1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
27
28 /*
29 * Portions of this source code were derived from Berkeley 4.3 BSD
30 * under license from the Regents of the University of California.
31 */
32
33 /*
34 * svc_clts.c
35 * Server side for RPC in the kernel.
36 *
37 */
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/sysmacros.h>
42 #include <sys/file.h>
43 #include <sys/stream.h>
44 #include <sys/strsun.h>
45 #include <sys/strsubr.h>
46 #include <sys/tihdr.h>
47 #include <sys/tiuser.h>
48 #include <sys/t_kuser.h>
49 #include <sys/fcntl.h>
50 #include <sys/errno.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/cmn_err.h>
54 #include <sys/kstat.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57
58 #include <rpc/types.h>
59 #include <rpc/xdr.h>
60 #include <rpc/auth.h>
61 #include <rpc/clnt.h>
62 #include <rpc/rpc_msg.h>
63 #include <rpc/svc.h>
64 #include <inet/ip.h>
65
66 /*
67 * Routines exported through ops vector.
68 */
69 static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
70 static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
71 static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
72 static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
73 static void svc_clts_kdestroy(SVCMASTERXPRT *);
74 static int svc_clts_kdup(struct svc_req *, caddr_t, int,
75 struct dupreq **, bool_t *);
76 static void svc_clts_kdupdone(struct dupreq *, caddr_t,
77 void (*)(), int, int);
78 static int32_t *svc_clts_kgetres(SVCXPRT *, int);
79 static void svc_clts_kclone_destroy(SVCXPRT *);
80 static void svc_clts_kfreeres(SVCXPRT *);
81 static void svc_clts_kstart(SVCMASTERXPRT *);
82 static void svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *);
83 static void svc_clts_ktattrs(SVCXPRT *, int, void **);
84
85 /*
86 * Server transport operations vector.
87 */
88 struct svc_ops svc_clts_op = {
89 svc_clts_krecv, /* Get requests */
90 svc_clts_kgetargs, /* Deserialize arguments */
91 svc_clts_ksend, /* Send reply */
92 svc_clts_kfreeargs, /* Free argument data space */
93 svc_clts_kdestroy, /* Destroy transport handle */
94 svc_clts_kdup, /* Check entry in dup req cache */
95 svc_clts_kdupdone, /* Mark entry in dup req cache as done */
96 svc_clts_kgetres, /* Get pointer to response buffer */
97 svc_clts_kfreeres, /* Destroy pre-serialized response header */
98 svc_clts_kclone_destroy, /* Destroy a clone xprt */
99 svc_clts_kstart, /* Tell `ready-to-receive' to rpcmod */
100 svc_clts_kclone_xprt, /* transport specific clone xprt function */
101 svc_clts_ktattrs /* Transport specific attributes. */
102 };
103
104 /*
105 * Transport private data.
106 * Kept in xprt->xp_p2buf.
107 */
108 struct udp_data {
109 mblk_t *ud_resp; /* buffer for response */
110 mblk_t *ud_inmp; /* mblk chain of request */
111 };
112
113 #define UD_MAXSIZE 8800
114 #define UD_INITSIZE 2048
115
116 /*
117 * Connectionless server statistics
118 */
119 static const struct rpc_clts_server {
120 kstat_named_t rscalls;
121 kstat_named_t rsbadcalls;
122 kstat_named_t rsnullrecv;
123 kstat_named_t rsbadlen;
124 kstat_named_t rsxdrcall;
125 kstat_named_t rsdupchecks;
126 kstat_named_t rsdupreqs;
127 } clts_rsstat_tmpl = {
128 { "calls", KSTAT_DATA_UINT64 },
129 { "badcalls", KSTAT_DATA_UINT64 },
130 { "nullrecv", KSTAT_DATA_UINT64 },
131 { "badlen", KSTAT_DATA_UINT64 },
132 { "xdrcall", KSTAT_DATA_UINT64 },
133 { "dupchecks", KSTAT_DATA_UINT64 },
134 { "dupreqs", KSTAT_DATA_UINT64 }
135 };
136
137 static uint_t clts_rsstat_ndata =
138 sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
139
140 #define CLONE2STATS(clone_xprt) \
141 (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
142
143 #define RSSTAT_INCR(stats, x) \
144 atomic_inc_64(&(stats)->x.value.ui64)
145
146 /*
147 * Create a transport record.
148 * The transport record, output buffer, and private data structure
149 * are allocated. The output buffer is serialized into using xdrmem.
150 * There is one transport record per user process which implements a
151 * set of services.
152 */
153 /* ARGSUSED */
154 int
svc_clts_kcreate(file_t * fp,uint_t sendsz,struct T_info_ack * tinfo,SVCMASTERXPRT ** nxprt)155 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
156 SVCMASTERXPRT **nxprt)
157 {
158 SVCMASTERXPRT *xprt;
159 struct rpcstat *rpcstat;
160
161 if (nxprt == NULL)
162 return (EINVAL);
163
164 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
165 ASSERT(rpcstat != NULL);
166
167 xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
168 xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
169 xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
170 xprt->xp_ops = &svc_clts_op;
171 xprt->xp_msg_size = tinfo->TSDU_size;
172
173 xprt->xp_rtaddr.buf = NULL;
174 xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
175 xprt->xp_rtaddr.len = 0;
176
177 *nxprt = xprt;
178
179 return (0);
180 }
181
182 /*
183 * Destroy a transport record.
184 * Frees the space allocated for a transport record.
185 */
186 static void
svc_clts_kdestroy(SVCMASTERXPRT * xprt)187 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
188 {
189 if (xprt->xp_netid)
190 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
191 if (xprt->xp_addrmask.maxlen)
192 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
193
194 mutex_destroy(&xprt->xp_req_lock);
195 mutex_destroy(&xprt->xp_thread_lock);
196
197 kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
198 kmem_free(xprt, sizeof (SVCMASTERXPRT));
199 }
200
201 /*
202 * Transport-type specific part of svc_xprt_cleanup().
203 * Frees the message buffer space allocated for a clone of a transport record
204 */
205 static void
svc_clts_kclone_destroy(SVCXPRT * clone_xprt)206 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
207 {
208 /* LINTED pointer alignment */
209 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
210
211 if (ud->ud_resp) {
212 /*
213 * There should not be any left over results buffer.
214 */
215 ASSERT(ud->ud_resp->b_cont == NULL);
216
217 /*
218 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
219 * saved.
220 */
221 freeb(ud->ud_resp);
222 }
223 if (ud->ud_inmp)
224 freemsg(ud->ud_inmp);
225 }
226
227 /*
228 * svc_tli_kcreate() calls this function at the end to tell
229 * rpcmod that the transport is ready to receive requests.
230 */
231 /* ARGSUSED */
232 static void
svc_clts_kstart(SVCMASTERXPRT * xprt)233 svc_clts_kstart(SVCMASTERXPRT *xprt)
234 {
235 }
236
237 static void
svc_clts_kclone_xprt(SVCXPRT * src_xprt,SVCXPRT * dst_xprt)238 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
239 {
240 struct udp_data *ud_src =
241 (struct udp_data *)src_xprt->xp_p2buf;
242 struct udp_data *ud_dst =
243 (struct udp_data *)dst_xprt->xp_p2buf;
244
245 if (ud_src->ud_resp)
246 ud_dst->ud_resp = dupb(ud_src->ud_resp);
247
248 }
249
250 static void
svc_clts_ktattrs(SVCXPRT * clone_xprt,int attrflag,void ** tattr)251 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
252 {
253 *tattr = NULL;
254
255 switch (attrflag) {
256 case SVC_TATTR_ADDRMASK:
257 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
258 }
259 }
260
261 /*
262 * Receive rpc requests.
263 * Pulls a request in off the socket, checks if the packet is intact,
264 * and deserializes the call packet.
265 */
266 static bool_t
svc_clts_krecv(SVCXPRT * clone_xprt,mblk_t * mp,struct rpc_msg * msg)267 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
268 {
269 /* LINTED pointer alignment */
270 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
271 XDR *xdrs = &clone_xprt->xp_xdrin;
272 struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
273 union T_primitives *pptr;
274 int hdrsz;
275 cred_t *cr;
276
277 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
278 "svc_clts_krecv_start:");
279
280 RSSTAT_INCR(stats, rscalls);
281
282 /*
283 * The incoming request should start with an M_PROTO message.
284 */
285 if (mp->b_datap->db_type != M_PROTO) {
286 goto bad;
287 }
288
289 /*
290 * The incoming request should be an T_UNITDTA_IND. There
291 * might be other messages coming up the stream, but we can
292 * ignore them.
293 */
294 pptr = (union T_primitives *)mp->b_rptr;
295 if (pptr->type != T_UNITDATA_IND) {
296 goto bad;
297 }
298 /*
299 * Do some checking to make sure that the header at least looks okay.
300 */
301 hdrsz = (int)(mp->b_wptr - mp->b_rptr);
302 if (hdrsz < TUNITDATAINDSZ ||
303 hdrsz < (pptr->unitdata_ind.OPT_offset +
304 pptr->unitdata_ind.OPT_length) ||
305 hdrsz < (pptr->unitdata_ind.SRC_offset +
306 pptr->unitdata_ind.SRC_length)) {
307 goto bad;
308 }
309
310 /*
311 * Make sure that the transport provided a usable address.
312 */
313 if (pptr->unitdata_ind.SRC_length <= 0) {
314 goto bad;
315 }
316 /*
317 * Point the remote transport address in the service_transport
318 * handle at the address in the request.
319 */
320 clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
321 pptr->unitdata_ind.SRC_offset;
322 clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
323
324 /*
325 * Copy the local transport address in the service_transport
326 * handle at the address in the request. We will have only
327 * the local IP address in options.
328 */
329 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC;
330 if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
331 char *dstopt = (char *)mp->b_rptr +
332 pptr->unitdata_ind.OPT_offset;
333 struct T_opthdr *toh = (struct T_opthdr *)dstopt;
334
335 if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
336 toh->name == IPV6_PKTINFO) {
337 struct in6_pktinfo *pkti;
338
339 dstopt += sizeof (struct T_opthdr);
340 pkti = (struct in6_pktinfo *)dstopt;
341 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
342 = pkti->ipi6_addr;
343 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family
344 = AF_INET6;
345 } else if (toh->level == IPPROTO_IP && toh->status == 0 &&
346 toh->name == IP_RECVDSTADDR) {
347 dstopt += sizeof (struct T_opthdr);
348 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
349 = *(struct in_addr *)dstopt;
350 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family
351 = AF_INET;
352 }
353 }
354
355 /*
356 * Save the first mblk which contains the T_unidata_ind in
357 * ud_resp. It will be used to generate the T_unitdata_req
358 * during the reply.
359 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
360 * since we must pass any SCM_UCRED across in order for TX to
361 * work. We also make sure any cred_t is carried across.
362 */
363 if (ud->ud_resp) {
364 if (ud->ud_resp->b_cont != NULL) {
365 cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
366 "b_cont %p", (void *)ud->ud_resp,
367 (void *)ud->ud_resp->b_cont);
368 }
369 freeb(ud->ud_resp);
370 }
371 /* Move any cred_t to the first mblk in the message */
372 cr = msg_getcred(mp, NULL);
373 if (cr != NULL)
374 mblk_setcred(mp, cr, NOPID);
375
376 ud->ud_resp = mp;
377 mp = mp->b_cont;
378 ud->ud_resp->b_cont = NULL;
379
380 xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
381
382 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
383 "xdr_callmsg_start:");
384 if (! xdr_callmsg(xdrs, msg)) {
385 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
386 "xdr_callmsg_end:(%S)", "bad");
387 RSSTAT_INCR(stats, rsxdrcall);
388 goto bad;
389 }
390 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
391 "xdr_callmsg_end:(%S)", "good");
392
393 clone_xprt->xp_xid = msg->rm_xid;
394 ud->ud_inmp = mp;
395
396 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
397 "svc_clts_krecv_end:(%S)", "good");
398 return (TRUE);
399
400 bad:
401 freemsg(mp);
402 if (ud->ud_resp) {
403 /*
404 * There should not be any left over results buffer.
405 */
406 ASSERT(ud->ud_resp->b_cont == NULL);
407 freeb(ud->ud_resp);
408 ud->ud_resp = NULL;
409 }
410
411 RSSTAT_INCR(stats, rsbadcalls);
412 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
413 "svc_clts_krecv_end:(%S)", "bad");
414 return (FALSE);
415 }
416
417 /*
418 * Send rpc reply.
419 * Serialize the reply packet into the output buffer then
420 * call t_ksndudata to send it.
421 */
422 static bool_t
svc_clts_ksend(SVCXPRT * clone_xprt,struct rpc_msg * msg)423 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
424 {
425 /* LINTED pointer alignment */
426 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
427 XDR *xdrs = &clone_xprt->xp_xdrout;
428 int stat = FALSE;
429 mblk_t *mp;
430 int msgsz;
431 struct T_unitdata_req *udreq;
432 xdrproc_t xdr_results;
433 caddr_t xdr_location;
434 bool_t has_args;
435
436 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
437 "svc_clts_ksend_start:");
438
439 ASSERT(ud->ud_resp != NULL);
440
441 /*
442 * If there is a result procedure specified in the reply message,
443 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
444 * We need to make sure it won't be processed twice, so we null
445 * it for xdr_replymsg here.
446 */
447 has_args = FALSE;
448 if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
449 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
450 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
451 has_args = TRUE;
452 xdr_location = msg->acpted_rply.ar_results.where;
453 msg->acpted_rply.ar_results.proc = xdr_void;
454 msg->acpted_rply.ar_results.where = NULL;
455 }
456 }
457
458 if (ud->ud_resp->b_cont == NULL) {
459 /*
460 * Allocate an initial mblk for the response data.
461 */
462 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
463 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
464 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
465 "svc_clts_ksend_end:(%S)", "strwaitbuf");
466 return (FALSE);
467 }
468 }
469
470 /*
471 * Initialize the XDR decode stream. Additional mblks
472 * will be allocated if necessary. They will be UD_MAXSIZE
473 * sized.
474 */
475 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
476
477 /*
478 * Leave some space for protocol headers.
479 */
480 (void) XDR_SETPOS(xdrs, 512);
481 mp->b_rptr += 512;
482
483 msg->rm_xid = clone_xprt->xp_xid;
484
485 ud->ud_resp->b_cont = mp;
486
487 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
488 "xdr_replymsg_start:");
489 if (!(xdr_replymsg(xdrs, msg) &&
490 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
491 xdr_results, xdr_location)))) {
492 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
493 "xdr_replymsg_end:(%S)", "bad");
494 RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
495 goto out;
496 }
497 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
498 "xdr_replymsg_end:(%S)", "good");
499
500 } else if (!(xdr_replymsg_body(xdrs, msg) &&
501 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
502 xdr_results, xdr_location)))) {
503 RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
504 goto out;
505 }
506
507 msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
508
509 if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
510 msgsz > clone_xprt->xp_msg_size)) {
511 #ifdef DEBUG
512 cmn_err(CE_NOTE,
513 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
514 msgsz, clone_xprt->xp_msg_size);
515 #endif
516 goto out;
517 }
518
519 /*
520 * Construct the T_unitdata_req. We take advantage of the fact that
521 * T_unitdata_ind looks just like T_unitdata_req, except for the
522 * primitive type. Reusing it means we preserve the SCM_UCRED, and
523 * we must preserve it for TX to work.
524 *
525 * This has the side effect that we can also pass certain receive-side
526 * options like IPV6_PKTINFO back down the send side. This implies
527 * that we can not ASSERT on a non-NULL db_credp when we have send-side
528 * options in UDP.
529 */
530 ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ);
531 udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
532 ASSERT(udreq->PRIM_type == T_UNITDATA_IND);
533 udreq->PRIM_type = T_UNITDATA_REQ;
534
535 /*
536 * If the local IPv4 transport address is known use it as a source
537 * address for the outgoing UDP packet.
538 */
539 if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) {
540 struct T_opthdr *opthdr;
541 in_pktinfo_t *pktinfo;
542 size_t size;
543
544 if (udreq->DEST_length == 0)
545 udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ);
546 else
547 udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset +
548 udreq->DEST_length);
549
550 udreq->OPT_length = sizeof (struct T_opthdr) +
551 sizeof (in_pktinfo_t);
552
553 size = udreq->OPT_length + udreq->OPT_offset;
554
555 /* make sure we have enough space for the option data */
556 mp = reallocb(ud->ud_resp, size, 1);
557 if (mp == NULL)
558 goto out;
559 ud->ud_resp = mp;
560 udreq = (struct T_unitdata_req *)mp->b_rptr;
561
562 /* set desired option header */
563 opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset);
564 opthdr->len = udreq->OPT_length;
565 opthdr->level = IPPROTO_IP;
566 opthdr->name = IP_PKTINFO;
567
568 /*
569 * 1. set source IP of outbound packet
570 * 2. value '0' for index means IP layer uses this as source
571 * address
572 */
573 pktinfo = (in_pktinfo_t *)(opthdr + 1);
574 (void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
575 pktinfo->ipi_spec_dst.s_addr =
576 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr;
577 pktinfo->ipi_ifindex = 0;
578
579 /* adjust the end of active data */
580 mp->b_wptr = mp->b_rptr + size;
581 }
582
583 put(clone_xprt->xp_wq, ud->ud_resp);
584 stat = TRUE;
585 ud->ud_resp = NULL;
586
587 out:
588 if (stat == FALSE) {
589 freemsg(ud->ud_resp);
590 ud->ud_resp = NULL;
591 }
592
593 /*
594 * This is completely disgusting. If public is set it is
595 * a pointer to a structure whose first field is the address
596 * of the function to free that structure and any related
597 * stuff. (see rrokfree in nfs_xdr.c).
598 */
599 if (xdrs->x_public) {
600 /* LINTED pointer alignment */
601 (**((int (**)())xdrs->x_public))(xdrs->x_public);
602 }
603
604 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
605 "svc_clts_ksend_end:(%S)", "done");
606 return (stat);
607 }
608
609 /*
610 * Deserialize arguments.
611 */
612 static bool_t
svc_clts_kgetargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)613 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
614 caddr_t args_ptr)
615 {
616
617 /* LINTED pointer alignment */
618 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
619 xdr_args, args_ptr));
620
621 }
622
623 static bool_t
svc_clts_kfreeargs(SVCXPRT * clone_xprt,xdrproc_t xdr_args,caddr_t args_ptr)624 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
625 caddr_t args_ptr)
626 {
627 /* LINTED pointer alignment */
628 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
629 XDR *xdrs = &clone_xprt->xp_xdrin;
630 bool_t retval;
631
632 if (args_ptr) {
633 xdrs->x_op = XDR_FREE;
634 retval = (*xdr_args)(xdrs, args_ptr);
635 } else
636 retval = TRUE;
637
638 if (ud->ud_inmp) {
639 freemsg(ud->ud_inmp);
640 ud->ud_inmp = NULL;
641 }
642
643 return (retval);
644 }
645
646 static int32_t *
svc_clts_kgetres(SVCXPRT * clone_xprt,int size)647 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
648 {
649 /* LINTED pointer alignment */
650 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
651 XDR *xdrs = &clone_xprt->xp_xdrout;
652 mblk_t *mp;
653 int32_t *buf;
654 struct rpc_msg rply;
655
656 /*
657 * Allocate an initial mblk for the response data.
658 */
659 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
660 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
661 return (FALSE);
662 }
663 }
664
665 mp->b_cont = NULL;
666
667 /*
668 * Initialize the XDR decode stream. Additional mblks
669 * will be allocated if necessary. They will be UD_MAXSIZE
670 * sized.
671 */
672 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
673
674 /*
675 * Leave some space for protocol headers.
676 */
677 (void) XDR_SETPOS(xdrs, 512);
678 mp->b_rptr += 512;
679
680 /*
681 * Assume a successful RPC since most of them are.
682 */
683 rply.rm_xid = clone_xprt->xp_xid;
684 rply.rm_direction = REPLY;
685 rply.rm_reply.rp_stat = MSG_ACCEPTED;
686 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
687 rply.acpted_rply.ar_stat = SUCCESS;
688
689 if (!xdr_replymsg_hdr(xdrs, &rply)) {
690 freeb(mp);
691 return (NULL);
692 }
693
694 buf = XDR_INLINE(xdrs, size);
695
696 if (buf == NULL)
697 freeb(mp);
698 else
699 ud->ud_resp->b_cont = mp;
700
701 return (buf);
702 }
703
704 static void
svc_clts_kfreeres(SVCXPRT * clone_xprt)705 svc_clts_kfreeres(SVCXPRT *clone_xprt)
706 {
707 /* LINTED pointer alignment */
708 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
709
710 if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
711 return;
712
713 /*
714 * SVC_FREERES() is called whenever the server decides not to
715 * send normal reply. Thus, we expect only one mblk to be allocated,
716 * because we have not attempted any XDR encoding.
717 * If we do any XDR encoding and we get an error, then SVC_REPLY()
718 * will freemsg(ud->ud_resp);
719 */
720 ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
721 freeb(ud->ud_resp->b_cont);
722 ud->ud_resp->b_cont = NULL;
723 }
724
725 /*
726 * the dup cacheing routines below provide a cache of non-failure
727 * transaction id's. rpc service routines can use this to detect
728 * retransmissions and re-send a non-failure response.
729 */
730
731 /*
732 * MAXDUPREQS is the number of cached items. It should be adjusted
733 * to the service load so that there is likely to be a response entry
734 * when the first retransmission comes in.
735 */
736 #define MAXDUPREQS 1024
737
738 /*
739 * This should be appropriately scaled to MAXDUPREQS.
740 */
741 #define DRHASHSZ 257
742
743 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
744 #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1))
745 #else
746 #define XIDHASH(xid) ((xid) % DRHASHSZ)
747 #endif
748 #define DRHASH(dr) XIDHASH((dr)->dr_xid)
749 #define REQTOXID(req) ((req)->rq_xprt->xp_xid)
750
751 static int ndupreqs = 0;
752 int maxdupreqs = MAXDUPREQS;
753 static kmutex_t dupreq_lock;
754 static struct dupreq *drhashtbl[DRHASHSZ];
755 static int drhashstat[DRHASHSZ];
756
757 static void unhash(struct dupreq *);
758
759 /*
760 * drmru points to the head of a circular linked list in lru order.
761 * drmru->dr_next == drlru
762 */
763 struct dupreq *drmru;
764
765 /*
766 * PSARC 2003/523 Contract Private Interface
767 * svc_clts_kdup
768 * Changes must be reviewed by Solaris File Sharing
769 * Changes must be communicated to contract-2003-523@sun.com
770 *
771 * svc_clts_kdup searches the request cache and returns 0 if the
772 * request is not found in the cache. If it is found, then it
773 * returns the state of the request (in progress or done) and
774 * the status or attributes that were part of the original reply.
775 *
776 * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
777 * value of the response. In that case, also return in *dupcachedp
778 * whether the response free routine is cached in the dupreq - in which case
779 * the caller should not be freeing it, because it will be done later
780 * in the svc_clts_kdup code when the dupreq is reused.
781 */
782 static int
svc_clts_kdup(struct svc_req * req,caddr_t res,int size,struct dupreq ** drpp,bool_t * dupcachedp)783 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
784 bool_t *dupcachedp)
785 {
786 struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
787 struct dupreq *dr;
788 uint32_t xid;
789 uint32_t drhash;
790 int status;
791
792 xid = REQTOXID(req);
793 mutex_enter(&dupreq_lock);
794 RSSTAT_INCR(stats, rsdupchecks);
795 /*
796 * Check to see whether an entry already exists in the cache.
797 */
798 dr = drhashtbl[XIDHASH(xid)];
799 while (dr != NULL) {
800 if (dr->dr_xid == xid &&
801 dr->dr_proc == req->rq_proc &&
802 dr->dr_prog == req->rq_prog &&
803 dr->dr_vers == req->rq_vers &&
804 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
805 bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
806 dr->dr_addr.len) == 0) {
807 status = dr->dr_status;
808 if (status == DUP_DONE) {
809 bcopy(dr->dr_resp.buf, res, size);
810 if (dupcachedp != NULL)
811 *dupcachedp = (dr->dr_resfree != NULL);
812 } else {
813 dr->dr_status = DUP_INPROGRESS;
814 *drpp = dr;
815 }
816 RSSTAT_INCR(stats, rsdupreqs);
817 mutex_exit(&dupreq_lock);
818 return (status);
819 }
820 dr = dr->dr_chain;
821 }
822
823 /*
824 * There wasn't an entry, either allocate a new one or recycle
825 * an old one.
826 */
827 if (ndupreqs < maxdupreqs) {
828 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
829 if (dr == NULL) {
830 mutex_exit(&dupreq_lock);
831 return (DUP_ERROR);
832 }
833 dr->dr_resp.buf = NULL;
834 dr->dr_resp.maxlen = 0;
835 dr->dr_addr.buf = NULL;
836 dr->dr_addr.maxlen = 0;
837 if (drmru) {
838 dr->dr_next = drmru->dr_next;
839 drmru->dr_next = dr;
840 } else {
841 dr->dr_next = dr;
842 }
843 ndupreqs++;
844 } else {
845 dr = drmru->dr_next;
846 while (dr->dr_status == DUP_INPROGRESS) {
847 dr = dr->dr_next;
848 if (dr == drmru->dr_next) {
849 cmn_err(CE_WARN, "svc_clts_kdup no slots free");
850 mutex_exit(&dupreq_lock);
851 return (DUP_ERROR);
852 }
853 }
854 unhash(dr);
855 if (dr->dr_resfree) {
856 (*dr->dr_resfree)(dr->dr_resp.buf);
857 }
858 }
859 dr->dr_resfree = NULL;
860 drmru = dr;
861
862 dr->dr_xid = REQTOXID(req);
863 dr->dr_prog = req->rq_prog;
864 dr->dr_vers = req->rq_vers;
865 dr->dr_proc = req->rq_proc;
866 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
867 if (dr->dr_addr.buf != NULL)
868 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
869 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
870 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
871 KM_NOSLEEP);
872 if (dr->dr_addr.buf == NULL) {
873 dr->dr_addr.maxlen = 0;
874 dr->dr_status = DUP_DROP;
875 mutex_exit(&dupreq_lock);
876 return (DUP_ERROR);
877 }
878 }
879 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
880 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
881 if (dr->dr_resp.maxlen < size) {
882 if (dr->dr_resp.buf != NULL)
883 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
884 dr->dr_resp.maxlen = (unsigned int)size;
885 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
886 if (dr->dr_resp.buf == NULL) {
887 dr->dr_resp.maxlen = 0;
888 dr->dr_status = DUP_DROP;
889 mutex_exit(&dupreq_lock);
890 return (DUP_ERROR);
891 }
892 }
893 dr->dr_status = DUP_INPROGRESS;
894
895 drhash = (uint32_t)DRHASH(dr);
896 dr->dr_chain = drhashtbl[drhash];
897 drhashtbl[drhash] = dr;
898 drhashstat[drhash]++;
899 mutex_exit(&dupreq_lock);
900 *drpp = dr;
901 return (DUP_NEW);
902 }
903
904 /*
905 * PSARC 2003/523 Contract Private Interface
906 * svc_clts_kdupdone
907 * Changes must be reviewed by Solaris File Sharing
908 * Changes must be communicated to contract-2003-523@sun.com
909 *
910 * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
911 * and stores the response.
912 */
913 static void
svc_clts_kdupdone(struct dupreq * dr,caddr_t res,void (* dis_resfree)(),int size,int status)914 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
915 int size, int status)
916 {
917
918 ASSERT(dr->dr_resfree == NULL);
919 if (status == DUP_DONE) {
920 bcopy(res, dr->dr_resp.buf, size);
921 dr->dr_resfree = dis_resfree;
922 }
923 dr->dr_status = status;
924 }
925
926 /*
927 * This routine expects that the mutex, dupreq_lock, is already held.
928 */
929 static void
unhash(struct dupreq * dr)930 unhash(struct dupreq *dr)
931 {
932 struct dupreq *drt;
933 struct dupreq *drtprev = NULL;
934 uint32_t drhash;
935
936 ASSERT(MUTEX_HELD(&dupreq_lock));
937
938 drhash = (uint32_t)DRHASH(dr);
939 drt = drhashtbl[drhash];
940 while (drt != NULL) {
941 if (drt == dr) {
942 drhashstat[drhash]--;
943 if (drtprev == NULL) {
944 drhashtbl[drhash] = drt->dr_chain;
945 } else {
946 drtprev->dr_chain = drt->dr_chain;
947 }
948 return;
949 }
950 drtprev = drt;
951 drt = drt->dr_chain;
952 }
953 }
954
955 void
svc_clts_stats_init(zoneid_t zoneid,struct rpc_clts_server ** statsp)956 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
957 {
958 kstat_t *ksp;
959 kstat_named_t *knp;
960
961 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
962 (const kstat_named_t *)&clts_rsstat_tmpl,
963 sizeof (clts_rsstat_tmpl));
964 /*
965 * Backwards compatibility for old kstat clients
966 */
967 ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
968 KSTAT_TYPE_NAMED, clts_rsstat_ndata,
969 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
970 if (ksp) {
971 ksp->ks_data = knp;
972 kstat_install(ksp);
973 }
974 *statsp = (struct rpc_clts_server *)knp;
975 }
976
977 void
svc_clts_stats_fini(zoneid_t zoneid,struct rpc_clts_server ** statsp)978 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
979 {
980 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
981 kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
982 kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
983 }
984
985 void
svc_clts_init()986 svc_clts_init()
987 {
988 /*
989 * Check to make sure that the clts private data will fit into
990 * the stack buffer allocated by svc_run. The compiler should
991 * remove this check, but it's a safety net if the udp_data
992 * structure ever changes.
993 */
994 /*CONSTANTCONDITION*/
995 ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
996
997 mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);
998 }
999