1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2016-2018 Oracle. All rights reserved. 4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the BSD-type 11 * license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 20 * Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials provided 23 * with the distribution. 24 * 25 * Neither the name of the Network Appliance, Inc. nor the names of 26 * its contributors may be used to endorse or promote products 27 * derived from this software without specific prior written 28 * permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Author: Tom Tucker <tom@opengridcomputing.com> 43 */ 44 45 /* Operation 46 * 47 * The main entry point is svc_rdma_recvfrom. This is called from 48 * svc_recv when the transport indicates there is incoming data to 49 * be read. "Data Ready" is signaled when an RDMA Receive completes, 50 * or when a set of RDMA Reads complete. 51 * 52 * An svc_rqst is passed in. This structure contains an array of 53 * free pages (rq_pages) that will contain the incoming RPC message. 54 * 55 * Short messages are moved directly into svc_rqst::rq_arg, and 56 * the RPC Call is ready to be processed by the Upper Layer. 57 * svc_rdma_recvfrom returns the length of the RPC Call message, 58 * completing the reception of the RPC Call. 59 * 60 * However, when an incoming message has Read chunks, 61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's 62 * data payload from the client. svc_rdma_recvfrom sets up the 63 * RDMA Reads using pages in svc_rqst::rq_pages, which are 64 * transferred to an svc_rdma_recv_ctxt for the duration of the 65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message 66 * is still not yet ready. 67 * 68 * When the Read chunk payloads have become available on the 69 * server, "Data Ready" is raised again, and svc_recv calls 70 * svc_rdma_recvfrom again. This second call may use a different 71 * svc_rqst than the first one, thus any information that needs 72 * to be preserved across these two calls is kept in an 73 * svc_rdma_recv_ctxt. 74 * 75 * The second call to svc_rdma_recvfrom performs final assembly 76 * of the RPC Call message, using the RDMA Read sink pages kept in 77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the 78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns 79 * the length of the completed RPC Call message. 80 * 81 * Page Management 82 * 83 * Pages under I/O must be transferred from the first svc_rqst to an 84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns. 85 * 86 * The first svc_rqst supplies pages for RDMA Reads. These are moved 87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of 88 * the rq_pages array are set to NULL and refilled with the first 89 * svc_rdma_recvfrom call returns. 90 * 91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages 92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst. 93 */ 94 95 #include <linux/slab.h> 96 #include <linux/spinlock.h> 97 #include <linux/unaligned.h> 98 #include <rdma/ib_verbs.h> 99 #include <rdma/rdma_cm.h> 100 101 #include <linux/sunrpc/xdr.h> 102 #include <linux/sunrpc/debug.h> 103 #include <linux/sunrpc/rpc_rdma.h> 104 #include <linux/sunrpc/svc_rdma.h> 105 106 #include "xprt_rdma.h" 107 #include <trace/events/rpcrdma.h> 108 109 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc); 110 111 static inline struct svc_rdma_recv_ctxt * 112 svc_rdma_next_recv_ctxt(struct list_head *list) 113 { 114 return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt, 115 rc_list); 116 } 117 118 static struct svc_rdma_recv_ctxt * 119 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma) 120 { 121 int node = ibdev_to_node(rdma->sc_cm_id->device); 122 struct svc_rdma_recv_ctxt *ctxt; 123 dma_addr_t addr; 124 void *buffer; 125 126 ctxt = kzalloc_node(sizeof(*ctxt), GFP_KERNEL, node); 127 if (!ctxt) 128 goto fail0; 129 buffer = kmalloc_node(rdma->sc_max_req_size, GFP_KERNEL, node); 130 if (!buffer) 131 goto fail1; 132 addr = ib_dma_map_single(rdma->sc_pd->device, buffer, 133 rdma->sc_max_req_size, DMA_FROM_DEVICE); 134 if (ib_dma_mapping_error(rdma->sc_pd->device, addr)) 135 goto fail2; 136 137 svc_rdma_recv_cid_init(rdma, &ctxt->rc_cid); 138 pcl_init(&ctxt->rc_call_pcl); 139 pcl_init(&ctxt->rc_read_pcl); 140 pcl_init(&ctxt->rc_write_pcl); 141 pcl_init(&ctxt->rc_reply_pcl); 142 143 ctxt->rc_recv_wr.next = NULL; 144 ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe; 145 ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge; 146 ctxt->rc_recv_wr.num_sge = 1; 147 ctxt->rc_cqe.done = svc_rdma_wc_receive; 148 ctxt->rc_recv_sge.addr = addr; 149 ctxt->rc_recv_sge.length = rdma->sc_max_req_size; 150 ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey; 151 ctxt->rc_recv_buf = buffer; 152 svc_rdma_cc_init(rdma, &ctxt->rc_cc); 153 return ctxt; 154 155 fail2: 156 kfree(buffer); 157 fail1: 158 kfree(ctxt); 159 fail0: 160 return NULL; 161 } 162 163 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma, 164 struct svc_rdma_recv_ctxt *ctxt) 165 { 166 ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr, 167 ctxt->rc_recv_sge.length, DMA_FROM_DEVICE); 168 kfree(ctxt->rc_recv_buf); 169 kfree(ctxt); 170 } 171 172 /** 173 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt 174 * @rdma: svcxprt_rdma being torn down 175 * 176 */ 177 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma) 178 { 179 struct svc_rdma_recv_ctxt *ctxt; 180 struct llist_node *node; 181 182 while ((node = llist_del_first(&rdma->sc_recv_ctxts))) { 183 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node); 184 svc_rdma_recv_ctxt_destroy(rdma, ctxt); 185 } 186 } 187 188 /** 189 * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt 190 * @rdma: controlling svcxprt_rdma 191 * 192 * Returns a recv_ctxt or (rarely) NULL if none are available. 193 */ 194 struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma) 195 { 196 struct svc_rdma_recv_ctxt *ctxt; 197 struct llist_node *node; 198 199 node = llist_del_first(&rdma->sc_recv_ctxts); 200 if (!node) 201 return NULL; 202 203 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node); 204 ctxt->rc_page_count = 0; 205 return ctxt; 206 } 207 208 /** 209 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list 210 * @rdma: controlling svcxprt_rdma 211 * @ctxt: object to return to the free list 212 * 213 */ 214 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma, 215 struct svc_rdma_recv_ctxt *ctxt) 216 { 217 svc_rdma_cc_release(rdma, &ctxt->rc_cc, DMA_FROM_DEVICE); 218 219 /* @rc_page_count is normally zero here, but error flows 220 * can leave pages in @rc_pages. 221 */ 222 release_pages(ctxt->rc_pages, ctxt->rc_page_count); 223 224 pcl_free(&ctxt->rc_call_pcl); 225 pcl_free(&ctxt->rc_read_pcl); 226 pcl_free(&ctxt->rc_write_pcl); 227 pcl_free(&ctxt->rc_reply_pcl); 228 229 llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts); 230 } 231 232 /** 233 * svc_rdma_release_ctxt - Release transport-specific per-rqst resources 234 * @xprt: the transport which owned the context 235 * @vctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt 236 * 237 * Ensure that the recv_ctxt is released whether or not a Reply 238 * was sent. For example, the client could close the connection, 239 * or svc_process could drop an RPC, before the Reply is sent. 240 */ 241 void svc_rdma_release_ctxt(struct svc_xprt *xprt, void *vctxt) 242 { 243 struct svc_rdma_recv_ctxt *ctxt = vctxt; 244 struct svcxprt_rdma *rdma = 245 container_of(xprt, struct svcxprt_rdma, sc_xprt); 246 247 if (ctxt) 248 svc_rdma_recv_ctxt_put(rdma, ctxt); 249 } 250 251 static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma, 252 unsigned int wanted) 253 { 254 const struct ib_recv_wr *bad_wr = NULL; 255 struct svc_rdma_recv_ctxt *ctxt; 256 struct ib_recv_wr *recv_chain; 257 int ret; 258 259 if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags)) 260 return false; 261 262 recv_chain = NULL; 263 while (wanted--) { 264 ctxt = svc_rdma_recv_ctxt_get(rdma); 265 if (!ctxt) 266 break; 267 268 trace_svcrdma_post_recv(&ctxt->rc_cid); 269 ctxt->rc_recv_wr.next = recv_chain; 270 recv_chain = &ctxt->rc_recv_wr; 271 rdma->sc_pending_recvs++; 272 } 273 if (!recv_chain) 274 return true; 275 276 ret = ib_post_recv(rdma->sc_qp, recv_chain, &bad_wr); 277 if (ret) 278 goto err_free; 279 return true; 280 281 err_free: 282 trace_svcrdma_rq_post_err(rdma, ret); 283 while (bad_wr) { 284 ctxt = container_of(bad_wr, struct svc_rdma_recv_ctxt, 285 rc_recv_wr); 286 bad_wr = bad_wr->next; 287 svc_rdma_recv_ctxt_put(rdma, ctxt); 288 } 289 /* Since we're destroying the xprt, no need to reset 290 * sc_pending_recvs. */ 291 return false; 292 } 293 294 /** 295 * svc_rdma_post_recvs - Post initial set of Recv WRs 296 * @rdma: fresh svcxprt_rdma 297 * 298 * Return values: 299 * %true: Receive Queue initialization successful 300 * %false: memory allocation or DMA error 301 */ 302 bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma) 303 { 304 unsigned int total; 305 306 /* For each credit, allocate enough recv_ctxts for one 307 * posted Receive and one RPC in process. 308 */ 309 total = (rdma->sc_max_requests * 2) + rdma->sc_recv_batch; 310 while (total--) { 311 struct svc_rdma_recv_ctxt *ctxt; 312 313 ctxt = svc_rdma_recv_ctxt_alloc(rdma); 314 if (!ctxt) 315 return false; 316 llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts); 317 } 318 319 return svc_rdma_refresh_recvs(rdma, rdma->sc_max_requests); 320 } 321 322 /** 323 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 324 * @cq: Completion Queue context 325 * @wc: Work Completion object 326 * 327 */ 328 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 329 { 330 struct svcxprt_rdma *rdma = cq->cq_context; 331 struct ib_cqe *cqe = wc->wr_cqe; 332 struct svc_rdma_recv_ctxt *ctxt; 333 334 rdma->sc_pending_recvs--; 335 336 /* WARNING: Only wc->wr_cqe and wc->status are reliable */ 337 ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe); 338 339 if (wc->status != IB_WC_SUCCESS) 340 goto flushed; 341 trace_svcrdma_wc_recv(wc, &ctxt->rc_cid); 342 343 /* If receive posting fails, the connection is about to be 344 * lost anyway. The server will not be able to send a reply 345 * for this RPC, and the client will retransmit this RPC 346 * anyway when it reconnects. 347 * 348 * Therefore we drop the Receive, even if status was SUCCESS 349 * to reduce the likelihood of replayed requests once the 350 * client reconnects. 351 */ 352 if (rdma->sc_pending_recvs < rdma->sc_max_requests) 353 if (!svc_rdma_refresh_recvs(rdma, rdma->sc_recv_batch)) 354 goto dropped; 355 356 /* All wc fields are now known to be valid */ 357 ctxt->rc_byte_len = wc->byte_len; 358 359 spin_lock(&rdma->sc_rq_dto_lock); 360 list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q); 361 /* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */ 362 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags); 363 spin_unlock(&rdma->sc_rq_dto_lock); 364 if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags)) 365 svc_xprt_enqueue(&rdma->sc_xprt); 366 return; 367 368 flushed: 369 if (wc->status == IB_WC_WR_FLUSH_ERR) 370 trace_svcrdma_wc_recv_flush(wc, &ctxt->rc_cid); 371 else 372 trace_svcrdma_wc_recv_err(wc, &ctxt->rc_cid); 373 dropped: 374 svc_rdma_recv_ctxt_put(rdma, ctxt); 375 svc_xprt_deferred_close(&rdma->sc_xprt); 376 } 377 378 /** 379 * svc_rdma_flush_recv_queues - Drain pending Receive work 380 * @rdma: svcxprt_rdma being shut down 381 * 382 */ 383 void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma) 384 { 385 struct svc_rdma_recv_ctxt *ctxt; 386 387 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_read_complete_q))) { 388 list_del(&ctxt->rc_list); 389 svc_rdma_recv_ctxt_put(rdma, ctxt); 390 } 391 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) { 392 list_del(&ctxt->rc_list); 393 svc_rdma_recv_ctxt_put(rdma, ctxt); 394 } 395 } 396 397 static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp, 398 struct svc_rdma_recv_ctxt *ctxt) 399 { 400 struct xdr_buf *arg = &rqstp->rq_arg; 401 402 arg->head[0].iov_base = ctxt->rc_recv_buf; 403 arg->head[0].iov_len = ctxt->rc_byte_len; 404 arg->tail[0].iov_base = NULL; 405 arg->tail[0].iov_len = 0; 406 arg->page_len = 0; 407 arg->page_base = 0; 408 arg->buflen = ctxt->rc_byte_len; 409 arg->len = ctxt->rc_byte_len; 410 } 411 412 /** 413 * xdr_count_read_segments - Count number of Read segments in Read list 414 * @rctxt: Ingress receive context 415 * @p: Start of an un-decoded Read list 416 * 417 * Before allocating anything, ensure the ingress Read list is safe 418 * to use. 419 * 420 * The segment count is limited to how many segments can fit in the 421 * transport header without overflowing the buffer. That's about 40 422 * Read segments for a 1KB inline threshold. 423 * 424 * Return values: 425 * %true: Read list is valid. @rctxt's xdr_stream is updated to point 426 * to the first byte past the Read list. rc_read_pcl and 427 * rc_call_pcl cl_count fields are set to the number of 428 * Read segments in the list. 429 * %false: Read list is corrupt. @rctxt's xdr_stream is left in an 430 * unknown state. 431 */ 432 static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p) 433 { 434 rctxt->rc_call_pcl.cl_count = 0; 435 rctxt->rc_read_pcl.cl_count = 0; 436 while (xdr_item_is_present(p)) { 437 u32 position, handle, length; 438 u64 offset; 439 440 p = xdr_inline_decode(&rctxt->rc_stream, 441 rpcrdma_readseg_maxsz * sizeof(*p)); 442 if (!p) 443 return false; 444 445 xdr_decode_read_segment(p, &position, &handle, 446 &length, &offset); 447 if (position) { 448 if (position & 3) 449 return false; 450 ++rctxt->rc_read_pcl.cl_count; 451 } else { 452 ++rctxt->rc_call_pcl.cl_count; 453 } 454 455 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 456 if (!p) 457 return false; 458 } 459 return true; 460 } 461 462 /* Sanity check the Read list. 463 * 464 * Sanity checks: 465 * - Read list does not overflow Receive buffer. 466 * - Chunk size limited by largest NFS data payload. 467 * 468 * Return values: 469 * %true: Read list is valid. @rctxt's xdr_stream is updated 470 * to point to the first byte past the Read list. 471 * %false: Read list is corrupt. @rctxt's xdr_stream is left 472 * in an unknown state. 473 */ 474 static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt) 475 { 476 __be32 *p; 477 478 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 479 if (!p) 480 return false; 481 if (!xdr_count_read_segments(rctxt, p)) 482 return false; 483 if (!pcl_alloc_call(rctxt, p)) 484 return false; 485 return pcl_alloc_read(rctxt, p); 486 } 487 488 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt) 489 { 490 u32 segcount; 491 __be32 *p; 492 493 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount)) 494 return false; 495 496 /* Before trusting the segcount value enough to use it in 497 * a computation, perform a simple range check. This is an 498 * arbitrary but sensible limit (ie, not architectural). 499 */ 500 if (unlikely(segcount > RPCSVC_MAXPAGES)) 501 return false; 502 503 p = xdr_inline_decode(&rctxt->rc_stream, 504 segcount * rpcrdma_segment_maxsz * sizeof(*p)); 505 return p != NULL; 506 } 507 508 /** 509 * xdr_count_write_chunks - Count number of Write chunks in Write list 510 * @rctxt: Received header and decoding state 511 * @p: start of an un-decoded Write list 512 * 513 * Before allocating anything, ensure the ingress Write list is 514 * safe to use. 515 * 516 * Return values: 517 * %true: Write list is valid. @rctxt's xdr_stream is updated 518 * to point to the first byte past the Write list, and 519 * the number of Write chunks is in rc_write_pcl.cl_count. 520 * %false: Write list is corrupt. @rctxt's xdr_stream is left 521 * in an indeterminate state. 522 */ 523 static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p) 524 { 525 rctxt->rc_write_pcl.cl_count = 0; 526 while (xdr_item_is_present(p)) { 527 if (!xdr_check_write_chunk(rctxt)) 528 return false; 529 ++rctxt->rc_write_pcl.cl_count; 530 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 531 if (!p) 532 return false; 533 } 534 return true; 535 } 536 537 /* Sanity check the Write list. 538 * 539 * Implementation limits: 540 * - This implementation currently supports only one Write chunk. 541 * 542 * Sanity checks: 543 * - Write list does not overflow Receive buffer. 544 * - Chunk size limited by largest NFS data payload. 545 * 546 * Return values: 547 * %true: Write list is valid. @rctxt's xdr_stream is updated 548 * to point to the first byte past the Write list. 549 * %false: Write list is corrupt. @rctxt's xdr_stream is left 550 * in an unknown state. 551 */ 552 static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt) 553 { 554 __be32 *p; 555 556 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 557 if (!p) 558 return false; 559 if (!xdr_count_write_chunks(rctxt, p)) 560 return false; 561 if (!pcl_alloc_write(rctxt, &rctxt->rc_write_pcl, p)) 562 return false; 563 564 rctxt->rc_cur_result_payload = pcl_first_chunk(&rctxt->rc_write_pcl); 565 return true; 566 } 567 568 /* Sanity check the Reply chunk. 569 * 570 * Sanity checks: 571 * - Reply chunk does not overflow Receive buffer. 572 * - Chunk size limited by largest NFS data payload. 573 * 574 * Return values: 575 * %true: Reply chunk is valid. @rctxt's xdr_stream is updated 576 * to point to the first byte past the Reply chunk. 577 * %false: Reply chunk is corrupt. @rctxt's xdr_stream is left 578 * in an unknown state. 579 */ 580 static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt) 581 { 582 __be32 *p; 583 584 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 585 if (!p) 586 return false; 587 588 if (!xdr_item_is_present(p)) 589 return true; 590 if (!xdr_check_write_chunk(rctxt)) 591 return false; 592 593 rctxt->rc_reply_pcl.cl_count = 1; 594 return pcl_alloc_write(rctxt, &rctxt->rc_reply_pcl, p); 595 } 596 597 /* RPC-over-RDMA Version One private extension: Remote Invalidation. 598 * Responder's choice: requester signals it can handle Send With 599 * Invalidate, and responder chooses one R_key to invalidate. 600 * 601 * If there is exactly one distinct R_key in the received transport 602 * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero. 603 */ 604 static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma, 605 struct svc_rdma_recv_ctxt *ctxt) 606 { 607 struct svc_rdma_segment *segment; 608 struct svc_rdma_chunk *chunk; 609 u32 inv_rkey; 610 611 ctxt->rc_inv_rkey = 0; 612 613 if (!rdma->sc_snd_w_inv) 614 return; 615 616 inv_rkey = 0; 617 pcl_for_each_chunk(chunk, &ctxt->rc_call_pcl) { 618 pcl_for_each_segment(segment, chunk) { 619 if (inv_rkey == 0) 620 inv_rkey = segment->rs_handle; 621 else if (inv_rkey != segment->rs_handle) 622 return; 623 } 624 } 625 pcl_for_each_chunk(chunk, &ctxt->rc_read_pcl) { 626 pcl_for_each_segment(segment, chunk) { 627 if (inv_rkey == 0) 628 inv_rkey = segment->rs_handle; 629 else if (inv_rkey != segment->rs_handle) 630 return; 631 } 632 } 633 pcl_for_each_chunk(chunk, &ctxt->rc_write_pcl) { 634 pcl_for_each_segment(segment, chunk) { 635 if (inv_rkey == 0) 636 inv_rkey = segment->rs_handle; 637 else if (inv_rkey != segment->rs_handle) 638 return; 639 } 640 } 641 pcl_for_each_chunk(chunk, &ctxt->rc_reply_pcl) { 642 pcl_for_each_segment(segment, chunk) { 643 if (inv_rkey == 0) 644 inv_rkey = segment->rs_handle; 645 else if (inv_rkey != segment->rs_handle) 646 return; 647 } 648 } 649 ctxt->rc_inv_rkey = inv_rkey; 650 } 651 652 /** 653 * svc_rdma_xdr_decode_req - Decode the transport header 654 * @rq_arg: xdr_buf containing ingress RPC/RDMA message 655 * @rctxt: state of decoding 656 * 657 * On entry, xdr->head[0].iov_base points to first byte of the 658 * RPC-over-RDMA transport header. 659 * 660 * On successful exit, head[0] points to first byte past the 661 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message. 662 * 663 * The length of the RPC-over-RDMA header is returned. 664 * 665 * Assumptions: 666 * - The transport header is entirely contained in the head iovec. 667 */ 668 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg, 669 struct svc_rdma_recv_ctxt *rctxt) 670 { 671 __be32 *p, *rdma_argp; 672 unsigned int hdr_len; 673 674 rdma_argp = rq_arg->head[0].iov_base; 675 xdr_init_decode(&rctxt->rc_stream, rq_arg, rdma_argp, NULL); 676 677 p = xdr_inline_decode(&rctxt->rc_stream, 678 rpcrdma_fixed_maxsz * sizeof(*p)); 679 if (unlikely(!p)) 680 goto out_short; 681 p++; 682 if (*p != rpcrdma_version) 683 goto out_version; 684 p += 2; 685 rctxt->rc_msgtype = *p; 686 switch (rctxt->rc_msgtype) { 687 case rdma_msg: 688 break; 689 case rdma_nomsg: 690 break; 691 case rdma_done: 692 goto out_drop; 693 case rdma_error: 694 goto out_drop; 695 default: 696 goto out_proc; 697 } 698 699 if (!xdr_check_read_list(rctxt)) 700 goto out_inval; 701 if (!xdr_check_write_list(rctxt)) 702 goto out_inval; 703 if (!xdr_check_reply_chunk(rctxt)) 704 goto out_inval; 705 706 rq_arg->head[0].iov_base = rctxt->rc_stream.p; 707 hdr_len = xdr_stream_pos(&rctxt->rc_stream); 708 rq_arg->head[0].iov_len -= hdr_len; 709 rq_arg->len -= hdr_len; 710 trace_svcrdma_decode_rqst(rctxt, rdma_argp, hdr_len); 711 return hdr_len; 712 713 out_short: 714 trace_svcrdma_decode_short_err(rctxt, rq_arg->len); 715 return -EINVAL; 716 717 out_version: 718 trace_svcrdma_decode_badvers_err(rctxt, rdma_argp); 719 return -EPROTONOSUPPORT; 720 721 out_drop: 722 trace_svcrdma_decode_drop_err(rctxt, rdma_argp); 723 return 0; 724 725 out_proc: 726 trace_svcrdma_decode_badproc_err(rctxt, rdma_argp); 727 return -EINVAL; 728 729 out_inval: 730 trace_svcrdma_decode_parse_err(rctxt, rdma_argp); 731 return -EINVAL; 732 } 733 734 static void svc_rdma_send_error(struct svcxprt_rdma *rdma, 735 struct svc_rdma_recv_ctxt *rctxt, 736 int status) 737 { 738 struct svc_rdma_send_ctxt *sctxt; 739 740 sctxt = svc_rdma_send_ctxt_get(rdma); 741 if (!sctxt) 742 return; 743 svc_rdma_send_error_msg(rdma, sctxt, rctxt, status); 744 } 745 746 /* By convention, backchannel calls arrive via rdma_msg type 747 * messages, and never populate the chunk lists. This makes 748 * the RPC/RDMA header small and fixed in size, so it is 749 * straightforward to check the RPC header's direction field. 750 */ 751 static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt, 752 struct svc_rdma_recv_ctxt *rctxt) 753 { 754 __be32 *p = rctxt->rc_recv_buf; 755 756 if (!xprt->xpt_bc_xprt) 757 return false; 758 759 if (rctxt->rc_msgtype != rdma_msg) 760 return false; 761 762 if (!pcl_is_empty(&rctxt->rc_call_pcl)) 763 return false; 764 if (!pcl_is_empty(&rctxt->rc_read_pcl)) 765 return false; 766 if (!pcl_is_empty(&rctxt->rc_write_pcl)) 767 return false; 768 if (!pcl_is_empty(&rctxt->rc_reply_pcl)) 769 return false; 770 771 /* RPC call direction */ 772 if (*(p + 8) == cpu_to_be32(RPC_CALL)) 773 return false; 774 775 return true; 776 } 777 778 /* Finish constructing the RPC Call message in rqstp::rq_arg. 779 * 780 * The incoming RPC/RDMA message is an RDMA_MSG type message 781 * with a single Read chunk (only the upper layer data payload 782 * was conveyed via RDMA Read). 783 */ 784 static void svc_rdma_read_complete_one(struct svc_rqst *rqstp, 785 struct svc_rdma_recv_ctxt *ctxt) 786 { 787 struct svc_rdma_chunk *chunk = pcl_first_chunk(&ctxt->rc_read_pcl); 788 struct xdr_buf *buf = &rqstp->rq_arg; 789 unsigned int length; 790 791 /* Split the Receive buffer between the head and tail 792 * buffers at Read chunk's position. XDR roundup of the 793 * chunk is not included in either the pagelist or in 794 * the tail. 795 */ 796 buf->tail[0].iov_base = buf->head[0].iov_base + chunk->ch_position; 797 buf->tail[0].iov_len = buf->head[0].iov_len - chunk->ch_position; 798 buf->head[0].iov_len = chunk->ch_position; 799 800 /* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2). 801 * 802 * If the client already rounded up the chunk length, the 803 * length does not change. Otherwise, the length of the page 804 * list is increased to include XDR round-up. 805 * 806 * Currently these chunks always start at page offset 0, 807 * thus the rounded-up length never crosses a page boundary. 808 */ 809 buf->pages = &rqstp->rq_pages[0]; 810 length = xdr_align_size(chunk->ch_length); 811 buf->page_len = length; 812 buf->len += length; 813 buf->buflen += length; 814 } 815 816 /* Finish constructing the RPC Call message in rqstp::rq_arg. 817 * 818 * The incoming RPC/RDMA message is an RDMA_MSG type message 819 * with payload in multiple Read chunks and no PZRC. 820 */ 821 static void svc_rdma_read_complete_multiple(struct svc_rqst *rqstp, 822 struct svc_rdma_recv_ctxt *ctxt) 823 { 824 struct xdr_buf *buf = &rqstp->rq_arg; 825 826 buf->len += ctxt->rc_readbytes; 827 buf->buflen += ctxt->rc_readbytes; 828 829 buf->head[0].iov_base = page_address(rqstp->rq_pages[0]); 830 buf->head[0].iov_len = min_t(size_t, PAGE_SIZE, ctxt->rc_readbytes); 831 buf->pages = &rqstp->rq_pages[1]; 832 buf->page_len = ctxt->rc_readbytes - buf->head[0].iov_len; 833 } 834 835 /* Finish constructing the RPC Call message in rqstp::rq_arg. 836 * 837 * The incoming RPC/RDMA message is an RDMA_NOMSG type message 838 * (the RPC message body was conveyed via RDMA Read). 839 */ 840 static void svc_rdma_read_complete_pzrc(struct svc_rqst *rqstp, 841 struct svc_rdma_recv_ctxt *ctxt) 842 { 843 struct xdr_buf *buf = &rqstp->rq_arg; 844 845 buf->len += ctxt->rc_readbytes; 846 buf->buflen += ctxt->rc_readbytes; 847 848 buf->head[0].iov_base = page_address(rqstp->rq_pages[0]); 849 buf->head[0].iov_len = min_t(size_t, PAGE_SIZE, ctxt->rc_readbytes); 850 buf->pages = &rqstp->rq_pages[1]; 851 buf->page_len = ctxt->rc_readbytes - buf->head[0].iov_len; 852 } 853 854 static noinline void svc_rdma_read_complete(struct svc_rqst *rqstp, 855 struct svc_rdma_recv_ctxt *ctxt) 856 { 857 unsigned int i; 858 859 /* Transfer the Read chunk pages into @rqstp.rq_pages, replacing 860 * the rq_pages that were already allocated for this rqstp. 861 */ 862 release_pages(rqstp->rq_respages, ctxt->rc_page_count); 863 for (i = 0; i < ctxt->rc_page_count; i++) 864 rqstp->rq_pages[i] = ctxt->rc_pages[i]; 865 866 /* Update @rqstp's result send buffer to start after the 867 * last page in the RDMA Read payload. 868 */ 869 rqstp->rq_respages = &rqstp->rq_pages[ctxt->rc_page_count]; 870 rqstp->rq_next_page = rqstp->rq_respages + 1; 871 872 /* Prevent svc_rdma_recv_ctxt_put() from releasing the 873 * pages in ctxt::rc_pages a second time. 874 */ 875 ctxt->rc_page_count = 0; 876 877 /* Finish constructing the RPC Call message. The exact 878 * procedure for that depends on what kind of RPC/RDMA 879 * chunks were provided by the client. 880 */ 881 rqstp->rq_arg = ctxt->rc_saved_arg; 882 if (pcl_is_empty(&ctxt->rc_call_pcl)) { 883 if (ctxt->rc_read_pcl.cl_count == 1) 884 svc_rdma_read_complete_one(rqstp, ctxt); 885 else 886 svc_rdma_read_complete_multiple(rqstp, ctxt); 887 } else { 888 svc_rdma_read_complete_pzrc(rqstp, ctxt); 889 } 890 891 trace_svcrdma_read_finished(&ctxt->rc_cid); 892 } 893 894 /** 895 * svc_rdma_recvfrom - Receive an RPC call 896 * @rqstp: request structure into which to receive an RPC Call 897 * 898 * Returns: 899 * The positive number of bytes in the RPC Call message, 900 * %0 if there were no Calls ready to return, 901 * %-EINVAL if the Read chunk data is too large, 902 * %-ENOMEM if rdma_rw context pool was exhausted, 903 * %-ENOTCONN if posting failed (connection is lost), 904 * %-EIO if rdma_rw initialization failed (DMA mapping, etc). 905 * 906 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only 907 * when there are no remaining ctxt's to process. 908 * 909 * The next ctxt is removed from the "receive" lists. 910 * 911 * - If the ctxt completes a Receive, then construct the Call 912 * message from the contents of the Receive buffer. 913 * 914 * - If there are no Read chunks in this message, then finish 915 * assembling the Call message and return the number of bytes 916 * in the message. 917 * 918 * - If there are Read chunks in this message, post Read WRs to 919 * pull that payload. When the Read WRs complete, build the 920 * full message and return the number of bytes in it. 921 */ 922 int svc_rdma_recvfrom(struct svc_rqst *rqstp) 923 { 924 struct svc_xprt *xprt = rqstp->rq_xprt; 925 struct svcxprt_rdma *rdma_xprt = 926 container_of(xprt, struct svcxprt_rdma, sc_xprt); 927 struct svc_rdma_recv_ctxt *ctxt; 928 int ret; 929 930 /* Prevent svc_xprt_release() from releasing pages in rq_pages 931 * when returning 0 or an error. 932 */ 933 rqstp->rq_respages = rqstp->rq_pages; 934 rqstp->rq_next_page = rqstp->rq_respages; 935 936 rqstp->rq_xprt_ctxt = NULL; 937 938 spin_lock(&rdma_xprt->sc_rq_dto_lock); 939 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_read_complete_q); 940 if (ctxt) { 941 list_del(&ctxt->rc_list); 942 spin_unlock(&rdma_xprt->sc_rq_dto_lock); 943 svc_xprt_received(xprt); 944 svc_rdma_read_complete(rqstp, ctxt); 945 goto complete; 946 } 947 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q); 948 if (ctxt) 949 list_del(&ctxt->rc_list); 950 else 951 /* No new incoming requests, terminate the loop */ 952 clear_bit(XPT_DATA, &xprt->xpt_flags); 953 spin_unlock(&rdma_xprt->sc_rq_dto_lock); 954 955 /* Unblock the transport for the next receive */ 956 svc_xprt_received(xprt); 957 if (!ctxt) 958 return 0; 959 960 percpu_counter_inc(&svcrdma_stat_recv); 961 ib_dma_sync_single_for_cpu(rdma_xprt->sc_pd->device, 962 ctxt->rc_recv_sge.addr, ctxt->rc_byte_len, 963 DMA_FROM_DEVICE); 964 svc_rdma_build_arg_xdr(rqstp, ctxt); 965 966 ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg, ctxt); 967 if (ret < 0) 968 goto out_err; 969 if (ret == 0) 970 goto out_drop; 971 972 if (svc_rdma_is_reverse_direction_reply(xprt, ctxt)) 973 goto out_backchannel; 974 975 svc_rdma_get_inv_rkey(rdma_xprt, ctxt); 976 977 if (!pcl_is_empty(&ctxt->rc_read_pcl) || 978 !pcl_is_empty(&ctxt->rc_call_pcl)) 979 goto out_readlist; 980 981 complete: 982 rqstp->rq_xprt_ctxt = ctxt; 983 rqstp->rq_prot = IPPROTO_MAX; 984 svc_xprt_copy_addrs(rqstp, xprt); 985 set_bit(RQ_SECURE, &rqstp->rq_flags); 986 return rqstp->rq_arg.len; 987 988 out_err: 989 svc_rdma_send_error(rdma_xprt, ctxt, ret); 990 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt); 991 return 0; 992 993 out_readlist: 994 /* This @rqstp is about to be recycled. Save the work 995 * already done constructing the Call message in rq_arg 996 * so it can be restored when the RDMA Reads have 997 * completed. 998 */ 999 ctxt->rc_saved_arg = rqstp->rq_arg; 1000 1001 ret = svc_rdma_process_read_list(rdma_xprt, rqstp, ctxt); 1002 if (ret < 0) { 1003 if (ret == -EINVAL) 1004 svc_rdma_send_error(rdma_xprt, ctxt, ret); 1005 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt); 1006 svc_xprt_deferred_close(xprt); 1007 return ret; 1008 } 1009 return 0; 1010 1011 out_backchannel: 1012 svc_rdma_handle_bc_reply(rqstp, ctxt); 1013 out_drop: 1014 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt); 1015 return 0; 1016 } 1017