1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203 }
204
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209 {
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233 }
234
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237 {
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251 }
252
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277 }
278
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309 }
310
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 int32_t *prefetch_loc, uint8_t *granularity,
314 uint32_t *flags)
315 {
316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 *granularity = svms->default_granularity;
319 *flags =
320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 uint64_t last, bool update_mem_usage)
326 {
327 uint64_t size = last - start + 1;
328 struct svm_range *prange;
329 struct kfd_process *p;
330
331 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 if (!prange)
333 return NULL;
334
335 p = container_of(svms, struct kfd_process, svms);
336 if (!p->xnack_enabled && update_mem_usage &&
337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 kfree(prange);
341 return NULL;
342 }
343 prange->npages = size;
344 prange->svms = svms;
345 prange->start = start;
346 prange->last = last;
347 INIT_LIST_HEAD(&prange->list);
348 INIT_LIST_HEAD(&prange->update_list);
349 INIT_LIST_HEAD(&prange->svm_bo_list);
350 INIT_LIST_HEAD(&prange->deferred_list);
351 INIT_LIST_HEAD(&prange->child_list);
352 atomic_set(&prange->invalid, 0);
353 prange->validate_timestamp = 0;
354 prange->vram_pages = 0;
355 mutex_init(&prange->migrate_mutex);
356 mutex_init(&prange->lock);
357
358 if (p->xnack_enabled)
359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 MAX_GPU_INSTANCE);
361
362 svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 &prange->prefetch_loc,
364 &prange->granularity, &prange->flags);
365
366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367
368 return prange;
369 }
370
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 return false;
375
376 return true;
377 }
378
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 struct svm_range_bo *svm_bo;
382
383 svm_bo = container_of(kref, struct svm_range_bo, kref);
384 pr_debug("svm_bo 0x%p\n", svm_bo);
385
386 spin_lock(&svm_bo->list_lock);
387 while (!list_empty(&svm_bo->range_list)) {
388 struct svm_range *prange =
389 list_first_entry(&svm_bo->range_list,
390 struct svm_range, svm_bo_list);
391 /* list_del_init tells a concurrent svm_range_vram_node_new when
392 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 */
394 list_del_init(&prange->svm_bo_list);
395 spin_unlock(&svm_bo->list_lock);
396
397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 prange->start, prange->last);
399 mutex_lock(&prange->lock);
400 prange->svm_bo = NULL;
401 /* prange should not hold vram page now */
402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 mutex_unlock(&prange->lock);
404
405 spin_lock(&svm_bo->list_lock);
406 }
407 spin_unlock(&svm_bo->list_lock);
408
409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 struct kfd_process_device *pdd;
411 struct kfd_process *p;
412 struct mm_struct *mm;
413
414 mm = svm_bo->eviction_fence->mm;
415 /*
416 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 * released after parent process is gone.
418 */
419 p = kfd_lookup_process_by_mm(mm);
420 if (p) {
421 pdd = kfd_get_process_device_data(svm_bo->node, p);
422 if (pdd)
423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 kfd_unref_process(p);
425 }
426 mmput(mm);
427 }
428
429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 /* We're not in the eviction worker. Signal the fence. */
431 dma_fence_signal(&svm_bo->eviction_fence->base);
432 dma_fence_put(&svm_bo->eviction_fence->base);
433 amdgpu_bo_unref(&svm_bo->bo);
434 kfree(svm_bo);
435 }
436
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 struct svm_range_bo *svm_bo;
440
441 svm_bo = container_of(work, struct svm_range_bo, release_work);
442 svm_range_bo_release(&svm_bo->kref);
443 }
444
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 struct svm_range_bo *svm_bo;
448
449 svm_bo = container_of(kref, struct svm_range_bo, kref);
450 pr_debug("svm_bo 0x%p\n", svm_bo);
451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 schedule_work(&svm_bo->release_work);
453 }
454
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 if (svm_bo)
463 kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 mutex_lock(&prange->lock);
470 if (!prange->svm_bo) {
471 mutex_unlock(&prange->lock);
472 return false;
473 }
474 if (prange->ttm_res) {
475 /* We still have a reference, all is well */
476 mutex_unlock(&prange->lock);
477 return true;
478 }
479 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 /*
481 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 * range list, and return false to allocate svm_bo from destination
483 * node.
484 */
485 if (prange->svm_bo->node != node) {
486 mutex_unlock(&prange->lock);
487
488 spin_lock(&prange->svm_bo->list_lock);
489 list_del_init(&prange->svm_bo_list);
490 spin_unlock(&prange->svm_bo->list_lock);
491
492 svm_range_bo_unref(prange->svm_bo);
493 return false;
494 }
495 if (READ_ONCE(prange->svm_bo->evicting)) {
496 struct dma_fence *f;
497 struct svm_range_bo *svm_bo;
498 /* The BO is getting evicted,
499 * we need to get a new one
500 */
501 mutex_unlock(&prange->lock);
502 svm_bo = prange->svm_bo;
503 f = dma_fence_get(&svm_bo->eviction_fence->base);
504 svm_range_bo_unref(prange->svm_bo);
505 /* wait for the fence to avoid long spin-loop
506 * at list_empty_careful
507 */
508 dma_fence_wait(f, false);
509 dma_fence_put(f);
510 } else {
511 /* The BO was still around and we got
512 * a new reference to it
513 */
514 mutex_unlock(&prange->lock);
515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 prange->svms, prange->start, prange->last);
517
518 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 return true;
520 }
521
522 } else {
523 mutex_unlock(&prange->lock);
524 }
525
526 /* We need a new svm_bo. Spin-loop to wait for concurrent
527 * svm_range_bo_release to finish removing this range from
528 * its range list and set prange->svm_bo to null. After this,
529 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 */
531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 cond_resched();
533
534 return false;
535 }
536
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 struct svm_range_bo *svm_bo;
540
541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 if (!svm_bo)
543 return NULL;
544
545 kref_init(&svm_bo->kref);
546 INIT_LIST_HEAD(&svm_bo->range_list);
547 spin_lock_init(&svm_bo->list_lock);
548
549 return svm_bo;
550 }
551
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 bool clear)
555 {
556 struct kfd_process_device *pdd;
557 struct amdgpu_bo_param bp;
558 struct svm_range_bo *svm_bo;
559 struct amdgpu_bo_user *ubo;
560 struct amdgpu_bo *bo;
561 struct kfd_process *p;
562 struct mm_struct *mm;
563 int r;
564
565 p = container_of(prange->svms, struct kfd_process, svms);
566 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
567 prange->start, prange->last);
568
569 if (svm_range_validate_svm_bo(node, prange))
570 return 0;
571
572 svm_bo = svm_range_bo_new();
573 if (!svm_bo) {
574 pr_debug("failed to alloc svm bo\n");
575 return -ENOMEM;
576 }
577 mm = get_task_mm(p->lead_thread);
578 if (!mm) {
579 pr_debug("failed to get mm\n");
580 kfree(svm_bo);
581 return -ESRCH;
582 }
583 svm_bo->node = node;
584 svm_bo->eviction_fence =
585 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
586 mm,
587 svm_bo);
588 mmput(mm);
589 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
590 svm_bo->evicting = 0;
591 memset(&bp, 0, sizeof(bp));
592 bp.size = prange->npages * PAGE_SIZE;
593 bp.byte_align = PAGE_SIZE;
594 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
595 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
596 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
597 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
598 bp.type = ttm_bo_type_device;
599 bp.resv = NULL;
600 if (node->xcp)
601 bp.xcp_id_plus1 = node->xcp->id + 1;
602
603 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
604 if (r) {
605 pr_debug("failed %d to create bo\n", r);
606 goto create_bo_failed;
607 }
608 bo = &ubo->bo;
609
610 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
611 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
612 bp.xcp_id_plus1 - 1);
613
614 r = amdgpu_bo_reserve(bo, true);
615 if (r) {
616 pr_debug("failed %d to reserve bo\n", r);
617 goto reserve_bo_failed;
618 }
619
620 if (clear) {
621 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
622 if (r) {
623 pr_debug("failed %d to sync bo\n", r);
624 amdgpu_bo_unreserve(bo);
625 goto reserve_bo_failed;
626 }
627 }
628
629 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
630 if (r) {
631 pr_debug("failed %d to reserve bo\n", r);
632 amdgpu_bo_unreserve(bo);
633 goto reserve_bo_failed;
634 }
635 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
636
637 amdgpu_bo_unreserve(bo);
638
639 svm_bo->bo = bo;
640 prange->svm_bo = svm_bo;
641 prange->ttm_res = bo->tbo.resource;
642 prange->offset = 0;
643
644 spin_lock(&svm_bo->list_lock);
645 list_add(&prange->svm_bo_list, &svm_bo->range_list);
646 spin_unlock(&svm_bo->list_lock);
647
648 pdd = svm_range_get_pdd_by_node(prange, node);
649 if (pdd)
650 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
651
652 return 0;
653
654 reserve_bo_failed:
655 amdgpu_bo_unref(&bo);
656 create_bo_failed:
657 dma_fence_put(&svm_bo->eviction_fence->base);
658 kfree(svm_bo);
659 prange->ttm_res = NULL;
660
661 return r;
662 }
663
svm_range_vram_node_free(struct svm_range * prange)664 void svm_range_vram_node_free(struct svm_range *prange)
665 {
666 /* serialize prange->svm_bo unref */
667 mutex_lock(&prange->lock);
668 /* prange->svm_bo has not been unref */
669 if (prange->ttm_res) {
670 prange->ttm_res = NULL;
671 mutex_unlock(&prange->lock);
672 svm_range_bo_unref(prange->svm_bo);
673 } else
674 mutex_unlock(&prange->lock);
675 }
676
677 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)678 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
679 {
680 struct kfd_process *p;
681 struct kfd_process_device *pdd;
682
683 p = container_of(prange->svms, struct kfd_process, svms);
684 pdd = kfd_process_device_data_by_id(p, gpu_id);
685 if (!pdd) {
686 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
687 return NULL;
688 }
689
690 return pdd->dev;
691 }
692
693 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)694 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
695 {
696 struct kfd_process *p;
697
698 p = container_of(prange->svms, struct kfd_process, svms);
699
700 return kfd_get_process_device_data(node, p);
701 }
702
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)703 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
704 {
705 struct ttm_operation_ctx ctx = { false, false };
706
707 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
708
709 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
710 }
711
712 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)713 svm_range_check_attr(struct kfd_process *p,
714 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
715 {
716 uint32_t i;
717
718 for (i = 0; i < nattr; i++) {
719 uint32_t val = attrs[i].value;
720 int gpuidx = MAX_GPU_INSTANCE;
721
722 switch (attrs[i].type) {
723 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
724 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
725 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
726 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
727 break;
728 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
729 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
730 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
731 break;
732 case KFD_IOCTL_SVM_ATTR_ACCESS:
733 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
734 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
735 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
736 break;
737 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
738 break;
739 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
740 break;
741 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
742 break;
743 default:
744 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
745 return -EINVAL;
746 }
747
748 if (gpuidx < 0) {
749 pr_debug("no GPU 0x%x found\n", val);
750 return -EINVAL;
751 } else if (gpuidx < MAX_GPU_INSTANCE &&
752 !test_bit(gpuidx, p->svms.bitmap_supported)) {
753 pr_debug("GPU 0x%x not supported\n", val);
754 return -EINVAL;
755 }
756 }
757
758 return 0;
759 }
760
761 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)762 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
763 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
764 bool *update_mapping)
765 {
766 uint32_t i;
767 int gpuidx;
768
769 for (i = 0; i < nattr; i++) {
770 switch (attrs[i].type) {
771 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
772 prange->preferred_loc = attrs[i].value;
773 break;
774 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
775 prange->prefetch_loc = attrs[i].value;
776 break;
777 case KFD_IOCTL_SVM_ATTR_ACCESS:
778 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
779 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
780 if (!p->xnack_enabled)
781 *update_mapping = true;
782
783 gpuidx = kfd_process_gpuidx_from_gpuid(p,
784 attrs[i].value);
785 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
786 bitmap_clear(prange->bitmap_access, gpuidx, 1);
787 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
788 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
789 bitmap_set(prange->bitmap_access, gpuidx, 1);
790 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
791 } else {
792 bitmap_clear(prange->bitmap_access, gpuidx, 1);
793 bitmap_set(prange->bitmap_aip, gpuidx, 1);
794 }
795 break;
796 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
797 *update_mapping = true;
798 prange->flags |= attrs[i].value;
799 break;
800 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
801 *update_mapping = true;
802 prange->flags &= ~attrs[i].value;
803 break;
804 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
805 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
806 break;
807 default:
808 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
809 }
810 }
811 }
812
813 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)814 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
815 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
816 {
817 uint32_t i;
818 int gpuidx;
819
820 for (i = 0; i < nattr; i++) {
821 switch (attrs[i].type) {
822 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
823 if (prange->preferred_loc != attrs[i].value)
824 return false;
825 break;
826 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
827 /* Prefetch should always trigger a migration even
828 * if the value of the attribute didn't change.
829 */
830 return false;
831 case KFD_IOCTL_SVM_ATTR_ACCESS:
832 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
833 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
834 gpuidx = kfd_process_gpuidx_from_gpuid(p,
835 attrs[i].value);
836 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
837 if (test_bit(gpuidx, prange->bitmap_access) ||
838 test_bit(gpuidx, prange->bitmap_aip))
839 return false;
840 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
841 if (!test_bit(gpuidx, prange->bitmap_access))
842 return false;
843 } else {
844 if (!test_bit(gpuidx, prange->bitmap_aip))
845 return false;
846 }
847 break;
848 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
849 if ((prange->flags & attrs[i].value) != attrs[i].value)
850 return false;
851 break;
852 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
853 if ((prange->flags & attrs[i].value) != 0)
854 return false;
855 break;
856 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
857 if (prange->granularity != attrs[i].value)
858 return false;
859 break;
860 default:
861 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
862 }
863 }
864
865 return true;
866 }
867
868 /**
869 * svm_range_debug_dump - print all range information from svms
870 * @svms: svm range list header
871 *
872 * debug output svm range start, end, prefetch location from svms
873 * interval tree and link list
874 *
875 * Context: The caller must hold svms->lock
876 */
svm_range_debug_dump(struct svm_range_list * svms)877 static void svm_range_debug_dump(struct svm_range_list *svms)
878 {
879 struct interval_tree_node *node;
880 struct svm_range *prange;
881
882 pr_debug("dump svms 0x%p list\n", svms);
883 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
884
885 list_for_each_entry(prange, &svms->list, list) {
886 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
887 prange, prange->start, prange->npages,
888 prange->start + prange->npages - 1,
889 prange->actual_loc);
890 }
891
892 pr_debug("dump svms 0x%p interval tree\n", svms);
893 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
894 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
895 while (node) {
896 prange = container_of(node, struct svm_range, it_node);
897 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
898 prange, prange->start, prange->npages,
899 prange->start + prange->npages - 1,
900 prange->actual_loc);
901 node = interval_tree_iter_next(node, 0, ~0ULL);
902 }
903 }
904
905 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)906 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
907 uint64_t offset, uint64_t *vram_pages)
908 {
909 unsigned char *src = (unsigned char *)psrc + offset;
910 unsigned char *dst;
911 uint64_t i;
912
913 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
914 if (!dst)
915 return NULL;
916
917 if (!vram_pages) {
918 memcpy(dst, src, num_elements * size);
919 return (void *)dst;
920 }
921
922 *vram_pages = 0;
923 for (i = 0; i < num_elements; i++) {
924 dma_addr_t *temp;
925 temp = (dma_addr_t *)dst + i;
926 *temp = *((dma_addr_t *)src + i);
927 if (*temp&SVM_RANGE_VRAM_DOMAIN)
928 (*vram_pages)++;
929 }
930
931 return (void *)dst;
932 }
933
934 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)935 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
936 {
937 int i;
938
939 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
940 if (!src->dma_addr[i])
941 continue;
942 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
943 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
944 if (!dst->dma_addr[i])
945 return -ENOMEM;
946 }
947
948 return 0;
949 }
950
951 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)952 svm_range_split_array(void *ppnew, void *ppold, size_t size,
953 uint64_t old_start, uint64_t old_n,
954 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
955 {
956 unsigned char *new, *old, *pold;
957 uint64_t d;
958
959 if (!ppold)
960 return 0;
961 pold = *(unsigned char **)ppold;
962 if (!pold)
963 return 0;
964
965 d = (new_start - old_start) * size;
966 /* get dma addr array for new range and calculte its vram page number */
967 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
968 if (!new)
969 return -ENOMEM;
970 d = (new_start == old_start) ? new_n * size : 0;
971 old = svm_range_copy_array(pold, size, old_n, d, NULL);
972 if (!old) {
973 kvfree(new);
974 return -ENOMEM;
975 }
976 kvfree(pold);
977 *(void **)ppold = old;
978 *(void **)ppnew = new;
979
980 return 0;
981 }
982
983 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)984 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
985 uint64_t start, uint64_t last)
986 {
987 uint64_t npages = last - start + 1;
988 int i, r;
989
990 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
991 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
992 sizeof(*old->dma_addr[i]), old->start,
993 npages, new->start, new->npages,
994 old->actual_loc ? &new->vram_pages : NULL);
995 if (r)
996 return r;
997 }
998 if (old->actual_loc)
999 old->vram_pages -= new->vram_pages;
1000
1001 return 0;
1002 }
1003
1004 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1005 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1006 uint64_t start, uint64_t last)
1007 {
1008 uint64_t npages = last - start + 1;
1009
1010 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1011 new->svms, new, new->start, start, last);
1012
1013 if (new->start == old->start) {
1014 new->offset = old->offset;
1015 old->offset += new->npages;
1016 } else {
1017 new->offset = old->offset + npages;
1018 }
1019
1020 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1021 new->ttm_res = old->ttm_res;
1022
1023 spin_lock(&new->svm_bo->list_lock);
1024 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1025 spin_unlock(&new->svm_bo->list_lock);
1026
1027 return 0;
1028 }
1029
1030 /**
1031 * svm_range_split_adjust - split range and adjust
1032 *
1033 * @new: new range
1034 * @old: the old range
1035 * @start: the old range adjust to start address in pages
1036 * @last: the old range adjust to last address in pages
1037 *
1038 * Copy system memory dma_addr or vram ttm_res in old range to new
1039 * range from new_start up to size new->npages, the remaining old range is from
1040 * start to last
1041 *
1042 * Return:
1043 * 0 - OK, -ENOMEM - out of memory
1044 */
1045 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1046 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1047 uint64_t start, uint64_t last)
1048 {
1049 int r;
1050
1051 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1052 new->svms, new->start, old->start, old->last, start, last);
1053
1054 if (new->start < old->start ||
1055 new->last > old->last) {
1056 WARN_ONCE(1, "invalid new range start or last\n");
1057 return -EINVAL;
1058 }
1059
1060 r = svm_range_split_pages(new, old, start, last);
1061 if (r)
1062 return r;
1063
1064 if (old->actual_loc && old->ttm_res) {
1065 r = svm_range_split_nodes(new, old, start, last);
1066 if (r)
1067 return r;
1068 }
1069
1070 old->npages = last - start + 1;
1071 old->start = start;
1072 old->last = last;
1073 new->flags = old->flags;
1074 new->preferred_loc = old->preferred_loc;
1075 new->prefetch_loc = old->prefetch_loc;
1076 new->actual_loc = old->actual_loc;
1077 new->granularity = old->granularity;
1078 new->mapped_to_gpu = old->mapped_to_gpu;
1079 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1080 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1081 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1082
1083 return 0;
1084 }
1085
1086 /**
1087 * svm_range_split - split a range in 2 ranges
1088 *
1089 * @prange: the svm range to split
1090 * @start: the remaining range start address in pages
1091 * @last: the remaining range last address in pages
1092 * @new: the result new range generated
1093 *
1094 * Two cases only:
1095 * case 1: if start == prange->start
1096 * prange ==> prange[start, last]
1097 * new range [last + 1, prange->last]
1098 *
1099 * case 2: if last == prange->last
1100 * prange ==> prange[start, last]
1101 * new range [prange->start, start - 1]
1102 *
1103 * Return:
1104 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1105 */
1106 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1107 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1108 struct svm_range **new)
1109 {
1110 uint64_t old_start = prange->start;
1111 uint64_t old_last = prange->last;
1112 struct svm_range_list *svms;
1113 int r = 0;
1114
1115 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1116 old_start, old_last, start, last);
1117
1118 if (old_start != start && old_last != last)
1119 return -EINVAL;
1120 if (start < old_start || last > old_last)
1121 return -EINVAL;
1122
1123 svms = prange->svms;
1124 if (old_start == start)
1125 *new = svm_range_new(svms, last + 1, old_last, false);
1126 else
1127 *new = svm_range_new(svms, old_start, start - 1, false);
1128 if (!*new)
1129 return -ENOMEM;
1130
1131 r = svm_range_split_adjust(*new, prange, start, last);
1132 if (r) {
1133 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1134 r, old_start, old_last, start, last);
1135 svm_range_free(*new, false);
1136 *new = NULL;
1137 }
1138
1139 return r;
1140 }
1141
1142 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1143 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1144 struct list_head *insert_list, struct list_head *remap_list)
1145 {
1146 struct svm_range *tail = NULL;
1147 int r = svm_range_split(prange, prange->start, new_last, &tail);
1148
1149 if (!r) {
1150 list_add(&tail->list, insert_list);
1151 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1152 list_add(&tail->update_list, remap_list);
1153 }
1154 return r;
1155 }
1156
1157 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1158 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1159 struct list_head *insert_list, struct list_head *remap_list)
1160 {
1161 struct svm_range *head = NULL;
1162 int r = svm_range_split(prange, new_start, prange->last, &head);
1163
1164 if (!r) {
1165 list_add(&head->list, insert_list);
1166 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1167 list_add(&head->update_list, remap_list);
1168 }
1169 return r;
1170 }
1171
1172 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1173 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1174 struct svm_range *pchild, enum svm_work_list_ops op)
1175 {
1176 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177 pchild, pchild->start, pchild->last, prange, op);
1178
1179 pchild->work_item.mm = mm;
1180 pchild->work_item.op = op;
1181 list_add_tail(&pchild->child_list, &prange->child_list);
1182 }
1183
1184 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186 {
1187 return (node_a->adev == node_b->adev ||
1188 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189 }
1190
1191 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1192 svm_range_get_pte_flags(struct kfd_node *node,
1193 struct svm_range *prange, int domain)
1194 {
1195 struct kfd_node *bo_node;
1196 uint32_t flags = prange->flags;
1197 uint32_t mapping_flags = 0;
1198 uint64_t pte_flags;
1199 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1200 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1201 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1202 unsigned int mtype_local;
1203
1204 if (domain == SVM_RANGE_VRAM_DOMAIN)
1205 bo_node = prange->svm_bo->node;
1206
1207 switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) {
1208 case IP_VERSION(9, 4, 1):
1209 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1210 if (bo_node == node) {
1211 mapping_flags |= coherent ?
1212 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1213 } else {
1214 mapping_flags |= coherent ?
1215 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1216 if (svm_nodes_in_same_hive(node, bo_node))
1217 snoop = true;
1218 }
1219 } else {
1220 mapping_flags |= coherent ?
1221 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1222 }
1223 break;
1224 case IP_VERSION(9, 4, 2):
1225 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1226 if (bo_node == node) {
1227 mapping_flags |= coherent ?
1228 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1229 if (node->adev->gmc.xgmi.connected_to_cpu)
1230 snoop = true;
1231 } else {
1232 mapping_flags |= coherent ?
1233 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1234 if (svm_nodes_in_same_hive(node, bo_node))
1235 snoop = true;
1236 }
1237 } else {
1238 mapping_flags |= coherent ?
1239 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1240 }
1241 break;
1242 case IP_VERSION(9, 4, 3):
1243 case IP_VERSION(9, 4, 4):
1244 if (ext_coherent)
1245 mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1246 else
1247 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1248 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1249 snoop = true;
1250 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1251 /* local HBM region close to partition */
1252 if (bo_node->adev == node->adev &&
1253 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1254 mapping_flags |= mtype_local;
1255 /* local HBM region far from partition or remote XGMI GPU
1256 * with regular system scope coherence
1257 */
1258 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1259 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1260 /* PCIe P2P or extended system scope coherence */
1261 else
1262 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1263 /* system memory accessed by the APU */
1264 } else if (node->adev->flags & AMD_IS_APU) {
1265 /* On NUMA systems, locality is determined per-page
1266 * in amdgpu_gmc_override_vm_pte_flags
1267 */
1268 if (num_possible_nodes() <= 1)
1269 mapping_flags |= mtype_local;
1270 else
1271 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1272 /* system memory accessed by the dGPU */
1273 } else {
1274 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1275 }
1276 break;
1277 case IP_VERSION(12, 0, 0):
1278 case IP_VERSION(12, 0, 1):
1279 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1280 if (bo_node != node)
1281 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1282 } else {
1283 mapping_flags |= coherent ?
1284 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1285 }
1286 break;
1287 default:
1288 mapping_flags |= coherent ?
1289 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1290 }
1291
1292 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1293
1294 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1295 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1296 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1297 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1298
1299 pte_flags = AMDGPU_PTE_VALID;
1300 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1301 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1302 if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
1303 pte_flags |= AMDGPU_PTE_IS_PTE;
1304
1305 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1306 return pte_flags;
1307 }
1308
1309 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1310 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1311 uint64_t start, uint64_t last,
1312 struct dma_fence **fence)
1313 {
1314 uint64_t init_pte_value = 0;
1315
1316 pr_debug("[0x%llx 0x%llx]\n", start, last);
1317
1318 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1319 last, init_pte_value, 0, 0, NULL, NULL,
1320 fence);
1321 }
1322
1323 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1324 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1325 unsigned long last, uint32_t trigger)
1326 {
1327 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1328 struct kfd_process_device *pdd;
1329 struct dma_fence *fence = NULL;
1330 struct kfd_process *p;
1331 uint32_t gpuidx;
1332 int r = 0;
1333
1334 if (!prange->mapped_to_gpu) {
1335 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1336 prange, prange->start, prange->last);
1337 return 0;
1338 }
1339
1340 if (prange->start == start && prange->last == last) {
1341 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1342 prange->mapped_to_gpu = false;
1343 }
1344
1345 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1346 MAX_GPU_INSTANCE);
1347 p = container_of(prange->svms, struct kfd_process, svms);
1348
1349 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1350 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1351 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1352 if (!pdd) {
1353 pr_debug("failed to find device idx %d\n", gpuidx);
1354 return -EINVAL;
1355 }
1356
1357 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1358 start, last, trigger);
1359
1360 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1361 drm_priv_to_vm(pdd->drm_priv),
1362 start, last, &fence);
1363 if (r)
1364 break;
1365
1366 if (fence) {
1367 r = dma_fence_wait(fence, false);
1368 dma_fence_put(fence);
1369 fence = NULL;
1370 if (r)
1371 break;
1372 }
1373 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1374 }
1375
1376 return r;
1377 }
1378
1379 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1380 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1381 unsigned long offset, unsigned long npages, bool readonly,
1382 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1383 struct dma_fence **fence, bool flush_tlb)
1384 {
1385 struct amdgpu_device *adev = pdd->dev->adev;
1386 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1387 uint64_t pte_flags;
1388 unsigned long last_start;
1389 int last_domain;
1390 int r = 0;
1391 int64_t i, j;
1392
1393 last_start = prange->start + offset;
1394
1395 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1396 last_start, last_start + npages - 1, readonly);
1397
1398 for (i = offset; i < offset + npages; i++) {
1399 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1400 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1401
1402 /* Collect all pages in the same address range and memory domain
1403 * that can be mapped with a single call to update mapping.
1404 */
1405 if (i < offset + npages - 1 &&
1406 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1407 continue;
1408
1409 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1410 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1411
1412 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1413 if (readonly)
1414 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1415
1416 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1417 prange->svms, last_start, prange->start + i,
1418 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1419 pte_flags);
1420
1421 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1422 * different memory partition based on fpfn/lpfn, we should use
1423 * same vm_manager.vram_base_offset regardless memory partition.
1424 */
1425 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1426 NULL, last_start, prange->start + i,
1427 pte_flags,
1428 (last_start - prange->start) << PAGE_SHIFT,
1429 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1430 NULL, dma_addr, &vm->last_update);
1431
1432 for (j = last_start - prange->start; j <= i; j++)
1433 dma_addr[j] |= last_domain;
1434
1435 if (r) {
1436 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1437 goto out;
1438 }
1439 last_start = prange->start + i + 1;
1440 }
1441
1442 r = amdgpu_vm_update_pdes(adev, vm, false);
1443 if (r) {
1444 pr_debug("failed %d to update directories 0x%lx\n", r,
1445 prange->start);
1446 goto out;
1447 }
1448
1449 if (fence)
1450 *fence = dma_fence_get(vm->last_update);
1451
1452 out:
1453 return r;
1454 }
1455
1456 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1457 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1458 unsigned long npages, bool readonly,
1459 unsigned long *bitmap, bool wait, bool flush_tlb)
1460 {
1461 struct kfd_process_device *pdd;
1462 struct amdgpu_device *bo_adev = NULL;
1463 struct kfd_process *p;
1464 struct dma_fence *fence = NULL;
1465 uint32_t gpuidx;
1466 int r = 0;
1467
1468 if (prange->svm_bo && prange->ttm_res)
1469 bo_adev = prange->svm_bo->node->adev;
1470
1471 p = container_of(prange->svms, struct kfd_process, svms);
1472 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1473 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1474 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1475 if (!pdd) {
1476 pr_debug("failed to find device idx %d\n", gpuidx);
1477 return -EINVAL;
1478 }
1479
1480 pdd = kfd_bind_process_to_device(pdd->dev, p);
1481 if (IS_ERR(pdd))
1482 return -EINVAL;
1483
1484 if (bo_adev && pdd->dev->adev != bo_adev &&
1485 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1486 pr_debug("cannot map to device idx %d\n", gpuidx);
1487 continue;
1488 }
1489
1490 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1491 prange->dma_addr[gpuidx],
1492 bo_adev, wait ? &fence : NULL,
1493 flush_tlb);
1494 if (r)
1495 break;
1496
1497 if (fence) {
1498 r = dma_fence_wait(fence, false);
1499 dma_fence_put(fence);
1500 fence = NULL;
1501 if (r) {
1502 pr_debug("failed %d to dma fence wait\n", r);
1503 break;
1504 }
1505 }
1506
1507 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1508 }
1509
1510 return r;
1511 }
1512
1513 struct svm_validate_context {
1514 struct kfd_process *process;
1515 struct svm_range *prange;
1516 bool intr;
1517 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1518 struct drm_exec exec;
1519 };
1520
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1521 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1522 {
1523 struct kfd_process_device *pdd;
1524 struct amdgpu_vm *vm;
1525 uint32_t gpuidx;
1526 int r;
1527
1528 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1529 drm_exec_until_all_locked(&ctx->exec) {
1530 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1531 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1532 if (!pdd) {
1533 pr_debug("failed to find device idx %d\n", gpuidx);
1534 r = -EINVAL;
1535 goto unreserve_out;
1536 }
1537 vm = drm_priv_to_vm(pdd->drm_priv);
1538
1539 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1540 drm_exec_retry_on_contention(&ctx->exec);
1541 if (unlikely(r)) {
1542 pr_debug("failed %d to reserve bo\n", r);
1543 goto unreserve_out;
1544 }
1545 }
1546 }
1547
1548 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1549 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1550 if (!pdd) {
1551 pr_debug("failed to find device idx %d\n", gpuidx);
1552 r = -EINVAL;
1553 goto unreserve_out;
1554 }
1555
1556 r = amdgpu_vm_validate(pdd->dev->adev,
1557 drm_priv_to_vm(pdd->drm_priv), NULL,
1558 svm_range_bo_validate, NULL);
1559 if (r) {
1560 pr_debug("failed %d validate pt bos\n", r);
1561 goto unreserve_out;
1562 }
1563 }
1564
1565 return 0;
1566
1567 unreserve_out:
1568 drm_exec_fini(&ctx->exec);
1569 return r;
1570 }
1571
svm_range_unreserve_bos(struct svm_validate_context * ctx)1572 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1573 {
1574 drm_exec_fini(&ctx->exec);
1575 }
1576
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1577 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1578 {
1579 struct kfd_process_device *pdd;
1580
1581 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1582 if (!pdd)
1583 return NULL;
1584
1585 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1586 }
1587
1588 /*
1589 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1590 *
1591 * To prevent concurrent destruction or change of range attributes, the
1592 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1593 * because that would block concurrent evictions and lead to deadlocks. To
1594 * serialize concurrent migrations or validations of the same range, the
1595 * prange->migrate_mutex must be held.
1596 *
1597 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1598 * eviction fence.
1599 *
1600 * The following sequence ensures race-free validation and GPU mapping:
1601 *
1602 * 1. Reserve page table (and SVM BO if range is in VRAM)
1603 * 2. hmm_range_fault to get page addresses (if system memory)
1604 * 3. DMA-map pages (if system memory)
1605 * 4-a. Take notifier lock
1606 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1607 * 4-c. Check that the range was not split or otherwise invalidated
1608 * 4-d. Update GPU page table
1609 * 4.e. Release notifier lock
1610 * 5. Release page table (and SVM BO) reservation
1611 */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1612 static int svm_range_validate_and_map(struct mm_struct *mm,
1613 unsigned long map_start, unsigned long map_last,
1614 struct svm_range *prange, int32_t gpuidx,
1615 bool intr, bool wait, bool flush_tlb)
1616 {
1617 struct svm_validate_context *ctx;
1618 unsigned long start, end, addr;
1619 struct kfd_process *p;
1620 void *owner;
1621 int32_t idx;
1622 int r = 0;
1623
1624 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1625 if (!ctx)
1626 return -ENOMEM;
1627 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1628 ctx->prange = prange;
1629 ctx->intr = intr;
1630
1631 if (gpuidx < MAX_GPU_INSTANCE) {
1632 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1633 bitmap_set(ctx->bitmap, gpuidx, 1);
1634 } else if (ctx->process->xnack_enabled) {
1635 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1636
1637 /* If prefetch range to GPU, or GPU retry fault migrate range to
1638 * GPU, which has ACCESS attribute to the range, create mapping
1639 * on that GPU.
1640 */
1641 if (prange->actual_loc) {
1642 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1643 prange->actual_loc);
1644 if (gpuidx < 0) {
1645 WARN_ONCE(1, "failed get device by id 0x%x\n",
1646 prange->actual_loc);
1647 r = -EINVAL;
1648 goto free_ctx;
1649 }
1650 if (test_bit(gpuidx, prange->bitmap_access))
1651 bitmap_set(ctx->bitmap, gpuidx, 1);
1652 }
1653
1654 /*
1655 * If prange is already mapped or with always mapped flag,
1656 * update mapping on GPUs with ACCESS attribute
1657 */
1658 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1659 if (prange->mapped_to_gpu ||
1660 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1661 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1662 }
1663 } else {
1664 bitmap_or(ctx->bitmap, prange->bitmap_access,
1665 prange->bitmap_aip, MAX_GPU_INSTANCE);
1666 }
1667
1668 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1669 r = 0;
1670 goto free_ctx;
1671 }
1672
1673 if (prange->actual_loc && !prange->ttm_res) {
1674 /* This should never happen. actual_loc gets set by
1675 * svm_migrate_ram_to_vram after allocating a BO.
1676 */
1677 WARN_ONCE(1, "VRAM BO missing during validation\n");
1678 r = -EINVAL;
1679 goto free_ctx;
1680 }
1681
1682 r = svm_range_reserve_bos(ctx, intr);
1683 if (r)
1684 goto free_ctx;
1685
1686 p = container_of(prange->svms, struct kfd_process, svms);
1687 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1688 MAX_GPU_INSTANCE));
1689 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1690 if (kfd_svm_page_owner(p, idx) != owner) {
1691 owner = NULL;
1692 break;
1693 }
1694 }
1695
1696 start = map_start << PAGE_SHIFT;
1697 end = (map_last + 1) << PAGE_SHIFT;
1698 for (addr = start; !r && addr < end; ) {
1699 struct hmm_range *hmm_range = NULL;
1700 unsigned long map_start_vma;
1701 unsigned long map_last_vma;
1702 struct vm_area_struct *vma;
1703 unsigned long next = 0;
1704 unsigned long offset;
1705 unsigned long npages;
1706 bool readonly;
1707
1708 vma = vma_lookup(mm, addr);
1709 if (vma) {
1710 readonly = !(vma->vm_flags & VM_WRITE);
1711
1712 next = min(vma->vm_end, end);
1713 npages = (next - addr) >> PAGE_SHIFT;
1714 WRITE_ONCE(p->svms.faulting_task, current);
1715 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1716 readonly, owner, NULL,
1717 &hmm_range);
1718 WRITE_ONCE(p->svms.faulting_task, NULL);
1719 if (r)
1720 pr_debug("failed %d to get svm range pages\n", r);
1721 } else {
1722 r = -EFAULT;
1723 }
1724
1725 if (!r) {
1726 offset = (addr >> PAGE_SHIFT) - prange->start;
1727 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1728 hmm_range->hmm_pfns);
1729 if (r)
1730 pr_debug("failed %d to dma map range\n", r);
1731 }
1732
1733 svm_range_lock(prange);
1734
1735 /* Free backing memory of hmm_range if it was initialized
1736 * Overrride return value to TRY AGAIN only if prior returns
1737 * were successful
1738 */
1739 if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1740 pr_debug("hmm update the range, need validate again\n");
1741 r = -EAGAIN;
1742 }
1743
1744 if (!r && !list_empty(&prange->child_list)) {
1745 pr_debug("range split by unmap in parallel, validate again\n");
1746 r = -EAGAIN;
1747 }
1748
1749 if (!r) {
1750 map_start_vma = max(map_start, prange->start + offset);
1751 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1752 if (map_start_vma <= map_last_vma) {
1753 offset = map_start_vma - prange->start;
1754 npages = map_last_vma - map_start_vma + 1;
1755 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1756 ctx->bitmap, wait, flush_tlb);
1757 }
1758 }
1759
1760 if (!r && next == end)
1761 prange->mapped_to_gpu = true;
1762
1763 svm_range_unlock(prange);
1764
1765 addr = next;
1766 }
1767
1768 svm_range_unreserve_bos(ctx);
1769 if (!r)
1770 prange->validate_timestamp = ktime_get_boottime();
1771
1772 free_ctx:
1773 kfree(ctx);
1774
1775 return r;
1776 }
1777
1778 /**
1779 * svm_range_list_lock_and_flush_work - flush pending deferred work
1780 *
1781 * @svms: the svm range list
1782 * @mm: the mm structure
1783 *
1784 * Context: Returns with mmap write lock held, pending deferred work flushed
1785 *
1786 */
1787 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1788 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1789 struct mm_struct *mm)
1790 {
1791 retry_flush_work:
1792 flush_work(&svms->deferred_list_work);
1793 mmap_write_lock(mm);
1794
1795 if (list_empty(&svms->deferred_range_list))
1796 return;
1797 mmap_write_unlock(mm);
1798 pr_debug("retry flush\n");
1799 goto retry_flush_work;
1800 }
1801
svm_range_restore_work(struct work_struct * work)1802 static void svm_range_restore_work(struct work_struct *work)
1803 {
1804 struct delayed_work *dwork = to_delayed_work(work);
1805 struct amdkfd_process_info *process_info;
1806 struct svm_range_list *svms;
1807 struct svm_range *prange;
1808 struct kfd_process *p;
1809 struct mm_struct *mm;
1810 int evicted_ranges;
1811 int invalid;
1812 int r;
1813
1814 svms = container_of(dwork, struct svm_range_list, restore_work);
1815 evicted_ranges = atomic_read(&svms->evicted_ranges);
1816 if (!evicted_ranges)
1817 return;
1818
1819 pr_debug("restore svm ranges\n");
1820
1821 p = container_of(svms, struct kfd_process, svms);
1822 process_info = p->kgd_process_info;
1823
1824 /* Keep mm reference when svm_range_validate_and_map ranges */
1825 mm = get_task_mm(p->lead_thread);
1826 if (!mm) {
1827 pr_debug("svms 0x%p process mm gone\n", svms);
1828 return;
1829 }
1830
1831 mutex_lock(&process_info->lock);
1832 svm_range_list_lock_and_flush_work(svms, mm);
1833 mutex_lock(&svms->lock);
1834
1835 evicted_ranges = atomic_read(&svms->evicted_ranges);
1836
1837 list_for_each_entry(prange, &svms->list, list) {
1838 invalid = atomic_read(&prange->invalid);
1839 if (!invalid)
1840 continue;
1841
1842 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1843 prange->svms, prange, prange->start, prange->last,
1844 invalid);
1845
1846 /*
1847 * If range is migrating, wait for migration is done.
1848 */
1849 mutex_lock(&prange->migrate_mutex);
1850
1851 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1852 MAX_GPU_INSTANCE, false, true, false);
1853 if (r)
1854 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1855 prange->start);
1856
1857 mutex_unlock(&prange->migrate_mutex);
1858 if (r)
1859 goto out_reschedule;
1860
1861 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1862 goto out_reschedule;
1863 }
1864
1865 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1866 evicted_ranges)
1867 goto out_reschedule;
1868
1869 evicted_ranges = 0;
1870
1871 r = kgd2kfd_resume_mm(mm);
1872 if (r) {
1873 /* No recovery from this failure. Probably the CP is
1874 * hanging. No point trying again.
1875 */
1876 pr_debug("failed %d to resume KFD\n", r);
1877 }
1878
1879 pr_debug("restore svm ranges successfully\n");
1880
1881 out_reschedule:
1882 mutex_unlock(&svms->lock);
1883 mmap_write_unlock(mm);
1884 mutex_unlock(&process_info->lock);
1885
1886 /* If validation failed, reschedule another attempt */
1887 if (evicted_ranges) {
1888 pr_debug("reschedule to restore svm range\n");
1889 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1890 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1891
1892 kfd_smi_event_queue_restore_rescheduled(mm);
1893 }
1894 mmput(mm);
1895 }
1896
1897 /**
1898 * svm_range_evict - evict svm range
1899 * @prange: svm range structure
1900 * @mm: current process mm_struct
1901 * @start: starting process queue number
1902 * @last: last process queue number
1903 * @event: mmu notifier event when range is evicted or migrated
1904 *
1905 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1906 * return to let CPU evict the buffer and proceed CPU pagetable update.
1907 *
1908 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1909 * If invalidation happens while restore work is running, restore work will
1910 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1911 * the queues.
1912 */
1913 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1914 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1915 unsigned long start, unsigned long last,
1916 enum mmu_notifier_event event)
1917 {
1918 struct svm_range_list *svms = prange->svms;
1919 struct svm_range *pchild;
1920 struct kfd_process *p;
1921 int r = 0;
1922
1923 p = container_of(svms, struct kfd_process, svms);
1924
1925 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1926 svms, prange->start, prange->last, start, last);
1927
1928 if (!p->xnack_enabled ||
1929 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1930 int evicted_ranges;
1931 bool mapped = prange->mapped_to_gpu;
1932
1933 list_for_each_entry(pchild, &prange->child_list, child_list) {
1934 if (!pchild->mapped_to_gpu)
1935 continue;
1936 mapped = true;
1937 mutex_lock_nested(&pchild->lock, 1);
1938 if (pchild->start <= last && pchild->last >= start) {
1939 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1940 pchild->start, pchild->last);
1941 atomic_inc(&pchild->invalid);
1942 }
1943 mutex_unlock(&pchild->lock);
1944 }
1945
1946 if (!mapped)
1947 return r;
1948
1949 if (prange->start <= last && prange->last >= start)
1950 atomic_inc(&prange->invalid);
1951
1952 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1953 if (evicted_ranges != 1)
1954 return r;
1955
1956 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1957 prange->svms, prange->start, prange->last);
1958
1959 /* First eviction, stop the queues */
1960 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1961 if (r)
1962 pr_debug("failed to quiesce KFD\n");
1963
1964 pr_debug("schedule to restore svm %p ranges\n", svms);
1965 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1966 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1967 } else {
1968 unsigned long s, l;
1969 uint32_t trigger;
1970
1971 if (event == MMU_NOTIFY_MIGRATE)
1972 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1973 else
1974 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1975
1976 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1977 prange->svms, start, last);
1978 list_for_each_entry(pchild, &prange->child_list, child_list) {
1979 mutex_lock_nested(&pchild->lock, 1);
1980 s = max(start, pchild->start);
1981 l = min(last, pchild->last);
1982 if (l >= s)
1983 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1984 mutex_unlock(&pchild->lock);
1985 }
1986 s = max(start, prange->start);
1987 l = min(last, prange->last);
1988 if (l >= s)
1989 svm_range_unmap_from_gpus(prange, s, l, trigger);
1990 }
1991
1992 return r;
1993 }
1994
svm_range_clone(struct svm_range * old)1995 static struct svm_range *svm_range_clone(struct svm_range *old)
1996 {
1997 struct svm_range *new;
1998
1999 new = svm_range_new(old->svms, old->start, old->last, false);
2000 if (!new)
2001 return NULL;
2002 if (svm_range_copy_dma_addrs(new, old)) {
2003 svm_range_free(new, false);
2004 return NULL;
2005 }
2006 if (old->svm_bo) {
2007 new->ttm_res = old->ttm_res;
2008 new->offset = old->offset;
2009 new->svm_bo = svm_range_bo_ref(old->svm_bo);
2010 spin_lock(&new->svm_bo->list_lock);
2011 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2012 spin_unlock(&new->svm_bo->list_lock);
2013 }
2014 new->flags = old->flags;
2015 new->preferred_loc = old->preferred_loc;
2016 new->prefetch_loc = old->prefetch_loc;
2017 new->actual_loc = old->actual_loc;
2018 new->granularity = old->granularity;
2019 new->mapped_to_gpu = old->mapped_to_gpu;
2020 new->vram_pages = old->vram_pages;
2021 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2022 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2023 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2024
2025 return new;
2026 }
2027
svm_range_set_max_pages(struct amdgpu_device * adev)2028 void svm_range_set_max_pages(struct amdgpu_device *adev)
2029 {
2030 uint64_t max_pages;
2031 uint64_t pages, _pages;
2032 uint64_t min_pages = 0;
2033 int i, id;
2034
2035 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2036 if (adev->kfd.dev->nodes[i]->xcp)
2037 id = adev->kfd.dev->nodes[i]->xcp->id;
2038 else
2039 id = -1;
2040 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2041 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2042 pages = rounddown_pow_of_two(pages);
2043 min_pages = min_not_zero(min_pages, pages);
2044 }
2045
2046 do {
2047 max_pages = READ_ONCE(max_svm_range_pages);
2048 _pages = min_not_zero(max_pages, min_pages);
2049 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2050 }
2051
2052 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2053 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2054 uint64_t max_pages, struct list_head *insert_list,
2055 struct list_head *update_list)
2056 {
2057 struct svm_range *prange;
2058 uint64_t l;
2059
2060 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2061 max_pages, start, last);
2062
2063 while (last >= start) {
2064 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2065
2066 prange = svm_range_new(svms, start, l, true);
2067 if (!prange)
2068 return -ENOMEM;
2069 list_add(&prange->list, insert_list);
2070 list_add(&prange->update_list, update_list);
2071
2072 start = l + 1;
2073 }
2074 return 0;
2075 }
2076
2077 /**
2078 * svm_range_add - add svm range and handle overlap
2079 * @p: the range add to this process svms
2080 * @start: page size aligned
2081 * @size: page size aligned
2082 * @nattr: number of attributes
2083 * @attrs: array of attributes
2084 * @update_list: output, the ranges need validate and update GPU mapping
2085 * @insert_list: output, the ranges need insert to svms
2086 * @remove_list: output, the ranges are replaced and need remove from svms
2087 * @remap_list: output, remap unaligned svm ranges
2088 *
2089 * Check if the virtual address range has overlap with any existing ranges,
2090 * split partly overlapping ranges and add new ranges in the gaps. All changes
2091 * should be applied to the range_list and interval tree transactionally. If
2092 * any range split or allocation fails, the entire update fails. Therefore any
2093 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2094 * unchanged.
2095 *
2096 * If the transaction succeeds, the caller can update and insert clones and
2097 * new ranges, then free the originals.
2098 *
2099 * Otherwise the caller can free the clones and new ranges, while the old
2100 * svm_ranges remain unchanged.
2101 *
2102 * Context: Process context, caller must hold svms->lock
2103 *
2104 * Return:
2105 * 0 - OK, otherwise error code
2106 */
2107 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2108 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2109 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2110 struct list_head *update_list, struct list_head *insert_list,
2111 struct list_head *remove_list, struct list_head *remap_list)
2112 {
2113 unsigned long last = start + size - 1UL;
2114 struct svm_range_list *svms = &p->svms;
2115 struct interval_tree_node *node;
2116 struct svm_range *prange;
2117 struct svm_range *tmp;
2118 struct list_head new_list;
2119 int r = 0;
2120
2121 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2122
2123 INIT_LIST_HEAD(update_list);
2124 INIT_LIST_HEAD(insert_list);
2125 INIT_LIST_HEAD(remove_list);
2126 INIT_LIST_HEAD(&new_list);
2127 INIT_LIST_HEAD(remap_list);
2128
2129 node = interval_tree_iter_first(&svms->objects, start, last);
2130 while (node) {
2131 struct interval_tree_node *next;
2132 unsigned long next_start;
2133
2134 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2135 node->last);
2136
2137 prange = container_of(node, struct svm_range, it_node);
2138 next = interval_tree_iter_next(node, start, last);
2139 next_start = min(node->last, last) + 1;
2140
2141 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2142 prange->mapped_to_gpu) {
2143 /* nothing to do */
2144 } else if (node->start < start || node->last > last) {
2145 /* node intersects the update range and its attributes
2146 * will change. Clone and split it, apply updates only
2147 * to the overlapping part
2148 */
2149 struct svm_range *old = prange;
2150
2151 prange = svm_range_clone(old);
2152 if (!prange) {
2153 r = -ENOMEM;
2154 goto out;
2155 }
2156
2157 list_add(&old->update_list, remove_list);
2158 list_add(&prange->list, insert_list);
2159 list_add(&prange->update_list, update_list);
2160
2161 if (node->start < start) {
2162 pr_debug("change old range start\n");
2163 r = svm_range_split_head(prange, start,
2164 insert_list, remap_list);
2165 if (r)
2166 goto out;
2167 }
2168 if (node->last > last) {
2169 pr_debug("change old range last\n");
2170 r = svm_range_split_tail(prange, last,
2171 insert_list, remap_list);
2172 if (r)
2173 goto out;
2174 }
2175 } else {
2176 /* The node is contained within start..last,
2177 * just update it
2178 */
2179 list_add(&prange->update_list, update_list);
2180 }
2181
2182 /* insert a new node if needed */
2183 if (node->start > start) {
2184 r = svm_range_split_new(svms, start, node->start - 1,
2185 READ_ONCE(max_svm_range_pages),
2186 &new_list, update_list);
2187 if (r)
2188 goto out;
2189 }
2190
2191 node = next;
2192 start = next_start;
2193 }
2194
2195 /* add a final range at the end if needed */
2196 if (start <= last)
2197 r = svm_range_split_new(svms, start, last,
2198 READ_ONCE(max_svm_range_pages),
2199 &new_list, update_list);
2200
2201 out:
2202 if (r) {
2203 list_for_each_entry_safe(prange, tmp, insert_list, list)
2204 svm_range_free(prange, false);
2205 list_for_each_entry_safe(prange, tmp, &new_list, list)
2206 svm_range_free(prange, true);
2207 } else {
2208 list_splice(&new_list, insert_list);
2209 }
2210
2211 return r;
2212 }
2213
2214 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2215 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2216 struct svm_range *prange)
2217 {
2218 unsigned long start;
2219 unsigned long last;
2220
2221 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2222 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2223
2224 if (prange->start == start && prange->last == last)
2225 return;
2226
2227 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2228 prange->svms, prange, start, last, prange->start,
2229 prange->last);
2230
2231 if (start != 0 && last != 0) {
2232 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2233 svm_range_remove_notifier(prange);
2234 }
2235 prange->it_node.start = prange->start;
2236 prange->it_node.last = prange->last;
2237
2238 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2239 svm_range_add_notifier_locked(mm, prange);
2240 }
2241
2242 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2243 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2244 struct mm_struct *mm)
2245 {
2246 switch (prange->work_item.op) {
2247 case SVM_OP_NULL:
2248 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2249 svms, prange, prange->start, prange->last);
2250 break;
2251 case SVM_OP_UNMAP_RANGE:
2252 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2253 svms, prange, prange->start, prange->last);
2254 svm_range_unlink(prange);
2255 svm_range_remove_notifier(prange);
2256 svm_range_free(prange, true);
2257 break;
2258 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2259 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2260 svms, prange, prange->start, prange->last);
2261 svm_range_update_notifier_and_interval_tree(mm, prange);
2262 break;
2263 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2264 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2265 svms, prange, prange->start, prange->last);
2266 svm_range_update_notifier_and_interval_tree(mm, prange);
2267 /* TODO: implement deferred validation and mapping */
2268 break;
2269 case SVM_OP_ADD_RANGE:
2270 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2271 prange->start, prange->last);
2272 svm_range_add_to_svms(prange);
2273 svm_range_add_notifier_locked(mm, prange);
2274 break;
2275 case SVM_OP_ADD_RANGE_AND_MAP:
2276 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2277 prange, prange->start, prange->last);
2278 svm_range_add_to_svms(prange);
2279 svm_range_add_notifier_locked(mm, prange);
2280 /* TODO: implement deferred validation and mapping */
2281 break;
2282 default:
2283 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2284 prange->work_item.op);
2285 }
2286 }
2287
svm_range_drain_retry_fault(struct svm_range_list * svms)2288 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2289 {
2290 struct kfd_process_device *pdd;
2291 struct kfd_process *p;
2292 uint32_t i;
2293
2294 p = container_of(svms, struct kfd_process, svms);
2295
2296 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2297 pdd = p->pdds[i];
2298 if (!pdd)
2299 continue;
2300
2301 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2302
2303 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2304 pdd->dev->adev->irq.retry_cam_enabled ?
2305 &pdd->dev->adev->irq.ih :
2306 &pdd->dev->adev->irq.ih1);
2307
2308 if (pdd->dev->adev->irq.retry_cam_enabled)
2309 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2310 &pdd->dev->adev->irq.ih_soft);
2311
2312
2313 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2314 }
2315 }
2316
svm_range_deferred_list_work(struct work_struct * work)2317 static void svm_range_deferred_list_work(struct work_struct *work)
2318 {
2319 struct svm_range_list *svms;
2320 struct svm_range *prange;
2321 struct mm_struct *mm;
2322
2323 svms = container_of(work, struct svm_range_list, deferred_list_work);
2324 pr_debug("enter svms 0x%p\n", svms);
2325
2326 spin_lock(&svms->deferred_list_lock);
2327 while (!list_empty(&svms->deferred_range_list)) {
2328 prange = list_first_entry(&svms->deferred_range_list,
2329 struct svm_range, deferred_list);
2330 spin_unlock(&svms->deferred_list_lock);
2331
2332 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2333 prange->start, prange->last, prange->work_item.op);
2334
2335 mm = prange->work_item.mm;
2336
2337 mmap_write_lock(mm);
2338
2339 /* Remove from deferred_list must be inside mmap write lock, for
2340 * two race cases:
2341 * 1. unmap_from_cpu may change work_item.op and add the range
2342 * to deferred_list again, cause use after free bug.
2343 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2344 * lock and continue because deferred_list is empty, but
2345 * deferred_list work is actually waiting for mmap lock.
2346 */
2347 spin_lock(&svms->deferred_list_lock);
2348 list_del_init(&prange->deferred_list);
2349 spin_unlock(&svms->deferred_list_lock);
2350
2351 mutex_lock(&svms->lock);
2352 mutex_lock(&prange->migrate_mutex);
2353 while (!list_empty(&prange->child_list)) {
2354 struct svm_range *pchild;
2355
2356 pchild = list_first_entry(&prange->child_list,
2357 struct svm_range, child_list);
2358 pr_debug("child prange 0x%p op %d\n", pchild,
2359 pchild->work_item.op);
2360 list_del_init(&pchild->child_list);
2361 svm_range_handle_list_op(svms, pchild, mm);
2362 }
2363 mutex_unlock(&prange->migrate_mutex);
2364
2365 svm_range_handle_list_op(svms, prange, mm);
2366 mutex_unlock(&svms->lock);
2367 mmap_write_unlock(mm);
2368
2369 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2370 * last mm refcount, schedule release work to avoid circular locking
2371 */
2372 mmput_async(mm);
2373
2374 spin_lock(&svms->deferred_list_lock);
2375 }
2376 spin_unlock(&svms->deferred_list_lock);
2377 pr_debug("exit svms 0x%p\n", svms);
2378 }
2379
2380 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2381 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2382 struct mm_struct *mm, enum svm_work_list_ops op)
2383 {
2384 spin_lock(&svms->deferred_list_lock);
2385 /* if prange is on the deferred list */
2386 if (!list_empty(&prange->deferred_list)) {
2387 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2388 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2389 if (op != SVM_OP_NULL &&
2390 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2391 prange->work_item.op = op;
2392 } else {
2393 prange->work_item.op = op;
2394
2395 /* Pairs with mmput in deferred_list_work */
2396 mmget(mm);
2397 prange->work_item.mm = mm;
2398 list_add_tail(&prange->deferred_list,
2399 &prange->svms->deferred_range_list);
2400 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2401 prange, prange->start, prange->last, op);
2402 }
2403 spin_unlock(&svms->deferred_list_lock);
2404 }
2405
schedule_deferred_list_work(struct svm_range_list * svms)2406 void schedule_deferred_list_work(struct svm_range_list *svms)
2407 {
2408 spin_lock(&svms->deferred_list_lock);
2409 if (!list_empty(&svms->deferred_range_list))
2410 schedule_work(&svms->deferred_list_work);
2411 spin_unlock(&svms->deferred_list_lock);
2412 }
2413
2414 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2415 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2416 struct svm_range *prange, unsigned long start,
2417 unsigned long last)
2418 {
2419 struct svm_range *head;
2420 struct svm_range *tail;
2421
2422 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2423 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2424 prange->start, prange->last);
2425 return;
2426 }
2427 if (start > prange->last || last < prange->start)
2428 return;
2429
2430 head = tail = prange;
2431 if (start > prange->start)
2432 svm_range_split(prange, prange->start, start - 1, &tail);
2433 if (last < tail->last)
2434 svm_range_split(tail, last + 1, tail->last, &head);
2435
2436 if (head != prange && tail != prange) {
2437 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2438 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2439 } else if (tail != prange) {
2440 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2441 } else if (head != prange) {
2442 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2443 } else if (parent != prange) {
2444 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2445 }
2446 }
2447
2448 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2449 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2450 unsigned long start, unsigned long last)
2451 {
2452 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2453 struct svm_range_list *svms;
2454 struct svm_range *pchild;
2455 struct kfd_process *p;
2456 unsigned long s, l;
2457 bool unmap_parent;
2458 uint32_t i;
2459
2460 if (atomic_read(&prange->queue_refcount)) {
2461 int r;
2462
2463 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2464 prange->start << PAGE_SHIFT);
2465 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2466 if (r)
2467 pr_debug("failed %d to quiesce KFD queues\n", r);
2468 }
2469
2470 p = kfd_lookup_process_by_mm(mm);
2471 if (!p)
2472 return;
2473 svms = &p->svms;
2474
2475 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2476 prange, prange->start, prange->last, start, last);
2477
2478 /* calculate time stamps that are used to decide which page faults need be
2479 * dropped or handled before unmap pages from gpu vm
2480 */
2481 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2482 struct kfd_process_device *pdd;
2483 struct amdgpu_device *adev;
2484 struct amdgpu_ih_ring *ih;
2485 uint32_t checkpoint_wptr;
2486
2487 pdd = p->pdds[i];
2488 if (!pdd)
2489 continue;
2490
2491 adev = pdd->dev->adev;
2492
2493 /* Check and drain ih1 ring if cam not available */
2494 if (adev->irq.ih1.ring_size) {
2495 ih = &adev->irq.ih1;
2496 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2497 if (ih->rptr != checkpoint_wptr) {
2498 svms->checkpoint_ts[i] =
2499 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2500 continue;
2501 }
2502 }
2503
2504 /* check if dev->irq.ih_soft is not empty */
2505 ih = &adev->irq.ih_soft;
2506 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2507 if (ih->rptr != checkpoint_wptr)
2508 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2509 }
2510
2511 unmap_parent = start <= prange->start && last >= prange->last;
2512
2513 list_for_each_entry(pchild, &prange->child_list, child_list) {
2514 mutex_lock_nested(&pchild->lock, 1);
2515 s = max(start, pchild->start);
2516 l = min(last, pchild->last);
2517 if (l >= s)
2518 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2519 svm_range_unmap_split(mm, prange, pchild, start, last);
2520 mutex_unlock(&pchild->lock);
2521 }
2522 s = max(start, prange->start);
2523 l = min(last, prange->last);
2524 if (l >= s)
2525 svm_range_unmap_from_gpus(prange, s, l, trigger);
2526 svm_range_unmap_split(mm, prange, prange, start, last);
2527
2528 if (unmap_parent)
2529 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2530 else
2531 svm_range_add_list_work(svms, prange, mm,
2532 SVM_OP_UPDATE_RANGE_NOTIFIER);
2533 schedule_deferred_list_work(svms);
2534
2535 kfd_unref_process(p);
2536 }
2537
2538 /**
2539 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2540 * @mni: mmu_interval_notifier struct
2541 * @range: mmu_notifier_range struct
2542 * @cur_seq: value to pass to mmu_interval_set_seq()
2543 *
2544 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2545 * is from migration, or CPU page invalidation callback.
2546 *
2547 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2548 * work thread, and split prange if only part of prange is unmapped.
2549 *
2550 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2551 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2552 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2553 * update GPU mapping to recover.
2554 *
2555 * Context: mmap lock, notifier_invalidate_start lock are held
2556 * for invalidate event, prange lock is held if this is from migration
2557 */
2558 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2559 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2560 const struct mmu_notifier_range *range,
2561 unsigned long cur_seq)
2562 {
2563 struct svm_range *prange;
2564 unsigned long start;
2565 unsigned long last;
2566
2567 if (range->event == MMU_NOTIFY_RELEASE)
2568 return true;
2569 if (!mmget_not_zero(mni->mm))
2570 return true;
2571
2572 start = mni->interval_tree.start;
2573 last = mni->interval_tree.last;
2574 start = max(start, range->start) >> PAGE_SHIFT;
2575 last = min(last, range->end - 1) >> PAGE_SHIFT;
2576 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2577 start, last, range->start >> PAGE_SHIFT,
2578 (range->end - 1) >> PAGE_SHIFT,
2579 mni->interval_tree.start >> PAGE_SHIFT,
2580 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2581
2582 prange = container_of(mni, struct svm_range, notifier);
2583
2584 svm_range_lock(prange);
2585 mmu_interval_set_seq(mni, cur_seq);
2586
2587 switch (range->event) {
2588 case MMU_NOTIFY_UNMAP:
2589 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2590 break;
2591 default:
2592 svm_range_evict(prange, mni->mm, start, last, range->event);
2593 break;
2594 }
2595
2596 svm_range_unlock(prange);
2597 mmput(mni->mm);
2598
2599 return true;
2600 }
2601
2602 /**
2603 * svm_range_from_addr - find svm range from fault address
2604 * @svms: svm range list header
2605 * @addr: address to search range interval tree, in pages
2606 * @parent: parent range if range is on child list
2607 *
2608 * Context: The caller must hold svms->lock
2609 *
2610 * Return: the svm_range found or NULL
2611 */
2612 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2613 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2614 struct svm_range **parent)
2615 {
2616 struct interval_tree_node *node;
2617 struct svm_range *prange;
2618 struct svm_range *pchild;
2619
2620 node = interval_tree_iter_first(&svms->objects, addr, addr);
2621 if (!node)
2622 return NULL;
2623
2624 prange = container_of(node, struct svm_range, it_node);
2625 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2626 addr, prange->start, prange->last, node->start, node->last);
2627
2628 if (addr >= prange->start && addr <= prange->last) {
2629 if (parent)
2630 *parent = prange;
2631 return prange;
2632 }
2633 list_for_each_entry(pchild, &prange->child_list, child_list)
2634 if (addr >= pchild->start && addr <= pchild->last) {
2635 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2636 addr, pchild->start, pchild->last);
2637 if (parent)
2638 *parent = prange;
2639 return pchild;
2640 }
2641
2642 return NULL;
2643 }
2644
2645 /* svm_range_best_restore_location - decide the best fault restore location
2646 * @prange: svm range structure
2647 * @adev: the GPU on which vm fault happened
2648 *
2649 * This is only called when xnack is on, to decide the best location to restore
2650 * the range mapping after GPU vm fault. Caller uses the best location to do
2651 * migration if actual loc is not best location, then update GPU page table
2652 * mapping to the best location.
2653 *
2654 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2655 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2656 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2657 * if range actual loc is cpu, best_loc is cpu
2658 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2659 * range actual loc.
2660 * Otherwise, GPU no access, best_loc is -1.
2661 *
2662 * Return:
2663 * -1 means vm fault GPU no access
2664 * 0 for CPU or GPU id
2665 */
2666 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2667 svm_range_best_restore_location(struct svm_range *prange,
2668 struct kfd_node *node,
2669 int32_t *gpuidx)
2670 {
2671 struct kfd_node *bo_node, *preferred_node;
2672 struct kfd_process *p;
2673 uint32_t gpuid;
2674 int r;
2675
2676 p = container_of(prange->svms, struct kfd_process, svms);
2677
2678 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2679 if (r < 0) {
2680 pr_debug("failed to get gpuid from kgd\n");
2681 return -1;
2682 }
2683
2684 if (node->adev->flags & AMD_IS_APU)
2685 return 0;
2686
2687 if (prange->preferred_loc == gpuid ||
2688 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2689 return prange->preferred_loc;
2690 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2691 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2692 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2693 return prange->preferred_loc;
2694 /* fall through */
2695 }
2696
2697 if (test_bit(*gpuidx, prange->bitmap_access))
2698 return gpuid;
2699
2700 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2701 if (!prange->actual_loc)
2702 return 0;
2703
2704 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2705 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2706 return prange->actual_loc;
2707 else
2708 return 0;
2709 }
2710
2711 return -1;
2712 }
2713
2714 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2715 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2716 unsigned long *start, unsigned long *last,
2717 bool *is_heap_stack)
2718 {
2719 struct vm_area_struct *vma;
2720 struct interval_tree_node *node;
2721 struct rb_node *rb_node;
2722 unsigned long start_limit, end_limit;
2723
2724 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2725 if (!vma) {
2726 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2727 return -EFAULT;
2728 }
2729
2730 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2731
2732 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2733 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2734 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2735 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2736
2737 /* First range that starts after the fault address */
2738 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2739 if (node) {
2740 end_limit = min(end_limit, node->start);
2741 /* Last range that ends before the fault address */
2742 rb_node = rb_prev(&node->rb);
2743 } else {
2744 /* Last range must end before addr because
2745 * there was no range after addr
2746 */
2747 rb_node = rb_last(&p->svms.objects.rb_root);
2748 }
2749 if (rb_node) {
2750 node = container_of(rb_node, struct interval_tree_node, rb);
2751 if (node->last >= addr) {
2752 WARN(1, "Overlap with prev node and page fault addr\n");
2753 return -EFAULT;
2754 }
2755 start_limit = max(start_limit, node->last + 1);
2756 }
2757
2758 *start = start_limit;
2759 *last = end_limit - 1;
2760
2761 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2762 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2763 *start, *last, *is_heap_stack);
2764
2765 return 0;
2766 }
2767
2768 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2769 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2770 uint64_t *bo_s, uint64_t *bo_l)
2771 {
2772 struct amdgpu_bo_va_mapping *mapping;
2773 struct interval_tree_node *node;
2774 struct amdgpu_bo *bo = NULL;
2775 unsigned long userptr;
2776 uint32_t i;
2777 int r;
2778
2779 for (i = 0; i < p->n_pdds; i++) {
2780 struct amdgpu_vm *vm;
2781
2782 if (!p->pdds[i]->drm_priv)
2783 continue;
2784
2785 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2786 r = amdgpu_bo_reserve(vm->root.bo, false);
2787 if (r)
2788 return r;
2789
2790 /* Check userptr by searching entire vm->va interval tree */
2791 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2792 while (node) {
2793 mapping = container_of((struct rb_node *)node,
2794 struct amdgpu_bo_va_mapping, rb);
2795 bo = mapping->bo_va->base.bo;
2796
2797 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2798 start << PAGE_SHIFT,
2799 last << PAGE_SHIFT,
2800 &userptr)) {
2801 node = interval_tree_iter_next(node, 0, ~0ULL);
2802 continue;
2803 }
2804
2805 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2806 start, last);
2807 if (bo_s && bo_l) {
2808 *bo_s = userptr >> PAGE_SHIFT;
2809 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2810 }
2811 amdgpu_bo_unreserve(vm->root.bo);
2812 return -EADDRINUSE;
2813 }
2814 amdgpu_bo_unreserve(vm->root.bo);
2815 }
2816 return 0;
2817 }
2818
2819 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2820 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2821 struct kfd_process *p,
2822 struct mm_struct *mm,
2823 int64_t addr)
2824 {
2825 struct svm_range *prange = NULL;
2826 unsigned long start, last;
2827 uint32_t gpuid, gpuidx;
2828 bool is_heap_stack;
2829 uint64_t bo_s = 0;
2830 uint64_t bo_l = 0;
2831 int r;
2832
2833 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2834 &is_heap_stack))
2835 return NULL;
2836
2837 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2838 if (r != -EADDRINUSE)
2839 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2840
2841 if (r == -EADDRINUSE) {
2842 if (addr >= bo_s && addr <= bo_l)
2843 return NULL;
2844
2845 /* Create one page svm range if 2MB range overlapping */
2846 start = addr;
2847 last = addr;
2848 }
2849
2850 prange = svm_range_new(&p->svms, start, last, true);
2851 if (!prange) {
2852 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2853 return NULL;
2854 }
2855 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2856 pr_debug("failed to get gpuid from kgd\n");
2857 svm_range_free(prange, true);
2858 return NULL;
2859 }
2860
2861 if (is_heap_stack)
2862 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2863
2864 svm_range_add_to_svms(prange);
2865 svm_range_add_notifier_locked(mm, prange);
2866
2867 return prange;
2868 }
2869
2870 /* svm_range_skip_recover - decide if prange can be recovered
2871 * @prange: svm range structure
2872 *
2873 * GPU vm retry fault handle skip recover the range for cases:
2874 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2875 * deferred list work will drain the stale fault before free the prange.
2876 * 2. prange is on deferred list to add interval notifier after split, or
2877 * 3. prange is child range, it is split from parent prange, recover later
2878 * after interval notifier is added.
2879 *
2880 * Return: true to skip recover, false to recover
2881 */
svm_range_skip_recover(struct svm_range * prange)2882 static bool svm_range_skip_recover(struct svm_range *prange)
2883 {
2884 struct svm_range_list *svms = prange->svms;
2885
2886 spin_lock(&svms->deferred_list_lock);
2887 if (list_empty(&prange->deferred_list) &&
2888 list_empty(&prange->child_list)) {
2889 spin_unlock(&svms->deferred_list_lock);
2890 return false;
2891 }
2892 spin_unlock(&svms->deferred_list_lock);
2893
2894 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2895 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2896 svms, prange, prange->start, prange->last);
2897 return true;
2898 }
2899 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2900 prange->work_item.op == SVM_OP_ADD_RANGE) {
2901 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2902 svms, prange, prange->start, prange->last);
2903 return true;
2904 }
2905 return false;
2906 }
2907
2908 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2909 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2910 int32_t gpuidx)
2911 {
2912 struct kfd_process_device *pdd;
2913
2914 /* fault is on different page of same range
2915 * or fault is skipped to recover later
2916 * or fault is on invalid virtual address
2917 */
2918 if (gpuidx == MAX_GPU_INSTANCE) {
2919 uint32_t gpuid;
2920 int r;
2921
2922 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2923 if (r < 0)
2924 return;
2925 }
2926
2927 /* fault is recovered
2928 * or fault cannot recover because GPU no access on the range
2929 */
2930 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2931 if (pdd)
2932 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2933 }
2934
2935 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2936 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2937 {
2938 unsigned long requested = VM_READ;
2939
2940 if (write_fault)
2941 requested |= VM_WRITE;
2942
2943 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2944 vma->vm_flags);
2945 return (vma->vm_flags & requested) == requested;
2946 }
2947
2948 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2949 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2950 uint32_t vmid, uint32_t node_id,
2951 uint64_t addr, uint64_t ts, bool write_fault)
2952 {
2953 unsigned long start, last, size;
2954 struct mm_struct *mm = NULL;
2955 struct svm_range_list *svms;
2956 struct svm_range *prange;
2957 struct kfd_process *p;
2958 ktime_t timestamp = ktime_get_boottime();
2959 struct kfd_node *node;
2960 int32_t best_loc;
2961 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2962 bool write_locked = false;
2963 struct vm_area_struct *vma;
2964 bool migration = false;
2965 int r = 0;
2966
2967 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2968 pr_debug("device does not support SVM\n");
2969 return -EFAULT;
2970 }
2971
2972 p = kfd_lookup_process_by_pasid(pasid);
2973 if (!p) {
2974 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2975 return 0;
2976 }
2977 svms = &p->svms;
2978
2979 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2980
2981 if (atomic_read(&svms->drain_pagefaults)) {
2982 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2983 r = 0;
2984 goto out;
2985 }
2986
2987 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2988 if (!node) {
2989 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2990 vmid);
2991 r = -EFAULT;
2992 goto out;
2993 }
2994
2995 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2996 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
2997 r = -EFAULT;
2998 goto out;
2999 }
3000
3001 /* check if this page fault time stamp is before svms->checkpoint_ts */
3002 if (svms->checkpoint_ts[gpuidx] != 0) {
3003 if (amdgpu_ih_ts_after(ts, svms->checkpoint_ts[gpuidx])) {
3004 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3005 r = 0;
3006 goto out;
3007 } else
3008 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3009 * to zero to avoid following ts wrap around give wrong comparing
3010 */
3011 svms->checkpoint_ts[gpuidx] = 0;
3012 }
3013
3014 if (!p->xnack_enabled) {
3015 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3016 r = -EFAULT;
3017 goto out;
3018 }
3019
3020 /* p->lead_thread is available as kfd_process_wq_release flush the work
3021 * before releasing task ref.
3022 */
3023 mm = get_task_mm(p->lead_thread);
3024 if (!mm) {
3025 pr_debug("svms 0x%p failed to get mm\n", svms);
3026 r = 0;
3027 goto out;
3028 }
3029
3030 mmap_read_lock(mm);
3031 retry_write_locked:
3032 mutex_lock(&svms->lock);
3033 prange = svm_range_from_addr(svms, addr, NULL);
3034 if (!prange) {
3035 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3036 svms, addr);
3037 if (!write_locked) {
3038 /* Need the write lock to create new range with MMU notifier.
3039 * Also flush pending deferred work to make sure the interval
3040 * tree is up to date before we add a new range
3041 */
3042 mutex_unlock(&svms->lock);
3043 mmap_read_unlock(mm);
3044 mmap_write_lock(mm);
3045 write_locked = true;
3046 goto retry_write_locked;
3047 }
3048 prange = svm_range_create_unregistered_range(node, p, mm, addr);
3049 if (!prange) {
3050 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3051 svms, addr);
3052 mmap_write_downgrade(mm);
3053 r = -EFAULT;
3054 goto out_unlock_svms;
3055 }
3056 }
3057 if (write_locked)
3058 mmap_write_downgrade(mm);
3059
3060 mutex_lock(&prange->migrate_mutex);
3061
3062 if (svm_range_skip_recover(prange)) {
3063 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3064 r = 0;
3065 goto out_unlock_range;
3066 }
3067
3068 /* skip duplicate vm fault on different pages of same range */
3069 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3070 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3071 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3072 svms, prange->start, prange->last);
3073 r = 0;
3074 goto out_unlock_range;
3075 }
3076
3077 /* __do_munmap removed VMA, return success as we are handling stale
3078 * retry fault.
3079 */
3080 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3081 if (!vma) {
3082 pr_debug("address 0x%llx VMA is removed\n", addr);
3083 r = 0;
3084 goto out_unlock_range;
3085 }
3086
3087 if (!svm_fault_allowed(vma, write_fault)) {
3088 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3089 write_fault ? "write" : "read");
3090 r = -EPERM;
3091 goto out_unlock_range;
3092 }
3093
3094 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3095 if (best_loc == -1) {
3096 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3097 svms, prange->start, prange->last);
3098 r = -EACCES;
3099 goto out_unlock_range;
3100 }
3101
3102 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3103 svms, prange->start, prange->last, best_loc,
3104 prange->actual_loc);
3105
3106 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3107 write_fault, timestamp);
3108
3109 /* Align migration range start and size to granularity size */
3110 size = 1UL << prange->granularity;
3111 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3112 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3113 if (prange->actual_loc != 0 || best_loc != 0) {
3114 if (best_loc) {
3115 r = svm_migrate_to_vram(prange, best_loc, start, last,
3116 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3117 if (r) {
3118 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3119 r, addr);
3120 /* Fallback to system memory if migration to
3121 * VRAM failed
3122 */
3123 if (prange->actual_loc && prange->actual_loc != best_loc)
3124 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3125 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3126 else
3127 r = 0;
3128 }
3129 } else {
3130 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3131 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3132 }
3133 if (r) {
3134 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3135 r, svms, start, last);
3136 goto out_migrate_fail;
3137 } else {
3138 migration = true;
3139 }
3140 }
3141
3142 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3143 false, false);
3144 if (r)
3145 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3146 r, svms, start, last);
3147
3148 out_migrate_fail:
3149 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3150 migration);
3151
3152 out_unlock_range:
3153 mutex_unlock(&prange->migrate_mutex);
3154 out_unlock_svms:
3155 mutex_unlock(&svms->lock);
3156 mmap_read_unlock(mm);
3157
3158 svm_range_count_fault(node, p, gpuidx);
3159
3160 mmput(mm);
3161 out:
3162 kfd_unref_process(p);
3163
3164 if (r == -EAGAIN) {
3165 pr_debug("recover vm fault later\n");
3166 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3167 r = 0;
3168 }
3169 return r;
3170 }
3171
3172 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3173 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3174 {
3175 struct svm_range *prange, *pchild;
3176 uint64_t reserved_size = 0;
3177 uint64_t size;
3178 int r = 0;
3179
3180 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3181
3182 mutex_lock(&p->svms.lock);
3183
3184 list_for_each_entry(prange, &p->svms.list, list) {
3185 svm_range_lock(prange);
3186 list_for_each_entry(pchild, &prange->child_list, child_list) {
3187 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3188 if (xnack_enabled) {
3189 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3190 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3191 } else {
3192 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3193 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3194 if (r)
3195 goto out_unlock;
3196 reserved_size += size;
3197 }
3198 }
3199
3200 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3201 if (xnack_enabled) {
3202 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3203 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3204 } else {
3205 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3206 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3207 if (r)
3208 goto out_unlock;
3209 reserved_size += size;
3210 }
3211 out_unlock:
3212 svm_range_unlock(prange);
3213 if (r)
3214 break;
3215 }
3216
3217 if (r)
3218 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3219 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3220 else
3221 /* Change xnack mode must be inside svms lock, to avoid race with
3222 * svm_range_deferred_list_work unreserve memory in parallel.
3223 */
3224 p->xnack_enabled = xnack_enabled;
3225
3226 mutex_unlock(&p->svms.lock);
3227 return r;
3228 }
3229
svm_range_list_fini(struct kfd_process * p)3230 void svm_range_list_fini(struct kfd_process *p)
3231 {
3232 struct svm_range *prange;
3233 struct svm_range *next;
3234
3235 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3236
3237 cancel_delayed_work_sync(&p->svms.restore_work);
3238
3239 /* Ensure list work is finished before process is destroyed */
3240 flush_work(&p->svms.deferred_list_work);
3241
3242 /*
3243 * Ensure no retry fault comes in afterwards, as page fault handler will
3244 * not find kfd process and take mm lock to recover fault.
3245 * stop kfd page fault handing, then wait pending page faults got drained
3246 */
3247 atomic_set(&p->svms.drain_pagefaults, 1);
3248 svm_range_drain_retry_fault(&p->svms);
3249
3250 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3251 svm_range_unlink(prange);
3252 svm_range_remove_notifier(prange);
3253 svm_range_free(prange, true);
3254 }
3255
3256 mutex_destroy(&p->svms.lock);
3257
3258 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3259 }
3260
svm_range_list_init(struct kfd_process * p)3261 int svm_range_list_init(struct kfd_process *p)
3262 {
3263 struct svm_range_list *svms = &p->svms;
3264 int i;
3265
3266 svms->objects = RB_ROOT_CACHED;
3267 mutex_init(&svms->lock);
3268 INIT_LIST_HEAD(&svms->list);
3269 atomic_set(&svms->evicted_ranges, 0);
3270 atomic_set(&svms->drain_pagefaults, 0);
3271 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3272 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3273 INIT_LIST_HEAD(&svms->deferred_range_list);
3274 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3275 spin_lock_init(&svms->deferred_list_lock);
3276
3277 for (i = 0; i < p->n_pdds; i++)
3278 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3279 bitmap_set(svms->bitmap_supported, i, 1);
3280
3281 /* Value of default granularity cannot exceed 0x1B, the
3282 * number of pages supported by a 4-level paging table
3283 */
3284 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3285 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3286
3287 return 0;
3288 }
3289
3290 /**
3291 * svm_range_check_vm - check if virtual address range mapped already
3292 * @p: current kfd_process
3293 * @start: range start address, in pages
3294 * @last: range last address, in pages
3295 * @bo_s: mapping start address in pages if address range already mapped
3296 * @bo_l: mapping last address in pages if address range already mapped
3297 *
3298 * The purpose is to avoid virtual address ranges already allocated by
3299 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3300 * It looks for each pdd in the kfd_process.
3301 *
3302 * Context: Process context
3303 *
3304 * Return 0 - OK, if the range is not mapped.
3305 * Otherwise error code:
3306 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3307 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3308 * a signal. Release all buffer reservations and return to user-space.
3309 */
3310 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3311 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3312 uint64_t *bo_s, uint64_t *bo_l)
3313 {
3314 struct amdgpu_bo_va_mapping *mapping;
3315 struct interval_tree_node *node;
3316 uint32_t i;
3317 int r;
3318
3319 for (i = 0; i < p->n_pdds; i++) {
3320 struct amdgpu_vm *vm;
3321
3322 if (!p->pdds[i]->drm_priv)
3323 continue;
3324
3325 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3326 r = amdgpu_bo_reserve(vm->root.bo, false);
3327 if (r)
3328 return r;
3329
3330 node = interval_tree_iter_first(&vm->va, start, last);
3331 if (node) {
3332 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3333 start, last);
3334 mapping = container_of((struct rb_node *)node,
3335 struct amdgpu_bo_va_mapping, rb);
3336 if (bo_s && bo_l) {
3337 *bo_s = mapping->start;
3338 *bo_l = mapping->last;
3339 }
3340 amdgpu_bo_unreserve(vm->root.bo);
3341 return -EADDRINUSE;
3342 }
3343 amdgpu_bo_unreserve(vm->root.bo);
3344 }
3345
3346 return 0;
3347 }
3348
3349 /**
3350 * svm_range_is_valid - check if virtual address range is valid
3351 * @p: current kfd_process
3352 * @start: range start address, in pages
3353 * @size: range size, in pages
3354 *
3355 * Valid virtual address range means it belongs to one or more VMAs
3356 *
3357 * Context: Process context
3358 *
3359 * Return:
3360 * 0 - OK, otherwise error code
3361 */
3362 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3363 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3364 {
3365 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3366 struct vm_area_struct *vma;
3367 unsigned long end;
3368 unsigned long start_unchg = start;
3369
3370 start <<= PAGE_SHIFT;
3371 end = start + (size << PAGE_SHIFT);
3372 do {
3373 vma = vma_lookup(p->mm, start);
3374 if (!vma || (vma->vm_flags & device_vma))
3375 return -EFAULT;
3376 start = min(end, vma->vm_end);
3377 } while (start < end);
3378
3379 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3380 NULL);
3381 }
3382
3383 /**
3384 * svm_range_best_prefetch_location - decide the best prefetch location
3385 * @prange: svm range structure
3386 *
3387 * For xnack off:
3388 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3389 * can be CPU or GPU.
3390 *
3391 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3392 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3393 * the best prefetch location is always CPU, because GPU can not have coherent
3394 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3395 *
3396 * For xnack on:
3397 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3398 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3399 *
3400 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3401 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3402 * prefetch location is always CPU.
3403 *
3404 * Context: Process context
3405 *
3406 * Return:
3407 * 0 for CPU or GPU id
3408 */
3409 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3410 svm_range_best_prefetch_location(struct svm_range *prange)
3411 {
3412 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3413 uint32_t best_loc = prange->prefetch_loc;
3414 struct kfd_process_device *pdd;
3415 struct kfd_node *bo_node;
3416 struct kfd_process *p;
3417 uint32_t gpuidx;
3418
3419 p = container_of(prange->svms, struct kfd_process, svms);
3420
3421 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3422 goto out;
3423
3424 bo_node = svm_range_get_node_by_id(prange, best_loc);
3425 if (!bo_node) {
3426 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3427 best_loc = 0;
3428 goto out;
3429 }
3430
3431 if (bo_node->adev->flags & AMD_IS_APU) {
3432 best_loc = 0;
3433 goto out;
3434 }
3435
3436 if (p->xnack_enabled)
3437 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3438 else
3439 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3440 MAX_GPU_INSTANCE);
3441
3442 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3443 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3444 if (!pdd) {
3445 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3446 continue;
3447 }
3448
3449 if (pdd->dev->adev == bo_node->adev)
3450 continue;
3451
3452 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3453 best_loc = 0;
3454 break;
3455 }
3456 }
3457
3458 out:
3459 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3460 p->xnack_enabled, &p->svms, prange->start, prange->last,
3461 best_loc);
3462
3463 return best_loc;
3464 }
3465
3466 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3467 * @mm: current process mm_struct
3468 * @prange: svm range structure
3469 * @migrated: output, true if migration is triggered
3470 *
3471 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3472 * from ram to vram.
3473 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3474 * from vram to ram.
3475 *
3476 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3477 * and restore work:
3478 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3479 * stops all queues, schedule restore work
3480 * 2. svm_range_restore_work wait for migration is done by
3481 * a. svm_range_validate_vram takes prange->migrate_mutex
3482 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3483 * 3. restore work update mappings of GPU, resume all queues.
3484 *
3485 * Context: Process context
3486 *
3487 * Return:
3488 * 0 - OK, otherwise - error code of migration
3489 */
3490 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3491 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3492 bool *migrated)
3493 {
3494 uint32_t best_loc;
3495 int r = 0;
3496
3497 *migrated = false;
3498 best_loc = svm_range_best_prefetch_location(prange);
3499
3500 /* when best_loc is a gpu node and same as prange->actual_loc
3501 * we still need do migration as prange->actual_loc !=0 does
3502 * not mean all pages in prange are vram. hmm migrate will pick
3503 * up right pages during migration.
3504 */
3505 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3506 (best_loc == 0 && prange->actual_loc == 0))
3507 return 0;
3508
3509 if (!best_loc) {
3510 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3511 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3512 *migrated = !r;
3513 return r;
3514 }
3515
3516 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3517 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3518 *migrated = !r;
3519
3520 return 0;
3521 }
3522
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3523 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3524 {
3525 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3526 * signaled yet and we're under the protection of the fence->lock.
3527 * After the fence is signaled in svm_range_bo_release, we cannot get
3528 * here any more.
3529 *
3530 * Reference is dropped in svm_range_evict_svm_bo_worker.
3531 */
3532 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3533 WRITE_ONCE(fence->svm_bo->evicting, 1);
3534 schedule_work(&fence->svm_bo->eviction_work);
3535 }
3536
3537 return 0;
3538 }
3539
svm_range_evict_svm_bo_worker(struct work_struct * work)3540 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3541 {
3542 struct svm_range_bo *svm_bo;
3543 struct mm_struct *mm;
3544 int r = 0;
3545
3546 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3547
3548 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3549 mm = svm_bo->eviction_fence->mm;
3550 } else {
3551 svm_range_bo_unref(svm_bo);
3552 return;
3553 }
3554
3555 mmap_read_lock(mm);
3556 spin_lock(&svm_bo->list_lock);
3557 while (!list_empty(&svm_bo->range_list) && !r) {
3558 struct svm_range *prange =
3559 list_first_entry(&svm_bo->range_list,
3560 struct svm_range, svm_bo_list);
3561 int retries = 3;
3562
3563 list_del_init(&prange->svm_bo_list);
3564 spin_unlock(&svm_bo->list_lock);
3565
3566 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3567 prange->start, prange->last);
3568
3569 mutex_lock(&prange->migrate_mutex);
3570 do {
3571 /* migrate all vram pages in this prange to sys ram
3572 * after that prange->actual_loc should be zero
3573 */
3574 r = svm_migrate_vram_to_ram(prange, mm,
3575 prange->start, prange->last,
3576 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3577 } while (!r && prange->actual_loc && --retries);
3578
3579 if (!r && prange->actual_loc)
3580 pr_info_once("Migration failed during eviction");
3581
3582 if (!prange->actual_loc) {
3583 mutex_lock(&prange->lock);
3584 prange->svm_bo = NULL;
3585 mutex_unlock(&prange->lock);
3586 }
3587 mutex_unlock(&prange->migrate_mutex);
3588
3589 spin_lock(&svm_bo->list_lock);
3590 }
3591 spin_unlock(&svm_bo->list_lock);
3592 mmap_read_unlock(mm);
3593 mmput(mm);
3594
3595 dma_fence_signal(&svm_bo->eviction_fence->base);
3596
3597 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3598 * has been called in svm_migrate_vram_to_ram
3599 */
3600 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3601 svm_range_bo_unref(svm_bo);
3602 }
3603
3604 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3605 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3606 uint64_t start, uint64_t size, uint32_t nattr,
3607 struct kfd_ioctl_svm_attribute *attrs)
3608 {
3609 struct amdkfd_process_info *process_info = p->kgd_process_info;
3610 struct list_head update_list;
3611 struct list_head insert_list;
3612 struct list_head remove_list;
3613 struct list_head remap_list;
3614 struct svm_range_list *svms;
3615 struct svm_range *prange;
3616 struct svm_range *next;
3617 bool update_mapping = false;
3618 bool flush_tlb;
3619 int r, ret = 0;
3620
3621 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3622 p->pasid, &p->svms, start, start + size - 1, size);
3623
3624 r = svm_range_check_attr(p, nattr, attrs);
3625 if (r)
3626 return r;
3627
3628 svms = &p->svms;
3629
3630 mutex_lock(&process_info->lock);
3631
3632 svm_range_list_lock_and_flush_work(svms, mm);
3633
3634 r = svm_range_is_valid(p, start, size);
3635 if (r) {
3636 pr_debug("invalid range r=%d\n", r);
3637 mmap_write_unlock(mm);
3638 goto out;
3639 }
3640
3641 mutex_lock(&svms->lock);
3642
3643 /* Add new range and split existing ranges as needed */
3644 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3645 &insert_list, &remove_list, &remap_list);
3646 if (r) {
3647 mutex_unlock(&svms->lock);
3648 mmap_write_unlock(mm);
3649 goto out;
3650 }
3651 /* Apply changes as a transaction */
3652 list_for_each_entry_safe(prange, next, &insert_list, list) {
3653 svm_range_add_to_svms(prange);
3654 svm_range_add_notifier_locked(mm, prange);
3655 }
3656 list_for_each_entry(prange, &update_list, update_list) {
3657 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3658 /* TODO: unmap ranges from GPU that lost access */
3659 }
3660 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3661 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3662 prange->svms, prange, prange->start,
3663 prange->last);
3664 svm_range_unlink(prange);
3665 svm_range_remove_notifier(prange);
3666 svm_range_free(prange, false);
3667 }
3668
3669 mmap_write_downgrade(mm);
3670 /* Trigger migrations and revalidate and map to GPUs as needed. If
3671 * this fails we may be left with partially completed actions. There
3672 * is no clean way of rolling back to the previous state in such a
3673 * case because the rollback wouldn't be guaranteed to work either.
3674 */
3675 list_for_each_entry(prange, &update_list, update_list) {
3676 bool migrated;
3677
3678 mutex_lock(&prange->migrate_mutex);
3679
3680 r = svm_range_trigger_migration(mm, prange, &migrated);
3681 if (r)
3682 goto out_unlock_range;
3683
3684 if (migrated && (!p->xnack_enabled ||
3685 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3686 prange->mapped_to_gpu) {
3687 pr_debug("restore_work will update mappings of GPUs\n");
3688 mutex_unlock(&prange->migrate_mutex);
3689 continue;
3690 }
3691
3692 if (!migrated && !update_mapping) {
3693 mutex_unlock(&prange->migrate_mutex);
3694 continue;
3695 }
3696
3697 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3698
3699 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3700 MAX_GPU_INSTANCE, true, true, flush_tlb);
3701 if (r)
3702 pr_debug("failed %d to map svm range\n", r);
3703
3704 out_unlock_range:
3705 mutex_unlock(&prange->migrate_mutex);
3706 if (r)
3707 ret = r;
3708 }
3709
3710 list_for_each_entry(prange, &remap_list, update_list) {
3711 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3712 prange, prange->start, prange->last);
3713 mutex_lock(&prange->migrate_mutex);
3714 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3715 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3716 if (r)
3717 pr_debug("failed %d on remap svm range\n", r);
3718 mutex_unlock(&prange->migrate_mutex);
3719 if (r)
3720 ret = r;
3721 }
3722
3723 dynamic_svm_range_dump(svms);
3724
3725 mutex_unlock(&svms->lock);
3726 mmap_read_unlock(mm);
3727 out:
3728 mutex_unlock(&process_info->lock);
3729
3730 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3731 &p->svms, start, start + size - 1, r);
3732
3733 return ret ? ret : r;
3734 }
3735
3736 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3737 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3738 uint64_t start, uint64_t size, uint32_t nattr,
3739 struct kfd_ioctl_svm_attribute *attrs)
3740 {
3741 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3742 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3743 bool get_preferred_loc = false;
3744 bool get_prefetch_loc = false;
3745 bool get_granularity = false;
3746 bool get_accessible = false;
3747 bool get_flags = false;
3748 uint64_t last = start + size - 1UL;
3749 uint8_t granularity = 0xff;
3750 struct interval_tree_node *node;
3751 struct svm_range_list *svms;
3752 struct svm_range *prange;
3753 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3754 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3755 uint32_t flags_and = 0xffffffff;
3756 uint32_t flags_or = 0;
3757 int gpuidx;
3758 uint32_t i;
3759 int r = 0;
3760
3761 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3762 start + size - 1, nattr);
3763
3764 /* Flush pending deferred work to avoid racing with deferred actions from
3765 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3766 * can still race with get_attr because we don't hold the mmap lock. But that
3767 * would be a race condition in the application anyway, and undefined
3768 * behaviour is acceptable in that case.
3769 */
3770 flush_work(&p->svms.deferred_list_work);
3771
3772 mmap_read_lock(mm);
3773 r = svm_range_is_valid(p, start, size);
3774 mmap_read_unlock(mm);
3775 if (r) {
3776 pr_debug("invalid range r=%d\n", r);
3777 return r;
3778 }
3779
3780 for (i = 0; i < nattr; i++) {
3781 switch (attrs[i].type) {
3782 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3783 get_preferred_loc = true;
3784 break;
3785 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3786 get_prefetch_loc = true;
3787 break;
3788 case KFD_IOCTL_SVM_ATTR_ACCESS:
3789 get_accessible = true;
3790 break;
3791 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3792 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3793 get_flags = true;
3794 break;
3795 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3796 get_granularity = true;
3797 break;
3798 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3799 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3800 fallthrough;
3801 default:
3802 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3803 return -EINVAL;
3804 }
3805 }
3806
3807 svms = &p->svms;
3808
3809 mutex_lock(&svms->lock);
3810
3811 node = interval_tree_iter_first(&svms->objects, start, last);
3812 if (!node) {
3813 pr_debug("range attrs not found return default values\n");
3814 svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3815 &granularity, &flags_and);
3816 flags_or = flags_and;
3817 if (p->xnack_enabled)
3818 bitmap_copy(bitmap_access, svms->bitmap_supported,
3819 MAX_GPU_INSTANCE);
3820 else
3821 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3822 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3823 goto fill_values;
3824 }
3825 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3826 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3827
3828 while (node) {
3829 struct interval_tree_node *next;
3830
3831 prange = container_of(node, struct svm_range, it_node);
3832 next = interval_tree_iter_next(node, start, last);
3833
3834 if (get_preferred_loc) {
3835 if (prange->preferred_loc ==
3836 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3837 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3838 location != prange->preferred_loc)) {
3839 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3840 get_preferred_loc = false;
3841 } else {
3842 location = prange->preferred_loc;
3843 }
3844 }
3845 if (get_prefetch_loc) {
3846 if (prange->prefetch_loc ==
3847 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3848 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3849 prefetch_loc != prange->prefetch_loc)) {
3850 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3851 get_prefetch_loc = false;
3852 } else {
3853 prefetch_loc = prange->prefetch_loc;
3854 }
3855 }
3856 if (get_accessible) {
3857 bitmap_and(bitmap_access, bitmap_access,
3858 prange->bitmap_access, MAX_GPU_INSTANCE);
3859 bitmap_and(bitmap_aip, bitmap_aip,
3860 prange->bitmap_aip, MAX_GPU_INSTANCE);
3861 }
3862 if (get_flags) {
3863 flags_and &= prange->flags;
3864 flags_or |= prange->flags;
3865 }
3866
3867 if (get_granularity && prange->granularity < granularity)
3868 granularity = prange->granularity;
3869
3870 node = next;
3871 }
3872 fill_values:
3873 mutex_unlock(&svms->lock);
3874
3875 for (i = 0; i < nattr; i++) {
3876 switch (attrs[i].type) {
3877 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3878 attrs[i].value = location;
3879 break;
3880 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3881 attrs[i].value = prefetch_loc;
3882 break;
3883 case KFD_IOCTL_SVM_ATTR_ACCESS:
3884 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3885 attrs[i].value);
3886 if (gpuidx < 0) {
3887 pr_debug("invalid gpuid %x\n", attrs[i].value);
3888 return -EINVAL;
3889 }
3890 if (test_bit(gpuidx, bitmap_access))
3891 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3892 else if (test_bit(gpuidx, bitmap_aip))
3893 attrs[i].type =
3894 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3895 else
3896 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3897 break;
3898 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3899 attrs[i].value = flags_and;
3900 break;
3901 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3902 attrs[i].value = ~flags_or;
3903 break;
3904 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3905 attrs[i].value = (uint32_t)granularity;
3906 break;
3907 }
3908 }
3909
3910 return 0;
3911 }
3912
kfd_criu_resume_svm(struct kfd_process * p)3913 int kfd_criu_resume_svm(struct kfd_process *p)
3914 {
3915 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3916 int nattr_common = 4, nattr_accessibility = 1;
3917 struct criu_svm_metadata *criu_svm_md = NULL;
3918 struct svm_range_list *svms = &p->svms;
3919 struct criu_svm_metadata *next = NULL;
3920 uint32_t set_flags = 0xffffffff;
3921 int i, j, num_attrs, ret = 0;
3922 uint64_t set_attr_size;
3923 struct mm_struct *mm;
3924
3925 if (list_empty(&svms->criu_svm_metadata_list)) {
3926 pr_debug("No SVM data from CRIU restore stage 2\n");
3927 return ret;
3928 }
3929
3930 mm = get_task_mm(p->lead_thread);
3931 if (!mm) {
3932 pr_err("failed to get mm for the target process\n");
3933 return -ESRCH;
3934 }
3935
3936 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3937
3938 i = j = 0;
3939 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3940 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3941 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3942
3943 for (j = 0; j < num_attrs; j++) {
3944 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3945 i, j, criu_svm_md->data.attrs[j].type,
3946 i, j, criu_svm_md->data.attrs[j].value);
3947 switch (criu_svm_md->data.attrs[j].type) {
3948 /* During Checkpoint operation, the query for
3949 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3950 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3951 * not used by the range which was checkpointed. Care
3952 * must be taken to not restore with an invalid value
3953 * otherwise the gpuidx value will be invalid and
3954 * set_attr would eventually fail so just replace those
3955 * with another dummy attribute such as
3956 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3957 */
3958 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3959 if (criu_svm_md->data.attrs[j].value ==
3960 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3961 criu_svm_md->data.attrs[j].type =
3962 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3963 criu_svm_md->data.attrs[j].value = 0;
3964 }
3965 break;
3966 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3967 set_flags = criu_svm_md->data.attrs[j].value;
3968 break;
3969 default:
3970 break;
3971 }
3972 }
3973
3974 /* CLR_FLAGS is not available via get_attr during checkpoint but
3975 * it needs to be inserted before restoring the ranges so
3976 * allocate extra space for it before calling set_attr
3977 */
3978 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3979 (num_attrs + 1);
3980 set_attr_new = krealloc(set_attr, set_attr_size,
3981 GFP_KERNEL);
3982 if (!set_attr_new) {
3983 ret = -ENOMEM;
3984 goto exit;
3985 }
3986 set_attr = set_attr_new;
3987
3988 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3989 sizeof(struct kfd_ioctl_svm_attribute));
3990 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3991 set_attr[num_attrs].value = ~set_flags;
3992
3993 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3994 criu_svm_md->data.size, num_attrs + 1,
3995 set_attr);
3996 if (ret) {
3997 pr_err("CRIU: failed to set range attributes\n");
3998 goto exit;
3999 }
4000
4001 i++;
4002 }
4003 exit:
4004 kfree(set_attr);
4005 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4006 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4007 criu_svm_md->data.start_addr);
4008 kfree(criu_svm_md);
4009 }
4010
4011 mmput(mm);
4012 return ret;
4013
4014 }
4015
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4016 int kfd_criu_restore_svm(struct kfd_process *p,
4017 uint8_t __user *user_priv_ptr,
4018 uint64_t *priv_data_offset,
4019 uint64_t max_priv_data_size)
4020 {
4021 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4022 int nattr_common = 4, nattr_accessibility = 1;
4023 struct criu_svm_metadata *criu_svm_md = NULL;
4024 struct svm_range_list *svms = &p->svms;
4025 uint32_t num_devices;
4026 int ret = 0;
4027
4028 num_devices = p->n_pdds;
4029 /* Handle one SVM range object at a time, also the number of gpus are
4030 * assumed to be same on the restore node, checking must be done while
4031 * evaluating the topology earlier
4032 */
4033
4034 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4035 (nattr_common + nattr_accessibility * num_devices);
4036 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4037
4038 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4039 svm_attrs_size;
4040
4041 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4042 if (!criu_svm_md) {
4043 pr_err("failed to allocate memory to store svm metadata\n");
4044 return -ENOMEM;
4045 }
4046 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4047 ret = -EINVAL;
4048 goto exit;
4049 }
4050
4051 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4052 svm_priv_data_size);
4053 if (ret) {
4054 ret = -EFAULT;
4055 goto exit;
4056 }
4057 *priv_data_offset += svm_priv_data_size;
4058
4059 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4060
4061 return 0;
4062
4063
4064 exit:
4065 kfree(criu_svm_md);
4066 return ret;
4067 }
4068
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4069 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4070 uint64_t *svm_priv_data_size)
4071 {
4072 uint64_t total_size, accessibility_size, common_attr_size;
4073 int nattr_common = 4, nattr_accessibility = 1;
4074 int num_devices = p->n_pdds;
4075 struct svm_range_list *svms;
4076 struct svm_range *prange;
4077 uint32_t count = 0;
4078
4079 *svm_priv_data_size = 0;
4080
4081 svms = &p->svms;
4082 if (!svms)
4083 return -EINVAL;
4084
4085 mutex_lock(&svms->lock);
4086 list_for_each_entry(prange, &svms->list, list) {
4087 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4088 prange, prange->start, prange->npages,
4089 prange->start + prange->npages - 1);
4090 count++;
4091 }
4092 mutex_unlock(&svms->lock);
4093
4094 *num_svm_ranges = count;
4095 /* Only the accessbility attributes need to be queried for all the gpus
4096 * individually, remaining ones are spanned across the entire process
4097 * regardless of the various gpu nodes. Of the remaining attributes,
4098 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4099 *
4100 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4101 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4102 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4103 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4104 *
4105 * ** ACCESSBILITY ATTRIBUTES **
4106 * (Considered as one, type is altered during query, value is gpuid)
4107 * KFD_IOCTL_SVM_ATTR_ACCESS
4108 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4109 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4110 */
4111 if (*num_svm_ranges > 0) {
4112 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4113 nattr_common;
4114 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4115 nattr_accessibility * num_devices;
4116
4117 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4118 common_attr_size + accessibility_size;
4119
4120 *svm_priv_data_size = *num_svm_ranges * total_size;
4121 }
4122
4123 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4124 *svm_priv_data_size);
4125 return 0;
4126 }
4127
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4128 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4129 uint8_t __user *user_priv_data,
4130 uint64_t *priv_data_offset)
4131 {
4132 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4133 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4134 uint64_t svm_priv_data_size, query_attr_size = 0;
4135 int index, nattr_common = 4, ret = 0;
4136 struct svm_range_list *svms;
4137 int num_devices = p->n_pdds;
4138 struct svm_range *prange;
4139 struct mm_struct *mm;
4140
4141 svms = &p->svms;
4142 if (!svms)
4143 return -EINVAL;
4144
4145 mm = get_task_mm(p->lead_thread);
4146 if (!mm) {
4147 pr_err("failed to get mm for the target process\n");
4148 return -ESRCH;
4149 }
4150
4151 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4152 (nattr_common + num_devices);
4153
4154 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4155 if (!query_attr) {
4156 ret = -ENOMEM;
4157 goto exit;
4158 }
4159
4160 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4161 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4162 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4163 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4164
4165 for (index = 0; index < num_devices; index++) {
4166 struct kfd_process_device *pdd = p->pdds[index];
4167
4168 query_attr[index + nattr_common].type =
4169 KFD_IOCTL_SVM_ATTR_ACCESS;
4170 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4171 }
4172
4173 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4174
4175 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4176 if (!svm_priv) {
4177 ret = -ENOMEM;
4178 goto exit_query;
4179 }
4180
4181 index = 0;
4182 list_for_each_entry(prange, &svms->list, list) {
4183
4184 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4185 svm_priv->start_addr = prange->start;
4186 svm_priv->size = prange->npages;
4187 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4188 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4189 prange, prange->start, prange->npages,
4190 prange->start + prange->npages - 1,
4191 prange->npages * PAGE_SIZE);
4192
4193 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4194 svm_priv->size,
4195 (nattr_common + num_devices),
4196 svm_priv->attrs);
4197 if (ret) {
4198 pr_err("CRIU: failed to obtain range attributes\n");
4199 goto exit_priv;
4200 }
4201
4202 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4203 svm_priv_data_size)) {
4204 pr_err("Failed to copy svm priv to user\n");
4205 ret = -EFAULT;
4206 goto exit_priv;
4207 }
4208
4209 *priv_data_offset += svm_priv_data_size;
4210
4211 }
4212
4213
4214 exit_priv:
4215 kfree(svm_priv);
4216 exit_query:
4217 kfree(query_attr);
4218 exit:
4219 mmput(mm);
4220 return ret;
4221 }
4222
4223 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4224 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4225 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4226 {
4227 struct mm_struct *mm = current->mm;
4228 int r;
4229
4230 start >>= PAGE_SHIFT;
4231 size >>= PAGE_SHIFT;
4232
4233 switch (op) {
4234 case KFD_IOCTL_SVM_OP_SET_ATTR:
4235 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4236 break;
4237 case KFD_IOCTL_SVM_OP_GET_ATTR:
4238 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4239 break;
4240 default:
4241 r = EINVAL;
4242 break;
4243 }
4244
4245 return r;
4246 }
4247