1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011, 2025 Chelsio Communications.
5 * Written by: Navdeep Parhar <np@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36
37 #include <sys/param.h>
38 #include <sys/conf.h>
39 #include <sys/priv.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/eventhandler.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #ifdef RSS
61 #include <net/rss_config.h>
62 #endif
63 #include <netinet/in.h>
64 #include <netinet/ip.h>
65 #ifdef KERN_TLS
66 #include <netinet/tcp_seq.h>
67 #endif
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #ifdef DDB
75 #include <ddb/ddb.h>
76 #include <ddb/db_lex.h>
77 #endif
78
79 #include "common/common.h"
80 #include "common/t4_msg.h"
81 #include "common/t4_regs.h"
82 #include "common/t4_regs_values.h"
83 #include "cudbg/cudbg.h"
84 #include "t4_clip.h"
85 #include "t4_ioctl.h"
86 #include "t4_l2t.h"
87 #include "t4_mp_ring.h"
88 #include "t4_if.h"
89 #include "t4_smt.h"
90
91 /* T4 bus driver interface */
92 static int t4_probe(device_t);
93 static int t4_attach(device_t);
94 static int t4_detach(device_t);
95 static int t4_child_location(device_t, device_t, struct sbuf *);
96 static int t4_ready(device_t);
97 static int t4_read_port_device(device_t, int, device_t *);
98 static int t4_suspend(device_t);
99 static int t4_resume(device_t);
100 static int t4_reset_prepare(device_t, device_t);
101 static int t4_reset_post(device_t, device_t);
102 static device_method_t t4_methods[] = {
103 DEVMETHOD(device_probe, t4_probe),
104 DEVMETHOD(device_attach, t4_attach),
105 DEVMETHOD(device_detach, t4_detach),
106 DEVMETHOD(device_suspend, t4_suspend),
107 DEVMETHOD(device_resume, t4_resume),
108
109 DEVMETHOD(bus_child_location, t4_child_location),
110 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
111 DEVMETHOD(bus_reset_post, t4_reset_post),
112
113 DEVMETHOD(t4_is_main_ready, t4_ready),
114 DEVMETHOD(t4_read_port_device, t4_read_port_device),
115
116 DEVMETHOD_END
117 };
118 static driver_t t4_driver = {
119 "t4nex",
120 t4_methods,
121 sizeof(struct adapter)
122 };
123
124
125 /* T4 port (cxgbe) interface */
126 static int cxgbe_probe(device_t);
127 static int cxgbe_attach(device_t);
128 static int cxgbe_detach(device_t);
129 device_method_t cxgbe_methods[] = {
130 DEVMETHOD(device_probe, cxgbe_probe),
131 DEVMETHOD(device_attach, cxgbe_attach),
132 DEVMETHOD(device_detach, cxgbe_detach),
133 { 0, 0 }
134 };
135 static driver_t cxgbe_driver = {
136 "cxgbe",
137 cxgbe_methods,
138 sizeof(struct port_info)
139 };
140
141 /* T4 VI (vcxgbe) interface */
142 static int vcxgbe_probe(device_t);
143 static int vcxgbe_attach(device_t);
144 static int vcxgbe_detach(device_t);
145 static device_method_t vcxgbe_methods[] = {
146 DEVMETHOD(device_probe, vcxgbe_probe),
147 DEVMETHOD(device_attach, vcxgbe_attach),
148 DEVMETHOD(device_detach, vcxgbe_detach),
149 { 0, 0 }
150 };
151 static driver_t vcxgbe_driver = {
152 "vcxgbe",
153 vcxgbe_methods,
154 sizeof(struct vi_info)
155 };
156
157 static d_ioctl_t t4_ioctl;
158
159 static struct cdevsw t4_cdevsw = {
160 .d_version = D_VERSION,
161 .d_ioctl = t4_ioctl,
162 .d_name = "t4nex",
163 };
164
165 /* T5 bus driver interface */
166 static int t5_probe(device_t);
167 static device_method_t t5_methods[] = {
168 DEVMETHOD(device_probe, t5_probe),
169 DEVMETHOD(device_attach, t4_attach),
170 DEVMETHOD(device_detach, t4_detach),
171 DEVMETHOD(device_suspend, t4_suspend),
172 DEVMETHOD(device_resume, t4_resume),
173
174 DEVMETHOD(bus_child_location, t4_child_location),
175 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
176 DEVMETHOD(bus_reset_post, t4_reset_post),
177
178 DEVMETHOD(t4_is_main_ready, t4_ready),
179 DEVMETHOD(t4_read_port_device, t4_read_port_device),
180
181 DEVMETHOD_END
182 };
183 static driver_t t5_driver = {
184 "t5nex",
185 t5_methods,
186 sizeof(struct adapter)
187 };
188
189
190 /* T5 port (cxl) interface */
191 static driver_t cxl_driver = {
192 "cxl",
193 cxgbe_methods,
194 sizeof(struct port_info)
195 };
196
197 /* T5 VI (vcxl) interface */
198 static driver_t vcxl_driver = {
199 "vcxl",
200 vcxgbe_methods,
201 sizeof(struct vi_info)
202 };
203
204 /* T6 bus driver interface */
205 static int t6_probe(device_t);
206 static device_method_t t6_methods[] = {
207 DEVMETHOD(device_probe, t6_probe),
208 DEVMETHOD(device_attach, t4_attach),
209 DEVMETHOD(device_detach, t4_detach),
210 DEVMETHOD(device_suspend, t4_suspend),
211 DEVMETHOD(device_resume, t4_resume),
212
213 DEVMETHOD(bus_child_location, t4_child_location),
214 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
215 DEVMETHOD(bus_reset_post, t4_reset_post),
216
217 DEVMETHOD(t4_is_main_ready, t4_ready),
218 DEVMETHOD(t4_read_port_device, t4_read_port_device),
219
220 DEVMETHOD_END
221 };
222 static driver_t t6_driver = {
223 "t6nex",
224 t6_methods,
225 sizeof(struct adapter)
226 };
227
228
229 /* T6 port (cc) interface */
230 static driver_t cc_driver = {
231 "cc",
232 cxgbe_methods,
233 sizeof(struct port_info)
234 };
235
236 /* T6 VI (vcc) interface */
237 static driver_t vcc_driver = {
238 "vcc",
239 vcxgbe_methods,
240 sizeof(struct vi_info)
241 };
242
243 /* T7+ bus driver interface */
244 static int ch_probe(device_t);
245 static device_method_t ch_methods[] = {
246 DEVMETHOD(device_probe, ch_probe),
247 DEVMETHOD(device_attach, t4_attach),
248 DEVMETHOD(device_detach, t4_detach),
249 DEVMETHOD(device_suspend, t4_suspend),
250 DEVMETHOD(device_resume, t4_resume),
251
252 DEVMETHOD(bus_child_location, t4_child_location),
253 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
254 DEVMETHOD(bus_reset_post, t4_reset_post),
255
256 DEVMETHOD(t4_is_main_ready, t4_ready),
257 DEVMETHOD(t4_read_port_device, t4_read_port_device),
258
259 DEVMETHOD_END
260 };
261 static driver_t ch_driver = {
262 "chnex",
263 ch_methods,
264 sizeof(struct adapter)
265 };
266
267
268 /* T7+ port (che) interface */
269 static driver_t che_driver = {
270 "che",
271 cxgbe_methods,
272 sizeof(struct port_info)
273 };
274
275 /* T7+ VI (vche) interface */
276 static driver_t vche_driver = {
277 "vche",
278 vcxgbe_methods,
279 sizeof(struct vi_info)
280 };
281
282 /* ifnet interface */
283 static void cxgbe_init(void *);
284 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
285 static int cxgbe_transmit(if_t, struct mbuf *);
286 static void cxgbe_qflush(if_t);
287 #if defined(KERN_TLS) || defined(RATELIMIT)
288 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
289 struct m_snd_tag **);
290 #endif
291
292 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
293
294 /*
295 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
296 * then ADAPTER_LOCK, then t4_uld_list_lock.
297 */
298 static struct sx t4_list_lock;
299 SLIST_HEAD(, adapter) t4_list;
300 #ifdef TCP_OFFLOAD
301 static struct sx t4_uld_list_lock;
302 struct uld_info *t4_uld_list[ULD_MAX + 1];
303 #endif
304
305 /*
306 * Tunables. See tweak_tunables() too.
307 *
308 * Each tunable is set to a default value here if it's known at compile-time.
309 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
310 * provide a reasonable default (upto n) when the driver is loaded.
311 *
312 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
313 * T5 are under hw.cxl.
314 */
315 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
316 "cxgbe(4) parameters");
317 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
318 "cxgbe(4) T5+ parameters");
319 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
320 "cxgbe(4) TOE parameters");
321
322 /*
323 * Number of queues for tx and rx, NIC and offload.
324 */
325 #define NTXQ 16
326 int t4_ntxq = -NTXQ;
327 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
328 "Number of TX queues per port");
329 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
330
331 #define NRXQ 8
332 int t4_nrxq = -NRXQ;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
334 "Number of RX queues per port");
335 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
336
337 #define NTXQ_VI 1
338 static int t4_ntxq_vi = -NTXQ_VI;
339 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
340 "Number of TX queues per VI");
341
342 #define NRXQ_VI 1
343 static int t4_nrxq_vi = -NRXQ_VI;
344 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
345 "Number of RX queues per VI");
346
347 static int t4_rsrv_noflowq = 0;
348 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
349 0, "Reserve TX queue 0 of each VI for non-flowid packets");
350
351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
352 #define NOFLDTXQ 8
353 static int t4_nofldtxq = -NOFLDTXQ;
354 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
355 "Number of offload TX queues per port");
356
357 #define NOFLDTXQ_VI 1
358 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
359 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
360 "Number of offload TX queues per VI");
361 #endif
362
363 #if defined(TCP_OFFLOAD)
364 #define NOFLDRXQ 2
365 static int t4_nofldrxq = -NOFLDRXQ;
366 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
367 "Number of offload RX queues per port");
368
369 #define NOFLDRXQ_VI 1
370 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
371 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
372 "Number of offload RX queues per VI");
373
374 #define TMR_IDX_OFLD 1
375 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
376 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
377 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
378
379 #define PKTC_IDX_OFLD (-1)
380 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
381 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
382 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
383
384 /* 0 means chip/fw default, non-zero number is value in microseconds */
385 static u_long t4_toe_keepalive_idle = 0;
386 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
387 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
388
389 /* 0 means chip/fw default, non-zero number is value in microseconds */
390 static u_long t4_toe_keepalive_interval = 0;
391 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
392 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
393
394 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
395 static int t4_toe_keepalive_count = 0;
396 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
397 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
398
399 /* 0 means chip/fw default, non-zero number is value in microseconds */
400 static u_long t4_toe_rexmt_min = 0;
401 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
403
404 /* 0 means chip/fw default, non-zero number is value in microseconds */
405 static u_long t4_toe_rexmt_max = 0;
406 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
407 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
408
409 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
410 static int t4_toe_rexmt_count = 0;
411 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
413
414 /* -1 means chip/fw default, other values are raw backoff values to use */
415 static int t4_toe_rexmt_backoff[16] = {
416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
417 };
418 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
419 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
420 "cxgbe(4) TOE retransmit backoff values");
421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
422 &t4_toe_rexmt_backoff[0], 0, "");
423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
424 &t4_toe_rexmt_backoff[1], 0, "");
425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
426 &t4_toe_rexmt_backoff[2], 0, "");
427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
428 &t4_toe_rexmt_backoff[3], 0, "");
429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
430 &t4_toe_rexmt_backoff[4], 0, "");
431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
432 &t4_toe_rexmt_backoff[5], 0, "");
433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
434 &t4_toe_rexmt_backoff[6], 0, "");
435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
436 &t4_toe_rexmt_backoff[7], 0, "");
437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
438 &t4_toe_rexmt_backoff[8], 0, "");
439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
440 &t4_toe_rexmt_backoff[9], 0, "");
441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
442 &t4_toe_rexmt_backoff[10], 0, "");
443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
444 &t4_toe_rexmt_backoff[11], 0, "");
445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
446 &t4_toe_rexmt_backoff[12], 0, "");
447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
448 &t4_toe_rexmt_backoff[13], 0, "");
449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
450 &t4_toe_rexmt_backoff[14], 0, "");
451 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
452 &t4_toe_rexmt_backoff[15], 0, "");
453
454 int t4_ddp_rcvbuf_len = 256 * 1024;
455 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
456 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
457
458 unsigned int t4_ddp_rcvbuf_cache = 4;
459 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
460 &t4_ddp_rcvbuf_cache, 0,
461 "maximum number of free DDP RX buffers to cache per connection");
462 #endif
463
464 #ifdef DEV_NETMAP
465 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
466 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
467 static int t4_native_netmap = NN_EXTRA_VI;
468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
469 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
470
471 #define NNMTXQ 8
472 static int t4_nnmtxq = -NNMTXQ;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
474 "Number of netmap TX queues");
475
476 #define NNMRXQ 8
477 static int t4_nnmrxq = -NNMRXQ;
478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
479 "Number of netmap RX queues");
480
481 #define NNMTXQ_VI 2
482 static int t4_nnmtxq_vi = -NNMTXQ_VI;
483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
484 "Number of netmap TX queues per VI");
485
486 #define NNMRXQ_VI 2
487 static int t4_nnmrxq_vi = -NNMRXQ_VI;
488 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
489 "Number of netmap RX queues per VI");
490 #endif
491
492 /*
493 * Holdoff parameters for ports.
494 */
495 #define TMR_IDX 1
496 int t4_tmr_idx = TMR_IDX;
497 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
498 0, "Holdoff timer index");
499 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
500
501 #define PKTC_IDX (-1)
502 int t4_pktc_idx = PKTC_IDX;
503 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
504 0, "Holdoff packet counter index");
505 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
506
507 /*
508 * Size (# of entries) of each tx and rx queue.
509 */
510 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
512 "Number of descriptors in each TX queue");
513
514 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
516 "Number of descriptors in each RX queue");
517
518 /*
519 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
520 */
521 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
523 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
524
525 /*
526 * Configuration file. All the _CF names here are special.
527 */
528 #define DEFAULT_CF "default"
529 #define BUILTIN_CF "built-in"
530 #define FLASH_CF "flash"
531 #define UWIRE_CF "uwire"
532 #define FPGA_CF "fpga"
533 static char t4_cfg_file[32] = DEFAULT_CF;
534 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
535 sizeof(t4_cfg_file), "Firmware configuration file");
536
537 /*
538 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
539 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
540 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
541 * mark or when signalled to do so, 0 to never emit PAUSE.
542 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
543 * negotiated settings will override rx_pause/tx_pause.
544 * Otherwise rx_pause/tx_pause are applied forcibly.
545 */
546 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
548 &t4_pause_settings, 0,
549 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
550
551 /*
552 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
553 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
554 * 0 to disable FEC.
555 */
556 static int t4_fec = -1;
557 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
558 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
559
560 static const char *
561 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module";
562
563 /*
564 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
565 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
566 * driver runs as if this is set to 0.
567 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
568 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
569 * transceiver. Multiple FEC bits may not be okay but will be passed on to
570 * the firmware anyway (may result in l1cfg errors with old firmwares).
571 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
572 * means set all FEC bits that are valid for the speed.
573 */
574 static int t4_force_fec = -1;
575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
576 "Controls the use of FORCE_FEC bit in L1 configuration.");
577
578 /*
579 * Link autonegotiation.
580 * -1 to run with the firmware default.
581 * 0 to disable.
582 * 1 to enable.
583 */
584 static int t4_autoneg = -1;
585 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
586 "Link autonegotiation");
587
588 /*
589 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
590 * encouraged respectively). '-n' is the same as 'n' except the firmware
591 * version used in the checks is read from the firmware bundled with the driver.
592 */
593 static int t4_fw_install = 1;
594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
595 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
596
597 /*
598 * ASIC features that will be used. Disable the ones you don't want so that the
599 * chip resources aren't wasted on features that will not be used.
600 */
601 static int t4_nbmcaps_allowed = 0;
602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
603 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
604
605 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
607 &t4_linkcaps_allowed, 0, "Default link capabilities");
608
609 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
610 FW_CAPS_CONFIG_SWITCH_EGRESS;
611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
612 &t4_switchcaps_allowed, 0, "Default switch capabilities");
613
614 static int t4_nvmecaps_allowed = -1;
615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN,
616 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities");
617
618 #ifdef RATELIMIT
619 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
620 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
621 #else
622 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
623 FW_CAPS_CONFIG_NIC_HASHFILTER;
624 #endif
625 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
626 &t4_niccaps_allowed, 0, "Default NIC capabilities");
627
628 static int t4_toecaps_allowed = -1;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
630 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
631
632 static int t4_rdmacaps_allowed = -1;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
634 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
635
636 static int t4_cryptocaps_allowed = -1;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
638 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
639
640 static int t4_iscsicaps_allowed = -1;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
642 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
643
644 static int t4_fcoecaps_allowed = 0;
645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
646 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
647
648 static int t5_write_combine = 0;
649 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
650 0, "Use WC instead of UC for BAR2");
651
652 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
653 static int t4_doorbells_allowed = 0xf;
654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
655 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
656
657 static int t4_num_vis = 1;
658 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
659 "Number of VIs per port");
660
661 /*
662 * PCIe Relaxed Ordering.
663 * -1: driver should figure out a good value.
664 * 0: disable RO.
665 * 1: enable RO.
666 * 2: leave RO alone.
667 */
668 static int pcie_relaxed_ordering = -1;
669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
670 &pcie_relaxed_ordering, 0,
671 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
672
673 static int t4_panic_on_fatal_err = 0;
674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
675 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
676
677 static int t4_reset_on_fatal_err = 0;
678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
679 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
680
681 static int t4_reset_method = 1;
682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
683 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
684
685 static int t4_clock_gate_on_suspend = 0;
686 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
687 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
688
689 static int t4_tx_vm_wr = 0;
690 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
691 "Use VM work requests to transmit packets.");
692
693 /*
694 * Set to non-zero to enable the attack filter. A packet that matches any of
695 * these conditions will get dropped on ingress:
696 * 1) IP && source address == destination address.
697 * 2) TCP/IP && source address is not a unicast address.
698 * 3) TCP/IP && destination address is not a unicast address.
699 * 4) IP && source address is loopback (127.x.y.z).
700 * 5) IP && destination address is loopback (127.x.y.z).
701 * 6) IPv6 && source address == destination address.
702 * 7) IPv6 && source address is not a unicast address.
703 * 8) IPv6 && source address is loopback (::1/128).
704 * 9) IPv6 && destination address is loopback (::1/128).
705 * 10) IPv6 && source address is unspecified (::/128).
706 * 11) IPv6 && destination address is unspecified (::/128).
707 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
708 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
709 */
710 static int t4_attack_filter = 0;
711 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
712 &t4_attack_filter, 0, "Drop suspicious traffic");
713
714 static int t4_drop_ip_fragments = 0;
715 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
716 &t4_drop_ip_fragments, 0, "Drop IP fragments");
717
718 static int t4_drop_pkts_with_l2_errors = 1;
719 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
720 &t4_drop_pkts_with_l2_errors, 0,
721 "Drop all frames with Layer 2 length or checksum errors");
722
723 static int t4_drop_pkts_with_l3_errors = 0;
724 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
725 &t4_drop_pkts_with_l3_errors, 0,
726 "Drop all frames with IP version, length, or checksum errors");
727
728 static int t4_drop_pkts_with_l4_errors = 0;
729 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
730 &t4_drop_pkts_with_l4_errors, 0,
731 "Drop all frames with Layer 4 length, checksum, or other errors");
732
733 #ifdef TCP_OFFLOAD
734 /*
735 * TOE tunables.
736 */
737 static int t4_cop_managed_offloading = 0;
738 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
739 &t4_cop_managed_offloading, 0,
740 "COP (Connection Offload Policy) controls all TOE offload");
741 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
742 #endif
743
744 #ifdef KERN_TLS
745 /*
746 * This enables KERN_TLS for all adapters if set.
747 */
748 static int t4_kern_tls = 0;
749 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
750 "Enable KERN_TLS mode for T6 adapters");
751
752 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
753 "cxgbe(4) KERN_TLS parameters");
754
755 static int t4_tls_inline_keys = 0;
756 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
757 &t4_tls_inline_keys, 0,
758 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
759 "in card memory.");
760
761 static int t4_tls_combo_wrs = 0;
762 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
763 0, "Attempt to combine TCB field updates with TLS record work requests.");
764
765 static int t4_tls_short_records = 1;
766 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN,
767 &t4_tls_short_records, 0, "Use cipher-only mode for short records.");
768
769 static int t4_tls_partial_ghash = 1;
770 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN,
771 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records.");
772 #endif
773
774 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
775 static int vi_mac_funcs[] = {
776 FW_VI_FUNC_ETH,
777 FW_VI_FUNC_OFLD,
778 FW_VI_FUNC_IWARP,
779 FW_VI_FUNC_OPENISCSI,
780 FW_VI_FUNC_OPENFCOE,
781 FW_VI_FUNC_FOISCSI,
782 FW_VI_FUNC_FOFCOE,
783 };
784
785 struct intrs_and_queues {
786 uint16_t intr_type; /* INTx, MSI, or MSI-X */
787 uint16_t num_vis; /* number of VIs for each port */
788 uint16_t nirq; /* Total # of vectors */
789 uint16_t ntxq; /* # of NIC txq's for each port */
790 uint16_t nrxq; /* # of NIC rxq's for each port */
791 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
792 uint16_t nofldrxq; /* # of TOE rxq's for each port */
793 uint16_t nnmtxq; /* # of netmap txq's */
794 uint16_t nnmrxq; /* # of netmap rxq's */
795
796 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
797 uint16_t ntxq_vi; /* # of NIC txq's */
798 uint16_t nrxq_vi; /* # of NIC rxq's */
799 uint16_t nofldtxq_vi; /* # of TOE txq's */
800 uint16_t nofldrxq_vi; /* # of TOE rxq's */
801 uint16_t nnmtxq_vi; /* # of netmap txq's */
802 uint16_t nnmrxq_vi; /* # of netmap rxq's */
803 };
804
805 static void setup_memwin(struct adapter *);
806 static void position_memwin(struct adapter *, int, uint32_t);
807 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
808 static int fwmtype_to_hwmtype(int);
809 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
810 uint32_t *);
811 static int fixup_devlog_params(struct adapter *);
812 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
813 static int contact_firmware(struct adapter *);
814 static int partition_resources(struct adapter *);
815 static int get_params__pre_init(struct adapter *);
816 static int set_params__pre_init(struct adapter *);
817 static int get_params__post_init(struct adapter *);
818 static int set_params__post_init(struct adapter *);
819 static void t4_set_desc(struct adapter *);
820 static bool fixed_ifmedia(struct port_info *);
821 static void build_medialist(struct port_info *);
822 static void init_link_config(struct port_info *);
823 static int fixup_link_config(struct port_info *);
824 static int apply_link_config(struct port_info *);
825 static int cxgbe_init_synchronized(struct vi_info *);
826 static int cxgbe_uninit_synchronized(struct vi_info *);
827 static int adapter_full_init(struct adapter *);
828 static void adapter_full_uninit(struct adapter *);
829 static int vi_full_init(struct vi_info *);
830 static void vi_full_uninit(struct vi_info *);
831 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
832 static void quiesce_txq(struct sge_txq *);
833 static void quiesce_wrq(struct sge_wrq *);
834 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
835 static void quiesce_vi(struct vi_info *);
836 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
837 driver_intr_t *, void *, char *);
838 static int t4_free_irq(struct adapter *, struct irq *);
839 static void t4_init_atid_table(struct adapter *);
840 static void t4_free_atid_table(struct adapter *);
841 static void stop_atid_allocator(struct adapter *);
842 static void restart_atid_allocator(struct adapter *);
843 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
844 static void vi_refresh_stats(struct vi_info *);
845 static void cxgbe_refresh_stats(struct vi_info *);
846 static void cxgbe_tick(void *);
847 static void vi_tick(void *);
848 static void cxgbe_sysctls(struct port_info *);
849 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
850 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
851 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
852 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
853 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
854 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
855 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
856 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
857 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
858 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
859 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
860 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
861 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
862 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
863 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
864 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
865 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS);
866 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
867 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
868 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
869 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
870 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
871 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
872 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS);
873 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS);
874 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
875 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
876 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
877 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
878 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS);
879 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
880 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
881 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
882 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
883 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
884 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
885 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
886 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
887 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
888 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
889 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
890 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS);
891 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
892 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
893 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
894 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
895 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
896 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
897 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
898 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
899 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
900 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
901 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
902 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
903 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
904 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
905 #ifdef TCP_OFFLOAD
906 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
907 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
908 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
909 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
910 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
911 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
912 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
913 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
914 #endif
915 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *);
916 static int load_fw(struct adapter *, struct t4_data *);
917 static int load_cfg(struct adapter *, struct t4_data *);
918 static int load_boot(struct adapter *, struct t4_bootrom *);
919 static int load_bootcfg(struct adapter *, struct t4_data *);
920 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
921 static void free_offload_policy(struct t4_offload_policy *);
922 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
923 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
924 static int read_i2c(struct adapter *, struct t4_i2c_data *);
925 static int clear_stats(struct adapter *, u_int);
926 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
927 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
928 static inline int stop_adapter(struct adapter *);
929 static inline void set_adapter_hwstatus(struct adapter *, const bool);
930 static int stop_lld(struct adapter *);
931 static inline int restart_adapter(struct adapter *);
932 static int restart_lld(struct adapter *);
933 #ifdef TCP_OFFLOAD
934 static int deactivate_all_uld(struct adapter *);
935 static void stop_all_uld(struct adapter *);
936 static void restart_all_uld(struct adapter *);
937 #endif
938 #ifdef KERN_TLS
939 static int ktls_capability(struct adapter *, bool);
940 #endif
941 static int mod_event(module_t, int, void *);
942 static int notify_siblings(device_t, int);
943 static uint64_t vi_get_counter(if_t, ift_counter);
944 static uint64_t cxgbe_get_counter(if_t, ift_counter);
945 static void enable_vxlan_rx(struct adapter *);
946 static void reset_adapter_task(void *, int);
947 static void fatal_error_task(void *, int);
948 static void dump_devlog(struct adapter *);
949 static void dump_cim_regs(struct adapter *);
950 static void dump_cimla(struct adapter *);
951
952 struct {
953 uint16_t device;
954 char *desc;
955 } t4_pciids[] = {
956 {0xa000, "Chelsio Terminator 4 FPGA"},
957 {0x4400, "Chelsio T440-dbg"},
958 {0x4401, "Chelsio T420-CR"},
959 {0x4402, "Chelsio T422-CR"},
960 {0x4403, "Chelsio T440-CR"},
961 {0x4404, "Chelsio T420-BCH"},
962 {0x4405, "Chelsio T440-BCH"},
963 {0x4406, "Chelsio T440-CH"},
964 {0x4407, "Chelsio T420-SO"},
965 {0x4408, "Chelsio T420-CX"},
966 {0x4409, "Chelsio T420-BT"},
967 {0x440a, "Chelsio T404-BT"},
968 {0x440e, "Chelsio T440-LP-CR"},
969 }, t5_pciids[] = {
970 {0xb000, "Chelsio Terminator 5 FPGA"},
971 {0x5400, "Chelsio T580-dbg"},
972 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
973 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
974 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
975 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
976 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
977 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
978 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
979 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
980 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
981 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
982 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
983 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
984 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
985 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
986 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
987 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
988 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
989
990 /* Custom */
991 {0x5483, "Custom T540-CR"},
992 {0x5484, "Custom T540-BT"},
993 }, t6_pciids[] = {
994 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
995 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
996 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
997 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
998 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
999 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
1000 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
1001 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
1002 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
1003 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
1004 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
1005 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
1006 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
1007 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
1008 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
1009 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
1010
1011 /* Custom */
1012 {0x6480, "Custom T6225-CR"},
1013 {0x6481, "Custom T62100-CR"},
1014 {0x6482, "Custom T6225-CR"},
1015 {0x6483, "Custom T62100-CR"},
1016 {0x6484, "Custom T64100-CR"},
1017 {0x6485, "Custom T6240-SO"},
1018 {0x6486, "Custom T6225-SO-CR"},
1019 {0x6487, "Custom T6225-CR"},
1020 }, t7_pciids[] = {
1021 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */
1022 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */
1023 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */
1024 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */
1025 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */
1026 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */
1027 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */
1028 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */
1029 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */
1030 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */
1031 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */
1032 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */
1033 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */
1034 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */
1035 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */
1036 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */
1037 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */
1038 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */
1039 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */
1040
1041 /* Custom */
1042 {0x7480, "Custom T7"},
1043 };
1044
1045 #ifdef TCP_OFFLOAD
1046 /*
1047 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
1048 * be exactly the same for both rxq and ofld_rxq.
1049 */
1050 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
1051 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
1052 #endif
1053 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
1054
1055 static int
t4_probe(device_t dev)1056 t4_probe(device_t dev)
1057 {
1058 int i;
1059 uint16_t v = pci_get_vendor(dev);
1060 uint16_t d = pci_get_device(dev);
1061 uint8_t f = pci_get_function(dev);
1062
1063 if (v != PCI_VENDOR_ID_CHELSIO)
1064 return (ENXIO);
1065
1066 /* Attach only to PF0 of the FPGA */
1067 if (d == 0xa000 && f != 0)
1068 return (ENXIO);
1069
1070 for (i = 0; i < nitems(t4_pciids); i++) {
1071 if (d == t4_pciids[i].device) {
1072 device_set_desc(dev, t4_pciids[i].desc);
1073 return (BUS_PROBE_DEFAULT);
1074 }
1075 }
1076
1077 return (ENXIO);
1078 }
1079
1080 static int
t5_probe(device_t dev)1081 t5_probe(device_t dev)
1082 {
1083 int i;
1084 uint16_t v = pci_get_vendor(dev);
1085 uint16_t d = pci_get_device(dev);
1086 uint8_t f = pci_get_function(dev);
1087
1088 if (v != PCI_VENDOR_ID_CHELSIO)
1089 return (ENXIO);
1090
1091 /* Attach only to PF0 of the FPGA */
1092 if (d == 0xb000 && f != 0)
1093 return (ENXIO);
1094
1095 for (i = 0; i < nitems(t5_pciids); i++) {
1096 if (d == t5_pciids[i].device) {
1097 device_set_desc(dev, t5_pciids[i].desc);
1098 return (BUS_PROBE_DEFAULT);
1099 }
1100 }
1101
1102 return (ENXIO);
1103 }
1104
1105 static int
t6_probe(device_t dev)1106 t6_probe(device_t dev)
1107 {
1108 int i;
1109 uint16_t v = pci_get_vendor(dev);
1110 uint16_t d = pci_get_device(dev);
1111
1112 if (v != PCI_VENDOR_ID_CHELSIO)
1113 return (ENXIO);
1114
1115 for (i = 0; i < nitems(t6_pciids); i++) {
1116 if (d == t6_pciids[i].device) {
1117 device_set_desc(dev, t6_pciids[i].desc);
1118 return (BUS_PROBE_DEFAULT);
1119 }
1120 }
1121
1122 return (ENXIO);
1123 }
1124
1125 static int
ch_probe(device_t dev)1126 ch_probe(device_t dev)
1127 {
1128 int i;
1129 uint16_t v = pci_get_vendor(dev);
1130 uint16_t d = pci_get_device(dev);
1131 uint8_t f = pci_get_function(dev);
1132
1133 if (v != PCI_VENDOR_ID_CHELSIO)
1134 return (ENXIO);
1135
1136 /* Attach only to PF0 of the FPGA */
1137 if (d == 0xd000 && f != 0)
1138 return (ENXIO);
1139
1140 for (i = 0; i < nitems(t7_pciids); i++) {
1141 if (d == t7_pciids[i].device) {
1142 device_set_desc(dev, t7_pciids[i].desc);
1143 return (BUS_PROBE_DEFAULT);
1144 }
1145 }
1146
1147 return (ENXIO);
1148 }
1149
1150 static void
t5_attribute_workaround(device_t dev)1151 t5_attribute_workaround(device_t dev)
1152 {
1153 device_t root_port;
1154 uint32_t v;
1155
1156 /*
1157 * The T5 chips do not properly echo the No Snoop and Relaxed
1158 * Ordering attributes when replying to a TLP from a Root
1159 * Port. As a workaround, find the parent Root Port and
1160 * disable No Snoop and Relaxed Ordering. Note that this
1161 * affects all devices under this root port.
1162 */
1163 root_port = pci_find_pcie_root_port(dev);
1164 if (root_port == NULL) {
1165 device_printf(dev, "Unable to find parent root port\n");
1166 return;
1167 }
1168
1169 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1170 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1171 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1172 0)
1173 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1174 device_get_nameunit(root_port));
1175 }
1176
1177 static const struct devnames devnames[] = {
1178 {
1179 .nexus_name = "t4nex",
1180 .ifnet_name = "cxgbe",
1181 .vi_ifnet_name = "vcxgbe",
1182 .pf03_drv_name = "t4iov",
1183 .vf_nexus_name = "t4vf",
1184 .vf_ifnet_name = "cxgbev"
1185 }, {
1186 .nexus_name = "t5nex",
1187 .ifnet_name = "cxl",
1188 .vi_ifnet_name = "vcxl",
1189 .pf03_drv_name = "t5iov",
1190 .vf_nexus_name = "t5vf",
1191 .vf_ifnet_name = "cxlv"
1192 }, {
1193 .nexus_name = "t6nex",
1194 .ifnet_name = "cc",
1195 .vi_ifnet_name = "vcc",
1196 .pf03_drv_name = "t6iov",
1197 .vf_nexus_name = "t6vf",
1198 .vf_ifnet_name = "ccv"
1199 }, {
1200 .nexus_name = "chnex",
1201 .ifnet_name = "che",
1202 .vi_ifnet_name = "vche",
1203 .pf03_drv_name = "chiov",
1204 .vf_nexus_name = "chvf",
1205 .vf_ifnet_name = "chev"
1206 }
1207 };
1208
1209 void
t4_init_devnames(struct adapter * sc)1210 t4_init_devnames(struct adapter *sc)
1211 {
1212 int id;
1213
1214 id = chip_id(sc);
1215 if (id < CHELSIO_T4) {
1216 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1217 sc->names = NULL;
1218 } else if (id - CHELSIO_T4 < nitems(devnames))
1219 sc->names = &devnames[id - CHELSIO_T4];
1220 else
1221 sc->names = &devnames[nitems(devnames) - 1];
1222 }
1223
1224 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1225 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1226 {
1227 const char *parent, *name;
1228 long value;
1229 int line, unit;
1230
1231 line = 0;
1232 parent = device_get_nameunit(sc->dev);
1233 name = sc->names->ifnet_name;
1234 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1235 if (resource_long_value(name, unit, "port", &value) == 0 &&
1236 value == pi->port_id)
1237 return (unit);
1238 }
1239 return (-1);
1240 }
1241
1242 static void
t4_calibration(void * arg)1243 t4_calibration(void *arg)
1244 {
1245 struct adapter *sc;
1246 struct clock_sync *cur, *nex;
1247 uint64_t hw;
1248 sbintime_t sbt;
1249 int next_up;
1250
1251 sc = (struct adapter *)arg;
1252
1253 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1254 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1255 sbt = sbinuptime();
1256
1257 cur = &sc->cal_info[sc->cal_current];
1258 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1259 nex = &sc->cal_info[next_up];
1260 if (__predict_false(sc->cal_count == 0)) {
1261 /* First time in, just get the values in */
1262 cur->hw_cur = hw;
1263 cur->sbt_cur = sbt;
1264 sc->cal_count++;
1265 goto done;
1266 }
1267
1268 if (cur->hw_cur == hw) {
1269 /* The clock is not advancing? */
1270 sc->cal_count = 0;
1271 atomic_store_rel_int(&cur->gen, 0);
1272 goto done;
1273 }
1274
1275 seqc_write_begin(&nex->gen);
1276 nex->hw_prev = cur->hw_cur;
1277 nex->sbt_prev = cur->sbt_cur;
1278 nex->hw_cur = hw;
1279 nex->sbt_cur = sbt;
1280 seqc_write_end(&nex->gen);
1281 sc->cal_current = next_up;
1282 done:
1283 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1284 sc, C_DIRECT_EXEC);
1285 }
1286
1287 static void
t4_calibration_start(struct adapter * sc)1288 t4_calibration_start(struct adapter *sc)
1289 {
1290 /*
1291 * Here if we have not done a calibration
1292 * then do so otherwise start the appropriate
1293 * timer.
1294 */
1295 int i;
1296
1297 for (i = 0; i < CNT_CAL_INFO; i++) {
1298 sc->cal_info[i].gen = 0;
1299 }
1300 sc->cal_current = 0;
1301 sc->cal_count = 0;
1302 sc->cal_gen = 0;
1303 t4_calibration(sc);
1304 }
1305
1306 static int
t4_attach(device_t dev)1307 t4_attach(device_t dev)
1308 {
1309 struct adapter *sc;
1310 int rc = 0, i, j, rqidx, tqidx, nports;
1311 struct make_dev_args mda;
1312 struct intrs_and_queues iaq;
1313 struct sge *s;
1314 uint32_t *buf;
1315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1316 int ofld_tqidx;
1317 #endif
1318 #ifdef TCP_OFFLOAD
1319 int ofld_rqidx;
1320 #endif
1321 #ifdef DEV_NETMAP
1322 int nm_rqidx, nm_tqidx;
1323 #endif
1324 int num_vis;
1325
1326 sc = device_get_softc(dev);
1327 sc->dev = dev;
1328 sysctl_ctx_init(&sc->ctx);
1329 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1330 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0)
1331 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED;
1332
1333 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1334 t5_attribute_workaround(dev);
1335 pci_enable_busmaster(dev);
1336 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1337 uint32_t v;
1338
1339 pci_set_max_read_req(dev, 4096);
1340 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1341 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1342 if (pcie_relaxed_ordering == 0 &&
1343 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1344 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1345 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1346 } else if (pcie_relaxed_ordering == 1 &&
1347 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1348 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1349 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1350 }
1351 }
1352
1353 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1354 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1355 sc->traceq = -1;
1356 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1357 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1358 device_get_nameunit(dev));
1359
1360 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1361 device_get_nameunit(dev));
1362 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1363 t4_add_adapter(sc);
1364
1365 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1366 TAILQ_INIT(&sc->sfl);
1367 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1368
1369 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1370
1371 sc->policy = NULL;
1372 rw_init(&sc->policy_lock, "connection offload policy");
1373
1374 callout_init(&sc->ktls_tick, 1);
1375
1376 callout_init(&sc->cal_callout, 1);
1377
1378 refcount_init(&sc->vxlan_refcount, 0);
1379
1380 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1381 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1382
1383 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1384 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1385 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1386 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1387 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1388 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1389
1390 rc = t4_map_bars_0_and_4(sc);
1391 if (rc != 0)
1392 goto done; /* error message displayed already */
1393
1394 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1395 memset(sc->port_map, 0xff, sizeof(sc->port_map));
1396
1397 /* Prepare the adapter for operation. */
1398 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1399 rc = -t4_prep_adapter(sc, buf);
1400 free(buf, M_CXGBE);
1401 if (rc != 0) {
1402 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1403 goto done;
1404 }
1405
1406 /*
1407 * This is the real PF# to which we're attaching. Works from within PCI
1408 * passthrough environments too, where pci_get_function() could return a
1409 * different PF# depending on the passthrough configuration. We need to
1410 * use the real PF# in all our communication with the firmware.
1411 */
1412 j = t4_read_reg(sc, A_PL_WHOAMI);
1413 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1414 sc->mbox = sc->pf;
1415
1416 t4_init_devnames(sc);
1417 if (sc->names == NULL) {
1418 rc = ENOTSUP;
1419 goto done; /* error message displayed already */
1420 }
1421
1422 /*
1423 * Do this really early, with the memory windows set up even before the
1424 * character device. The userland tool's register i/o and mem read
1425 * will work even in "recovery mode".
1426 */
1427 setup_memwin(sc);
1428 if (t4_init_devlog_ncores_params(sc, 0) == 0)
1429 fixup_devlog_params(sc);
1430 make_dev_args_init(&mda);
1431 mda.mda_devsw = &t4_cdevsw;
1432 mda.mda_uid = UID_ROOT;
1433 mda.mda_gid = GID_WHEEL;
1434 mda.mda_mode = 0600;
1435 mda.mda_si_drv1 = sc;
1436 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1437 if (rc != 0)
1438 device_printf(dev, "failed to create nexus char device: %d.\n",
1439 rc);
1440
1441 /* Go no further if recovery mode has been requested. */
1442 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1443 device_printf(dev, "recovery mode.\n");
1444 goto done;
1445 }
1446
1447 #if defined(__i386__)
1448 if ((cpu_feature & CPUID_CX8) == 0) {
1449 device_printf(dev, "64 bit atomics not available.\n");
1450 rc = ENOTSUP;
1451 goto done;
1452 }
1453 #endif
1454
1455 /* Contact the firmware and try to become the master driver. */
1456 rc = contact_firmware(sc);
1457 if (rc != 0)
1458 goto done; /* error message displayed already */
1459 MPASS(sc->flags & FW_OK);
1460
1461 rc = get_params__pre_init(sc);
1462 if (rc != 0)
1463 goto done; /* error message displayed already */
1464
1465 if (sc->flags & MASTER_PF) {
1466 rc = partition_resources(sc);
1467 if (rc != 0)
1468 goto done; /* error message displayed already */
1469 }
1470
1471 rc = get_params__post_init(sc);
1472 if (rc != 0)
1473 goto done; /* error message displayed already */
1474
1475 rc = set_params__post_init(sc);
1476 if (rc != 0)
1477 goto done; /* error message displayed already */
1478
1479 rc = t4_map_bar_2(sc);
1480 if (rc != 0)
1481 goto done; /* error message displayed already */
1482
1483 rc = t4_adj_doorbells(sc);
1484 if (rc != 0)
1485 goto done; /* error message displayed already */
1486
1487 rc = t4_create_dma_tag(sc);
1488 if (rc != 0)
1489 goto done; /* error message displayed already */
1490
1491 /*
1492 * First pass over all the ports - allocate VIs and initialize some
1493 * basic parameters like mac address, port type, etc.
1494 */
1495 for_each_port(sc, i) {
1496 struct port_info *pi;
1497
1498 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1499 sc->port[i] = pi;
1500
1501 /* These must be set before t4_port_init */
1502 pi->adapter = sc;
1503 pi->port_id = i;
1504 /*
1505 * XXX: vi[0] is special so we can't delay this allocation until
1506 * pi->nvi's final value is known.
1507 */
1508 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1509 M_ZERO | M_WAITOK);
1510
1511 /*
1512 * Allocate the "main" VI and initialize parameters
1513 * like mac addr.
1514 */
1515 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1516 if (rc != 0) {
1517 device_printf(dev, "unable to initialize port %d: %d\n",
1518 i, rc);
1519 free(pi->vi, M_CXGBE);
1520 free(pi, M_CXGBE);
1521 sc->port[i] = NULL;
1522 goto done;
1523 }
1524
1525 if (is_bt(pi->port_type))
1526 setbit(&sc->bt_map, pi->hw_port);
1527 else
1528 MPASS(!isset(&sc->bt_map, pi->hw_port));
1529
1530 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1531 device_get_nameunit(dev), i);
1532 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1533 for (j = 0; j < sc->params.tp.lb_nchan; j++)
1534 sc->chan_map[pi->tx_chan + j] = i;
1535 sc->port_map[pi->hw_port] = i;
1536
1537 /*
1538 * The MPS counter for FCS errors doesn't work correctly on the
1539 * T6 so we use the MAC counter here. Which MAC is in use
1540 * depends on the link settings which will be known when the
1541 * link comes up.
1542 */
1543 if (is_t6(sc))
1544 pi->fcs_reg = -1;
1545 else
1546 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L;
1547 pi->fcs_base = 0;
1548
1549 /* All VIs on this port share this media. */
1550 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1551 cxgbe_media_status);
1552
1553 PORT_LOCK(pi);
1554 init_link_config(pi);
1555 fixup_link_config(pi);
1556 build_medialist(pi);
1557 if (fixed_ifmedia(pi))
1558 pi->flags |= FIXED_IFMEDIA;
1559 PORT_UNLOCK(pi);
1560
1561 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1562 t4_ifnet_unit(sc, pi));
1563 if (pi->dev == NULL) {
1564 device_printf(dev,
1565 "failed to add device for port %d.\n", i);
1566 rc = ENXIO;
1567 goto done;
1568 }
1569 pi->vi[0].dev = pi->dev;
1570 device_set_softc(pi->dev, pi);
1571 }
1572
1573 /*
1574 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1575 */
1576 nports = sc->params.nports;
1577 rc = cfg_itype_and_nqueues(sc, &iaq);
1578 if (rc != 0)
1579 goto done; /* error message displayed already */
1580
1581 num_vis = iaq.num_vis;
1582 sc->intr_type = iaq.intr_type;
1583 sc->intr_count = iaq.nirq;
1584
1585 s = &sc->sge;
1586 s->nctrlq = max(sc->params.nports, sc->params.ncores);
1587 s->nrxq = nports * iaq.nrxq;
1588 s->ntxq = nports * iaq.ntxq;
1589 if (num_vis > 1) {
1590 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1591 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1592 }
1593 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1594 s->neq += nports; /* ctrl queues: 1 per port */
1595 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1597 if (is_offload(sc) || is_ethoffload(sc)) {
1598 s->nofldtxq = nports * iaq.nofldtxq;
1599 if (num_vis > 1)
1600 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1601 s->neq += s->nofldtxq;
1602
1603 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1604 M_CXGBE, M_ZERO | M_WAITOK);
1605 }
1606 #endif
1607 #ifdef TCP_OFFLOAD
1608 if (is_offload(sc)) {
1609 s->nofldrxq = nports * iaq.nofldrxq;
1610 if (num_vis > 1)
1611 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1612 s->neq += s->nofldrxq; /* free list */
1613 s->niq += s->nofldrxq;
1614
1615 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1616 M_CXGBE, M_ZERO | M_WAITOK);
1617 }
1618 #endif
1619 #ifdef DEV_NETMAP
1620 s->nnmrxq = 0;
1621 s->nnmtxq = 0;
1622 if (t4_native_netmap & NN_MAIN_VI) {
1623 s->nnmrxq += nports * iaq.nnmrxq;
1624 s->nnmtxq += nports * iaq.nnmtxq;
1625 }
1626 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1627 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1628 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1629 }
1630 s->neq += s->nnmtxq + s->nnmrxq;
1631 s->niq += s->nnmrxq;
1632
1633 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1634 M_CXGBE, M_ZERO | M_WAITOK);
1635 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1636 M_CXGBE, M_ZERO | M_WAITOK);
1637 #endif
1638 MPASS(s->niq <= s->iqmap_sz);
1639 MPASS(s->neq <= s->eqmap_sz);
1640
1641 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE,
1642 M_ZERO | M_WAITOK);
1643 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1644 M_ZERO | M_WAITOK);
1645 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1646 M_ZERO | M_WAITOK);
1647 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1648 M_ZERO | M_WAITOK);
1649 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1650 M_ZERO | M_WAITOK);
1651
1652 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1653 M_ZERO | M_WAITOK);
1654
1655 t4_init_l2t(sc, M_WAITOK);
1656 t4_init_smt(sc, M_WAITOK);
1657 t4_init_tx_sched(sc);
1658 t4_init_atid_table(sc);
1659 #ifdef RATELIMIT
1660 t4_init_etid_table(sc);
1661 #endif
1662 #ifdef INET6
1663 t4_init_clip_table(sc);
1664 #endif
1665 if (sc->vres.key.size != 0)
1666 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1667 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1668 t4_init_tpt(sc);
1669
1670 /*
1671 * Second pass over the ports. This time we know the number of rx and
1672 * tx queues that each port should get.
1673 */
1674 rqidx = tqidx = 0;
1675 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1676 ofld_tqidx = 0;
1677 #endif
1678 #ifdef TCP_OFFLOAD
1679 ofld_rqidx = 0;
1680 #endif
1681 #ifdef DEV_NETMAP
1682 nm_rqidx = nm_tqidx = 0;
1683 #endif
1684 for_each_port(sc, i) {
1685 struct port_info *pi = sc->port[i];
1686 struct vi_info *vi;
1687
1688 if (pi == NULL)
1689 continue;
1690
1691 pi->nvi = num_vis;
1692 for_each_vi(pi, j, vi) {
1693 vi->pi = pi;
1694 vi->adapter = sc;
1695 vi->first_intr = -1;
1696 vi->qsize_rxq = t4_qsize_rxq;
1697 vi->qsize_txq = t4_qsize_txq;
1698
1699 vi->first_rxq = rqidx;
1700 vi->first_txq = tqidx;
1701 vi->tmr_idx = t4_tmr_idx;
1702 vi->pktc_idx = t4_pktc_idx;
1703 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1704 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1705
1706 rqidx += vi->nrxq;
1707 tqidx += vi->ntxq;
1708
1709 if (j == 0 && vi->ntxq > 1)
1710 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1711 else
1712 vi->rsrv_noflowq = 0;
1713
1714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1715 vi->first_ofld_txq = ofld_tqidx;
1716 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1717 ofld_tqidx += vi->nofldtxq;
1718 #endif
1719 #ifdef TCP_OFFLOAD
1720 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1721 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1722 vi->first_ofld_rxq = ofld_rqidx;
1723 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1724
1725 ofld_rqidx += vi->nofldrxq;
1726 #endif
1727 #ifdef DEV_NETMAP
1728 vi->first_nm_rxq = nm_rqidx;
1729 vi->first_nm_txq = nm_tqidx;
1730 if (j == 0) {
1731 vi->nnmrxq = iaq.nnmrxq;
1732 vi->nnmtxq = iaq.nnmtxq;
1733 } else {
1734 vi->nnmrxq = iaq.nnmrxq_vi;
1735 vi->nnmtxq = iaq.nnmtxq_vi;
1736 }
1737 nm_rqidx += vi->nnmrxq;
1738 nm_tqidx += vi->nnmtxq;
1739 #endif
1740 }
1741 }
1742
1743 rc = t4_setup_intr_handlers(sc);
1744 if (rc != 0) {
1745 device_printf(dev,
1746 "failed to setup interrupt handlers: %d\n", rc);
1747 goto done;
1748 }
1749
1750 bus_identify_children(dev);
1751
1752 /*
1753 * Ensure thread-safe mailbox access (in debug builds).
1754 *
1755 * So far this was the only thread accessing the mailbox but various
1756 * ifnets and sysctls are about to be created and their handlers/ioctls
1757 * will access the mailbox from different threads.
1758 */
1759 sc->flags |= CHK_MBOX_ACCESS;
1760
1761 bus_attach_children(dev);
1762 t4_calibration_start(sc);
1763
1764 device_printf(dev,
1765 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1766 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1767 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1768 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1769 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1770
1771 t4_set_desc(sc);
1772
1773 notify_siblings(dev, 0);
1774
1775 done:
1776 if (rc != 0 && sc->cdev) {
1777 /* cdev was created and so cxgbetool works; recover that way. */
1778 device_printf(dev,
1779 "error during attach, adapter is now in recovery mode.\n");
1780 rc = 0;
1781 }
1782
1783 if (rc != 0)
1784 t4_detach_common(dev);
1785 else
1786 t4_sysctls(sc);
1787
1788 return (rc);
1789 }
1790
1791 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1792 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1793 {
1794 struct adapter *sc;
1795 struct port_info *pi;
1796 int i;
1797
1798 sc = device_get_softc(bus);
1799 for_each_port(sc, i) {
1800 pi = sc->port[i];
1801 if (pi != NULL && pi->dev == dev) {
1802 sbuf_printf(sb, "port=%d", pi->port_id);
1803 break;
1804 }
1805 }
1806 return (0);
1807 }
1808
1809 static int
t4_ready(device_t dev)1810 t4_ready(device_t dev)
1811 {
1812 struct adapter *sc;
1813
1814 sc = device_get_softc(dev);
1815 if (sc->flags & FW_OK)
1816 return (0);
1817 return (ENXIO);
1818 }
1819
1820 static int
t4_read_port_device(device_t dev,int port,device_t * child)1821 t4_read_port_device(device_t dev, int port, device_t *child)
1822 {
1823 struct adapter *sc;
1824 struct port_info *pi;
1825
1826 sc = device_get_softc(dev);
1827 if (port < 0 || port >= MAX_NPORTS)
1828 return (EINVAL);
1829 pi = sc->port[port];
1830 if (pi == NULL || pi->dev == NULL)
1831 return (ENXIO);
1832 *child = pi->dev;
1833 return (0);
1834 }
1835
1836 static int
notify_siblings(device_t dev,int detaching)1837 notify_siblings(device_t dev, int detaching)
1838 {
1839 device_t sibling;
1840 int error, i;
1841
1842 error = 0;
1843 for (i = 0; i < PCI_FUNCMAX; i++) {
1844 if (i == pci_get_function(dev))
1845 continue;
1846 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1847 pci_get_slot(dev), i);
1848 if (sibling == NULL || !device_is_attached(sibling))
1849 continue;
1850 if (detaching)
1851 error = T4_DETACH_CHILD(sibling);
1852 else
1853 (void)T4_ATTACH_CHILD(sibling);
1854 if (error)
1855 break;
1856 }
1857 return (error);
1858 }
1859
1860 /*
1861 * Idempotent
1862 */
1863 static int
t4_detach(device_t dev)1864 t4_detach(device_t dev)
1865 {
1866 int rc;
1867
1868 rc = notify_siblings(dev, 1);
1869 if (rc) {
1870 device_printf(dev,
1871 "failed to detach sibling devices: %d\n", rc);
1872 return (rc);
1873 }
1874
1875 return (t4_detach_common(dev));
1876 }
1877
1878 int
t4_detach_common(device_t dev)1879 t4_detach_common(device_t dev)
1880 {
1881 struct adapter *sc;
1882 struct port_info *pi;
1883 int i, rc;
1884
1885 sc = device_get_softc(dev);
1886
1887 #ifdef TCP_OFFLOAD
1888 rc = deactivate_all_uld(sc);
1889 if (rc) {
1890 device_printf(dev,
1891 "failed to detach upper layer drivers: %d\n", rc);
1892 return (rc);
1893 }
1894 #endif
1895
1896 if (sc->cdev) {
1897 destroy_dev(sc->cdev);
1898 sc->cdev = NULL;
1899 }
1900
1901 sx_xlock(&t4_list_lock);
1902 SLIST_REMOVE(&t4_list, sc, adapter, link);
1903 sx_xunlock(&t4_list_lock);
1904
1905 sc->flags &= ~CHK_MBOX_ACCESS;
1906 if (sc->flags & FULL_INIT_DONE) {
1907 if (!(sc->flags & IS_VF))
1908 t4_intr_disable(sc);
1909 }
1910
1911 if (device_is_attached(dev)) {
1912 rc = bus_detach_children(dev);
1913 if (rc) {
1914 device_printf(dev,
1915 "failed to detach child devices: %d\n", rc);
1916 return (rc);
1917 }
1918 }
1919
1920 for (i = 0; i < sc->intr_count; i++)
1921 t4_free_irq(sc, &sc->irq[i]);
1922
1923 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1924 t4_free_tx_sched(sc);
1925
1926 for (i = 0; i < MAX_NPORTS; i++) {
1927 pi = sc->port[i];
1928 if (pi) {
1929 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1930
1931 mtx_destroy(&pi->pi_lock);
1932 free(pi->vi, M_CXGBE);
1933 free(pi, M_CXGBE);
1934 }
1935 }
1936 callout_stop(&sc->cal_callout);
1937 callout_drain(&sc->cal_callout);
1938 device_delete_children(dev);
1939 sysctl_ctx_free(&sc->ctx);
1940 adapter_full_uninit(sc);
1941
1942 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1943 t4_fw_bye(sc, sc->mbox);
1944
1945 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1946 pci_release_msi(dev);
1947
1948 if (sc->regs_res)
1949 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1950 sc->regs_res);
1951
1952 if (sc->udbs_res)
1953 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1954 sc->udbs_res);
1955
1956 if (sc->msix_res)
1957 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1958 sc->msix_res);
1959
1960 if (sc->l2t)
1961 t4_free_l2t(sc);
1962 if (sc->smt)
1963 t4_free_smt(sc->smt);
1964 t4_free_atid_table(sc);
1965 #ifdef RATELIMIT
1966 t4_free_etid_table(sc);
1967 #endif
1968 if (sc->key_map)
1969 vmem_destroy(sc->key_map);
1970 t4_free_tpt(sc);
1971 #ifdef INET6
1972 t4_destroy_clip_table(sc);
1973 #endif
1974
1975 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1976 free(sc->sge.ofld_txq, M_CXGBE);
1977 #endif
1978 #ifdef TCP_OFFLOAD
1979 free(sc->sge.ofld_rxq, M_CXGBE);
1980 #endif
1981 #ifdef DEV_NETMAP
1982 free(sc->sge.nm_rxq, M_CXGBE);
1983 free(sc->sge.nm_txq, M_CXGBE);
1984 #endif
1985 free(sc->irq, M_CXGBE);
1986 free(sc->sge.rxq, M_CXGBE);
1987 free(sc->sge.txq, M_CXGBE);
1988 free(sc->sge.ctrlq, M_CXGBE);
1989 free(sc->sge.iqmap, M_CXGBE);
1990 free(sc->sge.eqmap, M_CXGBE);
1991 free(sc->tids.ftid_tab, M_CXGBE);
1992 free(sc->tids.hpftid_tab, M_CXGBE);
1993 free_hftid_hash(&sc->tids);
1994 free(sc->tids.tid_tab, M_CXGBE);
1995 t4_destroy_dma_tag(sc);
1996
1997 callout_drain(&sc->ktls_tick);
1998 callout_drain(&sc->sfl_callout);
1999 if (mtx_initialized(&sc->tids.ftid_lock)) {
2000 mtx_destroy(&sc->tids.ftid_lock);
2001 cv_destroy(&sc->tids.ftid_cv);
2002 }
2003 if (mtx_initialized(&sc->tids.atid_lock))
2004 mtx_destroy(&sc->tids.atid_lock);
2005 if (mtx_initialized(&sc->ifp_lock))
2006 mtx_destroy(&sc->ifp_lock);
2007
2008 if (rw_initialized(&sc->policy_lock)) {
2009 rw_destroy(&sc->policy_lock);
2010 #ifdef TCP_OFFLOAD
2011 if (sc->policy != NULL)
2012 free_offload_policy(sc->policy);
2013 #endif
2014 }
2015
2016 for (i = 0; i < NUM_MEMWIN; i++) {
2017 struct memwin *mw = &sc->memwin[i];
2018
2019 if (rw_initialized(&mw->mw_lock))
2020 rw_destroy(&mw->mw_lock);
2021 }
2022
2023 mtx_destroy(&sc->sfl_lock);
2024 mtx_destroy(&sc->reg_lock);
2025 mtx_destroy(&sc->sc_lock);
2026
2027 bzero(sc, sizeof(*sc));
2028
2029 return (0);
2030 }
2031
2032 static inline int
stop_adapter(struct adapter * sc)2033 stop_adapter(struct adapter *sc)
2034 {
2035 struct port_info *pi;
2036 int i;
2037
2038 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2039 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2040 __func__, curthread, sc->flags, sc->error_flags);
2041 return (EALREADY);
2042 }
2043 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2044 sc->flags, sc->error_flags);
2045 t4_shutdown_adapter(sc);
2046 for_each_port(sc, i) {
2047 pi = sc->port[i];
2048 if (pi == NULL)
2049 continue;
2050 PORT_LOCK(pi);
2051 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
2052 /*
2053 * t4_shutdown_adapter has already shut down all the
2054 * PHYs but it also disables interrupts and DMA so there
2055 * won't be a link interrupt. Update the state manually
2056 * if the link was up previously and inform the kernel.
2057 */
2058 pi->link_cfg.link_ok = false;
2059 t4_os_link_changed(pi);
2060 }
2061 PORT_UNLOCK(pi);
2062 }
2063
2064 return (0);
2065 }
2066
2067 static inline int
restart_adapter(struct adapter * sc)2068 restart_adapter(struct adapter *sc)
2069 {
2070 uint32_t val;
2071
2072 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2073 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2074 __func__, curthread, sc->flags, sc->error_flags);
2075 return (EALREADY);
2076 }
2077 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2078 sc->flags, sc->error_flags);
2079
2080 MPASS(hw_off_limits(sc));
2081 MPASS((sc->flags & FW_OK) == 0);
2082 MPASS((sc->flags & MASTER_PF) == 0);
2083 MPASS(sc->reset_thread == NULL);
2084
2085 /*
2086 * The adapter is supposed to be back on PCIE with its config space and
2087 * BARs restored to their state before reset. Register access via
2088 * t4_read_reg BAR0 should just work.
2089 */
2090 sc->reset_thread = curthread;
2091 val = t4_read_reg(sc, A_PL_WHOAMI);
2092 if (val == 0xffffffff || val == 0xeeeeeeee) {
2093 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
2094 sc->reset_thread = NULL;
2095 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
2096 return (ENXIO);
2097 }
2098 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
2099 atomic_add_int(&sc->incarnation, 1);
2100 atomic_add_int(&sc->num_resets, 1);
2101
2102 return (0);
2103 }
2104
2105 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)2106 set_adapter_hwstatus(struct adapter *sc, const bool usable)
2107 {
2108 if (usable) {
2109 /* Must be marked reusable by the designated thread. */
2110 ASSERT_SYNCHRONIZED_OP(sc);
2111 MPASS(sc->reset_thread == curthread);
2112 mtx_lock(&sc->reg_lock);
2113 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2114 mtx_unlock(&sc->reg_lock);
2115 } else {
2116 /* Mark the adapter totally off limits. */
2117 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2118 mtx_lock(&sc->reg_lock);
2119 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2120 mtx_unlock(&sc->reg_lock);
2121 sc->flags &= ~(FW_OK | MASTER_PF);
2122 sc->reset_thread = NULL;
2123 end_synchronized_op(sc, 0);
2124 }
2125 }
2126
2127 static int
stop_lld(struct adapter * sc)2128 stop_lld(struct adapter *sc)
2129 {
2130 struct port_info *pi;
2131 struct vi_info *vi;
2132 if_t ifp;
2133 struct sge_rxq *rxq;
2134 struct sge_txq *txq;
2135 struct sge_wrq *wrq;
2136 #ifdef TCP_OFFLOAD
2137 struct sge_ofld_rxq *ofld_rxq;
2138 #endif
2139 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2140 struct sge_ofld_txq *ofld_txq;
2141 #endif
2142 int rc, i, j, k;
2143
2144 /*
2145 * XXX: Can there be a synch_op in progress that will hang because
2146 * hardware has been stopped? We'll hang too and the solution will be
2147 * to use a version of begin_synch_op that wakes up existing synch_op
2148 * with errors. Maybe stop_adapter should do this wakeup?
2149 *
2150 * I don't think any synch_op could get stranded waiting for DMA or
2151 * interrupt so I think we're okay here. Remove this comment block
2152 * after testing.
2153 */
2154 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2155 if (rc != 0)
2156 return (ENXIO);
2157
2158 /* Quiesce all activity. */
2159 for_each_port(sc, i) {
2160 pi = sc->port[i];
2161 if (pi == NULL)
2162 continue;
2163 pi->vxlan_tcam_entry = false;
2164 for_each_vi(pi, j, vi) {
2165 vi->xact_addr_filt = -1;
2166 mtx_lock(&vi->tick_mtx);
2167 vi->flags |= VI_SKIP_STATS;
2168 mtx_unlock(&vi->tick_mtx);
2169 if (!(vi->flags & VI_INIT_DONE))
2170 continue;
2171
2172 ifp = vi->ifp;
2173 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2174 mtx_lock(&vi->tick_mtx);
2175 callout_stop(&vi->tick);
2176 mtx_unlock(&vi->tick_mtx);
2177 callout_drain(&vi->tick);
2178 }
2179
2180 /*
2181 * Note that the HW is not available.
2182 */
2183 for_each_txq(vi, k, txq) {
2184 TXQ_LOCK(txq);
2185 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2186 TXQ_UNLOCK(txq);
2187 }
2188 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2189 for_each_ofld_txq(vi, k, ofld_txq) {
2190 TXQ_LOCK(&ofld_txq->wrq);
2191 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2192 TXQ_UNLOCK(&ofld_txq->wrq);
2193 }
2194 #endif
2195 for_each_rxq(vi, k, rxq) {
2196 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2197 }
2198 #if defined(TCP_OFFLOAD)
2199 for_each_ofld_rxq(vi, k, ofld_rxq) {
2200 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2201 }
2202 #endif
2203
2204 quiesce_vi(vi);
2205 }
2206
2207 if (sc->flags & FULL_INIT_DONE) {
2208 /* Control queue */
2209 wrq = &sc->sge.ctrlq[i];
2210 TXQ_LOCK(wrq);
2211 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2212 TXQ_UNLOCK(wrq);
2213 quiesce_wrq(wrq);
2214 }
2215
2216 if (pi->flags & HAS_TRACEQ) {
2217 pi->flags &= ~HAS_TRACEQ;
2218 sc->traceq = -1;
2219 sc->tracer_valid = 0;
2220 sc->tracer_enabled = 0;
2221 }
2222 }
2223 if (sc->flags & FULL_INIT_DONE) {
2224 /* Firmware event queue */
2225 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2226 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2227 }
2228
2229 /* Stop calibration */
2230 callout_stop(&sc->cal_callout);
2231 callout_drain(&sc->cal_callout);
2232
2233 if (t4_clock_gate_on_suspend) {
2234 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2235 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2236 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2237 }
2238
2239 end_synchronized_op(sc, 0);
2240
2241 stop_atid_allocator(sc);
2242 t4_stop_l2t(sc);
2243
2244 return (rc);
2245 }
2246
2247 int
suspend_adapter(struct adapter * sc)2248 suspend_adapter(struct adapter *sc)
2249 {
2250 stop_adapter(sc);
2251 stop_lld(sc);
2252 #ifdef TCP_OFFLOAD
2253 stop_all_uld(sc);
2254 #endif
2255 set_adapter_hwstatus(sc, false);
2256
2257 return (0);
2258 }
2259
2260 static int
t4_suspend(device_t dev)2261 t4_suspend(device_t dev)
2262 {
2263 struct adapter *sc = device_get_softc(dev);
2264 int rc;
2265
2266 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2267 rc = suspend_adapter(sc);
2268 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2269
2270 return (rc);
2271 }
2272
2273 struct adapter_pre_reset_state {
2274 u_int flags;
2275 uint16_t nbmcaps;
2276 uint16_t linkcaps;
2277 uint16_t switchcaps;
2278 uint16_t nvmecaps;
2279 uint16_t niccaps;
2280 uint16_t toecaps;
2281 uint16_t rdmacaps;
2282 uint16_t cryptocaps;
2283 uint16_t iscsicaps;
2284 uint16_t fcoecaps;
2285
2286 u_int cfcsum;
2287 char cfg_file[32];
2288
2289 struct adapter_params params;
2290 struct t4_virt_res vres;
2291 struct tid_info tids;
2292 struct sge sge;
2293
2294 int rawf_base;
2295 int nrawf;
2296
2297 };
2298
2299 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2300 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2301 {
2302
2303 ASSERT_SYNCHRONIZED_OP(sc);
2304
2305 o->flags = sc->flags;
2306
2307 o->nbmcaps = sc->nbmcaps;
2308 o->linkcaps = sc->linkcaps;
2309 o->switchcaps = sc->switchcaps;
2310 o->nvmecaps = sc->nvmecaps;
2311 o->niccaps = sc->niccaps;
2312 o->toecaps = sc->toecaps;
2313 o->rdmacaps = sc->rdmacaps;
2314 o->cryptocaps = sc->cryptocaps;
2315 o->iscsicaps = sc->iscsicaps;
2316 o->fcoecaps = sc->fcoecaps;
2317
2318 o->cfcsum = sc->cfcsum;
2319 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2320 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2321
2322 o->params = sc->params;
2323 o->vres = sc->vres;
2324 o->tids = sc->tids;
2325 o->sge = sc->sge;
2326
2327 o->rawf_base = sc->rawf_base;
2328 o->nrawf = sc->nrawf;
2329 }
2330
2331 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2332 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2333 {
2334 int rc = 0;
2335
2336 ASSERT_SYNCHRONIZED_OP(sc);
2337
2338 /* Capabilities */
2339 #define COMPARE_CAPS(c) do { \
2340 if (o->c##caps != sc->c##caps) { \
2341 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2342 sc->c##caps); \
2343 rc = EINVAL; \
2344 } \
2345 } while (0)
2346 COMPARE_CAPS(nbm);
2347 COMPARE_CAPS(link);
2348 COMPARE_CAPS(switch);
2349 COMPARE_CAPS(nvme);
2350 COMPARE_CAPS(nic);
2351 COMPARE_CAPS(toe);
2352 COMPARE_CAPS(rdma);
2353 COMPARE_CAPS(crypto);
2354 COMPARE_CAPS(iscsi);
2355 COMPARE_CAPS(fcoe);
2356 #undef COMPARE_CAPS
2357
2358 /* Firmware config file */
2359 if (o->cfcsum != sc->cfcsum) {
2360 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2361 o->cfcsum, sc->cfg_file, sc->cfcsum);
2362 rc = EINVAL;
2363 }
2364
2365 #define COMPARE_PARAM(p, name) do { \
2366 if (o->p != sc->p) { \
2367 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2368 rc = EINVAL; \
2369 } \
2370 } while (0)
2371 COMPARE_PARAM(sge.iq_start, iq_start);
2372 COMPARE_PARAM(sge.eq_start, eq_start);
2373 COMPARE_PARAM(tids.ftid_base, ftid_base);
2374 COMPARE_PARAM(tids.ftid_end, ftid_end);
2375 COMPARE_PARAM(tids.nftids, nftids);
2376 COMPARE_PARAM(vres.l2t.start, l2t_start);
2377 COMPARE_PARAM(vres.l2t.size, l2t_size);
2378 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2379 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2380 COMPARE_PARAM(tids.tid_base, tid_base);
2381 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2382 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2383 COMPARE_PARAM(tids.nhpftids, nhpftids);
2384 COMPARE_PARAM(rawf_base, rawf_base);
2385 COMPARE_PARAM(nrawf, nrawf);
2386 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2387 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2388 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2389 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2390 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2391 COMPARE_PARAM(tids.ntids, ntids);
2392 COMPARE_PARAM(tids.etid_base, etid_base);
2393 COMPARE_PARAM(tids.etid_end, etid_end);
2394 COMPARE_PARAM(tids.netids, netids);
2395 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2396 COMPARE_PARAM(params.ethoffload, ethoffload);
2397 COMPARE_PARAM(tids.natids, natids);
2398 COMPARE_PARAM(tids.stid_base, stid_base);
2399 COMPARE_PARAM(vres.ddp.start, ddp_start);
2400 COMPARE_PARAM(vres.ddp.size, ddp_size);
2401 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2402 COMPARE_PARAM(vres.stag.start, stag_start);
2403 COMPARE_PARAM(vres.stag.size, stag_size);
2404 COMPARE_PARAM(vres.rq.start, rq_start);
2405 COMPARE_PARAM(vres.rq.size, rq_size);
2406 COMPARE_PARAM(vres.pbl.start, pbl_start);
2407 COMPARE_PARAM(vres.pbl.size, pbl_size);
2408 COMPARE_PARAM(vres.qp.start, qp_start);
2409 COMPARE_PARAM(vres.qp.size, qp_size);
2410 COMPARE_PARAM(vres.cq.start, cq_start);
2411 COMPARE_PARAM(vres.cq.size, cq_size);
2412 COMPARE_PARAM(vres.ocq.start, ocq_start);
2413 COMPARE_PARAM(vres.ocq.size, ocq_size);
2414 COMPARE_PARAM(vres.srq.start, srq_start);
2415 COMPARE_PARAM(vres.srq.size, srq_size);
2416 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2417 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2418 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2419 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2420 COMPARE_PARAM(vres.key.start, key_start);
2421 COMPARE_PARAM(vres.key.size, key_size);
2422 #undef COMPARE_PARAM
2423
2424 return (rc);
2425 }
2426
2427 static int
restart_lld(struct adapter * sc)2428 restart_lld(struct adapter *sc)
2429 {
2430 struct adapter_pre_reset_state *old_state = NULL;
2431 struct port_info *pi;
2432 struct vi_info *vi;
2433 if_t ifp;
2434 struct sge_txq *txq;
2435 int rc, i, j, k;
2436
2437 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2438 if (rc != 0)
2439 return (ENXIO);
2440
2441 /* Restore memory window. */
2442 setup_memwin(sc);
2443
2444 /* Go no further if recovery mode has been requested. */
2445 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2446 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2447 rc = 0;
2448 set_adapter_hwstatus(sc, true);
2449 goto done;
2450 }
2451
2452 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2453 save_caps_and_params(sc, old_state);
2454
2455 /* Reestablish contact with firmware and become the primary PF. */
2456 rc = contact_firmware(sc);
2457 if (rc != 0)
2458 goto done; /* error message displayed already */
2459 MPASS(sc->flags & FW_OK);
2460
2461 if (sc->flags & MASTER_PF) {
2462 rc = partition_resources(sc);
2463 if (rc != 0)
2464 goto done; /* error message displayed already */
2465 }
2466
2467 rc = get_params__post_init(sc);
2468 if (rc != 0)
2469 goto done; /* error message displayed already */
2470
2471 rc = set_params__post_init(sc);
2472 if (rc != 0)
2473 goto done; /* error message displayed already */
2474
2475 rc = compare_caps_and_params(sc, old_state);
2476 if (rc != 0)
2477 goto done; /* error message displayed already */
2478
2479 for_each_port(sc, i) {
2480 pi = sc->port[i];
2481 MPASS(pi != NULL);
2482 MPASS(pi->vi != NULL);
2483 MPASS(pi->vi[0].dev == pi->dev);
2484
2485 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2486 if (rc != 0) {
2487 CH_ERR(sc,
2488 "failed to re-initialize port %d: %d\n", i, rc);
2489 goto done;
2490 }
2491 MPASS(sc->chan_map[pi->tx_chan] == i);
2492
2493 PORT_LOCK(pi);
2494 fixup_link_config(pi);
2495 build_medialist(pi);
2496 PORT_UNLOCK(pi);
2497 for_each_vi(pi, j, vi) {
2498 if (IS_MAIN_VI(vi))
2499 continue;
2500 rc = alloc_extra_vi(sc, pi, vi);
2501 if (rc != 0) {
2502 CH_ERR(vi,
2503 "failed to re-allocate extra VI: %d\n", rc);
2504 goto done;
2505 }
2506 }
2507 }
2508
2509 /*
2510 * Interrupts and queues are about to be enabled and other threads will
2511 * want to access the hardware too. It is safe to do so. Note that
2512 * this thread is still in the middle of a synchronized_op.
2513 */
2514 set_adapter_hwstatus(sc, true);
2515
2516 if (sc->flags & FULL_INIT_DONE) {
2517 rc = adapter_full_init(sc);
2518 if (rc != 0) {
2519 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2520 goto done;
2521 }
2522
2523 if (sc->vxlan_refcount > 0)
2524 enable_vxlan_rx(sc);
2525
2526 for_each_port(sc, i) {
2527 pi = sc->port[i];
2528 for_each_vi(pi, j, vi) {
2529 mtx_lock(&vi->tick_mtx);
2530 vi->flags &= ~VI_SKIP_STATS;
2531 mtx_unlock(&vi->tick_mtx);
2532 if (!(vi->flags & VI_INIT_DONE))
2533 continue;
2534 rc = vi_full_init(vi);
2535 if (rc != 0) {
2536 CH_ERR(vi, "failed to re-initialize "
2537 "interface: %d\n", rc);
2538 goto done;
2539 }
2540 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2541 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2542 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
2543 pi->flags |= HAS_TRACEQ;
2544 }
2545
2546 ifp = vi->ifp;
2547 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2548 continue;
2549 /*
2550 * Note that we do not setup multicast addresses
2551 * in the first pass. This ensures that the
2552 * unicast DMACs for all VIs on all ports get an
2553 * MPS TCAM entry.
2554 */
2555 rc = update_mac_settings(ifp, XGMAC_ALL &
2556 ~XGMAC_MCADDRS);
2557 if (rc != 0) {
2558 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2559 goto done;
2560 }
2561 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2562 true);
2563 if (rc != 0) {
2564 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2565 goto done;
2566 }
2567 for_each_txq(vi, k, txq) {
2568 TXQ_LOCK(txq);
2569 txq->eq.flags |= EQ_ENABLED;
2570 TXQ_UNLOCK(txq);
2571 }
2572 mtx_lock(&vi->tick_mtx);
2573 callout_schedule(&vi->tick, hz);
2574 mtx_unlock(&vi->tick_mtx);
2575 }
2576 PORT_LOCK(pi);
2577 if (pi->up_vis > 0) {
2578 t4_update_port_info(pi);
2579 fixup_link_config(pi);
2580 build_medialist(pi);
2581 apply_link_config(pi);
2582 if (pi->link_cfg.link_ok)
2583 t4_os_link_changed(pi);
2584 }
2585 PORT_UNLOCK(pi);
2586 }
2587
2588 /* Now reprogram the L2 multicast addresses. */
2589 for_each_port(sc, i) {
2590 pi = sc->port[i];
2591 for_each_vi(pi, j, vi) {
2592 if (!(vi->flags & VI_INIT_DONE))
2593 continue;
2594 ifp = vi->ifp;
2595 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2596 continue;
2597 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2598 if (rc != 0) {
2599 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2600 rc = 0; /* carry on */
2601 }
2602 }
2603 }
2604 }
2605
2606 /* Reset all calibration */
2607 t4_calibration_start(sc);
2608 done:
2609 end_synchronized_op(sc, 0);
2610 free(old_state, M_CXGBE);
2611
2612 restart_atid_allocator(sc);
2613 t4_restart_l2t(sc);
2614
2615 return (rc);
2616 }
2617
2618 int
resume_adapter(struct adapter * sc)2619 resume_adapter(struct adapter *sc)
2620 {
2621 restart_adapter(sc);
2622 restart_lld(sc);
2623 #ifdef TCP_OFFLOAD
2624 restart_all_uld(sc);
2625 #endif
2626 return (0);
2627 }
2628
2629 static int
t4_resume(device_t dev)2630 t4_resume(device_t dev)
2631 {
2632 struct adapter *sc = device_get_softc(dev);
2633 int rc;
2634
2635 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2636 rc = resume_adapter(sc);
2637 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2638
2639 return (rc);
2640 }
2641
2642 static int
t4_reset_prepare(device_t dev,device_t child)2643 t4_reset_prepare(device_t dev, device_t child)
2644 {
2645 struct adapter *sc = device_get_softc(dev);
2646
2647 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2648 return (0);
2649 }
2650
2651 static int
t4_reset_post(device_t dev,device_t child)2652 t4_reset_post(device_t dev, device_t child)
2653 {
2654 struct adapter *sc = device_get_softc(dev);
2655
2656 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2657 return (0);
2658 }
2659
2660 static int
reset_adapter_with_pl_rst(struct adapter * sc)2661 reset_adapter_with_pl_rst(struct adapter *sc)
2662 {
2663 /* This is a t4_write_reg without the hw_off_limits check. */
2664 MPASS(sc->error_flags & HW_OFF_LIMITS);
2665 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2666 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2667 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2668 return (0);
2669 }
2670
2671 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2672 reset_adapter_with_pcie_sbr(struct adapter *sc)
2673 {
2674 device_t pdev = device_get_parent(sc->dev);
2675 device_t gpdev = device_get_parent(pdev);
2676 device_t *children;
2677 int rc, i, lcap, lsta, nchildren;
2678 uint32_t v;
2679
2680 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2681 if (rc != 0) {
2682 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2683 device_get_nameunit(gpdev), rc);
2684 return (ENOTSUP);
2685 }
2686 lcap = v + PCIER_LINK_CAP;
2687 lsta = v + PCIER_LINK_STA;
2688
2689 nchildren = 0;
2690 device_get_children(pdev, &children, &nchildren);
2691 for (i = 0; i < nchildren; i++)
2692 pci_save_state(children[i]);
2693 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2695 pause("pcie_sbr1", hz / 10); /* 100ms */
2696 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2697 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2698 v = pci_read_config(gpdev, lsta, 2);
2699 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2700 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2701 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2702 rc = ETIMEDOUT;
2703 else
2704 rc = 0;
2705 if (rc != 0)
2706 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2707 __func__, v);
2708 else {
2709 for (i = 0; i < nchildren; i++)
2710 pci_restore_state(children[i]);
2711 }
2712 free(children, M_TEMP);
2713
2714 return (rc);
2715 }
2716
2717 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2718 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2719 {
2720 device_t pdev = device_get_parent(sc->dev);
2721 device_t gpdev = device_get_parent(pdev);
2722 device_t *children;
2723 int rc, i, lcap, lctl, lsta, nchildren;
2724 uint32_t v;
2725
2726 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2727 if (rc != 0) {
2728 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2729 device_get_nameunit(gpdev), rc);
2730 return (ENOTSUP);
2731 }
2732 lcap = v + PCIER_LINK_CAP;
2733 lctl = v + PCIER_LINK_CTL;
2734 lsta = v + PCIER_LINK_STA;
2735
2736 nchildren = 0;
2737 device_get_children(pdev, &children, &nchildren);
2738 for (i = 0; i < nchildren; i++)
2739 pci_save_state(children[i]);
2740 v = pci_read_config(gpdev, lctl, 2);
2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2742 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2743 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2744 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2745 v = pci_read_config(gpdev, lsta, 2);
2746 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2747 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2748 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2749 rc = ETIMEDOUT;
2750 else
2751 rc = 0;
2752 if (rc != 0)
2753 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2754 __func__, v);
2755 else {
2756 for (i = 0; i < nchildren; i++)
2757 pci_restore_state(children[i]);
2758 }
2759 free(children, M_TEMP);
2760
2761 return (rc);
2762 }
2763
2764 static inline int
reset_adapter(struct adapter * sc)2765 reset_adapter(struct adapter *sc)
2766 {
2767 int rc;
2768 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2769
2770 rc = suspend_adapter(sc);
2771 if (rc != 0)
2772 return (rc);
2773
2774 switch (reset_method) {
2775 case 1:
2776 rc = reset_adapter_with_pcie_sbr(sc);
2777 break;
2778 case 2:
2779 rc = reset_adapter_with_pcie_link_bounce(sc);
2780 break;
2781 case 0:
2782 default:
2783 rc = reset_adapter_with_pl_rst(sc);
2784 break;
2785 }
2786 if (rc == 0)
2787 rc = resume_adapter(sc);
2788 return (rc);
2789 }
2790
2791 static void
reset_adapter_task(void * arg,int pending)2792 reset_adapter_task(void *arg, int pending)
2793 {
2794 struct adapter *sc = arg;
2795 const int flags = sc->flags;
2796 const int eflags = sc->error_flags;
2797 int rc;
2798
2799 if (pending > 1)
2800 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2801 rc = reset_adapter(sc);
2802 if (rc != 0) {
2803 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2804 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2805 rc, flags, sc->flags, eflags, sc->error_flags);
2806 }
2807 }
2808
2809 static int
cxgbe_probe(device_t dev)2810 cxgbe_probe(device_t dev)
2811 {
2812 struct port_info *pi = device_get_softc(dev);
2813
2814 device_set_descf(dev, "port %d", pi->port_id);
2815
2816 return (BUS_PROBE_DEFAULT);
2817 }
2818
2819 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2820 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2821 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2822 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2823 #define T4_CAP_ENABLE (T4_CAP)
2824
2825 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2826 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2827 {
2828 if_t ifp;
2829 struct sbuf *sb;
2830 struct sysctl_ctx_list *ctx = &vi->ctx;
2831 struct sysctl_oid_list *children;
2832 struct pfil_head_args pa;
2833 struct adapter *sc = vi->adapter;
2834
2835 sysctl_ctx_init(ctx);
2836 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2837 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2839 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2840 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2841 #ifdef DEV_NETMAP
2842 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2844 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2846 #endif
2847 #ifdef TCP_OFFLOAD
2848 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2849 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2850 #endif
2851 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2852 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2853 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2854 #endif
2855
2856 vi->xact_addr_filt = -1;
2857 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2858 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2859 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2860 vi->flags |= TX_USES_VM_WR;
2861
2862 /* Allocate an ifnet and set it up */
2863 ifp = if_alloc_dev(IFT_ETHER, dev);
2864 vi->ifp = ifp;
2865 if_setsoftc(ifp, vi);
2866
2867 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2868 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2869
2870 if_setinitfn(ifp, cxgbe_init);
2871 if_setioctlfn(ifp, cxgbe_ioctl);
2872 if_settransmitfn(ifp, cxgbe_transmit);
2873 if_setqflushfn(ifp, cxgbe_qflush);
2874 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2875 if_setgetcounterfn(ifp, vi_get_counter);
2876 else
2877 if_setgetcounterfn(ifp, cxgbe_get_counter);
2878 #if defined(KERN_TLS) || defined(RATELIMIT)
2879 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2880 #endif
2881 #ifdef RATELIMIT
2882 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2883 #endif
2884
2885 if_setcapabilities(ifp, T4_CAP);
2886 if_setcapenable(ifp, T4_CAP_ENABLE);
2887 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2888 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2889 if (chip_id(sc) >= CHELSIO_T6) {
2890 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2891 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2892 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2893 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2894 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2895 }
2896
2897 #ifdef TCP_OFFLOAD
2898 if (vi->nofldrxq != 0)
2899 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2900 #endif
2901 #ifdef RATELIMIT
2902 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2903 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2904 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2905 }
2906 #endif
2907
2908 if_sethwtsomax(ifp, IP_MAXPACKET);
2909 if (vi->flags & TX_USES_VM_WR)
2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2911 else
2912 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2913 #ifdef RATELIMIT
2914 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2915 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2916 #endif
2917 if_sethwtsomaxsegsize(ifp, 65536);
2918 #ifdef KERN_TLS
2919 if (is_ktls(sc)) {
2920 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2921 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2922 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2923 }
2924 #endif
2925
2926 ether_ifattach(ifp, vi->hw_addr);
2927 #ifdef DEV_NETMAP
2928 if (vi->nnmrxq != 0)
2929 cxgbe_nm_attach(vi);
2930 #endif
2931 sb = sbuf_new_auto();
2932 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2933 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2934 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2935 case IFCAP_TOE:
2936 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2937 break;
2938 case IFCAP_TOE | IFCAP_TXRTLMT:
2939 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2940 break;
2941 case IFCAP_TXRTLMT:
2942 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2943 break;
2944 }
2945 #endif
2946 #ifdef TCP_OFFLOAD
2947 if (if_getcapabilities(ifp) & IFCAP_TOE)
2948 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2949 #endif
2950 #ifdef DEV_NETMAP
2951 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2952 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2953 vi->nnmtxq, vi->nnmrxq);
2954 #endif
2955 sbuf_finish(sb);
2956 device_printf(dev, "%s\n", sbuf_data(sb));
2957 sbuf_delete(sb);
2958
2959 vi_sysctls(vi);
2960
2961 pa.pa_version = PFIL_VERSION;
2962 pa.pa_flags = PFIL_IN;
2963 pa.pa_type = PFIL_TYPE_ETHERNET;
2964 pa.pa_headname = if_name(ifp);
2965 vi->pfil = pfil_head_register(&pa);
2966 }
2967
2968 static int
cxgbe_attach(device_t dev)2969 cxgbe_attach(device_t dev)
2970 {
2971 struct port_info *pi = device_get_softc(dev);
2972 struct adapter *sc = pi->adapter;
2973 struct vi_info *vi;
2974 int i;
2975
2976 sysctl_ctx_init(&pi->ctx);
2977
2978 cxgbe_vi_attach(dev, &pi->vi[0]);
2979
2980 for_each_vi(pi, i, vi) {
2981 if (i == 0)
2982 continue;
2983 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2984 if (vi->dev == NULL) {
2985 device_printf(dev, "failed to add VI %d\n", i);
2986 continue;
2987 }
2988 device_set_softc(vi->dev, vi);
2989 }
2990
2991 cxgbe_sysctls(pi);
2992
2993 bus_attach_children(dev);
2994
2995 return (0);
2996 }
2997
2998 static void
cxgbe_vi_detach(struct vi_info * vi)2999 cxgbe_vi_detach(struct vi_info *vi)
3000 {
3001 if_t ifp = vi->ifp;
3002
3003 if (vi->pfil != NULL) {
3004 pfil_head_unregister(vi->pfil);
3005 vi->pfil = NULL;
3006 }
3007
3008 ether_ifdetach(ifp);
3009
3010 /* Let detach proceed even if these fail. */
3011 #ifdef DEV_NETMAP
3012 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
3013 cxgbe_nm_detach(vi);
3014 #endif
3015 cxgbe_uninit_synchronized(vi);
3016 callout_drain(&vi->tick);
3017 mtx_destroy(&vi->tick_mtx);
3018 sysctl_ctx_free(&vi->ctx);
3019 vi_full_uninit(vi);
3020
3021 if_free(vi->ifp);
3022 vi->ifp = NULL;
3023 }
3024
3025 static int
cxgbe_detach(device_t dev)3026 cxgbe_detach(device_t dev)
3027 {
3028 struct port_info *pi = device_get_softc(dev);
3029 struct adapter *sc = pi->adapter;
3030 int rc;
3031
3032 /* Detach the extra VIs first. */
3033 rc = bus_generic_detach(dev);
3034 if (rc)
3035 return (rc);
3036
3037 sysctl_ctx_free(&pi->ctx);
3038 begin_vi_detach(sc, &pi->vi[0]);
3039 if (pi->flags & HAS_TRACEQ) {
3040 sc->traceq = -1; /* cloner should not create ifnet */
3041 t4_tracer_port_detach(sc);
3042 }
3043 cxgbe_vi_detach(&pi->vi[0]);
3044 ifmedia_removeall(&pi->media);
3045 end_vi_detach(sc, &pi->vi[0]);
3046
3047 return (0);
3048 }
3049
3050 static void
cxgbe_init(void * arg)3051 cxgbe_init(void *arg)
3052 {
3053 struct vi_info *vi = arg;
3054 struct adapter *sc = vi->adapter;
3055
3056 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
3057 return;
3058 cxgbe_init_synchronized(vi);
3059 end_synchronized_op(sc, 0);
3060 }
3061
3062 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)3063 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
3064 {
3065 int rc = 0, mtu, flags;
3066 struct vi_info *vi = if_getsoftc(ifp);
3067 struct port_info *pi = vi->pi;
3068 struct adapter *sc = pi->adapter;
3069 struct ifreq *ifr = (struct ifreq *)data;
3070 uint32_t mask;
3071
3072 switch (cmd) {
3073 case SIOCSIFMTU:
3074 mtu = ifr->ifr_mtu;
3075 if (mtu < ETHERMIN || mtu > MAX_MTU)
3076 return (EINVAL);
3077
3078 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
3079 if (rc)
3080 return (rc);
3081 if_setmtu(ifp, mtu);
3082 if (vi->flags & VI_INIT_DONE) {
3083 t4_update_fl_bufsize(ifp);
3084 if (hw_all_ok(sc) &&
3085 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3086 rc = update_mac_settings(ifp, XGMAC_MTU);
3087 }
3088 end_synchronized_op(sc, 0);
3089 break;
3090
3091 case SIOCSIFFLAGS:
3092 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
3093 if (rc)
3094 return (rc);
3095
3096 if (!hw_all_ok(sc)) {
3097 rc = ENXIO;
3098 goto fail;
3099 }
3100
3101 if (if_getflags(ifp) & IFF_UP) {
3102 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3103 flags = vi->if_flags;
3104 if ((if_getflags(ifp) ^ flags) &
3105 (IFF_PROMISC | IFF_ALLMULTI)) {
3106 rc = update_mac_settings(ifp,
3107 XGMAC_PROMISC | XGMAC_ALLMULTI);
3108 }
3109 } else {
3110 rc = cxgbe_init_synchronized(vi);
3111 }
3112 vi->if_flags = if_getflags(ifp);
3113 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3114 rc = cxgbe_uninit_synchronized(vi);
3115 }
3116 end_synchronized_op(sc, 0);
3117 break;
3118
3119 case SIOCADDMULTI:
3120 case SIOCDELMULTI:
3121 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3122 if (rc)
3123 return (rc);
3124 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3125 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3126 end_synchronized_op(sc, 0);
3127 break;
3128
3129 case SIOCSIFCAP:
3130 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3131 if (rc)
3132 return (rc);
3133
3134 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3135 if (mask & IFCAP_TXCSUM) {
3136 if_togglecapenable(ifp, IFCAP_TXCSUM);
3137 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3138
3139 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3140 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3141 mask &= ~IFCAP_TSO4;
3142 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3143 if_printf(ifp,
3144 "tso4 disabled due to -txcsum.\n");
3145 }
3146 }
3147 if (mask & IFCAP_TXCSUM_IPV6) {
3148 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3149 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3150
3151 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3152 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3153 mask &= ~IFCAP_TSO6;
3154 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3155 if_printf(ifp,
3156 "tso6 disabled due to -txcsum6.\n");
3157 }
3158 }
3159 if (mask & IFCAP_RXCSUM)
3160 if_togglecapenable(ifp, IFCAP_RXCSUM);
3161 if (mask & IFCAP_RXCSUM_IPV6)
3162 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3163
3164 /*
3165 * Note that we leave CSUM_TSO alone (it is always set). The
3166 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3167 * sending a TSO request our way, so it's sufficient to toggle
3168 * IFCAP_TSOx only.
3169 */
3170 if (mask & IFCAP_TSO4) {
3171 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3172 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3173 if_printf(ifp, "enable txcsum first.\n");
3174 rc = EAGAIN;
3175 goto fail;
3176 }
3177 if_togglecapenable(ifp, IFCAP_TSO4);
3178 }
3179 if (mask & IFCAP_TSO6) {
3180 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3181 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3182 if_printf(ifp, "enable txcsum6 first.\n");
3183 rc = EAGAIN;
3184 goto fail;
3185 }
3186 if_togglecapenable(ifp, IFCAP_TSO6);
3187 }
3188 if (mask & IFCAP_LRO) {
3189 #if defined(INET) || defined(INET6)
3190 int i;
3191 struct sge_rxq *rxq;
3192
3193 if_togglecapenable(ifp, IFCAP_LRO);
3194 for_each_rxq(vi, i, rxq) {
3195 if (if_getcapenable(ifp) & IFCAP_LRO)
3196 rxq->iq.flags |= IQ_LRO_ENABLED;
3197 else
3198 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3199 }
3200 #endif
3201 }
3202 #ifdef TCP_OFFLOAD
3203 if (mask & IFCAP_TOE) {
3204 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3205
3206 rc = toe_capability(vi, enable);
3207 if (rc != 0)
3208 goto fail;
3209
3210 if_togglecapenable(ifp, mask);
3211 }
3212 #endif
3213 if (mask & IFCAP_VLAN_HWTAGGING) {
3214 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3215 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3216 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3217 }
3218 if (mask & IFCAP_VLAN_MTU) {
3219 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3220
3221 /* Need to find out how to disable auto-mtu-inflation */
3222 }
3223 if (mask & IFCAP_VLAN_HWTSO)
3224 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3225 if (mask & IFCAP_VLAN_HWCSUM)
3226 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3227 #ifdef RATELIMIT
3228 if (mask & IFCAP_TXRTLMT)
3229 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3230 #endif
3231 if (mask & IFCAP_HWRXTSTMP) {
3232 int i;
3233 struct sge_rxq *rxq;
3234
3235 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3236 for_each_rxq(vi, i, rxq) {
3237 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3238 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3239 else
3240 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3241 }
3242 }
3243 if (mask & IFCAP_MEXTPG)
3244 if_togglecapenable(ifp, IFCAP_MEXTPG);
3245
3246 #ifdef KERN_TLS
3247 if (mask & IFCAP_TXTLS) {
3248 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3249
3250 rc = ktls_capability(sc, enable);
3251 if (rc != 0)
3252 goto fail;
3253
3254 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3255 }
3256 #endif
3257 if (mask & IFCAP_VXLAN_HWCSUM) {
3258 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3259 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3260 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3261 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3262 }
3263 if (mask & IFCAP_VXLAN_HWTSO) {
3264 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3265 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3266 CSUM_INNER_IP_TSO);
3267 }
3268
3269 #ifdef VLAN_CAPABILITIES
3270 VLAN_CAPABILITIES(ifp);
3271 #endif
3272 fail:
3273 end_synchronized_op(sc, 0);
3274 break;
3275
3276 case SIOCSIFMEDIA:
3277 case SIOCGIFMEDIA:
3278 case SIOCGIFXMEDIA:
3279 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3280 break;
3281
3282 case SIOCGI2C: {
3283 struct ifi2creq i2c;
3284
3285 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3286 if (rc != 0)
3287 break;
3288 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3289 rc = EPERM;
3290 break;
3291 }
3292 if (i2c.len > sizeof(i2c.data)) {
3293 rc = EINVAL;
3294 break;
3295 }
3296 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3297 if (rc)
3298 return (rc);
3299 if (!hw_all_ok(sc))
3300 rc = ENXIO;
3301 else
3302 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3303 i2c.offset, i2c.len, &i2c.data[0]);
3304 end_synchronized_op(sc, 0);
3305 if (rc == 0)
3306 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3307 break;
3308 }
3309
3310 default:
3311 rc = ether_ioctl(ifp, cmd, data);
3312 }
3313
3314 return (rc);
3315 }
3316
3317 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3318 cxgbe_transmit(if_t ifp, struct mbuf *m)
3319 {
3320 struct vi_info *vi = if_getsoftc(ifp);
3321 struct port_info *pi = vi->pi;
3322 struct adapter *sc;
3323 struct sge_txq *txq;
3324 void *items[1];
3325 int rc;
3326
3327 M_ASSERTPKTHDR(m);
3328 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3329 #if defined(KERN_TLS) || defined(RATELIMIT)
3330 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3331 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3332 #endif
3333
3334 if (__predict_false(pi->link_cfg.link_ok == false)) {
3335 m_freem(m);
3336 return (ENETDOWN);
3337 }
3338
3339 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3340 if (__predict_false(rc != 0)) {
3341 if (__predict_true(rc == EINPROGRESS)) {
3342 /* queued by parse_pkt */
3343 MPASS(m != NULL);
3344 return (0);
3345 }
3346
3347 MPASS(m == NULL); /* was freed already */
3348 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3349 return (rc);
3350 }
3351
3352 /* Select a txq. */
3353 sc = vi->adapter;
3354 txq = &sc->sge.txq[vi->first_txq];
3355 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3356 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3357 vi->rsrv_noflowq);
3358
3359 items[0] = m;
3360 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3361 if (__predict_false(rc != 0))
3362 m_freem(m);
3363
3364 return (rc);
3365 }
3366
3367 static void
cxgbe_qflush(if_t ifp)3368 cxgbe_qflush(if_t ifp)
3369 {
3370 struct vi_info *vi = if_getsoftc(ifp);
3371 struct sge_txq *txq;
3372 int i;
3373
3374 /* queues do not exist if !VI_INIT_DONE. */
3375 if (vi->flags & VI_INIT_DONE) {
3376 for_each_txq(vi, i, txq) {
3377 TXQ_LOCK(txq);
3378 txq->eq.flags |= EQ_QFLUSH;
3379 TXQ_UNLOCK(txq);
3380 while (!mp_ring_is_idle(txq->r)) {
3381 mp_ring_check_drainage(txq->r, 4096);
3382 pause("qflush", 1);
3383 }
3384 TXQ_LOCK(txq);
3385 txq->eq.flags &= ~EQ_QFLUSH;
3386 TXQ_UNLOCK(txq);
3387 }
3388 }
3389 if_qflush(ifp);
3390 }
3391
3392 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3393 vi_get_counter(if_t ifp, ift_counter c)
3394 {
3395 struct vi_info *vi = if_getsoftc(ifp);
3396 struct fw_vi_stats_vf *s = &vi->stats;
3397
3398 mtx_lock(&vi->tick_mtx);
3399 vi_refresh_stats(vi);
3400 mtx_unlock(&vi->tick_mtx);
3401
3402 switch (c) {
3403 case IFCOUNTER_IPACKETS:
3404 return (s->rx_bcast_frames + s->rx_mcast_frames +
3405 s->rx_ucast_frames);
3406 case IFCOUNTER_IERRORS:
3407 return (s->rx_err_frames);
3408 case IFCOUNTER_OPACKETS:
3409 return (s->tx_bcast_frames + s->tx_mcast_frames +
3410 s->tx_ucast_frames + s->tx_offload_frames);
3411 case IFCOUNTER_OERRORS:
3412 return (s->tx_drop_frames);
3413 case IFCOUNTER_IBYTES:
3414 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3415 s->rx_ucast_bytes);
3416 case IFCOUNTER_OBYTES:
3417 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3418 s->tx_ucast_bytes + s->tx_offload_bytes);
3419 case IFCOUNTER_IMCASTS:
3420 return (s->rx_mcast_frames);
3421 case IFCOUNTER_OMCASTS:
3422 return (s->tx_mcast_frames);
3423 case IFCOUNTER_OQDROPS: {
3424 uint64_t drops;
3425
3426 drops = 0;
3427 if (vi->flags & VI_INIT_DONE) {
3428 int i;
3429 struct sge_txq *txq;
3430
3431 for_each_txq(vi, i, txq)
3432 drops += counter_u64_fetch(txq->r->dropped);
3433 }
3434
3435 return (drops);
3436
3437 }
3438
3439 default:
3440 return (if_get_counter_default(ifp, c));
3441 }
3442 }
3443
3444 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3445 cxgbe_get_counter(if_t ifp, ift_counter c)
3446 {
3447 struct vi_info *vi = if_getsoftc(ifp);
3448 struct port_info *pi = vi->pi;
3449 struct port_stats *s = &pi->stats;
3450
3451 mtx_lock(&vi->tick_mtx);
3452 cxgbe_refresh_stats(vi);
3453 mtx_unlock(&vi->tick_mtx);
3454
3455 switch (c) {
3456 case IFCOUNTER_IPACKETS:
3457 return (s->rx_frames);
3458
3459 case IFCOUNTER_IERRORS:
3460 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3461 s->rx_fcs_err + s->rx_len_err);
3462
3463 case IFCOUNTER_OPACKETS:
3464 return (s->tx_frames);
3465
3466 case IFCOUNTER_OERRORS:
3467 return (s->tx_error_frames);
3468
3469 case IFCOUNTER_IBYTES:
3470 return (s->rx_octets);
3471
3472 case IFCOUNTER_OBYTES:
3473 return (s->tx_octets);
3474
3475 case IFCOUNTER_IMCASTS:
3476 return (s->rx_mcast_frames);
3477
3478 case IFCOUNTER_OMCASTS:
3479 return (s->tx_mcast_frames);
3480
3481 case IFCOUNTER_IQDROPS:
3482 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3483 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3484 s->rx_trunc3 + pi->tnl_cong_drops);
3485
3486 case IFCOUNTER_OQDROPS: {
3487 uint64_t drops;
3488
3489 drops = s->tx_drop;
3490 if (vi->flags & VI_INIT_DONE) {
3491 int i;
3492 struct sge_txq *txq;
3493
3494 for_each_txq(vi, i, txq)
3495 drops += counter_u64_fetch(txq->r->dropped);
3496 }
3497
3498 return (drops);
3499
3500 }
3501
3502 default:
3503 return (if_get_counter_default(ifp, c));
3504 }
3505 }
3506
3507 #if defined(KERN_TLS) || defined(RATELIMIT)
3508 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3509 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3510 struct m_snd_tag **pt)
3511 {
3512 int error;
3513
3514 switch (params->hdr.type) {
3515 #ifdef RATELIMIT
3516 case IF_SND_TAG_TYPE_RATE_LIMIT:
3517 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3518 break;
3519 #endif
3520 #ifdef KERN_TLS
3521 case IF_SND_TAG_TYPE_TLS:
3522 {
3523 struct vi_info *vi = if_getsoftc(ifp);
3524
3525 if (is_t6(vi->pi->adapter))
3526 error = t6_tls_tag_alloc(ifp, params, pt);
3527 else
3528 error = t7_tls_tag_alloc(ifp, params, pt);
3529 break;
3530 }
3531 #endif
3532 default:
3533 error = EOPNOTSUPP;
3534 }
3535 return (error);
3536 }
3537 #endif
3538
3539 /*
3540 * The kernel picks a media from the list we had provided but we still validate
3541 * the requeste.
3542 */
3543 int
cxgbe_media_change(if_t ifp)3544 cxgbe_media_change(if_t ifp)
3545 {
3546 struct vi_info *vi = if_getsoftc(ifp);
3547 struct port_info *pi = vi->pi;
3548 struct ifmedia *ifm = &pi->media;
3549 struct link_config *lc = &pi->link_cfg;
3550 struct adapter *sc = pi->adapter;
3551 int rc;
3552
3553 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3554 if (rc != 0)
3555 return (rc);
3556 PORT_LOCK(pi);
3557 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3558 /* ifconfig .. media autoselect */
3559 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3560 rc = ENOTSUP; /* AN not supported by transceiver */
3561 goto done;
3562 }
3563 lc->requested_aneg = AUTONEG_ENABLE;
3564 lc->requested_speed = 0;
3565 lc->requested_fc |= PAUSE_AUTONEG;
3566 } else {
3567 lc->requested_aneg = AUTONEG_DISABLE;
3568 lc->requested_speed =
3569 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3570 lc->requested_fc = 0;
3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3572 lc->requested_fc |= PAUSE_RX;
3573 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3574 lc->requested_fc |= PAUSE_TX;
3575 }
3576 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3577 fixup_link_config(pi);
3578 rc = apply_link_config(pi);
3579 }
3580 done:
3581 PORT_UNLOCK(pi);
3582 end_synchronized_op(sc, 0);
3583 return (rc);
3584 }
3585
3586 /*
3587 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3588 * given speed.
3589 */
3590 static int
port_mword(struct port_info * pi,uint32_t speed)3591 port_mword(struct port_info *pi, uint32_t speed)
3592 {
3593
3594 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3595 MPASS(powerof2(speed));
3596
3597 switch(pi->port_type) {
3598 case FW_PORT_TYPE_BT_SGMII:
3599 case FW_PORT_TYPE_BT_XFI:
3600 case FW_PORT_TYPE_BT_XAUI:
3601 /* BaseT */
3602 switch (speed) {
3603 case FW_PORT_CAP32_SPEED_100M:
3604 return (IFM_100_T);
3605 case FW_PORT_CAP32_SPEED_1G:
3606 return (IFM_1000_T);
3607 case FW_PORT_CAP32_SPEED_10G:
3608 return (IFM_10G_T);
3609 }
3610 break;
3611 case FW_PORT_TYPE_KX4:
3612 if (speed == FW_PORT_CAP32_SPEED_10G)
3613 return (IFM_10G_KX4);
3614 break;
3615 case FW_PORT_TYPE_CX4:
3616 if (speed == FW_PORT_CAP32_SPEED_10G)
3617 return (IFM_10G_CX4);
3618 break;
3619 case FW_PORT_TYPE_KX:
3620 if (speed == FW_PORT_CAP32_SPEED_1G)
3621 return (IFM_1000_KX);
3622 break;
3623 case FW_PORT_TYPE_KR:
3624 case FW_PORT_TYPE_BP_AP:
3625 case FW_PORT_TYPE_BP4_AP:
3626 case FW_PORT_TYPE_BP40_BA:
3627 case FW_PORT_TYPE_KR4_100G:
3628 case FW_PORT_TYPE_KR_SFP28:
3629 case FW_PORT_TYPE_KR_XLAUI:
3630 switch (speed) {
3631 case FW_PORT_CAP32_SPEED_1G:
3632 return (IFM_1000_KX);
3633 case FW_PORT_CAP32_SPEED_10G:
3634 return (IFM_10G_KR);
3635 case FW_PORT_CAP32_SPEED_25G:
3636 return (IFM_25G_KR);
3637 case FW_PORT_CAP32_SPEED_40G:
3638 return (IFM_40G_KR4);
3639 case FW_PORT_CAP32_SPEED_50G:
3640 return (IFM_50G_KR2);
3641 case FW_PORT_CAP32_SPEED_100G:
3642 return (IFM_100G_KR4);
3643 }
3644 break;
3645 case FW_PORT_TYPE_FIBER_XFI:
3646 case FW_PORT_TYPE_FIBER_XAUI:
3647 case FW_PORT_TYPE_SFP:
3648 case FW_PORT_TYPE_QSFP_10G:
3649 case FW_PORT_TYPE_QSA:
3650 case FW_PORT_TYPE_QSFP:
3651 case FW_PORT_TYPE_CR4_QSFP:
3652 case FW_PORT_TYPE_CR_QSFP:
3653 case FW_PORT_TYPE_CR2_QSFP:
3654 case FW_PORT_TYPE_SFP28:
3655 case FW_PORT_TYPE_SFP56:
3656 case FW_PORT_TYPE_QSFP56:
3657 case FW_PORT_TYPE_QSFPDD:
3658 /* Pluggable transceiver */
3659 switch (pi->mod_type) {
3660 case FW_PORT_MOD_TYPE_LR:
3661 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3662 switch (speed) {
3663 case FW_PORT_CAP32_SPEED_1G:
3664 return (IFM_1000_LX);
3665 case FW_PORT_CAP32_SPEED_10G:
3666 return (IFM_10G_LR);
3667 case FW_PORT_CAP32_SPEED_25G:
3668 return (IFM_25G_LR);
3669 case FW_PORT_CAP32_SPEED_40G:
3670 return (IFM_40G_LR4);
3671 case FW_PORT_CAP32_SPEED_50G:
3672 return (IFM_50G_LR2);
3673 case FW_PORT_CAP32_SPEED_100G:
3674 return (IFM_100G_LR4);
3675 case FW_PORT_CAP32_SPEED_200G:
3676 return (IFM_200G_LR4);
3677 case FW_PORT_CAP32_SPEED_400G:
3678 return (IFM_400G_LR8);
3679 }
3680 break;
3681 case FW_PORT_MOD_TYPE_SR:
3682 switch (speed) {
3683 case FW_PORT_CAP32_SPEED_1G:
3684 return (IFM_1000_SX);
3685 case FW_PORT_CAP32_SPEED_10G:
3686 return (IFM_10G_SR);
3687 case FW_PORT_CAP32_SPEED_25G:
3688 return (IFM_25G_SR);
3689 case FW_PORT_CAP32_SPEED_40G:
3690 return (IFM_40G_SR4);
3691 case FW_PORT_CAP32_SPEED_50G:
3692 return (IFM_50G_SR2);
3693 case FW_PORT_CAP32_SPEED_100G:
3694 return (IFM_100G_SR4);
3695 case FW_PORT_CAP32_SPEED_200G:
3696 return (IFM_200G_SR4);
3697 case FW_PORT_CAP32_SPEED_400G:
3698 return (IFM_400G_SR8);
3699 }
3700 break;
3701 case FW_PORT_MOD_TYPE_ER:
3702 if (speed == FW_PORT_CAP32_SPEED_10G)
3703 return (IFM_10G_ER);
3704 break;
3705 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3706 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3707 switch (speed) {
3708 case FW_PORT_CAP32_SPEED_1G:
3709 return (IFM_1000_CX);
3710 case FW_PORT_CAP32_SPEED_10G:
3711 return (IFM_10G_TWINAX);
3712 case FW_PORT_CAP32_SPEED_25G:
3713 return (IFM_25G_CR);
3714 case FW_PORT_CAP32_SPEED_40G:
3715 return (IFM_40G_CR4);
3716 case FW_PORT_CAP32_SPEED_50G:
3717 return (IFM_50G_CR2);
3718 case FW_PORT_CAP32_SPEED_100G:
3719 return (IFM_100G_CR4);
3720 case FW_PORT_CAP32_SPEED_200G:
3721 return (IFM_200G_CR4_PAM4);
3722 case FW_PORT_CAP32_SPEED_400G:
3723 return (IFM_400G_CR8);
3724 }
3725 break;
3726 case FW_PORT_MOD_TYPE_LRM:
3727 if (speed == FW_PORT_CAP32_SPEED_10G)
3728 return (IFM_10G_LRM);
3729 break;
3730 case FW_PORT_MOD_TYPE_DR:
3731 if (speed == FW_PORT_CAP32_SPEED_100G)
3732 return (IFM_100G_DR);
3733 if (speed == FW_PORT_CAP32_SPEED_200G)
3734 return (IFM_200G_DR4);
3735 if (speed == FW_PORT_CAP32_SPEED_400G)
3736 return (IFM_400G_DR4);
3737 break;
3738 case FW_PORT_MOD_TYPE_NA:
3739 MPASS(0); /* Not pluggable? */
3740 /* fall through */
3741 case FW_PORT_MOD_TYPE_ERROR:
3742 case FW_PORT_MOD_TYPE_UNKNOWN:
3743 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3744 break;
3745 case FW_PORT_MOD_TYPE_NONE:
3746 return (IFM_NONE);
3747 }
3748 break;
3749 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */
3750 if (chip_id(pi->adapter) >= CHELSIO_T7)
3751 return (IFM_UNKNOWN);
3752 /* fall through */
3753 case FW_PORT_TYPE_NONE:
3754 return (IFM_NONE);
3755 }
3756
3757 return (IFM_UNKNOWN);
3758 }
3759
3760 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3761 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3762 {
3763 struct vi_info *vi = if_getsoftc(ifp);
3764 struct port_info *pi = vi->pi;
3765 struct adapter *sc = pi->adapter;
3766 struct link_config *lc = &pi->link_cfg;
3767
3768 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3769 return;
3770 PORT_LOCK(pi);
3771
3772 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3773 /*
3774 * If all the interfaces are administratively down the firmware
3775 * does not report transceiver changes. Refresh port info here
3776 * so that ifconfig displays accurate ifmedia at all times.
3777 * This is the only reason we have a synchronized op in this
3778 * function. Just PORT_LOCK would have been enough otherwise.
3779 */
3780 t4_update_port_info(pi);
3781 build_medialist(pi);
3782 }
3783
3784 /* ifm_status */
3785 ifmr->ifm_status = IFM_AVALID;
3786 if (lc->link_ok == false)
3787 goto done;
3788 ifmr->ifm_status |= IFM_ACTIVE;
3789
3790 /* ifm_active */
3791 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3792 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3793 if (lc->fc & PAUSE_RX)
3794 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3795 if (lc->fc & PAUSE_TX)
3796 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3797 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3798 done:
3799 PORT_UNLOCK(pi);
3800 end_synchronized_op(sc, 0);
3801 }
3802
3803 static int
vcxgbe_probe(device_t dev)3804 vcxgbe_probe(device_t dev)
3805 {
3806 struct vi_info *vi = device_get_softc(dev);
3807
3808 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3809 vi - vi->pi->vi);
3810
3811 return (BUS_PROBE_DEFAULT);
3812 }
3813
3814 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3815 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3816 {
3817 int func, index, rc;
3818 uint32_t param, val;
3819
3820 ASSERT_SYNCHRONIZED_OP(sc);
3821
3822 index = vi - pi->vi;
3823 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3824 KASSERT(index < nitems(vi_mac_funcs),
3825 ("%s: VI %s doesn't have a MAC func", __func__,
3826 device_get_nameunit(vi->dev)));
3827 func = vi_mac_funcs[index];
3828 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1,
3829 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3830 if (rc < 0) {
3831 CH_ERR(vi, "failed to allocate virtual interface %d"
3832 "for port %d: %d\n", index, pi->port_id, -rc);
3833 return (-rc);
3834 }
3835 vi->viid = rc;
3836
3837 if (vi->rss_size == 1) {
3838 /*
3839 * This VI didn't get a slice of the RSS table. Reduce the
3840 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3841 * configuration file (nvi, rssnvi for this PF) if this is a
3842 * problem.
3843 */
3844 device_printf(vi->dev, "RSS table not available.\n");
3845 vi->rss_base = 0xffff;
3846
3847 return (0);
3848 }
3849
3850 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3851 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3852 V_FW_PARAMS_PARAM_YZ(vi->viid);
3853 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3854 if (rc)
3855 vi->rss_base = 0xffff;
3856 else {
3857 MPASS((val >> 16) == vi->rss_size);
3858 vi->rss_base = val & 0xffff;
3859 }
3860
3861 return (0);
3862 }
3863
3864 static int
vcxgbe_attach(device_t dev)3865 vcxgbe_attach(device_t dev)
3866 {
3867 struct vi_info *vi;
3868 struct port_info *pi;
3869 struct adapter *sc;
3870 int rc;
3871
3872 vi = device_get_softc(dev);
3873 pi = vi->pi;
3874 sc = pi->adapter;
3875
3876 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3877 if (rc)
3878 return (rc);
3879 rc = alloc_extra_vi(sc, pi, vi);
3880 end_synchronized_op(sc, 0);
3881 if (rc)
3882 return (rc);
3883
3884 cxgbe_vi_attach(dev, vi);
3885
3886 return (0);
3887 }
3888
3889 static int
vcxgbe_detach(device_t dev)3890 vcxgbe_detach(device_t dev)
3891 {
3892 struct vi_info *vi;
3893 struct adapter *sc;
3894
3895 vi = device_get_softc(dev);
3896 sc = vi->adapter;
3897
3898 begin_vi_detach(sc, vi);
3899 cxgbe_vi_detach(vi);
3900 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3901 end_vi_detach(sc, vi);
3902
3903 return (0);
3904 }
3905
3906 static struct callout fatal_callout;
3907 static struct taskqueue *reset_tq;
3908
3909 static void
delayed_panic(void * arg)3910 delayed_panic(void *arg)
3911 {
3912 struct adapter *sc = arg;
3913
3914 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3915 }
3916
3917 static void
fatal_error_task(void * arg,int pending)3918 fatal_error_task(void *arg, int pending)
3919 {
3920 struct adapter *sc = arg;
3921 int rc;
3922
3923 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3924 dump_cim_regs(sc);
3925 dump_cimla(sc);
3926 dump_devlog(sc);
3927 }
3928
3929 if (t4_reset_on_fatal_err) {
3930 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3931 rc = reset_adapter(sc);
3932 if (rc == 0 && t4_panic_on_fatal_err) {
3933 CH_ALERT(sc, "reset was successful, "
3934 "system will NOT panic.\n");
3935 return;
3936 }
3937 }
3938
3939 if (t4_panic_on_fatal_err) {
3940 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3941 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3942 }
3943 }
3944
3945 void
t4_fatal_err(struct adapter * sc,bool fw_error)3946 t4_fatal_err(struct adapter *sc, bool fw_error)
3947 {
3948 stop_adapter(sc);
3949 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3950 return;
3951 if (fw_error) {
3952 /*
3953 * We are here because of a firmware error/timeout and not
3954 * because of a hardware interrupt. It is possible (although
3955 * not very likely) that an error interrupt was also raised but
3956 * this thread ran first and inhibited t4_intr_err. We walk the
3957 * main INT_CAUSE registers here to make sure we haven't missed
3958 * anything interesting.
3959 */
3960 t4_slow_intr_handler(sc, sc->intr_flags);
3961 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3962 }
3963 t4_report_fw_error(sc);
3964 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3965 device_get_nameunit(sc->dev), fw_error);
3966 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3967 }
3968
3969 void
t4_add_adapter(struct adapter * sc)3970 t4_add_adapter(struct adapter *sc)
3971 {
3972 sx_xlock(&t4_list_lock);
3973 SLIST_INSERT_HEAD(&t4_list, sc, link);
3974 sx_xunlock(&t4_list_lock);
3975 }
3976
3977 int
t4_map_bars_0_and_4(struct adapter * sc)3978 t4_map_bars_0_and_4(struct adapter *sc)
3979 {
3980 sc->regs_rid = PCIR_BAR(0);
3981 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3982 &sc->regs_rid, RF_ACTIVE);
3983 if (sc->regs_res == NULL) {
3984 device_printf(sc->dev, "cannot map registers.\n");
3985 return (ENXIO);
3986 }
3987 sc->bt = rman_get_bustag(sc->regs_res);
3988 sc->bh = rman_get_bushandle(sc->regs_res);
3989 sc->mmio_len = rman_get_size(sc->regs_res);
3990 setbit(&sc->doorbells, DOORBELL_KDB);
3991
3992 sc->msix_rid = PCIR_BAR(4);
3993 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3994 &sc->msix_rid, RF_ACTIVE);
3995 if (sc->msix_res == NULL) {
3996 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3997 return (ENXIO);
3998 }
3999
4000 return (0);
4001 }
4002
4003 int
t4_map_bar_2(struct adapter * sc)4004 t4_map_bar_2(struct adapter *sc)
4005 {
4006
4007 /*
4008 * T4: only iWARP driver uses the userspace doorbells. There is no need
4009 * to map it if RDMA is disabled.
4010 */
4011 if (is_t4(sc) && sc->rdmacaps == 0)
4012 return (0);
4013
4014 sc->udbs_rid = PCIR_BAR(2);
4015 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4016 &sc->udbs_rid, RF_ACTIVE);
4017 if (sc->udbs_res == NULL) {
4018 device_printf(sc->dev, "cannot map doorbell BAR.\n");
4019 return (ENXIO);
4020 }
4021 sc->udbs_base = rman_get_virtual(sc->udbs_res);
4022
4023 if (chip_id(sc) >= CHELSIO_T5) {
4024 setbit(&sc->doorbells, DOORBELL_UDB);
4025 #if defined(__i386__) || defined(__amd64__)
4026 if (t5_write_combine) {
4027 int rc, mode;
4028
4029 /*
4030 * Enable write combining on BAR2. This is the
4031 * userspace doorbell BAR and is split into 128B
4032 * (UDBS_SEG_SIZE) doorbell regions, each associated
4033 * with an egress queue. The first 64B has the doorbell
4034 * and the second 64B can be used to submit a tx work
4035 * request with an implicit doorbell.
4036 */
4037
4038 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
4039 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
4040 if (rc == 0) {
4041 clrbit(&sc->doorbells, DOORBELL_UDB);
4042 setbit(&sc->doorbells, DOORBELL_WCWR);
4043 setbit(&sc->doorbells, DOORBELL_UDBWC);
4044 } else {
4045 device_printf(sc->dev,
4046 "couldn't enable write combining: %d\n",
4047 rc);
4048 }
4049
4050 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
4051 t4_write_reg(sc, A_SGE_STAT_CFG,
4052 V_STATSOURCE_T5(7) | mode);
4053 }
4054 #endif
4055 }
4056 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
4057
4058 return (0);
4059 }
4060
4061 int
t4_adj_doorbells(struct adapter * sc)4062 t4_adj_doorbells(struct adapter *sc)
4063 {
4064 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
4065 sc->doorbells &= t4_doorbells_allowed;
4066 return (0);
4067 }
4068 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
4069 sc->doorbells, t4_doorbells_allowed);
4070 return (EINVAL);
4071 }
4072
4073 struct memwin_init {
4074 uint32_t base;
4075 uint32_t aperture;
4076 };
4077
4078 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
4079 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4080 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4081 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
4082 };
4083
4084 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
4085 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4086 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4087 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
4088 };
4089
4090 static void
setup_memwin(struct adapter * sc)4091 setup_memwin(struct adapter *sc)
4092 {
4093 const struct memwin_init *mw_init;
4094 struct memwin *mw;
4095 int i;
4096 uint32_t bar0, reg;
4097
4098 if (is_t4(sc)) {
4099 /*
4100 * Read low 32b of bar0 indirectly via the hardware backdoor
4101 * mechanism. Works from within PCI passthrough environments
4102 * too, where rman_get_start() can return a different value. We
4103 * need to program the T4 memory window decoders with the actual
4104 * addresses that will be coming across the PCIe link.
4105 */
4106 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
4107 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
4108
4109 mw_init = &t4_memwin[0];
4110 } else {
4111 /* T5+ use the relative offset inside the PCIe BAR */
4112 bar0 = 0;
4113
4114 mw_init = &t5_memwin[0];
4115 }
4116
4117 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
4118 if (!rw_initialized(&mw->mw_lock)) {
4119 rw_init(&mw->mw_lock, "memory window access");
4120 mw->mw_base = mw_init->base;
4121 mw->mw_aperture = mw_init->aperture;
4122 mw->mw_curpos = 0;
4123 }
4124 reg = chip_id(sc) > CHELSIO_T6 ?
4125 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) :
4126 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i);
4127 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) |
4128 V_WINDOW(ilog2(mw->mw_aperture) - 10));
4129 rw_wlock(&mw->mw_lock);
4130 position_memwin(sc, i, mw->mw_curpos);
4131 rw_wunlock(&mw->mw_lock);
4132 }
4133
4134 /* flush */
4135 t4_read_reg(sc, reg);
4136 }
4137
4138 /*
4139 * Positions the memory window at the given address in the card's address space.
4140 * There are some alignment requirements and the actual position may be at an
4141 * address prior to the requested address. mw->mw_curpos always has the actual
4142 * position of the window.
4143 */
4144 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4145 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4146 {
4147 struct memwin *mw;
4148 uint32_t pf, reg, val;
4149
4150 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4151 mw = &sc->memwin[idx];
4152 rw_assert(&mw->mw_lock, RA_WLOCKED);
4153
4154 if (is_t4(sc)) {
4155 pf = 0;
4156 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4157 } else {
4158 pf = V_PFNUM(sc->pf);
4159 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4160 }
4161 if (chip_id(sc) > CHELSIO_T6) {
4162 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx);
4163 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf;
4164 } else {
4165 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4166 val = mw->mw_curpos | pf;
4167 }
4168 t4_write_reg(sc, reg, val);
4169 t4_read_reg(sc, reg); /* flush */
4170 }
4171
4172 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4173 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4174 int len, int rw)
4175 {
4176 struct memwin *mw;
4177 uint32_t mw_end, v;
4178
4179 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4180
4181 /* Memory can only be accessed in naturally aligned 4 byte units */
4182 if (addr & 3 || len & 3 || len <= 0)
4183 return (EINVAL);
4184
4185 mw = &sc->memwin[idx];
4186 while (len > 0) {
4187 rw_rlock(&mw->mw_lock);
4188 mw_end = mw->mw_curpos + mw->mw_aperture;
4189 if (addr >= mw_end || addr < mw->mw_curpos) {
4190 /* Will need to reposition the window */
4191 if (!rw_try_upgrade(&mw->mw_lock)) {
4192 rw_runlock(&mw->mw_lock);
4193 rw_wlock(&mw->mw_lock);
4194 }
4195 rw_assert(&mw->mw_lock, RA_WLOCKED);
4196 position_memwin(sc, idx, addr);
4197 rw_downgrade(&mw->mw_lock);
4198 mw_end = mw->mw_curpos + mw->mw_aperture;
4199 }
4200 rw_assert(&mw->mw_lock, RA_RLOCKED);
4201 while (addr < mw_end && len > 0) {
4202 if (rw == 0) {
4203 v = t4_read_reg(sc, mw->mw_base + addr -
4204 mw->mw_curpos);
4205 *val++ = le32toh(v);
4206 } else {
4207 v = *val++;
4208 t4_write_reg(sc, mw->mw_base + addr -
4209 mw->mw_curpos, htole32(v));
4210 }
4211 addr += 4;
4212 len -= 4;
4213 }
4214 rw_runlock(&mw->mw_lock);
4215 }
4216
4217 return (0);
4218 }
4219
4220 CTASSERT(M_TID_COOKIE == M_COOKIE);
4221 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4222
4223 static void
t4_init_atid_table(struct adapter * sc)4224 t4_init_atid_table(struct adapter *sc)
4225 {
4226 struct tid_info *t;
4227 int i;
4228
4229 t = &sc->tids;
4230 if (t->natids == 0)
4231 return;
4232
4233 MPASS(t->atid_tab == NULL);
4234
4235 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4236 M_ZERO | M_WAITOK);
4237 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4238 t->afree = t->atid_tab;
4239 t->atids_in_use = 0;
4240 t->atid_alloc_stopped = false;
4241 for (i = 1; i < t->natids; i++)
4242 t->atid_tab[i - 1].next = &t->atid_tab[i];
4243 t->atid_tab[t->natids - 1].next = NULL;
4244 }
4245
4246 static void
t4_free_atid_table(struct adapter * sc)4247 t4_free_atid_table(struct adapter *sc)
4248 {
4249 struct tid_info *t;
4250
4251 t = &sc->tids;
4252
4253 KASSERT(t->atids_in_use == 0,
4254 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4255
4256 if (mtx_initialized(&t->atid_lock))
4257 mtx_destroy(&t->atid_lock);
4258 free(t->atid_tab, M_CXGBE);
4259 t->atid_tab = NULL;
4260 }
4261
4262 static void
stop_atid_allocator(struct adapter * sc)4263 stop_atid_allocator(struct adapter *sc)
4264 {
4265 struct tid_info *t = &sc->tids;
4266
4267 if (t->natids == 0)
4268 return;
4269 mtx_lock(&t->atid_lock);
4270 t->atid_alloc_stopped = true;
4271 mtx_unlock(&t->atid_lock);
4272 }
4273
4274 static void
restart_atid_allocator(struct adapter * sc)4275 restart_atid_allocator(struct adapter *sc)
4276 {
4277 struct tid_info *t = &sc->tids;
4278
4279 if (t->natids == 0)
4280 return;
4281 mtx_lock(&t->atid_lock);
4282 KASSERT(t->atids_in_use == 0,
4283 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4284 t->atid_alloc_stopped = false;
4285 mtx_unlock(&t->atid_lock);
4286 }
4287
4288 int
alloc_atid(struct adapter * sc,void * ctx)4289 alloc_atid(struct adapter *sc, void *ctx)
4290 {
4291 struct tid_info *t = &sc->tids;
4292 int atid = -1;
4293
4294 mtx_lock(&t->atid_lock);
4295 if (t->afree && !t->atid_alloc_stopped) {
4296 union aopen_entry *p = t->afree;
4297
4298 atid = p - t->atid_tab;
4299 MPASS(atid <= M_TID_TID);
4300 t->afree = p->next;
4301 p->data = ctx;
4302 t->atids_in_use++;
4303 }
4304 mtx_unlock(&t->atid_lock);
4305 return (atid);
4306 }
4307
4308 void *
lookup_atid(struct adapter * sc,int atid)4309 lookup_atid(struct adapter *sc, int atid)
4310 {
4311 struct tid_info *t = &sc->tids;
4312
4313 return (t->atid_tab[atid].data);
4314 }
4315
4316 void
free_atid(struct adapter * sc,int atid)4317 free_atid(struct adapter *sc, int atid)
4318 {
4319 struct tid_info *t = &sc->tids;
4320 union aopen_entry *p = &t->atid_tab[atid];
4321
4322 mtx_lock(&t->atid_lock);
4323 p->next = t->afree;
4324 t->afree = p;
4325 t->atids_in_use--;
4326 mtx_unlock(&t->atid_lock);
4327 }
4328
4329 static void
queue_tid_release(struct adapter * sc,int tid)4330 queue_tid_release(struct adapter *sc, int tid)
4331 {
4332
4333 CXGBE_UNIMPLEMENTED("deferred tid release");
4334 }
4335
4336 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4337 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4338 {
4339 struct wrqe *wr;
4340 struct cpl_tid_release *req;
4341
4342 wr = alloc_wrqe(sizeof(*req), ctrlq);
4343 if (wr == NULL) {
4344 queue_tid_release(sc, tid); /* defer */
4345 return;
4346 }
4347 req = wrtod(wr);
4348
4349 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4350
4351 t4_wrq_tx(sc, wr);
4352 }
4353
4354 static int
t4_range_cmp(const void * a,const void * b)4355 t4_range_cmp(const void *a, const void *b)
4356 {
4357 return ((const struct t4_range *)a)->start -
4358 ((const struct t4_range *)b)->start;
4359 }
4360
4361 /*
4362 * Verify that the memory range specified by the addr/len pair is valid within
4363 * the card's address space.
4364 */
4365 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4366 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4367 {
4368 struct t4_range mem_ranges[4], *r, *next;
4369 uint32_t em, addr_len;
4370 int i, n, remaining;
4371
4372 /* Memory can only be accessed in naturally aligned 4 byte units */
4373 if (addr & 3 || len & 3 || len == 0)
4374 return (EINVAL);
4375
4376 /* Enabled memories */
4377 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4378
4379 r = &mem_ranges[0];
4380 n = 0;
4381 bzero(r, sizeof(mem_ranges));
4382 if (em & F_EDRAM0_ENABLE) {
4383 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4384 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4385 if (r->size > 0) {
4386 r->start = G_EDRAM0_BASE(addr_len) << 20;
4387 if (addr >= r->start &&
4388 addr + len <= r->start + r->size)
4389 return (0);
4390 r++;
4391 n++;
4392 }
4393 }
4394 if (em & F_EDRAM1_ENABLE) {
4395 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4396 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4397 if (r->size > 0) {
4398 r->start = G_EDRAM1_BASE(addr_len) << 20;
4399 if (addr >= r->start &&
4400 addr + len <= r->start + r->size)
4401 return (0);
4402 r++;
4403 n++;
4404 }
4405 }
4406 if (em & F_EXT_MEM_ENABLE) {
4407 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4408 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4409 if (r->size > 0) {
4410 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4411 if (addr >= r->start &&
4412 addr + len <= r->start + r->size)
4413 return (0);
4414 r++;
4415 n++;
4416 }
4417 }
4418 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4419 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4420 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4421 if (r->size > 0) {
4422 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4423 if (addr >= r->start &&
4424 addr + len <= r->start + r->size)
4425 return (0);
4426 r++;
4427 n++;
4428 }
4429 }
4430 MPASS(n <= nitems(mem_ranges));
4431
4432 if (n > 1) {
4433 /* Sort and merge the ranges. */
4434 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4435
4436 /* Start from index 0 and examine the next n - 1 entries. */
4437 r = &mem_ranges[0];
4438 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4439
4440 MPASS(r->size > 0); /* r is a valid entry. */
4441 next = r + 1;
4442 MPASS(next->size > 0); /* and so is the next one. */
4443
4444 while (r->start + r->size >= next->start) {
4445 /* Merge the next one into the current entry. */
4446 r->size = max(r->start + r->size,
4447 next->start + next->size) - r->start;
4448 n--; /* One fewer entry in total. */
4449 if (--remaining == 0)
4450 goto done; /* short circuit */
4451 next++;
4452 }
4453 if (next != r + 1) {
4454 /*
4455 * Some entries were merged into r and next
4456 * points to the first valid entry that couldn't
4457 * be merged.
4458 */
4459 MPASS(next->size > 0); /* must be valid */
4460 memcpy(r + 1, next, remaining * sizeof(*r));
4461 #ifdef INVARIANTS
4462 /*
4463 * This so that the foo->size assertion in the
4464 * next iteration of the loop do the right
4465 * thing for entries that were pulled up and are
4466 * no longer valid.
4467 */
4468 MPASS(n < nitems(mem_ranges));
4469 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4470 sizeof(struct t4_range));
4471 #endif
4472 }
4473 }
4474 done:
4475 /* Done merging the ranges. */
4476 MPASS(n > 0);
4477 r = &mem_ranges[0];
4478 for (i = 0; i < n; i++, r++) {
4479 if (addr >= r->start &&
4480 addr + len <= r->start + r->size)
4481 return (0);
4482 }
4483 }
4484
4485 return (EFAULT);
4486 }
4487
4488 static int
fwmtype_to_hwmtype(int mtype)4489 fwmtype_to_hwmtype(int mtype)
4490 {
4491
4492 switch (mtype) {
4493 case FW_MEMTYPE_EDC0:
4494 return (MEM_EDC0);
4495 case FW_MEMTYPE_EDC1:
4496 return (MEM_EDC1);
4497 case FW_MEMTYPE_EXTMEM:
4498 return (MEM_MC0);
4499 case FW_MEMTYPE_EXTMEM1:
4500 return (MEM_MC1);
4501 default:
4502 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4503 }
4504 }
4505
4506 /*
4507 * Verify that the memory range specified by the memtype/offset/len pair is
4508 * valid and lies entirely within the memtype specified. The global address of
4509 * the start of the range is returned in addr.
4510 */
4511 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4512 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4513 uint32_t *addr)
4514 {
4515 uint32_t em, addr_len, maddr;
4516
4517 /* Memory can only be accessed in naturally aligned 4 byte units */
4518 if (off & 3 || len & 3 || len == 0)
4519 return (EINVAL);
4520
4521 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4522 switch (fwmtype_to_hwmtype(mtype)) {
4523 case MEM_EDC0:
4524 if (!(em & F_EDRAM0_ENABLE))
4525 return (EINVAL);
4526 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4527 maddr = G_EDRAM0_BASE(addr_len) << 20;
4528 break;
4529 case MEM_EDC1:
4530 if (!(em & F_EDRAM1_ENABLE))
4531 return (EINVAL);
4532 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4533 maddr = G_EDRAM1_BASE(addr_len) << 20;
4534 break;
4535 case MEM_MC:
4536 if (!(em & F_EXT_MEM_ENABLE))
4537 return (EINVAL);
4538 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4539 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4540 break;
4541 case MEM_MC1:
4542 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4543 return (EINVAL);
4544 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4545 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4546 break;
4547 default:
4548 return (EINVAL);
4549 }
4550
4551 *addr = maddr + off; /* global address */
4552 return (validate_mem_range(sc, *addr, len));
4553 }
4554
4555 static int
fixup_devlog_params(struct adapter * sc)4556 fixup_devlog_params(struct adapter *sc)
4557 {
4558 struct devlog_params *dparams = &sc->params.devlog;
4559 int rc;
4560
4561 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4562 dparams->size, &dparams->addr);
4563
4564 return (rc);
4565 }
4566
4567 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4568 update_nirq(struct intrs_and_queues *iaq, int nports)
4569 {
4570
4571 iaq->nirq = T4_EXTRA_INTR;
4572 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4573 iaq->nirq += nports * iaq->nofldrxq;
4574 iaq->nirq += nports * (iaq->num_vis - 1) *
4575 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4576 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4577 }
4578
4579 /*
4580 * Adjust requirements to fit the number of interrupts available.
4581 */
4582 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4583 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4584 int navail)
4585 {
4586 int old_nirq;
4587 const int nports = sc->params.nports;
4588
4589 MPASS(nports > 0);
4590 MPASS(navail > 0);
4591
4592 bzero(iaq, sizeof(*iaq));
4593 iaq->intr_type = itype;
4594 iaq->num_vis = t4_num_vis;
4595 iaq->ntxq = t4_ntxq;
4596 iaq->ntxq_vi = t4_ntxq_vi;
4597 iaq->nrxq = t4_nrxq;
4598 iaq->nrxq_vi = t4_nrxq_vi;
4599 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4600 if (is_offload(sc) || is_ethoffload(sc)) {
4601 if (sc->params.tid_qid_sel_mask == 0) {
4602 iaq->nofldtxq = t4_nofldtxq;
4603 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4604 } else {
4605 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores);
4606 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi,
4607 sc->params.ncores);
4608 if (iaq->nofldtxq != t4_nofldtxq)
4609 device_printf(sc->dev,
4610 "nofldtxq updated (%d -> %d) for correct"
4611 " operation with %d firmware cores.\n",
4612 t4_nofldtxq, iaq->nofldtxq,
4613 sc->params.ncores);
4614 if (iaq->num_vis > 1 &&
4615 iaq->nofldtxq_vi != t4_nofldtxq_vi)
4616 device_printf(sc->dev,
4617 "nofldtxq_vi updated (%d -> %d) for correct"
4618 " operation with %d firmware cores.\n",
4619 t4_nofldtxq_vi, iaq->nofldtxq_vi,
4620 sc->params.ncores);
4621 }
4622 }
4623 #endif
4624 #ifdef TCP_OFFLOAD
4625 if (is_offload(sc)) {
4626 iaq->nofldrxq = t4_nofldrxq;
4627 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4628 }
4629 #endif
4630 #ifdef DEV_NETMAP
4631 if (t4_native_netmap & NN_MAIN_VI) {
4632 iaq->nnmtxq = t4_nnmtxq;
4633 iaq->nnmrxq = t4_nnmrxq;
4634 }
4635 if (t4_native_netmap & NN_EXTRA_VI) {
4636 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4637 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4638 }
4639 #endif
4640
4641 update_nirq(iaq, nports);
4642 if (iaq->nirq <= navail &&
4643 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4644 /*
4645 * This is the normal case -- there are enough interrupts for
4646 * everything.
4647 */
4648 goto done;
4649 }
4650
4651 /*
4652 * If extra VIs have been configured try reducing their count and see if
4653 * that works.
4654 */
4655 while (iaq->num_vis > 1) {
4656 iaq->num_vis--;
4657 update_nirq(iaq, nports);
4658 if (iaq->nirq <= navail &&
4659 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4660 device_printf(sc->dev, "virtual interfaces per port "
4661 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4662 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4663 "itype %d, navail %u, nirq %d.\n",
4664 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4665 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4666 itype, navail, iaq->nirq);
4667 goto done;
4668 }
4669 }
4670
4671 /*
4672 * Extra VIs will not be created. Log a message if they were requested.
4673 */
4674 MPASS(iaq->num_vis == 1);
4675 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4676 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4677 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4678 if (iaq->num_vis != t4_num_vis) {
4679 device_printf(sc->dev, "extra virtual interfaces disabled. "
4680 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4681 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4682 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4683 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4684 }
4685
4686 /*
4687 * Keep reducing the number of NIC rx queues to the next lower power of
4688 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4689 * if that works.
4690 */
4691 do {
4692 if (iaq->nrxq > 1) {
4693 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4694 if (iaq->nnmrxq > iaq->nrxq)
4695 iaq->nnmrxq = iaq->nrxq;
4696 }
4697 if (iaq->nofldrxq > 1)
4698 iaq->nofldrxq >>= 1;
4699
4700 old_nirq = iaq->nirq;
4701 update_nirq(iaq, nports);
4702 if (iaq->nirq <= navail &&
4703 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4704 device_printf(sc->dev, "running with reduced number of "
4705 "rx queues because of shortage of interrupts. "
4706 "nrxq=%u, nofldrxq=%u. "
4707 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4708 iaq->nofldrxq, itype, navail, iaq->nirq);
4709 goto done;
4710 }
4711 } while (old_nirq != iaq->nirq);
4712
4713 /* One interrupt for everything. Ugh. */
4714 device_printf(sc->dev, "running with minimal number of queues. "
4715 "itype %d, navail %u.\n", itype, navail);
4716 iaq->nirq = 1;
4717 iaq->nrxq = 1;
4718 iaq->ntxq = 1;
4719 if (iaq->nofldrxq > 0) {
4720 iaq->nofldrxq = 1;
4721 iaq->nofldtxq = 1;
4722 if (sc->params.tid_qid_sel_mask == 0)
4723 iaq->nofldtxq = 1;
4724 else
4725 iaq->nofldtxq = sc->params.ncores;
4726 }
4727 iaq->nnmtxq = 0;
4728 iaq->nnmrxq = 0;
4729 done:
4730 MPASS(iaq->num_vis > 0);
4731 if (iaq->num_vis > 1) {
4732 MPASS(iaq->nrxq_vi > 0);
4733 MPASS(iaq->ntxq_vi > 0);
4734 }
4735 MPASS(iaq->nirq > 0);
4736 MPASS(iaq->nrxq > 0);
4737 MPASS(iaq->ntxq > 0);
4738 if (itype == INTR_MSI)
4739 MPASS(powerof2(iaq->nirq));
4740 if (sc->params.tid_qid_sel_mask != 0)
4741 MPASS(iaq->nofldtxq % sc->params.ncores == 0);
4742 }
4743
4744 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4745 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4746 {
4747 int rc, itype, navail, nalloc;
4748
4749 for (itype = INTR_MSIX; itype; itype >>= 1) {
4750
4751 if ((itype & t4_intr_types) == 0)
4752 continue; /* not allowed */
4753
4754 if (itype == INTR_MSIX)
4755 navail = pci_msix_count(sc->dev);
4756 else if (itype == INTR_MSI)
4757 navail = pci_msi_count(sc->dev);
4758 else
4759 navail = 1;
4760 restart:
4761 if (navail == 0)
4762 continue;
4763
4764 calculate_iaq(sc, iaq, itype, navail);
4765 nalloc = iaq->nirq;
4766 rc = 0;
4767 if (itype == INTR_MSIX)
4768 rc = pci_alloc_msix(sc->dev, &nalloc);
4769 else if (itype == INTR_MSI)
4770 rc = pci_alloc_msi(sc->dev, &nalloc);
4771
4772 if (rc == 0 && nalloc > 0) {
4773 if (nalloc == iaq->nirq)
4774 return (0);
4775
4776 /*
4777 * Didn't get the number requested. Use whatever number
4778 * the kernel is willing to allocate.
4779 */
4780 device_printf(sc->dev, "fewer vectors than requested, "
4781 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4782 itype, iaq->nirq, nalloc);
4783 pci_release_msi(sc->dev);
4784 navail = nalloc;
4785 goto restart;
4786 }
4787
4788 device_printf(sc->dev,
4789 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4790 itype, rc, iaq->nirq, nalloc);
4791 }
4792
4793 device_printf(sc->dev,
4794 "failed to find a usable interrupt type. "
4795 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4796 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4797
4798 return (ENXIO);
4799 }
4800
4801 #define FW_VERSION(chip) ( \
4802 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4803 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4804 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4805 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4806 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4807
4808 /* Just enough of fw_hdr to cover all version info. */
4809 struct fw_h {
4810 __u8 ver;
4811 __u8 chip;
4812 __be16 len512;
4813 __be32 fw_ver;
4814 __be32 tp_microcode_ver;
4815 __u8 intfver_nic;
4816 __u8 intfver_vnic;
4817 __u8 intfver_ofld;
4818 __u8 intfver_ri;
4819 __u8 intfver_iscsipdu;
4820 __u8 intfver_iscsi;
4821 __u8 intfver_fcoepdu;
4822 __u8 intfver_fcoe;
4823 };
4824 /* Spot check a couple of fields. */
4825 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4826 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4827 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4828
4829 struct fw_info {
4830 uint8_t chip;
4831 char *kld_name;
4832 char *fw_mod_name;
4833 struct fw_h fw_h;
4834 } fw_info[] = {
4835 {
4836 .chip = CHELSIO_T4,
4837 .kld_name = "t4fw_cfg",
4838 .fw_mod_name = "t4fw",
4839 .fw_h = {
4840 .chip = FW_HDR_CHIP_T4,
4841 .fw_ver = htobe32(FW_VERSION(T4)),
4842 .intfver_nic = FW_INTFVER(T4, NIC),
4843 .intfver_vnic = FW_INTFVER(T4, VNIC),
4844 .intfver_ofld = FW_INTFVER(T4, OFLD),
4845 .intfver_ri = FW_INTFVER(T4, RI),
4846 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4847 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4848 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4849 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4850 },
4851 }, {
4852 .chip = CHELSIO_T5,
4853 .kld_name = "t5fw_cfg",
4854 .fw_mod_name = "t5fw",
4855 .fw_h = {
4856 .chip = FW_HDR_CHIP_T5,
4857 .fw_ver = htobe32(FW_VERSION(T5)),
4858 .intfver_nic = FW_INTFVER(T5, NIC),
4859 .intfver_vnic = FW_INTFVER(T5, VNIC),
4860 .intfver_ofld = FW_INTFVER(T5, OFLD),
4861 .intfver_ri = FW_INTFVER(T5, RI),
4862 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4863 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4864 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4865 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4866 },
4867 }, {
4868 .chip = CHELSIO_T6,
4869 .kld_name = "t6fw_cfg",
4870 .fw_mod_name = "t6fw",
4871 .fw_h = {
4872 .chip = FW_HDR_CHIP_T6,
4873 .fw_ver = htobe32(FW_VERSION(T6)),
4874 .intfver_nic = FW_INTFVER(T6, NIC),
4875 .intfver_vnic = FW_INTFVER(T6, VNIC),
4876 .intfver_ofld = FW_INTFVER(T6, OFLD),
4877 .intfver_ri = FW_INTFVER(T6, RI),
4878 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4879 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4880 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4881 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4882 },
4883 }, {
4884 .chip = CHELSIO_T7,
4885 .kld_name = "t7fw_cfg",
4886 .fw_mod_name = "t7fw",
4887 .fw_h = {
4888 .chip = FW_HDR_CHIP_T7,
4889 .fw_ver = htobe32(FW_VERSION(T7)),
4890 .intfver_nic = FW_INTFVER(T7, NIC),
4891 .intfver_vnic = FW_INTFVER(T7, VNIC),
4892 .intfver_ofld = FW_INTFVER(T7, OFLD),
4893 .intfver_ri = FW_INTFVER(T7, RI),
4894 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU),
4895 .intfver_iscsi = FW_INTFVER(T7, ISCSI),
4896 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU),
4897 .intfver_fcoe = FW_INTFVER(T7, FCOE),
4898 },
4899 }
4900 };
4901
4902 static struct fw_info *
find_fw_info(int chip)4903 find_fw_info(int chip)
4904 {
4905 int i;
4906
4907 for (i = 0; i < nitems(fw_info); i++) {
4908 if (fw_info[i].chip == chip)
4909 return (&fw_info[i]);
4910 }
4911 return (NULL);
4912 }
4913
4914 /*
4915 * Is the given firmware API compatible with the one the driver was compiled
4916 * with?
4917 */
4918 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4919 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4920 {
4921
4922 /* short circuit if it's the exact same firmware version */
4923 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4924 return (1);
4925
4926 /*
4927 * XXX: Is this too conservative? Perhaps I should limit this to the
4928 * features that are supported in the driver.
4929 */
4930 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4931 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4932 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4933 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4934 return (1);
4935 #undef SAME_INTF
4936
4937 return (0);
4938 }
4939
4940 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4941 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4942 const struct firmware **fw)
4943 {
4944 struct fw_info *fw_info;
4945
4946 *dcfg = NULL;
4947 if (fw != NULL)
4948 *fw = NULL;
4949
4950 fw_info = find_fw_info(chip_id(sc));
4951 if (fw_info == NULL) {
4952 device_printf(sc->dev,
4953 "unable to look up firmware information for chip %d.\n",
4954 chip_id(sc));
4955 return (EINVAL);
4956 }
4957
4958 *dcfg = firmware_get(fw_info->kld_name);
4959 if (*dcfg != NULL) {
4960 if (fw != NULL)
4961 *fw = firmware_get(fw_info->fw_mod_name);
4962 return (0);
4963 }
4964
4965 return (ENOENT);
4966 }
4967
4968 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4969 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4970 const struct firmware *fw)
4971 {
4972
4973 if (fw != NULL)
4974 firmware_put(fw, FIRMWARE_UNLOAD);
4975 if (dcfg != NULL)
4976 firmware_put(dcfg, FIRMWARE_UNLOAD);
4977 }
4978
4979 /*
4980 * Return values:
4981 * 0 means no firmware install attempted.
4982 * ERESTART means a firmware install was attempted and was successful.
4983 * +ve errno means a firmware install was attempted but failed.
4984 */
4985 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4986 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4987 const struct fw_h *drv_fw, const char *reason, int *already)
4988 {
4989 const struct firmware *cfg, *fw;
4990 const uint32_t c = be32toh(card_fw->fw_ver);
4991 uint32_t d, k;
4992 int rc, fw_install;
4993 struct fw_h bundled_fw;
4994 bool load_attempted;
4995
4996 cfg = fw = NULL;
4997 load_attempted = false;
4998 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4999
5000 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
5001 if (t4_fw_install < 0) {
5002 rc = load_fw_module(sc, &cfg, &fw);
5003 if (rc != 0 || fw == NULL) {
5004 device_printf(sc->dev,
5005 "failed to load firmware module: %d. cfg %p, fw %p;"
5006 " will use compiled-in firmware version for"
5007 "hw.cxgbe.fw_install checks.\n",
5008 rc, cfg, fw);
5009 } else {
5010 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
5011 }
5012 load_attempted = true;
5013 }
5014 d = be32toh(bundled_fw.fw_ver);
5015
5016 if (reason != NULL)
5017 goto install;
5018
5019 if ((sc->flags & FW_OK) == 0) {
5020
5021 if (c == 0xffffffff) {
5022 reason = "missing";
5023 goto install;
5024 }
5025
5026 rc = 0;
5027 goto done;
5028 }
5029
5030 if (!fw_compatible(card_fw, &bundled_fw)) {
5031 reason = "incompatible or unusable";
5032 goto install;
5033 }
5034
5035 if (d > c) {
5036 reason = "older than the version bundled with this driver";
5037 goto install;
5038 }
5039
5040 if (fw_install == 2 && d != c) {
5041 reason = "different than the version bundled with this driver";
5042 goto install;
5043 }
5044
5045 /* No reason to do anything to the firmware already on the card. */
5046 rc = 0;
5047 goto done;
5048
5049 install:
5050 rc = 0;
5051 if ((*already)++)
5052 goto done;
5053
5054 if (fw_install == 0) {
5055 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5056 "but the driver is prohibited from installing a firmware "
5057 "on the card.\n",
5058 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5059 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5060
5061 goto done;
5062 }
5063
5064 /*
5065 * We'll attempt to install a firmware. Load the module first (if it
5066 * hasn't been loaded already).
5067 */
5068 if (!load_attempted) {
5069 rc = load_fw_module(sc, &cfg, &fw);
5070 if (rc != 0 || fw == NULL) {
5071 device_printf(sc->dev,
5072 "failed to load firmware module: %d. cfg %p, fw %p\n",
5073 rc, cfg, fw);
5074 /* carry on */
5075 }
5076 }
5077 if (fw == NULL) {
5078 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5079 "but the driver cannot take corrective action because it "
5080 "is unable to load the firmware module.\n",
5081 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5082 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5083 rc = sc->flags & FW_OK ? 0 : ENOENT;
5084 goto done;
5085 }
5086 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
5087 if (k != d) {
5088 MPASS(t4_fw_install > 0);
5089 device_printf(sc->dev,
5090 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
5091 "expecting (%u.%u.%u.%u) and will not be used.\n",
5092 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
5093 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
5094 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5095 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5096 rc = sc->flags & FW_OK ? 0 : EINVAL;
5097 goto done;
5098 }
5099
5100 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5101 "installing firmware %u.%u.%u.%u on card.\n",
5102 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5103 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
5104 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5105 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5106
5107 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
5108 if (rc != 0) {
5109 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
5110 } else {
5111 /* Installed successfully, update the cached header too. */
5112 rc = ERESTART;
5113 memcpy(card_fw, fw->data, sizeof(*card_fw));
5114 }
5115 done:
5116 unload_fw_module(sc, cfg, fw);
5117
5118 return (rc);
5119 }
5120
5121 /*
5122 * Establish contact with the firmware and attempt to become the master driver.
5123 *
5124 * A firmware will be installed to the card if needed (if the driver is allowed
5125 * to do so).
5126 */
5127 static int
contact_firmware(struct adapter * sc)5128 contact_firmware(struct adapter *sc)
5129 {
5130 int rc, already = 0;
5131 enum dev_state state;
5132 struct fw_info *fw_info;
5133 struct fw_hdr *card_fw; /* fw on the card */
5134 const struct fw_h *drv_fw;
5135
5136 fw_info = find_fw_info(chip_id(sc));
5137 if (fw_info == NULL) {
5138 device_printf(sc->dev,
5139 "unable to look up firmware information for chip %d.\n",
5140 chip_id(sc));
5141 return (EINVAL);
5142 }
5143 drv_fw = &fw_info->fw_h;
5144
5145 /* Read the header of the firmware on the card */
5146 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
5147 restart:
5148 rc = -t4_get_fw_hdr(sc, card_fw);
5149 if (rc != 0) {
5150 device_printf(sc->dev,
5151 "unable to read firmware header from card's flash: %d\n",
5152 rc);
5153 goto done;
5154 }
5155
5156 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
5157 &already);
5158 if (rc == ERESTART)
5159 goto restart;
5160 if (rc != 0)
5161 goto done;
5162
5163 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
5164 if (rc < 0 || state == DEV_STATE_ERR) {
5165 rc = -rc;
5166 device_printf(sc->dev,
5167 "failed to connect to the firmware: %d, %d. "
5168 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5169 #if 0
5170 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5171 "not responding properly to HELLO", &already) == ERESTART)
5172 goto restart;
5173 #endif
5174 goto done;
5175 }
5176 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
5177 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
5178
5179 if (rc == sc->pf) {
5180 sc->flags |= MASTER_PF;
5181 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5182 NULL, &already);
5183 if (rc == ERESTART)
5184 rc = 0;
5185 else if (rc != 0)
5186 goto done;
5187 } else if (state == DEV_STATE_UNINIT) {
5188 /*
5189 * We didn't get to be the master so we definitely won't be
5190 * configuring the chip. It's a bug if someone else hasn't
5191 * configured it already.
5192 */
5193 device_printf(sc->dev, "couldn't be master(%d), "
5194 "device not already initialized either(%d). "
5195 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5196 rc = EPROTO;
5197 goto done;
5198 } else {
5199 /*
5200 * Some other PF is the master and has configured the chip.
5201 * This is allowed but untested.
5202 */
5203 device_printf(sc->dev, "PF%d is master, device state %d. "
5204 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5205 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5206 sc->cfcsum = 0;
5207 rc = 0;
5208 }
5209 done:
5210 if (rc != 0 && sc->flags & FW_OK) {
5211 t4_fw_bye(sc, sc->mbox);
5212 sc->flags &= ~FW_OK;
5213 }
5214 free(card_fw, M_CXGBE);
5215 return (rc);
5216 }
5217
5218 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff,u_int maxlen)5219 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5220 uint32_t mtype, uint32_t moff, u_int maxlen)
5221 {
5222 struct fw_info *fw_info;
5223 const struct firmware *dcfg, *rcfg = NULL;
5224 const uint32_t *cfdata;
5225 uint32_t cflen, addr;
5226 int rc;
5227
5228 load_fw_module(sc, &dcfg, NULL);
5229
5230 /* Card specific interpretation of "default". */
5231 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5232 if (pci_get_device(sc->dev) == 0x440a)
5233 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5234 if (is_fpga(sc))
5235 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5236 }
5237
5238 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5239 if (dcfg == NULL) {
5240 device_printf(sc->dev,
5241 "KLD with default config is not available.\n");
5242 rc = ENOENT;
5243 goto done;
5244 }
5245 cfdata = dcfg->data;
5246 cflen = dcfg->datasize & ~3;
5247 } else {
5248 char s[32];
5249
5250 fw_info = find_fw_info(chip_id(sc));
5251 if (fw_info == NULL) {
5252 device_printf(sc->dev,
5253 "unable to look up firmware information for chip %d.\n",
5254 chip_id(sc));
5255 rc = EINVAL;
5256 goto done;
5257 }
5258 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5259
5260 rcfg = firmware_get(s);
5261 if (rcfg == NULL) {
5262 device_printf(sc->dev,
5263 "unable to load module \"%s\" for configuration "
5264 "profile \"%s\".\n", s, cfg_file);
5265 rc = ENOENT;
5266 goto done;
5267 }
5268 cfdata = rcfg->data;
5269 cflen = rcfg->datasize & ~3;
5270 }
5271
5272 if (cflen > maxlen) {
5273 device_printf(sc->dev,
5274 "config file too long (%d, max allowed is %d).\n",
5275 cflen, maxlen);
5276 rc = EINVAL;
5277 goto done;
5278 }
5279
5280 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5281 if (rc != 0) {
5282 device_printf(sc->dev,
5283 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5284 __func__, mtype, moff, cflen, rc);
5285 rc = EINVAL;
5286 goto done;
5287 }
5288 write_via_memwin(sc, 2, addr, cfdata, cflen);
5289 done:
5290 if (rcfg != NULL)
5291 firmware_put(rcfg, FIRMWARE_UNLOAD);
5292 unload_fw_module(sc, dcfg, NULL);
5293 return (rc);
5294 }
5295
5296 struct caps_allowed {
5297 uint16_t nbmcaps;
5298 uint16_t linkcaps;
5299 uint16_t switchcaps;
5300 uint16_t nvmecaps;
5301 uint16_t niccaps;
5302 uint16_t toecaps;
5303 uint16_t rdmacaps;
5304 uint16_t cryptocaps;
5305 uint16_t iscsicaps;
5306 uint16_t fcoecaps;
5307 };
5308
5309 #define FW_PARAM_DEV(param) \
5310 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5311 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5312 #define FW_PARAM_PFVF(param) \
5313 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5314 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5315
5316 /*
5317 * Provide a configuration profile to the firmware and have it initialize the
5318 * chip accordingly. This may involve uploading a configuration file to the
5319 * card.
5320 */
5321 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5322 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5323 const struct caps_allowed *caps_allowed)
5324 {
5325 int rc;
5326 struct fw_caps_config_cmd caps;
5327 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5328 unsigned int maxlen = 0;
5329 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen);
5330
5331 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5332 if (rc != 0) {
5333 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5334 return (rc);
5335 }
5336
5337 bzero(&caps, sizeof(caps));
5338 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5339 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5340 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5341 mtype = 0;
5342 moff = 0;
5343 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5344 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5345 mtype = FW_MEMTYPE_FLASH;
5346 moff = cfg_addr;
5347 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5348 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5349 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5350 FW_LEN16(caps));
5351 } else {
5352 /*
5353 * Ask the firmware where it wants us to upload the config file.
5354 */
5355 param = FW_PARAM_DEV(CF);
5356 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5357 if (rc != 0) {
5358 /* No support for config file? Shouldn't happen. */
5359 device_printf(sc->dev,
5360 "failed to query config file location: %d.\n", rc);
5361 goto done;
5362 }
5363 mtype = G_FW_PARAMS_PARAM_Y(val);
5364 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5365 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5366 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5367 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5368 FW_LEN16(caps));
5369
5370 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen);
5371 if (rc != 0) {
5372 device_printf(sc->dev,
5373 "failed to upload config file to card: %d.\n", rc);
5374 goto done;
5375 }
5376 }
5377 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5378 if (rc != 0) {
5379 device_printf(sc->dev, "failed to pre-process config file: %d "
5380 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5381 goto done;
5382 }
5383
5384 finicsum = be32toh(caps.finicsum);
5385 cfcsum = be32toh(caps.cfcsum); /* actual */
5386 if (finicsum != cfcsum) {
5387 device_printf(sc->dev,
5388 "WARNING: config file checksum mismatch: %08x %08x\n",
5389 finicsum, cfcsum);
5390 }
5391 sc->cfcsum = cfcsum;
5392 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5393
5394 /*
5395 * Let the firmware know what features will (not) be used so it can tune
5396 * things accordingly.
5397 */
5398 #define LIMIT_CAPS(x) do { \
5399 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5400 } while (0)
5401 LIMIT_CAPS(nbm);
5402 LIMIT_CAPS(link);
5403 LIMIT_CAPS(switch);
5404 LIMIT_CAPS(nvme);
5405 LIMIT_CAPS(nic);
5406 LIMIT_CAPS(toe);
5407 LIMIT_CAPS(rdma);
5408 LIMIT_CAPS(crypto);
5409 LIMIT_CAPS(iscsi);
5410 LIMIT_CAPS(fcoe);
5411 #undef LIMIT_CAPS
5412 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5413 /*
5414 * TOE and hashfilters are mutually exclusive. It is a config
5415 * file or firmware bug if both are reported as available. Try
5416 * to cope with the situation in non-debug builds by disabling
5417 * TOE.
5418 */
5419 MPASS(caps.toecaps == 0);
5420
5421 caps.toecaps = 0;
5422 caps.rdmacaps = 0;
5423 caps.iscsicaps = 0;
5424 caps.nvmecaps = 0;
5425 }
5426
5427 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5428 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5429 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5430 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5431 if (rc != 0) {
5432 device_printf(sc->dev,
5433 "failed to process config file: %d.\n", rc);
5434 goto done;
5435 }
5436
5437 t4_tweak_chip_settings(sc);
5438 set_params__pre_init(sc);
5439
5440 /* get basic stuff going */
5441 rc = -t4_fw_initialize(sc, sc->mbox);
5442 if (rc != 0) {
5443 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5444 goto done;
5445 }
5446 done:
5447 return (rc);
5448 }
5449
5450 /*
5451 * Partition chip resources for use between various PFs, VFs, etc.
5452 */
5453 static int
partition_resources(struct adapter * sc)5454 partition_resources(struct adapter *sc)
5455 {
5456 char cfg_file[sizeof(t4_cfg_file)];
5457 struct caps_allowed caps_allowed;
5458 int rc;
5459 bool fallback;
5460
5461 /* Only the master driver gets to configure the chip resources. */
5462 MPASS(sc->flags & MASTER_PF);
5463
5464 #define COPY_CAPS(x) do { \
5465 caps_allowed.x##caps = t4_##x##caps_allowed; \
5466 } while (0)
5467 bzero(&caps_allowed, sizeof(caps_allowed));
5468 COPY_CAPS(nbm);
5469 COPY_CAPS(link);
5470 COPY_CAPS(switch);
5471 COPY_CAPS(nvme);
5472 COPY_CAPS(nic);
5473 COPY_CAPS(toe);
5474 COPY_CAPS(rdma);
5475 COPY_CAPS(crypto);
5476 COPY_CAPS(iscsi);
5477 COPY_CAPS(fcoe);
5478 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5479 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5480 retry:
5481 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5482 if (rc != 0 && fallback) {
5483 dump_devlog(sc);
5484 device_printf(sc->dev,
5485 "failed (%d) to configure card with \"%s\" profile, "
5486 "will fall back to a basic configuration and retry.\n",
5487 rc, cfg_file);
5488 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5489 bzero(&caps_allowed, sizeof(caps_allowed));
5490 COPY_CAPS(switch);
5491 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5492 fallback = false;
5493 goto retry;
5494 }
5495 #undef COPY_CAPS
5496 return (rc);
5497 }
5498
5499 /*
5500 * Retrieve parameters that are needed (or nice to have) very early.
5501 */
5502 static int
get_params__pre_init(struct adapter * sc)5503 get_params__pre_init(struct adapter *sc)
5504 {
5505 int rc;
5506 uint32_t param[2], val[2];
5507
5508 t4_get_version_info(sc);
5509
5510 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5511 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5512 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5513 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5514 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5515
5516 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5517 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5518 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5519 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5520 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5521
5522 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5523 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5524 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5525 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5526 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5527
5528 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5529 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5530 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5531 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5532 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5533
5534 param[0] = FW_PARAM_DEV(PORTVEC);
5535 param[1] = FW_PARAM_DEV(CCLK);
5536 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5537 if (rc != 0) {
5538 device_printf(sc->dev,
5539 "failed to query parameters (pre_init): %d.\n", rc);
5540 return (rc);
5541 }
5542
5543 sc->params.portvec = val[0];
5544 sc->params.nports = bitcount32(val[0]);
5545 sc->params.vpd.cclk = val[1];
5546
5547 /* Read device log parameters. */
5548 rc = -t4_init_devlog_ncores_params(sc, 1);
5549 if (rc == 0)
5550 fixup_devlog_params(sc);
5551 else {
5552 device_printf(sc->dev,
5553 "failed to get devlog parameters: %d.\n", rc);
5554 rc = 0; /* devlog isn't critical for device operation */
5555 }
5556
5557 return (rc);
5558 }
5559
5560 /*
5561 * Any params that need to be set before FW_INITIALIZE.
5562 */
5563 static int
set_params__pre_init(struct adapter * sc)5564 set_params__pre_init(struct adapter *sc)
5565 {
5566 int rc = 0;
5567 uint32_t param, val;
5568
5569 if (chip_id(sc) >= CHELSIO_T6) {
5570 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5571 val = 1;
5572 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5573 /* firmwares < 1.20.1.0 do not have this param. */
5574 if (rc == FW_EINVAL &&
5575 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5576 rc = 0;
5577 }
5578 if (rc != 0) {
5579 device_printf(sc->dev,
5580 "failed to enable high priority filters :%d.\n",
5581 rc);
5582 }
5583
5584 param = FW_PARAM_DEV(PPOD_EDRAM);
5585 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5586 if (rc == 0 && val == 1) {
5587 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5588 &val);
5589 if (rc != 0) {
5590 device_printf(sc->dev,
5591 "failed to set PPOD_EDRAM: %d.\n", rc);
5592 }
5593 }
5594 }
5595
5596 /* Enable opaque VIIDs with firmwares that support it. */
5597 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5598 val = 1;
5599 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5600 if (rc == 0 && val == 1)
5601 sc->params.viid_smt_extn_support = true;
5602 else
5603 sc->params.viid_smt_extn_support = false;
5604
5605 return (rc);
5606 }
5607
5608 /*
5609 * Retrieve various parameters that are of interest to the driver. The device
5610 * has been initialized by the firmware at this point.
5611 */
5612 static int
get_params__post_init(struct adapter * sc)5613 get_params__post_init(struct adapter *sc)
5614 {
5615 int rc;
5616 uint32_t param[7], val[7];
5617 struct fw_caps_config_cmd caps;
5618
5619 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5620 param[1] = FW_PARAM_PFVF(EQ_START);
5621 param[2] = FW_PARAM_PFVF(FILTER_START);
5622 param[3] = FW_PARAM_PFVF(FILTER_END);
5623 param[4] = FW_PARAM_PFVF(L2T_START);
5624 param[5] = FW_PARAM_PFVF(L2T_END);
5625 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5626 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5627 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5628 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5629 if (rc != 0) {
5630 device_printf(sc->dev,
5631 "failed to query parameters (post_init): %d.\n", rc);
5632 return (rc);
5633 }
5634
5635 sc->sge.iq_start = val[0];
5636 sc->sge.eq_start = val[1];
5637 if ((int)val[3] > (int)val[2]) {
5638 sc->tids.ftid_base = val[2];
5639 sc->tids.ftid_end = val[3];
5640 sc->tids.nftids = val[3] - val[2] + 1;
5641 }
5642 sc->vres.l2t.start = val[4];
5643 sc->vres.l2t.size = val[5] - val[4] + 1;
5644 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5645 if (sc->vres.l2t.size > 0)
5646 MPASS(fls(val[5]) <= S_SYNC_WR);
5647 sc->params.core_vdd = val[6];
5648
5649 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5650 param[1] = FW_PARAM_PFVF(EQ_END);
5651 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5652 if (rc != 0) {
5653 device_printf(sc->dev,
5654 "failed to query parameters (post_init2): %d.\n", rc);
5655 return (rc);
5656 }
5657 MPASS((int)val[0] >= sc->sge.iq_start);
5658 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5659 MPASS((int)val[1] >= sc->sge.eq_start);
5660 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5661
5662 if (chip_id(sc) >= CHELSIO_T6) {
5663
5664 sc->tids.tid_base = t4_read_reg(sc,
5665 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5666
5667 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5668 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5669 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5670 if (rc != 0) {
5671 device_printf(sc->dev,
5672 "failed to query hpfilter parameters: %d.\n", rc);
5673 return (rc);
5674 }
5675 if ((int)val[1] > (int)val[0]) {
5676 sc->tids.hpftid_base = val[0];
5677 sc->tids.hpftid_end = val[1];
5678 sc->tids.nhpftids = val[1] - val[0] + 1;
5679
5680 /*
5681 * These should go off if the layout changes and the
5682 * driver needs to catch up.
5683 */
5684 MPASS(sc->tids.hpftid_base == 0);
5685 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5686 }
5687
5688 param[0] = FW_PARAM_PFVF(RAWF_START);
5689 param[1] = FW_PARAM_PFVF(RAWF_END);
5690 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5691 if (rc != 0) {
5692 device_printf(sc->dev,
5693 "failed to query rawf parameters: %d.\n", rc);
5694 return (rc);
5695 }
5696 if ((int)val[1] > (int)val[0]) {
5697 sc->rawf_base = val[0];
5698 sc->nrawf = val[1] - val[0] + 1;
5699 }
5700 }
5701
5702 if (sc->params.ncores > 1) {
5703 MPASS(chip_id(sc) >= CHELSIO_T7);
5704
5705 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK);
5706 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5707 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0;
5708 }
5709
5710 /*
5711 * The parameters that follow may not be available on all firmwares. We
5712 * query them individually rather than in a compound query because old
5713 * firmwares fail the entire query if an unknown parameter is queried.
5714 */
5715
5716 /*
5717 * MPS buffer group configuration.
5718 */
5719 param[0] = FW_PARAM_DEV(MPSBGMAP);
5720 val[0] = 0;
5721 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5722 if (rc == 0)
5723 sc->params.mps_bg_map = val[0];
5724 else
5725 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5726
5727 param[0] = FW_PARAM_DEV(TPCHMAP);
5728 val[0] = 0;
5729 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5730 if (rc == 0)
5731 sc->params.tp_ch_map = val[0];
5732 else
5733 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5734
5735 param[0] = FW_PARAM_DEV(TX_TPCHMAP);
5736 val[0] = 0;
5737 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5738 if (rc == 0)
5739 sc->params.tx_tp_ch_map = val[0];
5740 else
5741 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */
5742
5743 /*
5744 * Determine whether the firmware supports the filter2 work request.
5745 */
5746 param[0] = FW_PARAM_DEV(FILTER2_WR);
5747 val[0] = 0;
5748 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5749 if (rc == 0)
5750 sc->params.filter2_wr_support = val[0] != 0;
5751 else
5752 sc->params.filter2_wr_support = 0;
5753
5754 /*
5755 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5756 */
5757 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5758 val[0] = 0;
5759 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5760 if (rc == 0)
5761 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5762 else
5763 sc->params.ulptx_memwrite_dsgl = false;
5764
5765 /* FW_RI_FR_NSMR_TPTE_WR support */
5766 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5767 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5768 if (rc == 0)
5769 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5770 else
5771 sc->params.fr_nsmr_tpte_wr_support = false;
5772
5773 /* Support for 512 SGL entries per FR MR. */
5774 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5775 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5776 if (rc == 0)
5777 sc->params.dev_512sgl_mr = val[0] != 0;
5778 else
5779 sc->params.dev_512sgl_mr = false;
5780
5781 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5782 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5783 if (rc == 0)
5784 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5785 else
5786 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5787
5788 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5789 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5790 if (rc == 0) {
5791 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5792 sc->params.nsched_cls = val[0];
5793 } else
5794 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5795
5796 /* get capabilites */
5797 bzero(&caps, sizeof(caps));
5798 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5799 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5800 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5801 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5802 if (rc != 0) {
5803 device_printf(sc->dev,
5804 "failed to get card capabilities: %d.\n", rc);
5805 return (rc);
5806 }
5807
5808 #define READ_CAPS(x) do { \
5809 sc->x = htobe16(caps.x); \
5810 } while (0)
5811 READ_CAPS(nbmcaps);
5812 READ_CAPS(linkcaps);
5813 READ_CAPS(switchcaps);
5814 READ_CAPS(nvmecaps);
5815 READ_CAPS(niccaps);
5816 READ_CAPS(toecaps);
5817 READ_CAPS(rdmacaps);
5818 READ_CAPS(cryptocaps);
5819 READ_CAPS(iscsicaps);
5820 READ_CAPS(fcoecaps);
5821
5822 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5823 MPASS(chip_id(sc) > CHELSIO_T4);
5824 MPASS(sc->toecaps == 0);
5825 sc->toecaps = 0;
5826
5827 param[0] = FW_PARAM_DEV(NTID);
5828 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5829 if (rc != 0) {
5830 device_printf(sc->dev,
5831 "failed to query HASHFILTER parameters: %d.\n", rc);
5832 return (rc);
5833 }
5834 sc->tids.ntids = val[0];
5835 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5836 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5837 sc->tids.ntids -= sc->tids.nhpftids;
5838 }
5839 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5840 sc->params.hash_filter = 1;
5841 }
5842 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5843 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5844 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5845 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5846 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5847 if (rc != 0) {
5848 device_printf(sc->dev,
5849 "failed to query NIC parameters: %d.\n", rc);
5850 return (rc);
5851 }
5852 if ((int)val[1] > (int)val[0]) {
5853 sc->tids.etid_base = val[0];
5854 sc->tids.etid_end = val[1];
5855 sc->tids.netids = val[1] - val[0] + 1;
5856 sc->params.eo_wr_cred = val[2];
5857 sc->params.ethoffload = 1;
5858 }
5859 }
5860 if (sc->toecaps) {
5861 /* query offload-related parameters */
5862 param[0] = FW_PARAM_DEV(NTID);
5863 param[1] = FW_PARAM_PFVF(SERVER_START);
5864 param[2] = FW_PARAM_PFVF(SERVER_END);
5865 param[3] = FW_PARAM_PFVF(TDDP_START);
5866 param[4] = FW_PARAM_PFVF(TDDP_END);
5867 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5868 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5869 if (rc != 0) {
5870 device_printf(sc->dev,
5871 "failed to query TOE parameters: %d.\n", rc);
5872 return (rc);
5873 }
5874 sc->tids.ntids = val[0];
5875 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5876 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5877 sc->tids.ntids -= sc->tids.nhpftids;
5878 }
5879 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5880 if ((int)val[2] > (int)val[1]) {
5881 sc->tids.stid_base = val[1];
5882 sc->tids.nstids = val[2] - val[1] + 1;
5883 }
5884 sc->vres.ddp.start = val[3];
5885 sc->vres.ddp.size = val[4] - val[3] + 1;
5886 sc->params.ofldq_wr_cred = val[5];
5887 sc->params.offload = 1;
5888 } else {
5889 /*
5890 * The firmware attempts memfree TOE configuration for -SO cards
5891 * and will report toecaps=0 if it runs out of resources (this
5892 * depends on the config file). It may not report 0 for other
5893 * capabilities dependent on the TOE in this case. Set them to
5894 * 0 here so that the driver doesn't bother tracking resources
5895 * that will never be used.
5896 */
5897 sc->iscsicaps = 0;
5898 sc->nvmecaps = 0;
5899 sc->rdmacaps = 0;
5900 }
5901 if (sc->nvmecaps || sc->rdmacaps) {
5902 param[0] = FW_PARAM_PFVF(STAG_START);
5903 param[1] = FW_PARAM_PFVF(STAG_END);
5904 param[2] = FW_PARAM_PFVF(PBL_START);
5905 param[3] = FW_PARAM_PFVF(PBL_END);
5906 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5907 if (rc != 0) {
5908 device_printf(sc->dev,
5909 "failed to query NVMe/RDMA parameters: %d.\n", rc);
5910 return (rc);
5911 }
5912 sc->vres.stag.start = val[0];
5913 sc->vres.stag.size = val[1] - val[0] + 1;
5914 sc->vres.pbl.start = val[2];
5915 sc->vres.pbl.size = val[3] - val[2] + 1;
5916 }
5917 if (sc->rdmacaps) {
5918 param[0] = FW_PARAM_PFVF(RQ_START);
5919 param[1] = FW_PARAM_PFVF(RQ_END);
5920 param[2] = FW_PARAM_PFVF(SQRQ_START);
5921 param[3] = FW_PARAM_PFVF(SQRQ_END);
5922 param[4] = FW_PARAM_PFVF(CQ_START);
5923 param[5] = FW_PARAM_PFVF(CQ_END);
5924 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5925 if (rc != 0) {
5926 device_printf(sc->dev,
5927 "failed to query RDMA parameters(1): %d.\n", rc);
5928 return (rc);
5929 }
5930 sc->vres.rq.start = val[0];
5931 sc->vres.rq.size = val[1] - val[0] + 1;
5932 sc->vres.qp.start = val[2];
5933 sc->vres.qp.size = val[3] - val[2] + 1;
5934 sc->vres.cq.start = val[4];
5935 sc->vres.cq.size = val[5] - val[4] + 1;
5936
5937 param[0] = FW_PARAM_PFVF(OCQ_START);
5938 param[1] = FW_PARAM_PFVF(OCQ_END);
5939 param[2] = FW_PARAM_PFVF(SRQ_START);
5940 param[3] = FW_PARAM_PFVF(SRQ_END);
5941 param[4] = FW_PARAM_DEV(MAXORDIRD_QP);
5942 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5943 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5944 if (rc != 0) {
5945 device_printf(sc->dev,
5946 "failed to query RDMA parameters(2): %d.\n", rc);
5947 return (rc);
5948 }
5949 sc->vres.ocq.start = val[0];
5950 sc->vres.ocq.size = val[1] - val[0] + 1;
5951 sc->vres.srq.start = val[2];
5952 sc->vres.srq.size = val[3] - val[2] + 1;
5953 sc->params.max_ordird_qp = val[4];
5954 sc->params.max_ird_adapter = val[5];
5955 }
5956 if (sc->iscsicaps) {
5957 param[0] = FW_PARAM_PFVF(ISCSI_START);
5958 param[1] = FW_PARAM_PFVF(ISCSI_END);
5959 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5960 if (rc != 0) {
5961 device_printf(sc->dev,
5962 "failed to query iSCSI parameters: %d.\n", rc);
5963 return (rc);
5964 }
5965 sc->vres.iscsi.start = val[0];
5966 sc->vres.iscsi.size = val[1] - val[0] + 1;
5967 }
5968 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5969 param[0] = FW_PARAM_PFVF(TLS_START);
5970 param[1] = FW_PARAM_PFVF(TLS_END);
5971 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5972 if (rc != 0) {
5973 device_printf(sc->dev,
5974 "failed to query TLS parameters: %d.\n", rc);
5975 return (rc);
5976 }
5977 sc->vres.key.start = val[0];
5978 sc->vres.key.size = val[1] - val[0] + 1;
5979 }
5980
5981 /*
5982 * We've got the params we wanted to query directly from the firmware.
5983 * Grab some others via other means.
5984 */
5985 t4_init_sge_params(sc);
5986 t4_init_tp_params(sc);
5987 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5988 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5989
5990 rc = t4_verify_chip_settings(sc);
5991 if (rc != 0)
5992 return (rc);
5993 t4_init_rx_buf_info(sc);
5994
5995 return (rc);
5996 }
5997
5998 #ifdef KERN_TLS
5999 static void
ktls_tick(void * arg)6000 ktls_tick(void *arg)
6001 {
6002 struct adapter *sc;
6003 uint32_t tstamp;
6004
6005 sc = arg;
6006 tstamp = tcp_ts_getticks();
6007 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
6008 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
6009 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
6010 }
6011
6012 static int
t6_config_kern_tls(struct adapter * sc,bool enable)6013 t6_config_kern_tls(struct adapter *sc, bool enable)
6014 {
6015 int rc;
6016 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6017 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
6018 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
6019 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
6020
6021 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
6022 if (rc != 0) {
6023 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
6024 enable ? "enable" : "disable", rc);
6025 return (rc);
6026 }
6027
6028 if (enable) {
6029 sc->flags |= KERN_TLS_ON;
6030 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
6031 C_HARDCLOCK);
6032 } else {
6033 sc->flags &= ~KERN_TLS_ON;
6034 callout_stop(&sc->ktls_tick);
6035 }
6036
6037 return (rc);
6038 }
6039 #endif
6040
6041 static int
set_params__post_init(struct adapter * sc)6042 set_params__post_init(struct adapter *sc)
6043 {
6044 uint32_t mask, param, val;
6045 #ifdef TCP_OFFLOAD
6046 int i, v, shift;
6047 #endif
6048
6049 /* ask for encapsulated CPLs */
6050 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
6051 val = 1;
6052 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
6053
6054 /* Enable 32b port caps if the firmware supports it. */
6055 param = FW_PARAM_PFVF(PORT_CAPS32);
6056 val = 1;
6057 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
6058 sc->params.port_caps32 = 1;
6059
6060 /* Let filter + maskhash steer to a part of the VI's RSS region. */
6061 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
6062 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
6063 V_MASKFILTER(val - 1));
6064
6065 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
6066 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
6067 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6068 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
6069 val = 0;
6070 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
6071 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
6072 F_ATTACKFILTERENABLE);
6073 val |= F_DROPERRORATTACK;
6074 }
6075 if (t4_drop_ip_fragments != 0) {
6076 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
6077 F_FRAGMENTDROP);
6078 val |= F_DROPERRORFRAG;
6079 }
6080 if (t4_drop_pkts_with_l2_errors != 0)
6081 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
6082 if (t4_drop_pkts_with_l3_errors != 0) {
6083 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
6084 F_DROPERRORCSUMIP;
6085 }
6086 if (t4_drop_pkts_with_l4_errors != 0) {
6087 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6088 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
6089 }
6090 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
6091
6092 #ifdef TCP_OFFLOAD
6093 /*
6094 * Override the TOE timers with user provided tunables. This is not the
6095 * recommended way to change the timers (the firmware config file is) so
6096 * these tunables are not documented.
6097 *
6098 * All the timer tunables are in microseconds.
6099 */
6100 if (t4_toe_keepalive_idle != 0) {
6101 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
6102 v &= M_KEEPALIVEIDLE;
6103 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
6104 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
6105 }
6106 if (t4_toe_keepalive_interval != 0) {
6107 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
6108 v &= M_KEEPALIVEINTVL;
6109 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
6110 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
6111 }
6112 if (t4_toe_keepalive_count != 0) {
6113 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
6114 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6115 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
6116 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
6117 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
6118 }
6119 if (t4_toe_rexmt_min != 0) {
6120 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
6121 v &= M_RXTMIN;
6122 t4_set_reg_field(sc, A_TP_RXT_MIN,
6123 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
6124 }
6125 if (t4_toe_rexmt_max != 0) {
6126 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
6127 v &= M_RXTMAX;
6128 t4_set_reg_field(sc, A_TP_RXT_MAX,
6129 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
6130 }
6131 if (t4_toe_rexmt_count != 0) {
6132 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
6133 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6134 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
6135 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
6136 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
6137 }
6138 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
6139 if (t4_toe_rexmt_backoff[i] != -1) {
6140 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
6141 shift = (i & 3) << 3;
6142 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
6143 M_TIMERBACKOFFINDEX0 << shift, v << shift);
6144 }
6145 }
6146 #endif
6147
6148 /*
6149 * Limit TOE connections to 2 reassembly "islands". This is
6150 * required to permit migrating TOE connections to either
6151 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
6152 */
6153 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
6154 V_PASSMODE(2));
6155
6156 #ifdef KERN_TLS
6157 if (is_ktls(sc)) {
6158 sc->tlst.inline_keys = t4_tls_inline_keys;
6159 if (t4_kern_tls != 0 && is_t6(sc)) {
6160 sc->tlst.combo_wrs = t4_tls_combo_wrs;
6161 t6_config_kern_tls(sc, true);
6162 } else {
6163 sc->tlst.short_records = t4_tls_short_records;
6164 sc->tlst.partial_ghash = t4_tls_partial_ghash;
6165 }
6166 }
6167 #endif
6168 return (0);
6169 }
6170
6171 #undef FW_PARAM_PFVF
6172 #undef FW_PARAM_DEV
6173
6174 static void
t4_set_desc(struct adapter * sc)6175 t4_set_desc(struct adapter *sc)
6176 {
6177 struct adapter_params *p = &sc->params;
6178
6179 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
6180 }
6181
6182 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)6183 ifmedia_add4(struct ifmedia *ifm, int m)
6184 {
6185
6186 ifmedia_add(ifm, m, 0, NULL);
6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
6188 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
6189 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
6190 }
6191
6192 /*
6193 * This is the selected media, which is not quite the same as the active media.
6194 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
6195 * and active are not the same, and "media: Ethernet selected" otherwise.
6196 */
6197 static void
set_current_media(struct port_info * pi)6198 set_current_media(struct port_info *pi)
6199 {
6200 struct link_config *lc;
6201 struct ifmedia *ifm;
6202 int mword;
6203 u_int speed;
6204
6205 PORT_LOCK_ASSERT_OWNED(pi);
6206
6207 /* Leave current media alone if it's already set to IFM_NONE. */
6208 ifm = &pi->media;
6209 if (ifm->ifm_cur != NULL &&
6210 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
6211 return;
6212
6213 lc = &pi->link_cfg;
6214 if (lc->requested_aneg != AUTONEG_DISABLE &&
6215 lc->pcaps & FW_PORT_CAP32_ANEG) {
6216 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6217 return;
6218 }
6219 mword = IFM_ETHER | IFM_FDX;
6220 if (lc->requested_fc & PAUSE_TX)
6221 mword |= IFM_ETH_TXPAUSE;
6222 if (lc->requested_fc & PAUSE_RX)
6223 mword |= IFM_ETH_RXPAUSE;
6224 if (lc->requested_speed == 0)
6225 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6226 else
6227 speed = lc->requested_speed;
6228 mword |= port_mword(pi, speed_to_fwcap(speed));
6229 ifmedia_set(ifm, mword);
6230 }
6231
6232 /*
6233 * Returns true if the ifmedia list for the port cannot change.
6234 */
6235 static bool
fixed_ifmedia(struct port_info * pi)6236 fixed_ifmedia(struct port_info *pi)
6237 {
6238
6239 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6240 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6241 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6242 pi->port_type == FW_PORT_TYPE_KX4 ||
6243 pi->port_type == FW_PORT_TYPE_KX ||
6244 pi->port_type == FW_PORT_TYPE_KR ||
6245 pi->port_type == FW_PORT_TYPE_BP_AP ||
6246 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6247 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6248 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6249 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6250 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6251 }
6252
6253 static void
build_medialist(struct port_info * pi)6254 build_medialist(struct port_info *pi)
6255 {
6256 uint32_t ss, speed;
6257 int unknown, mword, bit;
6258 struct link_config *lc;
6259 struct ifmedia *ifm;
6260
6261 PORT_LOCK_ASSERT_OWNED(pi);
6262
6263 if (pi->flags & FIXED_IFMEDIA)
6264 return;
6265
6266 /*
6267 * Rebuild the ifmedia list.
6268 */
6269 ifm = &pi->media;
6270 ifmedia_removeall(ifm);
6271 lc = &pi->link_cfg;
6272 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6273 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6274 MPASS(ss != 0);
6275 no_media:
6276 MPASS(LIST_EMPTY(&ifm->ifm_list));
6277 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6278 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6279 return;
6280 }
6281
6282 unknown = 0;
6283 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6284 speed = 1 << bit;
6285 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6286 if (ss & speed) {
6287 mword = port_mword(pi, speed);
6288 if (mword == IFM_NONE) {
6289 goto no_media;
6290 } else if (mword == IFM_UNKNOWN)
6291 unknown++;
6292 else
6293 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6294 }
6295 }
6296 if (unknown > 0) /* Add one unknown for all unknown media types. */
6297 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6298 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6299 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6300
6301 set_current_media(pi);
6302 }
6303
6304 /*
6305 * Initialize the requested fields in the link config based on driver tunables.
6306 */
6307 static void
init_link_config(struct port_info * pi)6308 init_link_config(struct port_info *pi)
6309 {
6310 struct link_config *lc = &pi->link_cfg;
6311
6312 PORT_LOCK_ASSERT_OWNED(pi);
6313
6314 lc->requested_caps = 0;
6315 lc->requested_speed = 0;
6316
6317 if (t4_autoneg == 0)
6318 lc->requested_aneg = AUTONEG_DISABLE;
6319 else if (t4_autoneg == 1)
6320 lc->requested_aneg = AUTONEG_ENABLE;
6321 else
6322 lc->requested_aneg = AUTONEG_AUTO;
6323
6324 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6325 PAUSE_AUTONEG);
6326
6327 if (t4_fec & FEC_AUTO)
6328 lc->requested_fec = FEC_AUTO;
6329 else if (t4_fec == 0)
6330 lc->requested_fec = FEC_NONE;
6331 else {
6332 /* -1 is handled by the FEC_AUTO block above and not here. */
6333 lc->requested_fec = t4_fec &
6334 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6335 if (lc->requested_fec == 0)
6336 lc->requested_fec = FEC_AUTO;
6337 }
6338 if (t4_force_fec < 0)
6339 lc->force_fec = -1;
6340 else if (t4_force_fec > 0)
6341 lc->force_fec = 1;
6342 else
6343 lc->force_fec = 0;
6344 }
6345
6346 /*
6347 * Makes sure that all requested settings comply with what's supported by the
6348 * port. Returns the number of settings that were invalid and had to be fixed.
6349 */
6350 static int
fixup_link_config(struct port_info * pi)6351 fixup_link_config(struct port_info *pi)
6352 {
6353 int n = 0;
6354 struct link_config *lc = &pi->link_cfg;
6355 uint32_t fwspeed;
6356
6357 PORT_LOCK_ASSERT_OWNED(pi);
6358
6359 /* Speed (when not autonegotiating) */
6360 if (lc->requested_speed != 0) {
6361 fwspeed = speed_to_fwcap(lc->requested_speed);
6362 if ((fwspeed & lc->pcaps) == 0) {
6363 n++;
6364 lc->requested_speed = 0;
6365 }
6366 }
6367
6368 /* Link autonegotiation */
6369 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6370 lc->requested_aneg == AUTONEG_DISABLE ||
6371 lc->requested_aneg == AUTONEG_AUTO);
6372 if (lc->requested_aneg == AUTONEG_ENABLE &&
6373 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6374 n++;
6375 lc->requested_aneg = AUTONEG_AUTO;
6376 }
6377
6378 /* Flow control */
6379 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6380 if (lc->requested_fc & PAUSE_TX &&
6381 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6382 n++;
6383 lc->requested_fc &= ~PAUSE_TX;
6384 }
6385 if (lc->requested_fc & PAUSE_RX &&
6386 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6387 n++;
6388 lc->requested_fc &= ~PAUSE_RX;
6389 }
6390 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6391 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6392 n++;
6393 lc->requested_fc |= PAUSE_AUTONEG;
6394 }
6395
6396 /* FEC */
6397 if ((lc->requested_fec & FEC_RS &&
6398 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6399 (lc->requested_fec & FEC_BASER_RS &&
6400 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6401 n++;
6402 lc->requested_fec = FEC_AUTO;
6403 }
6404
6405 return (n);
6406 }
6407
6408 /*
6409 * Apply the requested L1 settings, which are expected to be valid, to the
6410 * hardware.
6411 */
6412 static int
apply_link_config(struct port_info * pi)6413 apply_link_config(struct port_info *pi)
6414 {
6415 struct adapter *sc = pi->adapter;
6416 struct link_config *lc = &pi->link_cfg;
6417 int rc;
6418
6419 #ifdef INVARIANTS
6420 ASSERT_SYNCHRONIZED_OP(sc);
6421 PORT_LOCK_ASSERT_OWNED(pi);
6422
6423 if (lc->requested_aneg == AUTONEG_ENABLE)
6424 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6425 if (!(lc->requested_fc & PAUSE_AUTONEG))
6426 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6427 if (lc->requested_fc & PAUSE_TX)
6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6429 if (lc->requested_fc & PAUSE_RX)
6430 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6431 if (lc->requested_fec & FEC_RS)
6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6433 if (lc->requested_fec & FEC_BASER_RS)
6434 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6435 #endif
6436 if (!(sc->flags & IS_VF)) {
6437 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc);
6438 if (rc != 0) {
6439 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6440 return (rc);
6441 }
6442 }
6443
6444 /*
6445 * An L1_CFG will almost always result in a link-change event if the
6446 * link is up, and the driver will refresh the actual fec/fc/etc. when
6447 * the notification is processed. If the link is down then the actual
6448 * settings are meaningless.
6449 *
6450 * This takes care of the case where a change in the L1 settings may not
6451 * result in a notification.
6452 */
6453 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6454 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6455
6456 return (0);
6457 }
6458
6459 #define FW_MAC_EXACT_CHUNK 7
6460 struct mcaddr_ctx {
6461 if_t ifp;
6462 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6463 uint64_t hash;
6464 int i;
6465 int del;
6466 int rc;
6467 };
6468
6469 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6470 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6471 {
6472 struct mcaddr_ctx *ctx = arg;
6473 struct vi_info *vi = if_getsoftc(ctx->ifp);
6474 struct port_info *pi = vi->pi;
6475 struct adapter *sc = pi->adapter;
6476
6477 if (ctx->rc < 0)
6478 return (0);
6479
6480 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6481 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6482 ctx->i++;
6483
6484 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6485 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6486 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6487 if (ctx->rc < 0) {
6488 int j;
6489
6490 for (j = 0; j < ctx->i; j++) {
6491 if_printf(ctx->ifp,
6492 "failed to add mc address"
6493 " %02x:%02x:%02x:"
6494 "%02x:%02x:%02x rc=%d\n",
6495 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6496 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6497 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6498 -ctx->rc);
6499 }
6500 return (0);
6501 }
6502 ctx->del = 0;
6503 ctx->i = 0;
6504 }
6505
6506 return (1);
6507 }
6508
6509 /*
6510 * Program the port's XGMAC based on parameters in ifnet. The caller also
6511 * indicates which parameters should be programmed (the rest are left alone).
6512 */
6513 int
update_mac_settings(if_t ifp,int flags)6514 update_mac_settings(if_t ifp, int flags)
6515 {
6516 int rc = 0;
6517 struct vi_info *vi = if_getsoftc(ifp);
6518 struct port_info *pi = vi->pi;
6519 struct adapter *sc = pi->adapter;
6520 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6521 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6522
6523 ASSERT_SYNCHRONIZED_OP(sc);
6524 KASSERT(flags, ("%s: not told what to update.", __func__));
6525
6526 if (flags & XGMAC_MTU)
6527 mtu = if_getmtu(ifp);
6528
6529 if (flags & XGMAC_PROMISC)
6530 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6531
6532 if (flags & XGMAC_ALLMULTI)
6533 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6534
6535 if (flags & XGMAC_VLANEX)
6536 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6537
6538 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6539 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6540 allmulti, 1, vlanex, false);
6541 if (rc) {
6542 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6543 rc);
6544 return (rc);
6545 }
6546 }
6547
6548 if (flags & XGMAC_UCADDR) {
6549 uint8_t ucaddr[ETHER_ADDR_LEN];
6550
6551 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6552 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6553 ucaddr, true, &vi->smt_idx);
6554 if (rc < 0) {
6555 rc = -rc;
6556 if_printf(ifp, "change_mac failed: %d\n", rc);
6557 return (rc);
6558 } else {
6559 vi->xact_addr_filt = rc;
6560 rc = 0;
6561 }
6562 }
6563
6564 if (flags & XGMAC_MCADDRS) {
6565 struct epoch_tracker et;
6566 struct mcaddr_ctx ctx;
6567 int j;
6568
6569 ctx.ifp = ifp;
6570 ctx.hash = 0;
6571 ctx.i = 0;
6572 ctx.del = 1;
6573 ctx.rc = 0;
6574 /*
6575 * Unlike other drivers, we accumulate list of pointers into
6576 * interface address lists and we need to keep it safe even
6577 * after if_foreach_llmaddr() returns, thus we must enter the
6578 * network epoch.
6579 */
6580 NET_EPOCH_ENTER(et);
6581 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6582 if (ctx.rc < 0) {
6583 NET_EPOCH_EXIT(et);
6584 rc = -ctx.rc;
6585 return (rc);
6586 }
6587 if (ctx.i > 0) {
6588 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6589 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6590 NET_EPOCH_EXIT(et);
6591 if (rc < 0) {
6592 rc = -rc;
6593 for (j = 0; j < ctx.i; j++) {
6594 if_printf(ifp,
6595 "failed to add mcast address"
6596 " %02x:%02x:%02x:"
6597 "%02x:%02x:%02x rc=%d\n",
6598 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6599 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6600 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6601 rc);
6602 }
6603 return (rc);
6604 }
6605 ctx.del = 0;
6606 } else
6607 NET_EPOCH_EXIT(et);
6608
6609 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6610 if (rc != 0)
6611 if_printf(ifp, "failed to set mcast address hash: %d\n",
6612 rc);
6613 if (ctx.del == 0) {
6614 /* We clobbered the VXLAN entry if there was one. */
6615 pi->vxlan_tcam_entry = false;
6616 }
6617 }
6618
6619 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6620 pi->vxlan_tcam_entry == false) {
6621 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6622 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6623 true);
6624 if (rc < 0) {
6625 rc = -rc;
6626 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6627 rc);
6628 } else {
6629 MPASS(rc == sc->rawf_base + pi->port_id);
6630 rc = 0;
6631 pi->vxlan_tcam_entry = true;
6632 }
6633 }
6634
6635 return (rc);
6636 }
6637
6638 /*
6639 * {begin|end}_synchronized_op must be called from the same thread.
6640 */
6641 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6642 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6643 char *wmesg)
6644 {
6645 int rc;
6646
6647 #ifdef WITNESS
6648 /* the caller thinks it's ok to sleep, but is it really? */
6649 if (flags & SLEEP_OK)
6650 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6651 #endif
6652 ADAPTER_LOCK(sc);
6653 for (;;) {
6654
6655 if (vi && IS_DETACHING(vi)) {
6656 rc = ENXIO;
6657 goto done;
6658 }
6659
6660 if (!IS_BUSY(sc)) {
6661 rc = 0;
6662 break;
6663 }
6664
6665 if (!(flags & SLEEP_OK)) {
6666 rc = EBUSY;
6667 goto done;
6668 }
6669
6670 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6671 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6672 rc = EINTR;
6673 goto done;
6674 }
6675 }
6676
6677 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6678 SET_BUSY(sc);
6679 #ifdef INVARIANTS
6680 sc->last_op = wmesg;
6681 sc->last_op_thr = curthread;
6682 sc->last_op_flags = flags;
6683 #endif
6684
6685 done:
6686 if (!(flags & HOLD_LOCK) || rc)
6687 ADAPTER_UNLOCK(sc);
6688
6689 return (rc);
6690 }
6691
6692 /*
6693 * Tell if_ioctl and if_init that the VI is going away. This is
6694 * special variant of begin_synchronized_op and must be paired with a
6695 * call to end_vi_detach.
6696 */
6697 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6698 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6699 {
6700 ADAPTER_LOCK(sc);
6701 SET_DETACHING(vi);
6702 wakeup(&sc->flags);
6703 while (IS_BUSY(sc))
6704 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6705 SET_BUSY(sc);
6706 #ifdef INVARIANTS
6707 sc->last_op = "t4detach";
6708 sc->last_op_thr = curthread;
6709 sc->last_op_flags = 0;
6710 #endif
6711 ADAPTER_UNLOCK(sc);
6712 }
6713
6714 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6715 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6716 {
6717 ADAPTER_LOCK(sc);
6718 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6719 CLR_BUSY(sc);
6720 CLR_DETACHING(vi);
6721 wakeup(&sc->flags);
6722 ADAPTER_UNLOCK(sc);
6723 }
6724
6725 /*
6726 * {begin|end}_synchronized_op must be called from the same thread.
6727 */
6728 void
end_synchronized_op(struct adapter * sc,int flags)6729 end_synchronized_op(struct adapter *sc, int flags)
6730 {
6731
6732 if (flags & LOCK_HELD)
6733 ADAPTER_LOCK_ASSERT_OWNED(sc);
6734 else
6735 ADAPTER_LOCK(sc);
6736
6737 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6738 CLR_BUSY(sc);
6739 wakeup(&sc->flags);
6740 ADAPTER_UNLOCK(sc);
6741 }
6742
6743 static int
cxgbe_init_synchronized(struct vi_info * vi)6744 cxgbe_init_synchronized(struct vi_info *vi)
6745 {
6746 struct port_info *pi = vi->pi;
6747 struct adapter *sc = pi->adapter;
6748 if_t ifp = vi->ifp;
6749 int rc = 0, i;
6750 struct sge_txq *txq;
6751
6752 ASSERT_SYNCHRONIZED_OP(sc);
6753
6754 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6755 return (0); /* already running */
6756
6757 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6758 return (rc); /* error message displayed already */
6759
6760 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6761 return (rc); /* error message displayed already */
6762
6763 rc = update_mac_settings(ifp, XGMAC_ALL);
6764 if (rc)
6765 goto done; /* error message displayed already */
6766
6767 PORT_LOCK(pi);
6768 if (pi->up_vis == 0) {
6769 t4_update_port_info(pi);
6770 fixup_link_config(pi);
6771 build_medialist(pi);
6772 apply_link_config(pi);
6773 }
6774
6775 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6776 if (rc != 0) {
6777 if_printf(ifp, "enable_vi failed: %d\n", rc);
6778 PORT_UNLOCK(pi);
6779 goto done;
6780 }
6781
6782 /*
6783 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6784 * if this changes.
6785 */
6786
6787 for_each_txq(vi, i, txq) {
6788 TXQ_LOCK(txq);
6789 txq->eq.flags |= EQ_ENABLED;
6790 TXQ_UNLOCK(txq);
6791 }
6792
6793 /*
6794 * The first iq of the first port to come up is used for tracing.
6795 */
6796 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6797 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6798 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
6799 pi->flags |= HAS_TRACEQ;
6800 }
6801
6802 /* all ok */
6803 pi->up_vis++;
6804 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6805 if (pi->link_cfg.link_ok)
6806 t4_os_link_changed(pi);
6807 PORT_UNLOCK(pi);
6808
6809 mtx_lock(&vi->tick_mtx);
6810 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6811 callout_reset(&vi->tick, hz, vi_tick, vi);
6812 else
6813 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6814 mtx_unlock(&vi->tick_mtx);
6815 done:
6816 if (rc != 0)
6817 cxgbe_uninit_synchronized(vi);
6818
6819 return (rc);
6820 }
6821
6822 /*
6823 * Idempotent.
6824 */
6825 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6826 cxgbe_uninit_synchronized(struct vi_info *vi)
6827 {
6828 struct port_info *pi = vi->pi;
6829 struct adapter *sc = pi->adapter;
6830 if_t ifp = vi->ifp;
6831 int rc, i;
6832 struct sge_txq *txq;
6833
6834 ASSERT_SYNCHRONIZED_OP(sc);
6835
6836 if (!(vi->flags & VI_INIT_DONE)) {
6837 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6838 KASSERT(0, ("uninited VI is running"));
6839 if_printf(ifp, "uninited VI with running ifnet. "
6840 "vi->flags 0x%016lx, if_flags 0x%08x, "
6841 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6842 if_getdrvflags(ifp));
6843 }
6844 return (0);
6845 }
6846
6847 /*
6848 * Disable the VI so that all its data in either direction is discarded
6849 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6850 * tick) intact as the TP can deliver negative advice or data that it's
6851 * holding in its RAM (for an offloaded connection) even after the VI is
6852 * disabled.
6853 */
6854 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6855 if (rc) {
6856 if_printf(ifp, "disable_vi failed: %d\n", rc);
6857 return (rc);
6858 }
6859
6860 for_each_txq(vi, i, txq) {
6861 TXQ_LOCK(txq);
6862 txq->eq.flags &= ~EQ_ENABLED;
6863 TXQ_UNLOCK(txq);
6864 }
6865
6866 mtx_lock(&vi->tick_mtx);
6867 callout_stop(&vi->tick);
6868 mtx_unlock(&vi->tick_mtx);
6869
6870 PORT_LOCK(pi);
6871 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6872 PORT_UNLOCK(pi);
6873 return (0);
6874 }
6875 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6876 pi->up_vis--;
6877 if (pi->up_vis > 0) {
6878 PORT_UNLOCK(pi);
6879 return (0);
6880 }
6881
6882 pi->link_cfg.link_ok = false;
6883 pi->link_cfg.speed = 0;
6884 pi->link_cfg.link_down_rc = 255;
6885 t4_os_link_changed(pi);
6886 PORT_UNLOCK(pi);
6887
6888 return (0);
6889 }
6890
6891 /*
6892 * It is ok for this function to fail midway and return right away. t4_detach
6893 * will walk the entire sc->irq list and clean up whatever is valid.
6894 */
6895 int
t4_setup_intr_handlers(struct adapter * sc)6896 t4_setup_intr_handlers(struct adapter *sc)
6897 {
6898 int rc, rid, p, q, v;
6899 char s[8];
6900 struct irq *irq;
6901 struct port_info *pi;
6902 struct vi_info *vi;
6903 struct sge *sge = &sc->sge;
6904 struct sge_rxq *rxq;
6905 #ifdef TCP_OFFLOAD
6906 struct sge_ofld_rxq *ofld_rxq;
6907 #endif
6908 #ifdef DEV_NETMAP
6909 struct sge_nm_rxq *nm_rxq;
6910 #endif
6911 #ifdef RSS
6912 int nbuckets = rss_getnumbuckets();
6913 #endif
6914
6915 /*
6916 * Setup interrupts.
6917 */
6918 irq = &sc->irq[0];
6919 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6920 if (forwarding_intr_to_fwq(sc))
6921 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6922
6923 /* Multiple interrupts. */
6924 if (sc->flags & IS_VF)
6925 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6926 ("%s: too few intr.", __func__));
6927 else
6928 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6929 ("%s: too few intr.", __func__));
6930
6931 /* The first one is always error intr on PFs */
6932 if (!(sc->flags & IS_VF)) {
6933 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6934 if (rc != 0)
6935 return (rc);
6936 irq++;
6937 rid++;
6938 }
6939
6940 /* The second one is always the firmware event queue (first on VFs) */
6941 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6942 if (rc != 0)
6943 return (rc);
6944 irq++;
6945 rid++;
6946
6947 for_each_port(sc, p) {
6948 pi = sc->port[p];
6949 for_each_vi(pi, v, vi) {
6950 vi->first_intr = rid - 1;
6951
6952 if (vi->nnmrxq > 0) {
6953 int n = max(vi->nrxq, vi->nnmrxq);
6954
6955 rxq = &sge->rxq[vi->first_rxq];
6956 #ifdef DEV_NETMAP
6957 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6958 #endif
6959 for (q = 0; q < n; q++) {
6960 snprintf(s, sizeof(s), "%x%c%x", p,
6961 'a' + v, q);
6962 if (q < vi->nrxq)
6963 irq->rxq = rxq++;
6964 #ifdef DEV_NETMAP
6965 if (q < vi->nnmrxq)
6966 irq->nm_rxq = nm_rxq++;
6967
6968 if (irq->nm_rxq != NULL &&
6969 irq->rxq == NULL) {
6970 /* Netmap rx only */
6971 rc = t4_alloc_irq(sc, irq, rid,
6972 t4_nm_intr, irq->nm_rxq, s);
6973 }
6974 if (irq->nm_rxq != NULL &&
6975 irq->rxq != NULL) {
6976 /* NIC and Netmap rx */
6977 rc = t4_alloc_irq(sc, irq, rid,
6978 t4_vi_intr, irq, s);
6979 }
6980 #endif
6981 if (irq->rxq != NULL &&
6982 irq->nm_rxq == NULL) {
6983 /* NIC rx only */
6984 rc = t4_alloc_irq(sc, irq, rid,
6985 t4_intr, irq->rxq, s);
6986 }
6987 if (rc != 0)
6988 return (rc);
6989 #ifdef RSS
6990 if (q < vi->nrxq) {
6991 bus_bind_intr(sc->dev, irq->res,
6992 rss_getcpu(q % nbuckets));
6993 }
6994 #endif
6995 irq++;
6996 rid++;
6997 vi->nintr++;
6998 }
6999 } else {
7000 for_each_rxq(vi, q, rxq) {
7001 snprintf(s, sizeof(s), "%x%c%x", p,
7002 'a' + v, q);
7003 rc = t4_alloc_irq(sc, irq, rid,
7004 t4_intr, rxq, s);
7005 if (rc != 0)
7006 return (rc);
7007 #ifdef RSS
7008 bus_bind_intr(sc->dev, irq->res,
7009 rss_getcpu(q % nbuckets));
7010 #endif
7011 irq++;
7012 rid++;
7013 vi->nintr++;
7014 }
7015 }
7016 #ifdef TCP_OFFLOAD
7017 for_each_ofld_rxq(vi, q, ofld_rxq) {
7018 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
7019 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
7020 ofld_rxq, s);
7021 if (rc != 0)
7022 return (rc);
7023 irq++;
7024 rid++;
7025 vi->nintr++;
7026 }
7027 #endif
7028 }
7029 }
7030 MPASS(irq == &sc->irq[sc->intr_count]);
7031
7032 return (0);
7033 }
7034
7035 static void
write_global_rss_key(struct adapter * sc)7036 write_global_rss_key(struct adapter *sc)
7037 {
7038 #ifdef RSS
7039 int i;
7040 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7041 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7042
7043 CTASSERT(RSS_KEYSIZE == 40);
7044
7045 rss_getkey((void *)&raw_rss_key[0]);
7046 for (i = 0; i < nitems(rss_key); i++) {
7047 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
7048 }
7049 t4_write_rss_key(sc, &rss_key[0], -1, 1);
7050 #endif
7051 }
7052
7053 /*
7054 * Idempotent.
7055 */
7056 static int
adapter_full_init(struct adapter * sc)7057 adapter_full_init(struct adapter *sc)
7058 {
7059 int rc, i;
7060
7061 ASSERT_SYNCHRONIZED_OP(sc);
7062
7063 /*
7064 * queues that belong to the adapter (not any particular port).
7065 */
7066 rc = t4_setup_adapter_queues(sc);
7067 if (rc != 0)
7068 return (rc);
7069
7070 MPASS(sc->params.nports <= nitems(sc->tq));
7071 for (i = 0; i < sc->params.nports; i++) {
7072 if (sc->tq[i] != NULL)
7073 continue;
7074 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
7075 taskqueue_thread_enqueue, &sc->tq[i]);
7076 if (sc->tq[i] == NULL) {
7077 CH_ERR(sc, "failed to allocate task queue %d\n", i);
7078 return (ENOMEM);
7079 }
7080 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
7081 device_get_nameunit(sc->dev), i);
7082 }
7083
7084 if (!(sc->flags & IS_VF)) {
7085 write_global_rss_key(sc);
7086 t4_intr_enable(sc);
7087 }
7088 return (0);
7089 }
7090
7091 int
adapter_init(struct adapter * sc)7092 adapter_init(struct adapter *sc)
7093 {
7094 int rc;
7095
7096 ASSERT_SYNCHRONIZED_OP(sc);
7097 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
7098 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
7099 ("%s: FULL_INIT_DONE already", __func__));
7100
7101 rc = adapter_full_init(sc);
7102 if (rc != 0)
7103 adapter_full_uninit(sc);
7104 else
7105 sc->flags |= FULL_INIT_DONE;
7106
7107 return (rc);
7108 }
7109
7110 /*
7111 * Idempotent.
7112 */
7113 static void
adapter_full_uninit(struct adapter * sc)7114 adapter_full_uninit(struct adapter *sc)
7115 {
7116 int i;
7117
7118 t4_teardown_adapter_queues(sc);
7119
7120 for (i = 0; i < nitems(sc->tq); i++) {
7121 if (sc->tq[i] == NULL)
7122 continue;
7123 taskqueue_free(sc->tq[i]);
7124 sc->tq[i] = NULL;
7125 }
7126
7127 sc->flags &= ~FULL_INIT_DONE;
7128 }
7129
7130 #ifdef RSS
7131 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
7132 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
7133 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
7134 RSS_HASHTYPE_RSS_UDP_IPV6)
7135
7136 /* Translates kernel hash types to hardware. */
7137 static int
hashconfig_to_hashen(int hashconfig)7138 hashconfig_to_hashen(int hashconfig)
7139 {
7140 int hashen = 0;
7141
7142 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
7143 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
7144 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
7145 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
7146 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
7147 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7148 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7149 }
7150 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
7151 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7152 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7153 }
7154 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
7155 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7156 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
7157 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7158
7159 return (hashen);
7160 }
7161
7162 /* Translates hardware hash types to kernel. */
7163 static int
hashen_to_hashconfig(int hashen)7164 hashen_to_hashconfig(int hashen)
7165 {
7166 int hashconfig = 0;
7167
7168 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
7169 /*
7170 * If UDP hashing was enabled it must have been enabled for
7171 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
7172 * enabling any 4-tuple hash is nonsense configuration.
7173 */
7174 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7175 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
7176
7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7178 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7180 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
7181 }
7182 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7183 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
7184 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7185 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
7186 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
7187 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
7188 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
7189 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
7190
7191 return (hashconfig);
7192 }
7193 #endif
7194
7195 /*
7196 * Idempotent.
7197 */
7198 static int
vi_full_init(struct vi_info * vi)7199 vi_full_init(struct vi_info *vi)
7200 {
7201 struct adapter *sc = vi->adapter;
7202 struct sge_rxq *rxq;
7203 int rc, i, j;
7204 #ifdef RSS
7205 int nbuckets = rss_getnumbuckets();
7206 int hashconfig = rss_gethashconfig();
7207 int extra;
7208 #endif
7209
7210 ASSERT_SYNCHRONIZED_OP(sc);
7211
7212 /*
7213 * Allocate tx/rx/fl queues for this VI.
7214 */
7215 rc = t4_setup_vi_queues(vi);
7216 if (rc != 0)
7217 return (rc);
7218
7219 /*
7220 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7221 */
7222 if (vi->nrxq > vi->rss_size) {
7223 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7224 "some queues will never receive traffic.\n", vi->nrxq,
7225 vi->rss_size);
7226 } else if (vi->rss_size % vi->nrxq) {
7227 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7228 "expect uneven traffic distribution.\n", vi->nrxq,
7229 vi->rss_size);
7230 }
7231 #ifdef RSS
7232 if (vi->nrxq != nbuckets) {
7233 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7234 "performance will be impacted.\n", vi->nrxq, nbuckets);
7235 }
7236 #endif
7237 if (vi->rss == NULL)
7238 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7239 M_ZERO | M_WAITOK);
7240 for (i = 0; i < vi->rss_size;) {
7241 #ifdef RSS
7242 j = rss_get_indirection_to_bucket(i);
7243 j %= vi->nrxq;
7244 rxq = &sc->sge.rxq[vi->first_rxq + j];
7245 vi->rss[i++] = rxq->iq.abs_id;
7246 #else
7247 for_each_rxq(vi, j, rxq) {
7248 vi->rss[i++] = rxq->iq.abs_id;
7249 if (i == vi->rss_size)
7250 break;
7251 }
7252 #endif
7253 }
7254
7255 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7256 vi->rss, vi->rss_size);
7257 if (rc != 0) {
7258 CH_ERR(vi, "rss_config failed: %d\n", rc);
7259 return (rc);
7260 }
7261
7262 #ifdef RSS
7263 vi->hashen = hashconfig_to_hashen(hashconfig);
7264
7265 /*
7266 * We may have had to enable some hashes even though the global config
7267 * wants them disabled. This is a potential problem that must be
7268 * reported to the user.
7269 */
7270 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7271
7272 /*
7273 * If we consider only the supported hash types, then the enabled hashes
7274 * are a superset of the requested hashes. In other words, there cannot
7275 * be any supported hash that was requested but not enabled, but there
7276 * can be hashes that were not requested but had to be enabled.
7277 */
7278 extra &= SUPPORTED_RSS_HASHTYPES;
7279 MPASS((extra & hashconfig) == 0);
7280
7281 if (extra) {
7282 CH_ALERT(vi,
7283 "global RSS config (0x%x) cannot be accommodated.\n",
7284 hashconfig);
7285 }
7286 if (extra & RSS_HASHTYPE_RSS_IPV4)
7287 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7288 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7289 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7290 if (extra & RSS_HASHTYPE_RSS_IPV6)
7291 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7292 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7293 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7294 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7295 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7296 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7297 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7298 #else
7299 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
7300 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
7301 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7302 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
7303 #endif
7304 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7305 0, 0);
7306 if (rc != 0) {
7307 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7308 return (rc);
7309 }
7310
7311 return (0);
7312 }
7313
7314 int
vi_init(struct vi_info * vi)7315 vi_init(struct vi_info *vi)
7316 {
7317 int rc;
7318
7319 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7320 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7321 ("%s: VI_INIT_DONE already", __func__));
7322
7323 rc = vi_full_init(vi);
7324 if (rc != 0)
7325 vi_full_uninit(vi);
7326 else
7327 vi->flags |= VI_INIT_DONE;
7328
7329 return (rc);
7330 }
7331
7332 /*
7333 * Idempotent.
7334 */
7335 static void
vi_full_uninit(struct vi_info * vi)7336 vi_full_uninit(struct vi_info *vi)
7337 {
7338
7339 if (vi->flags & VI_INIT_DONE) {
7340 quiesce_vi(vi);
7341 free(vi->rss, M_CXGBE);
7342 free(vi->nm_rss, M_CXGBE);
7343 }
7344
7345 t4_teardown_vi_queues(vi);
7346 vi->flags &= ~VI_INIT_DONE;
7347 }
7348
7349 static void
quiesce_txq(struct sge_txq * txq)7350 quiesce_txq(struct sge_txq *txq)
7351 {
7352 struct sge_eq *eq = &txq->eq;
7353 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7354
7355 MPASS(eq->flags & EQ_SW_ALLOCATED);
7356 MPASS(!(eq->flags & EQ_ENABLED));
7357
7358 /* Wait for the mp_ring to empty. */
7359 while (!mp_ring_is_idle(txq->r)) {
7360 mp_ring_check_drainage(txq->r, 4096);
7361 pause("rquiesce", 1);
7362 }
7363 MPASS(txq->txp.npkt == 0);
7364
7365 if (eq->flags & EQ_HW_ALLOCATED) {
7366 /*
7367 * Hardware is alive and working normally. Wait for it to
7368 * finish and then wait for the driver to catch up and reclaim
7369 * all descriptors.
7370 */
7371 while (spg->cidx != htobe16(eq->pidx))
7372 pause("equiesce", 1);
7373 while (eq->cidx != eq->pidx)
7374 pause("dquiesce", 1);
7375 } else {
7376 /*
7377 * Hardware is unavailable. Discard all pending tx and reclaim
7378 * descriptors directly.
7379 */
7380 TXQ_LOCK(txq);
7381 while (eq->cidx != eq->pidx) {
7382 struct mbuf *m, *nextpkt;
7383 struct tx_sdesc *txsd;
7384
7385 txsd = &txq->sdesc[eq->cidx];
7386 for (m = txsd->m; m != NULL; m = nextpkt) {
7387 nextpkt = m->m_nextpkt;
7388 m->m_nextpkt = NULL;
7389 m_freem(m);
7390 }
7391 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7392 }
7393 spg->pidx = spg->cidx = htobe16(eq->cidx);
7394 TXQ_UNLOCK(txq);
7395 }
7396 }
7397
7398 static void
quiesce_wrq(struct sge_wrq * wrq)7399 quiesce_wrq(struct sge_wrq *wrq)
7400 {
7401 struct wrqe *wr;
7402
7403 TXQ_LOCK(wrq);
7404 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7405 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7406 #ifdef INVARIANTS
7407 wrq->nwr_pending--;
7408 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7409 #endif
7410 free(wr, M_CXGBE);
7411 }
7412 MPASS(wrq->nwr_pending == 0);
7413 MPASS(wrq->ndesc_needed == 0);
7414 wrq->nwr_pending = 0;
7415 wrq->ndesc_needed = 0;
7416 TXQ_UNLOCK(wrq);
7417 }
7418
7419 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7420 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7421 {
7422 /* Synchronize with the interrupt handler */
7423 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7424 pause("iqfree", 1);
7425
7426 if (fl != NULL) {
7427 MPASS(iq->flags & IQ_HAS_FL);
7428
7429 mtx_lock(&sc->sfl_lock);
7430 FL_LOCK(fl);
7431 fl->flags |= FL_DOOMED;
7432 FL_UNLOCK(fl);
7433 callout_stop(&sc->sfl_callout);
7434 mtx_unlock(&sc->sfl_lock);
7435
7436 KASSERT((fl->flags & FL_STARVING) == 0,
7437 ("%s: still starving", __func__));
7438
7439 /* Release all buffers if hardware is no longer available. */
7440 if (!(iq->flags & IQ_HW_ALLOCATED))
7441 free_fl_buffers(sc, fl);
7442 }
7443 }
7444
7445 /*
7446 * Wait for all activity on all the queues of the VI to complete. It is assumed
7447 * that no new work is being enqueued by the hardware or the driver. That part
7448 * should be arranged before calling this function.
7449 */
7450 static void
quiesce_vi(struct vi_info * vi)7451 quiesce_vi(struct vi_info *vi)
7452 {
7453 int i;
7454 struct adapter *sc = vi->adapter;
7455 struct sge_rxq *rxq;
7456 struct sge_txq *txq;
7457 #ifdef TCP_OFFLOAD
7458 struct sge_ofld_rxq *ofld_rxq;
7459 #endif
7460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7461 struct sge_ofld_txq *ofld_txq;
7462 #endif
7463
7464 if (!(vi->flags & VI_INIT_DONE))
7465 return;
7466
7467 for_each_txq(vi, i, txq) {
7468 quiesce_txq(txq);
7469 }
7470
7471 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7472 for_each_ofld_txq(vi, i, ofld_txq) {
7473 quiesce_wrq(&ofld_txq->wrq);
7474 }
7475 #endif
7476
7477 for_each_rxq(vi, i, rxq) {
7478 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7479 }
7480
7481 #ifdef TCP_OFFLOAD
7482 for_each_ofld_rxq(vi, i, ofld_rxq) {
7483 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7484 }
7485 #endif
7486 }
7487
7488 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7489 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7490 driver_intr_t *handler, void *arg, char *name)
7491 {
7492 int rc;
7493
7494 irq->rid = rid;
7495 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7496 RF_SHAREABLE | RF_ACTIVE);
7497 if (irq->res == NULL) {
7498 device_printf(sc->dev,
7499 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7500 return (ENOMEM);
7501 }
7502
7503 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7504 NULL, handler, arg, &irq->tag);
7505 if (rc != 0) {
7506 device_printf(sc->dev,
7507 "failed to setup interrupt for rid %d, name %s: %d\n",
7508 rid, name, rc);
7509 } else if (name)
7510 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7511
7512 return (rc);
7513 }
7514
7515 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7516 t4_free_irq(struct adapter *sc, struct irq *irq)
7517 {
7518 if (irq->tag)
7519 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7520 if (irq->res)
7521 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7522
7523 bzero(irq, sizeof(*irq));
7524
7525 return (0);
7526 }
7527
7528 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7529 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7530 {
7531
7532 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7533 t4_get_regs(sc, buf, regs->len);
7534 }
7535
7536 #define A_PL_INDIR_CMD 0x1f8
7537
7538 #define S_PL_AUTOINC 31
7539 #define M_PL_AUTOINC 0x1U
7540 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7541 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7542
7543 #define S_PL_VFID 20
7544 #define M_PL_VFID 0xffU
7545 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7546 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7547
7548 #define S_PL_ADDR 0
7549 #define M_PL_ADDR 0xfffffU
7550 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7551 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7552
7553 #define A_PL_INDIR_DATA 0x1fc
7554
7555 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7556 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7557 {
7558 u32 stats[2];
7559
7560 if (sc->flags & IS_VF) {
7561 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7562 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7563 } else {
7564 mtx_assert(&sc->reg_lock, MA_OWNED);
7565 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7566 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7567 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7568 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7569 }
7570 return (((uint64_t)stats[1]) << 32 | stats[0]);
7571 }
7572
7573 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7574 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7575 {
7576
7577 #define GET_STAT(name) \
7578 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7579
7580 if (!(sc->flags & IS_VF))
7581 mtx_lock(&sc->reg_lock);
7582 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7583 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7584 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7585 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7586 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7587 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7588 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7589 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7590 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7591 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7592 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7593 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7594 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7595 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7596 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7597 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7598 if (!(sc->flags & IS_VF))
7599 mtx_unlock(&sc->reg_lock);
7600
7601 #undef GET_STAT
7602 }
7603
7604 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7605 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7606 {
7607 int reg;
7608
7609 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7610 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7611 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7612 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7613 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7614 }
7615
7616 static void
vi_refresh_stats(struct vi_info * vi)7617 vi_refresh_stats(struct vi_info *vi)
7618 {
7619 struct timeval tv;
7620 const struct timeval interval = {0, 250000}; /* 250ms */
7621
7622 mtx_assert(&vi->tick_mtx, MA_OWNED);
7623
7624 if (vi->flags & VI_SKIP_STATS)
7625 return;
7626
7627 getmicrotime(&tv);
7628 timevalsub(&tv, &interval);
7629 if (timevalcmp(&tv, &vi->last_refreshed, <))
7630 return;
7631
7632 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7633 getmicrotime(&vi->last_refreshed);
7634 }
7635
7636 static void
cxgbe_refresh_stats(struct vi_info * vi)7637 cxgbe_refresh_stats(struct vi_info *vi)
7638 {
7639 u_int i, v, tnl_cong_drops, chan_map;
7640 struct timeval tv;
7641 const struct timeval interval = {0, 250000}; /* 250ms */
7642 struct port_info *pi;
7643 struct adapter *sc;
7644
7645 mtx_assert(&vi->tick_mtx, MA_OWNED);
7646
7647 if (vi->flags & VI_SKIP_STATS)
7648 return;
7649
7650 getmicrotime(&tv);
7651 timevalsub(&tv, &interval);
7652 if (timevalcmp(&tv, &vi->last_refreshed, <))
7653 return;
7654
7655 pi = vi->pi;
7656 sc = vi->adapter;
7657 tnl_cong_drops = 0;
7658 t4_get_port_stats(sc, pi->hw_port, &pi->stats);
7659 chan_map = pi->rx_e_chan_map;
7660 while (chan_map) {
7661 i = ffs(chan_map) - 1;
7662 mtx_lock(&sc->reg_lock);
7663 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7664 A_TP_MIB_TNL_CNG_DROP_0 + i);
7665 mtx_unlock(&sc->reg_lock);
7666 tnl_cong_drops += v;
7667 chan_map &= ~(1 << i);
7668 }
7669 pi->tnl_cong_drops = tnl_cong_drops;
7670 getmicrotime(&vi->last_refreshed);
7671 }
7672
7673 static void
cxgbe_tick(void * arg)7674 cxgbe_tick(void *arg)
7675 {
7676 struct vi_info *vi = arg;
7677
7678 MPASS(IS_MAIN_VI(vi));
7679 mtx_assert(&vi->tick_mtx, MA_OWNED);
7680
7681 cxgbe_refresh_stats(vi);
7682 callout_schedule(&vi->tick, hz);
7683 }
7684
7685 static void
vi_tick(void * arg)7686 vi_tick(void *arg)
7687 {
7688 struct vi_info *vi = arg;
7689
7690 mtx_assert(&vi->tick_mtx, MA_OWNED);
7691
7692 vi_refresh_stats(vi);
7693 callout_schedule(&vi->tick, hz);
7694 }
7695
7696 /* CIM inbound queues */
7697 static const char *t4_ibq[CIM_NUM_IBQ] = {
7698 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi"
7699 };
7700 static const char *t7_ibq[CIM_NUM_IBQ_T7] = {
7701 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7702 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3",
7703 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7"
7704 };
7705 static const char *t7_ibq_sec[] = {
7706 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7707 NULL, NULL, NULL, "ibq_ipc0"
7708 };
7709
7710 /* CIM outbound queues */
7711 static const char *t4_obq[CIM_NUM_OBQ_T5] = {
7712 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7713 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */
7714 };
7715 static const char *t7_obq[CIM_NUM_OBQ_T7] = {
7716 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7717 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3",
7718 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7"
7719 };
7720 static const char *t7_obq_sec[] = {
7721 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL,
7722 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0"
7723 };
7724
7725 static void
cim_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * c0)7726 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
7727 struct sysctl_oid_list *c0)
7728 {
7729 struct sysctl_oid *oid;
7730 struct sysctl_oid_list *children1;
7731 int i, j, qcount;
7732 char s[16];
7733 const char **qname;
7734
7735 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim",
7736 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block");
7737 c0 = SYSCTL_CHILDREN(oid);
7738
7739 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL,
7740 sc->params.ncores, "# of active CIM cores");
7741
7742 for (i = 0; i < sc->params.ncores; i++) {
7743 snprintf(s, sizeof(s), "%u", i);
7744 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s,
7745 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core");
7746 children1 = SYSCTL_CHILDREN(oid);
7747
7748 /*
7749 * CTLFLAG_SKIP because the misc.devlog sysctl already displays
7750 * the log for all cores. Use this sysctl to get the log for a
7751 * particular core only.
7752 */
7753 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog",
7754 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7755 sc, i, sysctl_devlog, "A", "firmware's device log");
7756
7757 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg",
7758 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7759 sysctl_loadavg, "A",
7760 "microprocessor load averages (select firmwares only)");
7761
7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg",
7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7764 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg,
7765 "A", "Queue configuration");
7766
7767 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la",
7768 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7769 sysctl_cim_la, "A", "Logic analyzer");
7770
7771 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la",
7772 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7773 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7774
7775 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la",
7776 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7777 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7778
7779 /* IBQs */
7780 switch (chip_id(sc)) {
7781 case CHELSIO_T4:
7782 case CHELSIO_T5:
7783 case CHELSIO_T6:
7784 qname = &t4_ibq[0];
7785 qcount = nitems(t4_ibq);
7786 break;
7787 case CHELSIO_T7:
7788 default:
7789 if (i == 0) {
7790 qname = &t7_ibq[0];
7791 qcount = nitems(t7_ibq);
7792 } else {
7793 qname = &t7_ibq_sec[0];
7794 qcount = nitems(t7_ibq_sec);
7795 }
7796 break;
7797 }
7798 MPASS(qcount <= sc->chip_params->cim_num_ibq);
7799 for (j = 0; j < qcount; j++) {
7800 if (qname[j] == NULL)
7801 continue;
7802 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7803 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7804 (i << 16) | j, sysctl_cim_ibq, "A", NULL);
7805 }
7806
7807 /* OBQs */
7808 switch (chip_id(sc)) {
7809 case CHELSIO_T4:
7810 qname = t4_obq;
7811 qcount = CIM_NUM_OBQ;
7812 break;
7813 case CHELSIO_T5:
7814 case CHELSIO_T6:
7815 qname = t4_obq;
7816 qcount = nitems(t4_obq);
7817 break;
7818 case CHELSIO_T7:
7819 default:
7820 if (i == 0) {
7821 qname = t7_obq;
7822 qcount = nitems(t7_obq);
7823 } else {
7824 qname = t7_obq_sec;
7825 qcount = nitems(t7_obq_sec);
7826 }
7827 break;
7828 }
7829 MPASS(qcount <= sc->chip_params->cim_num_obq);
7830 for (j = 0; j < qcount; j++) {
7831 if (qname[j] == NULL)
7832 continue;
7833 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7835 (i << 16) | j, sysctl_cim_obq, "A", NULL);
7836 }
7837 }
7838 }
7839
7840 /*
7841 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7842 */
7843 static char *caps_decoder[] = {
7844 "\20\001IPMI\002NCSI", /* 0: NBM */
7845 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7846 "\20\001INGRESS\002EGRESS", /* 2: switch */
7847 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7848 "\006HASHFILTER\007ETHOFLD",
7849 "\20\001TOE\002SENDPATH", /* 4: TOE */
7850 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */
7851 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7852 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7853 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7854 "\007T10DIF"
7855 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7856 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7857 "\004TLS_HW,\005TOE_IPSEC",
7858 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7859 "\004PO_INITIATOR\005PO_TARGET",
7860 "\20\001NVMe_TCP", /* 9: NVMe */
7861 };
7862
7863 void
t4_sysctls(struct adapter * sc)7864 t4_sysctls(struct adapter *sc)
7865 {
7866 struct sysctl_ctx_list *ctx = &sc->ctx;
7867 struct sysctl_oid *oid;
7868 struct sysctl_oid_list *children, *c0;
7869 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7870
7871 /*
7872 * dev.t4nex.X.
7873 */
7874 oid = device_get_sysctl_tree(sc->dev);
7875 c0 = children = SYSCTL_CHILDREN(oid);
7876
7877 sc->sc_do_rxcopy = 1;
7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7879 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7880
7881 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7882 sc->params.nports, "# of ports");
7883
7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7886 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7887 "available doorbells");
7888
7889 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7890 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7891
7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7893 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7894 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7895 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7896
7897 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7898 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7899 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7900 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7901
7902 t4_sge_sysctls(sc, ctx, children);
7903
7904 sc->lro_timeout = 100;
7905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7906 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7907
7908 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7909 &sc->debug_flags, 0, "flags to enable runtime debugging");
7910
7911 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW,
7912 &sc->intr_flags, 0, "flags for the slow interrupt handler");
7913
7914 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7915 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7916
7917 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7918 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7919
7920 if (sc->flags & IS_VF)
7921 return;
7922
7923 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7924 NULL, chip_rev(sc), "chip hardware revision");
7925
7926 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7927 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7928
7929 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7930 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7931
7932 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7933 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7934
7935 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7936 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7937
7938 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7939 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7940
7941 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7942 sc->er_version, 0, "expansion ROM version");
7943
7944 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7945 sc->bs_version, 0, "bootstrap firmware version");
7946
7947 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7948 NULL, sc->params.scfg_vers, "serial config version");
7949
7950 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7951 NULL, sc->params.vpd_vers, "VPD version");
7952
7953 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7954 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7955
7956 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7957 sc->cfcsum, "config file checksum");
7958
7959 #define SYSCTL_CAP(name, n, text) \
7960 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7961 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7962 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7963 "available " text " capabilities")
7964
7965 SYSCTL_CAP(nbmcaps, 0, "NBM");
7966 SYSCTL_CAP(linkcaps, 1, "link");
7967 SYSCTL_CAP(switchcaps, 2, "switch");
7968 SYSCTL_CAP(nvmecaps, 9, "NVMe");
7969 SYSCTL_CAP(niccaps, 3, "NIC");
7970 SYSCTL_CAP(toecaps, 4, "TCP offload");
7971 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7972 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7973 SYSCTL_CAP(cryptocaps, 7, "crypto");
7974 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7975 #undef SYSCTL_CAP
7976
7977 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7978 NULL, sc->tids.nftids, "number of filters");
7979
7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7981 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7982 sysctl_temperature, "I", "chip temperature (in Celsius)");
7983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7984 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7985 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7986
7987 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7988 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7989 "I", "core Vdd (in mV)");
7990
7991 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7992 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7993 sysctl_cpus, "A", "local CPUs");
7994
7995 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7996 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7997 sysctl_cpus, "A", "preferred CPUs for interrupts");
7998
7999 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
8000 &sc->swintr, 0, "software triggered interrupts");
8001
8002 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
8003 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
8004 "1 = reset adapter, 0 = zero reset counter");
8005
8006 /*
8007 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
8008 */
8009 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
8010 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
8011 "logs and miscellaneous information");
8012 children = SYSCTL_CHILDREN(oid);
8013
8014 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
8015 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8016 sysctl_cctrl, "A", "congestion control");
8017
8018 cim_sysctls(sc, ctx, children);
8019
8020 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
8021 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8022 sysctl_cpl_stats, "A", "CPL statistics");
8023
8024 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
8025 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8026 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
8027
8028 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
8029 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8030 sysctl_tid_stats, "A", "tid stats");
8031
8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1,
8034 sysctl_devlog, "A", "firmware's device log (all cores)");
8035
8036 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
8037 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8038 sysctl_fcoe_stats, "A", "FCoE statistics");
8039
8040 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
8041 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8042 sysctl_hw_sched, "A", "hardware scheduler ");
8043
8044 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
8045 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8046 sysctl_l2t, "A", "hardware L2 table");
8047
8048 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
8049 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8050 sysctl_smt, "A", "hardware source MAC table");
8051
8052 #ifdef INET6
8053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
8054 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8055 sysctl_clip, "A", "active CLIP table entries");
8056 #endif
8057
8058 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
8059 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8060 sysctl_lb_stats, "A", "loopback statistics");
8061
8062 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
8063 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8064 sysctl_meminfo, "A", "memory regions");
8065
8066 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
8067 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8068 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 :
8069 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam),
8070 "A", "MPS TCAM entries");
8071
8072 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
8073 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8074 sysctl_path_mtus, "A", "path MTUs");
8075
8076 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
8077 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8078 sysctl_pm_stats, "A", "PM statistics");
8079
8080 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
8081 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8082 sysctl_rdma_stats, "A", "RDMA statistics");
8083
8084 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
8085 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8086 sysctl_tcp_stats, "A", "TCP statistics");
8087
8088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
8089 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8090 sysctl_tids, "A", "TID information");
8091
8092 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
8093 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8094 sysctl_tp_err_stats, "A", "TP error statistics");
8095
8096 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
8097 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8098 sysctl_tnl_stats, "A", "TP tunnel statistics");
8099
8100 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
8101 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
8102 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
8103
8104 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
8105 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8106 sysctl_tp_la, "A", "TP logic analyzer");
8107
8108 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
8109 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8110 sysctl_tx_rate, "A", "Tx rate");
8111
8112 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
8113 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8114 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
8115
8116 if (chip_id(sc) >= CHELSIO_T5) {
8117 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
8118 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8119 sysctl_wcwr_stats, "A", "write combined work requests");
8120 }
8121
8122 #ifdef KERN_TLS
8123 if (is_ktls(sc)) {
8124 /*
8125 * dev.t4nex.0.tls.
8126 */
8127 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
8128 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
8129 children = SYSCTL_CHILDREN(oid);
8130
8131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
8132 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
8133 "keys in work requests (1) or attempt to store TLS keys "
8134 "in card memory.");
8135
8136 if (is_t6(sc))
8137 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
8138 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
8139 "combine TCB field updates with TLS record work "
8140 "requests.");
8141 else {
8142 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records",
8143 CTLFLAG_RW, &sc->tlst.short_records, 0,
8144 "Use cipher-only mode for short records.");
8145 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash",
8146 CTLFLAG_RW, &sc->tlst.partial_ghash, 0,
8147 "Use partial GHASH for AES-GCM records.");
8148 }
8149 }
8150 #endif
8151
8152 #ifdef TCP_OFFLOAD
8153 if (is_offload(sc)) {
8154 int i;
8155 char s[4];
8156
8157 /*
8158 * dev.t4nex.X.toe.
8159 */
8160 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
8161 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
8162 children = SYSCTL_CHILDREN(oid);
8163
8164 sc->tt.cong_algorithm = -1;
8165 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
8166 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
8167 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
8168 "3 = highspeed)");
8169
8170 sc->tt.sndbuf = -1;
8171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
8172 &sc->tt.sndbuf, 0, "hardware send buffer");
8173
8174 sc->tt.ddp = 0;
8175 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
8176 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
8177 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
8178 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
8179
8180 sc->tt.rx_coalesce = -1;
8181 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
8182 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
8183
8184 sc->tt.tls = 1;
8185 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
8186 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
8187 "Inline TLS allowed");
8188
8189 sc->tt.tx_align = -1;
8190 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
8191 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
8192
8193 sc->tt.tx_zcopy = 0;
8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
8195 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
8196 "Enable zero-copy aio_write(2)");
8197
8198 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
8199 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8200 "cop_managed_offloading", CTLFLAG_RW,
8201 &sc->tt.cop_managed_offloading, 0,
8202 "COP (Connection Offload Policy) controls all TOE offload");
8203
8204 sc->tt.autorcvbuf_inc = 16 * 1024;
8205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
8206 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
8207 "autorcvbuf increment");
8208
8209 sc->tt.update_hc_on_pmtu_change = 1;
8210 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8211 "update_hc_on_pmtu_change", CTLFLAG_RW,
8212 &sc->tt.update_hc_on_pmtu_change, 0,
8213 "Update hostcache entry if the PMTU changes");
8214
8215 sc->tt.iso = 1;
8216 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
8217 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
8218
8219 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
8220 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8221 sysctl_tp_tick, "A", "TP timer tick (us)");
8222
8223 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
8224 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
8225 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
8226
8227 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
8228 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
8229 sysctl_tp_tick, "A", "DACK tick (us)");
8230
8231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
8232 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8233 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
8234
8235 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
8236 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8237 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
8238 "Minimum retransmit interval (us)");
8239
8240 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
8241 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8242 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
8243 "Maximum retransmit interval (us)");
8244
8245 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
8246 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8247 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
8248 "Persist timer min (us)");
8249
8250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
8251 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8252 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
8253 "Persist timer max (us)");
8254
8255 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
8256 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8257 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
8258 "Keepalive idle timer (us)");
8259
8260 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
8261 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8262 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
8263 "Keepalive interval timer (us)");
8264
8265 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
8266 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8267 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
8268
8269 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
8270 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8271 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
8272 "FINWAIT2 timer (us)");
8273
8274 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
8275 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8276 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
8277 "Number of SYN retransmissions before abort");
8278
8279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
8280 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8281 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
8282 "Number of retransmissions before abort");
8283
8284 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
8285 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8286 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
8287 "Number of keepalive probes before abort");
8288
8289 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
8290 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8291 "TOE retransmit backoffs");
8292 children = SYSCTL_CHILDREN(oid);
8293 for (i = 0; i < 16; i++) {
8294 snprintf(s, sizeof(s), "%u", i);
8295 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8296 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8297 i, sysctl_tp_backoff, "IU",
8298 "TOE retransmit backoff");
8299 }
8300 }
8301 #endif
8302 }
8303
8304 void
vi_sysctls(struct vi_info * vi)8305 vi_sysctls(struct vi_info *vi)
8306 {
8307 struct sysctl_ctx_list *ctx = &vi->ctx;
8308 struct sysctl_oid *oid;
8309 struct sysctl_oid_list *children;
8310
8311 /*
8312 * dev.v?(cxgbe|cxl).X.
8313 */
8314 oid = device_get_sysctl_tree(vi->dev);
8315 children = SYSCTL_CHILDREN(oid);
8316
8317 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8318 vi->viid, "VI identifer");
8319 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8320 &vi->nrxq, 0, "# of rx queues");
8321 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8322 &vi->ntxq, 0, "# of tx queues");
8323 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8324 &vi->first_rxq, 0, "index of first rx queue");
8325 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8326 &vi->first_txq, 0, "index of first tx queue");
8327 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8328 vi->rss_base, "start of RSS indirection table");
8329 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8330 vi->rss_size, "size of RSS indirection table");
8331
8332 if (IS_MAIN_VI(vi)) {
8333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8334 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8335 sysctl_noflowq, "IU",
8336 "Reserve queue 0 for non-flowid packets");
8337 }
8338
8339 if (vi->adapter->flags & IS_VF) {
8340 MPASS(vi->flags & TX_USES_VM_WR);
8341 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8342 NULL, 1, "use VM work requests for transmit");
8343 } else {
8344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8345 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8346 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8347 }
8348
8349 #ifdef TCP_OFFLOAD
8350 if (vi->nofldrxq != 0) {
8351 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8352 &vi->nofldrxq, 0,
8353 "# of rx queues for offloaded TCP connections");
8354 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8355 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8356 "index of first TOE rx queue");
8357 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8358 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8359 sysctl_holdoff_tmr_idx_ofld, "I",
8360 "holdoff timer index for TOE queues");
8361 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8362 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8363 sysctl_holdoff_pktc_idx_ofld, "I",
8364 "holdoff packet counter index for TOE queues");
8365 }
8366 #endif
8367 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8368 if (vi->nofldtxq != 0) {
8369 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8370 &vi->nofldtxq, 0,
8371 "# of tx queues for TOE/ETHOFLD");
8372 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8373 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8374 "index of first TOE/ETHOFLD tx queue");
8375 }
8376 #endif
8377 #ifdef DEV_NETMAP
8378 if (vi->nnmrxq != 0) {
8379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8380 &vi->nnmrxq, 0, "# of netmap rx queues");
8381 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8382 &vi->nnmtxq, 0, "# of netmap tx queues");
8383 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8384 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8385 "index of first netmap rx queue");
8386 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8387 CTLFLAG_RD, &vi->first_nm_txq, 0,
8388 "index of first netmap tx queue");
8389 }
8390 #endif
8391
8392 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8393 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8394 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8396 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8397 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8398
8399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8400 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8401 sysctl_qsize_rxq, "I", "rx queue size");
8402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8403 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8404 sysctl_qsize_txq, "I", "tx queue size");
8405 }
8406
8407 static void
cxgbe_sysctls(struct port_info * pi)8408 cxgbe_sysctls(struct port_info *pi)
8409 {
8410 struct sysctl_ctx_list *ctx = &pi->ctx;
8411 struct sysctl_oid *oid;
8412 struct sysctl_oid_list *children, *children2;
8413 struct adapter *sc = pi->adapter;
8414 int i;
8415 char name[16];
8416 static char *tc_flags = {"\20\1USER"};
8417
8418 /*
8419 * dev.cxgbe.X.
8420 */
8421 oid = device_get_sysctl_tree(pi->dev);
8422 children = SYSCTL_CHILDREN(oid);
8423
8424 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8425 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8426 sysctl_linkdnrc, "A", "reason why link is down");
8427 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8428 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8429 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8430 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8432 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8433 sysctl_btphy, "I", "PHY firmware version");
8434 }
8435
8436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8437 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8438 sysctl_pause_settings, "A",
8439 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8441 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8442 "FEC in use on the link");
8443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8444 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8445 sysctl_requested_fec, "A",
8446 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8448 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8449 "FEC recommended by the cable/transceiver");
8450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8451 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8452 sysctl_autoneg, "I",
8453 "autonegotiation (-1 = not supported)");
8454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8455 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8456 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8457
8458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8459 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8461 &pi->link_cfg.pcaps, 0, "port capabilities");
8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8463 &pi->link_cfg.acaps, 0, "advertised capabilities");
8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8465 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8466
8467 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8468 port_top_speed(pi), "max speed (in Gbps)");
8469 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8470 pi->mps_bg_map, "MPS buffer group map");
8471 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8472 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8473 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8474 pi->tx_chan, "TP tx c-channel");
8475 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8476 pi->rx_chan, "TP rx c-channel");
8477
8478 if (sc->flags & IS_VF)
8479 return;
8480
8481 /*
8482 * dev.(cxgbe|cxl).X.tc.
8483 */
8484 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8485 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8486 "Tx scheduler traffic classes (cl_rl)");
8487 children2 = SYSCTL_CHILDREN(oid);
8488 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8489 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8490 "pktsize for per-flow cl-rl (0 means up to the driver )");
8491 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8492 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8493 "burstsize for per-flow cl-rl (0 means up to the driver)");
8494 for (i = 0; i < sc->params.nsched_cls; i++) {
8495 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8496
8497 snprintf(name, sizeof(name), "%d", i);
8498 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8499 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8500 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8501 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8502 CTLFLAG_RD, &tc->state, 0, "current state");
8503 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8504 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8505 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8506 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8507 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8508 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8509 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8510 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8511 "traffic class parameters");
8512 }
8513
8514 /*
8515 * dev.cxgbe.X.stats.
8516 */
8517 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8518 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8519 children = SYSCTL_CHILDREN(oid);
8520 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8521 &pi->tx_parse_error, 0,
8522 "# of tx packets with invalid length or # of segments");
8523
8524 #define T4_LBSTAT(name, stat, desc) do { \
8525 if (sc->params.tp.lb_mode) { \
8526 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8527 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \
8528 A_MPS_PORT_STAT_##stat##_L, \
8529 sysctl_handle_t4_portstat64, "QU", desc); \
8530 } else { \
8531 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8532 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8533 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8534 sysctl_handle_t4_reg64, "QU", desc); \
8535 } \
8536 } while (0)
8537
8538 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8539 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8540 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8541 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8542 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8543 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8544 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8545 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8546 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8547 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8548 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8549 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8550 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8551 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8552 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8553 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8554 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8555 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8556 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8557 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8558 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8559 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8560 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8561
8562 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8563 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8564 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8565 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8566 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8567 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8568 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8569 if (is_t6(sc)) {
8570 /* Read from port_stats and may be stale by up to 1s */
8571 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err",
8572 CTLFLAG_RD, &pi->stats.rx_fcs_err,
8573 "# of frames received with bad FCS since last link up");
8574 } else {
8575 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8576 "# of frames received with bad FCS");
8577 }
8578 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8579 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8580 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8581 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8582 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8583 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8584 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8585 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8586 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8587 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8588 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8589 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8590 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8591 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8592 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8593 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8594 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8595 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8596 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8597 #undef T4_LBSTAT
8598
8599 #define T4_REGSTAT(name, stat, desc) do { \
8600 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8601 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8602 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \
8603 } while (0)
8604
8605 if (pi->mps_bg_map & 1) {
8606 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME,
8607 "# drops due to buffer-group 0 overflows");
8608 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME,
8609 "# of buffer-group 0 truncated packets");
8610 }
8611 if (pi->mps_bg_map & 2) {
8612 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME,
8613 "# drops due to buffer-group 1 overflows");
8614 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME,
8615 "# of buffer-group 1 truncated packets");
8616 }
8617 if (pi->mps_bg_map & 4) {
8618 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME,
8619 "# drops due to buffer-group 2 overflows");
8620 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME,
8621 "# of buffer-group 2 truncated packets");
8622 }
8623 if (pi->mps_bg_map & 8) {
8624 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME,
8625 "# drops due to buffer-group 3 overflows");
8626 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME,
8627 "# of buffer-group 3 truncated packets");
8628 }
8629 #undef T4_REGSTAT
8630 }
8631
8632 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8633 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8634 {
8635 int rc, *i, space = 0;
8636 struct sbuf sb;
8637
8638 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8639 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8640 if (space)
8641 sbuf_printf(&sb, " ");
8642 sbuf_printf(&sb, "%d", *i);
8643 space = 1;
8644 }
8645 rc = sbuf_finish(&sb);
8646 sbuf_delete(&sb);
8647 return (rc);
8648 }
8649
8650 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8651 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8652 {
8653 int rc;
8654 struct sbuf *sb;
8655
8656 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8657 if (sb == NULL)
8658 return (ENOMEM);
8659
8660 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8661 rc = sbuf_finish(sb);
8662 sbuf_delete(sb);
8663
8664 return (rc);
8665 }
8666
8667 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8668 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8669 {
8670 int rc;
8671 struct sbuf *sb;
8672
8673 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8674 if (sb == NULL)
8675 return (ENOMEM);
8676
8677 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8678 rc = sbuf_finish(sb);
8679 sbuf_delete(sb);
8680
8681 return (rc);
8682 }
8683
8684 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8685 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8686 {
8687 struct port_info *pi = arg1;
8688 int op = arg2;
8689 struct adapter *sc = pi->adapter;
8690 u_int v;
8691 int rc;
8692
8693 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8694 if (rc)
8695 return (rc);
8696 if (!hw_all_ok(sc))
8697 rc = ENXIO;
8698 else {
8699 /* XXX: magic numbers */
8700 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8701 op ? 0x20 : 0xc820, &v);
8702 }
8703 end_synchronized_op(sc, 0);
8704 if (rc)
8705 return (rc);
8706 if (op == 0)
8707 v /= 256;
8708
8709 rc = sysctl_handle_int(oidp, &v, 0, req);
8710 return (rc);
8711 }
8712
8713 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8714 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8715 {
8716 struct vi_info *vi = arg1;
8717 int rc, val;
8718
8719 val = vi->rsrv_noflowq;
8720 rc = sysctl_handle_int(oidp, &val, 0, req);
8721 if (rc != 0 || req->newptr == NULL)
8722 return (rc);
8723
8724 if ((val >= 1) && (vi->ntxq > 1))
8725 vi->rsrv_noflowq = 1;
8726 else
8727 vi->rsrv_noflowq = 0;
8728
8729 return (rc);
8730 }
8731
8732 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8733 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8734 {
8735 struct vi_info *vi = arg1;
8736 struct adapter *sc = vi->adapter;
8737 int rc, val, i;
8738
8739 MPASS(!(sc->flags & IS_VF));
8740
8741 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8742 rc = sysctl_handle_int(oidp, &val, 0, req);
8743 if (rc != 0 || req->newptr == NULL)
8744 return (rc);
8745
8746 if (val != 0 && val != 1)
8747 return (EINVAL);
8748
8749 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8750 "t4txvm");
8751 if (rc)
8752 return (rc);
8753 if (!hw_all_ok(sc))
8754 rc = ENXIO;
8755 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8756 /*
8757 * We don't want parse_pkt to run with one setting (VF or PF)
8758 * and then eth_tx to see a different setting but still use
8759 * stale information calculated by parse_pkt.
8760 */
8761 rc = EBUSY;
8762 } else {
8763 struct port_info *pi = vi->pi;
8764 struct sge_txq *txq;
8765 uint32_t ctrl0;
8766 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8767
8768 if (val) {
8769 vi->flags |= TX_USES_VM_WR;
8770 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8771 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8772 V_TXPKT_INTF(pi->hw_port));
8773 if (!(sc->flags & IS_VF))
8774 npkt--;
8775 } else {
8776 vi->flags &= ~TX_USES_VM_WR;
8777 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8778 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8779 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
8780 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8781 }
8782 for_each_txq(vi, i, txq) {
8783 txq->cpl_ctrl0 = ctrl0;
8784 txq->txp.max_npkt = npkt;
8785 }
8786 }
8787 end_synchronized_op(sc, LOCK_HELD);
8788 return (rc);
8789 }
8790
8791 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8792 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8793 {
8794 struct vi_info *vi = arg1;
8795 struct adapter *sc = vi->adapter;
8796 int idx, rc, i;
8797 struct sge_rxq *rxq;
8798 uint8_t v;
8799
8800 idx = vi->tmr_idx;
8801
8802 rc = sysctl_handle_int(oidp, &idx, 0, req);
8803 if (rc != 0 || req->newptr == NULL)
8804 return (rc);
8805
8806 if (idx < 0 || idx >= SGE_NTIMERS)
8807 return (EINVAL);
8808
8809 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8810 "t4tmr");
8811 if (rc)
8812 return (rc);
8813
8814 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8815 for_each_rxq(vi, i, rxq) {
8816 #ifdef atomic_store_rel_8
8817 atomic_store_rel_8(&rxq->iq.intr_params, v);
8818 #else
8819 rxq->iq.intr_params = v;
8820 #endif
8821 }
8822 vi->tmr_idx = idx;
8823
8824 end_synchronized_op(sc, LOCK_HELD);
8825 return (0);
8826 }
8827
8828 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8829 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8830 {
8831 struct vi_info *vi = arg1;
8832 struct adapter *sc = vi->adapter;
8833 int idx, rc;
8834
8835 idx = vi->pktc_idx;
8836
8837 rc = sysctl_handle_int(oidp, &idx, 0, req);
8838 if (rc != 0 || req->newptr == NULL)
8839 return (rc);
8840
8841 if (idx < -1 || idx >= SGE_NCOUNTERS)
8842 return (EINVAL);
8843
8844 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8845 "t4pktc");
8846 if (rc)
8847 return (rc);
8848
8849 if (vi->flags & VI_INIT_DONE)
8850 rc = EBUSY; /* cannot be changed once the queues are created */
8851 else
8852 vi->pktc_idx = idx;
8853
8854 end_synchronized_op(sc, LOCK_HELD);
8855 return (rc);
8856 }
8857
8858 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8859 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8860 {
8861 struct vi_info *vi = arg1;
8862 struct adapter *sc = vi->adapter;
8863 int qsize, rc;
8864
8865 qsize = vi->qsize_rxq;
8866
8867 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8868 if (rc != 0 || req->newptr == NULL)
8869 return (rc);
8870
8871 if (qsize < 128 || (qsize & 7))
8872 return (EINVAL);
8873
8874 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8875 "t4rxqs");
8876 if (rc)
8877 return (rc);
8878
8879 if (vi->flags & VI_INIT_DONE)
8880 rc = EBUSY; /* cannot be changed once the queues are created */
8881 else
8882 vi->qsize_rxq = qsize;
8883
8884 end_synchronized_op(sc, LOCK_HELD);
8885 return (rc);
8886 }
8887
8888 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8889 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8890 {
8891 struct vi_info *vi = arg1;
8892 struct adapter *sc = vi->adapter;
8893 int qsize, rc;
8894
8895 qsize = vi->qsize_txq;
8896
8897 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8898 if (rc != 0 || req->newptr == NULL)
8899 return (rc);
8900
8901 if (qsize < 128 || qsize > 65536)
8902 return (EINVAL);
8903
8904 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8905 "t4txqs");
8906 if (rc)
8907 return (rc);
8908
8909 if (vi->flags & VI_INIT_DONE)
8910 rc = EBUSY; /* cannot be changed once the queues are created */
8911 else
8912 vi->qsize_txq = qsize;
8913
8914 end_synchronized_op(sc, LOCK_HELD);
8915 return (rc);
8916 }
8917
8918 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8919 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8920 {
8921 struct port_info *pi = arg1;
8922 struct adapter *sc = pi->adapter;
8923 struct link_config *lc = &pi->link_cfg;
8924 int rc;
8925
8926 if (req->newptr == NULL) {
8927 struct sbuf *sb;
8928 static char *bits = "\20\1RX\2TX\3AUTO";
8929
8930 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8931 if (sb == NULL)
8932 return (ENOMEM);
8933
8934 if (lc->link_ok) {
8935 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8936 (lc->requested_fc & PAUSE_AUTONEG), bits);
8937 } else {
8938 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8939 PAUSE_RX | PAUSE_AUTONEG), bits);
8940 }
8941 rc = sbuf_finish(sb);
8942 sbuf_delete(sb);
8943 } else {
8944 char s[2];
8945 int n;
8946
8947 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8948 PAUSE_AUTONEG));
8949 s[1] = 0;
8950
8951 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8952 if (rc != 0)
8953 return(rc);
8954
8955 if (s[1] != 0)
8956 return (EINVAL);
8957 if (s[0] < '0' || s[0] > '9')
8958 return (EINVAL); /* not a number */
8959 n = s[0] - '0';
8960 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8961 return (EINVAL); /* some other bit is set too */
8962
8963 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8964 "t4PAUSE");
8965 if (rc)
8966 return (rc);
8967 if (hw_all_ok(sc)) {
8968 PORT_LOCK(pi);
8969 lc->requested_fc = n;
8970 fixup_link_config(pi);
8971 if (pi->up_vis > 0)
8972 rc = apply_link_config(pi);
8973 set_current_media(pi);
8974 PORT_UNLOCK(pi);
8975 }
8976 end_synchronized_op(sc, 0);
8977 }
8978
8979 return (rc);
8980 }
8981
8982 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8983 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8984 {
8985 struct port_info *pi = arg1;
8986 struct link_config *lc = &pi->link_cfg;
8987 int rc;
8988 struct sbuf *sb;
8989
8990 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8991 if (sb == NULL)
8992 return (ENOMEM);
8993 if (lc->link_ok)
8994 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits);
8995 else
8996 sbuf_printf(sb, "no link");
8997 rc = sbuf_finish(sb);
8998 sbuf_delete(sb);
8999
9000 return (rc);
9001 }
9002
9003 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)9004 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
9005 {
9006 struct port_info *pi = arg1;
9007 struct adapter *sc = pi->adapter;
9008 struct link_config *lc = &pi->link_cfg;
9009 int rc;
9010 int8_t old;
9011
9012 if (req->newptr == NULL) {
9013 struct sbuf *sb;
9014
9015 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9016 if (sb == NULL)
9017 return (ENOMEM);
9018
9019 sbuf_printf(sb, "%b", lc->requested_fec, t4_fec_bits);
9020 rc = sbuf_finish(sb);
9021 sbuf_delete(sb);
9022 } else {
9023 char s[8];
9024 int n;
9025
9026 snprintf(s, sizeof(s), "%d",
9027 lc->requested_fec == FEC_AUTO ? -1 :
9028 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
9029
9030 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
9031 if (rc != 0)
9032 return(rc);
9033
9034 n = strtol(&s[0], NULL, 0);
9035 if (n < 0 || n & FEC_AUTO)
9036 n = FEC_AUTO;
9037 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
9038 return (EINVAL);/* some other bit is set too */
9039
9040 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9041 "t4reqf");
9042 if (rc)
9043 return (rc);
9044 PORT_LOCK(pi);
9045 old = lc->requested_fec;
9046 if (n == FEC_AUTO)
9047 lc->requested_fec = FEC_AUTO;
9048 else if (n == 0 || n == FEC_NONE)
9049 lc->requested_fec = FEC_NONE;
9050 else {
9051 if ((lc->pcaps |
9052 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
9053 lc->pcaps) {
9054 rc = ENOTSUP;
9055 goto done;
9056 }
9057 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
9058 FEC_MODULE);
9059 }
9060 if (hw_all_ok(sc)) {
9061 fixup_link_config(pi);
9062 if (pi->up_vis > 0) {
9063 rc = apply_link_config(pi);
9064 if (rc != 0) {
9065 lc->requested_fec = old;
9066 if (rc == FW_EPROTO)
9067 rc = ENOTSUP;
9068 }
9069 }
9070 }
9071 done:
9072 PORT_UNLOCK(pi);
9073 end_synchronized_op(sc, 0);
9074 }
9075
9076 return (rc);
9077 }
9078
9079 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)9080 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
9081 {
9082 struct port_info *pi = arg1;
9083 struct adapter *sc = pi->adapter;
9084 struct link_config *lc = &pi->link_cfg;
9085 int rc;
9086 int8_t fec;
9087 struct sbuf *sb;
9088
9089 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9090 if (sb == NULL)
9091 return (ENOMEM);
9092
9093 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
9094 rc = EBUSY;
9095 goto done;
9096 }
9097 if (!hw_all_ok(sc)) {
9098 rc = ENXIO;
9099 goto done;
9100 }
9101 PORT_LOCK(pi);
9102 if (pi->up_vis == 0) {
9103 /*
9104 * If all the interfaces are administratively down the firmware
9105 * does not report transceiver changes. Refresh port info here.
9106 * This is the only reason we have a synchronized op in this
9107 * function. Just PORT_LOCK would have been enough otherwise.
9108 */
9109 t4_update_port_info(pi);
9110 }
9111
9112 fec = lc->fec_hint;
9113 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
9114 !fec_supported(lc->pcaps)) {
9115 PORT_UNLOCK(pi);
9116 sbuf_printf(sb, "n/a");
9117 } else {
9118 if (fec == 0)
9119 fec = FEC_NONE;
9120 PORT_UNLOCK(pi);
9121 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits);
9122 }
9123 rc = sbuf_finish(sb);
9124 done:
9125 sbuf_delete(sb);
9126 end_synchronized_op(sc, 0);
9127
9128 return (rc);
9129 }
9130
9131 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)9132 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
9133 {
9134 struct port_info *pi = arg1;
9135 struct adapter *sc = pi->adapter;
9136 struct link_config *lc = &pi->link_cfg;
9137 int rc, val;
9138
9139 if (lc->pcaps & FW_PORT_CAP32_ANEG)
9140 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
9141 else
9142 val = -1;
9143 rc = sysctl_handle_int(oidp, &val, 0, req);
9144 if (rc != 0 || req->newptr == NULL)
9145 return (rc);
9146 if (val == 0)
9147 val = AUTONEG_DISABLE;
9148 else if (val == 1)
9149 val = AUTONEG_ENABLE;
9150 else
9151 val = AUTONEG_AUTO;
9152
9153 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9154 "t4aneg");
9155 if (rc)
9156 return (rc);
9157 PORT_LOCK(pi);
9158 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
9159 rc = ENOTSUP;
9160 goto done;
9161 }
9162 lc->requested_aneg = val;
9163 if (hw_all_ok(sc)) {
9164 fixup_link_config(pi);
9165 if (pi->up_vis > 0)
9166 rc = apply_link_config(pi);
9167 set_current_media(pi);
9168 }
9169 done:
9170 PORT_UNLOCK(pi);
9171 end_synchronized_op(sc, 0);
9172 return (rc);
9173 }
9174
9175 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)9176 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
9177 {
9178 struct port_info *pi = arg1;
9179 struct adapter *sc = pi->adapter;
9180 struct link_config *lc = &pi->link_cfg;
9181 int rc, val;
9182
9183 val = lc->force_fec;
9184 MPASS(val >= -1 && val <= 1);
9185 rc = sysctl_handle_int(oidp, &val, 0, req);
9186 if (rc != 0 || req->newptr == NULL)
9187 return (rc);
9188 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
9189 return (ENOTSUP);
9190 if (val < -1 || val > 1)
9191 return (EINVAL);
9192
9193 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
9194 if (rc)
9195 return (rc);
9196 PORT_LOCK(pi);
9197 lc->force_fec = val;
9198 if (hw_all_ok(sc)) {
9199 fixup_link_config(pi);
9200 if (pi->up_vis > 0)
9201 rc = apply_link_config(pi);
9202 }
9203 PORT_UNLOCK(pi);
9204 end_synchronized_op(sc, 0);
9205 return (rc);
9206 }
9207
9208 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)9209 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
9210 {
9211 struct adapter *sc = arg1;
9212 int rc, reg = arg2;
9213 uint64_t val;
9214
9215 mtx_lock(&sc->reg_lock);
9216 if (hw_off_limits(sc))
9217 rc = ENXIO;
9218 else {
9219 rc = 0;
9220 val = t4_read_reg64(sc, reg);
9221 }
9222 mtx_unlock(&sc->reg_lock);
9223 if (rc == 0)
9224 rc = sysctl_handle_64(oidp, &val, 0, req);
9225 return (rc);
9226 }
9227
9228 static int
sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)9229 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)
9230 {
9231 struct port_info *pi = arg1;
9232 struct adapter *sc = pi->adapter;
9233 int rc, i, reg = arg2;
9234 uint64_t val;
9235
9236 mtx_lock(&sc->reg_lock);
9237 if (hw_off_limits(sc))
9238 rc = ENXIO;
9239 else {
9240 val = 0;
9241 for (i = 0; i < sc->params.tp.lb_nchan; i++) {
9242 val += t4_read_reg64(sc,
9243 t4_port_reg(sc, pi->tx_chan + i, reg));
9244 }
9245 rc = 0;
9246 }
9247 mtx_unlock(&sc->reg_lock);
9248 if (rc == 0)
9249 rc = sysctl_handle_64(oidp, &val, 0, req);
9250 return (rc);
9251 }
9252
9253 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)9254 sysctl_temperature(SYSCTL_HANDLER_ARGS)
9255 {
9256 struct adapter *sc = arg1;
9257 int rc, t;
9258 uint32_t param, val;
9259
9260 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
9261 if (rc)
9262 return (rc);
9263 if (!hw_all_ok(sc))
9264 rc = ENXIO;
9265 else {
9266 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9267 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9268 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
9269 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9270 }
9271 end_synchronized_op(sc, 0);
9272 if (rc)
9273 return (rc);
9274
9275 /* unknown is returned as 0 but we display -1 in that case */
9276 t = val == 0 ? -1 : val;
9277
9278 rc = sysctl_handle_int(oidp, &t, 0, req);
9279 return (rc);
9280 }
9281
9282 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)9283 sysctl_vdd(SYSCTL_HANDLER_ARGS)
9284 {
9285 struct adapter *sc = arg1;
9286 int rc;
9287 uint32_t param, val;
9288
9289 if (sc->params.core_vdd == 0) {
9290 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9291 "t4vdd");
9292 if (rc)
9293 return (rc);
9294 if (!hw_all_ok(sc))
9295 rc = ENXIO;
9296 else {
9297 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9298 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9299 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
9300 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
9301 ¶m, &val);
9302 }
9303 end_synchronized_op(sc, 0);
9304 if (rc)
9305 return (rc);
9306 sc->params.core_vdd = val;
9307 }
9308
9309 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
9310 }
9311
9312 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)9313 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
9314 {
9315 struct adapter *sc = arg1;
9316 int rc, v;
9317 uint32_t param, val;
9318
9319 v = sc->sensor_resets;
9320 rc = sysctl_handle_int(oidp, &v, 0, req);
9321 if (rc != 0 || req->newptr == NULL || v <= 0)
9322 return (rc);
9323
9324 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
9325 chip_id(sc) < CHELSIO_T5)
9326 return (ENOTSUP);
9327
9328 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
9329 if (rc)
9330 return (rc);
9331 if (!hw_all_ok(sc))
9332 rc = ENXIO;
9333 else {
9334 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9335 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9336 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
9337 val = 1;
9338 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9339 }
9340 end_synchronized_op(sc, 0);
9341 if (rc == 0)
9342 sc->sensor_resets++;
9343 return (rc);
9344 }
9345
9346 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9347 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9348 {
9349 struct adapter *sc = arg1;
9350 struct sbuf *sb;
9351 int rc;
9352 uint32_t param, val;
9353 uint8_t coreid = (uint8_t)arg2;
9354
9355 KASSERT(coreid < sc->params.ncores,
9356 ("%s: bad coreid %u\n", __func__, coreid));
9357
9358 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9359 if (rc)
9360 return (rc);
9361 if (!hw_all_ok(sc))
9362 rc = ENXIO;
9363 else {
9364 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9365 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) |
9366 V_FW_PARAMS_PARAM_Y(coreid);
9367 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9368 }
9369 end_synchronized_op(sc, 0);
9370 if (rc)
9371 return (rc);
9372
9373 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9374 if (sb == NULL)
9375 return (ENOMEM);
9376
9377 if (val == 0xffffffff) {
9378 /* Only debug and custom firmwares report load averages. */
9379 sbuf_printf(sb, "not available");
9380 } else {
9381 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9382 (val >> 16) & 0xff);
9383 }
9384 rc = sbuf_finish(sb);
9385 sbuf_delete(sb);
9386
9387 return (rc);
9388 }
9389
9390 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9391 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9392 {
9393 struct adapter *sc = arg1;
9394 struct sbuf *sb;
9395 int rc, i;
9396 uint16_t incr[NMTUS][NCCTRL_WIN];
9397 static const char *dec_fac[] = {
9398 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9399 "0.9375"
9400 };
9401
9402 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9403 if (sb == NULL)
9404 return (ENOMEM);
9405
9406 rc = 0;
9407 mtx_lock(&sc->reg_lock);
9408 if (hw_off_limits(sc))
9409 rc = ENXIO;
9410 else
9411 t4_read_cong_tbl(sc, incr);
9412 mtx_unlock(&sc->reg_lock);
9413 if (rc)
9414 goto done;
9415
9416 for (i = 0; i < NCCTRL_WIN; ++i) {
9417 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9418 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9419 incr[5][i], incr[6][i], incr[7][i]);
9420 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9421 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9422 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9423 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9424 }
9425
9426 rc = sbuf_finish(sb);
9427 done:
9428 sbuf_delete(sb);
9429 return (rc);
9430 }
9431
9432 static int
sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)9433 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)
9434 {
9435 struct adapter *sc = arg1;
9436 struct sbuf *sb;
9437 int rc, i, n, qid, coreid;
9438 uint32_t *buf, *p;
9439
9440 qid = arg2 & 0xffff;
9441 coreid = arg2 >> 16;
9442
9443 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq,
9444 ("%s: bad ibq qid %d\n", __func__, qid));
9445 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9446 ("%s: bad coreid %d\n", __func__, coreid));
9447
9448 n = 4 * CIM_IBQ_SIZE;
9449 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9450 mtx_lock(&sc->reg_lock);
9451 if (hw_off_limits(sc))
9452 rc = -ENXIO;
9453 else
9454 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n);
9455 mtx_unlock(&sc->reg_lock);
9456 if (rc < 0) {
9457 rc = -rc;
9458 goto done;
9459 }
9460 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9461
9462 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9463 if (sb == NULL) {
9464 rc = ENOMEM;
9465 goto done;
9466 }
9467 for (i = 0, p = buf; i < n; i += 16, p += 4)
9468 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9469 p[2], p[3]);
9470 rc = sbuf_finish(sb);
9471 sbuf_delete(sb);
9472 done:
9473 free(buf, M_CXGBE);
9474 return (rc);
9475 }
9476
9477 static int
sysctl_cim_obq(SYSCTL_HANDLER_ARGS)9478 sysctl_cim_obq(SYSCTL_HANDLER_ARGS)
9479 {
9480 struct adapter *sc = arg1;
9481 struct sbuf *sb;
9482 int rc, i, n, qid, coreid;
9483 uint32_t *buf, *p;
9484
9485 qid = arg2 & 0xffff;
9486 coreid = arg2 >> 16;
9487
9488 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq,
9489 ("%s: bad obq qid %d\n", __func__, qid));
9490 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9491 ("%s: bad coreid %d\n", __func__, coreid));
9492
9493 n = 6 * CIM_OBQ_SIZE * 4;
9494 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9495 mtx_lock(&sc->reg_lock);
9496 if (hw_off_limits(sc))
9497 rc = -ENXIO;
9498 else
9499 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n);
9500 mtx_unlock(&sc->reg_lock);
9501 if (rc < 0) {
9502 rc = -rc;
9503 goto done;
9504 }
9505 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9506
9507 rc = sysctl_wire_old_buffer(req, 0);
9508 if (rc != 0)
9509 goto done;
9510
9511 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9512 if (sb == NULL) {
9513 rc = ENOMEM;
9514 goto done;
9515 }
9516 for (i = 0, p = buf; i < n; i += 16, p += 4)
9517 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9518 p[2], p[3]);
9519 rc = sbuf_finish(sb);
9520 sbuf_delete(sb);
9521 done:
9522 free(buf, M_CXGBE);
9523 return (rc);
9524 }
9525
9526 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9527 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9528 {
9529 uint32_t *p;
9530
9531 sbuf_printf(sb, "Status Data PC%s",
9532 cfg & F_UPDBGLACAPTPCONLY ? "" :
9533 " LS0Stat LS0Addr LS0Data");
9534
9535 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9536 if (cfg & F_UPDBGLACAPTPCONLY) {
9537 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9538 p[6], p[7]);
9539 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9540 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9541 p[4] & 0xff, p[5] >> 8);
9542 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9543 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9544 p[1] & 0xf, p[2] >> 4);
9545 } else {
9546 sbuf_printf(sb,
9547 "\n %02x %x%07x %x%07x %08x %08x "
9548 "%08x%08x%08x%08x",
9549 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9550 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9551 p[6], p[7]);
9552 }
9553 }
9554 }
9555
9556 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9557 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9558 {
9559 uint32_t *p;
9560
9561 sbuf_printf(sb, "Status Inst Data PC%s",
9562 cfg & F_UPDBGLACAPTPCONLY ? "" :
9563 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9564
9565 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9566 if (cfg & F_UPDBGLACAPTPCONLY) {
9567 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9568 p[3] & 0xff, p[2], p[1], p[0]);
9569 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9570 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9571 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9572 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9573 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9574 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9575 p[6] >> 16);
9576 } else {
9577 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9578 "%08x %08x %08x %08x %08x %08x",
9579 (p[9] >> 16) & 0xff,
9580 p[9] & 0xffff, p[8] >> 16,
9581 p[8] & 0xffff, p[7] >> 16,
9582 p[7] & 0xffff, p[6] >> 16,
9583 p[2], p[1], p[0], p[5], p[4], p[3]);
9584 }
9585 }
9586 }
9587
9588 static int
sbuf_cim_la(struct adapter * sc,int coreid,struct sbuf * sb,int flags)9589 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
9590 {
9591 uint32_t cfg, *buf;
9592 int rc;
9593
9594 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9595 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9596 M_ZERO | flags);
9597 if (buf == NULL)
9598 return (ENOMEM);
9599
9600 mtx_lock(&sc->reg_lock);
9601 if (hw_off_limits(sc))
9602 rc = ENXIO;
9603 else {
9604 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
9605 &cfg);
9606 if (rc == 0)
9607 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL);
9608 }
9609 mtx_unlock(&sc->reg_lock);
9610 if (rc == 0) {
9611 if (chip_id(sc) < CHELSIO_T6)
9612 sbuf_cim_la4(sc, sb, buf, cfg);
9613 else
9614 sbuf_cim_la6(sc, sb, buf, cfg);
9615 }
9616 free(buf, M_CXGBE);
9617 return (rc);
9618 }
9619
9620 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9621 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9622 {
9623 struct adapter *sc = arg1;
9624 int coreid = arg2;
9625 struct sbuf *sb;
9626 int rc;
9627
9628 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9629 if (sb == NULL)
9630 return (ENOMEM);
9631
9632 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK);
9633 if (rc == 0)
9634 rc = sbuf_finish(sb);
9635 sbuf_delete(sb);
9636 return (rc);
9637 }
9638
9639 static void
dump_cim_regs(struct adapter * sc)9640 dump_cim_regs(struct adapter *sc)
9641 {
9642 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9643 device_get_nameunit(sc->dev),
9644 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9645 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9646 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9647 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9648 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9649 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9650 device_get_nameunit(sc->dev),
9651 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9652 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9653 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9654 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9655 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9656 }
9657
9658 static void
dump_cimla(struct adapter * sc)9659 dump_cimla(struct adapter *sc)
9660 {
9661 struct sbuf sb;
9662 int rc;
9663
9664 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9665 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9666 device_get_nameunit(sc->dev));
9667 return;
9668 }
9669 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK);
9670 if (rc == 0) {
9671 rc = sbuf_finish(&sb);
9672 if (rc == 0) {
9673 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9674 device_get_nameunit(sc->dev), sbuf_data(&sb));
9675 }
9676 }
9677 sbuf_delete(&sb);
9678 }
9679
9680 void
t4_os_cim_err(struct adapter * sc)9681 t4_os_cim_err(struct adapter *sc)
9682 {
9683 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9684 }
9685
9686 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9687 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9688 {
9689 struct adapter *sc = arg1;
9690 u_int i;
9691 struct sbuf *sb;
9692 uint32_t *buf, *p;
9693 int rc;
9694
9695 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9696 if (sb == NULL)
9697 return (ENOMEM);
9698
9699 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9700 M_ZERO | M_WAITOK);
9701
9702 rc = 0;
9703 mtx_lock(&sc->reg_lock);
9704 if (hw_off_limits(sc))
9705 rc = ENXIO;
9706 else
9707 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9708 mtx_unlock(&sc->reg_lock);
9709 if (rc)
9710 goto done;
9711
9712 p = buf;
9713 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9714 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9715 p[1], p[0]);
9716 }
9717
9718 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9719 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9720 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9721 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9722 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9723 (p[1] >> 2) | ((p[2] & 3) << 30),
9724 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9725 p[0] & 1);
9726 }
9727 rc = sbuf_finish(sb);
9728 done:
9729 sbuf_delete(sb);
9730 free(buf, M_CXGBE);
9731 return (rc);
9732 }
9733
9734 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9735 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9736 {
9737 struct adapter *sc = arg1;
9738 u_int i;
9739 struct sbuf *sb;
9740 uint32_t *buf, *p;
9741 int rc;
9742
9743 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9744 if (sb == NULL)
9745 return (ENOMEM);
9746
9747 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9748 M_ZERO | M_WAITOK);
9749
9750 rc = 0;
9751 mtx_lock(&sc->reg_lock);
9752 if (hw_off_limits(sc))
9753 rc = ENXIO;
9754 else
9755 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9756 mtx_unlock(&sc->reg_lock);
9757 if (rc)
9758 goto done;
9759
9760 p = buf;
9761 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9762 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9763 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9764 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9765 p[4], p[3], p[2], p[1], p[0]);
9766 }
9767
9768 sbuf_printf(sb, "\n\nCntl ID Data");
9769 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9770 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9771 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9772 }
9773
9774 rc = sbuf_finish(sb);
9775 done:
9776 sbuf_delete(sb);
9777 free(buf, M_CXGBE);
9778 return (rc);
9779 }
9780
9781 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9782 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9783 {
9784 struct adapter *sc = arg1;
9785 struct sbuf *sb;
9786 int rc, i;
9787 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9788 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9789 uint16_t thres[CIM_NUM_IBQ];
9790 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9791 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9792 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9793 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9794 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9795 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9796 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9797 };
9798
9799 MPASS(chip_id(sc) < CHELSIO_T7);
9800
9801 cim_num_obq = sc->chip_params->cim_num_obq;
9802 if (is_t4(sc)) {
9803 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9804 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9805 } else {
9806 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9807 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9808 }
9809 nq = CIM_NUM_IBQ + cim_num_obq;
9810
9811 mtx_lock(&sc->reg_lock);
9812 if (hw_off_limits(sc))
9813 rc = ENXIO;
9814 else {
9815 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9816 if (rc == 0) {
9817 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9818 obq_wr);
9819 if (rc == 0)
9820 t4_read_cimq_cfg(sc, base, size, thres);
9821 }
9822 }
9823 mtx_unlock(&sc->reg_lock);
9824 if (rc)
9825 return (rc);
9826
9827 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9828 if (sb == NULL)
9829 return (ENOMEM);
9830
9831 sbuf_printf(sb,
9832 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9833
9834 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9835 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9836 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9837 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9838 G_QUEREMFLITS(p[2]) * 16);
9839 for ( ; i < nq; i++, p += 4, wr += 2)
9840 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9841 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9842 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9843 G_QUEREMFLITS(p[2]) * 16);
9844
9845 rc = sbuf_finish(sb);
9846 sbuf_delete(sb);
9847
9848 return (rc);
9849 }
9850
9851 static int
sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)9852 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)
9853 {
9854 struct adapter *sc = arg1;
9855 u_int coreid = arg2;
9856 struct sbuf *sb;
9857 int rc, i;
9858 u_int addr;
9859 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9860 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9861 uint16_t thres[CIM_NUM_IBQ_T7];
9862 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr;
9863 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat;
9864 static const char * const qname_ibq_t7[] = {
9865 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI",
9866 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7",
9867 };
9868 static const char * const qname_obq_t7[] = {
9869 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX",
9870 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5",
9871 "IPC6", "IPC7"
9872 };
9873 static const char * const qname_ibq_sec_t7[] = {
9874 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD",
9875 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD",
9876 };
9877 static const char * const qname_obq_sec_t7[] = {
9878 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX",
9879 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD",
9880 "RSVD", "RSVD",
9881 };
9882
9883 MPASS(chip_id(sc) >= CHELSIO_T7);
9884
9885 mtx_lock(&sc->reg_lock);
9886 if (hw_off_limits(sc))
9887 rc = ENXIO;
9888 else {
9889 rc = -t4_cim_read_core(sc, 1, coreid,
9890 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat);
9891 if (rc != 0)
9892 goto unlock;
9893
9894 rc = -t4_cim_read_core(sc, 1, coreid,
9895 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7,
9896 &stat[4 * CIM_NUM_IBQ_T7]);
9897 if (rc != 0)
9898 goto unlock;
9899
9900 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR;
9901 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) {
9902 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1,
9903 &obq_wr[i]);
9904 if (rc != 0)
9905 goto unlock;
9906 }
9907 t4_read_cimq_cfg_core(sc, coreid, base, size, thres);
9908 }
9909 unlock:
9910 mtx_unlock(&sc->reg_lock);
9911 if (rc)
9912 return (rc);
9913
9914 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9915 if (sb == NULL)
9916 return (ENOMEM);
9917
9918 sbuf_printf(sb,
9919 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9920
9921 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) {
9922 if (!size[i])
9923 continue;
9924
9925 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9926 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i],
9927 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff,
9928 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]),
9929 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16);
9930 }
9931
9932 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) {
9933 if (!size[i])
9934 continue;
9935
9936 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u",
9937 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] :
9938 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7],
9939 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff,
9940 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9941 G_T7_QUEREMFLITS(p[2]) * 16);
9942 }
9943
9944 rc = sbuf_finish(sb);
9945 sbuf_delete(sb);
9946 return (rc);
9947 }
9948
9949 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9950 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9951 {
9952 struct adapter *sc = arg1;
9953 struct sbuf *sb;
9954 int rc;
9955 struct tp_cpl_stats stats;
9956
9957 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9958 if (sb == NULL)
9959 return (ENOMEM);
9960
9961 rc = 0;
9962 mtx_lock(&sc->reg_lock);
9963 if (hw_off_limits(sc))
9964 rc = ENXIO;
9965 else
9966 t4_tp_get_cpl_stats(sc, &stats, 0);
9967 mtx_unlock(&sc->reg_lock);
9968 if (rc)
9969 goto done;
9970
9971 if (sc->chip_params->nchan > 2) {
9972 sbuf_printf(sb, " channel 0 channel 1"
9973 " channel 2 channel 3");
9974 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9975 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9976 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9977 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9978 } else {
9979 sbuf_printf(sb, " channel 0 channel 1");
9980 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9981 stats.req[0], stats.req[1]);
9982 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9983 stats.rsp[0], stats.rsp[1]);
9984 }
9985
9986 rc = sbuf_finish(sb);
9987 done:
9988 sbuf_delete(sb);
9989 return (rc);
9990 }
9991
9992 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9993 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9994 {
9995 struct adapter *sc = arg1;
9996 struct sbuf *sb;
9997 int rc;
9998 struct tp_usm_stats stats;
9999
10000 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10001 if (sb == NULL)
10002 return (ENOMEM);
10003
10004 rc = 0;
10005 mtx_lock(&sc->reg_lock);
10006 if (hw_off_limits(sc))
10007 rc = ENXIO;
10008 else
10009 t4_get_usm_stats(sc, &stats, 1);
10010 mtx_unlock(&sc->reg_lock);
10011 if (rc == 0) {
10012 sbuf_printf(sb, "Frames: %u\n", stats.frames);
10013 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
10014 sbuf_printf(sb, "Drops: %u", stats.drops);
10015 rc = sbuf_finish(sb);
10016 }
10017 sbuf_delete(sb);
10018
10019 return (rc);
10020 }
10021
10022 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)10023 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
10024 {
10025 struct adapter *sc = arg1;
10026 struct sbuf *sb;
10027 int rc;
10028 struct tp_tid_stats stats;
10029
10030 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10031 if (sb == NULL)
10032 return (ENOMEM);
10033
10034 rc = 0;
10035 mtx_lock(&sc->reg_lock);
10036 if (hw_off_limits(sc))
10037 rc = ENXIO;
10038 else
10039 t4_tp_get_tid_stats(sc, &stats, 1);
10040 mtx_unlock(&sc->reg_lock);
10041 if (rc == 0) {
10042 sbuf_printf(sb, "Delete: %u\n", stats.del);
10043 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
10044 sbuf_printf(sb, "Active: %u\n", stats.act);
10045 sbuf_printf(sb, "Passive: %u", stats.pas);
10046 rc = sbuf_finish(sb);
10047 }
10048 sbuf_delete(sb);
10049
10050 return (rc);
10051 }
10052
10053 static const char * const devlog_level_strings[] = {
10054 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
10055 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
10056 [FW_DEVLOG_LEVEL_ERR] = "ERR",
10057 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
10058 [FW_DEVLOG_LEVEL_INFO] = "INFO",
10059 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
10060 };
10061
10062 static const char * const devlog_facility_strings[] = {
10063 [FW_DEVLOG_FACILITY_CORE] = "CORE",
10064 [FW_DEVLOG_FACILITY_CF] = "CF",
10065 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
10066 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
10067 [FW_DEVLOG_FACILITY_RES] = "RES",
10068 [FW_DEVLOG_FACILITY_HW] = "HW",
10069 [FW_DEVLOG_FACILITY_FLR] = "FLR",
10070 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
10071 [FW_DEVLOG_FACILITY_PHY] = "PHY",
10072 [FW_DEVLOG_FACILITY_MAC] = "MAC",
10073 [FW_DEVLOG_FACILITY_PORT] = "PORT",
10074 [FW_DEVLOG_FACILITY_VI] = "VI",
10075 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
10076 [FW_DEVLOG_FACILITY_ACL] = "ACL",
10077 [FW_DEVLOG_FACILITY_TM] = "TM",
10078 [FW_DEVLOG_FACILITY_QFC] = "QFC",
10079 [FW_DEVLOG_FACILITY_DCB] = "DCB",
10080 [FW_DEVLOG_FACILITY_ETH] = "ETH",
10081 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
10082 [FW_DEVLOG_FACILITY_RI] = "RI",
10083 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
10084 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
10085 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
10086 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
10087 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
10088 };
10089
10090 static int
sbuf_devlog(struct adapter * sc,int coreid,struct sbuf * sb,int flags)10091 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
10092 {
10093 int i, j, rc, nentries, first = 0;
10094 struct devlog_params *dparams = &sc->params.devlog;
10095 struct fw_devlog_e *buf, *e;
10096 uint32_t addr, size;
10097 uint64_t ftstamp = UINT64_MAX;
10098
10099 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10100 ("%s: bad coreid %d\n", __func__, coreid));
10101
10102 if (dparams->addr == 0)
10103 return (ENXIO);
10104
10105 size = dparams->size / sc->params.ncores;
10106 addr = dparams->addr + coreid * size;
10107
10108 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
10109 buf = malloc(size, M_CXGBE, M_ZERO | flags);
10110 if (buf == NULL)
10111 return (ENOMEM);
10112
10113 mtx_lock(&sc->reg_lock);
10114 if (hw_off_limits(sc))
10115 rc = ENXIO;
10116 else
10117 rc = read_via_memwin(sc, 1, addr, (void *)buf, size);
10118 mtx_unlock(&sc->reg_lock);
10119 if (rc != 0)
10120 goto done;
10121
10122 nentries = size / sizeof(struct fw_devlog_e);
10123 for (i = 0; i < nentries; i++) {
10124 e = &buf[i];
10125
10126 if (e->timestamp == 0)
10127 break; /* end */
10128
10129 e->timestamp = be64toh(e->timestamp);
10130 e->seqno = be32toh(e->seqno);
10131 for (j = 0; j < 8; j++)
10132 e->params[j] = be32toh(e->params[j]);
10133
10134 if (e->timestamp < ftstamp) {
10135 ftstamp = e->timestamp;
10136 first = i;
10137 }
10138 }
10139
10140 if (buf[first].timestamp == 0)
10141 goto done; /* nothing in the log */
10142
10143 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
10144 "Seq#", "Tstamp", "Level", "Facility", "Message");
10145
10146 i = first;
10147 do {
10148 e = &buf[i];
10149 if (e->timestamp == 0)
10150 break; /* end */
10151
10152 sbuf_printf(sb, "%10d %15ju %8s %8s ",
10153 e->seqno, e->timestamp,
10154 (e->level < nitems(devlog_level_strings) ?
10155 devlog_level_strings[e->level] : "UNKNOWN"),
10156 (e->facility < nitems(devlog_facility_strings) ?
10157 devlog_facility_strings[e->facility] : "UNKNOWN"));
10158 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
10159 e->params[2], e->params[3], e->params[4],
10160 e->params[5], e->params[6], e->params[7]);
10161
10162 if (++i == nentries)
10163 i = 0;
10164 } while (i != first);
10165 done:
10166 free(buf, M_CXGBE);
10167 return (rc);
10168 }
10169
10170 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)10171 sysctl_devlog(SYSCTL_HANDLER_ARGS)
10172 {
10173 struct adapter *sc = arg1;
10174 int rc, i, coreid = arg2;
10175 struct sbuf *sb;
10176
10177 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10178 if (sb == NULL)
10179 return (ENOMEM);
10180 if (coreid == -1) {
10181 /* -1 means all cores */
10182 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10183 if (sc->params.ncores > 0)
10184 sbuf_printf(sb, "=== CIM core %u ===\n", i);
10185 rc = sbuf_devlog(sc, i, sb, M_WAITOK);
10186 }
10187 } else {
10188 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10189 ("%s: bad coreid %d\n", __func__, coreid));
10190 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK);
10191 }
10192 if (rc == 0)
10193 rc = sbuf_finish(sb);
10194 sbuf_delete(sb);
10195 return (rc);
10196 }
10197
10198 static void
dump_devlog(struct adapter * sc)10199 dump_devlog(struct adapter *sc)
10200 {
10201 int rc, i;
10202 struct sbuf sb;
10203
10204 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
10205 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
10206 device_get_nameunit(sc->dev));
10207 return;
10208 }
10209 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10210 if (sc->params.ncores > 0)
10211 sbuf_printf(&sb, "=== CIM core %u ===\n", i);
10212 rc = sbuf_devlog(sc, i, &sb, M_WAITOK);
10213 }
10214 if (rc == 0) {
10215 sbuf_finish(&sb);
10216 log(LOG_DEBUG, "%s: device log follows.\n%s",
10217 device_get_nameunit(sc->dev), sbuf_data(&sb));
10218 }
10219 sbuf_delete(&sb);
10220 }
10221
10222 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)10223 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
10224 {
10225 struct adapter *sc = arg1;
10226 struct sbuf *sb;
10227 int rc;
10228 struct tp_fcoe_stats stats[MAX_NCHAN];
10229 int i, nchan = sc->chip_params->nchan;
10230
10231 rc = 0;
10232 mtx_lock(&sc->reg_lock);
10233 if (hw_off_limits(sc))
10234 rc = ENXIO;
10235 else {
10236 for (i = 0; i < nchan; i++)
10237 t4_get_fcoe_stats(sc, i, &stats[i], 1);
10238 }
10239 mtx_unlock(&sc->reg_lock);
10240 if (rc != 0)
10241 return (rc);
10242
10243 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10244 if (sb == NULL)
10245 return (ENOMEM);
10246
10247 if (nchan > 2) {
10248 sbuf_printf(sb, " channel 0 channel 1"
10249 " channel 2 channel 3");
10250 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
10251 stats[0].octets_ddp, stats[1].octets_ddp,
10252 stats[2].octets_ddp, stats[3].octets_ddp);
10253 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
10254 stats[0].frames_ddp, stats[1].frames_ddp,
10255 stats[2].frames_ddp, stats[3].frames_ddp);
10256 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
10257 stats[0].frames_drop, stats[1].frames_drop,
10258 stats[2].frames_drop, stats[3].frames_drop);
10259 } else {
10260 sbuf_printf(sb, " channel 0 channel 1");
10261 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
10262 stats[0].octets_ddp, stats[1].octets_ddp);
10263 sbuf_printf(sb, "\nframesDDP: %16u %16u",
10264 stats[0].frames_ddp, stats[1].frames_ddp);
10265 sbuf_printf(sb, "\nframesDrop: %16u %16u",
10266 stats[0].frames_drop, stats[1].frames_drop);
10267 }
10268
10269 rc = sbuf_finish(sb);
10270 sbuf_delete(sb);
10271
10272 return (rc);
10273 }
10274
10275 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)10276 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
10277 {
10278 struct adapter *sc = arg1;
10279 struct sbuf *sb;
10280 int rc, i;
10281 unsigned int map, kbps, ipg, mode;
10282 unsigned int pace_tab[NTX_SCHED];
10283
10284 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
10285 if (sb == NULL)
10286 return (ENOMEM);
10287
10288 mtx_lock(&sc->reg_lock);
10289 if (hw_off_limits(sc)) {
10290 mtx_unlock(&sc->reg_lock);
10291 rc = ENXIO;
10292 goto done;
10293 }
10294
10295 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
10296 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
10297 t4_read_pace_tbl(sc, pace_tab);
10298 mtx_unlock(&sc->reg_lock);
10299
10300 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
10301 "Class IPG (0.1 ns) Flow IPG (us)");
10302
10303 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
10304 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
10305 sbuf_printf(sb, "\n %u %-5s %u ", i,
10306 (mode & (1 << i)) ? "flow" : "class", map & 3);
10307 if (kbps)
10308 sbuf_printf(sb, "%9u ", kbps);
10309 else
10310 sbuf_printf(sb, " disabled ");
10311
10312 if (ipg)
10313 sbuf_printf(sb, "%13u ", ipg);
10314 else
10315 sbuf_printf(sb, " disabled ");
10316
10317 if (pace_tab[i])
10318 sbuf_printf(sb, "%10u", pace_tab[i]);
10319 else
10320 sbuf_printf(sb, " disabled");
10321 }
10322 rc = sbuf_finish(sb);
10323 done:
10324 sbuf_delete(sb);
10325 return (rc);
10326 }
10327
10328 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)10329 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
10330 {
10331 struct adapter *sc = arg1;
10332 struct sbuf *sb;
10333 int rc, i, j;
10334 uint64_t *p0, *p1;
10335 struct lb_port_stats s[2];
10336 static const char *stat_name[] = {
10337 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
10338 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
10339 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
10340 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
10341 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
10342 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
10343 "BG2FramesTrunc:", "BG3FramesTrunc:"
10344 };
10345
10346 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10347 if (sb == NULL)
10348 return (ENOMEM);
10349
10350 memset(s, 0, sizeof(s));
10351
10352 rc = 0;
10353 for (i = 0; i < sc->chip_params->nchan; i += 2) {
10354 mtx_lock(&sc->reg_lock);
10355 if (hw_off_limits(sc))
10356 rc = ENXIO;
10357 else {
10358 t4_get_lb_stats(sc, i, &s[0]);
10359 t4_get_lb_stats(sc, i + 1, &s[1]);
10360 }
10361 mtx_unlock(&sc->reg_lock);
10362 if (rc != 0)
10363 break;
10364
10365 p0 = &s[0].octets;
10366 p1 = &s[1].octets;
10367 sbuf_printf(sb, "%s Loopback %u"
10368 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
10369
10370 for (j = 0; j < nitems(stat_name); j++)
10371 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
10372 *p0++, *p1++);
10373 }
10374
10375 if (rc == 0)
10376 rc = sbuf_finish(sb);
10377 sbuf_delete(sb);
10378
10379 return (rc);
10380 }
10381
10382 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)10383 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
10384 {
10385 int rc = 0;
10386 struct port_info *pi = arg1;
10387 struct link_config *lc = &pi->link_cfg;
10388 struct sbuf *sb;
10389
10390 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
10391 if (sb == NULL)
10392 return (ENOMEM);
10393
10394 if (lc->link_ok || lc->link_down_rc == 255)
10395 sbuf_printf(sb, "n/a");
10396 else
10397 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
10398
10399 rc = sbuf_finish(sb);
10400 sbuf_delete(sb);
10401
10402 return (rc);
10403 }
10404
10405 struct mem_desc {
10406 uint64_t base;
10407 uint64_t limit;
10408 u_int idx;
10409 };
10410
10411 static int
mem_desc_cmp(const void * a,const void * b)10412 mem_desc_cmp(const void *a, const void *b)
10413 {
10414 const uint64_t v1 = ((const struct mem_desc *)a)->base;
10415 const uint64_t v2 = ((const struct mem_desc *)b)->base;
10416
10417 if (v1 < v2)
10418 return (-1);
10419 else if (v1 > v2)
10420 return (1);
10421
10422 return (0);
10423 }
10424
10425 static void
mem_region_show(struct sbuf * sb,const char * name,uint64_t from,uint64_t to)10426 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to)
10427 {
10428 uintmax_t size;
10429
10430 if (from == to)
10431 return;
10432
10433 size = to - from + 1;
10434 if (size == 0)
10435 return;
10436
10437 if (from > UINT32_MAX || to > UINT32_MAX)
10438 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name,
10439 (uintmax_t)from, (uintmax_t)to, size);
10440 else
10441 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name,
10442 (uintmax_t)from, (uintmax_t)to, size);
10443 }
10444
10445 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)10446 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
10447 {
10448 struct adapter *sc = arg1;
10449 struct sbuf *sb;
10450 int rc, i, n, nchan;
10451 uint32_t lo, hi, used, free, alloc;
10452 static const char *memory[] = {
10453 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
10454 };
10455 static const char *region[] = {
10456 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
10457 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
10458 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
10459 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
10460 "RQUDP region:", "PBL region:", "TXPBL region:",
10461 "TLSKey region:", "RRQ region:", "NVMe STAG region:",
10462 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:",
10463 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:",
10464 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:",
10465 };
10466 struct mem_desc avail[4];
10467 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
10468 struct mem_desc *md;
10469
10470 rc = sysctl_wire_old_buffer(req, 0);
10471 if (rc != 0)
10472 return (rc);
10473
10474 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10475 if (sb == NULL)
10476 return (ENOMEM);
10477
10478 for (i = 0; i < nitems(mem); i++) {
10479 mem[i].limit = 0;
10480 mem[i].idx = i;
10481 }
10482
10483 mtx_lock(&sc->reg_lock);
10484 if (hw_off_limits(sc)) {
10485 rc = ENXIO;
10486 goto done;
10487 }
10488
10489 /* Find and sort the populated memory ranges */
10490 i = 0;
10491 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
10492 if (lo & F_EDRAM0_ENABLE) {
10493 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
10494 if (chip_id(sc) >= CHELSIO_T7) {
10495 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20;
10496 avail[i].limit = avail[i].base +
10497 (G_T7_EDRAM0_SIZE(hi) << 20);
10498 } else {
10499 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20;
10500 avail[i].limit = avail[i].base +
10501 (G_EDRAM0_SIZE(hi) << 20);
10502 }
10503 avail[i].idx = 0;
10504 i++;
10505 }
10506 if (lo & F_EDRAM1_ENABLE) {
10507 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10508 if (chip_id(sc) >= CHELSIO_T7) {
10509 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20;
10510 avail[i].limit = avail[i].base +
10511 (G_T7_EDRAM1_SIZE(hi) << 20);
10512 } else {
10513 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20;
10514 avail[i].limit = avail[i].base +
10515 (G_EDRAM1_SIZE(hi) << 20);
10516 }
10517 avail[i].idx = 1;
10518 i++;
10519 }
10520 if (lo & F_EXT_MEM_ENABLE) {
10521 switch (chip_id(sc)) {
10522 case CHELSIO_T4:
10523 case CHELSIO_T6:
10524 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10525 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20;
10526 avail[i].limit = avail[i].base +
10527 (G_EXT_MEM_SIZE(hi) << 20);
10528 avail[i].idx = 2;
10529 break;
10530 case CHELSIO_T5:
10531 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10532 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20;
10533 avail[i].limit = avail[i].base +
10534 (G_EXT_MEM0_SIZE(hi) << 20);
10535 avail[i].idx = 3; /* Call it MC0 for T5 */
10536 break;
10537 default:
10538 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10539 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20;
10540 avail[i].limit = avail[i].base +
10541 (G_T7_EXT_MEM0_SIZE(hi) << 20);
10542 avail[i].idx = 3; /* Call it MC0 for T7+ */
10543 break;
10544 }
10545 i++;
10546 }
10547 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) {
10548 /* Only T5 and T7+ have 2 MCs. */
10549 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7);
10550
10551 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10552 if (chip_id(sc) >= CHELSIO_T7) {
10553 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20;
10554 avail[i].limit = avail[i].base +
10555 (G_T7_EXT_MEM1_SIZE(hi) << 20);
10556 } else {
10557 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20;
10558 avail[i].limit = avail[i].base +
10559 (G_EXT_MEM1_SIZE(hi) << 20);
10560 }
10561 avail[i].idx = 4;
10562 i++;
10563 }
10564 if (lo & F_HMA_MUX) {
10565 /* Only T6+ have HMA. */
10566 MPASS(chip_id(sc) >= CHELSIO_T6);
10567
10568 if (chip_id(sc) >= CHELSIO_T7) {
10569 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR);
10570 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20;
10571 avail[i].limit = avail[i].base +
10572 (G_T7_HMA_SIZE(hi) << 20);
10573 } else {
10574 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10575 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10576 avail[i].limit = avail[i].base +
10577 (G_EXT_MEM1_SIZE(hi) << 20);
10578 }
10579 avail[i].idx = 5;
10580 i++;
10581 }
10582 MPASS(i <= nitems(avail));
10583 if (!i) /* no memory available */
10584 goto done;
10585 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10586
10587 md = &mem[0];
10588 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10589 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10590 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10591 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10592 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10593 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10594 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10595 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10596 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10597
10598 /* the next few have explicit upper bounds */
10599 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10600 md->limit = md->base - 1 +
10601 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10602 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10603 md++;
10604
10605 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10606 md->limit = md->base - 1 +
10607 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10608 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10609 md++;
10610
10611 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10612 if (chip_id(sc) <= CHELSIO_T5)
10613 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10614 else
10615 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10616 md->limit = 0;
10617 } else {
10618 md->base = 0;
10619 md->idx = nitems(region); /* hide it */
10620 }
10621 md++;
10622
10623 #define ulp_region(reg) do {\
10624 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \
10625 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \
10626 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \
10627 md->limit += (1 << shift) - 1; \
10628 md++; \
10629 } while (0)
10630
10631 #define hide_ulp_region() do { \
10632 md->base = 0; \
10633 md->idx = nitems(region); \
10634 md++; \
10635 } while (0)
10636
10637 ulp_region(RX_ISCSI);
10638 ulp_region(RX_TDDP);
10639 ulp_region(TX_TPT);
10640 ulp_region(RX_STAG);
10641 ulp_region(RX_RQ);
10642 if (chip_id(sc) < CHELSIO_T7)
10643 ulp_region(RX_RQUDP);
10644 else
10645 hide_ulp_region();
10646 ulp_region(RX_PBL);
10647 ulp_region(TX_PBL);
10648 if (chip_id(sc) >= CHELSIO_T6)
10649 ulp_region(RX_TLS_KEY);
10650 else
10651 hide_ulp_region();
10652 if (chip_id(sc) >= CHELSIO_T7) {
10653 ulp_region(RX_RRQ);
10654 ulp_region(RX_NVME_TCP_STAG);
10655 ulp_region(RX_NVME_TCP_RQ);
10656 ulp_region(RX_NVME_TCP_PBL);
10657 ulp_region(TX_NVME_TCP_TPT);
10658 ulp_region(TX_NVME_TCP_PBL);
10659 } else {
10660 hide_ulp_region();
10661 hide_ulp_region();
10662 hide_ulp_region();
10663 hide_ulp_region();
10664 hide_ulp_region();
10665 hide_ulp_region();
10666 }
10667 #undef ulp_region
10668 #undef hide_ulp_region
10669
10670 md->base = 0;
10671 if (is_t4(sc))
10672 md->idx = nitems(region);
10673 else {
10674 uint32_t size = 0;
10675 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10676 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10677
10678 if (is_t5(sc)) {
10679 if (sge_ctrl & F_VFIFO_ENABLE)
10680 size = fifo_size << 2;
10681 } else
10682 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10683
10684 if (size) {
10685 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10686 md->limit = md->base + size - 1;
10687 } else
10688 md->idx = nitems(region);
10689 }
10690 md++;
10691
10692 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10693 md->limit = 0;
10694 md++;
10695 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10696 md->limit = 0;
10697 md++;
10698
10699 if (chip_id(sc) >= CHELSIO_T7) {
10700 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false);
10701 md->base = lo;
10702 } else {
10703 md->base = 0;
10704 md->idx = nitems(region);
10705 }
10706 md++;
10707
10708 md->base = sc->vres.ocq.start;
10709 if (sc->vres.ocq.size)
10710 md->limit = md->base + sc->vres.ocq.size - 1;
10711 else
10712 md->idx = nitems(region); /* hide it */
10713 md++;
10714
10715 /* add any address-space holes, there can be up to 3 */
10716 for (n = 0; n < i - 1; n++)
10717 if (avail[n].limit < avail[n + 1].base)
10718 (md++)->base = avail[n].limit;
10719 if (avail[n].limit)
10720 (md++)->base = avail[n].limit;
10721
10722 n = md - mem;
10723 MPASS(n <= nitems(mem));
10724 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10725
10726 for (lo = 0; lo < i; lo++)
10727 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10728 avail[lo].limit - 1);
10729
10730 sbuf_printf(sb, "\n");
10731 for (i = 0; i < n; i++) {
10732 if (mem[i].idx >= nitems(region))
10733 continue; /* skip holes */
10734 if (!mem[i].limit)
10735 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10736 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10737 mem[i].limit);
10738 }
10739
10740 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10741 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10742 if (hi != lo - 1) {
10743 sbuf_printf(sb, "\n");
10744 mem_region_show(sb, "uP RAM:", lo, hi);
10745 }
10746
10747 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10748 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10749 if (hi != lo - 1)
10750 mem_region_show(sb, "uP Extmem2:", lo, hi);
10751
10752 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10753 if (chip_id(sc) >= CHELSIO_T7)
10754 nchan = 1 << G_T7_PMRXNUMCHN(lo);
10755 else
10756 nchan = lo & F_PMRXNUMCHN ? 2 : 1;
10757 for (i = 0, free = 0; i < nchan; i++)
10758 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10759 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10760 G_PMRXMAXPAGE(lo), free,
10761 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan);
10762
10763 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10764 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10765 if (chip_id(sc) >= CHELSIO_T7)
10766 nchan = 1 << G_T7_PMTXNUMCHN(lo);
10767 else
10768 nchan = 1 << G_PMTXNUMCHN(lo);
10769 for (i = 0, free = 0; i < nchan; i++)
10770 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10771 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10772 G_PMTXMAXPAGE(lo), free,
10773 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10774 hi >= (1 << 20) ? 'M' : 'K', nchan);
10775 sbuf_printf(sb, "%u p-structs (%u free)\n",
10776 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10777 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10778
10779 for (i = 0; i < 4; i++) {
10780 if (chip_id(sc) > CHELSIO_T5)
10781 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10782 else
10783 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10784 if (is_t5(sc)) {
10785 used = G_T5_USED(lo);
10786 alloc = G_T5_ALLOC(lo);
10787 } else {
10788 used = G_USED(lo);
10789 alloc = G_ALLOC(lo);
10790 }
10791 /* For T6+ these are MAC buffer groups */
10792 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10793 i, used, alloc);
10794 }
10795 for (i = 0; i < sc->chip_params->nchan; i++) {
10796 if (chip_id(sc) > CHELSIO_T5)
10797 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10798 else
10799 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10800 if (is_t5(sc)) {
10801 used = G_T5_USED(lo);
10802 alloc = G_T5_ALLOC(lo);
10803 } else {
10804 used = G_USED(lo);
10805 alloc = G_ALLOC(lo);
10806 }
10807 /* For T6+ these are MAC buffer groups */
10808 sbuf_printf(sb,
10809 "\nLoopback %d using %u pages out of %u allocated",
10810 i, used, alloc);
10811 }
10812 done:
10813 mtx_unlock(&sc->reg_lock);
10814 if (rc == 0)
10815 rc = sbuf_finish(sb);
10816 sbuf_delete(sb);
10817 return (rc);
10818 }
10819
10820 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10821 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10822 {
10823 *mask = x | y;
10824 y = htobe64(y);
10825 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10826 }
10827
10828 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10829 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10830 {
10831 struct adapter *sc = arg1;
10832 struct sbuf *sb;
10833 int rc, i;
10834
10835 MPASS(chip_id(sc) <= CHELSIO_T5);
10836
10837 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10838 if (sb == NULL)
10839 return (ENOMEM);
10840
10841 sbuf_printf(sb,
10842 "Idx Ethernet address Mask Vld Ports PF"
10843 " VF Replication P0 P1 P2 P3 ML");
10844 rc = 0;
10845 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10846 uint64_t tcamx, tcamy, mask;
10847 uint32_t cls_lo, cls_hi;
10848 uint8_t addr[ETHER_ADDR_LEN];
10849
10850 mtx_lock(&sc->reg_lock);
10851 if (hw_off_limits(sc))
10852 rc = ENXIO;
10853 else {
10854 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10855 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10856 }
10857 mtx_unlock(&sc->reg_lock);
10858 if (rc != 0)
10859 break;
10860 if (tcamx & tcamy)
10861 continue;
10862 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10863 mtx_lock(&sc->reg_lock);
10864 if (hw_off_limits(sc))
10865 rc = ENXIO;
10866 else {
10867 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10868 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10869 }
10870 mtx_unlock(&sc->reg_lock);
10871 if (rc != 0)
10872 break;
10873 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10874 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10875 addr[3], addr[4], addr[5], (uintmax_t)mask,
10876 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10877 G_PORTMAP(cls_hi), G_PF(cls_lo),
10878 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10879
10880 if (cls_lo & F_REPLICATE) {
10881 struct fw_ldst_cmd ldst_cmd;
10882
10883 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10884 ldst_cmd.op_to_addrspace =
10885 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10886 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10887 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10888 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10889 ldst_cmd.u.mps.rplc.fid_idx =
10890 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10891 V_FW_LDST_CMD_IDX(i));
10892
10893 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10894 "t4mps");
10895 if (rc)
10896 break;
10897 if (hw_off_limits(sc))
10898 rc = ENXIO;
10899 else
10900 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10901 sizeof(ldst_cmd), &ldst_cmd);
10902 end_synchronized_op(sc, 0);
10903 if (rc != 0)
10904 break;
10905 else {
10906 sbuf_printf(sb, " %08x %08x %08x %08x",
10907 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10908 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10909 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10910 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10911 }
10912 } else
10913 sbuf_printf(sb, "%36s", "");
10914
10915 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10916 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10917 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10918 }
10919
10920 if (rc)
10921 (void) sbuf_finish(sb);
10922 else
10923 rc = sbuf_finish(sb);
10924 sbuf_delete(sb);
10925
10926 return (rc);
10927 }
10928
10929 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10930 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10931 {
10932 struct adapter *sc = arg1;
10933 struct sbuf *sb;
10934 int rc, i;
10935
10936 MPASS(chip_id(sc) == CHELSIO_T6);
10937
10938 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10939 if (sb == NULL)
10940 return (ENOMEM);
10941
10942 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10943 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10944 " Replication"
10945 " P0 P1 P2 P3 ML");
10946
10947 rc = 0;
10948 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10949 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10950 uint16_t ivlan;
10951 uint64_t tcamx, tcamy, val, mask;
10952 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10953 uint8_t addr[ETHER_ADDR_LEN];
10954
10955 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10956 if (i < 256)
10957 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10958 else
10959 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10960 mtx_lock(&sc->reg_lock);
10961 if (hw_off_limits(sc))
10962 rc = ENXIO;
10963 else {
10964 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10965 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10966 tcamy = G_DMACH(val) << 32;
10967 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10968 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10969 }
10970 mtx_unlock(&sc->reg_lock);
10971 if (rc != 0)
10972 break;
10973
10974 lookup_type = G_DATALKPTYPE(data2);
10975 port_num = G_DATAPORTNUM(data2);
10976 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10977 /* Inner header VNI */
10978 vniy = ((data2 & F_DATAVIDH2) << 23) |
10979 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10980 dip_hit = data2 & F_DATADIPHIT;
10981 vlan_vld = 0;
10982 } else {
10983 vniy = 0;
10984 dip_hit = 0;
10985 vlan_vld = data2 & F_DATAVIDH2;
10986 ivlan = G_VIDL(val);
10987 }
10988
10989 ctl |= V_CTLXYBITSEL(1);
10990 mtx_lock(&sc->reg_lock);
10991 if (hw_off_limits(sc))
10992 rc = ENXIO;
10993 else {
10994 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10995 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10996 tcamx = G_DMACH(val) << 32;
10997 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10998 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10999 }
11000 mtx_unlock(&sc->reg_lock);
11001 if (rc != 0)
11002 break;
11003
11004 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11005 /* Inner header VNI mask */
11006 vnix = ((data2 & F_DATAVIDH2) << 23) |
11007 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
11008 } else
11009 vnix = 0;
11010
11011 if (tcamx & tcamy)
11012 continue;
11013 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11014
11015 mtx_lock(&sc->reg_lock);
11016 if (hw_off_limits(sc))
11017 rc = ENXIO;
11018 else {
11019 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11020 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11021 }
11022 mtx_unlock(&sc->reg_lock);
11023 if (rc != 0)
11024 break;
11025
11026 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11027 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11028 "%012jx %06x %06x - - %3c"
11029 " I %4x %3c %#x%4u%4d", i, addr[0],
11030 addr[1], addr[2], addr[3], addr[4], addr[5],
11031 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11032 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11033 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11034 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11035 } else {
11036 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11037 "%012jx - - ", i, addr[0], addr[1],
11038 addr[2], addr[3], addr[4], addr[5],
11039 (uintmax_t)mask);
11040
11041 if (vlan_vld)
11042 sbuf_printf(sb, "%4u Y ", ivlan);
11043 else
11044 sbuf_printf(sb, " - N ");
11045
11046 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11047 lookup_type ? 'I' : 'O', port_num,
11048 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11049 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11050 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11051 }
11052
11053
11054 if (cls_lo & F_T6_REPLICATE) {
11055 struct fw_ldst_cmd ldst_cmd;
11056
11057 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11058 ldst_cmd.op_to_addrspace =
11059 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11060 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11061 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11062 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11063 ldst_cmd.u.mps.rplc.fid_idx =
11064 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11065 V_FW_LDST_CMD_IDX(i));
11066
11067 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11068 "t6mps");
11069 if (rc)
11070 break;
11071 if (hw_off_limits(sc))
11072 rc = ENXIO;
11073 else
11074 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11075 sizeof(ldst_cmd), &ldst_cmd);
11076 end_synchronized_op(sc, 0);
11077 if (rc != 0)
11078 break;
11079 else {
11080 sbuf_printf(sb, " %08x %08x %08x %08x"
11081 " %08x %08x %08x %08x",
11082 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11083 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11084 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11085 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11086 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11087 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11088 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11089 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11090 }
11091 } else
11092 sbuf_printf(sb, "%72s", "");
11093
11094 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11095 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11096 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11097 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11098 }
11099
11100 if (rc)
11101 (void) sbuf_finish(sb);
11102 else
11103 rc = sbuf_finish(sb);
11104 sbuf_delete(sb);
11105
11106 return (rc);
11107 }
11108
11109 static int
sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)11110 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)
11111 {
11112 struct adapter *sc = arg1;
11113 struct sbuf *sb;
11114 int rc, i;
11115
11116 MPASS(chip_id(sc) >= CHELSIO_T7);
11117
11118 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11119 if (sb == NULL)
11120 return (ENOMEM);
11121
11122 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
11123 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
11124 " Replication"
11125 " P0 P1 P2 P3 ML");
11126
11127 rc = 0;
11128 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
11129 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
11130 uint16_t ivlan;
11131 uint64_t tcamx, tcamy, val, mask;
11132 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
11133 uint8_t addr[ETHER_ADDR_LEN];
11134
11135 /* Read tcamy */
11136 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11137 if (chip_rev(sc) == 0) {
11138 if (i < 256)
11139 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11140 else
11141 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1);
11142 } else {
11143 #if 0
11144 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11145 #endif
11146 if (i < 512)
11147 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11148 else if (i < 1024)
11149 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1);
11150 else
11151 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2);
11152 }
11153
11154 mtx_lock(&sc->reg_lock);
11155 if (hw_off_limits(sc))
11156 rc = ENXIO;
11157 else {
11158 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11159 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11160 tcamy = G_DMACH(val) << 32;
11161 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11162 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11163 }
11164 mtx_unlock(&sc->reg_lock);
11165 if (rc != 0)
11166 break;
11167
11168 lookup_type = G_DATALKPTYPE(data2);
11169 port_num = G_DATAPORTNUM(data2);
11170 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11171 /* Inner header VNI */
11172 vniy = (((data2 & F_DATAVIDH2) |
11173 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11174 dip_hit = data2 & F_DATADIPHIT;
11175 vlan_vld = 0;
11176 } else {
11177 vniy = 0;
11178 dip_hit = 0;
11179 vlan_vld = data2 & F_DATAVIDH2;
11180 ivlan = G_VIDL(val);
11181 }
11182
11183 ctl |= V_CTLXYBITSEL(1);
11184 mtx_lock(&sc->reg_lock);
11185 if (hw_off_limits(sc))
11186 rc = ENXIO;
11187 else {
11188 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11189 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11190 tcamx = G_DMACH(val) << 32;
11191 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11192 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11193 }
11194 mtx_unlock(&sc->reg_lock);
11195 if (rc != 0)
11196 break;
11197
11198 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11199 /* Inner header VNI mask */
11200 vnix = (((data2 & F_DATAVIDH2) |
11201 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11202 } else
11203 vnix = 0;
11204
11205 if (tcamx & tcamy)
11206 continue;
11207 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11208
11209 mtx_lock(&sc->reg_lock);
11210 if (hw_off_limits(sc))
11211 rc = ENXIO;
11212 else {
11213 if (chip_rev(sc) == 0) {
11214 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11215 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11216 } else {
11217 t4_write_reg(sc, A_MPS_CLS_SRAM_H,
11218 V_SRAMWRN(0) | V_SRAMINDEX(i));
11219 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L);
11220 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H);
11221 }
11222 }
11223 mtx_unlock(&sc->reg_lock);
11224 if (rc != 0)
11225 break;
11226
11227 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11228 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11229 "%012jx %06x %06x - - %3c"
11230 " I %4x %3c %#x%4u%4d", i, addr[0],
11231 addr[1], addr[2], addr[3], addr[4], addr[5],
11232 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11233 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11234 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11235 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11236 } else {
11237 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11238 "%012jx - - ", i, addr[0], addr[1],
11239 addr[2], addr[3], addr[4], addr[5],
11240 (uintmax_t)mask);
11241
11242 if (vlan_vld)
11243 sbuf_printf(sb, "%4u Y ", ivlan);
11244 else
11245 sbuf_printf(sb, " - N ");
11246
11247 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11248 lookup_type ? 'I' : 'O', port_num,
11249 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11250 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11251 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11252 }
11253
11254 if (cls_lo & F_T6_REPLICATE) {
11255 struct fw_ldst_cmd ldst_cmd;
11256
11257 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11258 ldst_cmd.op_to_addrspace =
11259 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11260 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11261 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11262 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11263 ldst_cmd.u.mps.rplc.fid_idx =
11264 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11265 V_FW_LDST_CMD_IDX(i));
11266
11267 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11268 "t6mps");
11269 if (rc)
11270 break;
11271 if (hw_off_limits(sc))
11272 rc = ENXIO;
11273 else
11274 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11275 sizeof(ldst_cmd), &ldst_cmd);
11276 end_synchronized_op(sc, 0);
11277 if (rc != 0)
11278 break;
11279 else {
11280 sbuf_printf(sb, " %08x %08x %08x %08x"
11281 " %08x %08x %08x %08x",
11282 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11283 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11284 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11285 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11286 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11287 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11288 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11289 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11290 }
11291 } else
11292 sbuf_printf(sb, "%72s", "");
11293
11294 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11295 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11296 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11297 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11298 }
11299
11300 if (rc)
11301 (void) sbuf_finish(sb);
11302 else
11303 rc = sbuf_finish(sb);
11304 sbuf_delete(sb);
11305
11306 return (rc);
11307 }
11308
11309 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)11310 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
11311 {
11312 struct adapter *sc = arg1;
11313 struct sbuf *sb;
11314 int rc;
11315 uint16_t mtus[NMTUS];
11316
11317 rc = 0;
11318 mtx_lock(&sc->reg_lock);
11319 if (hw_off_limits(sc))
11320 rc = ENXIO;
11321 else
11322 t4_read_mtu_tbl(sc, mtus, NULL);
11323 mtx_unlock(&sc->reg_lock);
11324 if (rc != 0)
11325 return (rc);
11326
11327 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11328 if (sb == NULL)
11329 return (ENOMEM);
11330
11331 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
11332 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
11333 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
11334 mtus[14], mtus[15]);
11335
11336 rc = sbuf_finish(sb);
11337 sbuf_delete(sb);
11338
11339 return (rc);
11340 }
11341
11342 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)11343 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
11344 {
11345 struct adapter *sc = arg1;
11346 struct sbuf *sb;
11347 int rc, i;
11348 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
11349 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
11350 uint32_t stats[T7_PM_RX_CACHE_NSTATS];
11351 static const char *tx_stats[MAX_PM_NSTATS] = {
11352 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
11353 "Tx FIFO wait", NULL, "Tx latency"
11354 };
11355 static const char *rx_stats[MAX_PM_NSTATS] = {
11356 "Read:", "Write bypass:", "Write mem:", "Flush:",
11357 "Rx FIFO wait", NULL, "Rx latency"
11358 };
11359
11360 rc = 0;
11361 mtx_lock(&sc->reg_lock);
11362 if (hw_off_limits(sc))
11363 rc = ENXIO;
11364 else {
11365 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
11366 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
11367 if (chip_id(sc) >= CHELSIO_T7)
11368 t4_pmrx_cache_get_stats(sc, stats);
11369 }
11370 mtx_unlock(&sc->reg_lock);
11371 if (rc != 0)
11372 return (rc);
11373
11374 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11375 if (sb == NULL)
11376 return (ENOMEM);
11377
11378 sbuf_printf(sb, " Tx pcmds Tx bytes");
11379 for (i = 0; i < 4; i++) {
11380 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11381 tx_cyc[i]);
11382 }
11383
11384 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
11385 for (i = 0; i < 4; i++) {
11386 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11387 rx_cyc[i]);
11388 }
11389
11390 if (chip_id(sc) > CHELSIO_T5) {
11391 sbuf_printf(sb,
11392 "\n Total wait Total occupancy");
11393 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11394 tx_cyc[i]);
11395 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11396 rx_cyc[i]);
11397
11398 i += 2;
11399 MPASS(i < nitems(tx_stats));
11400
11401 sbuf_printf(sb,
11402 "\n Reads Total wait");
11403 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11404 tx_cyc[i]);
11405 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11406 rx_cyc[i]);
11407 }
11408
11409 if (chip_id(sc) >= CHELSIO_T7) {
11410 i = 0;
11411 sbuf_printf(sb, "\n\nPM RX Cache Stats\n");
11412 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]);
11413 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]);
11414 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]);
11415 sbuf_printf(sb, "%-40s %u\n", "Write Split Request",
11416 stats[i++]);
11417 sbuf_printf(sb, "%-40s %u\n",
11418 "Normal Read Split (Read Invalidate)", stats[i++]);
11419 sbuf_printf(sb, "%-40s %u\n",
11420 "Feedback Read Split (Read NoInvalidate)",
11421 stats[i++]);
11422 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]);
11423 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit",
11424 stats[i++]);
11425 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit",
11426 stats[i++]);
11427 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail",
11428 stats[i++]);
11429 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail",
11430 stats[i++]);
11431 sbuf_printf(sb, "%-40s %u\n",
11432 "Normal Read Hit Partial Avail",
11433 stats[i++]);
11434 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail",
11435 stats[i++]);
11436 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail",
11437 stats[i++]);
11438 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail",
11439 stats[i++]);
11440 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free",
11441 stats[i++]);
11442 sbuf_printf(sb, "%-40s %u\n",
11443 "Normal Read Part-avail Mul-Regions",
11444 stats[i++]);
11445 sbuf_printf(sb, "%-40s %u\n",
11446 "FB Read Part-avail Mul-Regions",
11447 stats[i++]);
11448 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used",
11449 stats[i++]);
11450 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used",
11451 stats[i++]);
11452 sbuf_printf(sb, "%-40s %u\n",
11453 "Write Miss LRU-Multiple Evict", stats[i++]);
11454 sbuf_printf(sb, "%-40s %u\n",
11455 "Write Hit Increasing Islands", stats[i++]);
11456 sbuf_printf(sb, "%-40s %u\n",
11457 "Normal Read Island Read split", stats[i++]);
11458 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction",
11459 stats[i++]);
11460 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction",
11461 stats[i++]);
11462 }
11463
11464 rc = sbuf_finish(sb);
11465 sbuf_delete(sb);
11466
11467 return (rc);
11468 }
11469
11470 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)11471 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
11472 {
11473 struct adapter *sc = arg1;
11474 struct sbuf *sb;
11475 int rc;
11476 struct tp_rdma_stats stats;
11477
11478 rc = 0;
11479 mtx_lock(&sc->reg_lock);
11480 if (hw_off_limits(sc))
11481 rc = ENXIO;
11482 else
11483 t4_tp_get_rdma_stats(sc, &stats, 0);
11484 mtx_unlock(&sc->reg_lock);
11485 if (rc != 0)
11486 return (rc);
11487
11488 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11489 if (sb == NULL)
11490 return (ENOMEM);
11491
11492 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
11493 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
11494
11495 rc = sbuf_finish(sb);
11496 sbuf_delete(sb);
11497
11498 return (rc);
11499 }
11500
11501 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)11502 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
11503 {
11504 struct adapter *sc = arg1;
11505 struct sbuf *sb;
11506 int rc;
11507 struct tp_tcp_stats v4, v6;
11508
11509 rc = 0;
11510 mtx_lock(&sc->reg_lock);
11511 if (hw_off_limits(sc))
11512 rc = ENXIO;
11513 else
11514 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
11515 mtx_unlock(&sc->reg_lock);
11516 if (rc != 0)
11517 return (rc);
11518
11519 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11520 if (sb == NULL)
11521 return (ENOMEM);
11522
11523 sbuf_printf(sb,
11524 " IP IPv6\n");
11525 sbuf_printf(sb, "OutRsts: %20u %20u\n",
11526 v4.tcp_out_rsts, v6.tcp_out_rsts);
11527 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
11528 v4.tcp_in_segs, v6.tcp_in_segs);
11529 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
11530 v4.tcp_out_segs, v6.tcp_out_segs);
11531 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
11532 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
11533
11534 rc = sbuf_finish(sb);
11535 sbuf_delete(sb);
11536
11537 return (rc);
11538 }
11539
11540 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)11541 sysctl_tids(SYSCTL_HANDLER_ARGS)
11542 {
11543 struct adapter *sc = arg1;
11544 struct sbuf *sb;
11545 int rc;
11546 uint32_t x, y;
11547 struct tid_info *t = &sc->tids;
11548
11549 rc = 0;
11550 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11551 if (sb == NULL)
11552 return (ENOMEM);
11553
11554 if (t->natids) {
11555 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
11556 t->atids_in_use);
11557 }
11558
11559 if (t->nhpftids) {
11560 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
11561 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
11562 }
11563
11564 if (t->ntids) {
11565 bool hashen = false;
11566
11567 mtx_lock(&sc->reg_lock);
11568 if (hw_off_limits(sc))
11569 rc = ENXIO;
11570 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
11571 hashen = true;
11572 if (chip_id(sc) <= CHELSIO_T5) {
11573 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
11574 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
11575 } else {
11576 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
11577 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
11578 }
11579 }
11580 mtx_unlock(&sc->reg_lock);
11581 if (rc != 0)
11582 goto done;
11583
11584 sbuf_printf(sb, "TID range: ");
11585 if (hashen) {
11586 if (x)
11587 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
11588 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
11589 } else {
11590 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
11591 t->ntids - 1);
11592 }
11593 sbuf_printf(sb, ", in use: %u\n",
11594 atomic_load_acq_int(&t->tids_in_use));
11595 }
11596
11597 if (t->nstids) {
11598 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
11599 t->stid_base + t->nstids - 1, t->stids_in_use);
11600 }
11601
11602 if (t->nftids) {
11603 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
11604 t->ftid_end, t->ftids_in_use);
11605 }
11606
11607 if (t->netids) {
11608 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
11609 t->etid_base + t->netids - 1, t->etids_in_use);
11610 }
11611
11612 mtx_lock(&sc->reg_lock);
11613 if (hw_off_limits(sc))
11614 rc = ENXIO;
11615 else {
11616 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
11617 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
11618 }
11619 mtx_unlock(&sc->reg_lock);
11620 if (rc != 0)
11621 goto done;
11622 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
11623 done:
11624 if (rc == 0)
11625 rc = sbuf_finish(sb);
11626 else
11627 (void)sbuf_finish(sb);
11628 sbuf_delete(sb);
11629
11630 return (rc);
11631 }
11632
11633 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)11634 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
11635 {
11636 struct adapter *sc = arg1;
11637 struct sbuf *sb;
11638 int rc;
11639 struct tp_err_stats stats;
11640
11641 rc = 0;
11642 mtx_lock(&sc->reg_lock);
11643 if (hw_off_limits(sc))
11644 rc = ENXIO;
11645 else
11646 t4_tp_get_err_stats(sc, &stats, 0);
11647 mtx_unlock(&sc->reg_lock);
11648 if (rc != 0)
11649 return (rc);
11650
11651 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11652 if (sb == NULL)
11653 return (ENOMEM);
11654
11655 if (sc->chip_params->nchan > 2) {
11656 sbuf_printf(sb, " channel 0 channel 1"
11657 " channel 2 channel 3\n");
11658 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
11659 stats.mac_in_errs[0], stats.mac_in_errs[1],
11660 stats.mac_in_errs[2], stats.mac_in_errs[3]);
11661 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
11662 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
11663 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
11664 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
11665 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
11666 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
11667 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
11668 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
11669 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
11670 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
11671 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
11672 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
11673 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
11674 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
11675 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
11676 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
11677 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
11678 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
11679 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
11680 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
11681 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
11682 } else {
11683 sbuf_printf(sb, " channel 0 channel 1\n");
11684 sbuf_printf(sb, "macInErrs: %10u %10u\n",
11685 stats.mac_in_errs[0], stats.mac_in_errs[1]);
11686 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
11687 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
11688 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
11689 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
11690 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
11691 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
11692 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
11693 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
11694 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
11695 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
11696 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
11697 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
11698 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
11699 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
11700 }
11701
11702 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
11703 stats.ofld_no_neigh, stats.ofld_cong_defer);
11704
11705 rc = sbuf_finish(sb);
11706 sbuf_delete(sb);
11707
11708 return (rc);
11709 }
11710
11711 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)11712 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
11713 {
11714 struct adapter *sc = arg1;
11715 struct sbuf *sb;
11716 int rc;
11717 struct tp_tnl_stats stats;
11718
11719 rc = 0;
11720 mtx_lock(&sc->reg_lock);
11721 if (hw_off_limits(sc))
11722 rc = ENXIO;
11723 else
11724 t4_tp_get_tnl_stats(sc, &stats, 1);
11725 mtx_unlock(&sc->reg_lock);
11726 if (rc != 0)
11727 return (rc);
11728
11729 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11730 if (sb == NULL)
11731 return (ENOMEM);
11732
11733 if (sc->chip_params->nchan > 2) {
11734 sbuf_printf(sb, " channel 0 channel 1"
11735 " channel 2 channel 3\n");
11736 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
11737 stats.out_pkt[0], stats.out_pkt[1],
11738 stats.out_pkt[2], stats.out_pkt[3]);
11739 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
11740 stats.in_pkt[0], stats.in_pkt[1],
11741 stats.in_pkt[2], stats.in_pkt[3]);
11742 } else {
11743 sbuf_printf(sb, " channel 0 channel 1\n");
11744 sbuf_printf(sb, "OutPkts: %10u %10u\n",
11745 stats.out_pkt[0], stats.out_pkt[1]);
11746 sbuf_printf(sb, "InPkts: %10u %10u",
11747 stats.in_pkt[0], stats.in_pkt[1]);
11748 }
11749
11750 rc = sbuf_finish(sb);
11751 sbuf_delete(sb);
11752
11753 return (rc);
11754 }
11755
11756 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)11757 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
11758 {
11759 struct adapter *sc = arg1;
11760 struct tp_params *tpp = &sc->params.tp;
11761 u_int mask;
11762 int rc;
11763
11764 mask = tpp->la_mask >> 16;
11765 rc = sysctl_handle_int(oidp, &mask, 0, req);
11766 if (rc != 0 || req->newptr == NULL)
11767 return (rc);
11768 if (mask > 0xffff)
11769 return (EINVAL);
11770 mtx_lock(&sc->reg_lock);
11771 if (hw_off_limits(sc))
11772 rc = ENXIO;
11773 else {
11774 tpp->la_mask = mask << 16;
11775 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
11776 tpp->la_mask);
11777 }
11778 mtx_unlock(&sc->reg_lock);
11779
11780 return (rc);
11781 }
11782
11783 struct field_desc {
11784 const char *name;
11785 u_int start;
11786 u_int width;
11787 };
11788
11789 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)11790 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
11791 {
11792 char buf[32];
11793 int line_size = 0;
11794
11795 while (f->name) {
11796 uint64_t mask = (1ULL << f->width) - 1;
11797 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
11798 ((uintmax_t)v >> f->start) & mask);
11799
11800 if (line_size + len >= 79) {
11801 line_size = 8;
11802 sbuf_printf(sb, "\n ");
11803 }
11804 sbuf_printf(sb, "%s ", buf);
11805 line_size += len + 1;
11806 f++;
11807 }
11808 sbuf_printf(sb, "\n");
11809 }
11810
11811 static const struct field_desc tp_la0[] = {
11812 { "RcfOpCodeOut", 60, 4 },
11813 { "State", 56, 4 },
11814 { "WcfState", 52, 4 },
11815 { "RcfOpcSrcOut", 50, 2 },
11816 { "CRxError", 49, 1 },
11817 { "ERxError", 48, 1 },
11818 { "SanityFailed", 47, 1 },
11819 { "SpuriousMsg", 46, 1 },
11820 { "FlushInputMsg", 45, 1 },
11821 { "FlushInputCpl", 44, 1 },
11822 { "RssUpBit", 43, 1 },
11823 { "RssFilterHit", 42, 1 },
11824 { "Tid", 32, 10 },
11825 { "InitTcb", 31, 1 },
11826 { "LineNumber", 24, 7 },
11827 { "Emsg", 23, 1 },
11828 { "EdataOut", 22, 1 },
11829 { "Cmsg", 21, 1 },
11830 { "CdataOut", 20, 1 },
11831 { "EreadPdu", 19, 1 },
11832 { "CreadPdu", 18, 1 },
11833 { "TunnelPkt", 17, 1 },
11834 { "RcfPeerFin", 16, 1 },
11835 { "RcfReasonOut", 12, 4 },
11836 { "TxCchannel", 10, 2 },
11837 { "RcfTxChannel", 8, 2 },
11838 { "RxEchannel", 6, 2 },
11839 { "RcfRxChannel", 5, 1 },
11840 { "RcfDataOutSrdy", 4, 1 },
11841 { "RxDvld", 3, 1 },
11842 { "RxOoDvld", 2, 1 },
11843 { "RxCongestion", 1, 1 },
11844 { "TxCongestion", 0, 1 },
11845 { NULL }
11846 };
11847
11848 static const struct field_desc tp_la1[] = {
11849 { "CplCmdIn", 56, 8 },
11850 { "CplCmdOut", 48, 8 },
11851 { "ESynOut", 47, 1 },
11852 { "EAckOut", 46, 1 },
11853 { "EFinOut", 45, 1 },
11854 { "ERstOut", 44, 1 },
11855 { "SynIn", 43, 1 },
11856 { "AckIn", 42, 1 },
11857 { "FinIn", 41, 1 },
11858 { "RstIn", 40, 1 },
11859 { "DataIn", 39, 1 },
11860 { "DataInVld", 38, 1 },
11861 { "PadIn", 37, 1 },
11862 { "RxBufEmpty", 36, 1 },
11863 { "RxDdp", 35, 1 },
11864 { "RxFbCongestion", 34, 1 },
11865 { "TxFbCongestion", 33, 1 },
11866 { "TxPktSumSrdy", 32, 1 },
11867 { "RcfUlpType", 28, 4 },
11868 { "Eread", 27, 1 },
11869 { "Ebypass", 26, 1 },
11870 { "Esave", 25, 1 },
11871 { "Static0", 24, 1 },
11872 { "Cread", 23, 1 },
11873 { "Cbypass", 22, 1 },
11874 { "Csave", 21, 1 },
11875 { "CPktOut", 20, 1 },
11876 { "RxPagePoolFull", 18, 2 },
11877 { "RxLpbkPkt", 17, 1 },
11878 { "TxLpbkPkt", 16, 1 },
11879 { "RxVfValid", 15, 1 },
11880 { "SynLearned", 14, 1 },
11881 { "SetDelEntry", 13, 1 },
11882 { "SetInvEntry", 12, 1 },
11883 { "CpcmdDvld", 11, 1 },
11884 { "CpcmdSave", 10, 1 },
11885 { "RxPstructsFull", 8, 2 },
11886 { "EpcmdDvld", 7, 1 },
11887 { "EpcmdFlush", 6, 1 },
11888 { "EpcmdTrimPrefix", 5, 1 },
11889 { "EpcmdTrimPostfix", 4, 1 },
11890 { "ERssIp4Pkt", 3, 1 },
11891 { "ERssIp6Pkt", 2, 1 },
11892 { "ERssTcpUdpPkt", 1, 1 },
11893 { "ERssFceFipPkt", 0, 1 },
11894 { NULL }
11895 };
11896
11897 static const struct field_desc tp_la2[] = {
11898 { "CplCmdIn", 56, 8 },
11899 { "MpsVfVld", 55, 1 },
11900 { "MpsPf", 52, 3 },
11901 { "MpsVf", 44, 8 },
11902 { "SynIn", 43, 1 },
11903 { "AckIn", 42, 1 },
11904 { "FinIn", 41, 1 },
11905 { "RstIn", 40, 1 },
11906 { "DataIn", 39, 1 },
11907 { "DataInVld", 38, 1 },
11908 { "PadIn", 37, 1 },
11909 { "RxBufEmpty", 36, 1 },
11910 { "RxDdp", 35, 1 },
11911 { "RxFbCongestion", 34, 1 },
11912 { "TxFbCongestion", 33, 1 },
11913 { "TxPktSumSrdy", 32, 1 },
11914 { "RcfUlpType", 28, 4 },
11915 { "Eread", 27, 1 },
11916 { "Ebypass", 26, 1 },
11917 { "Esave", 25, 1 },
11918 { "Static0", 24, 1 },
11919 { "Cread", 23, 1 },
11920 { "Cbypass", 22, 1 },
11921 { "Csave", 21, 1 },
11922 { "CPktOut", 20, 1 },
11923 { "RxPagePoolFull", 18, 2 },
11924 { "RxLpbkPkt", 17, 1 },
11925 { "TxLpbkPkt", 16, 1 },
11926 { "RxVfValid", 15, 1 },
11927 { "SynLearned", 14, 1 },
11928 { "SetDelEntry", 13, 1 },
11929 { "SetInvEntry", 12, 1 },
11930 { "CpcmdDvld", 11, 1 },
11931 { "CpcmdSave", 10, 1 },
11932 { "RxPstructsFull", 8, 2 },
11933 { "EpcmdDvld", 7, 1 },
11934 { "EpcmdFlush", 6, 1 },
11935 { "EpcmdTrimPrefix", 5, 1 },
11936 { "EpcmdTrimPostfix", 4, 1 },
11937 { "ERssIp4Pkt", 3, 1 },
11938 { "ERssIp6Pkt", 2, 1 },
11939 { "ERssTcpUdpPkt", 1, 1 },
11940 { "ERssFceFipPkt", 0, 1 },
11941 { NULL }
11942 };
11943
11944 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11945 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11946 {
11947
11948 field_desc_show(sb, *p, tp_la0);
11949 }
11950
11951 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11952 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11953 {
11954
11955 if (idx)
11956 sbuf_printf(sb, "\n");
11957 field_desc_show(sb, p[0], tp_la0);
11958 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11959 field_desc_show(sb, p[1], tp_la0);
11960 }
11961
11962 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11963 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11964 {
11965
11966 if (idx)
11967 sbuf_printf(sb, "\n");
11968 field_desc_show(sb, p[0], tp_la0);
11969 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11970 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11971 }
11972
11973 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11974 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11975 {
11976 struct adapter *sc = arg1;
11977 struct sbuf *sb;
11978 uint64_t *buf, *p;
11979 int rc;
11980 u_int i, inc;
11981 void (*show_func)(struct sbuf *, uint64_t *, int);
11982
11983 rc = 0;
11984 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11985 if (sb == NULL)
11986 return (ENOMEM);
11987
11988 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11989
11990 mtx_lock(&sc->reg_lock);
11991 if (hw_off_limits(sc))
11992 rc = ENXIO;
11993 else {
11994 t4_tp_read_la(sc, buf, NULL);
11995 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11996 case 2:
11997 inc = 2;
11998 show_func = tp_la_show2;
11999 break;
12000 case 3:
12001 inc = 2;
12002 show_func = tp_la_show3;
12003 break;
12004 default:
12005 inc = 1;
12006 show_func = tp_la_show;
12007 }
12008 }
12009 mtx_unlock(&sc->reg_lock);
12010 if (rc != 0)
12011 goto done;
12012
12013 p = buf;
12014 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
12015 (*show_func)(sb, p, i);
12016 rc = sbuf_finish(sb);
12017 done:
12018 sbuf_delete(sb);
12019 free(buf, M_CXGBE);
12020 return (rc);
12021 }
12022
12023 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)12024 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
12025 {
12026 struct adapter *sc = arg1;
12027 struct sbuf *sb;
12028 int rc;
12029 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
12030
12031 rc = 0;
12032 mtx_lock(&sc->reg_lock);
12033 if (hw_off_limits(sc))
12034 rc = ENXIO;
12035 else
12036 t4_get_chan_txrate(sc, nrate, orate);
12037 mtx_unlock(&sc->reg_lock);
12038 if (rc != 0)
12039 return (rc);
12040
12041 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
12042 if (sb == NULL)
12043 return (ENOMEM);
12044
12045 if (sc->chip_params->nchan > 2) {
12046 sbuf_printf(sb, " channel 0 channel 1"
12047 " channel 2 channel 3\n");
12048 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
12049 nrate[0], nrate[1], nrate[2], nrate[3]);
12050 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
12051 orate[0], orate[1], orate[2], orate[3]);
12052 } else {
12053 sbuf_printf(sb, " channel 0 channel 1\n");
12054 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
12055 nrate[0], nrate[1]);
12056 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
12057 orate[0], orate[1]);
12058 }
12059
12060 rc = sbuf_finish(sb);
12061 sbuf_delete(sb);
12062
12063 return (rc);
12064 }
12065
12066 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)12067 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
12068 {
12069 struct adapter *sc = arg1;
12070 struct sbuf *sb;
12071 uint32_t *buf, *p;
12072 int rc, i;
12073
12074 rc = 0;
12075 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12076 if (sb == NULL)
12077 return (ENOMEM);
12078
12079 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
12080 M_ZERO | M_WAITOK);
12081
12082 mtx_lock(&sc->reg_lock);
12083 if (hw_off_limits(sc))
12084 rc = ENXIO;
12085 else
12086 t4_ulprx_read_la(sc, buf);
12087 mtx_unlock(&sc->reg_lock);
12088 if (rc != 0)
12089 goto done;
12090
12091 p = buf;
12092 sbuf_printf(sb, " Pcmd Type Message"
12093 " Data");
12094 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
12095 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
12096 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
12097 }
12098 rc = sbuf_finish(sb);
12099 done:
12100 sbuf_delete(sb);
12101 free(buf, M_CXGBE);
12102 return (rc);
12103 }
12104
12105 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)12106 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
12107 {
12108 struct adapter *sc = arg1;
12109 struct sbuf *sb;
12110 int rc;
12111 uint32_t cfg, s1, s2;
12112
12113 MPASS(chip_id(sc) >= CHELSIO_T5);
12114
12115 rc = 0;
12116 mtx_lock(&sc->reg_lock);
12117 if (hw_off_limits(sc))
12118 rc = ENXIO;
12119 else {
12120 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
12121 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
12122 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
12123 }
12124 mtx_unlock(&sc->reg_lock);
12125 if (rc != 0)
12126 return (rc);
12127
12128 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12129 if (sb == NULL)
12130 return (ENOMEM);
12131
12132 if (G_STATSOURCE_T5(cfg) == 7) {
12133 int mode;
12134
12135 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
12136 if (mode == 0)
12137 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
12138 else if (mode == 1)
12139 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
12140 else
12141 sbuf_printf(sb, "unknown mode %d", mode);
12142 }
12143 rc = sbuf_finish(sb);
12144 sbuf_delete(sb);
12145
12146 return (rc);
12147 }
12148
12149 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)12150 sysctl_cpus(SYSCTL_HANDLER_ARGS)
12151 {
12152 struct adapter *sc = arg1;
12153 enum cpu_sets op = arg2;
12154 cpuset_t cpuset;
12155 struct sbuf *sb;
12156 int i, rc;
12157
12158 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
12159
12160 CPU_ZERO(&cpuset);
12161 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
12162 if (rc != 0)
12163 return (rc);
12164
12165 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12166 if (sb == NULL)
12167 return (ENOMEM);
12168
12169 CPU_FOREACH(i)
12170 sbuf_printf(sb, "%d ", i);
12171 rc = sbuf_finish(sb);
12172 sbuf_delete(sb);
12173
12174 return (rc);
12175 }
12176
12177 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)12178 sysctl_reset(SYSCTL_HANDLER_ARGS)
12179 {
12180 struct adapter *sc = arg1;
12181 u_int val;
12182 int rc;
12183
12184 val = atomic_load_int(&sc->num_resets);
12185 rc = sysctl_handle_int(oidp, &val, 0, req);
12186 if (rc != 0 || req->newptr == NULL)
12187 return (rc);
12188
12189 if (val == 0) {
12190 /* Zero out the counter that tracks reset. */
12191 atomic_store_int(&sc->num_resets, 0);
12192 return (0);
12193 }
12194
12195 if (val != 1)
12196 return (EINVAL); /* 0 or 1 are the only legal values */
12197
12198 if (hw_off_limits(sc)) /* harmless race */
12199 return (EALREADY);
12200
12201 taskqueue_enqueue(reset_tq, &sc->reset_task);
12202 return (0);
12203 }
12204
12205 #ifdef TCP_OFFLOAD
12206 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)12207 sysctl_tls(SYSCTL_HANDLER_ARGS)
12208 {
12209 struct adapter *sc = arg1;
12210 int i, j, v, rc;
12211 struct vi_info *vi;
12212
12213 v = sc->tt.tls;
12214 rc = sysctl_handle_int(oidp, &v, 0, req);
12215 if (rc != 0 || req->newptr == NULL)
12216 return (rc);
12217
12218 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
12219 return (ENOTSUP);
12220
12221 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
12222 if (rc)
12223 return (rc);
12224 if (hw_off_limits(sc))
12225 rc = ENXIO;
12226 else {
12227 sc->tt.tls = !!v;
12228 for_each_port(sc, i) {
12229 for_each_vi(sc->port[i], j, vi) {
12230 if (vi->flags & VI_INIT_DONE)
12231 t4_update_fl_bufsize(vi->ifp);
12232 }
12233 }
12234 }
12235 end_synchronized_op(sc, 0);
12236
12237 return (rc);
12238
12239 }
12240
12241 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)12242 unit_conv(char *buf, size_t len, u_int val, u_int factor)
12243 {
12244 u_int rem = val % factor;
12245
12246 if (rem == 0)
12247 snprintf(buf, len, "%u", val / factor);
12248 else {
12249 while (rem % 10 == 0)
12250 rem /= 10;
12251 snprintf(buf, len, "%u.%u", val / factor, rem);
12252 }
12253 }
12254
12255 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)12256 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
12257 {
12258 struct adapter *sc = arg1;
12259 char buf[16];
12260 u_int res, re;
12261 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12262
12263 mtx_lock(&sc->reg_lock);
12264 if (hw_off_limits(sc))
12265 res = (u_int)-1;
12266 else
12267 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
12268 mtx_unlock(&sc->reg_lock);
12269 if (res == (u_int)-1)
12270 return (ENXIO);
12271
12272 switch (arg2) {
12273 case 0:
12274 /* timer_tick */
12275 re = G_TIMERRESOLUTION(res);
12276 break;
12277 case 1:
12278 /* TCP timestamp tick */
12279 re = G_TIMESTAMPRESOLUTION(res);
12280 break;
12281 case 2:
12282 /* DACK tick */
12283 re = G_DELAYEDACKRESOLUTION(res);
12284 break;
12285 default:
12286 return (EDOOFUS);
12287 }
12288
12289 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
12290
12291 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
12292 }
12293
12294 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)12295 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
12296 {
12297 struct adapter *sc = arg1;
12298 int rc;
12299 u_int dack_tmr, dack_re, v;
12300 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12301
12302 mtx_lock(&sc->reg_lock);
12303 if (hw_off_limits(sc))
12304 rc = ENXIO;
12305 else {
12306 rc = 0;
12307 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
12308 A_TP_TIMER_RESOLUTION));
12309 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
12310 }
12311 mtx_unlock(&sc->reg_lock);
12312 if (rc != 0)
12313 return (rc);
12314
12315 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
12316
12317 return (sysctl_handle_int(oidp, &v, 0, req));
12318 }
12319
12320 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)12321 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
12322 {
12323 struct adapter *sc = arg1;
12324 int rc, reg = arg2;
12325 u_int tre;
12326 u_long tp_tick_us, v;
12327 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12328
12329 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
12330 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
12331 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
12332 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
12333
12334 mtx_lock(&sc->reg_lock);
12335 if (hw_off_limits(sc))
12336 rc = ENXIO;
12337 else {
12338 rc = 0;
12339 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
12340 tp_tick_us = (cclk_ps << tre) / 1000000;
12341 if (reg == A_TP_INIT_SRTT)
12342 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
12343 else
12344 v = tp_tick_us * t4_read_reg(sc, reg);
12345 }
12346 mtx_unlock(&sc->reg_lock);
12347 if (rc != 0)
12348 return (rc);
12349 else
12350 return (sysctl_handle_long(oidp, &v, 0, req));
12351 }
12352
12353 /*
12354 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
12355 * passed to this function.
12356 */
12357 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)12358 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
12359 {
12360 struct adapter *sc = arg1;
12361 int rc, idx = arg2;
12362 u_int v;
12363
12364 MPASS(idx >= 0 && idx <= 24);
12365
12366 mtx_lock(&sc->reg_lock);
12367 if (hw_off_limits(sc))
12368 rc = ENXIO;
12369 else {
12370 rc = 0;
12371 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
12372 }
12373 mtx_unlock(&sc->reg_lock);
12374 if (rc != 0)
12375 return (rc);
12376 else
12377 return (sysctl_handle_int(oidp, &v, 0, req));
12378 }
12379
12380 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)12381 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
12382 {
12383 struct adapter *sc = arg1;
12384 int rc, idx = arg2;
12385 u_int shift, v, r;
12386
12387 MPASS(idx >= 0 && idx < 16);
12388
12389 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
12390 shift = (idx & 3) << 3;
12391 mtx_lock(&sc->reg_lock);
12392 if (hw_off_limits(sc))
12393 rc = ENXIO;
12394 else {
12395 rc = 0;
12396 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
12397 }
12398 mtx_unlock(&sc->reg_lock);
12399 if (rc != 0)
12400 return (rc);
12401 else
12402 return (sysctl_handle_int(oidp, &v, 0, req));
12403 }
12404
12405 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)12406 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
12407 {
12408 struct vi_info *vi = arg1;
12409 struct adapter *sc = vi->adapter;
12410 int idx, rc, i;
12411 struct sge_ofld_rxq *ofld_rxq;
12412 uint8_t v;
12413
12414 idx = vi->ofld_tmr_idx;
12415
12416 rc = sysctl_handle_int(oidp, &idx, 0, req);
12417 if (rc != 0 || req->newptr == NULL)
12418 return (rc);
12419
12420 if (idx < 0 || idx >= SGE_NTIMERS)
12421 return (EINVAL);
12422
12423 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12424 "t4otmr");
12425 if (rc)
12426 return (rc);
12427
12428 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
12429 for_each_ofld_rxq(vi, i, ofld_rxq) {
12430 #ifdef atomic_store_rel_8
12431 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
12432 #else
12433 ofld_rxq->iq.intr_params = v;
12434 #endif
12435 }
12436 vi->ofld_tmr_idx = idx;
12437
12438 end_synchronized_op(sc, LOCK_HELD);
12439 return (0);
12440 }
12441
12442 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)12443 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
12444 {
12445 struct vi_info *vi = arg1;
12446 struct adapter *sc = vi->adapter;
12447 int idx, rc;
12448
12449 idx = vi->ofld_pktc_idx;
12450
12451 rc = sysctl_handle_int(oidp, &idx, 0, req);
12452 if (rc != 0 || req->newptr == NULL)
12453 return (rc);
12454
12455 if (idx < -1 || idx >= SGE_NCOUNTERS)
12456 return (EINVAL);
12457
12458 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12459 "t4opktc");
12460 if (rc)
12461 return (rc);
12462
12463 if (vi->flags & VI_INIT_DONE)
12464 rc = EBUSY; /* cannot be changed once the queues are created */
12465 else
12466 vi->ofld_pktc_idx = idx;
12467
12468 end_synchronized_op(sc, LOCK_HELD);
12469 return (rc);
12470 }
12471 #endif
12472
12473 static int
get_sge_context(struct adapter * sc,int mem_id,uint32_t cid,int len,uint32_t * data)12474 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len,
12475 uint32_t *data)
12476 {
12477 int rc;
12478
12479 if (len < sc->chip_params->sge_ctxt_size)
12480 return (ENOBUFS);
12481 if (cid > M_CTXTQID)
12482 return (EINVAL);
12483 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS &&
12484 mem_id != CTXT_FLM && mem_id != CTXT_CNM)
12485 return (EINVAL);
12486
12487 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
12488 if (rc)
12489 return (rc);
12490
12491 if (hw_off_limits(sc)) {
12492 rc = ENXIO;
12493 goto done;
12494 }
12495
12496 if (sc->flags & FW_OK) {
12497 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data);
12498 if (rc == 0)
12499 goto done;
12500 }
12501
12502 /*
12503 * Read via firmware failed or wasn't even attempted. Read directly via
12504 * the backdoor.
12505 */
12506 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data);
12507 done:
12508 end_synchronized_op(sc, 0);
12509 return (rc);
12510 }
12511
12512 static int
load_fw(struct adapter * sc,struct t4_data * fw)12513 load_fw(struct adapter *sc, struct t4_data *fw)
12514 {
12515 int rc;
12516 uint8_t *fw_data;
12517
12518 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
12519 if (rc)
12520 return (rc);
12521
12522 if (hw_off_limits(sc)) {
12523 rc = ENXIO;
12524 goto done;
12525 }
12526
12527 /*
12528 * The firmware, with the sole exception of the memory parity error
12529 * handler, runs from memory and not flash. It is almost always safe to
12530 * install a new firmware on a running system. Just set bit 1 in
12531 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
12532 */
12533 if (sc->flags & FULL_INIT_DONE &&
12534 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
12535 rc = EBUSY;
12536 goto done;
12537 }
12538
12539 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
12540
12541 rc = copyin(fw->data, fw_data, fw->len);
12542 if (rc == 0)
12543 rc = -t4_load_fw(sc, fw_data, fw->len);
12544
12545 free(fw_data, M_CXGBE);
12546 done:
12547 end_synchronized_op(sc, 0);
12548 return (rc);
12549 }
12550
12551 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)12552 load_cfg(struct adapter *sc, struct t4_data *cfg)
12553 {
12554 int rc;
12555 uint8_t *cfg_data = NULL;
12556
12557 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12558 if (rc)
12559 return (rc);
12560
12561 if (hw_off_limits(sc)) {
12562 rc = ENXIO;
12563 goto done;
12564 }
12565
12566 if (cfg->len == 0) {
12567 /* clear */
12568 rc = -t4_load_cfg(sc, NULL, 0);
12569 goto done;
12570 }
12571
12572 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
12573
12574 rc = copyin(cfg->data, cfg_data, cfg->len);
12575 if (rc == 0)
12576 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
12577
12578 free(cfg_data, M_CXGBE);
12579 done:
12580 end_synchronized_op(sc, 0);
12581 return (rc);
12582 }
12583
12584 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)12585 load_boot(struct adapter *sc, struct t4_bootrom *br)
12586 {
12587 int rc;
12588 uint8_t *br_data = NULL;
12589 u_int offset;
12590
12591 if (br->len > 1024 * 1024)
12592 return (EFBIG);
12593
12594 if (br->pf_offset == 0) {
12595 /* pfidx */
12596 if (br->pfidx_addr > 7)
12597 return (EINVAL);
12598 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
12599 A_PCIE_PF_EXPROM_OFST)));
12600 } else if (br->pf_offset == 1) {
12601 /* offset */
12602 offset = G_OFFSET(br->pfidx_addr);
12603 } else {
12604 return (EINVAL);
12605 }
12606
12607 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
12608 if (rc)
12609 return (rc);
12610
12611 if (hw_off_limits(sc)) {
12612 rc = ENXIO;
12613 goto done;
12614 }
12615
12616 if (br->len == 0) {
12617 /* clear */
12618 rc = -t4_load_boot(sc, NULL, offset, 0);
12619 goto done;
12620 }
12621
12622 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
12623
12624 rc = copyin(br->data, br_data, br->len);
12625 if (rc == 0)
12626 rc = -t4_load_boot(sc, br_data, offset, br->len);
12627
12628 free(br_data, M_CXGBE);
12629 done:
12630 end_synchronized_op(sc, 0);
12631 return (rc);
12632 }
12633
12634 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)12635 load_bootcfg(struct adapter *sc, struct t4_data *bc)
12636 {
12637 int rc;
12638 uint8_t *bc_data = NULL;
12639
12640 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12641 if (rc)
12642 return (rc);
12643
12644 if (hw_off_limits(sc)) {
12645 rc = ENXIO;
12646 goto done;
12647 }
12648
12649 if (bc->len == 0) {
12650 /* clear */
12651 rc = -t4_load_bootcfg(sc, NULL, 0);
12652 goto done;
12653 }
12654
12655 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
12656
12657 rc = copyin(bc->data, bc_data, bc->len);
12658 if (rc == 0)
12659 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
12660
12661 free(bc_data, M_CXGBE);
12662 done:
12663 end_synchronized_op(sc, 0);
12664 return (rc);
12665 }
12666
12667 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)12668 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
12669 {
12670 int rc;
12671 struct cudbg_init *cudbg;
12672 void *handle, *buf;
12673
12674 /* buf is large, don't block if no memory is available */
12675 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
12676 if (buf == NULL)
12677 return (ENOMEM);
12678
12679 handle = cudbg_alloc_handle();
12680 if (handle == NULL) {
12681 rc = ENOMEM;
12682 goto done;
12683 }
12684
12685 cudbg = cudbg_get_init(handle);
12686 cudbg->adap = sc;
12687 cudbg->print = (cudbg_print_cb)printf;
12688
12689 #ifndef notyet
12690 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
12691 __func__, dump->wr_flash, dump->len, dump->data);
12692 #endif
12693
12694 if (dump->wr_flash)
12695 cudbg->use_flash = 1;
12696 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
12697 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
12698
12699 rc = cudbg_collect(handle, buf, &dump->len);
12700 if (rc != 0)
12701 goto done;
12702
12703 rc = copyout(buf, dump->data, dump->len);
12704 done:
12705 cudbg_free_handle(handle);
12706 free(buf, M_CXGBE);
12707 return (rc);
12708 }
12709
12710 static void
free_offload_policy(struct t4_offload_policy * op)12711 free_offload_policy(struct t4_offload_policy *op)
12712 {
12713 struct offload_rule *r;
12714 int i;
12715
12716 if (op == NULL)
12717 return;
12718
12719 r = &op->rule[0];
12720 for (i = 0; i < op->nrules; i++, r++) {
12721 free(r->bpf_prog.bf_insns, M_CXGBE);
12722 }
12723 free(op->rule, M_CXGBE);
12724 free(op, M_CXGBE);
12725 }
12726
12727 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)12728 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
12729 {
12730 int i, rc, len;
12731 struct t4_offload_policy *op, *old;
12732 struct bpf_program *bf;
12733 const struct offload_settings *s;
12734 struct offload_rule *r;
12735 void *u;
12736
12737 if (!is_offload(sc))
12738 return (ENODEV);
12739
12740 if (uop->nrules == 0) {
12741 /* Delete installed policies. */
12742 op = NULL;
12743 goto set_policy;
12744 } else if (uop->nrules > 256) { /* arbitrary */
12745 return (E2BIG);
12746 }
12747
12748 /* Copy userspace offload policy to kernel */
12749 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
12750 op->nrules = uop->nrules;
12751 len = op->nrules * sizeof(struct offload_rule);
12752 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12753 rc = copyin(uop->rule, op->rule, len);
12754 if (rc) {
12755 free(op->rule, M_CXGBE);
12756 free(op, M_CXGBE);
12757 return (rc);
12758 }
12759
12760 r = &op->rule[0];
12761 for (i = 0; i < op->nrules; i++, r++) {
12762
12763 /* Validate open_type */
12764 if (r->open_type != OPEN_TYPE_LISTEN &&
12765 r->open_type != OPEN_TYPE_ACTIVE &&
12766 r->open_type != OPEN_TYPE_PASSIVE &&
12767 r->open_type != OPEN_TYPE_DONTCARE) {
12768 error:
12769 /*
12770 * Rules 0 to i have malloc'd filters that need to be
12771 * freed. Rules i+1 to nrules have userspace pointers
12772 * and should be left alone.
12773 */
12774 op->nrules = i;
12775 free_offload_policy(op);
12776 return (rc);
12777 }
12778
12779 /* Validate settings */
12780 s = &r->settings;
12781 if ((s->offload != 0 && s->offload != 1) ||
12782 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
12783 s->sched_class < -1 ||
12784 s->sched_class >= sc->params.nsched_cls) {
12785 rc = EINVAL;
12786 goto error;
12787 }
12788
12789 bf = &r->bpf_prog;
12790 u = bf->bf_insns; /* userspace ptr */
12791 bf->bf_insns = NULL;
12792 if (bf->bf_len == 0) {
12793 /* legal, matches everything */
12794 continue;
12795 }
12796 len = bf->bf_len * sizeof(*bf->bf_insns);
12797 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12798 rc = copyin(u, bf->bf_insns, len);
12799 if (rc != 0)
12800 goto error;
12801
12802 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
12803 rc = EINVAL;
12804 goto error;
12805 }
12806 }
12807 set_policy:
12808 rw_wlock(&sc->policy_lock);
12809 old = sc->policy;
12810 sc->policy = op;
12811 rw_wunlock(&sc->policy_lock);
12812 free_offload_policy(old);
12813
12814 return (0);
12815 }
12816
12817 #define MAX_READ_BUF_SIZE (128 * 1024)
12818 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)12819 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
12820 {
12821 uint32_t addr, remaining, n;
12822 uint32_t *buf;
12823 int rc;
12824 uint8_t *dst;
12825
12826 mtx_lock(&sc->reg_lock);
12827 if (hw_off_limits(sc))
12828 rc = ENXIO;
12829 else
12830 rc = validate_mem_range(sc, mr->addr, mr->len);
12831 mtx_unlock(&sc->reg_lock);
12832 if (rc != 0)
12833 return (rc);
12834
12835 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
12836 addr = mr->addr;
12837 remaining = mr->len;
12838 dst = (void *)mr->data;
12839
12840 while (remaining) {
12841 n = min(remaining, MAX_READ_BUF_SIZE);
12842 mtx_lock(&sc->reg_lock);
12843 if (hw_off_limits(sc))
12844 rc = ENXIO;
12845 else
12846 read_via_memwin(sc, 2, addr, buf, n);
12847 mtx_unlock(&sc->reg_lock);
12848 if (rc != 0)
12849 break;
12850
12851 rc = copyout(buf, dst, n);
12852 if (rc != 0)
12853 break;
12854
12855 dst += n;
12856 remaining -= n;
12857 addr += n;
12858 }
12859
12860 free(buf, M_CXGBE);
12861 return (rc);
12862 }
12863 #undef MAX_READ_BUF_SIZE
12864
12865 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12866 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12867 {
12868 int rc;
12869
12870 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12871 return (EINVAL);
12872
12873 if (i2cd->len > sizeof(i2cd->data))
12874 return (EFBIG);
12875
12876 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12877 if (rc)
12878 return (rc);
12879 if (hw_off_limits(sc))
12880 rc = ENXIO;
12881 else
12882 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12883 i2cd->offset, i2cd->len, &i2cd->data[0]);
12884 end_synchronized_op(sc, 0);
12885
12886 return (rc);
12887 }
12888
12889 static int
clear_stats(struct adapter * sc,u_int port_id)12890 clear_stats(struct adapter *sc, u_int port_id)
12891 {
12892 int i, v, chan_map;
12893 struct port_info *pi;
12894 struct vi_info *vi;
12895 struct sge_rxq *rxq;
12896 struct sge_txq *txq;
12897 struct sge_wrq *wrq;
12898 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12899 struct sge_ofld_txq *ofld_txq;
12900 #endif
12901 #ifdef TCP_OFFLOAD
12902 struct sge_ofld_rxq *ofld_rxq;
12903 #endif
12904
12905 if (port_id >= sc->params.nports)
12906 return (EINVAL);
12907 pi = sc->port[port_id];
12908 if (pi == NULL)
12909 return (EIO);
12910
12911 mtx_lock(&sc->reg_lock);
12912 if (!hw_off_limits(sc)) {
12913 /* MAC stats */
12914 t4_clr_port_stats(sc, pi->hw_port);
12915 if (is_t6(sc)) {
12916 if (pi->fcs_reg != -1)
12917 pi->fcs_base = t4_read_reg64(sc,
12918 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
12919 else
12920 pi->stats.rx_fcs_err = 0;
12921 }
12922 for_each_vi(pi, v, vi) {
12923 if (vi->flags & VI_INIT_DONE)
12924 t4_clr_vi_stats(sc, vi->vin);
12925 }
12926 chan_map = pi->rx_e_chan_map;
12927 v = 0; /* reuse */
12928 while (chan_map) {
12929 i = ffs(chan_map) - 1;
12930 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12931 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12932 chan_map &= ~(1 << i);
12933 }
12934 }
12935 mtx_unlock(&sc->reg_lock);
12936 pi->tx_parse_error = 0;
12937 pi->tnl_cong_drops = 0;
12938
12939 /*
12940 * Since this command accepts a port, clear stats for
12941 * all VIs on this port.
12942 */
12943 for_each_vi(pi, v, vi) {
12944 if (vi->flags & VI_INIT_DONE) {
12945
12946 for_each_rxq(vi, i, rxq) {
12947 #if defined(INET) || defined(INET6)
12948 rxq->lro.lro_queued = 0;
12949 rxq->lro.lro_flushed = 0;
12950 #endif
12951 rxq->rxcsum = 0;
12952 rxq->vlan_extraction = 0;
12953 rxq->vxlan_rxcsum = 0;
12954
12955 rxq->fl.cl_allocated = 0;
12956 rxq->fl.cl_recycled = 0;
12957 rxq->fl.cl_fast_recycled = 0;
12958 }
12959
12960 for_each_txq(vi, i, txq) {
12961 txq->txcsum = 0;
12962 txq->tso_wrs = 0;
12963 txq->vlan_insertion = 0;
12964 txq->imm_wrs = 0;
12965 txq->sgl_wrs = 0;
12966 txq->txpkt_wrs = 0;
12967 txq->txpkts0_wrs = 0;
12968 txq->txpkts1_wrs = 0;
12969 txq->txpkts0_pkts = 0;
12970 txq->txpkts1_pkts = 0;
12971 txq->txpkts_flush = 0;
12972 txq->raw_wrs = 0;
12973 txq->vxlan_tso_wrs = 0;
12974 txq->vxlan_txcsum = 0;
12975 txq->kern_tls_records = 0;
12976 txq->kern_tls_short = 0;
12977 txq->kern_tls_partial = 0;
12978 txq->kern_tls_full = 0;
12979 txq->kern_tls_octets = 0;
12980 txq->kern_tls_waste = 0;
12981 txq->kern_tls_header = 0;
12982 txq->kern_tls_fin_short = 0;
12983 txq->kern_tls_cbc = 0;
12984 txq->kern_tls_gcm = 0;
12985 if (is_t6(sc)) {
12986 txq->kern_tls_options = 0;
12987 txq->kern_tls_fin = 0;
12988 } else {
12989 txq->kern_tls_ghash_received = 0;
12990 txq->kern_tls_ghash_requested = 0;
12991 txq->kern_tls_lso = 0;
12992 txq->kern_tls_partial_ghash = 0;
12993 txq->kern_tls_splitmode = 0;
12994 txq->kern_tls_trailer = 0;
12995 }
12996 mp_ring_reset_stats(txq->r);
12997 }
12998
12999 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13000 for_each_ofld_txq(vi, i, ofld_txq) {
13001 ofld_txq->wrq.tx_wrs_direct = 0;
13002 ofld_txq->wrq.tx_wrs_copied = 0;
13003 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
13004 counter_u64_zero(ofld_txq->tx_iscsi_octets);
13005 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
13006 counter_u64_zero(ofld_txq->tx_nvme_pdus);
13007 counter_u64_zero(ofld_txq->tx_nvme_octets);
13008 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs);
13009 counter_u64_zero(ofld_txq->tx_aio_jobs);
13010 counter_u64_zero(ofld_txq->tx_aio_octets);
13011 counter_u64_zero(ofld_txq->tx_toe_tls_records);
13012 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
13013 }
13014 #endif
13015 #ifdef TCP_OFFLOAD
13016 for_each_ofld_rxq(vi, i, ofld_rxq) {
13017 ofld_rxq->fl.cl_allocated = 0;
13018 ofld_rxq->fl.cl_recycled = 0;
13019 ofld_rxq->fl.cl_fast_recycled = 0;
13020 counter_u64_zero(
13021 ofld_rxq->rx_iscsi_ddp_setup_ok);
13022 counter_u64_zero(
13023 ofld_rxq->rx_iscsi_ddp_setup_error);
13024 ofld_rxq->rx_iscsi_ddp_pdus = 0;
13025 ofld_rxq->rx_iscsi_ddp_octets = 0;
13026 ofld_rxq->rx_iscsi_fl_pdus = 0;
13027 ofld_rxq->rx_iscsi_fl_octets = 0;
13028 counter_u64_zero(
13029 ofld_rxq->rx_nvme_ddp_setup_ok);
13030 counter_u64_zero(
13031 ofld_rxq->rx_nvme_ddp_setup_no_stag);
13032 counter_u64_zero(
13033 ofld_rxq->rx_nvme_ddp_setup_error);
13034 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus);
13035 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets);
13036 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus);
13037 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets);
13038 counter_u64_zero(
13039 ofld_rxq->rx_nvme_invalid_headers);
13040 counter_u64_zero(
13041 ofld_rxq->rx_nvme_header_digest_errors);
13042 counter_u64_zero(
13043 ofld_rxq->rx_nvme_data_digest_errors);
13044 ofld_rxq->rx_aio_ddp_jobs = 0;
13045 ofld_rxq->rx_aio_ddp_octets = 0;
13046 ofld_rxq->rx_toe_tls_records = 0;
13047 ofld_rxq->rx_toe_tls_octets = 0;
13048 ofld_rxq->rx_toe_ddp_octets = 0;
13049 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
13050 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
13051 counter_u64_zero(ofld_rxq->ddp_buffer_free);
13052 }
13053 #endif
13054
13055 if (IS_MAIN_VI(vi)) {
13056 wrq = &sc->sge.ctrlq[pi->port_id];
13057 wrq->tx_wrs_direct = 0;
13058 wrq->tx_wrs_copied = 0;
13059 }
13060 }
13061 }
13062
13063 return (0);
13064 }
13065
13066 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13067 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13068 {
13069 #ifdef INET6
13070 struct in6_addr in6;
13071
13072 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13073 if (t4_get_clip_entry(sc, &in6, true) != NULL)
13074 return (0);
13075 else
13076 return (EIO);
13077 #else
13078 return (ENOTSUP);
13079 #endif
13080 }
13081
13082 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13083 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13084 {
13085 #ifdef INET6
13086 struct in6_addr in6;
13087
13088 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13089 return (t4_release_clip_addr(sc, &in6));
13090 #else
13091 return (ENOTSUP);
13092 #endif
13093 }
13094
13095 int
t4_os_find_pci_capability(struct adapter * sc,int cap)13096 t4_os_find_pci_capability(struct adapter *sc, int cap)
13097 {
13098 int i;
13099
13100 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
13101 }
13102
13103 void
t4_os_portmod_changed(struct port_info * pi)13104 t4_os_portmod_changed(struct port_info *pi)
13105 {
13106 struct adapter *sc = pi->adapter;
13107 struct vi_info *vi;
13108 if_t ifp;
13109 static const char *mod_str[] = {
13110 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
13111 "LR_SIMPLEX", "DR"
13112 };
13113
13114 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
13115 ("%s: port_type %u", __func__, pi->port_type));
13116
13117 vi = &pi->vi[0];
13118 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
13119 PORT_LOCK(pi);
13120 build_medialist(pi);
13121 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
13122 fixup_link_config(pi);
13123 apply_link_config(pi);
13124 }
13125 PORT_UNLOCK(pi);
13126 end_synchronized_op(sc, LOCK_HELD);
13127 }
13128
13129 ifp = vi->ifp;
13130 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
13131 if_printf(ifp, "transceiver unplugged.\n");
13132 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
13133 if_printf(ifp, "unknown transceiver inserted.\n");
13134 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
13135 if_printf(ifp, "unsupported transceiver inserted.\n");
13136 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
13137 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
13138 port_top_speed(pi), mod_str[pi->mod_type]);
13139 } else {
13140 if_printf(ifp, "transceiver (type %d) inserted.\n",
13141 pi->mod_type);
13142 }
13143 }
13144
13145 void
t4_os_link_changed(struct port_info * pi)13146 t4_os_link_changed(struct port_info *pi)
13147 {
13148 struct vi_info *vi;
13149 if_t ifp;
13150 struct link_config *lc = &pi->link_cfg;
13151 struct adapter *sc = pi->adapter;
13152 int v;
13153
13154 PORT_LOCK_ASSERT_OWNED(pi);
13155
13156 if (is_t6(sc)) {
13157 if (lc->link_ok) {
13158 if (lc->speed > 25000 ||
13159 (lc->speed == 25000 && lc->fec == FEC_RS))
13160 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS;
13161 else
13162 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS;
13163 pi->fcs_base = t4_read_reg64(sc,
13164 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
13165 pi->stats.rx_fcs_err = 0;
13166 } else {
13167 pi->fcs_reg = -1;
13168 }
13169 } else {
13170 MPASS(pi->fcs_reg != -1);
13171 MPASS(pi->fcs_base == 0);
13172 }
13173
13174 for_each_vi(pi, v, vi) {
13175 ifp = vi->ifp;
13176 if (ifp == NULL || IS_DETACHING(vi))
13177 continue;
13178
13179 if (lc->link_ok) {
13180 if_setbaudrate(ifp, IF_Mbps(lc->speed));
13181 if_link_state_change(ifp, LINK_STATE_UP);
13182 } else {
13183 if_link_state_change(ifp, LINK_STATE_DOWN);
13184 }
13185 }
13186 }
13187
13188 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)13189 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
13190 {
13191 struct adapter *sc;
13192
13193 sx_slock(&t4_list_lock);
13194 SLIST_FOREACH(sc, &t4_list, link) {
13195 /*
13196 * func should not make any assumptions about what state sc is
13197 * in - the only guarantee is that sc->sc_lock is a valid lock.
13198 */
13199 func(sc, arg);
13200 }
13201 sx_sunlock(&t4_list_lock);
13202 }
13203
13204 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)13205 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
13206 struct thread *td)
13207 {
13208 int rc;
13209 struct adapter *sc = dev->si_drv1;
13210
13211 rc = priv_check(td, PRIV_DRIVER);
13212 if (rc != 0)
13213 return (rc);
13214
13215 switch (cmd) {
13216 case CHELSIO_T4_GETREG: {
13217 struct t4_reg *edata = (struct t4_reg *)data;
13218
13219 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13220 return (EFAULT);
13221
13222 mtx_lock(&sc->reg_lock);
13223 if (hw_off_limits(sc))
13224 rc = ENXIO;
13225 else if (edata->size == 4)
13226 edata->val = t4_read_reg(sc, edata->addr);
13227 else if (edata->size == 8)
13228 edata->val = t4_read_reg64(sc, edata->addr);
13229 else
13230 rc = EINVAL;
13231 mtx_unlock(&sc->reg_lock);
13232
13233 break;
13234 }
13235 case CHELSIO_T4_SETREG: {
13236 struct t4_reg *edata = (struct t4_reg *)data;
13237
13238 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13239 return (EFAULT);
13240
13241 mtx_lock(&sc->reg_lock);
13242 if (hw_off_limits(sc))
13243 rc = ENXIO;
13244 else if (edata->size == 4) {
13245 if (edata->val & 0xffffffff00000000)
13246 rc = EINVAL;
13247 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
13248 } else if (edata->size == 8)
13249 t4_write_reg64(sc, edata->addr, edata->val);
13250 else
13251 rc = EINVAL;
13252 mtx_unlock(&sc->reg_lock);
13253
13254 break;
13255 }
13256 case CHELSIO_T4_REGDUMP: {
13257 struct t4_regdump *regs = (struct t4_regdump *)data;
13258 int reglen = t4_get_regs_len(sc);
13259 uint8_t *buf;
13260
13261 if (regs->len < reglen) {
13262 regs->len = reglen; /* hint to the caller */
13263 return (ENOBUFS);
13264 }
13265
13266 regs->len = reglen;
13267 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
13268 mtx_lock(&sc->reg_lock);
13269 if (hw_off_limits(sc))
13270 rc = ENXIO;
13271 else
13272 get_regs(sc, regs, buf);
13273 mtx_unlock(&sc->reg_lock);
13274 if (rc == 0)
13275 rc = copyout(buf, regs->data, reglen);
13276 free(buf, M_CXGBE);
13277 break;
13278 }
13279 case CHELSIO_T4_GET_FILTER_MODE:
13280 rc = get_filter_mode(sc, (uint32_t *)data);
13281 break;
13282 case CHELSIO_T4_SET_FILTER_MODE:
13283 rc = set_filter_mode(sc, *(uint32_t *)data);
13284 break;
13285 case CHELSIO_T4_SET_FILTER_MASK:
13286 rc = set_filter_mask(sc, *(uint32_t *)data);
13287 break;
13288 case CHELSIO_T4_GET_FILTER:
13289 rc = get_filter(sc, (struct t4_filter *)data);
13290 break;
13291 case CHELSIO_T4_SET_FILTER:
13292 rc = set_filter(sc, (struct t4_filter *)data);
13293 break;
13294 case CHELSIO_T4_DEL_FILTER:
13295 rc = del_filter(sc, (struct t4_filter *)data);
13296 break;
13297 case CHELSIO_T4_GET_SGE_CONTEXT: {
13298 struct t4_sge_context *ctxt = (struct t4_sge_context *)data;
13299
13300 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13301 sizeof(ctxt->data), &ctxt->data[0]);
13302 break;
13303 }
13304 case CHELSIO_T4_LOAD_FW:
13305 rc = load_fw(sc, (struct t4_data *)data);
13306 break;
13307 case CHELSIO_T4_GET_MEM:
13308 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
13309 break;
13310 case CHELSIO_T4_GET_I2C:
13311 rc = read_i2c(sc, (struct t4_i2c_data *)data);
13312 break;
13313 case CHELSIO_T4_CLEAR_STATS:
13314 rc = clear_stats(sc, *(uint32_t *)data);
13315 break;
13316 case CHELSIO_T4_SCHED_CLASS:
13317 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
13318 break;
13319 case CHELSIO_T4_SCHED_QUEUE:
13320 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
13321 break;
13322 case CHELSIO_T4_GET_TRACER:
13323 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
13324 break;
13325 case CHELSIO_T4_SET_TRACER:
13326 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
13327 break;
13328 case CHELSIO_T4_LOAD_CFG:
13329 rc = load_cfg(sc, (struct t4_data *)data);
13330 break;
13331 case CHELSIO_T4_LOAD_BOOT:
13332 rc = load_boot(sc, (struct t4_bootrom *)data);
13333 break;
13334 case CHELSIO_T4_LOAD_BOOTCFG:
13335 rc = load_bootcfg(sc, (struct t4_data *)data);
13336 break;
13337 case CHELSIO_T4_CUDBG_DUMP:
13338 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
13339 break;
13340 case CHELSIO_T4_SET_OFLD_POLICY:
13341 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
13342 break;
13343 case CHELSIO_T4_HOLD_CLIP_ADDR:
13344 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
13345 break;
13346 case CHELSIO_T4_RELEASE_CLIP_ADDR:
13347 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
13348 break;
13349 case CHELSIO_T4_GET_SGE_CTXT: {
13350 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data;
13351
13352 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13353 sizeof(ctxt->data), &ctxt->data[0]);
13354 break;
13355 }
13356 default:
13357 rc = ENOTTY;
13358 }
13359
13360 return (rc);
13361 }
13362
13363 #ifdef TCP_OFFLOAD
13364 int
toe_capability(struct vi_info * vi,bool enable)13365 toe_capability(struct vi_info *vi, bool enable)
13366 {
13367 int rc;
13368 struct port_info *pi = vi->pi;
13369 struct adapter *sc = pi->adapter;
13370
13371 ASSERT_SYNCHRONIZED_OP(sc);
13372
13373 if (!is_offload(sc))
13374 return (ENODEV);
13375 if (!hw_all_ok(sc))
13376 return (ENXIO);
13377
13378 if (enable) {
13379 #ifdef KERN_TLS
13380 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
13381 int i, j, n;
13382 struct port_info *p;
13383 struct vi_info *v;
13384
13385 /*
13386 * Reconfigure hardware for TOE if TXTLS is not enabled
13387 * on any ifnet.
13388 */
13389 n = 0;
13390 for_each_port(sc, i) {
13391 p = sc->port[i];
13392 for_each_vi(p, j, v) {
13393 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
13394 CH_WARN(sc,
13395 "%s has NIC TLS enabled.\n",
13396 device_get_nameunit(v->dev));
13397 n++;
13398 }
13399 }
13400 }
13401 if (n > 0) {
13402 CH_WARN(sc, "Disable NIC TLS on all interfaces "
13403 "associated with this adapter before "
13404 "trying to enable TOE.\n");
13405 return (EAGAIN);
13406 }
13407 rc = t6_config_kern_tls(sc, false);
13408 if (rc)
13409 return (rc);
13410 }
13411 #endif
13412 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
13413 /* TOE is already enabled. */
13414 return (0);
13415 }
13416
13417 /*
13418 * We need the port's queues around so that we're able to send
13419 * and receive CPLs to/from the TOE even if the ifnet for this
13420 * port has never been UP'd administratively.
13421 */
13422 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
13423 return (rc);
13424 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
13425 ((rc = vi_init(&pi->vi[0])) != 0))
13426 return (rc);
13427
13428 if (isset(&sc->offload_map, pi->port_id)) {
13429 /* TOE is enabled on another VI of this port. */
13430 MPASS(pi->uld_vis > 0);
13431 pi->uld_vis++;
13432 return (0);
13433 }
13434
13435 if (!uld_active(sc, ULD_TOM)) {
13436 rc = t4_activate_uld(sc, ULD_TOM);
13437 if (rc == EAGAIN) {
13438 log(LOG_WARNING,
13439 "You must kldload t4_tom.ko before trying "
13440 "to enable TOE on a cxgbe interface.\n");
13441 }
13442 if (rc != 0)
13443 return (rc);
13444 KASSERT(sc->tom_softc != NULL,
13445 ("%s: TOM activated but softc NULL", __func__));
13446 KASSERT(uld_active(sc, ULD_TOM),
13447 ("%s: TOM activated but flag not set", __func__));
13448 }
13449
13450 /*
13451 * Activate iWARP, iSCSI, and NVMe too, if the modules
13452 * are loaded.
13453 */
13454 if (!uld_active(sc, ULD_IWARP))
13455 (void) t4_activate_uld(sc, ULD_IWARP);
13456 if (!uld_active(sc, ULD_ISCSI))
13457 (void) t4_activate_uld(sc, ULD_ISCSI);
13458 if (!uld_active(sc, ULD_NVME))
13459 (void) t4_activate_uld(sc, ULD_NVME);
13460
13461 if (pi->uld_vis++ == 0)
13462 setbit(&sc->offload_map, pi->port_id);
13463 } else {
13464 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
13465 /* TOE is already disabled. */
13466 return (0);
13467 }
13468 MPASS(isset(&sc->offload_map, pi->port_id));
13469 MPASS(pi->uld_vis > 0);
13470 if (--pi->uld_vis == 0)
13471 clrbit(&sc->offload_map, pi->port_id);
13472 }
13473
13474 return (0);
13475 }
13476
13477 /*
13478 * Add an upper layer driver to the global list.
13479 */
13480 int
t4_register_uld(struct uld_info * ui,int id)13481 t4_register_uld(struct uld_info *ui, int id)
13482 {
13483 int rc;
13484
13485 if (id < 0 || id > ULD_MAX)
13486 return (EINVAL);
13487 sx_xlock(&t4_uld_list_lock);
13488 if (t4_uld_list[id] != NULL)
13489 rc = EEXIST;
13490 else {
13491 t4_uld_list[id] = ui;
13492 rc = 0;
13493 }
13494 sx_xunlock(&t4_uld_list_lock);
13495 return (rc);
13496 }
13497
13498 int
t4_unregister_uld(struct uld_info * ui,int id)13499 t4_unregister_uld(struct uld_info *ui, int id)
13500 {
13501
13502 if (id < 0 || id > ULD_MAX)
13503 return (EINVAL);
13504 sx_xlock(&t4_uld_list_lock);
13505 MPASS(t4_uld_list[id] == ui);
13506 t4_uld_list[id] = NULL;
13507 sx_xunlock(&t4_uld_list_lock);
13508 return (0);
13509 }
13510
13511 int
t4_activate_uld(struct adapter * sc,int id)13512 t4_activate_uld(struct adapter *sc, int id)
13513 {
13514 int rc;
13515
13516 ASSERT_SYNCHRONIZED_OP(sc);
13517
13518 if (id < 0 || id > ULD_MAX)
13519 return (EINVAL);
13520
13521 /* Adapter needs to be initialized before any ULD can be activated. */
13522 if (!(sc->flags & FULL_INIT_DONE)) {
13523 rc = adapter_init(sc);
13524 if (rc != 0)
13525 return (rc);
13526 }
13527
13528 sx_slock(&t4_uld_list_lock);
13529 if (t4_uld_list[id] == NULL)
13530 rc = EAGAIN; /* load the KLD with this ULD and try again. */
13531 else {
13532 rc = t4_uld_list[id]->uld_activate(sc);
13533 if (rc == 0)
13534 setbit(&sc->active_ulds, id);
13535 }
13536 sx_sunlock(&t4_uld_list_lock);
13537
13538 return (rc);
13539 }
13540
13541 int
t4_deactivate_uld(struct adapter * sc,int id)13542 t4_deactivate_uld(struct adapter *sc, int id)
13543 {
13544 int rc;
13545
13546 ASSERT_SYNCHRONIZED_OP(sc);
13547
13548 if (id < 0 || id > ULD_MAX)
13549 return (EINVAL);
13550
13551 sx_slock(&t4_uld_list_lock);
13552 if (t4_uld_list[id] == NULL)
13553 rc = ENXIO;
13554 else {
13555 rc = t4_uld_list[id]->uld_deactivate(sc);
13556 if (rc == 0)
13557 clrbit(&sc->active_ulds, id);
13558 }
13559 sx_sunlock(&t4_uld_list_lock);
13560
13561 return (rc);
13562 }
13563
13564 static int
deactivate_all_uld(struct adapter * sc)13565 deactivate_all_uld(struct adapter *sc)
13566 {
13567 int i, rc;
13568
13569 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
13570 if (rc != 0)
13571 return (ENXIO);
13572 sx_slock(&t4_uld_list_lock);
13573 for (i = 0; i <= ULD_MAX; i++) {
13574 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
13575 continue;
13576 rc = t4_uld_list[i]->uld_deactivate(sc);
13577 if (rc != 0)
13578 break;
13579 clrbit(&sc->active_ulds, i);
13580 }
13581 sx_sunlock(&t4_uld_list_lock);
13582 end_synchronized_op(sc, 0);
13583
13584 return (rc);
13585 }
13586
13587 static void
stop_all_uld(struct adapter * sc)13588 stop_all_uld(struct adapter *sc)
13589 {
13590 int i;
13591
13592 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
13593 return;
13594 sx_slock(&t4_uld_list_lock);
13595 for (i = 0; i <= ULD_MAX; i++) {
13596 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13597 t4_uld_list[i]->uld_stop == NULL)
13598 continue;
13599 (void) t4_uld_list[i]->uld_stop(sc);
13600 }
13601 sx_sunlock(&t4_uld_list_lock);
13602 end_synchronized_op(sc, 0);
13603 }
13604
13605 static void
restart_all_uld(struct adapter * sc)13606 restart_all_uld(struct adapter *sc)
13607 {
13608 int i;
13609
13610 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
13611 return;
13612 sx_slock(&t4_uld_list_lock);
13613 for (i = 0; i <= ULD_MAX; i++) {
13614 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13615 t4_uld_list[i]->uld_restart == NULL)
13616 continue;
13617 (void) t4_uld_list[i]->uld_restart(sc);
13618 }
13619 sx_sunlock(&t4_uld_list_lock);
13620 end_synchronized_op(sc, 0);
13621 }
13622
13623 int
uld_active(struct adapter * sc,int id)13624 uld_active(struct adapter *sc, int id)
13625 {
13626
13627 MPASS(id >= 0 && id <= ULD_MAX);
13628
13629 return (isset(&sc->active_ulds, id));
13630 }
13631 #endif
13632
13633 #ifdef KERN_TLS
13634 static int
ktls_capability(struct adapter * sc,bool enable)13635 ktls_capability(struct adapter *sc, bool enable)
13636 {
13637 ASSERT_SYNCHRONIZED_OP(sc);
13638
13639 if (!is_ktls(sc))
13640 return (ENODEV);
13641 if (!is_t6(sc))
13642 return (0);
13643 if (!hw_all_ok(sc))
13644 return (ENXIO);
13645
13646 if (enable) {
13647 if (sc->flags & KERN_TLS_ON)
13648 return (0); /* already on */
13649 if (sc->offload_map != 0) {
13650 CH_WARN(sc,
13651 "Disable TOE on all interfaces associated with "
13652 "this adapter before trying to enable NIC TLS.\n");
13653 return (EAGAIN);
13654 }
13655 return (t6_config_kern_tls(sc, true));
13656 } else {
13657 /*
13658 * Nothing to do for disable. If TOE is enabled sometime later
13659 * then toe_capability will reconfigure the hardware.
13660 */
13661 return (0);
13662 }
13663 }
13664 #endif
13665
13666 /*
13667 * t = ptr to tunable.
13668 * nc = number of CPUs.
13669 * c = compiled in default for that tunable.
13670 */
13671 static void
calculate_nqueues(int * t,int nc,const int c)13672 calculate_nqueues(int *t, int nc, const int c)
13673 {
13674 int nq;
13675
13676 if (*t > 0)
13677 return;
13678 nq = *t < 0 ? -*t : c;
13679 *t = min(nc, nq);
13680 }
13681
13682 /*
13683 * Come up with reasonable defaults for some of the tunables, provided they're
13684 * not set by the user (in which case we'll use the values as is).
13685 */
13686 static void
tweak_tunables(void)13687 tweak_tunables(void)
13688 {
13689 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
13690
13691 if (t4_ntxq < 1) {
13692 #ifdef RSS
13693 t4_ntxq = rss_getnumbuckets();
13694 #else
13695 calculate_nqueues(&t4_ntxq, nc, NTXQ);
13696 #endif
13697 }
13698
13699 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
13700
13701 if (t4_nrxq < 1) {
13702 #ifdef RSS
13703 t4_nrxq = rss_getnumbuckets();
13704 #else
13705 calculate_nqueues(&t4_nrxq, nc, NRXQ);
13706 #endif
13707 }
13708
13709 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
13710
13711 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13712 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
13713 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
13714 #endif
13715 #ifdef TCP_OFFLOAD
13716 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
13717 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
13718 #endif
13719
13720 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
13721 if (t4_toecaps_allowed == -1)
13722 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
13723 #else
13724 if (t4_toecaps_allowed == -1)
13725 t4_toecaps_allowed = 0;
13726 #endif
13727
13728 #ifdef TCP_OFFLOAD
13729 if (t4_rdmacaps_allowed == -1) {
13730 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
13731 FW_CAPS_CONFIG_RDMA_RDMAC;
13732 }
13733
13734 if (t4_iscsicaps_allowed == -1) {
13735 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
13736 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
13737 FW_CAPS_CONFIG_ISCSI_T10DIF;
13738 }
13739
13740 if (t4_nvmecaps_allowed == -1)
13741 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP;
13742
13743 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
13744 t4_tmr_idx_ofld = TMR_IDX_OFLD;
13745
13746 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
13747 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
13748 #else
13749 if (t4_rdmacaps_allowed == -1)
13750 t4_rdmacaps_allowed = 0;
13751
13752 if (t4_iscsicaps_allowed == -1)
13753 t4_iscsicaps_allowed = 0;
13754
13755 if (t4_nvmecaps_allowed == -1)
13756 t4_nvmecaps_allowed = 0;
13757 #endif
13758
13759 #ifdef DEV_NETMAP
13760 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
13761 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
13762 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
13763 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
13764 #endif
13765
13766 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
13767 t4_tmr_idx = TMR_IDX;
13768
13769 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
13770 t4_pktc_idx = PKTC_IDX;
13771
13772 if (t4_qsize_txq < 128)
13773 t4_qsize_txq = 128;
13774
13775 if (t4_qsize_rxq < 128)
13776 t4_qsize_rxq = 128;
13777 while (t4_qsize_rxq & 7)
13778 t4_qsize_rxq++;
13779
13780 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
13781
13782 /*
13783 * Number of VIs to create per-port. The first VI is the "main" regular
13784 * VI for the port. The rest are additional virtual interfaces on the
13785 * same physical port. Note that the main VI does not have native
13786 * netmap support but the extra VIs do.
13787 *
13788 * Limit the number of VIs per port to the number of available
13789 * MAC addresses per port.
13790 */
13791 if (t4_num_vis < 1)
13792 t4_num_vis = 1;
13793 if (t4_num_vis > nitems(vi_mac_funcs)) {
13794 t4_num_vis = nitems(vi_mac_funcs);
13795 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
13796 }
13797
13798 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
13799 pcie_relaxed_ordering = 1;
13800 #if defined(__i386__) || defined(__amd64__)
13801 if (cpu_vendor_id == CPU_VENDOR_INTEL)
13802 pcie_relaxed_ordering = 0;
13803 #endif
13804 }
13805 }
13806
13807 #ifdef DDB
13808 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)13809 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
13810 {
13811 uint32_t base, j, off, pf, reg, save, win_pos;
13812
13813 reg = chip_id(sc) > CHELSIO_T6 ?
13814 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) :
13815 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
13816 save = t4_read_reg(sc, reg);
13817 base = sc->memwin[2].mw_base;
13818
13819 if (is_t4(sc)) {
13820 pf = 0;
13821 win_pos = addr & ~0xf; /* start must be 16B aligned */
13822 } else {
13823 pf = V_PFNUM(sc->pf);
13824 win_pos = addr & ~0x7f; /* start must be 128B aligned */
13825 }
13826 off = addr - win_pos;
13827 if (chip_id(sc) > CHELSIO_T6)
13828 win_pos >>= X_T7_MEMOFST_SHIFT;
13829 t4_write_reg(sc, reg, win_pos | pf);
13830 t4_read_reg(sc, reg);
13831
13832 while (len > 0 && !db_pager_quit) {
13833 uint32_t buf[8];
13834 for (j = 0; j < 8; j++, off += 4)
13835 buf[j] = htonl(t4_read_reg(sc, base + off));
13836
13837 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
13838 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
13839 buf[7]);
13840 if (len <= sizeof(buf))
13841 len = 0;
13842 else
13843 len -= sizeof(buf);
13844 }
13845
13846 t4_write_reg(sc, reg, save);
13847 t4_read_reg(sc, reg);
13848 }
13849
13850 static void
t4_dump_tcb(struct adapter * sc,int tid)13851 t4_dump_tcb(struct adapter *sc, int tid)
13852 {
13853 uint32_t tcb_addr;
13854
13855 /* Dump TCB for the tid */
13856 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
13857 tcb_addr += tid * TCB_SIZE;
13858 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
13859 }
13860
13861 static void
t4_dump_devlog(struct adapter * sc)13862 t4_dump_devlog(struct adapter *sc)
13863 {
13864 struct devlog_params *dparams = &sc->params.devlog;
13865 struct fw_devlog_e e;
13866 int i, first, j, m, nentries, rc;
13867 uint64_t ftstamp = UINT64_MAX;
13868
13869 if (dparams->start == 0) {
13870 db_printf("devlog params not valid\n");
13871 return;
13872 }
13873
13874 nentries = dparams->size / sizeof(struct fw_devlog_e);
13875 m = fwmtype_to_hwmtype(dparams->memtype);
13876
13877 /* Find the first entry. */
13878 first = -1;
13879 for (i = 0; i < nentries && !db_pager_quit; i++) {
13880 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13881 sizeof(e), (void *)&e);
13882 if (rc != 0)
13883 break;
13884
13885 if (e.timestamp == 0)
13886 break;
13887
13888 e.timestamp = be64toh(e.timestamp);
13889 if (e.timestamp < ftstamp) {
13890 ftstamp = e.timestamp;
13891 first = i;
13892 }
13893 }
13894
13895 if (first == -1)
13896 return;
13897
13898 i = first;
13899 do {
13900 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13901 sizeof(e), (void *)&e);
13902 if (rc != 0)
13903 return;
13904
13905 if (e.timestamp == 0)
13906 return;
13907
13908 e.timestamp = be64toh(e.timestamp);
13909 e.seqno = be32toh(e.seqno);
13910 for (j = 0; j < 8; j++)
13911 e.params[j] = be32toh(e.params[j]);
13912
13913 db_printf("%10d %15ju %8s %8s ",
13914 e.seqno, e.timestamp,
13915 (e.level < nitems(devlog_level_strings) ?
13916 devlog_level_strings[e.level] : "UNKNOWN"),
13917 (e.facility < nitems(devlog_facility_strings) ?
13918 devlog_facility_strings[e.facility] : "UNKNOWN"));
13919 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13920 e.params[3], e.params[4], e.params[5], e.params[6],
13921 e.params[7]);
13922
13923 if (++i == nentries)
13924 i = 0;
13925 } while (i != first && !db_pager_quit);
13926 }
13927
13928 static DB_DEFINE_TABLE(show, t4, show_t4);
13929
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13930 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13931 {
13932 device_t dev;
13933 int t;
13934 bool valid;
13935
13936 valid = false;
13937 t = db_read_token();
13938 if (t == tIDENT) {
13939 dev = device_lookup_by_name(db_tok_string);
13940 valid = true;
13941 }
13942 db_skip_to_eol();
13943 if (!valid) {
13944 db_printf("usage: show t4 devlog <nexus>\n");
13945 return;
13946 }
13947
13948 if (dev == NULL) {
13949 db_printf("device not found\n");
13950 return;
13951 }
13952
13953 t4_dump_devlog(device_get_softc(dev));
13954 }
13955
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13956 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
13957 {
13958 device_t dev;
13959 int radix, tid, t;
13960 bool valid;
13961
13962 valid = false;
13963 radix = db_radix;
13964 db_radix = 10;
13965 t = db_read_token();
13966 if (t == tIDENT) {
13967 dev = device_lookup_by_name(db_tok_string);
13968 t = db_read_token();
13969 if (t == tNUMBER) {
13970 tid = db_tok_number;
13971 valid = true;
13972 }
13973 }
13974 db_radix = radix;
13975 db_skip_to_eol();
13976 if (!valid) {
13977 db_printf("usage: show t4 tcb <nexus> <tid>\n");
13978 return;
13979 }
13980
13981 if (dev == NULL) {
13982 db_printf("device not found\n");
13983 return;
13984 }
13985 if (tid < 0) {
13986 db_printf("invalid tid\n");
13987 return;
13988 }
13989
13990 t4_dump_tcb(device_get_softc(dev), tid);
13991 }
13992
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13993 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13994 {
13995 device_t dev;
13996 int radix, t;
13997 bool valid;
13998
13999 valid = false;
14000 radix = db_radix;
14001 db_radix = 10;
14002 t = db_read_token();
14003 if (t == tIDENT) {
14004 dev = device_lookup_by_name(db_tok_string);
14005 t = db_read_token();
14006 if (t == tNUMBER) {
14007 addr = db_tok_number;
14008 t = db_read_token();
14009 if (t == tNUMBER) {
14010 count = db_tok_number;
14011 valid = true;
14012 }
14013 }
14014 }
14015 db_radix = radix;
14016 db_skip_to_eol();
14017 if (!valid) {
14018 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
14019 return;
14020 }
14021
14022 if (dev == NULL) {
14023 db_printf("device not found\n");
14024 return;
14025 }
14026 if (addr < 0) {
14027 db_printf("invalid address\n");
14028 return;
14029 }
14030 if (count <= 0) {
14031 db_printf("invalid length\n");
14032 return;
14033 }
14034
14035 t4_dump_mem(device_get_softc(dev), addr, count);
14036 }
14037 #endif
14038
14039 static eventhandler_tag vxlan_start_evtag;
14040 static eventhandler_tag vxlan_stop_evtag;
14041
14042 struct vxlan_evargs {
14043 if_t ifp;
14044 uint16_t port;
14045 };
14046
14047 static void
enable_vxlan_rx(struct adapter * sc)14048 enable_vxlan_rx(struct adapter *sc)
14049 {
14050 int i, rc;
14051 struct port_info *pi;
14052 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
14053
14054 ASSERT_SYNCHRONIZED_OP(sc);
14055
14056 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
14057 F_VXLAN_EN);
14058 for_each_port(sc, i) {
14059 pi = sc->port[i];
14060 if (pi->vxlan_tcam_entry == true)
14061 continue;
14062 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
14063 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
14064 true);
14065 if (rc < 0) {
14066 rc = -rc;
14067 CH_ERR(&pi->vi[0],
14068 "failed to add VXLAN TCAM entry: %d.\n", rc);
14069 } else {
14070 MPASS(rc == sc->rawf_base + pi->port_id);
14071 pi->vxlan_tcam_entry = true;
14072 }
14073 }
14074 }
14075
14076 static void
t4_vxlan_start(struct adapter * sc,void * arg)14077 t4_vxlan_start(struct adapter *sc, void *arg)
14078 {
14079 struct vxlan_evargs *v = arg;
14080
14081 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14082 return;
14083 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
14084 return;
14085
14086 if (sc->vxlan_refcount == 0) {
14087 sc->vxlan_port = v->port;
14088 sc->vxlan_refcount = 1;
14089 if (!hw_off_limits(sc))
14090 enable_vxlan_rx(sc);
14091 } else if (sc->vxlan_port == v->port) {
14092 sc->vxlan_refcount++;
14093 } else {
14094 CH_ERR(sc, "VXLAN already configured on port %d; "
14095 "ignoring attempt to configure it on port %d\n",
14096 sc->vxlan_port, v->port);
14097 }
14098 end_synchronized_op(sc, 0);
14099 }
14100
14101 static void
t4_vxlan_stop(struct adapter * sc,void * arg)14102 t4_vxlan_stop(struct adapter *sc, void *arg)
14103 {
14104 struct vxlan_evargs *v = arg;
14105
14106 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14107 return;
14108 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
14109 return;
14110
14111 /*
14112 * VXLANs may have been configured before the driver was loaded so we
14113 * may see more stops than starts. This is not handled cleanly but at
14114 * least we keep the refcount sane.
14115 */
14116 if (sc->vxlan_port != v->port)
14117 goto done;
14118 if (sc->vxlan_refcount == 0) {
14119 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
14120 "ignoring attempt to stop it again.\n", sc->vxlan_port);
14121 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
14122 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
14123 done:
14124 end_synchronized_op(sc, 0);
14125 }
14126
14127 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14128 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
14129 sa_family_t family, u_int port)
14130 {
14131 struct vxlan_evargs v;
14132
14133 MPASS(family == AF_INET || family == AF_INET6);
14134 v.ifp = ifp;
14135 v.port = port;
14136
14137 t4_iterate(t4_vxlan_start, &v);
14138 }
14139
14140 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14141 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
14142 u_int port)
14143 {
14144 struct vxlan_evargs v;
14145
14146 MPASS(family == AF_INET || family == AF_INET6);
14147 v.ifp = ifp;
14148 v.port = port;
14149
14150 t4_iterate(t4_vxlan_stop, &v);
14151 }
14152
14153
14154 static struct sx mlu; /* mod load unload */
14155 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
14156
14157 static int
mod_event(module_t mod,int cmd,void * arg)14158 mod_event(module_t mod, int cmd, void *arg)
14159 {
14160 int rc = 0;
14161 static int loaded = 0;
14162
14163 switch (cmd) {
14164 case MOD_LOAD:
14165 sx_xlock(&mlu);
14166 if (loaded++ == 0) {
14167 t4_sge_modload();
14168 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14169 t4_filter_rpl, CPL_COOKIE_FILTER);
14170 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
14171 do_l2t_write_rpl, CPL_COOKIE_FILTER);
14172 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
14173 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
14174 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14175 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
14176 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
14177 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
14178 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
14179 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
14180 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
14181 do_smt_write_rpl);
14182 sx_init(&t4_list_lock, "T4/T5 adapters");
14183 SLIST_INIT(&t4_list);
14184 callout_init(&fatal_callout, 1);
14185 #ifdef TCP_OFFLOAD
14186 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
14187 #endif
14188 #ifdef INET6
14189 t4_clip_modload();
14190 #endif
14191 #ifdef KERN_TLS
14192 t6_ktls_modload();
14193 t7_ktls_modload();
14194 #endif
14195 t4_tracer_modload();
14196 tweak_tunables();
14197 vxlan_start_evtag =
14198 EVENTHANDLER_REGISTER(vxlan_start,
14199 t4_vxlan_start_handler, NULL,
14200 EVENTHANDLER_PRI_ANY);
14201 vxlan_stop_evtag =
14202 EVENTHANDLER_REGISTER(vxlan_stop,
14203 t4_vxlan_stop_handler, NULL,
14204 EVENTHANDLER_PRI_ANY);
14205 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
14206 taskqueue_thread_enqueue, &reset_tq);
14207 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
14208 "t4_rst_thr");
14209 }
14210 sx_xunlock(&mlu);
14211 break;
14212
14213 case MOD_UNLOAD:
14214 sx_xlock(&mlu);
14215 if (--loaded == 0) {
14216 #ifdef TCP_OFFLOAD
14217 int i;
14218 #endif
14219 int tries;
14220
14221 taskqueue_free(reset_tq);
14222
14223 tries = 0;
14224 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
14225 uprintf("%ju clusters with custom free routine "
14226 "still is use.\n", t4_sge_extfree_refs());
14227 pause("t4unload", 2 * hz);
14228 }
14229
14230 sx_slock(&t4_list_lock);
14231 if (!SLIST_EMPTY(&t4_list)) {
14232 rc = EBUSY;
14233 sx_sunlock(&t4_list_lock);
14234 goto done_unload;
14235 }
14236 #ifdef TCP_OFFLOAD
14237 sx_slock(&t4_uld_list_lock);
14238 for (i = 0; i <= ULD_MAX; i++) {
14239 if (t4_uld_list[i] != NULL) {
14240 rc = EBUSY;
14241 sx_sunlock(&t4_uld_list_lock);
14242 sx_sunlock(&t4_list_lock);
14243 goto done_unload;
14244 }
14245 }
14246 sx_sunlock(&t4_uld_list_lock);
14247 #endif
14248 sx_sunlock(&t4_list_lock);
14249
14250 if (t4_sge_extfree_refs() == 0) {
14251 EVENTHANDLER_DEREGISTER(vxlan_start,
14252 vxlan_start_evtag);
14253 EVENTHANDLER_DEREGISTER(vxlan_stop,
14254 vxlan_stop_evtag);
14255 t4_tracer_modunload();
14256 #ifdef KERN_TLS
14257 t7_ktls_modunload();
14258 t6_ktls_modunload();
14259 #endif
14260 #ifdef INET6
14261 t4_clip_modunload();
14262 #endif
14263 #ifdef TCP_OFFLOAD
14264 sx_destroy(&t4_uld_list_lock);
14265 #endif
14266 sx_destroy(&t4_list_lock);
14267 t4_sge_modunload();
14268 loaded = 0;
14269 } else {
14270 rc = EBUSY;
14271 loaded++; /* undo earlier decrement */
14272 }
14273 }
14274 done_unload:
14275 sx_xunlock(&mlu);
14276 break;
14277 }
14278
14279 return (rc);
14280 }
14281
14282 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
14283 MODULE_VERSION(t4nex, 1);
14284 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
14285 #ifdef DEV_NETMAP
14286 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
14287 #endif /* DEV_NETMAP */
14288
14289 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
14290 MODULE_VERSION(t5nex, 1);
14291 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
14292 #ifdef DEV_NETMAP
14293 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
14294 #endif /* DEV_NETMAP */
14295
14296 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
14297 MODULE_VERSION(t6nex, 1);
14298 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
14299 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
14300 #ifdef DEV_NETMAP
14301 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
14302 #endif /* DEV_NETMAP */
14303
14304 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0);
14305 MODULE_VERSION(chnex, 1);
14306 MODULE_DEPEND(chnex, crypto, 1, 1, 1);
14307 MODULE_DEPEND(chnex, firmware, 1, 1, 1);
14308 #ifdef DEV_NETMAP
14309 MODULE_DEPEND(chnex, netmap, 1, 1, 1);
14310 #endif /* DEV_NETMAP */
14311
14312 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
14313 MODULE_VERSION(cxgbe, 1);
14314
14315 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
14316 MODULE_VERSION(cxl, 1);
14317
14318 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
14319 MODULE_VERSION(cc, 1);
14320
14321 DRIVER_MODULE(che, chnex, che_driver, 0, 0);
14322 MODULE_VERSION(che, 1);
14323
14324 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
14325 MODULE_VERSION(vcxgbe, 1);
14326
14327 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
14328 MODULE_VERSION(vcxl, 1);
14329
14330 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
14331 MODULE_VERSION(vcc, 1);
14332
14333 DRIVER_MODULE(vche, che, vche_driver, 0, 0);
14334 MODULE_VERSION(vche, 1);
14335