1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2015, Joyent, Inc. All rights reserved. 29 */ 30 31 /* 32 * Dump an elf file. 33 */ 34 #include <stddef.h> 35 #include <sys/elf_386.h> 36 #include <sys/elf_amd64.h> 37 #include <sys/elf_SPARC.h> 38 #include <_libelf.h> 39 #include <dwarf.h> 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <errno.h> 43 #include <strings.h> 44 #include <debug.h> 45 #include <conv.h> 46 #include <msg.h> 47 #include <_elfdump.h> 48 49 50 /* 51 * VERSYM_STATE is used to maintain information about the VERSYM section 52 * in the object being analyzed. It is filled in by versions(), and used 53 * by init_symtbl_state() when displaying symbol information. 54 * 55 * There are three forms of symbol versioning known to us: 56 * 57 * 1) The original form, introduced with Solaris 2.5, in which 58 * the Versym contains indexes to Verdef records, and the 59 * Versym values for UNDEF symbols resolved by other objects 60 * are all set to 0. 61 * 2) The GNU form, which is backward compatible with the original 62 * Solaris form, but which adds several extensions: 63 * - The Versym also contains indexes to Verneed records, recording 64 * which object/version contributed the external symbol at 65 * link time. These indexes start with the next value following 66 * the final Verdef index. The index is written to the previously 67 * reserved vna_other field of the ELF Vernaux structure. 68 * - The top bit of the Versym value is no longer part of the index, 69 * but is used as a "hidden bit" to prevent binding to the symbol. 70 * - Multiple implementations of a given symbol, contained in varying 71 * versions are allowed, using special assembler pseudo ops, 72 * and encoded in the symbol name using '@' characters. 73 * 3) Modified Solaris form, in which we adopt the first GNU extension 74 * (Versym indexes to Verneed records), but not the others. 75 * 76 * elfdump can handle any of these cases. The presence of a DT_VERSYM 77 * dynamic element indicates a full GNU object. An object that lacks 78 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux 79 * structures is a modified Solaris object. An object that has neither of 80 * these uses the original form. 81 * 82 * max_verndx contains the largest version index that can appear 83 * in a Versym entry. This can never be less than 1: In the case where 84 * there is no verdef/verneed sections, the [0] index is reserved 85 * for local symbols, and the [1] index for globals. If the original 86 * Solaris versioning rules are in effect and there is a verdef section, 87 * then max_verndex is the number of defined versions. If one of the 88 * other versioning forms is in effect, then: 89 * 1) If there is no verneed section, it is the same as for 90 * original Solaris versioning. 91 * 2) If there is a verneed section, the vna_other field of the 92 * Vernaux structs contain versions, and max_verndx is the 93 * largest such index. 94 * 95 * If gnu_full is True, the object uses the full GNU form of versioning. 96 * The value of the gnu_full field is based on the presence of 97 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and 98 * Solaris ld does not. 99 * 100 * The gnu_needed field is True if the Versym contains indexes to 101 * Verneed records, as indicated by non-zero vna_other fields in the Verneed 102 * section. If gnu_full is True, then gnu_needed will always be true. 103 * However, gnu_needed can be true without gnu_full. This is the modified 104 * Solaris form. 105 */ 106 typedef struct { 107 Cache *cache; /* Pointer to cache entry for VERSYM */ 108 Versym *data; /* Pointer to versym array */ 109 int gnu_full; /* True if object uses GNU versioning rules */ 110 int gnu_needed; /* True if object uses VERSYM indexes for */ 111 /* VERNEED (subset of gnu_full) */ 112 int max_verndx; /* largest versym index value */ 113 } VERSYM_STATE; 114 115 /* 116 * SYMTBL_STATE is used to maintain information about a single symbol 117 * table section, for use by the routines that display symbol information. 118 */ 119 typedef struct { 120 const char *file; /* Name of file */ 121 Ehdr *ehdr; /* ELF header for file */ 122 Cache *cache; /* Cache of all section headers */ 123 uchar_t osabi; /* OSABI to use */ 124 Word shnum; /* # of sections in cache */ 125 Cache *seccache; /* Cache of symbol table section hdr */ 126 Word secndx; /* Index of symbol table section hdr */ 127 const char *secname; /* Name of section */ 128 uint_t flags; /* Command line option flags */ 129 struct { /* Extended section index data */ 130 int checked; /* TRUE if already checked for shxndx */ 131 Word *data; /* NULL, or extended section index */ 132 /* used for symbol table entries */ 133 uint_t n; /* # items in shxndx.data */ 134 } shxndx; 135 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */ 136 Sym *sym; /* Array of symbols */ 137 Word symn; /* # of symbols */ 138 } SYMTBL_STATE; 139 140 /* 141 * A variable of this type is used to track information related to 142 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame(). 143 */ 144 typedef struct { 145 Word frame_cnt; /* # .eh_frame sections seen */ 146 Word frame_ndx; /* Section index of 1st .eh_frame */ 147 Word hdr_cnt; /* # .eh_frame_hdr sections seen */ 148 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */ 149 uint64_t frame_ptr; /* Value of FramePtr field from first */ 150 /* .eh_frame_hdr section */ 151 uint64_t frame_base; /* Data addr of 1st .eh_frame */ 152 } gnu_eh_state_t; 153 154 /* 155 * C++ .exception_ranges entries make use of the signed ptrdiff_t 156 * type to record self-relative pointer values. We need a type 157 * for this that is matched to the ELFCLASS being processed. 158 */ 159 #if defined(_ELF64) 160 typedef int64_t PTRDIFF_T; 161 #else 162 typedef int32_t PTRDIFF_T; 163 #endif 164 165 /* 166 * The Sun C++ ABI uses this struct to define each .exception_ranges 167 * entry. From the ABI: 168 * 169 * The field ret_addr is a self relative pointer to the start of the address 170 * range. The name was chosen because in the current implementation the range 171 * typically starts at the return address for a call site. 172 * 173 * The field length is the difference, in bytes, between the pc of the last 174 * instruction covered by the exception range and the first. When only a 175 * single call site is represented without optimization, this will equal zero. 176 * 177 * The field handler_addr is a relative pointer which stores the difference 178 * between the start of the exception range and the address of all code to 179 * catch exceptions and perform the cleanup for stack unwinding. 180 * 181 * The field type_block is a relative pointer which stores the difference 182 * between the start of the exception range and the address of an array used 183 * for storing a list of the types of exceptions which can be caught within 184 * the exception range. 185 */ 186 typedef struct { 187 PTRDIFF_T ret_addr; 188 Xword length; 189 PTRDIFF_T handler_addr; 190 PTRDIFF_T type_block; 191 Xword reserved; 192 } exception_range_entry; 193 194 /* 195 * Focal point for verifying symbol names. 196 */ 197 static const char * 198 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name) 199 { 200 /* 201 * If an error in this routine is due to a property of the string 202 * section, as opposed to a bad offset into the section (a property of 203 * the referencing section), then we will detect the same error on 204 * every call involving those sections. We use these static variables 205 * to retain the information needed to only issue each such error once. 206 */ 207 static Cache *last_refsec; /* Last referencing section seen */ 208 static int strsec_err; /* True if error issued */ 209 210 const char *strs; 211 Word strn; 212 213 if (strsec->c_data == NULL) 214 return (NULL); 215 216 strs = (char *)strsec->c_data->d_buf; 217 strn = strsec->c_data->d_size; 218 219 /* 220 * We only print a diagnostic regarding a bad string table once per 221 * input section being processed. If the refsec has changed, reset 222 * our retained error state. 223 */ 224 if (last_refsec != refsec) { 225 last_refsec = refsec; 226 strsec_err = 0; 227 } 228 229 /* Verify that strsec really is a string table */ 230 if (strsec->c_shdr->sh_type != SHT_STRTAB) { 231 if (!strsec_err) { 232 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB), 233 file, strsec->c_ndx, refsec->c_ndx); 234 strsec_err = 1; 235 } 236 return (MSG_INTL(MSG_STR_UNKNOWN)); 237 } 238 239 /* 240 * Is the string table offset within range of the available strings? 241 */ 242 if (name >= strn) { 243 /* 244 * Do we have a empty string table? 245 */ 246 if (strs == NULL) { 247 if (!strsec_err) { 248 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 249 file, strsec->c_name); 250 strsec_err = 1; 251 } 252 } else { 253 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF), 254 file, refsec->c_name, EC_WORD(ndx), strsec->c_name, 255 EC_WORD(name), EC_WORD(strn - 1)); 256 } 257 258 /* 259 * Return the empty string so that the calling function can 260 * continue it's output diagnostics. 261 */ 262 return (MSG_INTL(MSG_STR_UNKNOWN)); 263 } 264 return (strs + name); 265 } 266 267 /* 268 * Relocations can reference section symbols and standard symbols. If the 269 * former, establish the section name. 270 */ 271 static const char * 272 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum, 273 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file) 274 { 275 Sym *sym; 276 const char *name; 277 278 if (symndx >= symnum) { 279 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX), 280 file, EC_WORD(symndx), EC_WORD(relndx)); 281 return (MSG_INTL(MSG_STR_UNKNOWN)); 282 } 283 284 sym = (Sym *)(syms + symndx); 285 name = string(csec, symndx, strsec, file, sym->st_name); 286 287 /* 288 * If the symbol represents a section offset construct an appropriate 289 * string. Note, although section symbol table entries typically have 290 * a NULL name pointer, entries do exist that point into the string 291 * table to their own NULL strings. 292 */ 293 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && 294 ((sym->st_name == 0) || (*name == '\0'))) { 295 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION), 296 cache[sym->st_shndx].c_name); 297 return ((const char *)secstr); 298 } 299 300 return (name); 301 } 302 303 /* 304 * Focal point for establishing a string table section. Data such as the 305 * dynamic information simply points to a string table. Data such as 306 * relocations, reference a symbol table, which in turn is associated with a 307 * string table. 308 */ 309 static int 310 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file, 311 Word *symnum, Cache **symsec, Cache **strsec) 312 { 313 Shdr *shdr = cache[ndx].c_shdr; 314 315 if (symtab) { 316 /* 317 * Validate the symbol table section. 318 */ 319 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 320 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 321 file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); 322 return (0); 323 } 324 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 325 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 326 file, cache[ndx].c_name); 327 return (0); 328 } 329 330 /* 331 * Obtain, and verify the symbol table data. 332 */ 333 if ((cache[ndx].c_data == NULL) || 334 (cache[ndx].c_data->d_buf == NULL)) { 335 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 336 file, cache[ndx].c_name); 337 return (0); 338 } 339 340 /* 341 * Establish the string table index. 342 */ 343 ndx = shdr->sh_link; 344 shdr = cache[ndx].c_shdr; 345 346 /* 347 * Return symbol table information. 348 */ 349 if (symnum) 350 *symnum = (shdr->sh_size / shdr->sh_entsize); 351 if (symsec) 352 *symsec = &cache[ndx]; 353 } 354 355 /* 356 * Validate the associated string table section. 357 */ 358 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 359 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 360 file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); 361 return (0); 362 } 363 364 if (strsec) 365 *strsec = &cache[shdr->sh_link]; 366 367 return (1); 368 } 369 370 /* 371 * Lookup a symbol and set Sym accordingly. 372 * 373 * entry: 374 * name - Name of symbol to lookup 375 * cache - Cache of all section headers 376 * shnum - # of sections in cache 377 * sym - Address of pointer to receive symbol 378 * target - NULL, or section to which the symbol must be associated. 379 * symtab - Symbol table to search for symbol 380 * file - Name of file 381 * 382 * exit: 383 * If the symbol is found, *sym is set to reference it, and True is 384 * returned. If target is non-NULL, the symbol must reference the given 385 * section --- otherwise the section is not checked. 386 * 387 * If no symbol is found, False is returned. 388 */ 389 static int 390 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym, 391 Cache *target, Cache *symtab, const char *file) 392 { 393 Shdr *shdr; 394 Word symn, cnt; 395 Sym *syms; 396 397 if (symtab == 0) 398 return (0); 399 400 shdr = symtab->c_shdr; 401 402 /* 403 * Determine the symbol data and number. 404 */ 405 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 406 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 407 file, symtab->c_name); 408 return (0); 409 } 410 if (symtab->c_data == NULL) 411 return (0); 412 413 /* LINTED */ 414 symn = (Word)(shdr->sh_size / shdr->sh_entsize); 415 syms = (Sym *)symtab->c_data->d_buf; 416 417 /* 418 * Get the associated string table section. 419 */ 420 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 421 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 422 file, symtab->c_name, EC_WORD(shdr->sh_link)); 423 return (0); 424 } 425 426 /* 427 * Loop through the symbol table to find a match. 428 */ 429 *sym = NULL; 430 for (cnt = 0; cnt < symn; syms++, cnt++) { 431 const char *symname; 432 433 symname = string(symtab, cnt, &cache[shdr->sh_link], file, 434 syms->st_name); 435 436 if (symname && (strcmp(name, symname) == 0) && 437 ((target == NULL) || (target->c_ndx == syms->st_shndx))) { 438 /* 439 * It is possible, though rare, for a local and 440 * global symbol of the same name to exist, each 441 * contributed by a different input object. If the 442 * symbol just found is local, remember it, but 443 * continue looking. 444 */ 445 *sym = syms; 446 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL) 447 break; 448 } 449 } 450 451 return (*sym != NULL); 452 } 453 454 /* 455 * Print section headers. 456 */ 457 static void 458 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi) 459 { 460 size_t seccnt; 461 462 for (seccnt = 1; seccnt < shnum; seccnt++) { 463 Cache *_cache = &cache[seccnt]; 464 Shdr *shdr = _cache->c_shdr; 465 const char *secname = _cache->c_name; 466 467 /* 468 * Although numerous section header entries can be zero, it's 469 * usually a sign of trouble if the type is zero. 470 */ 471 if (shdr->sh_type == 0) { 472 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE), 473 file, secname, EC_WORD(shdr->sh_type)); 474 } 475 476 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type)) 477 continue; 478 479 /* 480 * Identify any sections that are suspicious. A .got section 481 * shouldn't exist in a relocatable object. 482 */ 483 if (ehdr->e_type == ET_REL) { 484 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT), 485 MSG_ELF_GOT_SIZE) == 0) { 486 (void) fprintf(stderr, 487 MSG_INTL(MSG_GOT_UNEXPECTED), file, 488 secname); 489 } 490 } 491 492 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 493 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname); 494 Elf_shdr(0, osabi, ehdr->e_machine, shdr); 495 } 496 } 497 498 /* 499 * Obtain a specified Phdr entry. 500 */ 501 static Phdr * 502 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf) 503 { 504 Word cnt, tcnt; 505 Phdr *phdr; 506 507 if ((phdr = elf_getphdr(elf)) == NULL) { 508 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 509 return (NULL); 510 } 511 512 for (cnt = 0; cnt < phnum; phdr++, cnt++) { 513 for (tcnt = 0; tcnt < type_cnt; tcnt++) { 514 if (phdr->p_type == type_arr[tcnt]) 515 return (phdr); 516 } 517 } 518 return (NULL); 519 } 520 521 /* 522 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr 523 * sections. 524 * 525 * entry: 526 * cache - Cache of all section headers 527 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed 528 * shnum - Total number of sections which exist 529 * uphdr - NULL, or unwind program header associated with 530 * the .eh_frame_hdr section. 531 * ehdr - ELF header for file 532 * eh_state - Data used across calls to this routine. The 533 * caller should zero it before the first call, and 534 * pass it on every call. 535 * osabi - OSABI to use in displaying information 536 * file - Name of file 537 * flags - Command line option flags 538 */ 539 static void 540 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr, 541 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags) 542 { 543 #if defined(_ELF64) 544 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64 545 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64 546 #else 547 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32 548 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32 549 #endif 550 551 Cache *_cache = &cache[shndx]; 552 Shdr *shdr = _cache->c_shdr; 553 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf); 554 size_t datasize = _cache->c_data->d_size; 555 Conv_dwarf_ehe_buf_t dwarf_ehe_buf; 556 uint64_t ndx, frame_ptr, fde_cnt, tabndx; 557 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc; 558 uint64_t initloc, initloc0 = 0; 559 uint64_t gotaddr = 0; 560 int cnt; 561 562 for (cnt = 1; cnt < shnum; cnt++) { 563 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), 564 MSG_ELF_GOT_SIZE) == 0) { 565 gotaddr = cache[cnt].c_shdr->sh_addr; 566 break; 567 } 568 } 569 570 if ((data == NULL) || (datasize == 0)) { 571 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 572 file, _cache ->c_name); 573 return; 574 } 575 576 /* 577 * Is this a .eh_frame_hdr? 578 */ 579 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) || 580 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR), 581 MSG_SCN_FRMHDR_SIZE) == 0)) { 582 /* 583 * There can only be a single .eh_frame_hdr. 584 * Flag duplicates. 585 */ 586 if (++eh_state->hdr_cnt > 1) 587 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR), 588 file, EC_WORD(shndx), _cache->c_name); 589 590 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR)); 591 ndx = 0; 592 593 vers = data[ndx++]; 594 frame_ptr_enc = data[ndx++]; 595 fde_cnt_enc = data[ndx++]; 596 table_enc = data[ndx++]; 597 598 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers); 599 600 switch (dwarf_ehe_extract(data, datasize, &ndx, 601 &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE, 602 shdr->sh_addr, ndx, gotaddr)) { 603 case DW_OVERFLOW: 604 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), 605 file, _cache->c_name); 606 return; 607 case DW_BAD_ENCODING: 608 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), 609 file, _cache->c_name, frame_ptr_enc); 610 return; 611 case DW_SUCCESS: 612 break; 613 } 614 if (eh_state->hdr_cnt == 1) { 615 eh_state->hdr_ndx = shndx; 616 eh_state->frame_ptr = frame_ptr; 617 } 618 619 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC), 620 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf), 621 EC_XWORD(frame_ptr)); 622 623 switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt, 624 fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, 625 gotaddr)) { 626 case DW_OVERFLOW: 627 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), 628 file, _cache->c_name); 629 return; 630 case DW_BAD_ENCODING: 631 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), 632 file, _cache->c_name, fde_cnt_enc); 633 return; 634 case DW_SUCCESS: 635 break; 636 } 637 638 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC), 639 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf), 640 EC_XWORD(fde_cnt)); 641 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC), 642 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf)); 643 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1)); 644 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2)); 645 646 for (tabndx = 0; tabndx < fde_cnt; tabndx++) { 647 uint64_t table; 648 649 switch (dwarf_ehe_extract(data, datasize, &ndx, 650 &initloc, table_enc, ehdr->e_ident, B_TRUE, 651 shdr->sh_addr, ndx, gotaddr)) { 652 case DW_OVERFLOW: 653 (void) fprintf(stderr, 654 MSG_INTL(MSG_ERR_DWOVRFLW), file, 655 _cache->c_name); 656 return; 657 case DW_BAD_ENCODING: 658 (void) fprintf(stderr, 659 MSG_INTL(MSG_ERR_DWBADENC), file, 660 _cache->c_name, table_enc); 661 return; 662 case DW_SUCCESS: 663 break; 664 } 665 if ((tabndx != 0) && (initloc0 > initloc)) 666 (void) fprintf(stderr, 667 MSG_INTL(MSG_ERR_BADSORT), file, 668 _cache->c_name, EC_WORD(tabndx)); 669 switch (dwarf_ehe_extract(data, datasize, &ndx, &table, 670 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, 671 ndx, gotaddr)) { 672 case DW_OVERFLOW: 673 (void) fprintf(stderr, 674 MSG_INTL(MSG_ERR_DWOVRFLW), file, 675 _cache->c_name); 676 return; 677 case DW_BAD_ENCODING: 678 (void) fprintf(stderr, 679 MSG_INTL(MSG_ERR_DWBADENC), file, 680 _cache->c_name, table_enc); 681 return; 682 case DW_SUCCESS: 683 break; 684 } 685 686 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT), 687 EC_XWORD(initloc), 688 EC_XWORD(table)); 689 initloc0 = initloc; 690 } 691 } else { /* Display the .eh_frame section */ 692 eh_state->frame_cnt++; 693 if (eh_state->frame_cnt == 1) { 694 eh_state->frame_ndx = shndx; 695 eh_state->frame_base = shdr->sh_addr; 696 } else if ((eh_state->frame_cnt > 1) && 697 (ehdr->e_type != ET_REL)) { 698 Conv_inv_buf_t inv_buf; 699 700 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM), 701 file, EC_WORD(shndx), _cache->c_name, 702 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf)); 703 } 704 dump_eh_frame(file, _cache->c_name, data, datasize, 705 shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr); 706 } 707 708 /* 709 * If we've seen the .eh_frame_hdr and the first .eh_frame section, 710 * compare the header frame_ptr to the address of the actual frame 711 * section to ensure the link-editor got this right. Note, this 712 * diagnostic is only produced when unwind information is explicitly 713 * asked for, as shared objects built with an older ld(1) may reveal 714 * this inconsistency. Although an inconsistency, it doesn't seem to 715 * have any adverse effect on existing tools. 716 */ 717 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) && 718 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) && 719 (eh_state->frame_ptr != eh_state->frame_base)) 720 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR), 721 file, EC_WORD(eh_state->hdr_ndx), 722 cache[eh_state->hdr_ndx].c_name, 723 EC_XWORD(eh_state->frame_ptr), 724 EC_WORD(eh_state->frame_ndx), 725 cache[eh_state->frame_ndx].c_name, 726 EC_XWORD(eh_state->frame_base)); 727 #undef MSG_UNW_BINSRTAB2 728 #undef MSG_UNW_BINSRTABENT 729 } 730 731 /* 732 * Convert a self relative pointer into an address. A self relative 733 * pointer adds the address where the pointer resides to the offset 734 * contained in the pointer. The benefit is that the value of the 735 * pointer does not require relocation. 736 * 737 * entry: 738 * base_addr - Address of the pointer. 739 * delta - Offset relative to base_addr giving desired address 740 * 741 * exit: 742 * The computed address is returned. 743 * 744 * note: 745 * base_addr is an unsigned value, while ret_addr is signed. This routine 746 * used explicit testing and casting to explicitly control type 747 * conversion, and ensure that we handle the maximum possible range. 748 */ 749 static Addr 750 srelptr(Addr base_addr, PTRDIFF_T delta) 751 { 752 if (delta < 0) 753 return (base_addr - (Addr) (-delta)); 754 755 return (base_addr + (Addr) delta); 756 } 757 758 /* 759 * Byte swap a PTRDIFF_T value. 760 */ 761 static PTRDIFF_T 762 swap_ptrdiff(PTRDIFF_T value) 763 { 764 PTRDIFF_T r; 765 uchar_t *dst = (uchar_t *)&r; 766 uchar_t *src = (uchar_t *)&value; 767 768 UL_ASSIGN_BSWAP_XWORD(dst, src); 769 return (r); 770 } 771 772 /* 773 * Display exception_range_entry items from the .exception_ranges section 774 * of a Sun C++ object. 775 */ 776 static void 777 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap) 778 { 779 /* 780 * Translate a PTRDIFF_T self-relative address field of 781 * an exception_range_entry struct into an address. 782 * 783 * entry: 784 * exc_addr - Address of base of exception_range_entry struct 785 * cur_ent - Pointer to data in the struct to be translated 786 * 787 * _f - Field of struct to be translated 788 */ 789 #define SRELPTR(_f) \ 790 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f) 791 792 #if defined(_ELF64) 793 #define MSG_EXR_TITLE MSG_EXR_TITLE_64 794 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64 795 #else 796 #define MSG_EXR_TITLE MSG_EXR_TITLE_32 797 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32 798 #endif 799 800 exception_range_entry scratch, *ent, *cur_ent = &scratch; 801 char index[MAXNDXSIZE]; 802 Word i, nelts; 803 Addr addr, addr0 = 0, offset = 0; 804 Addr exc_addr = _cache->c_shdr->sh_addr; 805 806 dbg_print(0, MSG_INTL(MSG_EXR_TITLE)); 807 ent = (exception_range_entry *)(_cache->c_data->d_buf); 808 nelts = _cache->c_data->d_size / sizeof (exception_range_entry); 809 810 for (i = 0; i < nelts; i++, ent++) { 811 if (do_swap) { 812 /* 813 * Copy byte swapped values into the scratch buffer. 814 * The reserved field is not used, so we skip it. 815 */ 816 scratch.ret_addr = swap_ptrdiff(ent->ret_addr); 817 scratch.length = BSWAP_XWORD(ent->length); 818 scratch.handler_addr = swap_ptrdiff(ent->handler_addr); 819 scratch.type_block = swap_ptrdiff(ent->type_block); 820 } else { 821 cur_ent = ent; 822 } 823 824 /* 825 * The table is required to be sorted by the address 826 * derived from ret_addr, to allow binary searching. Ensure 827 * that addresses grow monotonically. 828 */ 829 addr = SRELPTR(ret_addr); 830 if ((i != 0) && (addr0 > addr)) 831 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT), 832 file, _cache->c_name, EC_WORD(i)); 833 834 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), 835 EC_XWORD(i)); 836 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset), 837 EC_ADDR(addr), EC_ADDR(cur_ent->length), 838 EC_ADDR(SRELPTR(handler_addr)), 839 EC_ADDR(SRELPTR(type_block))); 840 841 addr0 = addr; 842 exc_addr += sizeof (exception_range_entry); 843 offset += sizeof (exception_range_entry); 844 } 845 846 #undef SRELPTR 847 #undef MSG_EXR_TITLE 848 #undef MSG_EXR_ENTRY 849 } 850 851 /* 852 * Display information from unwind/exception sections: 853 * 854 * - GNU/amd64 .eh_frame and .eh_frame_hdr 855 * - Sun C++ .exception_ranges 856 * 857 */ 858 static void 859 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi, 860 const char *file, Elf *elf, uint_t flags) 861 { 862 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME }; 863 864 Word cnt; 865 Phdr *uphdr = NULL; 866 gnu_eh_state_t eh_state; 867 868 /* 869 * Historical background: .eh_frame and .eh_frame_hdr sections 870 * come from the GNU compilers (particularly C++), and are used 871 * under all architectures. Their format is based on DWARF. When 872 * the amd64 ABI was defined, these sections were adopted wholesale 873 * from the existing practice. 874 * 875 * When amd64 support was added to Solaris, support for these 876 * sections was added, using the SHT_AMD64_UNWIND section type 877 * to identify them. At first, we ignored them in objects for 878 * non-amd64 targets, but later broadened our support to include 879 * other architectures in order to better support gcc-generated 880 * objects. 881 * 882 * .exception_ranges implement the same basic concepts, but 883 * were invented at Sun for the Sun C++ compiler. 884 * 885 * We match these sections by name, rather than section type, 886 * because they can come in as either SHT_AMD64_UNWIND, or as 887 * SHT_PROGBITS, and because the type isn't enough to determine 888 * how they should be interpreted. 889 */ 890 /* Find the program header for .eh_frame_hdr if present */ 891 if (phnum) 892 uphdr = getphdr(phnum, phdr_types, 893 sizeof (phdr_types) / sizeof (*phdr_types), file, elf); 894 895 /* 896 * eh_state is used to retain data used by unwind_eh_frame() 897 * across calls. 898 */ 899 bzero(&eh_state, sizeof (eh_state)); 900 901 for (cnt = 1; cnt < shnum; cnt++) { 902 Cache *_cache = &cache[cnt]; 903 Shdr *shdr = _cache->c_shdr; 904 int is_exrange; 905 906 /* 907 * Skip sections of the wrong type. On amd64, they 908 * can be SHT_AMD64_UNWIND. On all platforms, they 909 * can be SHT_PROGBITS (including amd64, if using 910 * the GNU compilers). 911 * 912 * Skip anything other than these two types. The name 913 * test below will thin out the SHT_PROGBITS that don't apply. 914 */ 915 if ((shdr->sh_type != SHT_PROGBITS) && 916 (shdr->sh_type != SHT_AMD64_UNWIND)) 917 continue; 918 919 /* 920 * Only sections with certain well known names are of interest. 921 * These are: 922 * 923 * .eh_frame - amd64/GNU-compiler unwind sections 924 * .eh_frame_hdr - Sorted table referencing .eh_frame 925 * .exception_ranges - Sun C++ unwind sections 926 * 927 * We do a prefix comparison, allowing for naming conventions 928 * like .eh_frame.foo, hence the use of strncmp() rather than 929 * strcmp(). This means that we only really need to test for 930 * .eh_frame, as it's a prefix of .eh_frame_hdr. 931 */ 932 is_exrange = strncmp(_cache->c_name, 933 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0; 934 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM), 935 MSG_SCN_FRM_SIZE) != 0) && !is_exrange) 936 continue; 937 938 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 939 continue; 940 941 if (_cache->c_data == NULL) 942 continue; 943 944 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 945 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name); 946 947 if (is_exrange) 948 unwind_exception_ranges(_cache, file, 949 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]); 950 else 951 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr, 952 &eh_state, osabi, file, flags); 953 } 954 } 955 956 /* 957 * Initialize a symbol table state structure 958 * 959 * entry: 960 * state - State structure to be initialized 961 * cache - Cache of all section headers 962 * shnum - # of sections in cache 963 * secndx - Index of symbol table section 964 * ehdr - ELF header for file 965 * versym - Information about versym section 966 * file - Name of file 967 * flags - Command line option flags 968 */ 969 static int 970 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx, 971 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file, 972 uint_t flags) 973 { 974 Shdr *shdr; 975 976 state->file = file; 977 state->ehdr = ehdr; 978 state->cache = cache; 979 state->osabi = osabi; 980 state->shnum = shnum; 981 state->seccache = &cache[secndx]; 982 state->secndx = secndx; 983 state->secname = state->seccache->c_name; 984 state->flags = flags; 985 state->shxndx.checked = 0; 986 state->shxndx.data = NULL; 987 state->shxndx.n = 0; 988 989 shdr = state->seccache->c_shdr; 990 991 /* 992 * Check the symbol data and per-item size. 993 */ 994 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 995 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 996 file, state->secname); 997 return (0); 998 } 999 if (state->seccache->c_data == NULL) 1000 return (0); 1001 1002 /* LINTED */ 1003 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize); 1004 state->sym = (Sym *)state->seccache->c_data->d_buf; 1005 1006 /* 1007 * Check associated string table section. 1008 */ 1009 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 1010 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1011 file, state->secname, EC_WORD(shdr->sh_link)); 1012 return (0); 1013 } 1014 1015 /* 1016 * Determine if there is a associated Versym section 1017 * with this Symbol Table. 1018 */ 1019 if (versym && versym->cache && 1020 (versym->cache->c_shdr->sh_link == state->secndx)) 1021 state->versym = versym; 1022 else 1023 state->versym = NULL; 1024 1025 1026 return (1); 1027 } 1028 1029 /* 1030 * Determine the extended section index used for symbol tables entries. 1031 */ 1032 static void 1033 symbols_getxindex(SYMTBL_STATE *state) 1034 { 1035 uint_t symn; 1036 Word symcnt; 1037 1038 state->shxndx.checked = 1; /* Note that we've been called */ 1039 for (symcnt = 1; symcnt < state->shnum; symcnt++) { 1040 Cache *_cache = &state->cache[symcnt]; 1041 Shdr *shdr = _cache->c_shdr; 1042 1043 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) || 1044 (shdr->sh_link != state->secndx)) 1045 continue; 1046 1047 if ((shdr->sh_entsize) && 1048 /* LINTED */ 1049 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0)) 1050 continue; 1051 1052 if (_cache->c_data == NULL) 1053 continue; 1054 1055 state->shxndx.data = _cache->c_data->d_buf; 1056 state->shxndx.n = symn; 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * Produce a line of output for the given symbol 1063 * 1064 * entry: 1065 * state - Symbol table state 1066 * symndx - Index of symbol within the table 1067 * info - Value of st_info (indicates local/global range) 1068 * symndx_disp - Index to display. This may not be the same 1069 * as symndx if the display is relative to the logical 1070 * combination of the SUNW_ldynsym/dynsym tables. 1071 * sym - Symbol to display 1072 */ 1073 static void 1074 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx, 1075 Sym *sym) 1076 { 1077 /* 1078 * Symbol types for which we check that the specified 1079 * address/size land inside the target section. 1080 */ 1081 static const int addr_symtype[] = { 1082 0, /* STT_NOTYPE */ 1083 1, /* STT_OBJECT */ 1084 1, /* STT_FUNC */ 1085 0, /* STT_SECTION */ 1086 0, /* STT_FILE */ 1087 1, /* STT_COMMON */ 1088 0, /* STT_TLS */ 1089 0, /* 7 */ 1090 0, /* 8 */ 1091 0, /* 9 */ 1092 0, /* 10 */ 1093 0, /* 11 */ 1094 0, /* 12 */ 1095 0, /* STT_SPARC_REGISTER */ 1096 0, /* 14 */ 1097 0, /* 15 */ 1098 }; 1099 #if STT_NUM != (STT_TLS + 1) 1100 #error "STT_NUM has grown. Update addr_symtype[]" 1101 #endif 1102 1103 char index[MAXNDXSIZE]; 1104 const char *symname, *sec; 1105 Versym verndx; 1106 int gnuver; 1107 uchar_t type; 1108 Shdr *tshdr; 1109 Word shndx; 1110 Conv_inv_buf_t inv_buf; 1111 1112 /* Ensure symbol index is in range */ 1113 if (symndx >= state->symn) { 1114 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX), 1115 state->file, state->secname, EC_WORD(symndx)); 1116 return; 1117 } 1118 1119 /* 1120 * If we are using extended symbol indexes, find the 1121 * corresponding SHN_SYMTAB_SHNDX table. 1122 */ 1123 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0)) 1124 symbols_getxindex(state); 1125 1126 /* LINTED */ 1127 symname = string(state->seccache, symndx, 1128 &state->cache[state->seccache->c_shdr->sh_link], state->file, 1129 sym->st_name); 1130 1131 tshdr = NULL; 1132 sec = NULL; 1133 1134 if (state->ehdr->e_type == ET_CORE) { 1135 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN); 1136 } else if (state->flags & FLG_CTL_FAKESHDR) { 1137 /* 1138 * If we are using fake section headers derived from 1139 * the program headers, then the section indexes 1140 * in the symbols do not correspond to these headers. 1141 * The section names are not available, so all we can 1142 * do is to display them in numeric form. 1143 */ 1144 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine, 1145 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf); 1146 } else if ((sym->st_shndx < SHN_LORESERVE) && 1147 (sym->st_shndx < state->shnum)) { 1148 shndx = sym->st_shndx; 1149 tshdr = state->cache[shndx].c_shdr; 1150 sec = state->cache[shndx].c_name; 1151 } else if (sym->st_shndx == SHN_XINDEX) { 1152 if (state->shxndx.data) { 1153 Word _shxndx; 1154 1155 if (symndx > state->shxndx.n) { 1156 (void) fprintf(stderr, 1157 MSG_INTL(MSG_ERR_BADSYMXINDEX1), 1158 state->file, state->secname, 1159 EC_WORD(symndx)); 1160 } else if ((_shxndx = 1161 state->shxndx.data[symndx]) > state->shnum) { 1162 (void) fprintf(stderr, 1163 MSG_INTL(MSG_ERR_BADSYMXINDEX2), 1164 state->file, state->secname, 1165 EC_WORD(symndx), EC_WORD(_shxndx)); 1166 } else { 1167 shndx = _shxndx; 1168 tshdr = state->cache[shndx].c_shdr; 1169 sec = state->cache[shndx].c_name; 1170 } 1171 } else { 1172 (void) fprintf(stderr, 1173 MSG_INTL(MSG_ERR_BADSYMXINDEX3), 1174 state->file, state->secname, EC_WORD(symndx)); 1175 } 1176 } else if ((sym->st_shndx < SHN_LORESERVE) && 1177 (sym->st_shndx >= state->shnum)) { 1178 (void) fprintf(stderr, 1179 MSG_INTL(MSG_ERR_BADSYM5), state->file, 1180 state->secname, EC_WORD(symndx), 1181 demangle(symname, state->flags), sym->st_shndx); 1182 } 1183 1184 /* 1185 * If versioning is available display the 1186 * version index. If not, then use 0. 1187 */ 1188 if (state->versym) { 1189 Versym test_verndx; 1190 1191 verndx = test_verndx = state->versym->data[symndx]; 1192 gnuver = state->versym->gnu_full; 1193 1194 /* 1195 * Check to see if this is a defined symbol with a 1196 * version index that is outside the valid range for 1197 * the file. The interpretation of this depends on 1198 * the style of versioning used by the object. 1199 * 1200 * Versions >= VER_NDX_LORESERVE have special meanings, 1201 * and are exempt from this checking. 1202 * 1203 * GNU style version indexes use the top bit of the 1204 * 16-bit index value (0x8000) as the "hidden bit". 1205 * We must mask off this bit in order to compare 1206 * the version against the maximum value. 1207 */ 1208 if (gnuver) 1209 test_verndx &= ~0x8000; 1210 1211 if ((test_verndx > state->versym->max_verndx) && 1212 (verndx < VER_NDX_LORESERVE)) 1213 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER), 1214 state->file, state->secname, EC_WORD(symndx), 1215 EC_HALF(test_verndx), state->versym->max_verndx); 1216 } else { 1217 verndx = 0; 1218 gnuver = 0; 1219 } 1220 1221 /* 1222 * Error checking for TLS. 1223 */ 1224 type = ELF_ST_TYPE(sym->st_info); 1225 if (type == STT_TLS) { 1226 if (tshdr && 1227 (sym->st_shndx != SHN_UNDEF) && 1228 ((tshdr->sh_flags & SHF_TLS) == 0)) { 1229 (void) fprintf(stderr, 1230 MSG_INTL(MSG_ERR_BADSYM3), state->file, 1231 state->secname, EC_WORD(symndx), 1232 demangle(symname, state->flags)); 1233 } 1234 } else if ((type != STT_SECTION) && sym->st_size && 1235 tshdr && (tshdr->sh_flags & SHF_TLS)) { 1236 (void) fprintf(stderr, 1237 MSG_INTL(MSG_ERR_BADSYM4), state->file, 1238 state->secname, EC_WORD(symndx), 1239 demangle(symname, state->flags)); 1240 } 1241 1242 /* 1243 * If a symbol with non-zero size has a type that 1244 * specifies an address, then make sure the location 1245 * it references is actually contained within the 1246 * section. UNDEF symbols don't count in this case, 1247 * so we ignore them. 1248 * 1249 * The meaning of the st_value field in a symbol 1250 * depends on the type of object. For a relocatable 1251 * object, it is the offset within the section. 1252 * For sharable objects, it is the offset relative to 1253 * the base of the object, and for other types, it is 1254 * the virtual address. To get an offset within the 1255 * section for non-ET_REL files, we subtract the 1256 * base address of the section. 1257 */ 1258 if (addr_symtype[type] && (sym->st_size > 0) && 1259 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) || 1260 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) { 1261 Word v = sym->st_value; 1262 if (state->ehdr->e_type != ET_REL) 1263 v -= tshdr->sh_addr; 1264 if (((v + sym->st_size) > tshdr->sh_size)) { 1265 (void) fprintf(stderr, 1266 MSG_INTL(MSG_ERR_BADSYM6), state->file, 1267 state->secname, EC_WORD(symndx), 1268 demangle(symname, state->flags), 1269 EC_WORD(shndx), EC_XWORD(tshdr->sh_size), 1270 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size)); 1271 } 1272 } 1273 1274 /* 1275 * A typical symbol table uses the sh_info field to indicate one greater 1276 * than the symbol table index of the last local symbol, STB_LOCAL. 1277 * Therefore, symbol indexes less than sh_info should have local 1278 * binding. Symbol indexes greater than, or equal to sh_info, should 1279 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero 1280 * value and size, as these symbols may be the result of an mcs(1) 1281 * section deletion. 1282 */ 1283 if (info) { 1284 uchar_t bind = ELF_ST_BIND(sym->st_info); 1285 1286 if ((symndx < info) && (bind != STB_LOCAL)) { 1287 (void) fprintf(stderr, 1288 MSG_INTL(MSG_ERR_BADSYM7), state->file, 1289 state->secname, EC_WORD(symndx), 1290 demangle(symname, state->flags), EC_XWORD(info)); 1291 1292 } else if ((symndx >= info) && (bind == STB_LOCAL) && 1293 ((sym->st_shndx != SHN_UNDEF) || 1294 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) || 1295 (sym->st_size != 0) || (sym->st_value != 0))) { 1296 (void) fprintf(stderr, 1297 MSG_INTL(MSG_ERR_BADSYM8), state->file, 1298 state->secname, EC_WORD(symndx), 1299 demangle(symname, state->flags), EC_XWORD(info)); 1300 } 1301 } 1302 1303 (void) snprintf(index, MAXNDXSIZE, 1304 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx)); 1305 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi, 1306 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname); 1307 } 1308 1309 /* 1310 * Process a SHT_SUNW_cap capabilities section. 1311 */ 1312 static int 1313 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache, 1314 uchar_t osabi, Ehdr *ehdr, uint_t flags) 1315 { 1316 SYMTBL_STATE state; 1317 Word cnum, capnum, nulls, symcaps; 1318 int descapndx, objcap, title; 1319 Cap *cap = (Cap *)ccache->c_data->d_buf; 1320 Shdr *cishdr, *cshdr = ccache->c_shdr; 1321 Cache *cicache, *strcache; 1322 Capinfo *capinfo = NULL; 1323 Word capinfonum; 1324 const char *strs = NULL; 1325 size_t strs_size; 1326 1327 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) { 1328 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1329 file, ccache->c_name); 1330 return (0); 1331 } 1332 1333 /* 1334 * If this capabilities section is associated with symbols, then the 1335 * sh_link field points to the associated capabilities information 1336 * section. The sh_link field of the capabilities information section 1337 * points to the associated symbol table. 1338 */ 1339 if (cshdr->sh_link) { 1340 Cache *scache; 1341 Shdr *sshdr; 1342 1343 /* 1344 * Validate that the sh_link field points to a capabilities 1345 * information section. 1346 */ 1347 if (cshdr->sh_link >= shnum) { 1348 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1349 file, ccache->c_name, EC_WORD(cshdr->sh_link)); 1350 return (0); 1351 } 1352 1353 cicache = &cache[cshdr->sh_link]; 1354 cishdr = cicache->c_shdr; 1355 1356 if (cishdr->sh_type != SHT_SUNW_capinfo) { 1357 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), 1358 file, ccache->c_name, EC_WORD(cshdr->sh_link)); 1359 return (0); 1360 } 1361 1362 capinfo = cicache->c_data->d_buf; 1363 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize); 1364 1365 /* 1366 * Validate that the sh_link field of the capabilities 1367 * information section points to a valid symbol table. 1368 */ 1369 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) { 1370 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1371 file, cicache->c_name, EC_WORD(cishdr->sh_link)); 1372 return (0); 1373 } 1374 scache = &cache[cishdr->sh_link]; 1375 sshdr = scache->c_shdr; 1376 1377 if ((sshdr->sh_type != SHT_SYMTAB) && 1378 (sshdr->sh_type != SHT_DYNSYM)) { 1379 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1), 1380 file, cicache->c_name, EC_WORD(cishdr->sh_link)); 1381 return (0); 1382 } 1383 1384 if (!init_symtbl_state(&state, cache, shnum, 1385 cishdr->sh_link, ehdr, osabi, NULL, file, flags)) 1386 return (0); 1387 } 1388 1389 /* 1390 * If this capabilities section contains capability string entries, 1391 * then determine the associated string table. Capabilities entries 1392 * that define names require that the capability section indicate 1393 * which string table to use via sh_info. 1394 */ 1395 if (cshdr->sh_info) { 1396 Shdr *strshdr; 1397 1398 /* 1399 * Validate that the sh_info field points to a string table. 1400 */ 1401 if (cshdr->sh_info >= shnum) { 1402 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1403 file, ccache->c_name, EC_WORD(cshdr->sh_info)); 1404 return (0); 1405 } 1406 1407 strcache = &cache[cshdr->sh_info]; 1408 strshdr = strcache->c_shdr; 1409 1410 if (strshdr->sh_type != SHT_STRTAB) { 1411 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), 1412 file, ccache->c_name, EC_WORD(cshdr->sh_info)); 1413 return (0); 1414 } 1415 strs = (const char *)strcache->c_data->d_buf; 1416 strs_size = strcache->c_data->d_size; 1417 } 1418 1419 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1420 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name); 1421 1422 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize); 1423 1424 nulls = symcaps = 0; 1425 objcap = title = 1; 1426 descapndx = -1; 1427 1428 /* 1429 * Traverse the capabilities section printing each capability group. 1430 * The first capabilities group defines any object capabilities. Any 1431 * following groups define symbol capabilities. In the case where no 1432 * object capabilities exist, but symbol capabilities do, a single 1433 * CA_SUNW_NULL terminator for the object capabilities exists. 1434 */ 1435 for (cnum = 0; cnum < capnum; cap++, cnum++) { 1436 if (cap->c_tag == CA_SUNW_NULL) { 1437 /* 1438 * A CA_SUNW_NULL tag terminates a capabilities group. 1439 * If the first capabilities tag is CA_SUNW_NULL, then 1440 * no object capabilities exist. 1441 */ 1442 if ((nulls++ == 0) && (cnum == 0)) 1443 objcap = 0; 1444 title = 1; 1445 } else { 1446 if (title) { 1447 if (nulls == 0) { 1448 /* 1449 * If this capabilities group represents 1450 * the object capabilities (i.e., no 1451 * CA_SUNW_NULL tag has been processed 1452 * yet), then display an object 1453 * capabilities title. 1454 */ 1455 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1456 dbg_print(0, 1457 MSG_INTL(MSG_OBJ_CAP_TITLE)); 1458 } else { 1459 /* 1460 * If this is a symbols capabilities 1461 * group (i.e., a CA_SUNW_NULL tag has 1462 * already be found that terminates 1463 * the object capabilities group), then 1464 * display a symbol capabilities title, 1465 * and retain this capabilities index 1466 * for later processing. 1467 */ 1468 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1469 dbg_print(0, 1470 MSG_INTL(MSG_SYM_CAP_TITLE)); 1471 descapndx = cnum; 1472 } 1473 Elf_cap_title(0); 1474 title = 0; 1475 } 1476 1477 /* 1478 * Print the capabilities data. 1479 * 1480 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID 1481 * entries require a string table, which should have 1482 * already been established. 1483 */ 1484 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) || 1485 (cap->c_tag == CA_SUNW_MACH) || 1486 (cap->c_tag == CA_SUNW_ID))) { 1487 (void) fprintf(stderr, 1488 MSG_INTL(MSG_WARN_INVCAP4), file, 1489 EC_WORD(elf_ndxscn(ccache->c_scn)), 1490 ccache->c_name, EC_WORD(cshdr->sh_info)); 1491 } 1492 Elf_cap_entry(0, cap, cnum, strs, strs_size, 1493 ehdr->e_machine); 1494 } 1495 1496 /* 1497 * If this CA_SUNW_NULL tag terminates a symbol capabilities 1498 * group, determine the associated symbols. 1499 */ 1500 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) && 1501 (descapndx != -1)) { 1502 Capinfo *cip; 1503 Word inum; 1504 1505 symcaps++; 1506 1507 /* 1508 * Make sure we've discovered a SHT_SUNW_capinfo table. 1509 */ 1510 if ((cip = capinfo) == NULL) { 1511 (void) fprintf(stderr, 1512 MSG_INTL(MSG_ERR_INVCAP), file, 1513 ccache->c_name, EC_WORD(cshdr->sh_link)); 1514 return (0); 1515 } 1516 1517 /* 1518 * Determine what symbols reference this capabilities 1519 * group. 1520 */ 1521 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1522 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES)); 1523 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 1524 1525 for (inum = 1, cip++; inum < capinfonum; 1526 inum++, cip++) { 1527 Word gndx = (Word)ELF_C_GROUP(*cip); 1528 1529 if (gndx && (gndx == descapndx)) { 1530 output_symbol(&state, inum, 0, 1531 inum, state.sym + inum); 1532 } 1533 } 1534 descapndx = -1; 1535 continue; 1536 } 1537 1538 /* 1539 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit 1540 * object is suspicious as it has no effect. 1541 */ 1542 if ((cap->c_tag == CA_SUNW_SF_1) && 1543 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) && 1544 (cap->c_un.c_val & SF1_SUNW_ADDR32)) { 1545 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1), 1546 file, ccache->c_name); 1547 } 1548 } 1549 1550 /* 1551 * If this is a dynamic object, with symbol capabilities, then a 1552 * .SUNW_capchain section should exist. This section contains a chain 1553 * of symbol indexes for each capabilities family. This is the list 1554 * that is searched by ld.so.1 to determine the best capabilities 1555 * candidate. 1556 * 1557 * Note, more than one capabilities lead symbol can point to the same 1558 * family chain. For example, a weak/global pair of symbols can both 1559 * represent the same family of capabilities symbols. Therefore, to 1560 * display all possible families we traverse the capabilities 1561 * information section looking for CAPINFO_SUNW_GLOB lead symbols. 1562 * From these we determine the associated capabilities chain to inspect. 1563 */ 1564 if (symcaps && 1565 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { 1566 Capinfo *cip; 1567 Capchain *chain; 1568 Cache *chcache; 1569 Shdr *chshdr; 1570 Word chainnum, inum; 1571 1572 /* 1573 * Validate that the sh_info field of the capabilities 1574 * information section points to a capabilities chain section. 1575 */ 1576 if (cishdr->sh_info >= shnum) { 1577 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 1578 file, cicache->c_name, EC_WORD(cishdr->sh_info)); 1579 return (0); 1580 } 1581 1582 chcache = &cache[cishdr->sh_info]; 1583 chshdr = chcache->c_shdr; 1584 1585 if (chshdr->sh_type != SHT_SUNW_capchain) { 1586 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2), 1587 file, cicache->c_name, EC_WORD(cishdr->sh_info)); 1588 return (0); 1589 } 1590 1591 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize); 1592 chain = (Capchain *)chcache->c_data->d_buf; 1593 1594 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1595 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name); 1596 1597 /* 1598 * Traverse the capabilities information section looking for 1599 * CAPINFO_SUNW_GLOB lead capabilities symbols. 1600 */ 1601 cip = capinfo; 1602 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) { 1603 const char *name; 1604 Sym *sym; 1605 Word sndx, cndx; 1606 Word gndx = (Word)ELF_C_GROUP(*cip); 1607 1608 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB)) 1609 continue; 1610 1611 /* 1612 * Determine the symbol that is associated with this 1613 * capability information entry, and use this to 1614 * identify this capability family. 1615 */ 1616 sym = (Sym *)(state.sym + inum); 1617 name = string(cicache, inum, strcache, file, 1618 sym->st_name); 1619 1620 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1621 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name); 1622 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY)); 1623 1624 cndx = (Word)ELF_C_SYM(*cip); 1625 1626 /* 1627 * Traverse this families chain and identify each 1628 * family member. 1629 */ 1630 for (;;) { 1631 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE]; 1632 1633 if (cndx >= chainnum) { 1634 (void) fprintf(stderr, 1635 MSG_INTL(MSG_ERR_INVCAPINFO3), file, 1636 cicache->c_name, EC_WORD(inum), 1637 EC_WORD(cndx)); 1638 break; 1639 } 1640 if ((sndx = chain[cndx]) == 0) 1641 break; 1642 1643 /* 1644 * Determine this entries symbol reference. 1645 */ 1646 if (sndx > state.symn) { 1647 (void) fprintf(stderr, 1648 MSG_INTL(MSG_ERR_CHBADSYMNDX), file, 1649 EC_WORD(sndx), chcache->c_name, 1650 EC_WORD(cndx)); 1651 name = MSG_INTL(MSG_STR_UNKNOWN); 1652 } else { 1653 sym = (Sym *)(state.sym + sndx); 1654 name = string(chcache, sndx, 1655 strcache, file, sym->st_name); 1656 } 1657 1658 /* 1659 * Display the family member. 1660 */ 1661 (void) snprintf(_chain, MAXNDXSIZE, 1662 MSG_ORIG(MSG_FMT_INTEGER), cndx); 1663 (void) snprintf(_symndx, MAXNDXSIZE, 1664 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx)); 1665 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO), 1666 _chain, _symndx, demangle(name, flags)); 1667 1668 cndx++; 1669 } 1670 } 1671 } 1672 return (objcap); 1673 } 1674 1675 /* 1676 * Print the capabilities. 1677 * 1678 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated, 1679 * capabilities groups. The first group defines the object capabilities. 1680 * This group defines the minimum capability requirements of the entire 1681 * object file. If this is a dynamic object, this group should be associated 1682 * with a PT_SUNWCAP program header. 1683 * 1684 * Additional capabilities groups define the association of individual symbols 1685 * to specific capabilities. 1686 */ 1687 static void 1688 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, 1689 uchar_t osabi, Elf *elf, uint_t flags) 1690 { 1691 Word cnt; 1692 Shdr *cshdr = NULL; 1693 Cache *ccache; 1694 Off cphdr_off = 0; 1695 Xword cphdr_sz; 1696 1697 /* 1698 * Determine if a global capabilities header exists. 1699 */ 1700 if (phnum) { 1701 Phdr *phdr; 1702 1703 if ((phdr = elf_getphdr(elf)) == NULL) { 1704 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 1705 return; 1706 } 1707 1708 for (cnt = 0; cnt < phnum; phdr++, cnt++) { 1709 if (phdr->p_type == PT_SUNWCAP) { 1710 cphdr_off = phdr->p_offset; 1711 cphdr_sz = phdr->p_filesz; 1712 break; 1713 } 1714 } 1715 } 1716 1717 /* 1718 * Determine if a capabilities section exists. 1719 */ 1720 for (cnt = 1; cnt < shnum; cnt++) { 1721 Cache *_cache = &cache[cnt]; 1722 Shdr *shdr = _cache->c_shdr; 1723 1724 /* 1725 * Process any capabilities information. 1726 */ 1727 if (shdr->sh_type == SHT_SUNW_cap) { 1728 if (cap_section(file, cache, shnum, _cache, osabi, 1729 ehdr, flags)) { 1730 /* 1731 * If this section defined an object capability 1732 * group, retain the section information for 1733 * program header validation. 1734 */ 1735 ccache = _cache; 1736 cshdr = shdr; 1737 } 1738 continue; 1739 } 1740 } 1741 1742 if ((cshdr == NULL) && (cphdr_off == 0)) 1743 return; 1744 1745 if (cphdr_off && (cshdr == NULL)) 1746 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file); 1747 1748 /* 1749 * If this object is an executable or shared object, and it provided 1750 * an object capabilities group, then the group should have an 1751 * accompanying PT_SUNWCAP program header. 1752 */ 1753 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { 1754 if (cphdr_off == 0) { 1755 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2), 1756 file, EC_WORD(elf_ndxscn(ccache->c_scn)), 1757 ccache->c_name); 1758 } else if ((cphdr_off != cshdr->sh_offset) || 1759 (cphdr_sz != cshdr->sh_size)) { 1760 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3), 1761 file, EC_WORD(elf_ndxscn(ccache->c_scn)), 1762 ccache->c_name); 1763 } 1764 } 1765 } 1766 1767 /* 1768 * Print the interpretor. 1769 */ 1770 static void 1771 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf) 1772 { 1773 static Word phdr_types[] = { PT_INTERP }; 1774 1775 1776 Word cnt; 1777 Shdr *ishdr = NULL; 1778 Cache *icache; 1779 Off iphdr_off = 0; 1780 Xword iphdr_fsz; 1781 1782 /* 1783 * Determine if an interp header exists. 1784 */ 1785 if (phnum) { 1786 Phdr *phdr; 1787 1788 phdr = getphdr(phnum, phdr_types, 1789 sizeof (phdr_types) / sizeof (*phdr_types), file, elf); 1790 if (phdr != NULL) { 1791 iphdr_off = phdr->p_offset; 1792 iphdr_fsz = phdr->p_filesz; 1793 } 1794 } 1795 1796 if (iphdr_off == 0) 1797 return; 1798 1799 /* 1800 * Determine if an interp section exists. 1801 */ 1802 for (cnt = 1; cnt < shnum; cnt++) { 1803 Cache *_cache = &cache[cnt]; 1804 Shdr *shdr = _cache->c_shdr; 1805 1806 /* 1807 * Scan sections to find a section which contains the PT_INTERP 1808 * string. The target section can't be in a NOBITS section. 1809 */ 1810 if ((shdr->sh_type == SHT_NOBITS) || 1811 (iphdr_off < shdr->sh_offset) || 1812 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size)) 1813 continue; 1814 1815 icache = _cache; 1816 ishdr = shdr; 1817 break; 1818 } 1819 1820 /* 1821 * Print the interpreter string based on the offset defined in the 1822 * program header, as this is the offset used by the kernel. 1823 */ 1824 if (ishdr && icache->c_data) { 1825 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1826 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name); 1827 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT), 1828 (char *)icache->c_data->d_buf + 1829 (iphdr_off - ishdr->sh_offset)); 1830 } else 1831 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file); 1832 1833 /* 1834 * If there are any inconsistences between the program header and 1835 * section information, flag them. 1836 */ 1837 if (ishdr && ((iphdr_off != ishdr->sh_offset) || 1838 (iphdr_fsz != ishdr->sh_size))) { 1839 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file, 1840 icache->c_name); 1841 } 1842 } 1843 1844 /* 1845 * Print the syminfo section. 1846 */ 1847 static void 1848 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 1849 { 1850 Shdr *infoshdr; 1851 Syminfo *info; 1852 Sym *syms; 1853 Dyn *dyns; 1854 Word infonum, cnt, ndx, symnum, dynnum; 1855 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec; 1856 Boolean *dynerr; 1857 1858 for (cnt = 1; cnt < shnum; cnt++) { 1859 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) { 1860 infocache = &cache[cnt]; 1861 break; 1862 } 1863 } 1864 if (infocache == NULL) 1865 return; 1866 1867 infoshdr = infocache->c_shdr; 1868 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) { 1869 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1870 file, infocache->c_name); 1871 return; 1872 } 1873 if (infocache->c_data == NULL) 1874 return; 1875 1876 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize); 1877 info = (Syminfo *)infocache->c_data->d_buf; 1878 1879 /* 1880 * If there is no associated dynamic section, determine if one 1881 * is needed, and if so issue a warning. If there is an 1882 * associated dynamic section, validate it and get the data buffer 1883 * for it. 1884 */ 1885 dyns = NULL; 1886 dynnum = 0; 1887 if (infoshdr->sh_info == 0) { 1888 Syminfo *_info = info + 1; 1889 1890 for (ndx = 1; ndx < infonum; ndx++, _info++) { 1891 if ((_info->si_flags == 0) && (_info->si_boundto == 0)) 1892 continue; 1893 1894 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE) 1895 (void) fprintf(stderr, 1896 MSG_INTL(MSG_ERR_BADSHINFO), file, 1897 infocache->c_name, 1898 EC_WORD(infoshdr->sh_info)); 1899 } 1900 } else if ((infoshdr->sh_info >= shnum) || 1901 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) { 1902 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), 1903 file, infocache->c_name, EC_WORD(infoshdr->sh_info)); 1904 } else { 1905 dyncache = &cache[infoshdr->sh_info]; 1906 if ((dyncache->c_data == NULL) || 1907 ((dyns = dyncache->c_data->d_buf) == NULL)) { 1908 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 1909 file, dyncache->c_name); 1910 } 1911 if (dyns != NULL) { 1912 dynnum = dyncache->c_shdr->sh_size / 1913 dyncache->c_shdr->sh_entsize; 1914 1915 /* 1916 * We validate the type of dynamic elements referenced 1917 * from the syminfo. This array is used report any 1918 * bad dynamic entries. 1919 */ 1920 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) == 1921 NULL) { 1922 int err = errno; 1923 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 1924 file, strerror(err)); 1925 return; 1926 } 1927 } 1928 } 1929 1930 /* 1931 * Get the data buffer for the associated symbol table and string table. 1932 */ 1933 if (stringtbl(cache, 1, cnt, shnum, file, 1934 &symnum, &symsec, &strsec) == 0) 1935 return; 1936 1937 syms = symsec->c_data->d_buf; 1938 1939 /* 1940 * Loop through the syminfo entries. 1941 */ 1942 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 1943 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name); 1944 Elf_syminfo_title(0); 1945 1946 for (ndx = 1, info++; ndx < infonum; ndx++, info++) { 1947 Sym *sym; 1948 const char *needed, *name; 1949 Word expect_dt; 1950 Word boundto = info->si_boundto; 1951 1952 if ((info->si_flags == 0) && (boundto == 0)) 1953 continue; 1954 1955 sym = &syms[ndx]; 1956 name = string(infocache, ndx, strsec, file, sym->st_name); 1957 1958 /* Is si_boundto set to one of the reserved values? */ 1959 if (boundto >= SYMINFO_BT_LOWRESERVE) { 1960 Elf_syminfo_entry(0, ndx, info, name, NULL); 1961 continue; 1962 } 1963 1964 /* 1965 * si_boundto is referencing a dynamic section. If we don't 1966 * have one, an error was already issued above, so it suffices 1967 * to display an empty string. If we are out of bounds, then 1968 * report that and then display an empty string. 1969 */ 1970 if ((dyns == NULL) || (boundto >= dynnum)) { 1971 if (dyns != NULL) 1972 (void) fprintf(stderr, 1973 MSG_INTL(MSG_ERR_BADSIDYNNDX), file, 1974 infocache->c_ndx, infocache->c_name, 1975 EC_WORD(ndx), EC_WORD(dynnum - 1), 1976 EC_WORD(boundto)); 1977 Elf_syminfo_entry(0, ndx, info, name, 1978 MSG_ORIG(MSG_STR_EMPTY)); 1979 continue; 1980 } 1981 1982 /* 1983 * The si_boundto reference expects a specific dynamic element 1984 * type at the given index. The dynamic element is always a 1985 * string that gives an object name. The specific type depends 1986 * on the si_flags present. Ensure that we've got the right 1987 * type. 1988 */ 1989 if (info->si_flags & SYMINFO_FLG_FILTER) 1990 expect_dt = DT_SUNW_FILTER; 1991 else if (info->si_flags & SYMINFO_FLG_AUXILIARY) 1992 expect_dt = DT_SUNW_AUXILIARY; 1993 else if (info->si_flags & (SYMINFO_FLG_DIRECT | 1994 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND)) 1995 expect_dt = DT_NEEDED; 1996 else 1997 expect_dt = DT_NULL; /* means we ignore the type */ 1998 1999 if ((dyns[boundto].d_tag != expect_dt) && 2000 (expect_dt != DT_NULL)) { 2001 Conv_inv_buf_t buf1, buf2; 2002 2003 /* Only complain about each dynamic element once */ 2004 if (!dynerr[boundto]) { 2005 (void) fprintf(stderr, 2006 MSG_INTL(MSG_ERR_BADSIDYNTAG), 2007 file, infocache->c_ndx, infocache->c_name, 2008 EC_WORD(ndx), dyncache->c_ndx, 2009 dyncache->c_name, EC_WORD(boundto), 2010 conv_dyn_tag(expect_dt, osabi, 2011 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), 2012 conv_dyn_tag(dyns[boundto].d_tag, osabi, 2013 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2)); 2014 dynerr[boundto] = TRUE; 2015 } 2016 } 2017 2018 /* 2019 * Whether or not the DT item we're pointing at is 2020 * of the right type, if it's a type we recognize as 2021 * providing a string, go ahead and show it. Otherwise 2022 * an empty string. 2023 */ 2024 switch (dyns[boundto].d_tag) { 2025 case DT_NEEDED: 2026 case DT_SONAME: 2027 case DT_RPATH: 2028 case DT_RUNPATH: 2029 case DT_CONFIG: 2030 case DT_DEPAUDIT: 2031 case DT_USED: 2032 case DT_AUDIT: 2033 case DT_SUNW_AUXILIARY: 2034 case DT_SUNW_FILTER: 2035 case DT_FILTER: 2036 case DT_AUXILIARY: 2037 needed = string(infocache, boundto, 2038 strsec, file, dyns[boundto].d_un.d_val); 2039 break; 2040 default: 2041 needed = MSG_ORIG(MSG_STR_EMPTY); 2042 } 2043 Elf_syminfo_entry(0, ndx, info, name, needed); 2044 } 2045 if (dyns != NULL) 2046 free(dynerr); 2047 } 2048 2049 /* 2050 * Print version definition section entries. 2051 */ 2052 static void 2053 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache, 2054 const char *file) 2055 { 2056 Word cnt; 2057 char index[MAXNDXSIZE]; 2058 2059 Elf_ver_def_title(0); 2060 2061 for (cnt = 1; cnt <= vdf_num; cnt++, 2062 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) { 2063 Conv_ver_flags_buf_t ver_flags_buf; 2064 const char *name, *dep; 2065 Half vcnt = vdf->vd_cnt - 1; 2066 Half ndx = vdf->vd_ndx; 2067 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux); 2068 2069 /* 2070 * Obtain the name and first dependency (if any). 2071 */ 2072 name = string(vcache, cnt, scache, file, vdap->vda_name); 2073 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); 2074 if (vcnt) 2075 dep = string(vcache, cnt, scache, file, vdap->vda_name); 2076 else 2077 dep = MSG_ORIG(MSG_STR_EMPTY); 2078 2079 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), 2080 EC_XWORD(ndx)); 2081 Elf_ver_line_1(0, index, name, dep, 2082 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf)); 2083 2084 /* 2085 * Print any additional dependencies. 2086 */ 2087 if (vcnt) { 2088 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); 2089 for (vcnt--; vcnt; vcnt--, 2090 vdap = (Verdaux *)((uintptr_t)vdap + 2091 vdap->vda_next)) { 2092 dep = string(vcache, cnt, scache, file, 2093 vdap->vda_name); 2094 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep); 2095 } 2096 } 2097 } 2098 } 2099 2100 /* 2101 * Print version needed section entries. 2102 * 2103 * entry: 2104 * vnd - Address of verneed data 2105 * vnd_num - # of Verneed entries 2106 * vcache - Cache of verneed section being processed 2107 * scache - Cache of associated string table section 2108 * file - Name of object being processed. 2109 * versym - Information about versym section 2110 * 2111 * exit: 2112 * The versions have been printed. If GNU style versioning 2113 * is in effect, versym->max_verndx has been updated to 2114 * contain the largest version index seen. 2115 * 2116 * note: 2117 * The versym section of an object that follows the original 2118 * Solaris versioning rules only contains indexes into the verdef 2119 * section. Symbols defined in other objects (UNDEF) are given 2120 * a version of 0, indicating that they are not defined by 2121 * this file, and the Verneed entries do not have associated version 2122 * indexes. For these reasons, we do not display a version index 2123 * for original-style Verneed sections. 2124 * 2125 * The GNU versioning extensions alter this: Symbols defined in other 2126 * objects receive a version index in the range above those defined 2127 * by the Verdef section, and the vna_other field of the Vernaux 2128 * structs inside the Verneed section contain the version index for 2129 * that item. We therefore display the index when showing the 2130 * contents of a GNU style Verneed section. You should not 2131 * necessarily expect these indexes to appear in sorted 2132 * order --- it seems that the GNU ld assigns the versions as 2133 * symbols are encountered during linking, and then the results 2134 * are assembled into the Verneed section afterwards. 2135 */ 2136 static void 2137 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache, 2138 const char *file, VERSYM_STATE *versym) 2139 { 2140 Word cnt; 2141 char index[MAXNDXSIZE]; 2142 const char *index_str; 2143 2144 Elf_ver_need_title(0, versym->gnu_needed); 2145 2146 for (cnt = 1; cnt <= vnd_num; cnt++, 2147 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { 2148 Conv_ver_flags_buf_t ver_flags_buf; 2149 const char *name, *dep; 2150 Half vcnt = vnd->vn_cnt; 2151 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); 2152 2153 /* 2154 * Obtain the name of the needed file and the version name 2155 * within it that we're dependent on. Note that the count 2156 * should be at least one, otherwise this is a pretty bogus 2157 * entry. 2158 */ 2159 name = string(vcache, cnt, scache, file, vnd->vn_file); 2160 if (vcnt) 2161 dep = string(vcache, cnt, scache, file, vnap->vna_name); 2162 else 2163 dep = MSG_INTL(MSG_STR_NULL); 2164 2165 if (vnap->vna_other == 0) { /* Traditional form */ 2166 index_str = MSG_ORIG(MSG_STR_EMPTY); 2167 } else { /* GNU form */ 2168 index_str = index; 2169 /* Format the version index value */ 2170 (void) snprintf(index, MAXNDXSIZE, 2171 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other)); 2172 if (vnap->vna_other > versym->max_verndx) 2173 versym->max_verndx = vnap->vna_other; 2174 } 2175 Elf_ver_line_1(0, index_str, name, dep, 2176 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf)); 2177 2178 /* 2179 * Print any additional version dependencies. 2180 */ 2181 if (vcnt) { 2182 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); 2183 for (vcnt--; vcnt; vcnt--, 2184 vnap = (Vernaux *)((uintptr_t)vnap + 2185 vnap->vna_next)) { 2186 dep = string(vcache, cnt, scache, file, 2187 vnap->vna_name); 2188 if (vnap->vna_other > 0) { 2189 /* Format the next index value */ 2190 (void) snprintf(index, MAXNDXSIZE, 2191 MSG_ORIG(MSG_FMT_INDEX), 2192 EC_XWORD(vnap->vna_other)); 2193 Elf_ver_line_1(0, index, 2194 MSG_ORIG(MSG_STR_EMPTY), dep, 2195 conv_ver_flags(vnap->vna_flags, 2196 0, &ver_flags_buf)); 2197 if (vnap->vna_other > 2198 versym->max_verndx) 2199 versym->max_verndx = 2200 vnap->vna_other; 2201 } else { 2202 Elf_ver_line_3(0, 2203 MSG_ORIG(MSG_STR_EMPTY), dep, 2204 conv_ver_flags(vnap->vna_flags, 2205 0, &ver_flags_buf)); 2206 } 2207 } 2208 } 2209 } 2210 } 2211 2212 /* 2213 * Examine the Verneed section for information related to GNU 2214 * style Versym indexing: 2215 * - A non-zero vna_other field indicates that Versym indexes can 2216 * reference Verneed records. 2217 * - If the object uses GNU style Versym indexing, the 2218 * maximum index value is needed to detect bad Versym entries. 2219 * 2220 * entry: 2221 * vnd - Address of verneed data 2222 * vnd_num - # of Verneed entries 2223 * versym - Information about versym section 2224 * 2225 * exit: 2226 * If a non-zero vna_other field is seen, versym->gnu_needed is set. 2227 * 2228 * versym->max_verndx has been updated to contain the largest 2229 * version index seen. 2230 */ 2231 static void 2232 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym) 2233 { 2234 Word cnt; 2235 2236 for (cnt = 1; cnt <= vnd_num; cnt++, 2237 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { 2238 Half vcnt = vnd->vn_cnt; 2239 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); 2240 2241 /* 2242 * A non-zero value of vna_other indicates that this 2243 * object references VERNEED items from the VERSYM 2244 * array. 2245 */ 2246 if (vnap->vna_other != 0) { 2247 versym->gnu_needed = 1; 2248 if (vnap->vna_other > versym->max_verndx) 2249 versym->max_verndx = vnap->vna_other; 2250 } 2251 2252 /* 2253 * Check any additional version dependencies. 2254 */ 2255 if (vcnt) { 2256 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); 2257 for (vcnt--; vcnt; vcnt--, 2258 vnap = (Vernaux *)((uintptr_t)vnap + 2259 vnap->vna_next)) { 2260 if (vnap->vna_other == 0) 2261 continue; 2262 2263 versym->gnu_needed = 1; 2264 if (vnap->vna_other > versym->max_verndx) 2265 versym->max_verndx = vnap->vna_other; 2266 } 2267 } 2268 } 2269 } 2270 2271 /* 2272 * Display version section information if the flags require it. 2273 * Return version information needed by other output. 2274 * 2275 * entry: 2276 * cache - Cache of all section headers 2277 * shnum - # of sections in cache 2278 * file - Name of file 2279 * flags - Command line option flags 2280 * versym - VERSYM_STATE block to be filled in. 2281 */ 2282 static void 2283 versions(Cache *cache, Word shnum, const char *file, uint_t flags, 2284 VERSYM_STATE *versym) 2285 { 2286 GElf_Word cnt; 2287 Cache *verdef_cache = NULL, *verneed_cache = NULL; 2288 2289 2290 /* Gather information about the version sections */ 2291 versym->max_verndx = 1; 2292 for (cnt = 1; cnt < shnum; cnt++) { 2293 Cache *_cache = &cache[cnt]; 2294 Shdr *shdr = _cache->c_shdr; 2295 Dyn *dyn; 2296 ulong_t numdyn; 2297 2298 switch (shdr->sh_type) { 2299 case SHT_DYNAMIC: 2300 /* 2301 * The GNU ld puts a DT_VERSYM entry in the dynamic 2302 * section so that the runtime linker can use it to 2303 * implement their versioning rules. They allow multiple 2304 * incompatible functions with the same name to exist 2305 * in different versions. The Solaris ld does not 2306 * support this mechanism, and as such, does not 2307 * produce DT_VERSYM. We use this fact to determine 2308 * which ld produced this object, and how to interpret 2309 * the version values. 2310 */ 2311 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) || 2312 (_cache->c_data == NULL)) 2313 continue; 2314 numdyn = shdr->sh_size / shdr->sh_entsize; 2315 dyn = (Dyn *)_cache->c_data->d_buf; 2316 for (; numdyn-- > 0; dyn++) 2317 if (dyn->d_tag == DT_VERSYM) { 2318 versym->gnu_full = 2319 versym->gnu_needed = 1; 2320 break; 2321 } 2322 break; 2323 2324 case SHT_SUNW_versym: 2325 /* Record data address for later symbol processing */ 2326 if (_cache->c_data != NULL) { 2327 versym->cache = _cache; 2328 versym->data = _cache->c_data->d_buf; 2329 continue; 2330 } 2331 break; 2332 2333 case SHT_SUNW_verdef: 2334 case SHT_SUNW_verneed: 2335 /* 2336 * Ensure the data is non-NULL and the number 2337 * of items is non-zero. Otherwise, we don't 2338 * understand the section, and will not use it. 2339 */ 2340 if ((_cache->c_data == NULL) || 2341 (_cache->c_data->d_buf == NULL)) { 2342 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 2343 file, _cache->c_name); 2344 continue; 2345 } 2346 if (shdr->sh_info == 0) { 2347 (void) fprintf(stderr, 2348 MSG_INTL(MSG_ERR_BADSHINFO), 2349 file, _cache->c_name, 2350 EC_WORD(shdr->sh_info)); 2351 continue; 2352 } 2353 2354 /* Make sure the string table index is in range */ 2355 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { 2356 (void) fprintf(stderr, 2357 MSG_INTL(MSG_ERR_BADSHLINK), file, 2358 _cache->c_name, EC_WORD(shdr->sh_link)); 2359 continue; 2360 } 2361 2362 /* 2363 * The section is usable. Save the cache entry. 2364 */ 2365 if (shdr->sh_type == SHT_SUNW_verdef) { 2366 verdef_cache = _cache; 2367 /* 2368 * Under Solaris rules, if there is a verdef 2369 * section, the max versym index is number 2370 * of version definitions it supplies. 2371 */ 2372 versym->max_verndx = shdr->sh_info; 2373 } else { 2374 verneed_cache = _cache; 2375 } 2376 break; 2377 } 2378 } 2379 2380 /* 2381 * If there is a Verneed section, examine it for information 2382 * related to GNU style versioning. 2383 */ 2384 if (verneed_cache != NULL) 2385 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf, 2386 verneed_cache->c_shdr->sh_info, versym); 2387 2388 /* 2389 * Now that all the information is available, display the 2390 * Verdef and Verneed section contents, if requested. 2391 */ 2392 if ((flags & FLG_SHOW_VERSIONS) == 0) 2393 return; 2394 if (verdef_cache != NULL) { 2395 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2396 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF), 2397 verdef_cache->c_name); 2398 version_def((Verdef *)verdef_cache->c_data->d_buf, 2399 verdef_cache->c_shdr->sh_info, verdef_cache, 2400 &cache[verdef_cache->c_shdr->sh_link], file); 2401 } 2402 if (verneed_cache != NULL) { 2403 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2404 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED), 2405 verneed_cache->c_name); 2406 /* 2407 * If GNU versioning applies to this object, version_need() 2408 * will update versym->max_verndx, and it is not 2409 * necessary to call update_gnu_verndx(). 2410 */ 2411 version_need((Verneed *)verneed_cache->c_data->d_buf, 2412 verneed_cache->c_shdr->sh_info, verneed_cache, 2413 &cache[verneed_cache->c_shdr->sh_link], file, versym); 2414 } 2415 } 2416 2417 /* 2418 * Search for and process any symbol tables. 2419 */ 2420 void 2421 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, 2422 VERSYM_STATE *versym, const char *file, uint_t flags) 2423 { 2424 SYMTBL_STATE state; 2425 Cache *_cache; 2426 Word secndx; 2427 2428 for (secndx = 1; secndx < shnum; secndx++) { 2429 Word symcnt; 2430 Shdr *shdr; 2431 2432 _cache = &cache[secndx]; 2433 shdr = _cache->c_shdr; 2434 2435 if ((shdr->sh_type != SHT_SYMTAB) && 2436 (shdr->sh_type != SHT_DYNSYM) && 2437 ((shdr->sh_type != SHT_SUNW_LDYNSYM) || 2438 (osabi != ELFOSABI_SOLARIS))) 2439 continue; 2440 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type)) 2441 continue; 2442 2443 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr, 2444 osabi, versym, file, flags)) 2445 continue; 2446 /* 2447 * Loop through the symbol tables entries. 2448 */ 2449 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2450 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname); 2451 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 2452 2453 for (symcnt = 0; symcnt < state.symn; symcnt++) 2454 output_symbol(&state, symcnt, shdr->sh_info, symcnt, 2455 state.sym + symcnt); 2456 } 2457 } 2458 2459 /* 2460 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections. 2461 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair. 2462 */ 2463 static void 2464 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, 2465 VERSYM_STATE *versym, const char *file, uint_t flags) 2466 { 2467 SYMTBL_STATE ldynsym_state, dynsym_state; 2468 Cache *sortcache, *symcache; 2469 Shdr *sortshdr, *symshdr; 2470 Word sortsecndx, symsecndx; 2471 Word ldynsym_cnt; 2472 Word *ndx; 2473 Word ndxn; 2474 int output_cnt = 0; 2475 Conv_inv_buf_t inv_buf; 2476 2477 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) { 2478 2479 sortcache = &cache[sortsecndx]; 2480 sortshdr = sortcache->c_shdr; 2481 2482 if ((sortshdr->sh_type != SHT_SUNW_symsort) && 2483 (sortshdr->sh_type != SHT_SUNW_tlssort)) 2484 continue; 2485 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx, 2486 sortshdr->sh_type)) 2487 continue; 2488 2489 /* 2490 * If the section references a SUNW_ldynsym, then we 2491 * expect to see the associated .dynsym immediately 2492 * following. If it references a .dynsym, there is no 2493 * SUNW_ldynsym. If it is any other type, then we don't 2494 * know what to do with it. 2495 */ 2496 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) { 2497 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 2498 file, sortcache->c_name, 2499 EC_WORD(sortshdr->sh_link)); 2500 continue; 2501 } 2502 symcache = &cache[sortshdr->sh_link]; 2503 symshdr = symcache->c_shdr; 2504 symsecndx = sortshdr->sh_link; 2505 ldynsym_cnt = 0; 2506 switch (symshdr->sh_type) { 2507 case SHT_SUNW_LDYNSYM: 2508 if (!init_symtbl_state(&ldynsym_state, cache, shnum, 2509 symsecndx, ehdr, osabi, versym, file, flags)) 2510 continue; 2511 ldynsym_cnt = ldynsym_state.symn; 2512 /* 2513 * We know that the dynsym follows immediately 2514 * after the SUNW_ldynsym, and so, should be at 2515 * (sortshdr->sh_link + 1). However, elfdump is a 2516 * diagnostic tool, so we do the full paranoid 2517 * search instead. 2518 */ 2519 for (symsecndx = 1; symsecndx < shnum; symsecndx++) { 2520 symcache = &cache[symsecndx]; 2521 symshdr = symcache->c_shdr; 2522 if (symshdr->sh_type == SHT_DYNSYM) 2523 break; 2524 } 2525 if (symsecndx >= shnum) { /* Dynsym not found! */ 2526 (void) fprintf(stderr, 2527 MSG_INTL(MSG_ERR_NODYNSYM), 2528 file, sortcache->c_name); 2529 continue; 2530 } 2531 /* Fallthrough to process associated dynsym */ 2532 /* FALLTHROUGH */ 2533 case SHT_DYNSYM: 2534 if (!init_symtbl_state(&dynsym_state, cache, shnum, 2535 symsecndx, ehdr, osabi, versym, file, flags)) 2536 continue; 2537 break; 2538 default: 2539 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC), 2540 file, sortcache->c_name, 2541 conv_sec_type(osabi, ehdr->e_machine, 2542 symshdr->sh_type, 0, &inv_buf)); 2543 continue; 2544 } 2545 2546 /* 2547 * Output header 2548 */ 2549 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2550 if (ldynsym_cnt > 0) { 2551 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2), 2552 sortcache->c_name, ldynsym_state.secname, 2553 dynsym_state.secname); 2554 /* 2555 * The data for .SUNW_ldynsym and dynsym sections 2556 * is supposed to be adjacent with SUNW_ldynsym coming 2557 * first. Check, and issue a warning if it isn't so. 2558 */ 2559 if (((ldynsym_state.sym + ldynsym_state.symn) 2560 != dynsym_state.sym) && 2561 ((flags & FLG_CTL_FAKESHDR) == 0)) 2562 (void) fprintf(stderr, 2563 MSG_INTL(MSG_ERR_LDYNNOTADJ), file, 2564 ldynsym_state.secname, 2565 dynsym_state.secname); 2566 } else { 2567 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1), 2568 sortcache->c_name, dynsym_state.secname); 2569 } 2570 Elf_syms_table_title(0, ELF_DBG_ELFDUMP); 2571 2572 /* If not first one, insert a line of white space */ 2573 if (output_cnt++ > 0) 2574 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2575 2576 /* 2577 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of 2578 * symbol indices. Iterate over the array entries, 2579 * dispaying the referenced symbols. 2580 */ 2581 ndxn = sortshdr->sh_size / sortshdr->sh_entsize; 2582 ndx = (Word *)sortcache->c_data->d_buf; 2583 for (; ndxn-- > 0; ndx++) { 2584 if (*ndx >= ldynsym_cnt) { 2585 Word sec_ndx = *ndx - ldynsym_cnt; 2586 2587 output_symbol(&dynsym_state, sec_ndx, 0, 2588 *ndx, dynsym_state.sym + sec_ndx); 2589 } else { 2590 output_symbol(&ldynsym_state, *ndx, 0, 2591 *ndx, ldynsym_state.sym + *ndx); 2592 } 2593 } 2594 } 2595 } 2596 2597 /* 2598 * Search for and process any relocation sections. 2599 */ 2600 static void 2601 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 2602 { 2603 Word cnt; 2604 2605 for (cnt = 1; cnt < shnum; cnt++) { 2606 Word type, symnum; 2607 Xword relndx, relnum, relsize; 2608 void *rels; 2609 Sym *syms; 2610 Cache *symsec, *strsec; 2611 Cache *_cache = &cache[cnt]; 2612 Shdr *shdr = _cache->c_shdr; 2613 char *relname = _cache->c_name; 2614 Conv_inv_buf_t inv_buf; 2615 2616 if (((type = shdr->sh_type) != SHT_RELA) && 2617 (type != SHT_REL)) 2618 continue; 2619 if (!match(MATCH_F_ALL, relname, cnt, type)) 2620 continue; 2621 2622 /* 2623 * Decide entry size. 2624 */ 2625 if (((relsize = shdr->sh_entsize) == 0) || 2626 (relsize > shdr->sh_size)) { 2627 if (type == SHT_RELA) 2628 relsize = sizeof (Rela); 2629 else 2630 relsize = sizeof (Rel); 2631 } 2632 2633 /* 2634 * Determine the number of relocations available. 2635 */ 2636 if (shdr->sh_size == 0) { 2637 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 2638 file, relname); 2639 continue; 2640 } 2641 if (_cache->c_data == NULL) 2642 continue; 2643 2644 rels = _cache->c_data->d_buf; 2645 relnum = shdr->sh_size / relsize; 2646 2647 /* 2648 * Get the data buffer for the associated symbol table and 2649 * string table. 2650 */ 2651 if (stringtbl(cache, 1, cnt, shnum, file, 2652 &symnum, &symsec, &strsec) == 0) 2653 continue; 2654 2655 syms = symsec->c_data->d_buf; 2656 2657 /* 2658 * Loop through the relocation entries. 2659 */ 2660 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 2661 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name); 2662 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type); 2663 2664 for (relndx = 0; relndx < relnum; relndx++, 2665 rels = (void *)((char *)rels + relsize)) { 2666 Half mach = ehdr->e_machine; 2667 char section[BUFSIZ]; 2668 const char *symname; 2669 Word symndx, reltype; 2670 Rela *rela; 2671 Rel *rel; 2672 2673 /* 2674 * Unravel the relocation and determine the symbol with 2675 * which this relocation is associated. 2676 */ 2677 if (type == SHT_RELA) { 2678 rela = (Rela *)rels; 2679 symndx = ELF_R_SYM(rela->r_info); 2680 reltype = ELF_R_TYPE(rela->r_info, mach); 2681 } else { 2682 rel = (Rel *)rels; 2683 symndx = ELF_R_SYM(rel->r_info); 2684 reltype = ELF_R_TYPE(rel->r_info, mach); 2685 } 2686 2687 symname = relsymname(cache, _cache, strsec, symndx, 2688 symnum, relndx, syms, section, BUFSIZ, file); 2689 2690 /* 2691 * A zero symbol index is only valid for a few 2692 * relocations. 2693 */ 2694 if (symndx == 0) { 2695 int badrel = 0; 2696 2697 if ((mach == EM_SPARC) || 2698 (mach == EM_SPARC32PLUS) || 2699 (mach == EM_SPARCV9)) { 2700 if ((reltype != R_SPARC_NONE) && 2701 (reltype != R_SPARC_REGISTER) && 2702 (reltype != R_SPARC_RELATIVE)) 2703 badrel++; 2704 } else if (mach == EM_386) { 2705 if ((reltype != R_386_NONE) && 2706 (reltype != R_386_RELATIVE)) 2707 badrel++; 2708 } else if (mach == EM_AMD64) { 2709 if ((reltype != R_AMD64_NONE) && 2710 (reltype != R_AMD64_RELATIVE)) 2711 badrel++; 2712 } 2713 2714 if (badrel) { 2715 (void) fprintf(stderr, 2716 MSG_INTL(MSG_ERR_BADREL1), file, 2717 conv_reloc_type(mach, reltype, 2718 0, &inv_buf)); 2719 } 2720 } 2721 2722 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP, 2723 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type, 2724 rels, relname, symname, 0); 2725 } 2726 } 2727 } 2728 2729 2730 /* 2731 * This value controls which test dyn_test() performs. 2732 */ 2733 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t; 2734 2735 /* 2736 * Used by dynamic() to compare the value of a dynamic element against 2737 * the starting address of the section it references. 2738 * 2739 * entry: 2740 * test_type - Specify which dyn item is being tested. 2741 * sh_type - SHT_* type value for required section. 2742 * sec_cache - Cache entry for section, or NULL if the object lacks 2743 * a section of this type. 2744 * dyn - Dyn entry to be tested 2745 * dynsec_cnt - # of dynamic section being examined. The first 2746 * dynamic section is 1, the next is 2, and so on... 2747 * ehdr - ELF header for file 2748 * file - Name of file 2749 */ 2750 static void 2751 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn, 2752 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file) 2753 { 2754 Conv_inv_buf_t buf1, buf2; 2755 2756 /* 2757 * These tests are based around the implicit assumption that 2758 * there is only one dynamic section in an object, and also only 2759 * one of the sections it references. We have therefore gathered 2760 * all of the necessary information to test this in a single pass 2761 * over the section headers, which is very efficient. We are not 2762 * aware of any case where more than one dynamic section would 2763 * be meaningful in an ELF object, so this is a reasonable solution. 2764 * 2765 * To test multiple dynamic sections correctly would be more 2766 * expensive in code and time. We would have to build a data structure 2767 * containing all the dynamic elements. Then, we would use the address 2768 * to locate the section it references and ensure the section is of 2769 * the right type and that the address in the dynamic element is 2770 * to the start of the section. Then, we could check the size and 2771 * entsize values against those same sections. This is O(n^2), and 2772 * also complicated. 2773 * 2774 * In the highly unlikely case that there is more than one dynamic 2775 * section, we only test the first one, and simply allow the values 2776 * of the subsequent one to be displayed unchallenged. 2777 */ 2778 if (dynsec_cnt != 1) 2779 return; 2780 2781 /* 2782 * A DT_ item that references a section address should always find 2783 * the section in the file. 2784 */ 2785 if (sec_cache == NULL) { 2786 const char *name; 2787 2788 /* 2789 * Supply section names instead of section types for 2790 * things that reference progbits so that the error 2791 * message will make more sense. 2792 */ 2793 switch (dyn->d_tag) { 2794 case DT_INIT: 2795 name = MSG_ORIG(MSG_ELF_INIT); 2796 break; 2797 case DT_FINI: 2798 name = MSG_ORIG(MSG_ELF_FINI); 2799 break; 2800 default: 2801 name = conv_sec_type(osabi, ehdr->e_machine, 2802 sh_type, 0, &buf1); 2803 break; 2804 } 2805 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file, 2806 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2807 CONV_FMT_ALT_CF, &buf2)); 2808 return; 2809 } 2810 2811 2812 switch (test_type) { 2813 case DYN_TEST_ADDR: 2814 /* The section address should match the DT_ item value */ 2815 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr) 2816 (void) fprintf(stderr, 2817 MSG_INTL(MSG_ERR_DYNBADADDR), file, 2818 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2819 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val), 2820 sec_cache->c_ndx, sec_cache->c_name, 2821 EC_ADDR(sec_cache->c_shdr->sh_addr)); 2822 break; 2823 2824 case DYN_TEST_SIZE: 2825 /* The section size should match the DT_ item value */ 2826 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size) 2827 (void) fprintf(stderr, 2828 MSG_INTL(MSG_ERR_DYNBADSIZE), file, 2829 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2830 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), 2831 sec_cache->c_ndx, sec_cache->c_name, 2832 EC_XWORD(sec_cache->c_shdr->sh_size)); 2833 break; 2834 2835 case DYN_TEST_ENTSIZE: 2836 /* The sh_entsize value should match the DT_ item value */ 2837 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize) 2838 (void) fprintf(stderr, 2839 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file, 2840 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, 2841 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), 2842 sec_cache->c_ndx, sec_cache->c_name, 2843 EC_XWORD(sec_cache->c_shdr->sh_entsize)); 2844 break; 2845 } 2846 } 2847 2848 /* 2849 * There are some DT_ entries that have corresponding symbols 2850 * (e.g. DT_INIT and _init). It is expected that these items will 2851 * both have the same value if both are present. This routine 2852 * examines the well known symbol tables for such symbols and 2853 * issues warnings for any that don't match. 2854 * 2855 * entry: 2856 * dyn - Dyn entry to be tested 2857 * symname - Name of symbol that corresponds to dyn 2858 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check 2859 * target_cache - Section the symname section is expected to be 2860 * associated with. 2861 * cache - Cache of all section headers 2862 * shnum - # of sections in cache 2863 * ehdr - ELF header for file 2864 * osabi - OSABI to apply when interpreting object 2865 * file - Name of file 2866 */ 2867 static void 2868 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache, 2869 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache, 2870 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 2871 { 2872 Conv_inv_buf_t buf; 2873 int i; 2874 Sym *sym; 2875 Cache *_cache; 2876 2877 for (i = 0; i < 3; i++) { 2878 switch (i) { 2879 case 0: 2880 _cache = symtab_cache; 2881 break; 2882 case 1: 2883 _cache = dynsym_cache; 2884 break; 2885 case 2: 2886 _cache = ldynsym_cache; 2887 break; 2888 } 2889 2890 if ((_cache != NULL) && 2891 symlookup(symname, cache, shnum, &sym, target_cache, 2892 _cache, file) && (sym->st_value != dyn->d_un.d_val)) 2893 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL), 2894 file, _cache->c_name, conv_dyn_tag(dyn->d_tag, 2895 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf), 2896 symname, EC_ADDR(sym->st_value)); 2897 } 2898 } 2899 2900 /* 2901 * Search for and process a .dynamic section. 2902 */ 2903 static void 2904 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) 2905 { 2906 struct { 2907 Cache *symtab; 2908 Cache *dynstr; 2909 Cache *dynsym; 2910 Cache *hash; 2911 Cache *fini; 2912 Cache *fini_array; 2913 Cache *init; 2914 Cache *init_array; 2915 Cache *preinit_array; 2916 Cache *rel; 2917 Cache *rela; 2918 Cache *sunw_cap; 2919 Cache *sunw_capinfo; 2920 Cache *sunw_capchain; 2921 Cache *sunw_ldynsym; 2922 Cache *sunw_move; 2923 Cache *sunw_syminfo; 2924 Cache *sunw_symsort; 2925 Cache *sunw_tlssort; 2926 Cache *sunw_verdef; 2927 Cache *sunw_verneed; 2928 Cache *sunw_versym; 2929 } sec; 2930 Word dynsec_ndx; 2931 Word dynsec_num; 2932 int dynsec_cnt; 2933 Word cnt; 2934 int osabi_solaris = osabi == ELFOSABI_SOLARIS; 2935 2936 /* 2937 * Make a pass over all the sections, gathering section information 2938 * we'll need below. 2939 */ 2940 dynsec_num = 0; 2941 bzero(&sec, sizeof (sec)); 2942 for (cnt = 1; cnt < shnum; cnt++) { 2943 Cache *_cache = &cache[cnt]; 2944 2945 switch (_cache->c_shdr->sh_type) { 2946 case SHT_DYNAMIC: 2947 if (dynsec_num == 0) { 2948 dynsec_ndx = cnt; 2949 2950 /* Does it have a valid string table? */ 2951 (void) stringtbl(cache, 0, cnt, shnum, file, 2952 0, 0, &sec.dynstr); 2953 } 2954 dynsec_num++; 2955 break; 2956 2957 2958 case SHT_PROGBITS: 2959 /* 2960 * We want to detect the .init and .fini sections, 2961 * if present. These are SHT_PROGBITS, so all we 2962 * have to go on is the section name. Normally comparing 2963 * names is a bad idea, but there are some special 2964 * names (i.e. .init/.fini/.interp) that are very 2965 * difficult to use in any other context, and for 2966 * these symbols, we do the heuristic match. 2967 */ 2968 if (strcmp(_cache->c_name, 2969 MSG_ORIG(MSG_ELF_INIT)) == 0) { 2970 if (sec.init == NULL) 2971 sec.init = _cache; 2972 } else if (strcmp(_cache->c_name, 2973 MSG_ORIG(MSG_ELF_FINI)) == 0) { 2974 if (sec.fini == NULL) 2975 sec.fini = _cache; 2976 } 2977 break; 2978 2979 case SHT_REL: 2980 /* 2981 * We want the SHT_REL section with the lowest 2982 * offset. The linker gathers them together, 2983 * and puts the address of the first one 2984 * into the DT_REL dynamic element. 2985 */ 2986 if ((sec.rel == NULL) || 2987 (_cache->c_shdr->sh_offset < 2988 sec.rel->c_shdr->sh_offset)) 2989 sec.rel = _cache; 2990 break; 2991 2992 case SHT_RELA: 2993 /* RELA is handled just like RELA above */ 2994 if ((sec.rela == NULL) || 2995 (_cache->c_shdr->sh_offset < 2996 sec.rela->c_shdr->sh_offset)) 2997 sec.rela = _cache; 2998 break; 2999 3000 /* 3001 * The GRAB macro is used for the simple case in which 3002 * we simply grab the first section of the desired type. 3003 */ 3004 #define GRAB(_sec_type, _sec_field) \ 3005 case _sec_type: \ 3006 if (sec._sec_field == NULL) \ 3007 sec._sec_field = _cache; \ 3008 break 3009 GRAB(SHT_SYMTAB, symtab); 3010 GRAB(SHT_DYNSYM, dynsym); 3011 GRAB(SHT_FINI_ARRAY, fini_array); 3012 GRAB(SHT_HASH, hash); 3013 GRAB(SHT_INIT_ARRAY, init_array); 3014 GRAB(SHT_SUNW_move, sunw_move); 3015 GRAB(SHT_PREINIT_ARRAY, preinit_array); 3016 GRAB(SHT_SUNW_cap, sunw_cap); 3017 GRAB(SHT_SUNW_capinfo, sunw_capinfo); 3018 GRAB(SHT_SUNW_capchain, sunw_capchain); 3019 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym); 3020 GRAB(SHT_SUNW_syminfo, sunw_syminfo); 3021 GRAB(SHT_SUNW_symsort, sunw_symsort); 3022 GRAB(SHT_SUNW_tlssort, sunw_tlssort); 3023 GRAB(SHT_SUNW_verdef, sunw_verdef); 3024 GRAB(SHT_SUNW_verneed, sunw_verneed); 3025 GRAB(SHT_SUNW_versym, sunw_versym); 3026 #undef GRAB 3027 } 3028 } 3029 3030 /* 3031 * If no dynamic section, return immediately. If more than one 3032 * dynamic section, then something odd is going on and an error 3033 * is in order, but then continue on and display them all. 3034 */ 3035 if (dynsec_num == 0) 3036 return; 3037 if (dynsec_num > 1) 3038 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN), 3039 file, EC_WORD(dynsec_num)); 3040 3041 3042 dynsec_cnt = 0; 3043 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num); 3044 cnt++) { 3045 Dyn *dyn; 3046 ulong_t numdyn; 3047 int ndx, end_ndx; 3048 Cache *_cache = &cache[cnt], *strsec; 3049 Shdr *shdr = _cache->c_shdr; 3050 int dumped = 0; 3051 3052 if (shdr->sh_type != SHT_DYNAMIC) 3053 continue; 3054 dynsec_cnt++; 3055 3056 /* 3057 * Verify the associated string table section. 3058 */ 3059 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0) 3060 continue; 3061 3062 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 3063 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3064 file, _cache->c_name); 3065 continue; 3066 } 3067 if (_cache->c_data == NULL) 3068 continue; 3069 3070 numdyn = shdr->sh_size / shdr->sh_entsize; 3071 dyn = (Dyn *)_cache->c_data->d_buf; 3072 3073 /* 3074 * We expect the REL/RELA entries to reference the reloc 3075 * section with the lowest address. However, this is 3076 * not true for dumped objects. Detect if this object has 3077 * been dumped so that we can skip the reloc address test 3078 * in that case. 3079 */ 3080 for (ndx = 0; ndx < numdyn; dyn++, ndx++) { 3081 if (dyn->d_tag == DT_FLAGS_1) { 3082 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0; 3083 break; 3084 } 3085 } 3086 dyn = (Dyn *)_cache->c_data->d_buf; 3087 3088 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3089 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name); 3090 3091 Elf_dyn_title(0); 3092 3093 for (ndx = 0; ndx < numdyn; dyn++, ndx++) { 3094 union { 3095 Conv_inv_buf_t inv; 3096 Conv_dyn_flag_buf_t flag; 3097 Conv_dyn_flag1_buf_t flag1; 3098 Conv_dyn_posflag1_buf_t posflag1; 3099 Conv_dyn_feature1_buf_t feature1; 3100 } c_buf; 3101 const char *name = NULL; 3102 3103 /* 3104 * Print the information numerically, and if possible 3105 * as a string. If a string is available, name is 3106 * set to reference it. 3107 * 3108 * Also, take this opportunity to sanity check 3109 * the values of DT elements. In the code above, 3110 * we gathered information on sections that are 3111 * referenced by the dynamic section. Here, we 3112 * compare the attributes of those sections to 3113 * the DT_ items that reference them and report 3114 * on inconsistencies. 3115 * 3116 * Things not currently tested that could be improved 3117 * in later revisions include: 3118 * - We don't check PLT or GOT related items 3119 * - We don't handle computing the lengths of 3120 * relocation arrays. To handle this 3121 * requires examining data that spans 3122 * across sections, in a contiguous span 3123 * within a single segment. 3124 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be 3125 * verified without parsing the sections. 3126 * - We don't handle DT_SUNW_SYMSZ, which would 3127 * be the sum of the lengths of .dynsym and 3128 * .SUNW_ldynsym 3129 * - DT_SUNW_STRPAD can't be verified other than 3130 * to check that it's not larger than 3131 * the string table. 3132 * - Some items come in "all or none" clusters 3133 * that give an address, element size, 3134 * and data length in bytes. We don't 3135 * verify that there are no missing items 3136 * in such groups. 3137 */ 3138 switch (dyn->d_tag) { 3139 case DT_NULL: 3140 /* 3141 * Special case: DT_NULLs can come in groups 3142 * that we prefer to reduce to a single line. 3143 */ 3144 end_ndx = ndx; 3145 while ((end_ndx < (numdyn - 1)) && 3146 ((dyn + 1)->d_tag == DT_NULL)) { 3147 dyn++; 3148 end_ndx++; 3149 } 3150 Elf_dyn_null_entry(0, dyn, ndx, end_ndx); 3151 ndx = end_ndx; 3152 continue; 3153 3154 /* 3155 * String items all reference the dynstr. The string() 3156 * function does the necessary sanity checking. 3157 */ 3158 case DT_NEEDED: 3159 case DT_SONAME: 3160 case DT_FILTER: 3161 case DT_AUXILIARY: 3162 case DT_CONFIG: 3163 case DT_RPATH: 3164 case DT_RUNPATH: 3165 case DT_USED: 3166 case DT_DEPAUDIT: 3167 case DT_AUDIT: 3168 name = string(_cache, ndx, strsec, 3169 file, dyn->d_un.d_ptr); 3170 break; 3171 3172 case DT_SUNW_AUXILIARY: 3173 case DT_SUNW_FILTER: 3174 if (osabi_solaris) 3175 name = string(_cache, ndx, strsec, 3176 file, dyn->d_un.d_ptr); 3177 break; 3178 3179 case DT_FLAGS: 3180 name = conv_dyn_flag(dyn->d_un.d_val, 3181 0, &c_buf.flag); 3182 break; 3183 case DT_FLAGS_1: 3184 name = conv_dyn_flag1(dyn->d_un.d_val, 0, 3185 &c_buf.flag1); 3186 break; 3187 case DT_POSFLAG_1: 3188 name = conv_dyn_posflag1(dyn->d_un.d_val, 0, 3189 &c_buf.posflag1); 3190 break; 3191 case DT_FEATURE_1: 3192 name = conv_dyn_feature1(dyn->d_un.d_val, 0, 3193 &c_buf.feature1); 3194 break; 3195 case DT_DEPRECATED_SPARC_REGISTER: 3196 name = MSG_INTL(MSG_STR_DEPRECATED); 3197 break; 3198 3199 case DT_SUNW_LDMACH: 3200 if (!osabi_solaris) 3201 break; 3202 name = conv_ehdr_mach((Half)dyn->d_un.d_val, 3203 0, &c_buf.inv); 3204 break; 3205 3206 /* 3207 * Cases below this point are strictly sanity checking, 3208 * and do not generate a name string. The TEST_ macros 3209 * are used to hide the boiler plate arguments neeeded 3210 * by dyn_test(). 3211 */ 3212 #define TEST_ADDR(_sh_type, _sec_field) \ 3213 dyn_test(DYN_TEST_ADDR, _sh_type, \ 3214 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3215 osabi, file) 3216 #define TEST_SIZE(_sh_type, _sec_field) \ 3217 dyn_test(DYN_TEST_SIZE, _sh_type, \ 3218 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3219 osabi, file) 3220 #define TEST_ENTSIZE(_sh_type, _sec_field) \ 3221 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \ 3222 sec._sec_field, dyn, dynsec_cnt, ehdr, \ 3223 osabi, file) 3224 3225 case DT_FINI: 3226 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI), 3227 sec.symtab, sec.dynsym, sec.sunw_ldynsym, 3228 sec.fini, cache, shnum, ehdr, osabi, file); 3229 TEST_ADDR(SHT_PROGBITS, fini); 3230 break; 3231 3232 case DT_FINI_ARRAY: 3233 TEST_ADDR(SHT_FINI_ARRAY, fini_array); 3234 break; 3235 3236 case DT_FINI_ARRAYSZ: 3237 TEST_SIZE(SHT_FINI_ARRAY, fini_array); 3238 break; 3239 3240 case DT_HASH: 3241 TEST_ADDR(SHT_HASH, hash); 3242 break; 3243 3244 case DT_INIT: 3245 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT), 3246 sec.symtab, sec.dynsym, sec.sunw_ldynsym, 3247 sec.init, cache, shnum, ehdr, osabi, file); 3248 TEST_ADDR(SHT_PROGBITS, init); 3249 break; 3250 3251 case DT_INIT_ARRAY: 3252 TEST_ADDR(SHT_INIT_ARRAY, init_array); 3253 break; 3254 3255 case DT_INIT_ARRAYSZ: 3256 TEST_SIZE(SHT_INIT_ARRAY, init_array); 3257 break; 3258 3259 case DT_MOVEENT: 3260 TEST_ENTSIZE(SHT_SUNW_move, sunw_move); 3261 break; 3262 3263 case DT_MOVESZ: 3264 TEST_SIZE(SHT_SUNW_move, sunw_move); 3265 break; 3266 3267 case DT_MOVETAB: 3268 TEST_ADDR(SHT_SUNW_move, sunw_move); 3269 break; 3270 3271 case DT_PREINIT_ARRAY: 3272 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array); 3273 break; 3274 3275 case DT_PREINIT_ARRAYSZ: 3276 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array); 3277 break; 3278 3279 case DT_REL: 3280 if (!dumped) 3281 TEST_ADDR(SHT_REL, rel); 3282 break; 3283 3284 case DT_RELENT: 3285 TEST_ENTSIZE(SHT_REL, rel); 3286 break; 3287 3288 case DT_RELA: 3289 if (!dumped) 3290 TEST_ADDR(SHT_RELA, rela); 3291 break; 3292 3293 case DT_RELAENT: 3294 TEST_ENTSIZE(SHT_RELA, rela); 3295 break; 3296 3297 case DT_STRTAB: 3298 TEST_ADDR(SHT_STRTAB, dynstr); 3299 break; 3300 3301 case DT_STRSZ: 3302 TEST_SIZE(SHT_STRTAB, dynstr); 3303 break; 3304 3305 case DT_SUNW_CAP: 3306 if (osabi_solaris) 3307 TEST_ADDR(SHT_SUNW_cap, sunw_cap); 3308 break; 3309 3310 case DT_SUNW_CAPINFO: 3311 if (osabi_solaris) 3312 TEST_ADDR(SHT_SUNW_capinfo, 3313 sunw_capinfo); 3314 break; 3315 3316 case DT_SUNW_CAPCHAIN: 3317 if (osabi_solaris) 3318 TEST_ADDR(SHT_SUNW_capchain, 3319 sunw_capchain); 3320 break; 3321 3322 case DT_SUNW_SYMTAB: 3323 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym); 3324 break; 3325 3326 case DT_SYMENT: 3327 TEST_ENTSIZE(SHT_DYNSYM, dynsym); 3328 break; 3329 3330 case DT_SYMINENT: 3331 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo); 3332 break; 3333 3334 case DT_SYMINFO: 3335 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo); 3336 break; 3337 3338 case DT_SYMINSZ: 3339 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo); 3340 break; 3341 3342 case DT_SYMTAB: 3343 TEST_ADDR(SHT_DYNSYM, dynsym); 3344 break; 3345 3346 case DT_SUNW_SORTENT: 3347 /* 3348 * This entry is related to both the symsort and 3349 * tlssort sections. 3350 */ 3351 if (osabi_solaris) { 3352 int test_tls = 3353 (sec.sunw_tlssort != NULL); 3354 int test_sym = 3355 (sec.sunw_symsort != NULL) || 3356 !test_tls; 3357 if (test_sym) 3358 TEST_ENTSIZE(SHT_SUNW_symsort, 3359 sunw_symsort); 3360 if (test_tls) 3361 TEST_ENTSIZE(SHT_SUNW_tlssort, 3362 sunw_tlssort); 3363 } 3364 break; 3365 3366 3367 case DT_SUNW_SYMSORT: 3368 if (osabi_solaris) 3369 TEST_ADDR(SHT_SUNW_symsort, 3370 sunw_symsort); 3371 break; 3372 3373 case DT_SUNW_SYMSORTSZ: 3374 if (osabi_solaris) 3375 TEST_SIZE(SHT_SUNW_symsort, 3376 sunw_symsort); 3377 break; 3378 3379 case DT_SUNW_TLSSORT: 3380 if (osabi_solaris) 3381 TEST_ADDR(SHT_SUNW_tlssort, 3382 sunw_tlssort); 3383 break; 3384 3385 case DT_SUNW_TLSSORTSZ: 3386 if (osabi_solaris) 3387 TEST_SIZE(SHT_SUNW_tlssort, 3388 sunw_tlssort); 3389 break; 3390 3391 case DT_VERDEF: 3392 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef); 3393 break; 3394 3395 case DT_VERNEED: 3396 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed); 3397 break; 3398 3399 case DT_VERSYM: 3400 TEST_ADDR(SHT_SUNW_versym, sunw_versym); 3401 break; 3402 #undef TEST_ADDR 3403 #undef TEST_SIZE 3404 #undef TEST_ENTSIZE 3405 } 3406 3407 if (name == NULL) 3408 name = MSG_ORIG(MSG_STR_EMPTY); 3409 Elf_dyn_entry(0, dyn, ndx, name, 3410 osabi, ehdr->e_machine); 3411 } 3412 } 3413 } 3414 3415 /* 3416 * Search for and process a MOVE section. 3417 */ 3418 static void 3419 move(Cache *cache, Word shnum, const char *file, uint_t flags) 3420 { 3421 Word cnt; 3422 const char *fmt = NULL; 3423 3424 for (cnt = 1; cnt < shnum; cnt++) { 3425 Word movenum, symnum, ndx; 3426 Sym *syms; 3427 Cache *_cache = &cache[cnt]; 3428 Shdr *shdr = _cache->c_shdr; 3429 Cache *symsec, *strsec; 3430 Move *move; 3431 3432 if (shdr->sh_type != SHT_SUNW_move) 3433 continue; 3434 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 3435 continue; 3436 3437 /* 3438 * Determine the move data and number. 3439 */ 3440 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { 3441 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3442 file, _cache->c_name); 3443 continue; 3444 } 3445 if (_cache->c_data == NULL) 3446 continue; 3447 3448 move = (Move *)_cache->c_data->d_buf; 3449 movenum = shdr->sh_size / shdr->sh_entsize; 3450 3451 /* 3452 * Get the data buffer for the associated symbol table and 3453 * string table. 3454 */ 3455 if (stringtbl(cache, 1, cnt, shnum, file, 3456 &symnum, &symsec, &strsec) == 0) 3457 return; 3458 3459 syms = (Sym *)symsec->c_data->d_buf; 3460 3461 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3462 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name); 3463 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE)); 3464 3465 if (fmt == NULL) 3466 fmt = MSG_INTL(MSG_MOVE_ENTRY); 3467 3468 for (ndx = 0; ndx < movenum; move++, ndx++) { 3469 const char *symname; 3470 char index[MAXNDXSIZE], section[BUFSIZ]; 3471 Word symndx, shndx; 3472 Sym *sym; 3473 3474 /* 3475 * Check for null entries 3476 */ 3477 if ((move->m_info == 0) && (move->m_value == 0) && 3478 (move->m_poffset == 0) && (move->m_repeat == 0) && 3479 (move->m_stride == 0)) { 3480 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY), 3481 EC_XWORD(move->m_poffset), 0, 0, 0, 3482 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY)); 3483 continue; 3484 } 3485 if (((symndx = ELF_M_SYM(move->m_info)) == 0) || 3486 (symndx >= symnum)) { 3487 (void) fprintf(stderr, 3488 MSG_INTL(MSG_ERR_BADMINFO), file, 3489 _cache->c_name, EC_XWORD(move->m_info)); 3490 3491 (void) snprintf(index, MAXNDXSIZE, 3492 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); 3493 dbg_print(0, fmt, index, 3494 EC_XWORD(move->m_poffset), 3495 ELF_M_SIZE(move->m_info), move->m_repeat, 3496 move->m_stride, move->m_value, 3497 MSG_INTL(MSG_STR_UNKNOWN)); 3498 continue; 3499 } 3500 3501 symname = relsymname(cache, _cache, strsec, 3502 symndx, symnum, ndx, syms, section, BUFSIZ, file); 3503 sym = (Sym *)(syms + symndx); 3504 3505 /* 3506 * Additional sanity check. 3507 */ 3508 shndx = sym->st_shndx; 3509 if (!((shndx == SHN_COMMON) || 3510 (((shndx >= 1) && (shndx <= shnum)) && 3511 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) { 3512 (void) fprintf(stderr, 3513 MSG_INTL(MSG_ERR_BADSYM2), file, 3514 _cache->c_name, EC_WORD(symndx), 3515 demangle(symname, flags)); 3516 } 3517 3518 (void) snprintf(index, MAXNDXSIZE, 3519 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); 3520 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset), 3521 ELF_M_SIZE(move->m_info), move->m_repeat, 3522 move->m_stride, move->m_value, 3523 demangle(symname, flags)); 3524 } 3525 } 3526 } 3527 3528 /* 3529 * parse_note_t is used to track the state used by parse_note_entry() 3530 * between calls, and also to return the results of each call. 3531 */ 3532 typedef struct { 3533 /* pns_ fields track progress through the data */ 3534 const char *pns_file; /* File name */ 3535 Cache *pns_cache; /* Note section cache entry */ 3536 size_t pns_size; /* # unprocessed data bytes */ 3537 Word *pns_data; /* # to next unused data byte */ 3538 3539 /* pn_ fields return the results for a single call */ 3540 Word pn_namesz; /* Value of note namesz field */ 3541 Word pn_descsz; /* Value of note descsz field */ 3542 Word pn_type; /* Value of note type field */ 3543 const char *pn_name; /* if (namesz > 0) ptr to name bytes */ 3544 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */ 3545 } parse_note_t; 3546 3547 /* 3548 * Extract the various sub-parts of a note entry, and advance the 3549 * data pointer past it. 3550 * 3551 * entry: 3552 * The state pns_ fields contain current values for the Note section 3553 * 3554 * exit: 3555 * On success, True (1) is returned, the state pns_ fields have been 3556 * advanced to point at the start of the next entry, and the information 3557 * for the recovered note entry is found in the state pn_ fields. 3558 * 3559 * On failure, False (0) is returned. The values contained in state 3560 * are undefined. 3561 */ 3562 static int 3563 parse_note_entry(parse_note_t *state) 3564 { 3565 size_t pad, noteoff; 3566 3567 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size; 3568 /* 3569 * Make sure we can at least reference the 3 initial entries 3570 * (4-byte words) of the note information block. 3571 */ 3572 if (state->pns_size >= (sizeof (Word) * 3)) { 3573 state->pns_size -= (sizeof (Word) * 3); 3574 } else { 3575 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ), 3576 state->pns_file, state->pns_cache->c_name, 3577 EC_WORD(noteoff)); 3578 return (0); 3579 } 3580 3581 /* 3582 * Make sure any specified name string can be referenced. 3583 */ 3584 if ((state->pn_namesz = *state->pns_data++) != 0) { 3585 if (state->pns_size >= state->pn_namesz) { 3586 state->pns_size -= state->pn_namesz; 3587 } else { 3588 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ), 3589 state->pns_file, state->pns_cache->c_name, 3590 EC_WORD(noteoff), EC_WORD(state->pn_namesz)); 3591 return (0); 3592 } 3593 } 3594 3595 /* 3596 * Make sure any specified descriptor can be referenced. 3597 */ 3598 if ((state->pn_descsz = *state->pns_data++) != 0) { 3599 /* 3600 * If namesz isn't a 4-byte multiple, account for any 3601 * padding that must exist before the descriptor. 3602 */ 3603 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) { 3604 pad = sizeof (Word) - pad; 3605 state->pns_size -= pad; 3606 } 3607 if (state->pns_size >= state->pn_descsz) { 3608 state->pns_size -= state->pn_descsz; 3609 } else { 3610 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ), 3611 state->pns_file, state->pns_cache->c_name, 3612 EC_WORD(noteoff), EC_WORD(state->pn_namesz)); 3613 return (0); 3614 } 3615 } 3616 3617 state->pn_type = *state->pns_data++; 3618 3619 /* Name */ 3620 if (state->pn_namesz) { 3621 state->pn_name = (char *)state->pns_data; 3622 pad = (state->pn_namesz + 3623 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1); 3624 /* LINTED */ 3625 state->pns_data = (Word *)(state->pn_name + pad); 3626 } 3627 3628 /* 3629 * If multiple information blocks exist within a .note section 3630 * account for any padding that must exist before the next 3631 * information block. 3632 */ 3633 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) { 3634 pad = sizeof (Word) - pad; 3635 if (state->pns_size > pad) 3636 state->pns_size -= pad; 3637 } 3638 3639 /* Data */ 3640 if (state->pn_descsz) { 3641 state->pn_desc = (const char *)state->pns_data; 3642 /* LINTED */ 3643 state->pns_data = (Word *)(state->pn_desc + 3644 state->pn_descsz + pad); 3645 } 3646 3647 return (1); 3648 } 3649 3650 /* 3651 * Callback function for use with conv_str_to_c_literal() below. 3652 */ 3653 /*ARGSUSED2*/ 3654 static void 3655 c_literal_cb(const void *ptr, size_t size, void *uvalue) 3656 { 3657 (void) fwrite(ptr, size, 1, stdout); 3658 } 3659 3660 /* 3661 * Traverse a note section analyzing each note information block. 3662 * The data buffers size is used to validate references before they are made, 3663 * and is decremented as each element is processed. 3664 */ 3665 void 3666 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file) 3667 { 3668 int cnt = 0; 3669 int is_corenote; 3670 int do_swap; 3671 Conv_inv_buf_t inv_buf; 3672 parse_note_t pnstate; 3673 3674 pnstate.pns_file = file; 3675 pnstate.pns_cache = cache; 3676 pnstate.pns_size = size; 3677 pnstate.pns_data = data; 3678 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA]; 3679 3680 /* 3681 * Print out a single `note' information block. 3682 */ 3683 while (pnstate.pns_size > 0) { 3684 3685 if (parse_note_entry(&pnstate) == 0) 3686 return; 3687 3688 /* 3689 * Is this a Solaris core note? Such notes all have 3690 * the name "CORE". 3691 */ 3692 is_corenote = (ehdr->e_type == ET_CORE) && 3693 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) && 3694 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name, 3695 MSG_STR_CORE_SIZE + 1) == 0); 3696 3697 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3698 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt)); 3699 cnt++; 3700 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), 3701 EC_WORD(pnstate.pn_namesz)); 3702 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), 3703 EC_WORD(pnstate.pn_descsz)); 3704 3705 if (is_corenote) 3706 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR), 3707 conv_cnote_type(pnstate.pn_type, 0, &inv_buf)); 3708 else 3709 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), 3710 EC_WORD(pnstate.pn_type)); 3711 if (pnstate.pn_namesz) { 3712 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME)); 3713 /* 3714 * The name string can contain embedded 'null' 3715 * bytes and/or unprintable characters. Also, 3716 * the final NULL is documented in the ELF ABI 3717 * as being included in the namesz. So, display 3718 * the name using C literal string notation, and 3719 * include the terminating NULL in the output. 3720 * We don't show surrounding double quotes, as 3721 * that implies the termination that we are showing 3722 * explicitly. 3723 */ 3724 (void) fwrite(MSG_ORIG(MSG_STR_8SP), 3725 MSG_STR_8SP_SIZE, 1, stdout); 3726 conv_str_to_c_literal(pnstate.pn_name, 3727 pnstate.pn_namesz, c_literal_cb, NULL); 3728 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3729 } 3730 3731 if (pnstate.pn_descsz) { 3732 int hexdump = 1; 3733 3734 /* 3735 * If this is a core note, let the corenote() 3736 * function handle it. 3737 */ 3738 if (is_corenote) { 3739 /* We only issue the bad arch error once */ 3740 static int badnote_done = 0; 3741 corenote_ret_t corenote_ret; 3742 3743 corenote_ret = corenote(ehdr->e_machine, 3744 do_swap, pnstate.pn_type, pnstate.pn_desc, 3745 pnstate.pn_descsz); 3746 switch (corenote_ret) { 3747 case CORENOTE_R_OK_DUMP: 3748 hexdump = 1; 3749 break; 3750 case CORENOTE_R_OK: 3751 hexdump = 0; 3752 break; 3753 case CORENOTE_R_BADDATA: 3754 (void) fprintf(stderr, 3755 MSG_INTL(MSG_NOTE_BADCOREDATA), 3756 file); 3757 break; 3758 case CORENOTE_R_BADARCH: 3759 if (badnote_done) 3760 break; 3761 (void) fprintf(stderr, 3762 MSG_INTL(MSG_NOTE_BADCOREARCH), 3763 file, 3764 conv_ehdr_mach(ehdr->e_machine, 3765 0, &inv_buf)); 3766 break; 3767 case CORENOTE_R_BADTYPE: 3768 (void) fprintf(stderr, 3769 MSG_INTL(MSG_NOTE_BADCORETYPE), 3770 file, 3771 EC_WORD(pnstate.pn_type)); 3772 break; 3773 3774 } 3775 } 3776 3777 /* 3778 * The default thing when we don't understand 3779 * the note data is to display it as hex bytes. 3780 */ 3781 if (hexdump) { 3782 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC)); 3783 dump_hex_bytes(pnstate.pn_desc, 3784 pnstate.pn_descsz, 8, 4, 4); 3785 } 3786 } 3787 } 3788 } 3789 3790 /* 3791 * Search for and process .note sections. 3792 * 3793 * Returns the number of note sections seen. 3794 */ 3795 static Word 3796 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 3797 { 3798 Word cnt, note_cnt = 0; 3799 3800 /* 3801 * Otherwise look for any .note sections. 3802 */ 3803 for (cnt = 1; cnt < shnum; cnt++) { 3804 Cache *_cache = &cache[cnt]; 3805 Shdr *shdr = _cache->c_shdr; 3806 3807 if (shdr->sh_type != SHT_NOTE) 3808 continue; 3809 note_cnt++; 3810 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) 3811 continue; 3812 3813 /* 3814 * As these sections are often hand rolled, make sure they're 3815 * properly aligned before proceeding, and issue an error 3816 * as necessary. 3817 * 3818 * Note that we will continue on to display the note even 3819 * if it has bad alignment. We can do this safely, because 3820 * libelf knows the alignment required for SHT_NOTE, and 3821 * takes steps to deliver a properly aligned buffer to us 3822 * even if the actual file is misaligned. 3823 */ 3824 if (shdr->sh_offset & (sizeof (Word) - 1)) 3825 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN), 3826 file, _cache->c_name); 3827 3828 if (_cache->c_data == NULL) 3829 continue; 3830 3831 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 3832 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name); 3833 note_entry(_cache, (Word *)_cache->c_data->d_buf, 3834 /* LINTED */ 3835 (Word)_cache->c_data->d_size, ehdr, file); 3836 } 3837 3838 return (note_cnt); 3839 } 3840 3841 /* 3842 * The Linux Standard Base defines a special note named .note.ABI-tag 3843 * that is used to maintain Linux ABI information. Presence of this section 3844 * is a strong indication that the object should be considered to be 3845 * ELFOSABI_LINUX. 3846 * 3847 * This function returns True (1) if such a note is seen, and False (0) 3848 * otherwise. 3849 */ 3850 static int 3851 has_linux_abi_note(Cache *cache, Word shnum, const char *file) 3852 { 3853 Word cnt; 3854 3855 for (cnt = 1; cnt < shnum; cnt++) { 3856 parse_note_t pnstate; 3857 Cache *_cache = &cache[cnt]; 3858 Shdr *shdr = _cache->c_shdr; 3859 3860 /* 3861 * Section must be SHT_NOTE, must have the name 3862 * .note.ABI-tag, and must have data. 3863 */ 3864 if ((shdr->sh_type != SHT_NOTE) || 3865 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG), 3866 _cache->c_name) != 0) || (_cache->c_data == NULL)) 3867 continue; 3868 3869 pnstate.pns_file = file; 3870 pnstate.pns_cache = _cache; 3871 pnstate.pns_size = _cache->c_data->d_size; 3872 pnstate.pns_data = (Word *)_cache->c_data->d_buf; 3873 3874 while (pnstate.pns_size > 0) { 3875 Word *w; 3876 3877 if (parse_note_entry(&pnstate) == 0) 3878 break; 3879 3880 /* 3881 * The type must be 1, and the name must be "GNU". 3882 * The descsz must be at least 16 bytes. 3883 */ 3884 if ((pnstate.pn_type != 1) || 3885 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) || 3886 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name, 3887 MSG_STR_CORE_SIZE + 1) != 0) || 3888 (pnstate.pn_descsz < 16)) 3889 continue; 3890 3891 /* 3892 * desc contains 4 32-bit fields. Field 0 must be 0, 3893 * indicating Linux. The second, third, and fourth 3894 * fields represent the earliest Linux kernel 3895 * version compatible with this object. 3896 */ 3897 /*LINTED*/ 3898 w = (Word *) pnstate.pn_desc; 3899 if (*w == 0) 3900 return (1); 3901 } 3902 } 3903 3904 return (0); 3905 } 3906 3907 /* 3908 * Determine an individual hash entry. This may be the initial hash entry, 3909 * or an associated chain entry. 3910 */ 3911 static void 3912 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx, 3913 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts, 3914 uint_t flags, int chain) 3915 { 3916 Sym *sym; 3917 const char *symname, *str; 3918 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE]; 3919 ulong_t nbkt, nhash; 3920 3921 if (symndx > symn) { 3922 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file, 3923 EC_WORD(symndx), EC_WORD(hashndx)); 3924 symname = MSG_INTL(MSG_STR_UNKNOWN); 3925 } else { 3926 sym = (Sym *)(syms + symndx); 3927 symname = string(refsec, symndx, strsec, file, sym->st_name); 3928 } 3929 3930 if (chain == 0) { 3931 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), 3932 hashndx); 3933 str = (const char *)_bucket; 3934 } else 3935 str = MSG_ORIG(MSG_STR_EMPTY); 3936 3937 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2), 3938 EC_WORD(symndx)); 3939 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx, 3940 demangle(symname, flags)); 3941 3942 /* 3943 * Determine if this string is in the correct bucket. 3944 */ 3945 nhash = elf_hash(symname); 3946 nbkt = nhash % bkts; 3947 3948 if (nbkt != hashndx) { 3949 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file, 3950 hsecname, symname, EC_WORD(hashndx), nbkt); 3951 } 3952 } 3953 3954 #define MAXCOUNT 500 3955 3956 static void 3957 hash(Cache *cache, Word shnum, const char *file, uint_t flags) 3958 { 3959 static int count[MAXCOUNT]; 3960 Word cnt; 3961 ulong_t ndx, bkts; 3962 char number[MAXNDXSIZE]; 3963 3964 for (cnt = 1; cnt < shnum; cnt++) { 3965 uint_t *hash, *chain; 3966 Cache *_cache = &cache[cnt]; 3967 Shdr *sshdr, *hshdr = _cache->c_shdr; 3968 char *ssecname, *hsecname = _cache->c_name; 3969 Sym *syms; 3970 Word symn; 3971 3972 if (hshdr->sh_type != SHT_HASH) 3973 continue; 3974 3975 /* 3976 * Determine the hash table data and size. 3977 */ 3978 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) { 3979 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 3980 file, hsecname); 3981 continue; 3982 } 3983 if (_cache->c_data == NULL) 3984 continue; 3985 3986 hash = (uint_t *)_cache->c_data->d_buf; 3987 bkts = *hash; 3988 chain = hash + 2 + bkts; 3989 hash += 2; 3990 3991 /* 3992 * Get the data buffer for the associated symbol table. 3993 */ 3994 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) { 3995 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 3996 file, hsecname, EC_WORD(hshdr->sh_link)); 3997 continue; 3998 } 3999 4000 _cache = &cache[hshdr->sh_link]; 4001 ssecname = _cache->c_name; 4002 4003 if (_cache->c_data == NULL) 4004 continue; 4005 4006 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) { 4007 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4008 file, ssecname); 4009 continue; 4010 } 4011 4012 sshdr = _cache->c_shdr; 4013 /* LINTED */ 4014 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize); 4015 4016 /* 4017 * Get the associated string table section. 4018 */ 4019 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) { 4020 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), 4021 file, ssecname, EC_WORD(sshdr->sh_link)); 4022 continue; 4023 } 4024 4025 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4026 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname); 4027 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO)); 4028 4029 /* 4030 * Loop through the hash buckets, printing the appropriate 4031 * symbols. 4032 */ 4033 for (ndx = 0; ndx < bkts; ndx++, hash++) { 4034 Word _ndx, _cnt; 4035 4036 if (*hash == 0) { 4037 count[0]++; 4038 continue; 4039 } 4040 4041 hash_entry(_cache, &cache[sshdr->sh_link], hsecname, 4042 ndx, *hash, symn, syms, file, bkts, flags, 0); 4043 4044 /* 4045 * Determine if any other symbols are chained to this 4046 * bucket. 4047 */ 4048 _ndx = chain[*hash]; 4049 _cnt = 1; 4050 while (_ndx) { 4051 hash_entry(_cache, &cache[sshdr->sh_link], 4052 hsecname, ndx, _ndx, symn, syms, file, 4053 bkts, flags, 1); 4054 _ndx = chain[_ndx]; 4055 _cnt++; 4056 } 4057 4058 if (_cnt >= MAXCOUNT) { 4059 (void) fprintf(stderr, 4060 MSG_INTL(MSG_HASH_OVERFLW), file, 4061 _cache->c_name, EC_WORD(ndx), 4062 EC_WORD(_cnt)); 4063 } else 4064 count[_cnt]++; 4065 } 4066 break; 4067 } 4068 4069 /* 4070 * Print out the count information. 4071 */ 4072 bkts = cnt = 0; 4073 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4074 4075 for (ndx = 0; ndx < MAXCOUNT; ndx++) { 4076 Word _cnt; 4077 4078 if ((_cnt = count[ndx]) == 0) 4079 continue; 4080 4081 (void) snprintf(number, MAXNDXSIZE, 4082 MSG_ORIG(MSG_FMT_INTEGER), _cnt); 4083 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number, 4084 EC_WORD(ndx)); 4085 bkts += _cnt; 4086 cnt += (Word)(ndx * _cnt); 4087 } 4088 if (cnt) { 4089 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), 4090 bkts); 4091 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number, 4092 EC_WORD(cnt)); 4093 } 4094 } 4095 4096 static void 4097 group(Cache *cache, Word shnum, const char *file, uint_t flags) 4098 { 4099 Word scnt; 4100 4101 for (scnt = 1; scnt < shnum; scnt++) { 4102 Cache *_cache = &cache[scnt]; 4103 Shdr *shdr = _cache->c_shdr; 4104 Word *grpdata, gcnt, grpcnt, symnum, unknown; 4105 Cache *symsec, *strsec; 4106 Sym *syms, *sym; 4107 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10]; 4108 const char *grpnam; 4109 4110 if (shdr->sh_type != SHT_GROUP) 4111 continue; 4112 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type)) 4113 continue; 4114 if ((_cache->c_data == NULL) || 4115 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL)) 4116 continue; 4117 grpcnt = shdr->sh_size / sizeof (Word); 4118 4119 /* 4120 * Get the data buffer for the associated symbol table and 4121 * string table. 4122 */ 4123 if (stringtbl(cache, 1, scnt, shnum, file, 4124 &symnum, &symsec, &strsec) == 0) 4125 return; 4126 4127 syms = symsec->c_data->d_buf; 4128 4129 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4130 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name); 4131 dbg_print(0, MSG_INTL(MSG_GRP_TITLE)); 4132 4133 /* 4134 * The first element of the group defines the group. The 4135 * associated symbol is defined by the sh_link field. 4136 */ 4137 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) { 4138 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), 4139 file, _cache->c_name, EC_WORD(shdr->sh_info)); 4140 return; 4141 } 4142 4143 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT)); 4144 if (grpdata[0] & GRP_COMDAT) { 4145 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT)); 4146 } 4147 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) { 4148 size_t len = strlen(flgstrbuf); 4149 4150 (void) snprintf(&flgstrbuf[len], 4151 (MSG_GRP_COMDAT_SIZE + 10 - len), 4152 MSG_ORIG(MSG_GRP_UNKNOWN), unknown); 4153 } 4154 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT)); 4155 sym = (Sym *)(syms + shdr->sh_info); 4156 4157 /* 4158 * The GNU assembler can use section symbols as the signature 4159 * symbol as described by this comment in the gold linker 4160 * (found via google): 4161 * 4162 * It seems that some versions of gas will create a 4163 * section group associated with a section symbol, and 4164 * then fail to give a name to the section symbol. In 4165 * such a case, use the name of the section. 4166 * 4167 * In order to support such objects, we do the same. 4168 */ 4169 grpnam = string(_cache, 0, strsec, file, sym->st_name); 4170 if (((sym->st_name == 0) || (*grpnam == '\0')) && 4171 (ELF_ST_TYPE(sym->st_info) == STT_SECTION)) 4172 grpnam = cache[sym->st_shndx].c_name; 4173 4174 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf, 4175 demangle(grpnam, flags)); 4176 4177 for (gcnt = 1; gcnt < grpcnt; gcnt++) { 4178 char index[MAXNDXSIZE]; 4179 const char *name; 4180 4181 (void) snprintf(index, MAXNDXSIZE, 4182 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt)); 4183 4184 if (grpdata[gcnt] >= shnum) 4185 name = MSG_INTL(MSG_GRP_INVALSCN); 4186 else 4187 name = cache[grpdata[gcnt]].c_name; 4188 4189 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name, 4190 EC_XWORD(grpdata[gcnt])); 4191 } 4192 } 4193 } 4194 4195 static void 4196 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) 4197 { 4198 Cache *gotcache = NULL, *symtab = NULL; 4199 Addr gotbgn, gotend; 4200 Shdr *gotshdr; 4201 Word cnt, gotents, gotndx; 4202 size_t gentsize; 4203 Got_info *gottable; 4204 char *gotdata; 4205 Sym *gotsym; 4206 Xword gotsymaddr; 4207 uint_t sys_encoding; 4208 4209 /* 4210 * First, find the got. 4211 */ 4212 for (cnt = 1; cnt < shnum; cnt++) { 4213 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), 4214 MSG_ELF_GOT_SIZE) == 0) { 4215 gotcache = &cache[cnt]; 4216 break; 4217 } 4218 } 4219 if (gotcache == NULL) 4220 return; 4221 4222 /* 4223 * A got section within a relocatable object is suspicious. 4224 */ 4225 if (ehdr->e_type == ET_REL) { 4226 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file, 4227 gotcache->c_name); 4228 } 4229 4230 gotshdr = gotcache->c_shdr; 4231 if (gotshdr->sh_size == 0) { 4232 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4233 file, gotcache->c_name); 4234 return; 4235 } 4236 4237 gotbgn = gotshdr->sh_addr; 4238 gotend = gotbgn + gotshdr->sh_size; 4239 4240 /* 4241 * Some architectures don't properly set the sh_entsize for the GOT 4242 * table. If it's not set, default to a size of a pointer. 4243 */ 4244 if ((gentsize = gotshdr->sh_entsize) == 0) 4245 gentsize = sizeof (Xword); 4246 4247 if (gotcache->c_data == NULL) 4248 return; 4249 4250 /* LINTED */ 4251 gotents = (Word)(gotshdr->sh_size / gentsize); 4252 gotdata = gotcache->c_data->d_buf; 4253 4254 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) { 4255 int err = errno; 4256 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, 4257 strerror(err)); 4258 return; 4259 } 4260 4261 /* 4262 * Now we scan through all the sections looking for any relocations 4263 * that may be against the GOT. Since these may not be isolated to a 4264 * .rel[a].got section we check them all. 4265 * While scanning sections save the symbol table entry (a symtab 4266 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_. 4267 */ 4268 for (cnt = 1; cnt < shnum; cnt++) { 4269 Word type, symnum; 4270 Xword relndx, relnum, relsize; 4271 void *rels; 4272 Sym *syms; 4273 Cache *symsec, *strsec; 4274 Cache *_cache = &cache[cnt]; 4275 Shdr *shdr; 4276 4277 shdr = _cache->c_shdr; 4278 type = shdr->sh_type; 4279 4280 if ((symtab == 0) && (type == SHT_DYNSYM)) { 4281 symtab = _cache; 4282 continue; 4283 } 4284 if (type == SHT_SYMTAB) { 4285 symtab = _cache; 4286 continue; 4287 } 4288 if ((type != SHT_RELA) && (type != SHT_REL)) 4289 continue; 4290 4291 /* 4292 * Decide entry size. 4293 */ 4294 if (((relsize = shdr->sh_entsize) == 0) || 4295 (relsize > shdr->sh_size)) { 4296 if (type == SHT_RELA) 4297 relsize = sizeof (Rela); 4298 else 4299 relsize = sizeof (Rel); 4300 } 4301 4302 /* 4303 * Determine the number of relocations available. 4304 */ 4305 if (shdr->sh_size == 0) { 4306 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), 4307 file, _cache->c_name); 4308 continue; 4309 } 4310 if (_cache->c_data == NULL) 4311 continue; 4312 4313 rels = _cache->c_data->d_buf; 4314 relnum = shdr->sh_size / relsize; 4315 4316 /* 4317 * Get the data buffer for the associated symbol table and 4318 * string table. 4319 */ 4320 if (stringtbl(cache, 1, cnt, shnum, file, 4321 &symnum, &symsec, &strsec) == 0) 4322 continue; 4323 4324 syms = symsec->c_data->d_buf; 4325 4326 /* 4327 * Loop through the relocation entries. 4328 */ 4329 for (relndx = 0; relndx < relnum; relndx++, 4330 rels = (void *)((char *)rels + relsize)) { 4331 char section[BUFSIZ]; 4332 Addr offset; 4333 Got_info *gip; 4334 Word symndx, reltype; 4335 Rela *rela; 4336 Rel *rel; 4337 4338 /* 4339 * Unravel the relocation. 4340 */ 4341 if (type == SHT_RELA) { 4342 rela = (Rela *)rels; 4343 symndx = ELF_R_SYM(rela->r_info); 4344 reltype = ELF_R_TYPE(rela->r_info, 4345 ehdr->e_machine); 4346 offset = rela->r_offset; 4347 } else { 4348 rel = (Rel *)rels; 4349 symndx = ELF_R_SYM(rel->r_info); 4350 reltype = ELF_R_TYPE(rel->r_info, 4351 ehdr->e_machine); 4352 offset = rel->r_offset; 4353 } 4354 4355 /* 4356 * Only pay attention to relocations against the GOT. 4357 */ 4358 if ((offset < gotbgn) || (offset >= gotend)) 4359 continue; 4360 4361 /* LINTED */ 4362 gotndx = (Word)((offset - gotbgn) / 4363 gotshdr->sh_entsize); 4364 gip = &gottable[gotndx]; 4365 4366 if (gip->g_reltype != 0) { 4367 (void) fprintf(stderr, 4368 MSG_INTL(MSG_GOT_MULTIPLE), file, 4369 EC_WORD(gotndx), EC_ADDR(offset)); 4370 continue; 4371 } 4372 4373 if (symndx) 4374 gip->g_symname = relsymname(cache, _cache, 4375 strsec, symndx, symnum, relndx, syms, 4376 section, BUFSIZ, file); 4377 gip->g_reltype = reltype; 4378 gip->g_rel = rels; 4379 } 4380 } 4381 4382 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL, 4383 symtab, file)) 4384 gotsymaddr = gotsym->st_value; 4385 else 4386 gotsymaddr = gotbgn; 4387 4388 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4389 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name); 4390 Elf_got_title(0); 4391 4392 sys_encoding = _elf_sys_encoding(); 4393 for (gotndx = 0; gotndx < gotents; gotndx++) { 4394 Got_info *gip; 4395 Sword gindex; 4396 Addr gaddr; 4397 Xword gotentry; 4398 4399 gip = &gottable[gotndx]; 4400 4401 gaddr = gotbgn + (gotndx * gentsize); 4402 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize; 4403 4404 if (gentsize == sizeof (Word)) 4405 /* LINTED */ 4406 gotentry = (Xword)(*((Word *)(gotdata) + gotndx)); 4407 else 4408 /* LINTED */ 4409 gotentry = *((Xword *)(gotdata) + gotndx); 4410 4411 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine, 4412 ehdr->e_ident[EI_DATA], sys_encoding, 4413 gip->g_reltype, gip->g_rel, gip->g_symname); 4414 } 4415 free(gottable); 4416 } 4417 4418 void 4419 checksum(Elf *elf) 4420 { 4421 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4422 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf)); 4423 } 4424 4425 /* 4426 * This variable is used by regular() to communicate the address of 4427 * the section header cache to sort_shdr_ndx_arr(). Unfortunately, 4428 * the qsort() interface does not include a userdata argument by which 4429 * such arbitrary data can be passed, so we are stuck using global data. 4430 */ 4431 static Cache *sort_shdr_ndx_arr_cache; 4432 4433 4434 /* 4435 * Used with qsort() to sort the section indices so that they can be 4436 * used to access the section headers in order of increasing data offset. 4437 * 4438 * entry: 4439 * sort_shdr_ndx_arr_cache - Contains address of 4440 * section header cache. 4441 * v1, v2 - Point at elements of sort_shdr_bits array to be compared. 4442 * 4443 * exit: 4444 * Returns -1 (less than), 0 (equal) or 1 (greater than). 4445 */ 4446 static int 4447 sort_shdr_ndx_arr(const void *v1, const void *v2) 4448 { 4449 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1); 4450 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2); 4451 4452 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset) 4453 return (-1); 4454 4455 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset) 4456 return (1); 4457 4458 return (0); 4459 } 4460 4461 4462 static int 4463 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx, 4464 size_t shnum, Cache **cache_ret, Word flags) 4465 { 4466 Elf_Scn *scn; 4467 Elf_Data *data; 4468 size_t ndx; 4469 Shdr *nameshdr; 4470 char *names = NULL; 4471 Cache *cache, *_cache; 4472 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt; 4473 4474 4475 /* 4476 * Obtain the .shstrtab data buffer to provide the required section 4477 * name strings. 4478 */ 4479 if (shstrndx == SHN_UNDEF) { 4480 /* 4481 * It is rare, but legal, for an object to lack a 4482 * header string table section. 4483 */ 4484 names = NULL; 4485 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file); 4486 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) { 4487 failure(file, MSG_ORIG(MSG_ELF_GETSCN)); 4488 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR), 4489 EC_XWORD(shstrndx)); 4490 4491 } else if ((data = elf_getdata(scn, NULL)) == NULL) { 4492 failure(file, MSG_ORIG(MSG_ELF_GETDATA)); 4493 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA), 4494 EC_XWORD(shstrndx)); 4495 4496 } else if ((nameshdr = elf_getshdr(scn)) == NULL) { 4497 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4498 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 4499 EC_WORD(elf_ndxscn(scn))); 4500 4501 } else if ((names = data->d_buf) == NULL) 4502 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file); 4503 4504 /* 4505 * Allocate a cache to maintain a descriptor for each section. 4506 */ 4507 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) { 4508 int err = errno; 4509 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4510 file, strerror(err)); 4511 return (0); 4512 } 4513 4514 *cache = cache_init; 4515 _cache = cache; 4516 _cache++; 4517 4518 /* 4519 * Allocate an array that will hold the section index for 4520 * each section that has data in the ELF file: 4521 * 4522 * - Is not a NOBITS section 4523 * - Data has non-zero length 4524 * 4525 * Note that shnum is an upper bound on the size required. It 4526 * is likely that we won't use a few of these array elements. 4527 * Allocating a modest amount of extra memory in this case means 4528 * that we can avoid an extra loop to count the number of needed 4529 * items, and can fill this array immediately in the first loop 4530 * below. 4531 */ 4532 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) { 4533 int err = errno; 4534 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4535 file, strerror(err)); 4536 return (0); 4537 } 4538 shdr_ndx_arr_cnt = 0; 4539 4540 /* 4541 * Traverse the sections of the file. This gathering of data is 4542 * carried out in two passes. First, the section headers are captured 4543 * and the section header names are evaluated. A verification pass is 4544 * then carried out over the section information. Files have been 4545 * known to exhibit overlapping (and hence erroneous) section header 4546 * information. 4547 * 4548 * Finally, the data for each section is obtained. This processing is 4549 * carried out after section verification because should any section 4550 * header overlap occur, and a file needs translating (ie. xlate'ing 4551 * information from a non-native architecture file), then the process 4552 * of translation can corrupt the section header information. Of 4553 * course, if there is any section overlap, the data related to the 4554 * sections is going to be compromised. However, it is the translation 4555 * of this data that has caused problems with elfdump()'s ability to 4556 * extract the data. 4557 */ 4558 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn); 4559 ndx++, _cache++) { 4560 char scnndxnm[100]; 4561 4562 _cache->c_ndx = ndx; 4563 _cache->c_scn = scn; 4564 4565 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) { 4566 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4567 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 4568 EC_WORD(elf_ndxscn(scn))); 4569 } 4570 4571 /* 4572 * If this section has data in the file, include it in 4573 * the array of sections to check for address overlap. 4574 */ 4575 if ((_cache->c_shdr->sh_size != 0) && 4576 (_cache->c_shdr->sh_type != SHT_NOBITS)) 4577 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx; 4578 4579 /* 4580 * If a shstrtab exists, assign the section name. 4581 */ 4582 if (names && _cache->c_shdr) { 4583 if (_cache->c_shdr->sh_name && 4584 /* LINTED */ 4585 (nameshdr->sh_size > _cache->c_shdr->sh_name)) { 4586 const char *symname; 4587 char *secname; 4588 4589 secname = names + _cache->c_shdr->sh_name; 4590 4591 /* 4592 * A SUN naming convention employs a "%" within 4593 * a section name to indicate a section/symbol 4594 * name. This originated from the compilers 4595 * -xF option, that places functions into their 4596 * own sections. This convention (which has no 4597 * formal standard) has also been followed for 4598 * COMDAT sections. To demangle the symbol 4599 * name, the name must be separated from the 4600 * section name. 4601 */ 4602 if (((flags & FLG_CTL_DEMANGLE) == 0) || 4603 ((symname = strchr(secname, '%')) == NULL)) 4604 _cache->c_name = secname; 4605 else { 4606 size_t secsz = ++symname - secname; 4607 size_t strsz; 4608 4609 symname = demangle(symname, flags); 4610 strsz = secsz + strlen(symname) + 1; 4611 4612 if ((_cache->c_name = 4613 malloc(strsz)) == NULL) { 4614 int err = errno; 4615 (void) fprintf(stderr, 4616 MSG_INTL(MSG_ERR_MALLOC), 4617 file, strerror(err)); 4618 return (0); 4619 } 4620 (void) snprintf(_cache->c_name, strsz, 4621 MSG_ORIG(MSG_FMT_SECSYM), 4622 EC_WORD(secsz), secname, symname); 4623 } 4624 4625 continue; 4626 } 4627 4628 /* 4629 * Generate an error if the section name index is zero 4630 * or exceeds the shstrtab data. Fall through to 4631 * fabricate a section name. 4632 */ 4633 if ((_cache->c_shdr->sh_name == 0) || 4634 /* LINTED */ 4635 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) { 4636 (void) fprintf(stderr, 4637 MSG_INTL(MSG_ERR_BADSHNAME), file, 4638 EC_WORD(ndx), 4639 EC_XWORD(_cache->c_shdr->sh_name)); 4640 } 4641 } 4642 4643 /* 4644 * If there exists no shstrtab data, or a section header has no 4645 * name (an invalid index of 0), then compose a name for the 4646 * section. 4647 */ 4648 (void) snprintf(scnndxnm, sizeof (scnndxnm), 4649 MSG_INTL(MSG_FMT_SCNNDX), ndx); 4650 4651 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) { 4652 int err = errno; 4653 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), 4654 file, strerror(err)); 4655 return (0); 4656 } 4657 (void) strcpy(_cache->c_name, scnndxnm); 4658 } 4659 4660 /* 4661 * Having collected all the sections, validate their address range. 4662 * Cases have existed where the section information has been invalid. 4663 * This can lead to all sorts of other, hard to diagnose errors, as 4664 * each section is processed individually (ie. with elf_getdata()). 4665 * Here, we carry out some address comparisons to catch a family of 4666 * overlapping memory issues we have observed (likely, there are others 4667 * that we have yet to discover). 4668 * 4669 * Note, should any memory overlap occur, obtaining any additional 4670 * data from the file is questionable. However, it might still be 4671 * possible to inspect the ELF header, Programs headers, or individual 4672 * sections, so rather than bailing on an error condition, continue 4673 * processing to see if any data can be salvaged. 4674 */ 4675 if (shdr_ndx_arr_cnt > 1) { 4676 sort_shdr_ndx_arr_cache = cache; 4677 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt, 4678 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr); 4679 } 4680 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) { 4681 Cache *_cache = cache + shdr_ndx_arr[ndx]; 4682 Shdr *shdr = _cache->c_shdr; 4683 Off bgn1, bgn = shdr->sh_offset; 4684 Off end1, end = shdr->sh_offset + shdr->sh_size; 4685 size_t ndx1; 4686 4687 /* 4688 * Check the section against all following ones, reporting 4689 * any overlaps. Since we've sorted the sections by offset, 4690 * we can stop after the first comparison that fails. There 4691 * are no overlaps in a properly formed ELF file, in which 4692 * case this algorithm runs in O(n) time. This will degenerate 4693 * to O(n^2) for a completely broken file. Such a file is 4694 * (1) highly unlikely, and (2) unusable, so it is reasonable 4695 * for the analysis to take longer. 4696 */ 4697 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) { 4698 Cache *_cache1 = cache + shdr_ndx_arr[ndx1]; 4699 Shdr *shdr1 = _cache1->c_shdr; 4700 4701 bgn1 = shdr1->sh_offset; 4702 end1 = shdr1->sh_offset + shdr1->sh_size; 4703 4704 if (((bgn1 <= bgn) && (end1 > bgn)) || 4705 ((bgn1 < end) && (end1 >= end))) { 4706 (void) fprintf(stderr, 4707 MSG_INTL(MSG_ERR_SECMEMOVER), file, 4708 EC_WORD(elf_ndxscn(_cache->c_scn)), 4709 _cache->c_name, EC_OFF(bgn), EC_OFF(end), 4710 EC_WORD(elf_ndxscn(_cache1->c_scn)), 4711 _cache1->c_name, EC_OFF(bgn1), 4712 EC_OFF(end1)); 4713 } else { /* No overlap, so can stop */ 4714 break; 4715 } 4716 } 4717 4718 /* 4719 * In addition to checking for sections overlapping 4720 * each other (done above), we should also make sure 4721 * the section doesn't overlap the section header array. 4722 */ 4723 bgn1 = ehdr->e_shoff; 4724 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum); 4725 4726 if (((bgn1 <= bgn) && (end1 > bgn)) || 4727 ((bgn1 < end) && (end1 >= end))) { 4728 (void) fprintf(stderr, 4729 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1), 4730 EC_OFF(end1), 4731 EC_WORD(elf_ndxscn(_cache->c_scn)), 4732 _cache->c_name, EC_OFF(bgn), EC_OFF(end)); 4733 } 4734 } 4735 4736 /* 4737 * Obtain the data for each section. 4738 */ 4739 for (ndx = 1; ndx < shnum; ndx++) { 4740 Cache *_cache = &cache[ndx]; 4741 Elf_Scn *scn = _cache->c_scn; 4742 4743 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) { 4744 failure(file, MSG_ORIG(MSG_ELF_GETDATA)); 4745 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA), 4746 EC_WORD(elf_ndxscn(scn))); 4747 } 4748 4749 /* 4750 * If a string table, verify that it has NULL first and 4751 * final bytes. 4752 */ 4753 if ((_cache->c_shdr->sh_type == SHT_STRTAB) && 4754 (_cache->c_data != NULL) && 4755 (_cache->c_data->d_buf != NULL) && 4756 (_cache->c_data->d_size > 0)) { 4757 const char *s = _cache->c_data->d_buf; 4758 4759 if ((*s != '\0') || 4760 (*(s + _cache->c_data->d_size - 1) != '\0')) 4761 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR), 4762 file, _cache->c_name); 4763 } 4764 } 4765 4766 return (1); 4767 } 4768 4769 4770 4771 /* 4772 * Generate a cache of section headers and related information 4773 * for use by the rest of elfdump. If requested (or the file 4774 * contains no section headers), we generate a fake set of 4775 * headers from the information accessible from the program headers. 4776 * Otherwise, we use the real section headers contained in the file. 4777 */ 4778 static int 4779 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache, 4780 size_t shstrndx, size_t *shnum, uint_t *flags) 4781 { 4782 /* 4783 * If there are no section headers, then resort to synthesizing 4784 * section headers from the program headers. This is normally 4785 * only done by explicit request, but in this case there's no 4786 * reason not to go ahead, since the alternative is simply to quit. 4787 */ 4788 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) { 4789 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file); 4790 *flags |= FLG_CTL_FAKESHDR; 4791 } 4792 4793 if (*flags & FLG_CTL_FAKESHDR) { 4794 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0) 4795 return (0); 4796 } else { 4797 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum, 4798 cache, *flags) == 0) 4799 return (0); 4800 } 4801 4802 return (1); 4803 } 4804 4805 int 4806 regular(const char *file, int fd, Elf *elf, uint_t flags, 4807 const char *wname, int wfd, uchar_t osabi) 4808 { 4809 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED; 4810 Elf_Scn *scn; 4811 Ehdr *ehdr; 4812 size_t ndx, shstrndx, shnum, phnum; 4813 Shdr *shdr; 4814 Cache *cache; 4815 VERSYM_STATE versym = { 0 }; 4816 int ret = 0; 4817 int addr_align; 4818 4819 if ((ehdr = elf_getehdr(elf)) == NULL) { 4820 failure(file, MSG_ORIG(MSG_ELF_GETEHDR)); 4821 return (ret); 4822 } 4823 4824 if (elf_getshdrnum(elf, &shnum) == -1) { 4825 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM)); 4826 return (ret); 4827 } 4828 4829 if (elf_getshdrstrndx(elf, &shstrndx) == -1) { 4830 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX)); 4831 return (ret); 4832 } 4833 4834 if (elf_getphdrnum(elf, &phnum) == -1) { 4835 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM)); 4836 return (ret); 4837 } 4838 /* 4839 * If the user requested section headers derived from the 4840 * program headers (-P option) and this file doesn't have 4841 * any program headers (i.e. ET_REL), then we can't do it. 4842 */ 4843 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) { 4844 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file); 4845 return (ret); 4846 } 4847 4848 4849 if ((scn = elf_getscn(elf, 0)) != NULL) { 4850 if ((shdr = elf_getshdr(scn)) == NULL) { 4851 failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); 4852 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0); 4853 return (ret); 4854 } 4855 } else 4856 shdr = NULL; 4857 4858 /* 4859 * Print the elf header. 4860 */ 4861 if (flags & FLG_SHOW_EHDR) 4862 Elf_ehdr(0, ehdr, shdr); 4863 4864 /* 4865 * If the section headers or program headers have inadequate 4866 * alignment for the class of object, print a warning. libelf 4867 * can handle such files, but programs that use them can crash 4868 * when they dereference unaligned items. 4869 * 4870 * Note that the AMD64 ABI, although it is a 64-bit architecture, 4871 * allows access to data types smaller than 128-bits to be on 4872 * word alignment. 4873 */ 4874 if (ehdr->e_machine == EM_AMD64) 4875 addr_align = sizeof (Word); 4876 else 4877 addr_align = sizeof (Addr); 4878 4879 if (ehdr->e_phoff & (addr_align - 1)) 4880 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file); 4881 if (ehdr->e_shoff & (addr_align - 1)) 4882 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file); 4883 4884 4885 /* 4886 * Determine the Operating System ABI (osabi) we will use to 4887 * interpret the object. 4888 */ 4889 if (flags & FLG_CTL_OSABI) { 4890 /* 4891 * If the user explicitly specifies '-O none', we need 4892 * to display a completely generic view of the file. 4893 * However, libconv is written to assume that ELFOSABI_NONE 4894 * is equivalent to ELFOSABI_SOLARIS. To get the desired 4895 * effect, we use an osabi that libconv has no knowledge of. 4896 */ 4897 if (osabi == ELFOSABI_NONE) 4898 osabi = ELFOSABI_UNKNOWN4; 4899 } else { 4900 /* Determine osabi from file */ 4901 osabi = ehdr->e_ident[EI_OSABI]; 4902 if (osabi == ELFOSABI_NONE) { 4903 /* 4904 * Chicken/Egg scenario: 4905 * 4906 * Ideally, we wait to create the section header cache 4907 * until after the program headers are printed. If we 4908 * only output program headers, we can skip building 4909 * the cache entirely. 4910 * 4911 * Proper interpretation of program headers requires 4912 * the osabi, which is supposed to be in the ELF header. 4913 * However, many systems (Solaris and Linux included) 4914 * have a history of setting the osabi to the generic 4915 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS 4916 * in such cases, but would like to check the object 4917 * to see if it has a Linux .note.ABI-tag section, 4918 * which implies ELFOSABI_LINUX. This requires a 4919 * section header cache. 4920 * 4921 * To break the cycle, we create section headers now 4922 * if osabi is ELFOSABI_NONE, and later otherwise. 4923 * If it succeeds, we use them, if not, we defer 4924 * exiting until after the program headers are out. 4925 */ 4926 if (create_cache(file, fd, elf, ehdr, &cache, 4927 shstrndx, &shnum, &flags) == 0) { 4928 cache_state = CACHE_FAIL; 4929 } else { 4930 cache_state = CACHE_OK; 4931 if (has_linux_abi_note(cache, shnum, file)) { 4932 Conv_inv_buf_t ibuf1, ibuf2; 4933 4934 (void) fprintf(stderr, 4935 MSG_INTL(MSG_INFO_LINUXOSABI), file, 4936 conv_ehdr_osabi(osabi, 0, &ibuf1), 4937 conv_ehdr_osabi(ELFOSABI_LINUX, 4938 0, &ibuf2)); 4939 osabi = ELFOSABI_LINUX; 4940 } 4941 } 4942 } 4943 /* 4944 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS. 4945 * Mapping NONE to SOLARIS simplifies the required test. 4946 */ 4947 if (osabi == ELFOSABI_NONE) 4948 osabi = ELFOSABI_SOLARIS; 4949 } 4950 4951 /* 4952 * Print the program headers. 4953 */ 4954 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) { 4955 Phdr *phdr; 4956 4957 if ((phdr = elf_getphdr(elf)) == NULL) { 4958 failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); 4959 return (ret); 4960 } 4961 4962 for (ndx = 0; ndx < phnum; phdr++, ndx++) { 4963 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE, 4964 NULL, ndx, phdr->p_type)) 4965 continue; 4966 4967 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); 4968 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx)); 4969 Elf_phdr(0, osabi, ehdr->e_machine, phdr); 4970 } 4971 } 4972 4973 /* 4974 * If we have flag bits set that explicitly require a show or calc 4975 * operation, but none of them require the section headers, then 4976 * we are done and can return now. 4977 */ 4978 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) && 4979 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0)) 4980 return (ret); 4981 4982 /* 4983 * Everything from this point on requires section headers. 4984 * If we have no section headers, there is no reason to continue. 4985 * 4986 * If we tried above to create the section header cache and failed, 4987 * it is time to exit. Otherwise, create it if needed. 4988 */ 4989 switch (cache_state) { 4990 case CACHE_NEEDED: 4991 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx, 4992 &shnum, &flags) == 0) 4993 return (ret); 4994 break; 4995 case CACHE_OK: 4996 break; 4997 case CACHE_FAIL: 4998 return (ret); 4999 } 5000 if (shnum <= 1) 5001 goto done; 5002 5003 /* 5004 * If -w was specified, find and write out the section(s) data. 5005 */ 5006 if (wfd) { 5007 for (ndx = 1; ndx < shnum; ndx++) { 5008 Cache *_cache = &cache[ndx]; 5009 5010 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, 5011 ndx, _cache->c_shdr->sh_type) && 5012 _cache->c_data && _cache->c_data->d_buf) { 5013 if (write(wfd, _cache->c_data->d_buf, 5014 _cache->c_data->d_size) != 5015 _cache->c_data->d_size) { 5016 int err = errno; 5017 (void) fprintf(stderr, 5018 MSG_INTL(MSG_ERR_WRITE), wname, 5019 strerror(err)); 5020 /* 5021 * Return an exit status of 1, because 5022 * the failure is not related to the 5023 * ELF file, but by system resources. 5024 */ 5025 ret = 1; 5026 goto done; 5027 } 5028 } 5029 } 5030 } 5031 5032 /* 5033 * If we have no flag bits set that explicitly require a show or calc 5034 * operation, but match options (-I, -N, -T) were used, then run 5035 * through the section headers and see if we can't deduce show flags 5036 * from the match options given. 5037 * 5038 * We don't do this if -w was specified, because (-I, -N, -T) used 5039 * with -w in lieu of some other option is supposed to be quiet. 5040 */ 5041 if ((wfd == 0) && (flags & FLG_CTL_MATCH) && 5042 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) { 5043 for (ndx = 1; ndx < shnum; ndx++) { 5044 Cache *_cache = &cache[ndx]; 5045 5046 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, 5047 ndx, _cache->c_shdr->sh_type)) 5048 continue; 5049 5050 switch (_cache->c_shdr->sh_type) { 5051 case SHT_PROGBITS: 5052 /* 5053 * Heuristic time: It is usually bad form 5054 * to assume the meaning/format of a PROGBITS 5055 * section based on its name. However, there 5056 * are ABI mandated exceptions. Check for 5057 * these special names. 5058 */ 5059 5060 /* The ELF ABI specifies .interp and .got */ 5061 if (strcmp(_cache->c_name, 5062 MSG_ORIG(MSG_ELF_INTERP)) == 0) { 5063 flags |= FLG_SHOW_INTERP; 5064 break; 5065 } 5066 if (strcmp(_cache->c_name, 5067 MSG_ORIG(MSG_ELF_GOT)) == 0) { 5068 flags |= FLG_SHOW_GOT; 5069 break; 5070 } 5071 /* 5072 * The GNU compilers, and amd64 ABI, define 5073 * .eh_frame and .eh_frame_hdr. The Sun 5074 * C++ ABI defines .exception_ranges. 5075 */ 5076 if ((strncmp(_cache->c_name, 5077 MSG_ORIG(MSG_SCN_FRM), 5078 MSG_SCN_FRM_SIZE) == 0) || 5079 (strncmp(_cache->c_name, 5080 MSG_ORIG(MSG_SCN_EXRANGE), 5081 MSG_SCN_EXRANGE_SIZE) == 0)) { 5082 flags |= FLG_SHOW_UNWIND; 5083 break; 5084 } 5085 break; 5086 5087 case SHT_SYMTAB: 5088 case SHT_DYNSYM: 5089 case SHT_SUNW_LDYNSYM: 5090 case SHT_SUNW_versym: 5091 case SHT_SYMTAB_SHNDX: 5092 flags |= FLG_SHOW_SYMBOLS; 5093 break; 5094 5095 case SHT_RELA: 5096 case SHT_REL: 5097 flags |= FLG_SHOW_RELOC; 5098 break; 5099 5100 case SHT_HASH: 5101 flags |= FLG_SHOW_HASH; 5102 break; 5103 5104 case SHT_DYNAMIC: 5105 flags |= FLG_SHOW_DYNAMIC; 5106 break; 5107 5108 case SHT_NOTE: 5109 flags |= FLG_SHOW_NOTE; 5110 break; 5111 5112 case SHT_GROUP: 5113 flags |= FLG_SHOW_GROUP; 5114 break; 5115 5116 case SHT_SUNW_symsort: 5117 case SHT_SUNW_tlssort: 5118 flags |= FLG_SHOW_SORT; 5119 break; 5120 5121 case SHT_SUNW_cap: 5122 flags |= FLG_SHOW_CAP; 5123 break; 5124 5125 case SHT_SUNW_move: 5126 flags |= FLG_SHOW_MOVE; 5127 break; 5128 5129 case SHT_SUNW_syminfo: 5130 flags |= FLG_SHOW_SYMINFO; 5131 break; 5132 5133 case SHT_SUNW_verdef: 5134 case SHT_SUNW_verneed: 5135 flags |= FLG_SHOW_VERSIONS; 5136 break; 5137 5138 case SHT_AMD64_UNWIND: 5139 flags |= FLG_SHOW_UNWIND; 5140 break; 5141 } 5142 } 5143 } 5144 5145 5146 if (flags & FLG_SHOW_SHDR) 5147 sections(file, cache, shnum, ehdr, osabi); 5148 5149 if (flags & FLG_SHOW_INTERP) 5150 interp(file, cache, shnum, phnum, elf); 5151 5152 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)) 5153 versions(cache, shnum, file, flags, &versym); 5154 5155 if (flags & FLG_SHOW_SYMBOLS) 5156 symbols(cache, shnum, ehdr, osabi, &versym, file, flags); 5157 5158 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS)) 5159 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags); 5160 5161 if (flags & FLG_SHOW_HASH) 5162 hash(cache, shnum, file, flags); 5163 5164 if (flags & FLG_SHOW_GOT) 5165 got(cache, shnum, ehdr, file); 5166 5167 if (flags & FLG_SHOW_GROUP) 5168 group(cache, shnum, file, flags); 5169 5170 if (flags & FLG_SHOW_SYMINFO) 5171 syminfo(cache, shnum, ehdr, osabi, file); 5172 5173 if (flags & FLG_SHOW_RELOC) 5174 reloc(cache, shnum, ehdr, file); 5175 5176 if (flags & FLG_SHOW_DYNAMIC) 5177 dynamic(cache, shnum, ehdr, osabi, file); 5178 5179 if (flags & FLG_SHOW_NOTE) { 5180 Word note_cnt; 5181 size_t note_shnum; 5182 Cache *note_cache; 5183 5184 note_cnt = note(cache, shnum, ehdr, file); 5185 5186 /* 5187 * Solaris core files have section headers, but these 5188 * headers do not include SHT_NOTE sections that reference 5189 * the core note sections. This means that note() won't 5190 * find the core notes. Fake section headers (-P option) 5191 * recover these sections, but it is inconvenient to require 5192 * users to specify -P in this situation. If the following 5193 * are all true: 5194 * 5195 * - No note sections were found 5196 * - This is a core file 5197 * - We are not already using fake section headers 5198 * 5199 * then we will automatically generate fake section headers 5200 * and then process them in a second call to note(). 5201 */ 5202 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) && 5203 !(flags & FLG_CTL_FAKESHDR) && 5204 (fake_shdr_cache(file, fd, elf, ehdr, 5205 ¬e_cache, ¬e_shnum) != 0)) { 5206 (void) note(note_cache, note_shnum, ehdr, file); 5207 fake_shdr_cache_free(note_cache, note_shnum); 5208 } 5209 } 5210 5211 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS)) 5212 move(cache, shnum, file, flags); 5213 5214 if (flags & FLG_CALC_CHECKSUM) 5215 checksum(elf); 5216 5217 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS)) 5218 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags); 5219 5220 if ((flags & FLG_SHOW_UNWIND) && 5221 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))) 5222 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags); 5223 5224 5225 /* Release the memory used to cache section headers */ 5226 done: 5227 if (flags & FLG_CTL_FAKESHDR) 5228 fake_shdr_cache_free(cache, shnum); 5229 else 5230 free(cache); 5231 5232 return (ret); 5233 } 5234