||
4719 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4720 continue;
4721 if (def == NULL || (ld_dynamic_weak &&
4722 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4723 def = req1.sym_out;
4724 defobj = req1.defobj_out;
4725 if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4726 break;
4727 }
4728 }
4729 if (def != NULL) {
4730 req->sym_out = def;
4731 req->defobj_out = defobj;
4732 return (0);
4733 }
4734 return (ESRCH);
4735 }
4736
4737 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4738 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4739 Needed_Entry *needed)
4740 {
4741 DoneList donelist;
4742 int flags;
4743
4744 flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4745 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4746 donelist_init(&donelist);
4747 symlook_init_from_req(req1, req);
4748 return (symlook_needed(req1, needed, &donelist));
4749 }
4750
4751 /*
4752 * Search the symbol table of a single shared object for a symbol of
4753 * the given name and version, if requested. Returns a pointer to the
4754 * symbol, or NULL if no definition was found. If the object is
4755 * filter, return filtered symbol from filtee.
4756 *
4757 * The symbol's hash value is passed in for efficiency reasons; that
4758 * eliminates many recomputations of the hash value.
4759 */
4760 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4761 symlook_obj(SymLook *req, const Obj_Entry *obj)
4762 {
4763 SymLook req1;
4764 int res, mres;
4765
4766 /*
4767 * If there is at least one valid hash at this point, we prefer to
4768 * use the faster GNU version if available.
4769 */
4770 if (obj->valid_hash_gnu)
4771 mres = symlook_obj1_gnu(req, obj);
4772 else if (obj->valid_hash_sysv)
4773 mres = symlook_obj1_sysv(req, obj);
4774 else
4775 return (EINVAL);
4776
4777 if (mres == 0) {
4778 if (obj->needed_filtees != NULL) {
4779 res = symlook_obj_load_filtees(req, &req1, obj,
4780 obj->needed_filtees);
4781 if (res == 0) {
4782 req->sym_out = req1.sym_out;
4783 req->defobj_out = req1.defobj_out;
4784 }
4785 return (res);
4786 }
4787 if (obj->needed_aux_filtees != NULL) {
4788 res = symlook_obj_load_filtees(req, &req1, obj,
4789 obj->needed_aux_filtees);
4790 if (res == 0) {
4791 req->sym_out = req1.sym_out;
4792 req->defobj_out = req1.defobj_out;
4793 return (res);
4794 }
4795 }
4796 }
4797 return (mres);
4798 }
4799
4800 /* Symbol match routine common to both hash functions */
4801 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4802 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4803 const unsigned long symnum)
4804 {
4805 Elf_Versym verndx;
4806 const Elf_Sym *symp;
4807 const char *strp;
4808
4809 symp = obj->symtab + symnum;
4810 strp = obj->strtab + symp->st_name;
4811
4812 switch (ELF_ST_TYPE(symp->st_info)) {
4813 case STT_FUNC:
4814 case STT_NOTYPE:
4815 case STT_OBJECT:
4816 case STT_COMMON:
4817 case STT_GNU_IFUNC:
4818 if (symp->st_value == 0)
4819 return (false);
4820 /* fallthrough */
4821 case STT_TLS:
4822 if (symp->st_shndx != SHN_UNDEF)
4823 break;
4824 else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4825 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4826 break;
4827 /* fallthrough */
4828 default:
4829 return (false);
4830 }
4831 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4832 return (false);
4833
4834 if (req->ventry == NULL) {
4835 if (obj->versyms != NULL) {
4836 verndx = VER_NDX(obj->versyms[symnum]);
4837 if (verndx > obj->vernum) {
4838 _rtld_error(
4839 "%s: symbol %s references wrong version %d",
4840 obj->path, obj->strtab + symnum, verndx);
4841 return (false);
4842 }
4843 /*
4844 * If we are not called from dlsym (i.e. this
4845 * is a normal relocation from unversioned
4846 * binary), accept the symbol immediately if
4847 * it happens to have first version after this
4848 * shared object became versioned. Otherwise,
4849 * if symbol is versioned and not hidden,
4850 * remember it. If it is the only symbol with
4851 * this name exported by the shared object, it
4852 * will be returned as a match by the calling
4853 * function. If symbol is global (verndx < 2)
4854 * accept it unconditionally.
4855 */
4856 if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4857 verndx == VER_NDX_GIVEN) {
4858 result->sym_out = symp;
4859 return (true);
4860 }
4861 else if (verndx >= VER_NDX_GIVEN) {
4862 if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4863 == 0) {
4864 if (result->vsymp == NULL)
4865 result->vsymp = symp;
4866 result->vcount++;
4867 }
4868 return (false);
4869 }
4870 }
4871 result->sym_out = symp;
4872 return (true);
4873 }
4874 if (obj->versyms == NULL) {
4875 if (object_match_name(obj, req->ventry->name)) {
4876 _rtld_error("%s: object %s should provide version %s "
4877 "for symbol %s", obj_rtld.path, obj->path,
4878 req->ventry->name, obj->strtab + symnum);
4879 return (false);
4880 }
4881 } else {
4882 verndx = VER_NDX(obj->versyms[symnum]);
4883 if (verndx > obj->vernum) {
4884 _rtld_error("%s: symbol %s references wrong version %d",
4885 obj->path, obj->strtab + symnum, verndx);
4886 return (false);
4887 }
4888 if (obj->vertab[verndx].hash != req->ventry->hash ||
4889 strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4890 /*
4891 * Version does not match. Look if this is a
4892 * global symbol and if it is not hidden. If
4893 * global symbol (verndx < 2) is available,
4894 * use it. Do not return symbol if we are
4895 * called by dlvsym, because dlvsym looks for
4896 * a specific version and default one is not
4897 * what dlvsym wants.
4898 */
4899 if ((req->flags & SYMLOOK_DLSYM) ||
4900 (verndx >= VER_NDX_GIVEN) ||
4901 (obj->versyms[symnum] & VER_NDX_HIDDEN))
4902 return (false);
4903 }
4904 }
4905 result->sym_out = symp;
4906 return (true);
4907 }
4908
4909 /*
4910 * Search for symbol using SysV hash function.
4911 * obj->buckets is known not to be NULL at this point; the test for this was
4912 * performed with the obj->valid_hash_sysv assignment.
4913 */
4914 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4915 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4916 {
4917 unsigned long symnum;
4918 Sym_Match_Result matchres;
4919
4920 matchres.sym_out = NULL;
4921 matchres.vsymp = NULL;
4922 matchres.vcount = 0;
4923
4924 for (symnum = obj->buckets[req->hash % obj->nbuckets];
4925 symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4926 if (symnum >= obj->nchains)
4927 return (ESRCH); /* Bad object */
4928
4929 if (matched_symbol(req, obj, &matchres, symnum)) {
4930 req->sym_out = matchres.sym_out;
4931 req->defobj_out = obj;
4932 return (0);
4933 }
4934 }
4935 if (matchres.vcount == 1) {
4936 req->sym_out = matchres.vsymp;
4937 req->defobj_out = obj;
4938 return (0);
4939 }
4940 return (ESRCH);
4941 }
4942
4943 /* Search for symbol using GNU hash function */
4944 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4945 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4946 {
4947 Elf_Addr bloom_word;
4948 const Elf32_Word *hashval;
4949 Elf32_Word bucket;
4950 Sym_Match_Result matchres;
4951 unsigned int h1, h2;
4952 unsigned long symnum;
4953
4954 matchres.sym_out = NULL;
4955 matchres.vsymp = NULL;
4956 matchres.vcount = 0;
4957
4958 /* Pick right bitmask word from Bloom filter array */
4959 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4960 obj->maskwords_bm_gnu];
4961
4962 /* Calculate modulus word size of gnu hash and its derivative */
4963 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4964 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4965
4966 /* Filter out the "definitely not in set" queries */
4967 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4968 return (ESRCH);
4969
4970 /* Locate hash chain and corresponding value element*/
4971 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4972 if (bucket == 0)
4973 return (ESRCH);
4974 hashval = &obj->chain_zero_gnu[bucket];
4975 do {
4976 if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4977 symnum = hashval - obj->chain_zero_gnu;
4978 if (matched_symbol(req, obj, &matchres, symnum)) {
4979 req->sym_out = matchres.sym_out;
4980 req->defobj_out = obj;
4981 return (0);
4982 }
4983 }
4984 } while ((*hashval++ & 1) == 0);
4985 if (matchres.vcount == 1) {
4986 req->sym_out = matchres.vsymp;
4987 req->defobj_out = obj;
4988 return (0);
4989 }
4990 return (ESRCH);
4991 }
4992
4993 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)4994 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4995 {
4996 *main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4997 if (*main_local == NULL)
4998 *main_local = "";
4999
5000 *fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5001 if (*fmt1 == NULL)
5002 *fmt1 = "\t%o => %p (%x)\n";
5003
5004 *fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5005 if (*fmt2 == NULL)
5006 *fmt2 = "\t%o (%x)\n";
5007 }
5008
5009 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5010 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5011 const char *main_local, const char *fmt1, const char *fmt2)
5012 {
5013 const char *fmt;
5014 int c;
5015
5016 if (fmt1 == NULL)
5017 fmt = fmt2;
5018 else
5019 /* XXX bogus */
5020 fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5021
5022 while ((c = *fmt++) != '\0') {
5023 switch (c) {
5024 default:
5025 rtld_putchar(c);
5026 continue;
5027 case '\\':
5028 switch (c = *fmt) {
5029 case '\0':
5030 continue;
5031 case 'n':
5032 rtld_putchar('\n');
5033 break;
5034 case 't':
5035 rtld_putchar('\t');
5036 break;
5037 }
5038 break;
5039 case '%':
5040 switch (c = *fmt) {
5041 case '\0':
5042 continue;
5043 case '%':
5044 default:
5045 rtld_putchar(c);
5046 break;
5047 case 'A':
5048 rtld_putstr(main_local);
5049 break;
5050 case 'a':
5051 rtld_putstr(obj_main->path);
5052 break;
5053 case 'o':
5054 rtld_putstr(name);
5055 break;
5056 case 'p':
5057 rtld_putstr(path);
5058 break;
5059 case 'x':
5060 rtld_printf("%p", obj != NULL ?
5061 obj->mapbase : NULL);
5062 break;
5063 }
5064 break;
5065 }
5066 ++fmt;
5067 }
5068 }
5069
5070 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5071 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5072 {
5073 const char *fmt1, *fmt2, *main_local;
5074 const char *name, *path;
5075 bool first_spurious, list_containers;
5076
5077 trace_calc_fmts(&main_local, &fmt1, &fmt2);
5078 list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5079
5080 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5081 Needed_Entry *needed;
5082
5083 if (obj->marker)
5084 continue;
5085 if (list_containers && obj->needed != NULL)
5086 rtld_printf("%s:\n", obj->path);
5087 for (needed = obj->needed; needed; needed = needed->next) {
5088 if (needed->obj != NULL) {
5089 if (needed->obj->traced && !list_containers)
5090 continue;
5091 needed->obj->traced = true;
5092 path = needed->obj->path;
5093 } else
5094 path = "not found";
5095
5096 name = obj->strtab + needed->name;
5097 trace_print_obj(needed->obj, name, path, main_local,
5098 fmt1, fmt2);
5099 }
5100 }
5101
5102 if (show_preload) {
5103 if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5104 fmt2 = "\t%p (%x)\n";
5105 first_spurious = true;
5106
5107 TAILQ_FOREACH(obj, &obj_list, next) {
5108 if (obj->marker || obj == obj_main || obj->traced)
5109 continue;
5110
5111 if (list_containers && first_spurious) {
5112 rtld_printf("[preloaded]\n");
5113 first_spurious = false;
5114 }
5115
5116 Name_Entry *fname = STAILQ_FIRST(&obj->names);
5117 name = fname == NULL ? "<unknown>" : fname->name;
5118 trace_print_obj(obj, name, obj->path, main_local,
5119 NULL, fmt2);
5120 }
5121 }
5122 }
5123
5124 /*
5125 * Unload a dlopened object and its dependencies from memory and from
5126 * our data structures. It is assumed that the DAG rooted in the
5127 * object has already been unreferenced, and that the object has a
5128 * reference count of 0.
5129 */
5130 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5131 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5132 {
5133 Obj_Entry marker, *obj, *next;
5134
5135 assert(root->refcount == 0);
5136
5137 /*
5138 * Pass over the DAG removing unreferenced objects from
5139 * appropriate lists.
5140 */
5141 unlink_object(root);
5142
5143 /* Unmap all objects that are no longer referenced. */
5144 for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5145 next = TAILQ_NEXT(obj, next);
5146 if (obj->marker || obj->refcount != 0)
5147 continue;
5148 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5149 obj->mapsize, 0, obj->path);
5150 dbg("unloading \"%s\"", obj->path);
5151 /*
5152 * Unlink the object now to prevent new references from
5153 * being acquired while the bind lock is dropped in
5154 * recursive dlclose() invocations.
5155 */
5156 TAILQ_REMOVE(&obj_list, obj, next);
5157 obj_count--;
5158
5159 if (obj->filtees_loaded) {
5160 if (next != NULL) {
5161 init_marker(&marker);
5162 TAILQ_INSERT_BEFORE(next, &marker, next);
5163 unload_filtees(obj, lockstate);
5164 next = TAILQ_NEXT(&marker, next);
5165 TAILQ_REMOVE(&obj_list, &marker, next);
5166 } else
5167 unload_filtees(obj, lockstate);
5168 }
5169 release_object(obj);
5170 }
5171 }
5172
5173 static void
unlink_object(Obj_Entry * root)5174 unlink_object(Obj_Entry *root)
5175 {
5176 Objlist_Entry *elm;
5177
5178 if (root->refcount == 0) {
5179 /* Remove the object from the RTLD_GLOBAL list. */
5180 objlist_remove(&list_global, root);
5181
5182 /* Remove the object from all objects' DAG lists. */
5183 STAILQ_FOREACH(elm, &root->dagmembers, link) {
5184 objlist_remove(&elm->obj->dldags, root);
5185 if (elm->obj != root)
5186 unlink_object(elm->obj);
5187 }
5188 }
5189 }
5190
5191 static void
ref_dag(Obj_Entry * root)5192 ref_dag(Obj_Entry *root)
5193 {
5194 Objlist_Entry *elm;
5195
5196 assert(root->dag_inited);
5197 STAILQ_FOREACH(elm, &root->dagmembers, link)
5198 elm->obj->refcount++;
5199 }
5200
5201 static void
unref_dag(Obj_Entry * root)5202 unref_dag(Obj_Entry *root)
5203 {
5204 Objlist_Entry *elm;
5205
5206 assert(root->dag_inited);
5207 STAILQ_FOREACH(elm, &root->dagmembers, link)
5208 elm->obj->refcount--;
5209 }
5210
5211 /*
5212 * Common code for MD __tls_get_addr().
5213 */
5214 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5215 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5216 {
5217 Elf_Addr *newdtv, *dtv;
5218 RtldLockState lockstate;
5219 int to_copy;
5220
5221 dtv = *dtvp;
5222 /* Check dtv generation in case new modules have arrived */
5223 if (dtv[0] != tls_dtv_generation) {
5224 if (!locked)
5225 wlock_acquire(rtld_bind_lock, &lockstate);
5226 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5227 to_copy = dtv[1];
5228 if (to_copy > tls_max_index)
5229 to_copy = tls_max_index;
5230 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5231 newdtv[0] = tls_dtv_generation;
5232 newdtv[1] = tls_max_index;
5233 free(dtv);
5234 if (!locked)
5235 lock_release(rtld_bind_lock, &lockstate);
5236 dtv = *dtvp = newdtv;
5237 }
5238
5239 /* Dynamically allocate module TLS if necessary */
5240 if (dtv[index + 1] == 0) {
5241 /* Signal safe, wlock will block out signals. */
5242 if (!locked)
5243 wlock_acquire(rtld_bind_lock, &lockstate);
5244 if (!dtv[index + 1])
5245 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5246 if (!locked)
5247 lock_release(rtld_bind_lock, &lockstate);
5248 }
5249 return ((void *)(dtv[index + 1] + offset));
5250 }
5251
5252 void *
tls_get_addr_common(uintptr_t ** dtvp,int index,size_t offset)5253 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5254 {
5255 uintptr_t *dtv;
5256
5257 dtv = *dtvp;
5258 /* Check dtv generation in case new modules have arrived */
5259 if (__predict_true(dtv[0] == tls_dtv_generation &&
5260 dtv[index + 1] != 0))
5261 return ((void *)(dtv[index + 1] + offset));
5262 return (tls_get_addr_slow(dtvp, index, offset, false));
5263 }
5264
5265 #ifdef TLS_VARIANT_I
5266
5267 /*
5268 * Return pointer to allocated TLS block
5269 */
5270 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5271 get_tls_block_ptr(void *tcb, size_t tcbsize)
5272 {
5273 size_t extra_size, post_size, pre_size, tls_block_size;
5274 size_t tls_init_align;
5275
5276 tls_init_align = MAX(obj_main->tlsalign, 1);
5277
5278 /* Compute fragments sizes. */
5279 extra_size = tcbsize - TLS_TCB_SIZE;
5280 post_size = calculate_tls_post_size(tls_init_align);
5281 tls_block_size = tcbsize + post_size;
5282 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5283
5284 return ((char *)tcb - pre_size - extra_size);
5285 }
5286
5287 /*
5288 * Allocate Static TLS using the Variant I method.
5289 *
5290 * For details on the layout, see lib/libc/gen/tls.c.
5291 *
5292 * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5293 * it is based on tls_last_offset, and TLS offsets here are really TCB
5294 * offsets, whereas libc's tls_static_space is just the executable's static
5295 * TLS segment.
5296 */
5297 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5298 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5299 {
5300 Obj_Entry *obj;
5301 char *tls_block;
5302 Elf_Addr *dtv, **tcb;
5303 Elf_Addr addr;
5304 Elf_Addr i;
5305 size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5306 size_t tls_init_align, tls_init_offset;
5307
5308 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5309 return (oldtcb);
5310
5311 assert(tcbsize >= TLS_TCB_SIZE);
5312 maxalign = MAX(tcbalign, tls_static_max_align);
5313 tls_init_align = MAX(obj_main->tlsalign, 1);
5314
5315 /* Compute fragmets sizes. */
5316 extra_size = tcbsize - TLS_TCB_SIZE;
5317 post_size = calculate_tls_post_size(tls_init_align);
5318 tls_block_size = tcbsize + post_size;
5319 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5320 tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5321
5322 /* Allocate whole TLS block */
5323 tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5324 tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5325
5326 if (oldtcb != NULL) {
5327 memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5328 tls_static_space);
5329 free(get_tls_block_ptr(oldtcb, tcbsize));
5330
5331 /* Adjust the DTV. */
5332 dtv = tcb[0];
5333 for (i = 0; i < dtv[1]; i++) {
5334 if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5335 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5336 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5337 }
5338 }
5339 } else {
5340 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5341 tcb[0] = dtv;
5342 dtv[0] = tls_dtv_generation;
5343 dtv[1] = tls_max_index;
5344
5345 for (obj = globallist_curr(objs); obj != NULL;
5346 obj = globallist_next(obj)) {
5347 if (obj->tlsoffset == 0)
5348 continue;
5349 tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5350 addr = (Elf_Addr)tcb + obj->tlsoffset;
5351 if (tls_init_offset > 0)
5352 memset((void *)addr, 0, tls_init_offset);
5353 if (obj->tlsinitsize > 0) {
5354 memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5355 obj->tlsinitsize);
5356 }
5357 if (obj->tlssize > obj->tlsinitsize) {
5358 memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5359 0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5360 }
5361 dtv[obj->tlsindex + 1] = addr;
5362 }
5363 }
5364
5365 return (tcb);
5366 }
5367
5368 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5369 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5370 {
5371 Elf_Addr *dtv;
5372 Elf_Addr tlsstart, tlsend;
5373 size_t post_size;
5374 size_t dtvsize, i, tls_init_align __unused;
5375
5376 assert(tcbsize >= TLS_TCB_SIZE);
5377 tls_init_align = MAX(obj_main->tlsalign, 1);
5378
5379 /* Compute fragments sizes. */
5380 post_size = calculate_tls_post_size(tls_init_align);
5381
5382 tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5383 tlsend = (Elf_Addr)tcb + tls_static_space;
5384
5385 dtv = *(Elf_Addr **)tcb;
5386 dtvsize = dtv[1];
5387 for (i = 0; i < dtvsize; i++) {
5388 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5389 free((void*)dtv[i+2]);
5390 }
5391 }
5392 free(dtv);
5393 free(get_tls_block_ptr(tcb, tcbsize));
5394 }
5395
5396 #endif /* TLS_VARIANT_I */
5397
5398 #ifdef TLS_VARIANT_II
5399
5400 /*
5401 * Allocate Static TLS using the Variant II method.
5402 */
5403 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5404 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5405 {
5406 Obj_Entry *obj;
5407 size_t size, ralign;
5408 char *tls;
5409 Elf_Addr *dtv, *olddtv;
5410 Elf_Addr segbase, oldsegbase, addr;
5411 size_t i;
5412
5413 ralign = tcbalign;
5414 if (tls_static_max_align > ralign)
5415 ralign = tls_static_max_align;
5416 size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5417
5418 assert(tcbsize >= 2*sizeof(Elf_Addr));
5419 tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5420 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5421
5422 segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5423 ((Elf_Addr *)segbase)[0] = segbase;
5424 ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5425
5426 dtv[0] = tls_dtv_generation;
5427 dtv[1] = tls_max_index;
5428
5429 if (oldtls) {
5430 /*
5431 * Copy the static TLS block over whole.
5432 */
5433 oldsegbase = (Elf_Addr) oldtls;
5434 memcpy((void *)(segbase - tls_static_space),
5435 (const void *)(oldsegbase - tls_static_space),
5436 tls_static_space);
5437
5438 /*
5439 * If any dynamic TLS blocks have been created tls_get_addr(),
5440 * move them over.
5441 */
5442 olddtv = ((Elf_Addr **)oldsegbase)[1];
5443 for (i = 0; i < olddtv[1]; i++) {
5444 if (olddtv[i + 2] < oldsegbase - size ||
5445 olddtv[i + 2] > oldsegbase) {
5446 dtv[i + 2] = olddtv[i + 2];
5447 olddtv[i + 2] = 0;
5448 }
5449 }
5450
5451 /*
5452 * We assume that this block was the one we created with
5453 * allocate_initial_tls().
5454 */
5455 free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5456 } else {
5457 for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5458 if (obj->marker || obj->tlsoffset == 0)
5459 continue;
5460 addr = segbase - obj->tlsoffset;
5461 memset((void *)(addr + obj->tlsinitsize),
5462 0, obj->tlssize - obj->tlsinitsize);
5463 if (obj->tlsinit) {
5464 memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5465 obj->static_tls_copied = true;
5466 }
5467 dtv[obj->tlsindex + 1] = addr;
5468 }
5469 }
5470
5471 return ((void *)segbase);
5472 }
5473
5474 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5475 free_tls(void *tls, size_t tcbsize __unused, size_t tcbalign)
5476 {
5477 Elf_Addr* dtv;
5478 size_t size, ralign;
5479 int dtvsize, i;
5480 Elf_Addr tlsstart, tlsend;
5481
5482 /*
5483 * Figure out the size of the initial TLS block so that we can
5484 * find stuff which ___tls_get_addr() allocated dynamically.
5485 */
5486 ralign = tcbalign;
5487 if (tls_static_max_align > ralign)
5488 ralign = tls_static_max_align;
5489 size = roundup(tls_static_space, ralign);
5490
5491 dtv = ((Elf_Addr **)tls)[1];
5492 dtvsize = dtv[1];
5493 tlsend = (Elf_Addr)tls;
5494 tlsstart = tlsend - size;
5495 for (i = 0; i < dtvsize; i++) {
5496 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5497 dtv[i + 2] > tlsend)) {
5498 free((void *)dtv[i + 2]);
5499 }
5500 }
5501
5502 free((void *)tlsstart);
5503 free((void *)dtv);
5504 }
5505
5506 #endif /* TLS_VARIANT_II */
5507
5508 /*
5509 * Allocate TLS block for module with given index.
5510 */
5511 void *
allocate_module_tls(int index)5512 allocate_module_tls(int index)
5513 {
5514 Obj_Entry *obj;
5515 char *p;
5516
5517 TAILQ_FOREACH(obj, &obj_list, next) {
5518 if (obj->marker)
5519 continue;
5520 if (obj->tlsindex == index)
5521 break;
5522 }
5523 if (obj == NULL) {
5524 _rtld_error("Can't find module with TLS index %d", index);
5525 rtld_die();
5526 }
5527
5528 if (obj->tls_static) {
5529 #ifdef TLS_VARIANT_I
5530 p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5531 #else
5532 p = (char *)_tcb_get() - obj->tlsoffset;
5533 #endif
5534 return (p);
5535 }
5536
5537 obj->tls_dynamic = true;
5538
5539 p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5540 memcpy(p, obj->tlsinit, obj->tlsinitsize);
5541 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5542 return (p);
5543 }
5544
5545 bool
allocate_tls_offset(Obj_Entry * obj)5546 allocate_tls_offset(Obj_Entry *obj)
5547 {
5548 size_t off;
5549
5550 if (obj->tls_dynamic)
5551 return (false);
5552
5553 if (obj->tls_static)
5554 return (true);
5555
5556 if (obj->tlssize == 0) {
5557 obj->tls_static = true;
5558 return (true);
5559 }
5560
5561 if (tls_last_offset == 0)
5562 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5563 obj->tlspoffset);
5564 else
5565 off = calculate_tls_offset(tls_last_offset, tls_last_size,
5566 obj->tlssize, obj->tlsalign, obj->tlspoffset);
5567
5568 obj->tlsoffset = off;
5569 #ifdef TLS_VARIANT_I
5570 off += obj->tlssize;
5571 #endif
5572
5573 /*
5574 * If we have already fixed the size of the static TLS block, we
5575 * must stay within that size. When allocating the static TLS, we
5576 * leave a small amount of space spare to be used for dynamically
5577 * loading modules which use static TLS.
5578 */
5579 if (tls_static_space != 0) {
5580 if (off > tls_static_space)
5581 return (false);
5582 } else if (obj->tlsalign > tls_static_max_align) {
5583 tls_static_max_align = obj->tlsalign;
5584 }
5585
5586 tls_last_offset = off;
5587 tls_last_size = obj->tlssize;
5588 obj->tls_static = true;
5589
5590 return (true);
5591 }
5592
5593 void
free_tls_offset(Obj_Entry * obj)5594 free_tls_offset(Obj_Entry *obj)
5595 {
5596
5597 /*
5598 * If we were the last thing to allocate out of the static TLS
5599 * block, we give our space back to the 'allocator'. This is a
5600 * simplistic workaround to allow libGL.so.1 to be loaded and
5601 * unloaded multiple times.
5602 */
5603 size_t off = obj->tlsoffset;
5604 #ifdef TLS_VARIANT_I
5605 off += obj->tlssize;
5606 #endif
5607 if (off == tls_last_offset) {
5608 tls_last_offset -= obj->tlssize;
5609 tls_last_size = 0;
5610 }
5611 }
5612
5613 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5614 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5615 {
5616 void *ret;
5617 RtldLockState lockstate;
5618
5619 wlock_acquire(rtld_bind_lock, &lockstate);
5620 ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5621 tcbsize, tcbalign);
5622 lock_release(rtld_bind_lock, &lockstate);
5623 return (ret);
5624 }
5625
5626 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5627 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5628 {
5629 RtldLockState lockstate;
5630
5631 wlock_acquire(rtld_bind_lock, &lockstate);
5632 free_tls(tcb, tcbsize, tcbalign);
5633 lock_release(rtld_bind_lock, &lockstate);
5634 }
5635
5636 static void
object_add_name(Obj_Entry * obj,const char * name)5637 object_add_name(Obj_Entry *obj, const char *name)
5638 {
5639 Name_Entry *entry;
5640 size_t len;
5641
5642 len = strlen(name);
5643 entry = malloc(sizeof(Name_Entry) + len);
5644
5645 if (entry != NULL) {
5646 strcpy(entry->name, name);
5647 STAILQ_INSERT_TAIL(&obj->names, entry, link);
5648 }
5649 }
5650
5651 static int
object_match_name(const Obj_Entry * obj,const char * name)5652 object_match_name(const Obj_Entry *obj, const char *name)
5653 {
5654 Name_Entry *entry;
5655
5656 STAILQ_FOREACH(entry, &obj->names, link) {
5657 if (strcmp(name, entry->name) == 0)
5658 return (1);
5659 }
5660 return (0);
5661 }
5662
5663 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5664 locate_dependency(const Obj_Entry *obj, const char *name)
5665 {
5666 const Objlist_Entry *entry;
5667 const Needed_Entry *needed;
5668
5669 STAILQ_FOREACH(entry, &list_main, link) {
5670 if (object_match_name(entry->obj, name))
5671 return (entry->obj);
5672 }
5673
5674 for (needed = obj->needed; needed != NULL; needed = needed->next) {
5675 if (strcmp(obj->strtab + needed->name, name) == 0 ||
5676 (needed->obj != NULL && object_match_name(needed->obj, name))) {
5677 /*
5678 * If there is DT_NEEDED for the name we are looking for,
5679 * we are all set. Note that object might not be found if
5680 * dependency was not loaded yet, so the function can
5681 * return NULL here. This is expected and handled
5682 * properly by the caller.
5683 */
5684 return (needed->obj);
5685 }
5686 }
5687 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5688 obj->path, name);
5689 rtld_die();
5690 }
5691
5692 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5693 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5694 const Elf_Vernaux *vna)
5695 {
5696 const Elf_Verdef *vd;
5697 const char *vername;
5698
5699 vername = refobj->strtab + vna->vna_name;
5700 vd = depobj->verdef;
5701 if (vd == NULL) {
5702 _rtld_error("%s: version %s required by %s not defined",
5703 depobj->path, vername, refobj->path);
5704 return (-1);
5705 }
5706 for (;;) {
5707 if (vd->vd_version != VER_DEF_CURRENT) {
5708 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5709 depobj->path, vd->vd_version);
5710 return (-1);
5711 }
5712 if (vna->vna_hash == vd->vd_hash) {
5713 const Elf_Verdaux *aux = (const Elf_Verdaux *)
5714 ((const char *)vd + vd->vd_aux);
5715 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5716 return (0);
5717 }
5718 if (vd->vd_next == 0)
5719 break;
5720 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5721 }
5722 if (vna->vna_flags & VER_FLG_WEAK)
5723 return (0);
5724 _rtld_error("%s: version %s required by %s not found",
5725 depobj->path, vername, refobj->path);
5726 return (-1);
5727 }
5728
5729 static int
rtld_verify_object_versions(Obj_Entry * obj)5730 rtld_verify_object_versions(Obj_Entry *obj)
5731 {
5732 const Elf_Verneed *vn;
5733 const Elf_Verdef *vd;
5734 const Elf_Verdaux *vda;
5735 const Elf_Vernaux *vna;
5736 const Obj_Entry *depobj;
5737 int maxvernum, vernum;
5738
5739 if (obj->ver_checked)
5740 return (0);
5741 obj->ver_checked = true;
5742
5743 maxvernum = 0;
5744 /*
5745 * Walk over defined and required version records and figure out
5746 * max index used by any of them. Do very basic sanity checking
5747 * while there.
5748 */
5749 vn = obj->verneed;
5750 while (vn != NULL) {
5751 if (vn->vn_version != VER_NEED_CURRENT) {
5752 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5753 obj->path, vn->vn_version);
5754 return (-1);
5755 }
5756 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5757 for (;;) {
5758 vernum = VER_NEED_IDX(vna->vna_other);
5759 if (vernum > maxvernum)
5760 maxvernum = vernum;
5761 if (vna->vna_next == 0)
5762 break;
5763 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5764 }
5765 if (vn->vn_next == 0)
5766 break;
5767 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5768 }
5769
5770 vd = obj->verdef;
5771 while (vd != NULL) {
5772 if (vd->vd_version != VER_DEF_CURRENT) {
5773 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5774 obj->path, vd->vd_version);
5775 return (-1);
5776 }
5777 vernum = VER_DEF_IDX(vd->vd_ndx);
5778 if (vernum > maxvernum)
5779 maxvernum = vernum;
5780 if (vd->vd_next == 0)
5781 break;
5782 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5783 }
5784
5785 if (maxvernum == 0)
5786 return (0);
5787
5788 /*
5789 * Store version information in array indexable by version index.
5790 * Verify that object version requirements are satisfied along the
5791 * way.
5792 */
5793 obj->vernum = maxvernum + 1;
5794 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5795
5796 vd = obj->verdef;
5797 while (vd != NULL) {
5798 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5799 vernum = VER_DEF_IDX(vd->vd_ndx);
5800 assert(vernum <= maxvernum);
5801 vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5802 obj->vertab[vernum].hash = vd->vd_hash;
5803 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5804 obj->vertab[vernum].file = NULL;
5805 obj->vertab[vernum].flags = 0;
5806 }
5807 if (vd->vd_next == 0)
5808 break;
5809 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5810 }
5811
5812 vn = obj->verneed;
5813 while (vn != NULL) {
5814 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5815 if (depobj == NULL)
5816 return (-1);
5817 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5818 for (;;) {
5819 if (check_object_provided_version(obj, depobj, vna))
5820 return (-1);
5821 vernum = VER_NEED_IDX(vna->vna_other);
5822 assert(vernum <= maxvernum);
5823 obj->vertab[vernum].hash = vna->vna_hash;
5824 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5825 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5826 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5827 VER_INFO_HIDDEN : 0;
5828 if (vna->vna_next == 0)
5829 break;
5830 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5831 }
5832 if (vn->vn_next == 0)
5833 break;
5834 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5835 }
5836 return (0);
5837 }
5838
5839 static int
rtld_verify_versions(const Objlist * objlist)5840 rtld_verify_versions(const Objlist *objlist)
5841 {
5842 Objlist_Entry *entry;
5843 int rc;
5844
5845 rc = 0;
5846 STAILQ_FOREACH(entry, objlist, link) {
5847 /*
5848 * Skip dummy objects or objects that have their version requirements
5849 * already checked.
5850 */
5851 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5852 continue;
5853 if (rtld_verify_object_versions(entry->obj) == -1) {
5854 rc = -1;
5855 if (ld_tracing == NULL)
5856 break;
5857 }
5858 }
5859 if (rc == 0 || ld_tracing != NULL)
5860 rc = rtld_verify_object_versions(&obj_rtld);
5861 return (rc);
5862 }
5863
5864 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5865 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5866 {
5867 Elf_Versym vernum;
5868
5869 if (obj->vertab) {
5870 vernum = VER_NDX(obj->versyms[symnum]);
5871 if (vernum >= obj->vernum) {
5872 _rtld_error("%s: symbol %s has wrong verneed value %d",
5873 obj->path, obj->strtab + symnum, vernum);
5874 } else if (obj->vertab[vernum].hash != 0) {
5875 return (&obj->vertab[vernum]);
5876 }
5877 }
5878 return (NULL);
5879 }
5880
5881 int
_rtld_get_stack_prot(void)5882 _rtld_get_stack_prot(void)
5883 {
5884
5885 return (stack_prot);
5886 }
5887
5888 int
_rtld_is_dlopened(void * arg)5889 _rtld_is_dlopened(void *arg)
5890 {
5891 Obj_Entry *obj;
5892 RtldLockState lockstate;
5893 int res;
5894
5895 rlock_acquire(rtld_bind_lock, &lockstate);
5896 obj = dlcheck(arg);
5897 if (obj == NULL)
5898 obj = obj_from_addr(arg);
5899 if (obj == NULL) {
5900 _rtld_error("No shared object contains address");
5901 lock_release(rtld_bind_lock, &lockstate);
5902 return (-1);
5903 }
5904 res = obj->dlopened ? 1 : 0;
5905 lock_release(rtld_bind_lock, &lockstate);
5906 return (res);
5907 }
5908
5909 static int
obj_remap_relro(Obj_Entry * obj,int prot)5910 obj_remap_relro(Obj_Entry *obj, int prot)
5911 {
5912
5913 if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5914 prot) == -1) {
5915 _rtld_error("%s: Cannot set relro protection to %#x: %s",
5916 obj->path, prot, rtld_strerror(errno));
5917 return (-1);
5918 }
5919 return (0);
5920 }
5921
5922 static int
obj_disable_relro(Obj_Entry * obj)5923 obj_disable_relro(Obj_Entry *obj)
5924 {
5925
5926 return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5927 }
5928
5929 static int
obj_enforce_relro(Obj_Entry * obj)5930 obj_enforce_relro(Obj_Entry *obj)
5931 {
5932
5933 return (obj_remap_relro(obj, PROT_READ));
5934 }
5935
5936 static void
map_stacks_exec(RtldLockState * lockstate)5937 map_stacks_exec(RtldLockState *lockstate)
5938 {
5939 void (*thr_map_stacks_exec)(void);
5940
5941 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5942 return;
5943 thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5944 get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5945 if (thr_map_stacks_exec != NULL) {
5946 stack_prot |= PROT_EXEC;
5947 thr_map_stacks_exec();
5948 }
5949 }
5950
5951 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)5952 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5953 {
5954 Objlist_Entry *elm;
5955 Obj_Entry *obj;
5956 void (*distrib)(size_t, void *, size_t, size_t);
5957
5958 distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5959 get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5960 if (distrib == NULL)
5961 return;
5962 STAILQ_FOREACH(elm, list, link) {
5963 obj = elm->obj;
5964 if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5965 continue;
5966 lock_release(rtld_bind_lock, lockstate);
5967 distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5968 obj->tlssize);
5969 wlock_acquire(rtld_bind_lock, lockstate);
5970 obj->static_tls_copied = true;
5971 }
5972 }
5973
5974 void
symlook_init(SymLook * dst,const char * name)5975 symlook_init(SymLook *dst, const char *name)
5976 {
5977
5978 bzero(dst, sizeof(*dst));
5979 dst->name = name;
5980 dst->hash = elf_hash(name);
5981 dst->hash_gnu = gnu_hash(name);
5982 }
5983
5984 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)5985 symlook_init_from_req(SymLook *dst, const SymLook *src)
5986 {
5987
5988 dst->name = src->name;
5989 dst->hash = src->hash;
5990 dst->hash_gnu = src->hash_gnu;
5991 dst->ventry = src->ventry;
5992 dst->flags = src->flags;
5993 dst->defobj_out = NULL;
5994 dst->sym_out = NULL;
5995 dst->lockstate = src->lockstate;
5996 }
5997
5998 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)5999 open_binary_fd(const char *argv0, bool search_in_path,
6000 const char **binpath_res)
6001 {
6002 char *binpath, *pathenv, *pe, *res1;
6003 const char *res;
6004 int fd;
6005
6006 binpath = NULL;
6007 res = NULL;
6008 if (search_in_path && strchr(argv0, '/') == NULL) {
6009 binpath = xmalloc(PATH_MAX);
6010 pathenv = getenv("PATH");
6011 if (pathenv == NULL) {
6012 _rtld_error("-p and no PATH environment variable");
6013 rtld_die();
6014 }
6015 pathenv = strdup(pathenv);
6016 if (pathenv == NULL) {
6017 _rtld_error("Cannot allocate memory");
6018 rtld_die();
6019 }
6020 fd = -1;
6021 errno = ENOENT;
6022 while ((pe = strsep(&pathenv, ":")) != NULL) {
6023 if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6024 continue;
6025 if (binpath[0] != '\0' &&
6026 strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6027 continue;
6028 if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6029 continue;
6030 fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6031 if (fd != -1 || errno != ENOENT) {
6032 res = binpath;
6033 break;
6034 }
6035 }
6036 free(pathenv);
6037 } else {
6038 fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6039 res = argv0;
6040 }
6041
6042 if (fd == -1) {
6043 _rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6044 rtld_die();
6045 }
6046 if (res != NULL && res[0] != '/') {
6047 res1 = xmalloc(PATH_MAX);
6048 if (realpath(res, res1) != NULL) {
6049 if (res != argv0)
6050 free(__DECONST(char *, res));
6051 res = res1;
6052 } else {
6053 free(res1);
6054 }
6055 }
6056 *binpath_res = res;
6057 return (fd);
6058 }
6059
6060 /*
6061 * Parse a set of command-line arguments.
6062 */
6063 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6064 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6065 const char **argv0, bool *dir_ignore)
6066 {
6067 const char *arg;
6068 char machine[64];
6069 size_t sz;
6070 int arglen, fd, i, j, mib[2];
6071 char opt;
6072 bool seen_b, seen_f;
6073
6074 dbg("Parsing command-line arguments");
6075 *use_pathp = false;
6076 *fdp = -1;
6077 *dir_ignore = false;
6078 seen_b = seen_f = false;
6079
6080 for (i = 1; i < argc; i++ ) {
6081 arg = argv[i];
6082 dbg("argv[%d]: '%s'", i, arg);
6083
6084 /*
6085 * rtld arguments end with an explicit "--" or with the first
6086 * non-prefixed argument.
6087 */
6088 if (strcmp(arg, "--") == 0) {
6089 i++;
6090 break;
6091 }
6092 if (arg[0] != '-')
6093 break;
6094
6095 /*
6096 * All other arguments are single-character options that can
6097 * be combined, so we need to search through `arg` for them.
6098 */
6099 arglen = strlen(arg);
6100 for (j = 1; j < arglen; j++) {
6101 opt = arg[j];
6102 if (opt == 'h') {
6103 print_usage(argv[0]);
6104 _exit(0);
6105 } else if (opt == 'b') {
6106 if (seen_f) {
6107 _rtld_error("Both -b and -f specified");
6108 rtld_die();
6109 }
6110 if (j != arglen - 1) {
6111 _rtld_error("Invalid options: %s", arg);
6112 rtld_die();
6113 }
6114 i++;
6115 *argv0 = argv[i];
6116 seen_b = true;
6117 break;
6118 } else if (opt == 'd') {
6119 *dir_ignore = true;
6120 } else if (opt == 'f') {
6121 if (seen_b) {
6122 _rtld_error("Both -b and -f specified");
6123 rtld_die();
6124 }
6125
6126 /*
6127 * -f XX can be used to specify a
6128 * descriptor for the binary named at
6129 * the command line (i.e., the later
6130 * argument will specify the process
6131 * name but the descriptor is what
6132 * will actually be executed).
6133 *
6134 * -f must be the last option in the
6135 * group, e.g., -abcf <fd>.
6136 */
6137 if (j != arglen - 1) {
6138 _rtld_error("Invalid options: %s", arg);
6139 rtld_die();
6140 }
6141 i++;
6142 fd = parse_integer(argv[i]);
6143 if (fd == -1) {
6144 _rtld_error(
6145 "Invalid file descriptor: '%s'",
6146 argv[i]);
6147 rtld_die();
6148 }
6149 *fdp = fd;
6150 seen_f = true;
6151 break;
6152 } else if (opt == 'o') {
6153 struct ld_env_var_desc *l;
6154 char *n, *v;
6155 u_int ll;
6156
6157 if (j != arglen - 1) {
6158 _rtld_error("Invalid options: %s", arg);
6159 rtld_die();
6160 }
6161 i++;
6162 n = argv[i];
6163 v = strchr(n, '=');
6164 if (v == NULL) {
6165 _rtld_error("No '=' in -o parameter");
6166 rtld_die();
6167 }
6168 for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6169 l = &ld_env_vars[ll];
6170 if (v - n == (ptrdiff_t)strlen(l->n) &&
6171 strncmp(n, l->n, v - n) == 0) {
6172 l->val = v + 1;
6173 break;
6174 }
6175 }
6176 if (ll == nitems(ld_env_vars)) {
6177 _rtld_error("Unknown LD_ option %s",
6178 n);
6179 rtld_die();
6180 }
6181 } else if (opt == 'p') {
6182 *use_pathp = true;
6183 } else if (opt == 'u') {
6184 u_int ll;
6185
6186 for (ll = 0; ll < nitems(ld_env_vars); ll++)
6187 ld_env_vars[ll].val = NULL;
6188 } else if (opt == 'v') {
6189 machine[0] = '\0';
6190 mib[0] = CTL_HW;
6191 mib[1] = HW_MACHINE;
6192 sz = sizeof(machine);
6193 sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6194 ld_elf_hints_path = ld_get_env_var(
6195 LD_ELF_HINTS_PATH);
6196 set_ld_elf_hints_path();
6197 rtld_printf(
6198 "FreeBSD ld-elf.so.1 %s\n"
6199 "FreeBSD_version %d\n"
6200 "Default lib path %s\n"
6201 "Hints lib path %s\n"
6202 "Env prefix %s\n"
6203 "Default hint file %s\n"
6204 "Hint file %s\n"
6205 "libmap file %s\n"
6206 "Optional static TLS size %zd bytes\n",
6207 machine,
6208 __FreeBSD_version, ld_standard_library_path,
6209 gethints(false),
6210 ld_env_prefix, ld_elf_hints_default,
6211 ld_elf_hints_path,
6212 ld_path_libmap_conf,
6213 ld_static_tls_extra);
6214 _exit(0);
6215 } else {
6216 _rtld_error("Invalid argument: '%s'", arg);
6217 print_usage(argv[0]);
6218 rtld_die();
6219 }
6220 }
6221 }
6222
6223 if (!seen_b)
6224 *argv0 = argv[i];
6225 return (i);
6226 }
6227
6228 /*
6229 * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6230 */
6231 static int
parse_integer(const char * str)6232 parse_integer(const char *str)
6233 {
6234 static const int RADIX = 10; /* XXXJA: possibly support hex? */
6235 const char *orig;
6236 int n;
6237 char c;
6238
6239 orig = str;
6240 n = 0;
6241 for (c = *str; c != '\0'; c = *++str) {
6242 if (c < '0' || c > '9')
6243 return (-1);
6244
6245 n *= RADIX;
6246 n += c - '0';
6247 }
6248
6249 /* Make sure we actually parsed something. */
6250 if (str == orig)
6251 return (-1);
6252 return (n);
6253 }
6254
6255 static void
print_usage(const char * argv0)6256 print_usage(const char *argv0)
6257 {
6258
6259 rtld_printf(
6260 "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6261 "\n"
6262 "Options:\n"
6263 " -h Display this help message\n"
6264 " -b <exe> Execute <exe> instead of <binary>, arg0 is <binary>\n"
6265 " -d Ignore lack of exec permissions for the binary\n"
6266 " -f <FD> Execute <FD> instead of searching for <binary>\n"
6267 " -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6268 " -p Search in PATH for named binary\n"
6269 " -u Ignore LD_ environment variables\n"
6270 " -v Display identification information\n"
6271 " -- End of RTLD options\n"
6272 " <binary> Name of process to execute\n"
6273 " <args> Arguments to the executed process\n", argv0);
6274 }
6275
6276 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6277 static const struct auxfmt {
6278 const char *name;
6279 const char *fmt;
6280 } auxfmts[] = {
6281 AUXFMT(AT_NULL, NULL),
6282 AUXFMT(AT_IGNORE, NULL),
6283 AUXFMT(AT_EXECFD, "%ld"),
6284 AUXFMT(AT_PHDR, "%p"),
6285 AUXFMT(AT_PHENT, "%lu"),
6286 AUXFMT(AT_PHNUM, "%lu"),
6287 AUXFMT(AT_PAGESZ, "%lu"),
6288 AUXFMT(AT_BASE, "%#lx"),
6289 AUXFMT(AT_FLAGS, "%#lx"),
6290 AUXFMT(AT_ENTRY, "%p"),
6291 AUXFMT(AT_NOTELF, NULL),
6292 AUXFMT(AT_UID, "%ld"),
6293 AUXFMT(AT_EUID, "%ld"),
6294 AUXFMT(AT_GID, "%ld"),
6295 AUXFMT(AT_EGID, "%ld"),
6296 AUXFMT(AT_EXECPATH, "%s"),
6297 AUXFMT(AT_CANARY, "%p"),
6298 AUXFMT(AT_CANARYLEN, "%lu"),
6299 AUXFMT(AT_OSRELDATE, "%lu"),
6300 AUXFMT(AT_NCPUS, "%lu"),
6301 AUXFMT(AT_PAGESIZES, "%p"),
6302 AUXFMT(AT_PAGESIZESLEN, "%lu"),
6303 AUXFMT(AT_TIMEKEEP, "%p"),
6304 AUXFMT(AT_STACKPROT, "%#lx"),
6305 AUXFMT(AT_EHDRFLAGS, "%#lx"),
6306 AUXFMT(AT_HWCAP, "%#lx"),
6307 AUXFMT(AT_HWCAP2, "%#lx"),
6308 AUXFMT(AT_BSDFLAGS, "%#lx"),
6309 AUXFMT(AT_ARGC, "%lu"),
6310 AUXFMT(AT_ARGV, "%p"),
6311 AUXFMT(AT_ENVC, "%p"),
6312 AUXFMT(AT_ENVV, "%p"),
6313 AUXFMT(AT_PS_STRINGS, "%p"),
6314 AUXFMT(AT_FXRNG, "%p"),
6315 AUXFMT(AT_KPRELOAD, "%p"),
6316 AUXFMT(AT_USRSTACKBASE, "%#lx"),
6317 AUXFMT(AT_USRSTACKLIM, "%#lx"),
6318 };
6319
6320 static bool
is_ptr_fmt(const char * fmt)6321 is_ptr_fmt(const char *fmt)
6322 {
6323 char last;
6324
6325 last = fmt[strlen(fmt) - 1];
6326 return (last == 'p' || last == 's');
6327 }
6328
6329 static void
dump_auxv(Elf_Auxinfo ** aux_info)6330 dump_auxv(Elf_Auxinfo **aux_info)
6331 {
6332 Elf_Auxinfo *auxp;
6333 const struct auxfmt *fmt;
6334 int i;
6335
6336 for (i = 0; i < AT_COUNT; i++) {
6337 auxp = aux_info[i];
6338 if (auxp == NULL)
6339 continue;
6340 fmt = &auxfmts[i];
6341 if (fmt->fmt == NULL)
6342 continue;
6343 rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6344 if (is_ptr_fmt(fmt->fmt)) {
6345 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6346 auxp->a_un.a_ptr);
6347 } else {
6348 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6349 auxp->a_un.a_val);
6350 }
6351 rtld_fdprintf(STDOUT_FILENO, "\n");
6352 }
6353 }
6354
6355 const char *
rtld_get_var(const char * name)6356 rtld_get_var(const char *name)
6357 {
6358 const struct ld_env_var_desc *lvd;
6359 u_int i;
6360
6361 for (i = 0; i < nitems(ld_env_vars); i++) {
6362 lvd = &ld_env_vars[i];
6363 if (strcmp(lvd->n, name) == 0)
6364 return (lvd->val);
6365 }
6366 return (NULL);
6367 }
6368
6369 int
rtld_set_var(const char * name,const char * val)6370 rtld_set_var(const char *name, const char *val)
6371 {
6372 struct ld_env_var_desc *lvd;
6373 u_int i;
6374
6375 for (i = 0; i < nitems(ld_env_vars); i++) {
6376 lvd = &ld_env_vars[i];
6377 if (strcmp(lvd->n, name) != 0)
6378 continue;
6379 if (!lvd->can_update || (lvd->unsecure && !trust))
6380 return (EPERM);
6381 if (lvd->owned)
6382 free(__DECONST(char *, lvd->val));
6383 if (val != NULL)
6384 lvd->val = xstrdup(val);
6385 else
6386 lvd->val = NULL;
6387 lvd->owned = true;
6388 if (lvd->debug)
6389 debug = lvd->val != NULL && *lvd->val != '\0';
6390 return (0);
6391 }
6392 return (ENOENT);
6393 }
6394
6395 /*
6396 * Overrides for libc_pic-provided functions.
6397 */
6398
6399 int
__getosreldate(void)6400 __getosreldate(void)
6401 {
6402 size_t len;
6403 int oid[2];
6404 int error, osrel;
6405
6406 if (osreldate != 0)
6407 return (osreldate);
6408
6409 oid[0] = CTL_KERN;
6410 oid[1] = KERN_OSRELDATE;
6411 osrel = 0;
6412 len = sizeof(osrel);
6413 error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6414 if (error == 0 && osrel > 0 && len == sizeof(osrel))
6415 osreldate = osrel;
6416 return (osreldate);
6417 }
6418 const char *
rtld_strerror(int errnum)6419 rtld_strerror(int errnum)
6420 {
6421
6422 if (errnum < 0 || errnum >= sys_nerr)
6423 return ("Unknown error");
6424 return (sys_errlist[errnum]);
6425 }
6426
6427 char *
getenv(const char * name)6428 getenv(const char *name)
6429 {
6430 return (__DECONST(char *, rtld_get_env_val(environ, name,
6431 strlen(name))));
6432 }
6433
6434 /* malloc */
6435 void *
malloc(size_t nbytes)6436 malloc(size_t nbytes)
6437 {
6438
6439 return (__crt_malloc(nbytes));
6440 }
6441
6442 void *
calloc(size_t num,size_t size)6443 calloc(size_t num, size_t size)
6444 {
6445
6446 return (__crt_calloc(num, size));
6447 }
6448
6449 void
free(void * cp)6450 free(void *cp)
6451 {
6452
6453 __crt_free(cp);
6454 }
6455
6456 void *
realloc(void * cp,size_t nbytes)6457 realloc(void *cp, size_t nbytes)
6458 {
6459
6460 return (__crt_realloc(cp, nbytes));
6461 }
6462
6463 extern int _rtld_version__FreeBSD_version __exported;
6464 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6465
6466 extern char _rtld_version_laddr_offset __exported;
6467 char _rtld_version_laddr_offset;
6468
6469 extern char _rtld_version_dlpi_tls_data __exported;
6470 char _rtld_version_dlpi_tls_data;
6471