xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision c76c2a19ae3763d17aa6a60a5831ed24cbc16e83)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/reg.h>
40 #include <sys/smr.h>
41 #include <sys/sysctl.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 #include <vm/pmap.h>
46 
47 #include <machine/cpufunc.h>
48 #include <machine/psl.h>
49 #include <machine/md_var.h>
50 #include <machine/specialreg.h>
51 #include <machine/smp.h>
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include <machine/vmm_snapshot.h>
56 
57 #include <dev/vmm/vmm_ktr.h>
58 #include <dev/vmm/vmm_mem.h>
59 
60 #include "vmm_lapic.h"
61 #include "vmm_stat.h"
62 #include "vmm_ioport.h"
63 #include "vatpic.h"
64 #include "vlapic.h"
65 #include "vlapic_priv.h"
66 
67 #include "x86.h"
68 #include "vmcb.h"
69 #include "svm.h"
70 #include "svm_softc.h"
71 #include "svm_msr.h"
72 #include "npt.h"
73 #include "io/ppt.h"
74 
75 SYSCTL_DECL(_hw_vmm);
76 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
77     NULL);
78 
79 /*
80  * SVM CPUID function 0x8000_000A, edx bit decoding.
81  */
82 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
83 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
84 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
85 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
86 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
87 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
88 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
89 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
90 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
91 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
92 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
93 
94 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
95 				VMCB_CACHE_IOPM		|	\
96 				VMCB_CACHE_I		|	\
97 				VMCB_CACHE_TPR		|	\
98 				VMCB_CACHE_CR2		|	\
99 				VMCB_CACHE_CR		|	\
100 				VMCB_CACHE_DR		|	\
101 				VMCB_CACHE_DT		|	\
102 				VMCB_CACHE_SEG		|	\
103 				VMCB_CACHE_NP)
104 
105 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
106 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
107     0, NULL);
108 
109 static MALLOC_DEFINE(M_SVM, "svm", "svm");
110 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
111 
112 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
113 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
114     "SVM features advertised by CPUID.8000000AH:EDX");
115 
116 static int disable_npf_assist;
117 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
118     &disable_npf_assist, 0, NULL);
119 
120 /* Maximum ASIDs supported by the processor */
121 static uint32_t nasid;
122 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
123     "Number of ASIDs supported by this processor");
124 
125 /* Current ASID generation for each host cpu */
126 static struct asid asid[MAXCPU];
127 
128 /* SVM host state saved area of size 4KB for each physical core. */
129 static uint8_t *hsave;
130 
131 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
132 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
133 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
134 
135 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
136 static int svm_setreg(void *vcpui, int ident, uint64_t val);
137 static int svm_getreg(void *vcpui, int ident, uint64_t *val);
138 static __inline int
flush_by_asid(void)139 flush_by_asid(void)
140 {
141 
142 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
143 }
144 
145 static __inline int
decode_assist(void)146 decode_assist(void)
147 {
148 
149 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
150 }
151 
152 static void
svm_disable(void * arg __unused)153 svm_disable(void *arg __unused)
154 {
155 	uint64_t efer;
156 
157 	efer = rdmsr(MSR_EFER);
158 	efer &= ~EFER_SVM;
159 	wrmsr(MSR_EFER, efer);
160 }
161 
162 /*
163  * Disable SVM on all CPUs.
164  */
165 static int
svm_modcleanup(void)166 svm_modcleanup(void)
167 {
168 
169 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
170 
171 	if (hsave != NULL)
172 		kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
173 
174 	return (0);
175 }
176 
177 /*
178  * Verify that all the features required by bhyve are available.
179  */
180 static int
check_svm_features(void)181 check_svm_features(void)
182 {
183 	u_int regs[4];
184 
185 	/* CPUID Fn8000_000A is for SVM */
186 	do_cpuid(0x8000000A, regs);
187 	svm_feature &= regs[3];
188 
189 	/*
190 	 * The number of ASIDs can be configured to be less than what is
191 	 * supported by the hardware but not more.
192 	 */
193 	if (nasid == 0 || nasid > regs[1])
194 		nasid = regs[1];
195 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
196 
197 	/* bhyve requires the Nested Paging feature */
198 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
199 		printf("SVM: Nested Paging feature not available.\n");
200 		return (ENXIO);
201 	}
202 
203 	/* bhyve requires the NRIP Save feature */
204 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
205 		printf("SVM: NRIP Save feature not available.\n");
206 		return (ENXIO);
207 	}
208 
209 	return (0);
210 }
211 
212 static void
svm_enable(void * arg __unused)213 svm_enable(void *arg __unused)
214 {
215 	uint64_t efer;
216 
217 	efer = rdmsr(MSR_EFER);
218 	efer |= EFER_SVM;
219 	wrmsr(MSR_EFER, efer);
220 
221 	wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
222 }
223 
224 /*
225  * Return 1 if SVM is enabled on this processor and 0 otherwise.
226  */
227 static int
svm_available(void)228 svm_available(void)
229 {
230 	uint64_t msr;
231 
232 	/* Section 15.4 Enabling SVM from APM2. */
233 	if ((amd_feature2 & AMDID2_SVM) == 0) {
234 		printf("SVM: not available.\n");
235 		return (0);
236 	}
237 
238 	msr = rdmsr(MSR_VM_CR);
239 	if ((msr & VM_CR_SVMDIS) != 0) {
240 		printf("SVM: disabled by BIOS.\n");
241 		return (0);
242 	}
243 
244 	return (1);
245 }
246 
247 static int
svm_modinit(int ipinum)248 svm_modinit(int ipinum)
249 {
250 	int error, cpu;
251 
252 	if (!svm_available())
253 		return (ENXIO);
254 
255 	error = check_svm_features();
256 	if (error)
257 		return (error);
258 
259 	vmcb_clean &= VMCB_CACHE_DEFAULT;
260 
261 	for (cpu = 0; cpu < MAXCPU; cpu++) {
262 		/*
263 		 * Initialize the host ASIDs to their "highest" valid values.
264 		 *
265 		 * The next ASID allocation will rollover both 'gen' and 'num'
266 		 * and start off the sequence at {1,1}.
267 		 */
268 		asid[cpu].gen = ~0UL;
269 		asid[cpu].num = nasid - 1;
270 	}
271 
272 	svm_msr_init();
273 	svm_npt_init(ipinum);
274 
275 	/* Enable SVM on all CPUs */
276 	hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
277 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
278 
279 	return (0);
280 }
281 
282 static void
svm_modsuspend(void)283 svm_modsuspend(void)
284 {
285 }
286 
287 static void
svm_modresume(void)288 svm_modresume(void)
289 {
290 
291 	svm_enable(NULL);
292 }
293 
294 #ifdef BHYVE_SNAPSHOT
295 void
svm_set_tsc_offset(struct svm_vcpu * vcpu,uint64_t offset)296 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
297 {
298 	struct vmcb_ctrl *ctrl;
299 
300 	ctrl = svm_get_vmcb_ctrl(vcpu);
301 	ctrl->tsc_offset = offset;
302 
303 	svm_set_dirty(vcpu, VMCB_CACHE_I);
304 	SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
305 
306 	vm_set_tsc_offset(vcpu->vcpu, offset);
307 }
308 #endif
309 
310 /* Pentium compatible MSRs */
311 #define MSR_PENTIUM_START 	0
312 #define MSR_PENTIUM_END 	0x1FFF
313 /* AMD 6th generation and Intel compatible MSRs */
314 #define MSR_AMD6TH_START 	0xC0000000UL
315 #define MSR_AMD6TH_END 		0xC0001FFFUL
316 /* AMD 7th and 8th generation compatible MSRs */
317 #define MSR_AMD7TH_START 	0xC0010000UL
318 #define MSR_AMD7TH_END 		0xC0011FFFUL
319 
320 /*
321  * Get the index and bit position for a MSR in permission bitmap.
322  * Two bits are used for each MSR: lower bit for read and higher bit for write.
323  */
324 static int
svm_msr_index(uint64_t msr,int * index,int * bit)325 svm_msr_index(uint64_t msr, int *index, int *bit)
326 {
327 	uint32_t base, off;
328 
329 	*index = -1;
330 	*bit = (msr % 4) * 2;
331 	base = 0;
332 
333 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
334 		*index = msr / 4;
335 		return (0);
336 	}
337 
338 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
339 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
340 		off = (msr - MSR_AMD6TH_START);
341 		*index = (off + base) / 4;
342 		return (0);
343 	}
344 
345 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
346 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
347 		off = (msr - MSR_AMD7TH_START);
348 		*index = (off + base) / 4;
349 		return (0);
350 	}
351 
352 	return (EINVAL);
353 }
354 
355 /*
356  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
357  */
358 static void
svm_msr_perm(uint8_t * perm_bitmap,uint64_t msr,bool read,bool write)359 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
360 {
361 	int index, bit, error __diagused;
362 
363 	error = svm_msr_index(msr, &index, &bit);
364 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
365 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
366 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
367 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
368 	    "msr %#lx", __func__, bit, msr));
369 
370 	if (read)
371 		perm_bitmap[index] &= ~(1UL << bit);
372 
373 	if (write)
374 		perm_bitmap[index] &= ~(2UL << bit);
375 }
376 
377 static void
svm_msr_rw_ok(uint8_t * perm_bitmap,uint64_t msr)378 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
379 {
380 
381 	svm_msr_perm(perm_bitmap, msr, true, true);
382 }
383 
384 static void
svm_msr_rd_ok(uint8_t * perm_bitmap,uint64_t msr)385 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
386 {
387 
388 	svm_msr_perm(perm_bitmap, msr, true, false);
389 }
390 
391 static __inline int
svm_get_intercept(struct svm_vcpu * vcpu,int idx,uint32_t bitmask)392 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
393 {
394 	struct vmcb_ctrl *ctrl;
395 
396 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
397 
398 	ctrl = svm_get_vmcb_ctrl(vcpu);
399 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
400 }
401 
402 static __inline void
svm_set_intercept(struct svm_vcpu * vcpu,int idx,uint32_t bitmask,int enabled)403 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
404 {
405 	struct vmcb_ctrl *ctrl;
406 	uint32_t oldval;
407 
408 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
409 
410 	ctrl = svm_get_vmcb_ctrl(vcpu);
411 	oldval = ctrl->intercept[idx];
412 
413 	if (enabled)
414 		ctrl->intercept[idx] |= bitmask;
415 	else
416 		ctrl->intercept[idx] &= ~bitmask;
417 
418 	if (ctrl->intercept[idx] != oldval) {
419 		svm_set_dirty(vcpu, VMCB_CACHE_I);
420 		SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
421 		    oldval, ctrl->intercept[idx]);
422 	}
423 }
424 
425 static __inline void
svm_disable_intercept(struct svm_vcpu * vcpu,int off,uint32_t bitmask)426 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
427 {
428 
429 	svm_set_intercept(vcpu, off, bitmask, 0);
430 }
431 
432 static __inline void
svm_enable_intercept(struct svm_vcpu * vcpu,int off,uint32_t bitmask)433 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
434 {
435 
436 	svm_set_intercept(vcpu, off, bitmask, 1);
437 }
438 
439 static void
vmcb_init(struct svm_softc * sc,struct svm_vcpu * vcpu,uint64_t iopm_base_pa,uint64_t msrpm_base_pa,uint64_t np_pml4)440 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
441     uint64_t msrpm_base_pa, uint64_t np_pml4)
442 {
443 	struct vmcb_ctrl *ctrl;
444 	struct vmcb_state *state;
445 	uint32_t mask;
446 	int n;
447 
448 	ctrl = svm_get_vmcb_ctrl(vcpu);
449 	state = svm_get_vmcb_state(vcpu);
450 
451 	ctrl->iopm_base_pa = iopm_base_pa;
452 	ctrl->msrpm_base_pa = msrpm_base_pa;
453 
454 	/* Enable nested paging */
455 	ctrl->np_enable = 1;
456 	ctrl->n_cr3 = np_pml4;
457 
458 	/*
459 	 * Intercept accesses to the control registers that are not shadowed
460 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
461 	 */
462 	for (n = 0; n < 16; n++) {
463 		mask = (BIT(n) << 16) | BIT(n);
464 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
465 			svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
466 		else
467 			svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
468 	}
469 
470 	/*
471 	 * Intercept everything when tracing guest exceptions otherwise
472 	 * just intercept machine check exception.
473 	 */
474 	if (vcpu_trace_exceptions(vcpu->vcpu)) {
475 		for (n = 0; n < 32; n++) {
476 			/*
477 			 * Skip unimplemented vectors in the exception bitmap.
478 			 */
479 			if (n == 2 || n == 9) {
480 				continue;
481 			}
482 			svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
483 		}
484 	} else {
485 		svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
486 	}
487 
488 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
489 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
490 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
491 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
492 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
493 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
494 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
495 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
496 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
497 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
498 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
499 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
500 
501 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
502 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
503 
504 	/*
505 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
506 	 * Non-intercepted VMMCALL causes #UD, skip it.
507 	 */
508 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
509 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
510 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
511 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
512 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
513 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
514 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
515 		svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
516 		    VMCB_INTCPT_WBINVD);
517 	}
518 
519 	/*
520 	 * From section "Canonicalization and Consistency Checks" in APMv2
521 	 * the VMRUN intercept bit must be set to pass the consistency check.
522 	 */
523 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
524 
525 	/*
526 	 * The ASID will be set to a non-zero value just before VMRUN.
527 	 */
528 	ctrl->asid = 0;
529 
530 	/*
531 	 * Section 15.21.1, Interrupt Masking in EFLAGS
532 	 * Section 15.21.2, Virtualizing APIC.TPR
533 	 *
534 	 * This must be set for %rflag and %cr8 isolation of guest and host.
535 	 */
536 	ctrl->v_intr_masking = 1;
537 
538 	/* Enable Last Branch Record aka LBR for debugging */
539 	ctrl->lbr_virt_en = 1;
540 	state->dbgctl = BIT(0);
541 
542 	/* EFER_SVM must always be set when the guest is executing */
543 	state->efer = EFER_SVM;
544 
545 	/* Set up the PAT to power-on state */
546 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
547 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
548 	    PAT_VALUE(2, PAT_UNCACHED)		|
549 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
550 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
551 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
552 	    PAT_VALUE(6, PAT_UNCACHED)		|
553 	    PAT_VALUE(7, PAT_UNCACHEABLE);
554 
555 	/* Set up DR6/7 to power-on state */
556 	state->dr6 = DBREG_DR6_RESERVED1;
557 	state->dr7 = DBREG_DR7_RESERVED1;
558 }
559 
560 /*
561  * Initialize a virtual machine.
562  */
563 static void *
svm_init(struct vm * vm,pmap_t pmap)564 svm_init(struct vm *vm, pmap_t pmap)
565 {
566 	struct svm_softc *svm_sc;
567 
568 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
569 
570 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
571 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
572 	if (svm_sc->msr_bitmap == NULL)
573 		panic("contigmalloc of SVM MSR bitmap failed");
574 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
575 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
576 	if (svm_sc->iopm_bitmap == NULL)
577 		panic("contigmalloc of SVM IO bitmap failed");
578 
579 	svm_sc->vm = vm;
580 	svm_sc->nptp = vtophys(pmap->pm_pmltop);
581 
582 	/*
583 	 * Intercept read and write accesses to all MSRs.
584 	 */
585 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
586 
587 	/*
588 	 * Access to the following MSRs is redirected to the VMCB when the
589 	 * guest is executing. Therefore it is safe to allow the guest to
590 	 * read/write these MSRs directly without hypervisor involvement.
591 	 */
592 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
593 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
594 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
595 
596 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
597 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
598 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
599 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
600 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
601 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
602 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
603 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
604 
605 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
606 
607 	/*
608 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
609 	 */
610 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
611 
612 	/* Intercept access to all I/O ports. */
613 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
614 
615 	return (svm_sc);
616 }
617 
618 static void *
svm_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)619 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
620 {
621 	struct svm_softc *sc = vmi;
622 	struct svm_vcpu *vcpu;
623 
624 	vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
625 	vcpu->sc = sc;
626 	vcpu->vcpu = vcpu1;
627 	vcpu->vcpuid = vcpuid;
628 	vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
629 	    M_WAITOK | M_ZERO);
630 	vcpu->nextrip = ~0;
631 	vcpu->lastcpu = NOCPU;
632 	vcpu->vmcb_pa = vtophys(vcpu->vmcb);
633 	vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
634 	    sc->nptp);
635 	svm_msr_guest_init(sc, vcpu);
636 	return (vcpu);
637 }
638 
639 /*
640  * Collateral for a generic SVM VM-exit.
641  */
642 static void
vm_exit_svm(struct vm_exit * vme,uint64_t code,uint64_t info1,uint64_t info2)643 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
644 {
645 
646 	vme->exitcode = VM_EXITCODE_SVM;
647 	vme->u.svm.exitcode = code;
648 	vme->u.svm.exitinfo1 = info1;
649 	vme->u.svm.exitinfo2 = info2;
650 }
651 
652 static int
svm_cpl(struct vmcb_state * state)653 svm_cpl(struct vmcb_state *state)
654 {
655 
656 	/*
657 	 * From APMv2:
658 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
659 	 *    from any segment DPL"
660 	 */
661 	return (state->cpl);
662 }
663 
664 static enum vm_cpu_mode
svm_vcpu_mode(struct vmcb * vmcb)665 svm_vcpu_mode(struct vmcb *vmcb)
666 {
667 	struct vmcb_segment seg;
668 	struct vmcb_state *state;
669 	int error __diagused;
670 
671 	state = &vmcb->state;
672 
673 	if (state->efer & EFER_LMA) {
674 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
675 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
676 		    error));
677 
678 		/*
679 		 * Section 4.8.1 for APM2, check if Code Segment has
680 		 * Long attribute set in descriptor.
681 		 */
682 		if (seg.attrib & VMCB_CS_ATTRIB_L)
683 			return (CPU_MODE_64BIT);
684 		else
685 			return (CPU_MODE_COMPATIBILITY);
686 	} else  if (state->cr0 & CR0_PE) {
687 		return (CPU_MODE_PROTECTED);
688 	} else {
689 		return (CPU_MODE_REAL);
690 	}
691 }
692 
693 static enum vm_paging_mode
svm_paging_mode(uint64_t cr0,uint64_t cr4,uint64_t efer)694 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
695 {
696 
697 	if ((cr0 & CR0_PG) == 0)
698 		return (PAGING_MODE_FLAT);
699 	if ((cr4 & CR4_PAE) == 0)
700 		return (PAGING_MODE_32);
701 	if (efer & EFER_LME)
702 		return (PAGING_MODE_64);
703 	else
704 		return (PAGING_MODE_PAE);
705 }
706 
707 /*
708  * ins/outs utility routines
709  */
710 static uint64_t
svm_inout_str_index(struct svm_regctx * regs,int in)711 svm_inout_str_index(struct svm_regctx *regs, int in)
712 {
713 	uint64_t val;
714 
715 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
716 
717 	return (val);
718 }
719 
720 static uint64_t
svm_inout_str_count(struct svm_regctx * regs,int rep)721 svm_inout_str_count(struct svm_regctx *regs, int rep)
722 {
723 	uint64_t val;
724 
725 	val = rep ? regs->sctx_rcx : 1;
726 
727 	return (val);
728 }
729 
730 static void
svm_inout_str_seginfo(struct svm_vcpu * vcpu,int64_t info1,int in,struct vm_inout_str * vis)731 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
732     struct vm_inout_str *vis)
733 {
734 	int error __diagused, s;
735 
736 	if (in) {
737 		vis->seg_name = VM_REG_GUEST_ES;
738 	} else {
739 		/* The segment field has standard encoding */
740 		s = (info1 >> 10) & 0x7;
741 		vis->seg_name = vm_segment_name(s);
742 	}
743 
744 	error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
745 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
746 }
747 
748 static int
svm_inout_str_addrsize(uint64_t info1)749 svm_inout_str_addrsize(uint64_t info1)
750 {
751         uint32_t size;
752 
753         size = (info1 >> 7) & 0x7;
754         switch (size) {
755         case 1:
756                 return (2);     /* 16 bit */
757         case 2:
758                 return (4);     /* 32 bit */
759         case 4:
760                 return (8);     /* 64 bit */
761         default:
762                 panic("%s: invalid size encoding %d", __func__, size);
763         }
764 }
765 
766 static void
svm_paging_info(struct vmcb * vmcb,struct vm_guest_paging * paging)767 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
768 {
769 	struct vmcb_state *state;
770 
771 	state = &vmcb->state;
772 	paging->cr3 = state->cr3;
773 	paging->cpl = svm_cpl(state);
774 	paging->cpu_mode = svm_vcpu_mode(vmcb);
775 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
776 	    state->efer);
777 }
778 
779 #define	UNHANDLED 0
780 
781 /*
782  * Handle guest I/O intercept.
783  */
784 static int
svm_handle_io(struct svm_vcpu * vcpu,struct vm_exit * vmexit)785 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
786 {
787 	struct vmcb_ctrl *ctrl;
788 	struct vmcb_state *state;
789 	struct svm_regctx *regs;
790 	struct vm_inout_str *vis;
791 	uint64_t info1;
792 	int inout_string;
793 
794 	state = svm_get_vmcb_state(vcpu);
795 	ctrl  = svm_get_vmcb_ctrl(vcpu);
796 	regs  = svm_get_guest_regctx(vcpu);
797 
798 	info1 = ctrl->exitinfo1;
799 	inout_string = info1 & BIT(2) ? 1 : 0;
800 
801 	/*
802 	 * The effective segment number in EXITINFO1[12:10] is populated
803 	 * only if the processor has the DecodeAssist capability.
804 	 *
805 	 * XXX this is not specified explicitly in APMv2 but can be verified
806 	 * empirically.
807 	 */
808 	if (inout_string && !decode_assist())
809 		return (UNHANDLED);
810 
811 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
812 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
813 	vmexit->u.inout.string 	= inout_string;
814 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
815 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
816 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
817 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
818 
819 	if (inout_string) {
820 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
821 		vis = &vmexit->u.inout_str;
822 		svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
823 		vis->rflags = state->rflags;
824 		vis->cr0 = state->cr0;
825 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
826 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
827 		vis->addrsize = svm_inout_str_addrsize(info1);
828 		svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
829 	}
830 
831 	return (UNHANDLED);
832 }
833 
834 static int
npf_fault_type(uint64_t exitinfo1)835 npf_fault_type(uint64_t exitinfo1)
836 {
837 
838 	if (exitinfo1 & VMCB_NPF_INFO1_W)
839 		return (VM_PROT_WRITE);
840 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
841 		return (VM_PROT_EXECUTE);
842 	else
843 		return (VM_PROT_READ);
844 }
845 
846 static bool
svm_npf_emul_fault(uint64_t exitinfo1)847 svm_npf_emul_fault(uint64_t exitinfo1)
848 {
849 
850 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
851 		return (false);
852 	}
853 
854 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
855 		return (false);
856 	}
857 
858 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
859 		return (false);
860 	}
861 
862 	return (true);
863 }
864 
865 static void
svm_handle_inst_emul(struct vmcb * vmcb,uint64_t gpa,struct vm_exit * vmexit)866 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
867 {
868 	struct vm_guest_paging *paging;
869 	struct vmcb_segment seg;
870 	struct vmcb_ctrl *ctrl;
871 	char *inst_bytes;
872 	int error __diagused, inst_len;
873 
874 	ctrl = &vmcb->ctrl;
875 	paging = &vmexit->u.inst_emul.paging;
876 
877 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
878 	vmexit->u.inst_emul.gpa = gpa;
879 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
880 	svm_paging_info(vmcb, paging);
881 
882 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
883 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
884 
885 	switch(paging->cpu_mode) {
886 	case CPU_MODE_REAL:
887 		vmexit->u.inst_emul.cs_base = seg.base;
888 		vmexit->u.inst_emul.cs_d = 0;
889 		break;
890 	case CPU_MODE_PROTECTED:
891 	case CPU_MODE_COMPATIBILITY:
892 		vmexit->u.inst_emul.cs_base = seg.base;
893 
894 		/*
895 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
896 		 */
897 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
898 		    1 : 0;
899 		break;
900 	default:
901 		vmexit->u.inst_emul.cs_base = 0;
902 		vmexit->u.inst_emul.cs_d = 0;
903 		break;
904 	}
905 
906 	/*
907 	 * Copy the instruction bytes into 'vie' if available.
908 	 */
909 	if (decode_assist() && !disable_npf_assist) {
910 		inst_len = ctrl->inst_len;
911 		inst_bytes = ctrl->inst_bytes;
912 	} else {
913 		inst_len = 0;
914 		inst_bytes = NULL;
915 	}
916 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
917 }
918 
919 #ifdef KTR
920 static const char *
intrtype_to_str(int intr_type)921 intrtype_to_str(int intr_type)
922 {
923 	switch (intr_type) {
924 	case VMCB_EVENTINJ_TYPE_INTR:
925 		return ("hwintr");
926 	case VMCB_EVENTINJ_TYPE_NMI:
927 		return ("nmi");
928 	case VMCB_EVENTINJ_TYPE_INTn:
929 		return ("swintr");
930 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
931 		return ("exception");
932 	default:
933 		panic("%s: unknown intr_type %d", __func__, intr_type);
934 	}
935 }
936 #endif
937 
938 /*
939  * Inject an event to vcpu as described in section 15.20, "Event injection".
940  */
941 static void
svm_eventinject(struct svm_vcpu * vcpu,int intr_type,int vector,uint32_t error,bool ec_valid)942 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
943     uint32_t error, bool ec_valid)
944 {
945 	struct vmcb_ctrl *ctrl;
946 
947 	ctrl = svm_get_vmcb_ctrl(vcpu);
948 
949 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
950 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
951 
952 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
953 	    __func__, vector));
954 
955 	switch (intr_type) {
956 	case VMCB_EVENTINJ_TYPE_INTR:
957 	case VMCB_EVENTINJ_TYPE_NMI:
958 	case VMCB_EVENTINJ_TYPE_INTn:
959 		break;
960 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
961 		if (vector >= 0 && vector <= 31 && vector != 2)
962 			break;
963 		/* FALLTHROUGH */
964 	default:
965 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
966 		    intr_type, vector);
967 	}
968 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
969 	if (ec_valid) {
970 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
971 		ctrl->eventinj |= (uint64_t)error << 32;
972 		SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
973 		    intrtype_to_str(intr_type), vector, error);
974 	} else {
975 		SVM_CTR2(vcpu, "Injecting %s at vector %d",
976 		    intrtype_to_str(intr_type), vector);
977 	}
978 }
979 
980 static void
svm_update_virqinfo(struct svm_vcpu * vcpu)981 svm_update_virqinfo(struct svm_vcpu *vcpu)
982 {
983 	struct vlapic *vlapic;
984 	struct vmcb_ctrl *ctrl;
985 
986 	vlapic = vm_lapic(vcpu->vcpu);
987 	ctrl = svm_get_vmcb_ctrl(vcpu);
988 
989 	/* Update %cr8 in the emulated vlapic */
990 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
991 
992 	/* Virtual interrupt injection is not used. */
993 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
994 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
995 }
996 
997 static void
svm_save_intinfo(struct svm_softc * svm_sc,struct svm_vcpu * vcpu)998 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
999 {
1000 	struct vmcb_ctrl *ctrl;
1001 	uint64_t intinfo;
1002 
1003 	ctrl = svm_get_vmcb_ctrl(vcpu);
1004 	intinfo = ctrl->exitintinfo;
1005 	if (!VMCB_EXITINTINFO_VALID(intinfo))
1006 		return;
1007 
1008 	/*
1009 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1010 	 *
1011 	 * If a #VMEXIT happened during event delivery then record the event
1012 	 * that was being delivered.
1013 	 */
1014 	SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1015 	    VMCB_EXITINTINFO_VECTOR(intinfo));
1016 	vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1017 	vm_exit_intinfo(vcpu->vcpu, intinfo);
1018 }
1019 
1020 #ifdef INVARIANTS
1021 static __inline int
vintr_intercept_enabled(struct svm_vcpu * vcpu)1022 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1023 {
1024 
1025 	return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1026 }
1027 #endif
1028 
1029 static __inline void
enable_intr_window_exiting(struct svm_vcpu * vcpu)1030 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1031 {
1032 	struct vmcb_ctrl *ctrl;
1033 
1034 	ctrl = svm_get_vmcb_ctrl(vcpu);
1035 
1036 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1037 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1038 		KASSERT(vintr_intercept_enabled(vcpu),
1039 		    ("%s: vintr intercept should be enabled", __func__));
1040 		return;
1041 	}
1042 
1043 	SVM_CTR0(vcpu, "Enable intr window exiting");
1044 	ctrl->v_irq = 1;
1045 	ctrl->v_ign_tpr = 1;
1046 	ctrl->v_intr_vector = 0;
1047 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1048 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1049 }
1050 
1051 static __inline void
disable_intr_window_exiting(struct svm_vcpu * vcpu)1052 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1053 {
1054 	struct vmcb_ctrl *ctrl;
1055 
1056 	ctrl = svm_get_vmcb_ctrl(vcpu);
1057 
1058 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1059 		KASSERT(!vintr_intercept_enabled(vcpu),
1060 		    ("%s: vintr intercept should be disabled", __func__));
1061 		return;
1062 	}
1063 
1064 	SVM_CTR0(vcpu, "Disable intr window exiting");
1065 	ctrl->v_irq = 0;
1066 	ctrl->v_intr_vector = 0;
1067 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1068 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1069 }
1070 
1071 static int
svm_modify_intr_shadow(struct svm_vcpu * vcpu,uint64_t val)1072 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1073 {
1074 	struct vmcb_ctrl *ctrl;
1075 	int oldval, newval;
1076 
1077 	ctrl = svm_get_vmcb_ctrl(vcpu);
1078 	oldval = ctrl->intr_shadow;
1079 	newval = val ? 1 : 0;
1080 	if (newval != oldval) {
1081 		ctrl->intr_shadow = newval;
1082 		SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1083 	}
1084 	return (0);
1085 }
1086 
1087 static int
svm_get_intr_shadow(struct svm_vcpu * vcpu,uint64_t * val)1088 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1089 {
1090 	struct vmcb_ctrl *ctrl;
1091 
1092 	ctrl = svm_get_vmcb_ctrl(vcpu);
1093 	*val = ctrl->intr_shadow;
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1099  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1100  * to track when the vcpu is done handling the NMI.
1101  */
1102 static int
nmi_blocked(struct svm_vcpu * vcpu)1103 nmi_blocked(struct svm_vcpu *vcpu)
1104 {
1105 	int blocked;
1106 
1107 	blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1108 	return (blocked);
1109 }
1110 
1111 static void
enable_nmi_blocking(struct svm_vcpu * vcpu)1112 enable_nmi_blocking(struct svm_vcpu *vcpu)
1113 {
1114 
1115 	KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1116 	SVM_CTR0(vcpu, "vNMI blocking enabled");
1117 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1118 }
1119 
1120 static void
clear_nmi_blocking(struct svm_vcpu * vcpu)1121 clear_nmi_blocking(struct svm_vcpu *vcpu)
1122 {
1123 	int error __diagused;
1124 
1125 	KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1126 	SVM_CTR0(vcpu, "vNMI blocking cleared");
1127 	/*
1128 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1129 	 * the "iret" when it runs next. However, it is possible to inject
1130 	 * another NMI into the vcpu before the "iret" has actually executed.
1131 	 *
1132 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1133 	 * it will trap back into the hypervisor. If an NMI is pending for
1134 	 * the vcpu it will be injected into the guest.
1135 	 *
1136 	 * XXX this needs to be fixed
1137 	 */
1138 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1139 
1140 	/*
1141 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1142 	 * immediate VMRUN.
1143 	 */
1144 	error = svm_modify_intr_shadow(vcpu, 1);
1145 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1146 }
1147 
1148 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1149 
1150 static int
svm_write_efer(struct svm_softc * sc,struct svm_vcpu * vcpu,uint64_t newval,bool * retu)1151 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1152     bool *retu)
1153 {
1154 	struct vm_exit *vme;
1155 	struct vmcb_state *state;
1156 	uint64_t changed, lma, oldval;
1157 	int error __diagused;
1158 
1159 	state = svm_get_vmcb_state(vcpu);
1160 
1161 	oldval = state->efer;
1162 	SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1163 
1164 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1165 	changed = oldval ^ newval;
1166 
1167 	if (newval & EFER_MBZ_BITS)
1168 		goto gpf;
1169 
1170 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1171 	if (changed & EFER_LME) {
1172 		if (state->cr0 & CR0_PG)
1173 			goto gpf;
1174 	}
1175 
1176 	/* EFER.LMA = EFER.LME & CR0.PG */
1177 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1178 		lma = EFER_LMA;
1179 	else
1180 		lma = 0;
1181 
1182 	if ((newval & EFER_LMA) != lma)
1183 		goto gpf;
1184 
1185 	if (newval & EFER_NXE) {
1186 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1187 			goto gpf;
1188 	}
1189 
1190 	/*
1191 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1192 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1193 	 */
1194 	if (newval & EFER_LMSLE) {
1195 		vme = vm_exitinfo(vcpu->vcpu);
1196 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1197 		*retu = true;
1198 		return (0);
1199 	}
1200 
1201 	if (newval & EFER_FFXSR) {
1202 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1203 			goto gpf;
1204 	}
1205 
1206 	if (newval & EFER_TCE) {
1207 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1208 			goto gpf;
1209 	}
1210 
1211 	error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1212 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1213 	return (0);
1214 gpf:
1215 	vm_inject_gp(vcpu->vcpu);
1216 	return (0);
1217 }
1218 
1219 static int
emulate_wrmsr(struct svm_softc * sc,struct svm_vcpu * vcpu,u_int num,uint64_t val,bool * retu)1220 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1221     uint64_t val, bool *retu)
1222 {
1223 	int error;
1224 
1225 	if (lapic_msr(num))
1226 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1227 	else if (num == MSR_EFER)
1228 		error = svm_write_efer(sc, vcpu, val, retu);
1229 	else
1230 		error = svm_wrmsr(vcpu, num, val, retu);
1231 
1232 	return (error);
1233 }
1234 
1235 static int
emulate_rdmsr(struct svm_vcpu * vcpu,u_int num,bool * retu)1236 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1237 {
1238 	struct vmcb_state *state;
1239 	struct svm_regctx *ctx;
1240 	uint64_t result;
1241 	int error;
1242 
1243 	if (lapic_msr(num))
1244 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1245 	else
1246 		error = svm_rdmsr(vcpu, num, &result, retu);
1247 
1248 	if (error == 0) {
1249 		state = svm_get_vmcb_state(vcpu);
1250 		ctx = svm_get_guest_regctx(vcpu);
1251 		state->rax = result & 0xffffffff;
1252 		ctx->sctx_rdx = result >> 32;
1253 	}
1254 
1255 	return (error);
1256 }
1257 
1258 #ifdef KTR
1259 static const char *
exit_reason_to_str(uint64_t reason)1260 exit_reason_to_str(uint64_t reason)
1261 {
1262 	int i;
1263 	static char reasonbuf[32];
1264 	static const struct {
1265 		int reason;
1266 		const char *str;
1267 	} reasons[] = {
1268 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1269 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1270 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1271 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1272 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1273 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1274 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1275 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1276 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1277 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1278 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1279 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1280 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1281 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1282 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1283 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1284 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1285 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1286 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1287 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1288 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1289 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1290 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1291 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1292 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1293 		{ .reason = VMCB_EXIT_POPF,	.str = "popf" },
1294 		{ .reason = VMCB_EXIT_PUSHF,	.str = "pushf" },
1295 	};
1296 
1297 	for (i = 0; i < nitems(reasons); i++) {
1298 		if (reasons[i].reason == reason)
1299 			return (reasons[i].str);
1300 	}
1301 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1302 	return (reasonbuf);
1303 }
1304 #endif	/* KTR */
1305 
1306 /*
1307  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1308  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1309  * and exceptions caused by INT3, INTO and BOUND instructions.
1310  *
1311  * Return 1 if the nRIP is valid and 0 otherwise.
1312  */
1313 static int
nrip_valid(uint64_t exitcode)1314 nrip_valid(uint64_t exitcode)
1315 {
1316 	switch (exitcode) {
1317 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1318 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1319 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1320 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1321 	case 0x43:		/* INT3 */
1322 	case 0x44:		/* INTO */
1323 	case 0x45:		/* BOUND */
1324 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1325 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1326 		return (1);
1327 	default:
1328 		return (0);
1329 	}
1330 }
1331 
1332 static int
svm_vmexit(struct svm_softc * svm_sc,struct svm_vcpu * vcpu,struct vm_exit * vmexit)1333 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1334     struct vm_exit *vmexit)
1335 {
1336 	struct vmcb *vmcb;
1337 	struct vmcb_state *state;
1338 	struct vmcb_ctrl *ctrl;
1339 	struct svm_regctx *ctx;
1340 	uint64_t code, info1, info2, val;
1341 	uint32_t eax, ecx, edx;
1342 	int error __diagused, errcode_valid, handled, idtvec, reflect;
1343 	bool retu;
1344 
1345 	ctx = svm_get_guest_regctx(vcpu);
1346 	vmcb = svm_get_vmcb(vcpu);
1347 	state = &vmcb->state;
1348 	ctrl = &vmcb->ctrl;
1349 
1350 	handled = 0;
1351 	code = ctrl->exitcode;
1352 	info1 = ctrl->exitinfo1;
1353 	info2 = ctrl->exitinfo2;
1354 
1355 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1356 	vmexit->rip = state->rip;
1357 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1358 
1359 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1360 
1361 	/*
1362 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1363 	 * in an inconsistent state and can trigger assertions that would
1364 	 * never happen otherwise.
1365 	 */
1366 	if (code == VMCB_EXIT_INVALID) {
1367 		vm_exit_svm(vmexit, code, info1, info2);
1368 		return (0);
1369 	}
1370 
1371 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1372 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1373 
1374 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1375 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1376 	    vmexit->inst_length, code, info1, info2));
1377 
1378 	svm_update_virqinfo(vcpu);
1379 	svm_save_intinfo(svm_sc, vcpu);
1380 
1381 	switch (code) {
1382 	case VMCB_EXIT_IRET:
1383 		/*
1384 		 * Restart execution at "iret" but with the intercept cleared.
1385 		 */
1386 		vmexit->inst_length = 0;
1387 		clear_nmi_blocking(vcpu);
1388 		handled = 1;
1389 		break;
1390 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1391 		vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1392 		handled = 1;
1393 		break;
1394 	case VMCB_EXIT_INTR:	/* external interrupt */
1395 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1396 		handled = 1;
1397 		break;
1398 	case VMCB_EXIT_NMI:	/* external NMI */
1399 		handled = 1;
1400 		break;
1401 	case 0x40 ... 0x5F:
1402 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1403 		reflect = 1;
1404 		idtvec = code - 0x40;
1405 		switch (idtvec) {
1406 		case IDT_MC:
1407 			/*
1408 			 * Call the machine check handler by hand. Also don't
1409 			 * reflect the machine check back into the guest.
1410 			 */
1411 			reflect = 0;
1412 			SVM_CTR0(vcpu, "Vectoring to MCE handler");
1413 			__asm __volatile("int $18");
1414 			break;
1415 		case IDT_PF:
1416 			error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1417 			KASSERT(error == 0, ("%s: error %d updating cr2",
1418 			    __func__, error));
1419 			/* fallthru */
1420 		case IDT_NP:
1421 		case IDT_SS:
1422 		case IDT_GP:
1423 		case IDT_AC:
1424 		case IDT_TS:
1425 			errcode_valid = 1;
1426 			break;
1427 
1428 		case IDT_DF:
1429 			errcode_valid = 1;
1430 			info1 = 0;
1431 			break;
1432 		case IDT_DB: {
1433 			/*
1434 			 * Check if we are being stepped (RFLAGS.TF)
1435 			 * and bounce vmexit to userland.
1436 			 */
1437 			bool stepped = 0;
1438 			uint64_t dr6 = 0;
1439 
1440 			svm_getreg(vcpu, VM_REG_GUEST_DR6, &dr6);
1441 			stepped = !!(dr6 & DBREG_DR6_BS);
1442 			if (stepped && (vcpu->caps & (1 << VM_CAP_RFLAGS_TF))) {
1443 				vmexit->exitcode = VM_EXITCODE_DB;
1444 				vmexit->u.dbg.trace_trap = 1;
1445 				vmexit->u.dbg.pushf_intercept = 0;
1446 
1447 				if (vcpu->dbg.popf_sstep) {
1448 					/*
1449 					 * DB# exit was caused by stepping over
1450 					 * popf.
1451 					 */
1452 					uint64_t rflags;
1453 
1454 					vcpu->dbg.popf_sstep = 0;
1455 
1456 					/*
1457 					 * Update shadowed TF bit so the next
1458 					 * setcap(..., RFLAGS_SSTEP, 0) restores
1459 					 * the correct value
1460 					 */
1461 					svm_getreg(vcpu, VM_REG_GUEST_RFLAGS,
1462 					    &rflags);
1463 					vcpu->dbg.rflags_tf = rflags & PSL_T;
1464 				} else if (vcpu->dbg.pushf_sstep) {
1465 					/*
1466 					 * DB# exit was caused by stepping over
1467 					 * pushf.
1468 					 */
1469 					vcpu->dbg.pushf_sstep = 0;
1470 
1471 					/*
1472 					 * Adjusting the pushed rflags after a
1473 					 * restarted pushf instruction must be
1474 					 * handled outside of svm.c due to the
1475 					 * critical_enter() lock being held.
1476 					 */
1477 					vmexit->u.dbg.pushf_intercept = 1;
1478 					vmexit->u.dbg.tf_shadow_val =
1479 					    vcpu->dbg.rflags_tf;
1480 					svm_paging_info(svm_get_vmcb(vcpu),
1481 					    &vmexit->u.dbg.paging);
1482 				}
1483 
1484 				/* Clear DR6 "single-step" bit. */
1485 				dr6 &= ~DBREG_DR6_BS;
1486 				error = svm_setreg(vcpu, VM_REG_GUEST_DR6, dr6);
1487 				KASSERT(error == 0,
1488 				    ("%s: error %d updating DR6\r\n", __func__,
1489 					error));
1490 
1491 				reflect = 0;
1492 			}
1493 			break;
1494 		}
1495 		case IDT_BP:
1496 			vmexit->exitcode = VM_EXITCODE_BPT;
1497 			vmexit->u.bpt.inst_length = vmexit->inst_length;
1498 			vmexit->inst_length = 0;
1499 
1500 			reflect = 0;
1501 			break;
1502 		case IDT_OF:
1503 		case IDT_BR:
1504 			/*
1505 			 * The 'nrip' field is populated for INT3, INTO and
1506 			 * BOUND exceptions and this also implies that
1507 			 * 'inst_length' is non-zero.
1508 			 *
1509 			 * Reset 'inst_length' to zero so the guest %rip at
1510 			 * event injection is identical to what it was when
1511 			 * the exception originally happened.
1512 			 */
1513 			SVM_CTR2(vcpu, "Reset inst_length from %d "
1514 			    "to zero before injecting exception %d",
1515 			    vmexit->inst_length, idtvec);
1516 			vmexit->inst_length = 0;
1517 			/* fallthru */
1518 		default:
1519 			errcode_valid = 0;
1520 			info1 = 0;
1521 			break;
1522 		}
1523 
1524 		if (reflect) {
1525 			KASSERT(vmexit->inst_length == 0,
1526 			    ("invalid inst_length (%d) "
1527 			     "when reflecting exception %d into guest",
1528 				vmexit->inst_length, idtvec));
1529 			/* Reflect the exception back into the guest */
1530 			SVM_CTR2(vcpu, "Reflecting exception "
1531 			    "%d/%#x into the guest", idtvec, (int)info1);
1532 			error = vm_inject_exception(vcpu->vcpu, idtvec,
1533 			    errcode_valid, info1, 0);
1534 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1535 			    __func__, error));
1536 			handled = 1;
1537 		}
1538 		break;
1539 	case VMCB_EXIT_MSR:	/* MSR access. */
1540 		eax = state->rax;
1541 		ecx = ctx->sctx_rcx;
1542 		edx = ctx->sctx_rdx;
1543 		retu = false;
1544 
1545 		if (info1) {
1546 			vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1547 			val = (uint64_t)edx << 32 | eax;
1548 			SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1549 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1550 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1551 				vmexit->u.msr.code = ecx;
1552 				vmexit->u.msr.wval = val;
1553 			} else if (!retu) {
1554 				handled = 1;
1555 			} else {
1556 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1557 				    ("emulate_wrmsr retu with bogus exitcode"));
1558 			}
1559 		} else {
1560 			SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1561 			vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1562 			if (emulate_rdmsr(vcpu, ecx, &retu)) {
1563 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1564 				vmexit->u.msr.code = ecx;
1565 			} else if (!retu) {
1566 				handled = 1;
1567 			} else {
1568 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1569 				    ("emulate_rdmsr retu with bogus exitcode"));
1570 			}
1571 		}
1572 		break;
1573 	case VMCB_EXIT_IO:
1574 		handled = svm_handle_io(vcpu, vmexit);
1575 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1576 		break;
1577 	case VMCB_EXIT_CPUID:
1578 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1579 		handled = x86_emulate_cpuid(vcpu->vcpu,
1580 		    &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1581 		    &ctx->sctx_rdx);
1582 		break;
1583 	case VMCB_EXIT_HLT:
1584 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1585 		vmexit->exitcode = VM_EXITCODE_HLT;
1586 		vmexit->u.hlt.rflags = state->rflags;
1587 		break;
1588 	case VMCB_EXIT_PAUSE:
1589 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1590 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1591 		break;
1592 	case VMCB_EXIT_NPF:
1593 		/* EXITINFO2 contains the faulting guest physical address */
1594 		if (info1 & VMCB_NPF_INFO1_RSV) {
1595 			SVM_CTR2(vcpu, "nested page fault with "
1596 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1597 			    info1, info2);
1598 		} else if (vm_mem_allocated(vcpu->vcpu, info2) ||
1599 		    ppt_is_mmio(svm_sc->vm, info2)) {
1600 			vmexit->exitcode = VM_EXITCODE_PAGING;
1601 			vmexit->u.paging.gpa = info2;
1602 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1603 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1604 			SVM_CTR3(vcpu, "nested page fault "
1605 			    "on gpa %#lx/%#lx at rip %#lx",
1606 			    info2, info1, state->rip);
1607 		} else if (svm_npf_emul_fault(info1)) {
1608 			svm_handle_inst_emul(vmcb, info2, vmexit);
1609 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1610 			SVM_CTR3(vcpu, "inst_emul fault "
1611 			    "for gpa %#lx/%#lx at rip %#lx",
1612 			    info2, info1, state->rip);
1613 		}
1614 		break;
1615 	case VMCB_EXIT_MONITOR:
1616 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1617 		break;
1618 	case VMCB_EXIT_MWAIT:
1619 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1620 		break;
1621 	case VMCB_EXIT_PUSHF: {
1622 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1623 			uint64_t rflags;
1624 
1625 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1626 			/* Restart this instruction. */
1627 			vmexit->inst_length = 0;
1628 			/* Disable PUSHF intercepts - avoid a loop. */
1629 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1630 			    VMCB_INTCPT_PUSHF, 0);
1631 			/* Trace restarted instruction. */
1632 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1633 			/* Let the IDT_DB handler know that pushf was stepped.
1634 			 */
1635 			vcpu->dbg.pushf_sstep = 1;
1636 			handled = 1;
1637 		}
1638 		break;
1639 	}
1640 	case VMCB_EXIT_POPF: {
1641 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1642 			uint64_t rflags;
1643 
1644 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1645 			/* Restart this instruction */
1646 			vmexit->inst_length = 0;
1647 			/* Disable POPF intercepts - avoid a loop*/
1648 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1649 			    VMCB_INTCPT_POPF, 0);
1650 			/* Trace restarted instruction */
1651 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1652 			vcpu->dbg.popf_sstep = 1;
1653 			handled = 1;
1654 		}
1655 		break;
1656 	}
1657 	case VMCB_EXIT_SHUTDOWN:
1658 	case VMCB_EXIT_VMRUN:
1659 	case VMCB_EXIT_VMMCALL:
1660 	case VMCB_EXIT_VMLOAD:
1661 	case VMCB_EXIT_VMSAVE:
1662 	case VMCB_EXIT_STGI:
1663 	case VMCB_EXIT_CLGI:
1664 	case VMCB_EXIT_SKINIT:
1665 	case VMCB_EXIT_ICEBP:
1666 	case VMCB_EXIT_INVLPGA:
1667 		vm_inject_ud(vcpu->vcpu);
1668 		handled = 1;
1669 		break;
1670 	case VMCB_EXIT_INVD:
1671 	case VMCB_EXIT_WBINVD:
1672 		/* ignore exit */
1673 		handled = 1;
1674 		break;
1675 	default:
1676 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1677 		break;
1678 	}
1679 
1680 	SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1681 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1682 	    vmexit->rip, vmexit->inst_length);
1683 
1684 	if (handled) {
1685 		vmexit->rip += vmexit->inst_length;
1686 		vmexit->inst_length = 0;
1687 		state->rip = vmexit->rip;
1688 	} else {
1689 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1690 			/*
1691 			 * If this VM exit was not claimed by anybody then
1692 			 * treat it as a generic SVM exit.
1693 			 */
1694 			vm_exit_svm(vmexit, code, info1, info2);
1695 		} else {
1696 			/*
1697 			 * The exitcode and collateral have been populated.
1698 			 * The VM exit will be processed further in userland.
1699 			 */
1700 		}
1701 	}
1702 	return (handled);
1703 }
1704 
1705 static void
svm_inj_intinfo(struct svm_softc * svm_sc,struct svm_vcpu * vcpu)1706 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1707 {
1708 	uint64_t intinfo;
1709 
1710 	if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1711 		return;
1712 
1713 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1714 	    "valid: %#lx", __func__, intinfo));
1715 
1716 	svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1717 		VMCB_EXITINTINFO_VECTOR(intinfo),
1718 		VMCB_EXITINTINFO_EC(intinfo),
1719 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1720 	vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1721 	SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1722 }
1723 
1724 /*
1725  * Inject event to virtual cpu.
1726  */
1727 static void
svm_inj_interrupts(struct svm_softc * sc,struct svm_vcpu * vcpu,struct vlapic * vlapic)1728 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1729     struct vlapic *vlapic)
1730 {
1731 	struct vmcb_ctrl *ctrl;
1732 	struct vmcb_state *state;
1733 	uint8_t v_tpr;
1734 	int vector, need_intr_window;
1735 	int extint_pending;
1736 
1737 	if (vcpu->caps & (1 << VM_CAP_MASK_HWINTR)) {
1738 		return;
1739 	}
1740 
1741 	state = svm_get_vmcb_state(vcpu);
1742 	ctrl  = svm_get_vmcb_ctrl(vcpu);
1743 
1744 	need_intr_window = 0;
1745 
1746 	if (vcpu->nextrip != state->rip) {
1747 		ctrl->intr_shadow = 0;
1748 		SVM_CTR2(vcpu, "Guest interrupt blocking "
1749 		    "cleared due to rip change: %#lx/%#lx",
1750 		    vcpu->nextrip, state->rip);
1751 	}
1752 
1753 	/*
1754 	 * Inject pending events or exceptions for this vcpu.
1755 	 *
1756 	 * An event might be pending because the previous #VMEXIT happened
1757 	 * during event delivery (i.e. ctrl->exitintinfo).
1758 	 *
1759 	 * An event might also be pending because an exception was injected
1760 	 * by the hypervisor (e.g. #PF during instruction emulation).
1761 	 */
1762 	svm_inj_intinfo(sc, vcpu);
1763 
1764 	/* NMI event has priority over interrupts. */
1765 	if (vm_nmi_pending(vcpu->vcpu)) {
1766 		if (nmi_blocked(vcpu)) {
1767 			/*
1768 			 * Can't inject another NMI if the guest has not
1769 			 * yet executed an "iret" after the last NMI.
1770 			 */
1771 			SVM_CTR0(vcpu, "Cannot inject NMI due "
1772 			    "to NMI-blocking");
1773 		} else if (ctrl->intr_shadow) {
1774 			/*
1775 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1776 			 */
1777 			SVM_CTR0(vcpu, "Cannot inject NMI due to "
1778 			    "interrupt shadow");
1779 			need_intr_window = 1;
1780 			goto done;
1781 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1782 			/*
1783 			 * If there is already an exception/interrupt pending
1784 			 * then defer the NMI until after that.
1785 			 */
1786 			SVM_CTR1(vcpu, "Cannot inject NMI due to "
1787 			    "eventinj %#lx", ctrl->eventinj);
1788 
1789 			/*
1790 			 * Use self-IPI to trigger a VM-exit as soon as
1791 			 * possible after the event injection is completed.
1792 			 *
1793 			 * This works only if the external interrupt exiting
1794 			 * is at a lower priority than the event injection.
1795 			 *
1796 			 * Although not explicitly specified in APMv2 the
1797 			 * relative priorities were verified empirically.
1798 			 */
1799 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1800 		} else {
1801 			vm_nmi_clear(vcpu->vcpu);
1802 
1803 			/* Inject NMI, vector number is not used */
1804 			svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1805 			    IDT_NMI, 0, false);
1806 
1807 			/* virtual NMI blocking is now in effect */
1808 			enable_nmi_blocking(vcpu);
1809 
1810 			SVM_CTR0(vcpu, "Injecting vNMI");
1811 		}
1812 	}
1813 
1814 	extint_pending = vm_extint_pending(vcpu->vcpu);
1815 	if (!extint_pending) {
1816 		if (!vlapic_pending_intr(vlapic, &vector))
1817 			goto done;
1818 		KASSERT(vector >= 16 && vector <= 255,
1819 		    ("invalid vector %d from local APIC", vector));
1820 	} else {
1821 		/* Ask the legacy pic for a vector to inject */
1822 		vatpic_pending_intr(sc->vm, &vector);
1823 		KASSERT(vector >= 0 && vector <= 255,
1824 		    ("invalid vector %d from INTR", vector));
1825 	}
1826 
1827 	/*
1828 	 * If the guest has disabled interrupts or is in an interrupt shadow
1829 	 * then we cannot inject the pending interrupt.
1830 	 */
1831 	if ((state->rflags & PSL_I) == 0) {
1832 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1833 		    "rflags %#lx", vector, state->rflags);
1834 		need_intr_window = 1;
1835 		goto done;
1836 	}
1837 
1838 	if (ctrl->intr_shadow) {
1839 		SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1840 		    "interrupt shadow", vector);
1841 		need_intr_window = 1;
1842 		goto done;
1843 	}
1844 
1845 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1846 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1847 		    "eventinj %#lx", vector, ctrl->eventinj);
1848 		need_intr_window = 1;
1849 		goto done;
1850 	}
1851 
1852 	svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1853 
1854 	if (!extint_pending) {
1855 		vlapic_intr_accepted(vlapic, vector);
1856 	} else {
1857 		vm_extint_clear(vcpu->vcpu);
1858 		vatpic_intr_accepted(sc->vm, vector);
1859 	}
1860 
1861 	/*
1862 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1863 	 * interrupt. This is done because the PIC might have another vector
1864 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1865 	 * that was preempted by the ExtInt then it allows us to inject the
1866 	 * APIC vector as soon as possible.
1867 	 */
1868 	need_intr_window = 1;
1869 done:
1870 	/*
1871 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1872 	 * the processor reflects this write to V_TPR without hypervisor
1873 	 * intervention.
1874 	 *
1875 	 * The guest can also modify the TPR by writing to it via the memory
1876 	 * mapped APIC page. In this case, the write will be emulated by the
1877 	 * hypervisor. For this reason V_TPR must be updated before every
1878 	 * VMRUN.
1879 	 */
1880 	v_tpr = vlapic_get_cr8(vlapic);
1881 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1882 	if (ctrl->v_tpr != v_tpr) {
1883 		SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1884 		    ctrl->v_tpr, v_tpr);
1885 		ctrl->v_tpr = v_tpr;
1886 		svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1887 	}
1888 
1889 	if (need_intr_window) {
1890 		/*
1891 		 * We use V_IRQ in conjunction with the VINTR intercept to
1892 		 * trap into the hypervisor as soon as a virtual interrupt
1893 		 * can be delivered.
1894 		 *
1895 		 * Since injected events are not subject to intercept checks
1896 		 * we need to ensure that the V_IRQ is not actually going to
1897 		 * be delivered on VM entry. The KASSERT below enforces this.
1898 		 */
1899 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1900 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1901 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1902 		    "intr_shadow (%u), rflags (%#lx)",
1903 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1904 		enable_intr_window_exiting(vcpu);
1905 	} else {
1906 		disable_intr_window_exiting(vcpu);
1907 	}
1908 }
1909 
1910 static __inline void
restore_host_tss(void)1911 restore_host_tss(void)
1912 {
1913 	struct system_segment_descriptor *tss_sd;
1914 
1915 	/*
1916 	 * The TSS descriptor was in use prior to launching the guest so it
1917 	 * has been marked busy.
1918 	 *
1919 	 * 'ltr' requires the descriptor to be marked available so change the
1920 	 * type to "64-bit available TSS".
1921 	 */
1922 	tss_sd = PCPU_GET(tss);
1923 	tss_sd->sd_type = SDT_SYSTSS;
1924 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1925 }
1926 
1927 static void
svm_pmap_activate(struct svm_vcpu * vcpu,pmap_t pmap)1928 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1929 {
1930 	struct vmcb_ctrl *ctrl;
1931 	long eptgen;
1932 	int cpu;
1933 	bool alloc_asid;
1934 
1935 	cpu = curcpu;
1936 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1937 	smr_enter(pmap->pm_eptsmr);
1938 
1939 	ctrl = svm_get_vmcb_ctrl(vcpu);
1940 
1941 	/*
1942 	 * The TLB entries associated with the vcpu's ASID are not valid
1943 	 * if either of the following conditions is true:
1944 	 *
1945 	 * 1. The vcpu's ASID generation is different than the host cpu's
1946 	 *    ASID generation. This happens when the vcpu migrates to a new
1947 	 *    host cpu. It can also happen when the number of vcpus executing
1948 	 *    on a host cpu is greater than the number of ASIDs available.
1949 	 *
1950 	 * 2. The pmap generation number is different than the value cached in
1951 	 *    the 'vcpustate'. This happens when the host invalidates pages
1952 	 *    belonging to the guest.
1953 	 *
1954 	 *	asidgen		eptgen	      Action
1955 	 *	mismatch	mismatch
1956 	 *	   0		   0		(a)
1957 	 *	   0		   1		(b1) or (b2)
1958 	 *	   1		   0		(c)
1959 	 *	   1		   1		(d)
1960 	 *
1961 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1962 	 *     no further action is needed.
1963 	 *
1964 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1965 	 *      retained and the TLB entries associated with this ASID
1966 	 *      are flushed by VMRUN.
1967 	 *
1968 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1969 	 *      allocated.
1970 	 *
1971 	 * (c) A new ASID is allocated.
1972 	 *
1973 	 * (d) A new ASID is allocated.
1974 	 */
1975 
1976 	alloc_asid = false;
1977 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1978 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1979 
1980 	if (vcpu->asid.gen != asid[cpu].gen) {
1981 		alloc_asid = true;	/* (c) and (d) */
1982 	} else if (vcpu->eptgen != eptgen) {
1983 		if (flush_by_asid())
1984 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1985 		else
1986 			alloc_asid = true;			/* (b2) */
1987 	} else {
1988 		/*
1989 		 * This is the common case (a).
1990 		 */
1991 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1992 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1993 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1994 	}
1995 
1996 	if (alloc_asid) {
1997 		if (++asid[cpu].num >= nasid) {
1998 			asid[cpu].num = 1;
1999 			if (++asid[cpu].gen == 0)
2000 				asid[cpu].gen = 1;
2001 			/*
2002 			 * If this cpu does not support "flush-by-asid"
2003 			 * then flush the entire TLB on a generation
2004 			 * bump. Subsequent ASID allocation in this
2005 			 * generation can be done without a TLB flush.
2006 			 */
2007 			if (!flush_by_asid())
2008 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
2009 		}
2010 		vcpu->asid.gen = asid[cpu].gen;
2011 		vcpu->asid.num = asid[cpu].num;
2012 
2013 		ctrl->asid = vcpu->asid.num;
2014 		svm_set_dirty(vcpu, VMCB_CACHE_ASID);
2015 		/*
2016 		 * If this cpu supports "flush-by-asid" then the TLB
2017 		 * was not flushed after the generation bump. The TLB
2018 		 * is flushed selectively after every new ASID allocation.
2019 		 */
2020 		if (flush_by_asid())
2021 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
2022 	}
2023 	vcpu->eptgen = eptgen;
2024 
2025 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
2026 	KASSERT(ctrl->asid == vcpu->asid.num,
2027 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
2028 }
2029 
2030 static void
svm_pmap_deactivate(pmap_t pmap)2031 svm_pmap_deactivate(pmap_t pmap)
2032 {
2033 	smr_exit(pmap->pm_eptsmr);
2034 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2035 }
2036 
2037 static __inline void
disable_gintr(void)2038 disable_gintr(void)
2039 {
2040 
2041 	__asm __volatile("clgi");
2042 }
2043 
2044 static __inline void
enable_gintr(void)2045 enable_gintr(void)
2046 {
2047 
2048         __asm __volatile("stgi");
2049 }
2050 
2051 static __inline void
svm_dr_enter_guest(struct svm_regctx * gctx)2052 svm_dr_enter_guest(struct svm_regctx *gctx)
2053 {
2054 
2055 	/* Save host control debug registers. */
2056 	gctx->host_dr7 = rdr7();
2057 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2058 
2059 	/*
2060 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2061 	 * exceptions in the host based on the guest DRx values.  The
2062 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
2063 	 * VMCB.
2064 	 */
2065 	load_dr7(0);
2066 	wrmsr(MSR_DEBUGCTLMSR, 0);
2067 
2068 	/* Save host debug registers. */
2069 	gctx->host_dr0 = rdr0();
2070 	gctx->host_dr1 = rdr1();
2071 	gctx->host_dr2 = rdr2();
2072 	gctx->host_dr3 = rdr3();
2073 	gctx->host_dr6 = rdr6();
2074 
2075 	/* Restore guest debug registers. */
2076 	load_dr0(gctx->sctx_dr0);
2077 	load_dr1(gctx->sctx_dr1);
2078 	load_dr2(gctx->sctx_dr2);
2079 	load_dr3(gctx->sctx_dr3);
2080 }
2081 
2082 static __inline void
svm_dr_leave_guest(struct svm_regctx * gctx)2083 svm_dr_leave_guest(struct svm_regctx *gctx)
2084 {
2085 
2086 	/* Save guest debug registers. */
2087 	gctx->sctx_dr0 = rdr0();
2088 	gctx->sctx_dr1 = rdr1();
2089 	gctx->sctx_dr2 = rdr2();
2090 	gctx->sctx_dr3 = rdr3();
2091 
2092 	/*
2093 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
2094 	 * last.
2095 	 */
2096 	load_dr0(gctx->host_dr0);
2097 	load_dr1(gctx->host_dr1);
2098 	load_dr2(gctx->host_dr2);
2099 	load_dr3(gctx->host_dr3);
2100 	load_dr6(gctx->host_dr6);
2101 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
2102 	load_dr7(gctx->host_dr7);
2103 }
2104 
2105 /*
2106  * Start vcpu with specified RIP.
2107  */
2108 static int
svm_run(void * vcpui,register_t rip,pmap_t pmap,struct vm_eventinfo * evinfo)2109 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2110 {
2111 	struct svm_regctx *gctx;
2112 	struct svm_softc *svm_sc;
2113 	struct svm_vcpu *vcpu;
2114 	struct vmcb_state *state;
2115 	struct vmcb_ctrl *ctrl;
2116 	struct vm_exit *vmexit;
2117 	struct vlapic *vlapic;
2118 	uint64_t vmcb_pa;
2119 	int handled;
2120 	uint16_t ldt_sel;
2121 
2122 	vcpu = vcpui;
2123 	svm_sc = vcpu->sc;
2124 	state = svm_get_vmcb_state(vcpu);
2125 	ctrl = svm_get_vmcb_ctrl(vcpu);
2126 	vmexit = vm_exitinfo(vcpu->vcpu);
2127 	vlapic = vm_lapic(vcpu->vcpu);
2128 
2129 	gctx = svm_get_guest_regctx(vcpu);
2130 	vmcb_pa = vcpu->vmcb_pa;
2131 
2132 	if (vcpu->lastcpu != curcpu) {
2133 		/*
2134 		 * Force new ASID allocation by invalidating the generation.
2135 		 */
2136 		vcpu->asid.gen = 0;
2137 
2138 		/*
2139 		 * Invalidate the VMCB state cache by marking all fields dirty.
2140 		 */
2141 		svm_set_dirty(vcpu, 0xffffffff);
2142 
2143 		/*
2144 		 * XXX
2145 		 * Setting 'vcpu->lastcpu' here is bit premature because
2146 		 * we may return from this function without actually executing
2147 		 * the VMRUN  instruction. This could happen if a rendezvous
2148 		 * or an AST is pending on the first time through the loop.
2149 		 *
2150 		 * This works for now but any new side-effects of vcpu
2151 		 * migration should take this case into account.
2152 		 */
2153 		vcpu->lastcpu = curcpu;
2154 		vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2155 	}
2156 
2157 	svm_msr_guest_enter(vcpu);
2158 
2159 	/* Update Guest RIP */
2160 	state->rip = rip;
2161 
2162 	do {
2163 		/*
2164 		 * Disable global interrupts to guarantee atomicity during
2165 		 * loading of guest state. This includes not only the state
2166 		 * loaded by the "vmrun" instruction but also software state
2167 		 * maintained by the hypervisor: suspended and rendezvous
2168 		 * state, NPT generation number, vlapic interrupts etc.
2169 		 */
2170 		disable_gintr();
2171 
2172 		if (vcpu_suspended(evinfo)) {
2173 			enable_gintr();
2174 			vm_exit_suspended(vcpu->vcpu, state->rip);
2175 			break;
2176 		}
2177 
2178 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2179 			enable_gintr();
2180 			vm_exit_rendezvous(vcpu->vcpu, state->rip);
2181 			break;
2182 		}
2183 
2184 		if (vcpu_reqidle(evinfo)) {
2185 			enable_gintr();
2186 			vm_exit_reqidle(vcpu->vcpu, state->rip);
2187 			break;
2188 		}
2189 
2190 		/* We are asked to give the cpu by scheduler. */
2191 		if (vcpu_should_yield(vcpu->vcpu)) {
2192 			enable_gintr();
2193 			vm_exit_astpending(vcpu->vcpu, state->rip);
2194 			break;
2195 		}
2196 
2197 		if (vcpu_debugged(vcpu->vcpu)) {
2198 			enable_gintr();
2199 			vm_exit_debug(vcpu->vcpu, state->rip);
2200 			break;
2201 		}
2202 
2203 		/*
2204 		 * #VMEXIT resumes the host with the guest LDTR, so
2205 		 * save the current LDT selector so it can be restored
2206 		 * after an exit.  The userspace hypervisor probably
2207 		 * doesn't use a LDT, but save and restore it to be
2208 		 * safe.
2209 		 */
2210 		ldt_sel = sldt();
2211 
2212 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2213 
2214 		/*
2215 		 * Check the pmap generation and the ASID generation to
2216 		 * ensure that the vcpu does not use stale TLB mappings.
2217 		 */
2218 		svm_pmap_activate(vcpu, pmap);
2219 
2220 		ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2221 		vcpu->dirty = 0;
2222 		SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2223 
2224 		/* Launch Virtual Machine. */
2225 		SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2226 		svm_dr_enter_guest(gctx);
2227 		svm_launch(vmcb_pa, gctx, get_pcpu());
2228 		svm_dr_leave_guest(gctx);
2229 
2230 		svm_pmap_deactivate(pmap);
2231 
2232 		/*
2233 		 * The host GDTR and IDTR is saved by VMRUN and restored
2234 		 * automatically on #VMEXIT. However, the host TSS needs
2235 		 * to be restored explicitly.
2236 		 */
2237 		restore_host_tss();
2238 
2239 		/* Restore host LDTR. */
2240 		lldt(ldt_sel);
2241 
2242 		/* #VMEXIT disables interrupts so re-enable them here. */
2243 		enable_gintr();
2244 
2245 		/* Update 'nextrip' */
2246 		vcpu->nextrip = state->rip;
2247 
2248 		/* Handle #VMEXIT and if required return to user space. */
2249 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2250 	} while (handled);
2251 
2252 	svm_msr_guest_exit(vcpu);
2253 
2254 	return (0);
2255 }
2256 
2257 static void
svm_vcpu_cleanup(void * vcpui)2258 svm_vcpu_cleanup(void *vcpui)
2259 {
2260 	struct svm_vcpu *vcpu = vcpui;
2261 
2262 	free(vcpu->vmcb, M_SVM);
2263 	free(vcpu, M_SVM);
2264 }
2265 
2266 static void
svm_cleanup(void * vmi)2267 svm_cleanup(void *vmi)
2268 {
2269 	struct svm_softc *sc = vmi;
2270 
2271 	free(sc->iopm_bitmap, M_SVM);
2272 	free(sc->msr_bitmap, M_SVM);
2273 	free(sc, M_SVM);
2274 }
2275 
2276 static register_t *
swctx_regptr(struct svm_regctx * regctx,int reg)2277 swctx_regptr(struct svm_regctx *regctx, int reg)
2278 {
2279 
2280 	switch (reg) {
2281 	case VM_REG_GUEST_RBX:
2282 		return (&regctx->sctx_rbx);
2283 	case VM_REG_GUEST_RCX:
2284 		return (&regctx->sctx_rcx);
2285 	case VM_REG_GUEST_RDX:
2286 		return (&regctx->sctx_rdx);
2287 	case VM_REG_GUEST_RDI:
2288 		return (&regctx->sctx_rdi);
2289 	case VM_REG_GUEST_RSI:
2290 		return (&regctx->sctx_rsi);
2291 	case VM_REG_GUEST_RBP:
2292 		return (&regctx->sctx_rbp);
2293 	case VM_REG_GUEST_R8:
2294 		return (&regctx->sctx_r8);
2295 	case VM_REG_GUEST_R9:
2296 		return (&regctx->sctx_r9);
2297 	case VM_REG_GUEST_R10:
2298 		return (&regctx->sctx_r10);
2299 	case VM_REG_GUEST_R11:
2300 		return (&regctx->sctx_r11);
2301 	case VM_REG_GUEST_R12:
2302 		return (&regctx->sctx_r12);
2303 	case VM_REG_GUEST_R13:
2304 		return (&regctx->sctx_r13);
2305 	case VM_REG_GUEST_R14:
2306 		return (&regctx->sctx_r14);
2307 	case VM_REG_GUEST_R15:
2308 		return (&regctx->sctx_r15);
2309 	case VM_REG_GUEST_DR0:
2310 		return (&regctx->sctx_dr0);
2311 	case VM_REG_GUEST_DR1:
2312 		return (&regctx->sctx_dr1);
2313 	case VM_REG_GUEST_DR2:
2314 		return (&regctx->sctx_dr2);
2315 	case VM_REG_GUEST_DR3:
2316 		return (&regctx->sctx_dr3);
2317 	default:
2318 		return (NULL);
2319 	}
2320 }
2321 
2322 static int
svm_getreg(void * vcpui,int ident,uint64_t * val)2323 svm_getreg(void *vcpui, int ident, uint64_t *val)
2324 {
2325 	struct svm_vcpu *vcpu;
2326 	register_t *reg;
2327 
2328 	vcpu = vcpui;
2329 
2330 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2331 		return (svm_get_intr_shadow(vcpu, val));
2332 	}
2333 
2334 	if (vmcb_read(vcpu, ident, val) == 0) {
2335 		return (0);
2336 	}
2337 
2338 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2339 
2340 	if (reg != NULL) {
2341 		*val = *reg;
2342 		return (0);
2343 	}
2344 
2345 	SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2346 	return (EINVAL);
2347 }
2348 
2349 static int
svm_setreg(void * vcpui,int ident,uint64_t val)2350 svm_setreg(void *vcpui, int ident, uint64_t val)
2351 {
2352 	struct svm_vcpu *vcpu;
2353 	register_t *reg;
2354 
2355 	vcpu = vcpui;
2356 
2357 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2358 		return (svm_modify_intr_shadow(vcpu, val));
2359 	}
2360 
2361 	/* Do not permit user write access to VMCB fields by offset. */
2362 	if (!VMCB_ACCESS_OK(ident)) {
2363 		if (vmcb_write(vcpu, ident, val) == 0) {
2364 			return (0);
2365 		}
2366 	}
2367 
2368 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2369 
2370 	if (reg != NULL) {
2371 		*reg = val;
2372 		return (0);
2373 	}
2374 
2375 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2376 		/* Ignore. */
2377 		return (0);
2378 	}
2379 
2380 	/*
2381 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2382 	 * vcpu's ASID. This needs to be treated differently depending on
2383 	 * whether 'running' is true/false.
2384 	 */
2385 
2386 	SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2387 	return (EINVAL);
2388 }
2389 
2390 static int
svm_getdesc(void * vcpui,int reg,struct seg_desc * desc)2391 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2392 {
2393 	return (vmcb_getdesc(vcpui, reg, desc));
2394 }
2395 
2396 static int
svm_setdesc(void * vcpui,int reg,struct seg_desc * desc)2397 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2398 {
2399 	return (vmcb_setdesc(vcpui, reg, desc));
2400 }
2401 
2402 #ifdef BHYVE_SNAPSHOT
2403 static int
svm_snapshot_reg(void * vcpui,int ident,struct vm_snapshot_meta * meta)2404 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2405 {
2406 	int ret;
2407 	uint64_t val;
2408 
2409 	if (meta->op == VM_SNAPSHOT_SAVE) {
2410 		ret = svm_getreg(vcpui, ident, &val);
2411 		if (ret != 0)
2412 			goto done;
2413 
2414 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2415 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2416 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2417 
2418 		ret = svm_setreg(vcpui, ident, val);
2419 		if (ret != 0)
2420 			goto done;
2421 	} else {
2422 		ret = EINVAL;
2423 		goto done;
2424 	}
2425 
2426 done:
2427 	return (ret);
2428 }
2429 #endif
2430 
2431 static int
svm_setcap(void * vcpui,int type,int val)2432 svm_setcap(void *vcpui, int type, int val)
2433 {
2434 	struct svm_vcpu *vcpu;
2435 	struct vlapic *vlapic;
2436 	int error;
2437 
2438 	vcpu = vcpui;
2439 	error = 0;
2440 
2441 	switch (type) {
2442 	case VM_CAP_HALT_EXIT:
2443 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2444 		    VMCB_INTCPT_HLT, val);
2445 		break;
2446 	case VM_CAP_PAUSE_EXIT:
2447 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2448 		    VMCB_INTCPT_PAUSE, val);
2449 		break;
2450 	case VM_CAP_UNRESTRICTED_GUEST:
2451 		/* Unrestricted guest execution cannot be disabled in SVM */
2452 		if (val == 0)
2453 			error = EINVAL;
2454 		break;
2455 	case VM_CAP_BPT_EXIT:
2456 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP), val);
2457 		break;
2458 	case VM_CAP_IPI_EXIT:
2459 		vlapic = vm_lapic(vcpu->vcpu);
2460 		vlapic->ipi_exit = val;
2461 		break;
2462 	case VM_CAP_MASK_HWINTR:
2463 		vcpu->caps &= ~(1 << VM_CAP_MASK_HWINTR);
2464 		vcpu->caps |= (val << VM_CAP_MASK_HWINTR);
2465 		break;
2466 	case VM_CAP_RFLAGS_TF: {
2467 		uint64_t rflags;
2468 
2469 		/* Fetch RFLAGS. */
2470 		if (svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags)) {
2471 			error = (EINVAL);
2472 			break;
2473 		}
2474 		if (val) {
2475 			/* Save current TF bit. */
2476 			vcpu->dbg.rflags_tf = rflags & PSL_T;
2477 			/* Trace next instruction. */
2478 			if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2479 				(rflags | PSL_T))) {
2480 				error = (EINVAL);
2481 				break;
2482 			}
2483 			vcpu->caps |= (1 << VM_CAP_RFLAGS_TF);
2484 		} else {
2485 			/*
2486 			 * Restore shadowed RFLAGS.TF only if vCPU was
2487 			 * previously stepped
2488 			 */
2489 			if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
2490 				rflags &= ~PSL_T;
2491 				rflags |= vcpu->dbg.rflags_tf;
2492 				vcpu->dbg.rflags_tf = 0;
2493 
2494 				if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2495 					rflags)) {
2496 					error = (EINVAL);
2497 					break;
2498 				}
2499 				vcpu->caps &= ~(1 << VM_CAP_RFLAGS_TF);
2500 			}
2501 		}
2502 
2503 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_DB), val);
2504 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_POPF,
2505 		    val);
2506 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PUSHF,
2507 		    val);
2508 		break;
2509 	}
2510 	default:
2511 		error = ENOENT;
2512 		break;
2513 	}
2514 	return (error);
2515 }
2516 
2517 static int
svm_getcap(void * vcpui,int type,int * retval)2518 svm_getcap(void *vcpui, int type, int *retval)
2519 {
2520 	struct svm_vcpu *vcpu;
2521 	struct vlapic *vlapic;
2522 	int error;
2523 
2524 	vcpu = vcpui;
2525 	error = 0;
2526 
2527 	switch (type) {
2528 	case VM_CAP_HALT_EXIT:
2529 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2530 		    VMCB_INTCPT_HLT);
2531 		break;
2532 	case VM_CAP_PAUSE_EXIT:
2533 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2534 		    VMCB_INTCPT_PAUSE);
2535 		break;
2536 	case VM_CAP_UNRESTRICTED_GUEST:
2537 		*retval = 1;	/* unrestricted guest is always enabled */
2538 		break;
2539 	case VM_CAP_BPT_EXIT:
2540 		*retval = svm_get_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP));
2541 		break;
2542 	case VM_CAP_IPI_EXIT:
2543 		vlapic = vm_lapic(vcpu->vcpu);
2544 		*retval = vlapic->ipi_exit;
2545 		break;
2546 	case VM_CAP_RFLAGS_TF:
2547 		*retval = !!(vcpu->caps & (1 << VM_CAP_RFLAGS_TF));
2548 		break;
2549 	case VM_CAP_MASK_HWINTR:
2550 		*retval = !!(vcpu->caps & (1 << VM_CAP_MASK_HWINTR));
2551 		break;
2552 	default:
2553 		error = ENOENT;
2554 		break;
2555 	}
2556 	return (error);
2557 }
2558 
2559 static struct vmspace *
svm_vmspace_alloc(vm_offset_t min,vm_offset_t max)2560 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2561 {
2562 	return (svm_npt_alloc(min, max));
2563 }
2564 
2565 static void
svm_vmspace_free(struct vmspace * vmspace)2566 svm_vmspace_free(struct vmspace *vmspace)
2567 {
2568 	svm_npt_free(vmspace);
2569 }
2570 
2571 static struct vlapic *
svm_vlapic_init(void * vcpui)2572 svm_vlapic_init(void *vcpui)
2573 {
2574 	struct svm_vcpu *vcpu;
2575 	struct vlapic *vlapic;
2576 
2577 	vcpu = vcpui;
2578 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2579 	vlapic->vm = vcpu->sc->vm;
2580 	vlapic->vcpu = vcpu->vcpu;
2581 	vlapic->vcpuid = vcpu->vcpuid;
2582 	vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2583 	    M_WAITOK | M_ZERO);
2584 
2585 	vlapic_init(vlapic);
2586 
2587 	return (vlapic);
2588 }
2589 
2590 static void
svm_vlapic_cleanup(struct vlapic * vlapic)2591 svm_vlapic_cleanup(struct vlapic *vlapic)
2592 {
2593 
2594         vlapic_cleanup(vlapic);
2595 	free(vlapic->apic_page, M_SVM_VLAPIC);
2596         free(vlapic, M_SVM_VLAPIC);
2597 }
2598 
2599 #ifdef BHYVE_SNAPSHOT
2600 static int
svm_vcpu_snapshot(void * vcpui,struct vm_snapshot_meta * meta)2601 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2602 {
2603 	struct svm_vcpu *vcpu;
2604 	int err, running, hostcpu;
2605 
2606 	vcpu = vcpui;
2607 	err = 0;
2608 
2609 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2610 	if (running && hostcpu != curcpu) {
2611 		printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2612 		    vcpu->vcpuid);
2613 		return (EINVAL);
2614 	}
2615 
2616 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2617 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2618 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2619 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2620 
2621 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2622 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2623 
2624 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2625 
2626 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2627 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2628 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2629 
2630 	/* Guest segments */
2631 	/* ES */
2632 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2633 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2634 
2635 	/* CS */
2636 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2637 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2638 
2639 	/* SS */
2640 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2641 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2642 
2643 	/* DS */
2644 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2645 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2646 
2647 	/* FS */
2648 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2649 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2650 
2651 	/* GS */
2652 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2653 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2654 
2655 	/* TR */
2656 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2657 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2658 
2659 	/* LDTR */
2660 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2661 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2662 
2663 	/* EFER */
2664 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2665 
2666 	/* IDTR and GDTR */
2667 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2668 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2669 
2670 	/* Specific AMD registers */
2671 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2672 
2673 	err += vmcb_snapshot_any(vcpu,
2674 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2675 	err += vmcb_snapshot_any(vcpu,
2676 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2677 	err += vmcb_snapshot_any(vcpu,
2678 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2679 	err += vmcb_snapshot_any(vcpu,
2680 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2681 	err += vmcb_snapshot_any(vcpu,
2682 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2683 
2684 	err += vmcb_snapshot_any(vcpu,
2685 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2686 	err += vmcb_snapshot_any(vcpu,
2687 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2688 
2689 	err += vmcb_snapshot_any(vcpu,
2690 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2691 
2692 	err += vmcb_snapshot_any(vcpu,
2693 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2694 
2695 	err += vmcb_snapshot_any(vcpu,
2696 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2697 
2698 	err += vmcb_snapshot_any(vcpu,
2699 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2700 	err += vmcb_snapshot_any(vcpu,
2701 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2702 	err += vmcb_snapshot_any(vcpu,
2703 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2704 	err += vmcb_snapshot_any(vcpu,
2705 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2706 
2707 	err += vmcb_snapshot_any(vcpu,
2708 				VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2709 
2710 	err += vmcb_snapshot_any(vcpu,
2711 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2712 	err += vmcb_snapshot_any(vcpu,
2713 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2714 	err += vmcb_snapshot_any(vcpu,
2715 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2716 	err += vmcb_snapshot_any(vcpu,
2717 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2718 
2719 	err += vmcb_snapshot_any(vcpu,
2720 				VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2721 
2722 	err += vmcb_snapshot_any(vcpu,
2723 				VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2724 	err += vmcb_snapshot_any(vcpu,
2725 				VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2726 	err += vmcb_snapshot_any(vcpu,
2727 				VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2728 
2729 	err += vmcb_snapshot_any(vcpu,
2730 				VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2731 
2732 	err += vmcb_snapshot_any(vcpu,
2733 				VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2734 
2735 	err += vmcb_snapshot_any(vcpu,
2736 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2737 	err += vmcb_snapshot_any(vcpu,
2738 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2739 	err += vmcb_snapshot_any(vcpu,
2740 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2741 
2742 	err += vmcb_snapshot_any(vcpu,
2743 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2744 
2745 	err += vmcb_snapshot_any(vcpu,
2746 				VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2747 	err += vmcb_snapshot_any(vcpu,
2748 				VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2749 	err += vmcb_snapshot_any(vcpu,
2750 				VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2751 	err += vmcb_snapshot_any(vcpu,
2752 				VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2753 	err += vmcb_snapshot_any(vcpu,
2754 				VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2755 	if (err != 0)
2756 		goto done;
2757 
2758 	/* Snapshot swctx for virtual cpu */
2759 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2760 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2761 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2762 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2763 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2764 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2765 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2766 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2767 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2768 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2769 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2770 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2771 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2772 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2773 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2774 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2775 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2776 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2777 
2778 	/* Restore other svm_vcpu struct fields */
2779 
2780 	/* Restore NEXTRIP field */
2781 	SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2782 
2783 	/* Restore lastcpu field */
2784 	SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2785 	SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2786 
2787 	/* Restore EPTGEN field - EPT is Extended Page Table */
2788 	SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2789 
2790 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2791 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2792 
2793 	SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr, sizeof(vcpu->mtrr), meta, err, done);
2794 
2795 	/* Set all caches dirty */
2796 	if (meta->op == VM_SNAPSHOT_RESTORE)
2797 		svm_set_dirty(vcpu, 0xffffffff);
2798 
2799 done:
2800 	return (err);
2801 }
2802 
2803 static int
svm_restore_tsc(void * vcpui,uint64_t offset)2804 svm_restore_tsc(void *vcpui, uint64_t offset)
2805 {
2806 	struct svm_vcpu *vcpu = vcpui;
2807 
2808 	svm_set_tsc_offset(vcpu, offset);
2809 
2810 	return (0);
2811 }
2812 #endif
2813 
2814 const struct vmm_ops vmm_ops_amd = {
2815 	.modinit	= svm_modinit,
2816 	.modcleanup	= svm_modcleanup,
2817 	.modresume	= svm_modresume,
2818 	.modsuspend	= svm_modsuspend,
2819 	.init		= svm_init,
2820 	.run		= svm_run,
2821 	.cleanup	= svm_cleanup,
2822 	.vcpu_init	= svm_vcpu_init,
2823 	.vcpu_cleanup	= svm_vcpu_cleanup,
2824 	.getreg		= svm_getreg,
2825 	.setreg		= svm_setreg,
2826 	.getdesc	= svm_getdesc,
2827 	.setdesc	= svm_setdesc,
2828 	.getcap		= svm_getcap,
2829 	.setcap		= svm_setcap,
2830 	.vmspace_alloc	= svm_vmspace_alloc,
2831 	.vmspace_free	= svm_vmspace_free,
2832 	.vlapic_init	= svm_vlapic_init,
2833 	.vlapic_cleanup	= svm_vlapic_cleanup,
2834 #ifdef BHYVE_SNAPSHOT
2835 	.vcpu_snapshot	= svm_vcpu_snapshot,
2836 	.restore_tsc	= svm_restore_tsc,
2837 #endif
2838 };
2839