xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetLowering.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code.  This has two
11 /// main components:
12 ///
13 ///  1. Which ValueTypes are natively supported by the target.
14 ///  2. Which operations are supported for supported ValueTypes.
15 ///  3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
24 
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/DAGCombine.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/LowLevelTypeUtils.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetCallingConv.h"
38 #include "llvm/CodeGen/ValueTypes.h"
39 #include "llvm/CodeGenTypes/MachineValueType.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/RuntimeLibcalls.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/Support/Alignment.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <climits>
57 #include <cstdint>
58 #include <iterator>
59 #include <map>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 namespace llvm {
65 
66 class AssumptionCache;
67 class CCState;
68 class CCValAssign;
69 enum class ComplexDeinterleavingOperation;
70 enum class ComplexDeinterleavingRotation;
71 class Constant;
72 class FastISel;
73 class FunctionLoweringInfo;
74 class GlobalValue;
75 class Loop;
76 class GISelKnownBits;
77 class IntrinsicInst;
78 class IRBuilderBase;
79 struct KnownBits;
80 class LLVMContext;
81 class MachineBasicBlock;
82 class MachineFunction;
83 class MachineInstr;
84 class MachineJumpTableInfo;
85 class MachineLoop;
86 class MachineRegisterInfo;
87 class MCContext;
88 class MCExpr;
89 class Module;
90 class ProfileSummaryInfo;
91 class TargetLibraryInfo;
92 class TargetMachine;
93 class TargetRegisterClass;
94 class TargetRegisterInfo;
95 class TargetTransformInfo;
96 class Value;
97 
98 namespace Sched {
99 
100 enum Preference : uint8_t {
101   None,            // No preference
102   Source,          // Follow source order.
103   RegPressure,     // Scheduling for lowest register pressure.
104   Hybrid,          // Scheduling for both latency and register pressure.
105   ILP,             // Scheduling for ILP in low register pressure mode.
106   VLIW,            // Scheduling for VLIW targets.
107   Fast,            // Fast suboptimal list scheduling
108   Linearize,       // Linearize DAG, no scheduling
109   Last = Linearize // Marker for the last Sched::Preference
110 };
111 
112 } // end namespace Sched
113 
114 // MemOp models a memory operation, either memset or memcpy/memmove.
115 struct MemOp {
116 private:
117   // Shared
118   uint64_t Size;
119   bool DstAlignCanChange; // true if destination alignment can satisfy any
120                           // constraint.
121   Align DstAlign;         // Specified alignment of the memory operation.
122 
123   bool AllowOverlap;
124   // memset only
125   bool IsMemset;   // If setthis memory operation is a memset.
126   bool ZeroMemset; // If set clears out memory with zeros.
127   // memcpy only
128   bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
129                      // constant so it does not need to be loaded.
130   Align SrcAlign;    // Inferred alignment of the source or default value if the
131                      // memory operation does not need to load the value.
132 public:
133   static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
134                     Align SrcAlign, bool IsVolatile,
135                     bool MemcpyStrSrc = false) {
136     MemOp Op;
137     Op.Size = Size;
138     Op.DstAlignCanChange = DstAlignCanChange;
139     Op.DstAlign = DstAlign;
140     Op.AllowOverlap = !IsVolatile;
141     Op.IsMemset = false;
142     Op.ZeroMemset = false;
143     Op.MemcpyStrSrc = MemcpyStrSrc;
144     Op.SrcAlign = SrcAlign;
145     return Op;
146   }
147 
SetMemOp148   static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
149                    bool IsZeroMemset, bool IsVolatile) {
150     MemOp Op;
151     Op.Size = Size;
152     Op.DstAlignCanChange = DstAlignCanChange;
153     Op.DstAlign = DstAlign;
154     Op.AllowOverlap = !IsVolatile;
155     Op.IsMemset = true;
156     Op.ZeroMemset = IsZeroMemset;
157     Op.MemcpyStrSrc = false;
158     return Op;
159   }
160 
sizeMemOp161   uint64_t size() const { return Size; }
getDstAlignMemOp162   Align getDstAlign() const {
163     assert(!DstAlignCanChange);
164     return DstAlign;
165   }
isFixedDstAlignMemOp166   bool isFixedDstAlign() const { return !DstAlignCanChange; }
allowOverlapMemOp167   bool allowOverlap() const { return AllowOverlap; }
isMemsetMemOp168   bool isMemset() const { return IsMemset; }
isMemcpyMemOp169   bool isMemcpy() const { return !IsMemset; }
isMemcpyWithFixedDstAlignMemOp170   bool isMemcpyWithFixedDstAlign() const {
171     return isMemcpy() && !DstAlignCanChange;
172   }
isZeroMemsetMemOp173   bool isZeroMemset() const { return isMemset() && ZeroMemset; }
isMemcpyStrSrcMemOp174   bool isMemcpyStrSrc() const {
175     assert(isMemcpy() && "Must be a memcpy");
176     return MemcpyStrSrc;
177   }
getSrcAlignMemOp178   Align getSrcAlign() const {
179     assert(isMemcpy() && "Must be a memcpy");
180     return SrcAlign;
181   }
isSrcAlignedMemOp182   bool isSrcAligned(Align AlignCheck) const {
183     return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
184   }
isDstAlignedMemOp185   bool isDstAligned(Align AlignCheck) const {
186     return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
187   }
isAlignedMemOp188   bool isAligned(Align AlignCheck) const {
189     return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
190   }
191 };
192 
193 /// This base class for TargetLowering contains the SelectionDAG-independent
194 /// parts that can be used from the rest of CodeGen.
195 class TargetLoweringBase {
196 public:
197   /// This enum indicates whether operations are valid for a target, and if not,
198   /// what action should be used to make them valid.
199   enum LegalizeAction : uint8_t {
200     Legal,      // The target natively supports this operation.
201     Promote,    // This operation should be executed in a larger type.
202     Expand,     // Try to expand this to other ops, otherwise use a libcall.
203     LibCall,    // Don't try to expand this to other ops, always use a libcall.
204     Custom      // Use the LowerOperation hook to implement custom lowering.
205   };
206 
207   /// This enum indicates whether a types are legal for a target, and if not,
208   /// what action should be used to make them valid.
209   enum LegalizeTypeAction : uint8_t {
210     TypeLegal,           // The target natively supports this type.
211     TypePromoteInteger,  // Replace this integer with a larger one.
212     TypeExpandInteger,   // Split this integer into two of half the size.
213     TypeSoftenFloat,     // Convert this float to a same size integer type.
214     TypeExpandFloat,     // Split this float into two of half the size.
215     TypeScalarizeVector, // Replace this one-element vector with its element.
216     TypeSplitVector,     // Split this vector into two of half the size.
217     TypeWidenVector,     // This vector should be widened into a larger vector.
218     TypePromoteFloat,    // Replace this float with a larger one.
219     TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
220     TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
221                                  // While it is theoretically possible to
222                                  // legalize operations on scalable types with a
223                                  // loop that handles the vscale * #lanes of the
224                                  // vector, this is non-trivial at SelectionDAG
225                                  // level and these types are better to be
226                                  // widened or promoted.
227   };
228 
229   /// LegalizeKind holds the legalization kind that needs to happen to EVT
230   /// in order to type-legalize it.
231   using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
232 
233   /// Enum that describes how the target represents true/false values.
234   enum BooleanContent {
235     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
236     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
237     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
238   };
239 
240   /// Enum that describes what type of support for selects the target has.
241   enum SelectSupportKind {
242     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
243     ScalarCondVectorVal,  // The target supports selects with a scalar condition
244                           // and vector values (ex: cmov).
245     VectorMaskSelect      // The target supports vector selects with a vector
246                           // mask (ex: x86 blends).
247   };
248 
249   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
250   /// to, if at all. Exists because different targets have different levels of
251   /// support for these atomic instructions, and also have different options
252   /// w.r.t. what they should expand to.
253   enum class AtomicExpansionKind {
254     None,    // Don't expand the instruction.
255     CastToInteger,    // Cast the atomic instruction to another type, e.g. from
256                       // floating-point to integer type.
257     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
258              // by ARM/AArch64.
259     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
260              // greater atomic guarantees than a normal load.
261     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
262     MaskedIntrinsic,  // Use a target-specific intrinsic for the LL/SC loop.
263     BitTestIntrinsic, // Use a target-specific intrinsic for special bit
264                       // operations; used by X86.
265     CmpArithIntrinsic,// Use a target-specific intrinsic for special compare
266                       // operations; used by X86.
267     Expand,           // Generic expansion in terms of other atomic operations.
268 
269     // Rewrite to a non-atomic form for use in a known non-preemptible
270     // environment.
271     NotAtomic
272   };
273 
274   /// Enum that specifies when a multiplication should be expanded.
275   enum class MulExpansionKind {
276     Always,            // Always expand the instruction.
277     OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
278                        // or custom.
279   };
280 
281   /// Enum that specifies when a float negation is beneficial.
282   enum class NegatibleCost {
283     Cheaper = 0,    // Negated expression is cheaper.
284     Neutral = 1,    // Negated expression has the same cost.
285     Expensive = 2   // Negated expression is more expensive.
286   };
287 
288   /// Enum of different potentially desirable ways to fold (and/or (setcc ...),
289   /// (setcc ...)).
290   enum AndOrSETCCFoldKind : uint8_t {
291     None = 0,   // No fold is preferable.
292     AddAnd = 1, // Fold with `Add` op and `And` op is preferable.
293     NotAnd = 2, // Fold with `Not` op and `And` op is preferable.
294     ABS = 4,    // Fold with `llvm.abs` op is preferable.
295   };
296 
297   class ArgListEntry {
298   public:
299     Value *Val = nullptr;
300     SDValue Node = SDValue();
301     Type *Ty = nullptr;
302     bool IsSExt : 1;
303     bool IsZExt : 1;
304     bool IsInReg : 1;
305     bool IsSRet : 1;
306     bool IsNest : 1;
307     bool IsByVal : 1;
308     bool IsByRef : 1;
309     bool IsInAlloca : 1;
310     bool IsPreallocated : 1;
311     bool IsReturned : 1;
312     bool IsSwiftSelf : 1;
313     bool IsSwiftAsync : 1;
314     bool IsSwiftError : 1;
315     bool IsCFGuardTarget : 1;
316     MaybeAlign Alignment = std::nullopt;
317     Type *IndirectType = nullptr;
318 
ArgListEntry()319     ArgListEntry()
320         : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
321           IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
322           IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
323           IsSwiftAsync(false), IsSwiftError(false), IsCFGuardTarget(false) {}
324 
325     void setAttributes(const CallBase *Call, unsigned ArgIdx);
326   };
327   using ArgListTy = std::vector<ArgListEntry>;
328 
markLibCallAttributes(MachineFunction * MF,unsigned CC,ArgListTy & Args)329   virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
330                                      ArgListTy &Args) const {};
331 
getExtendForContent(BooleanContent Content)332   static ISD::NodeType getExtendForContent(BooleanContent Content) {
333     switch (Content) {
334     case UndefinedBooleanContent:
335       // Extend by adding rubbish bits.
336       return ISD::ANY_EXTEND;
337     case ZeroOrOneBooleanContent:
338       // Extend by adding zero bits.
339       return ISD::ZERO_EXTEND;
340     case ZeroOrNegativeOneBooleanContent:
341       // Extend by copying the sign bit.
342       return ISD::SIGN_EXTEND;
343     }
344     llvm_unreachable("Invalid content kind");
345   }
346 
347   explicit TargetLoweringBase(const TargetMachine &TM);
348   TargetLoweringBase(const TargetLoweringBase &) = delete;
349   TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
350   virtual ~TargetLoweringBase() = default;
351 
352   /// Return true if the target support strict float operation
isStrictFPEnabled()353   bool isStrictFPEnabled() const {
354     return IsStrictFPEnabled;
355   }
356 
357 protected:
358   /// Initialize all of the actions to default values.
359   void initActions();
360 
361 public:
getTargetMachine()362   const TargetMachine &getTargetMachine() const { return TM; }
363 
useSoftFloat()364   virtual bool useSoftFloat() const { return false; }
365 
366   /// Return the pointer type for the given address space, defaults to
367   /// the pointer type from the data layout.
368   /// FIXME: The default needs to be removed once all the code is updated.
369   virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
370     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
371   }
372 
373   /// Return the in-memory pointer type for the given address space, defaults to
374   /// the pointer type from the data layout.
375   /// FIXME: The default needs to be removed once all the code is updated.
376   virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
377     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
378   }
379 
380   /// Return the type for frame index, which is determined by
381   /// the alloca address space specified through the data layout.
getFrameIndexTy(const DataLayout & DL)382   MVT getFrameIndexTy(const DataLayout &DL) const {
383     return getPointerTy(DL, DL.getAllocaAddrSpace());
384   }
385 
386   /// Return the type for code pointers, which is determined by the program
387   /// address space specified through the data layout.
getProgramPointerTy(const DataLayout & DL)388   MVT getProgramPointerTy(const DataLayout &DL) const {
389     return getPointerTy(DL, DL.getProgramAddressSpace());
390   }
391 
392   /// Return the type for operands of fence.
393   /// TODO: Let fence operands be of i32 type and remove this.
getFenceOperandTy(const DataLayout & DL)394   virtual MVT getFenceOperandTy(const DataLayout &DL) const {
395     return getPointerTy(DL);
396   }
397 
398   /// Return the type to use for a scalar shift opcode, given the shifted amount
399   /// type. Targets should return a legal type if the input type is legal.
400   /// Targets can return a type that is too small if the input type is illegal.
401   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
402 
403   /// Returns the type for the shift amount of a shift opcode. For vectors,
404   /// returns the input type. For scalars, calls getScalarShiftAmountTy.
405   /// If getScalarShiftAmountTy type cannot represent all possible shift
406   /// amounts, returns MVT::i32.
407   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
408 
409   /// Return the preferred type to use for a shift opcode, given the shifted
410   /// amount type is \p ShiftValueTy.
411   LLVM_READONLY
getPreferredShiftAmountTy(LLT ShiftValueTy)412   virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
413     return ShiftValueTy;
414   }
415 
416   /// Returns the type to be used for the index operand of:
417   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
418   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy(const DataLayout & DL)419   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
420     return getPointerTy(DL);
421   }
422 
423   /// Returns the type to be used for the EVL/AVL operand of VP nodes:
424   /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
425   /// and must be at least as large as i32. The EVL is implicitly zero-extended
426   /// to any larger type.
getVPExplicitVectorLengthTy()427   virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
428 
429   /// This callback is used to inspect load/store instructions and add
430   /// target-specific MachineMemOperand flags to them.  The default
431   /// implementation does nothing.
getTargetMMOFlags(const Instruction & I)432   virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
433     return MachineMemOperand::MONone;
434   }
435 
436   /// This callback is used to inspect load/store SDNode.
437   /// The default implementation does nothing.
438   virtual MachineMemOperand::Flags
getTargetMMOFlags(const MemSDNode & Node)439   getTargetMMOFlags(const MemSDNode &Node) const {
440     return MachineMemOperand::MONone;
441   }
442 
443   MachineMemOperand::Flags
444   getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL,
445                          AssumptionCache *AC = nullptr,
446                          const TargetLibraryInfo *LibInfo = nullptr) const;
447   MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
448                                                    const DataLayout &DL) const;
449   MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
450                                                     const DataLayout &DL) const;
451 
isSelectSupported(SelectSupportKind)452   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
453     return true;
454   }
455 
456   /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
457   /// using generic code in SelectionDAGBuilder.
shouldExpandGetActiveLaneMask(EVT VT,EVT OpVT)458   virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
459     return true;
460   }
461 
shouldExpandGetVectorLength(EVT CountVT,unsigned VF,bool IsScalable)462   virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF,
463                                            bool IsScalable) const {
464     return true;
465   }
466 
467   /// Return true if the @llvm.experimental.cttz.elts intrinsic should be
468   /// expanded using generic code in SelectionDAGBuilder.
shouldExpandCttzElements(EVT VT)469   virtual bool shouldExpandCttzElements(EVT VT) const { return true; }
470 
471   /// Return the minimum number of bits required to hold the maximum possible
472   /// number of trailing zero vector elements.
473   unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC,
474                                       bool ZeroIsPoison,
475                                       const ConstantRange *VScaleRange) const;
476 
477   // Return true if op(vecreduce(x), vecreduce(y)) should be reassociated to
478   // vecreduce(op(x, y)) for the reduction opcode RedOpc.
shouldReassociateReduction(unsigned RedOpc,EVT VT)479   virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const {
480     return true;
481   }
482 
483   /// Return true if it is profitable to convert a select of FP constants into
484   /// a constant pool load whose address depends on the select condition. The
485   /// parameter may be used to differentiate a select with FP compare from
486   /// integer compare.
reduceSelectOfFPConstantLoads(EVT CmpOpVT)487   virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
488     return true;
489   }
490 
491   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()492   bool hasMultipleConditionRegisters() const {
493     return HasMultipleConditionRegisters;
494   }
495 
496   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()497   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
498 
499   /// Return the preferred vector type legalization action.
500   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT)501   getPreferredVectorAction(MVT VT) const {
502     // The default action for one element vectors is to scalarize
503     if (VT.getVectorElementCount().isScalar())
504       return TypeScalarizeVector;
505     // The default action for an odd-width vector is to widen.
506     if (!VT.isPow2VectorType())
507       return TypeWidenVector;
508     // The default action for other vectors is to promote
509     return TypePromoteInteger;
510   }
511 
512   // Return true if the half type should be promoted using soft promotion rules
513   // where each operation is promoted to f32 individually, then converted to
514   // fp16. The default behavior is to promote chains of operations, keeping
515   // intermediate results in f32 precision and range.
softPromoteHalfType()516   virtual bool softPromoteHalfType() const { return false; }
517 
518   // Return true if, for soft-promoted half, the half type should be passed
519   // passed to and returned from functions as f32. The default behavior is to
520   // pass as i16. If soft-promoted half is not used, this function is ignored
521   // and values are always passed and returned as f32.
useFPRegsForHalfType()522   virtual bool useFPRegsForHalfType() const { return false; }
523 
524   // There are two general methods for expanding a BUILD_VECTOR node:
525   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
526   //     them together.
527   //  2. Build the vector on the stack and then load it.
528   // If this function returns true, then method (1) will be used, subject to
529   // the constraint that all of the necessary shuffles are legal (as determined
530   // by isShuffleMaskLegal). If this function returns false, then method (2) is
531   // always used. The vector type, and the number of defined values, are
532   // provided.
533   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)534   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
535                                       unsigned DefinedValues) const {
536     return DefinedValues < 3;
537   }
538 
539   /// Return true if integer divide is usually cheaper than a sequence of
540   /// several shifts, adds, and multiplies for this target.
541   /// The definition of "cheaper" may depend on whether we're optimizing
542   /// for speed or for size.
isIntDivCheap(EVT VT,AttributeList Attr)543   virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
544 
545   /// Return true if the target can handle a standalone remainder operation.
hasStandaloneRem(EVT VT)546   virtual bool hasStandaloneRem(EVT VT) const {
547     return true;
548   }
549 
550   /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
isFsqrtCheap(SDValue X,SelectionDAG & DAG)551   virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
552     // Default behavior is to replace SQRT(X) with X*RSQRT(X).
553     return false;
554   }
555 
556   /// Reciprocal estimate status values used by the functions below.
557   enum ReciprocalEstimate : int {
558     Unspecified = -1,
559     Disabled = 0,
560     Enabled = 1
561   };
562 
563   /// Return a ReciprocalEstimate enum value for a square root of the given type
564   /// based on the function's attributes. If the operation is not overridden by
565   /// the function's attributes, "Unspecified" is returned and target defaults
566   /// are expected to be used for instruction selection.
567   int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
568 
569   /// Return a ReciprocalEstimate enum value for a division of the given type
570   /// based on the function's attributes. If the operation is not overridden by
571   /// the function's attributes, "Unspecified" is returned and target defaults
572   /// are expected to be used for instruction selection.
573   int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
574 
575   /// Return the refinement step count for a square root of the given type based
576   /// on the function's attributes. If the operation is not overridden by
577   /// the function's attributes, "Unspecified" is returned and target defaults
578   /// are expected to be used for instruction selection.
579   int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
580 
581   /// Return the refinement step count for a division of the given type based
582   /// on the function's attributes. If the operation is not overridden by
583   /// the function's attributes, "Unspecified" is returned and target defaults
584   /// are expected to be used for instruction selection.
585   int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
586 
587   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()588   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
589 
590   /// Returns map of slow types for division or remainder with corresponding
591   /// fast types
getBypassSlowDivWidths()592   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
593     return BypassSlowDivWidths;
594   }
595 
596   /// Return true only if vscale must be a power of two.
isVScaleKnownToBeAPowerOfTwo()597   virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
598 
599   /// Return true if Flow Control is an expensive operation that should be
600   /// avoided.
isJumpExpensive()601   bool isJumpExpensive() const { return JumpIsExpensive; }
602 
603   // Costs parameters used by
604   // SelectionDAGBuilder::shouldKeepJumpConditionsTogether.
605   // shouldKeepJumpConditionsTogether will use these parameter value to
606   // determine if two conditions in the form `br (and/or cond1, cond2)` should
607   // be split into two branches or left as one.
608   //
609   // BaseCost is the cost threshold (in latency). If the estimated latency of
610   // computing both `cond1` and `cond2` is below the cost of just computing
611   // `cond1` + BaseCost, the two conditions will be kept together. Otherwise
612   // they will be split.
613   //
614   // LikelyBias increases BaseCost if branch probability info indicates that it
615   // is likely that both `cond1` and `cond2` will be computed.
616   //
617   // UnlikelyBias decreases BaseCost if branch probability info indicates that
618   // it is likely that both `cond1` and `cond2` will be computed.
619   //
620   // Set any field to -1 to make it ignored (setting BaseCost to -1 results in
621   // `shouldKeepJumpConditionsTogether` always returning false).
622   struct CondMergingParams {
623     int BaseCost;
624     int LikelyBias;
625     int UnlikelyBias;
626   };
627   // Return params for deciding if we should keep two branch conditions merged
628   // or split them into two separate branches.
629   // Arg0: The binary op joining the two conditions (and/or).
630   // Arg1: The first condition (cond1)
631   // Arg2: The second condition (cond2)
632   virtual CondMergingParams
getJumpConditionMergingParams(Instruction::BinaryOps,const Value *,const Value *)633   getJumpConditionMergingParams(Instruction::BinaryOps, const Value *,
634                                 const Value *) const {
635     // -1 will always result in splitting.
636     return {-1, -1, -1};
637   }
638 
639   /// Return true if selects are only cheaper than branches if the branch is
640   /// unlikely to be predicted right.
isPredictableSelectExpensive()641   bool isPredictableSelectExpensive() const {
642     return PredictableSelectIsExpensive;
643   }
644 
fallBackToDAGISel(const Instruction & Inst)645   virtual bool fallBackToDAGISel(const Instruction &Inst) const {
646     return false;
647   }
648 
649   /// Return true if the following transform is beneficial:
650   /// fold (conv (load x)) -> (load (conv*)x)
651   /// On architectures that don't natively support some vector loads
652   /// efficiently, casting the load to a smaller vector of larger types and
653   /// loading is more efficient, however, this can be undone by optimizations in
654   /// dag combiner.
655   virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
656                                        const SelectionDAG &DAG,
657                                        const MachineMemOperand &MMO) const;
658 
659   /// Return true if the following transform is beneficial:
660   /// (store (y (conv x)), y*)) -> (store x, (x*))
isStoreBitCastBeneficial(EVT StoreVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)661   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
662                                         const SelectionDAG &DAG,
663                                         const MachineMemOperand &MMO) const {
664     // Default to the same logic as loads.
665     return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
666   }
667 
668   /// Return true if it is expected to be cheaper to do a store of vector
669   /// constant with the given size and type for the address space than to
670   /// store the individual scalar element constants.
storeOfVectorConstantIsCheap(bool IsZero,EVT MemVT,unsigned NumElem,unsigned AddrSpace)671   virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT,
672                                             unsigned NumElem,
673                                             unsigned AddrSpace) const {
674     return IsZero;
675   }
676 
677   /// Allow store merging for the specified type after legalization in addition
678   /// to before legalization. This may transform stores that do not exist
679   /// earlier (for example, stores created from intrinsics).
mergeStoresAfterLegalization(EVT MemVT)680   virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
681     return true;
682   }
683 
684   /// Returns if it's reasonable to merge stores to MemVT size.
canMergeStoresTo(unsigned AS,EVT MemVT,const MachineFunction & MF)685   virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
686                                 const MachineFunction &MF) const {
687     return true;
688   }
689 
690   /// Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz(Type * Ty)691   virtual bool isCheapToSpeculateCttz(Type *Ty) const {
692     return false;
693   }
694 
695   /// Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz(Type * Ty)696   virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
697     return false;
698   }
699 
700   /// Return true if ctlz instruction is fast.
isCtlzFast()701   virtual bool isCtlzFast() const {
702     return false;
703   }
704 
705   /// Return true if ctpop instruction is fast.
isCtpopFast(EVT VT)706   virtual bool isCtpopFast(EVT VT) const {
707     return isOperationLegal(ISD::CTPOP, VT);
708   }
709 
710   /// Return the maximum number of "x & (x - 1)" operations that can be done
711   /// instead of deferring to a custom CTPOP.
getCustomCtpopCost(EVT VT,ISD::CondCode Cond)712   virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
713     return 1;
714   }
715 
716   /// Return true if instruction generated for equality comparison is folded
717   /// with instruction generated for signed comparison.
isEqualityCmpFoldedWithSignedCmp()718   virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
719 
720   /// Return true if the heuristic to prefer icmp eq zero should be used in code
721   /// gen prepare.
preferZeroCompareBranch()722   virtual bool preferZeroCompareBranch() const { return false; }
723 
724   /// Return true if it is cheaper to split the store of a merged int val
725   /// from a pair of smaller values into multiple stores.
isMultiStoresCheaperThanBitsMerge(EVT LTy,EVT HTy)726   virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
727     return false;
728   }
729 
730   /// Return if the target supports combining a
731   /// chain like:
732   /// \code
733   ///   %andResult = and %val1, #mask
734   ///   %icmpResult = icmp %andResult, 0
735   /// \endcode
736   /// into a single machine instruction of a form like:
737   /// \code
738   ///   cc = test %register, #mask
739   /// \endcode
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)740   virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
741     return false;
742   }
743 
744   /// Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
745   virtual bool
areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode & NodeX,const MemSDNode & NodeY)746   areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX,
747                                       const MemSDNode &NodeY) const {
748     return true;
749   }
750 
751   /// Use bitwise logic to make pairs of compares more efficient. For example:
752   /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
753   /// This should be true when it takes more than one instruction to lower
754   /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
755   /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
convertSetCCLogicToBitwiseLogic(EVT VT)756   virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
757     return false;
758   }
759 
760   /// Return the preferred operand type if the target has a quick way to compare
761   /// integer values of the given size. Assume that any legal integer type can
762   /// be compared efficiently. Targets may override this to allow illegal wide
763   /// types to return a vector type if there is support to compare that type.
hasFastEqualityCompare(unsigned NumBits)764   virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
765     MVT VT = MVT::getIntegerVT(NumBits);
766     return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
767   }
768 
769   /// Return true if the target should transform:
770   /// (X & Y) == Y ---> (~X & Y) == 0
771   /// (X & Y) != Y ---> (~X & Y) != 0
772   ///
773   /// This may be profitable if the target has a bitwise and-not operation that
774   /// sets comparison flags. A target may want to limit the transformation based
775   /// on the type of Y or if Y is a constant.
776   ///
777   /// Note that the transform will not occur if Y is known to be a power-of-2
778   /// because a mask and compare of a single bit can be handled by inverting the
779   /// predicate, for example:
780   /// (X & 8) == 8 ---> (X & 8) != 0
hasAndNotCompare(SDValue Y)781   virtual bool hasAndNotCompare(SDValue Y) const {
782     return false;
783   }
784 
785   /// Return true if the target has a bitwise and-not operation:
786   /// X = ~A & B
787   /// This can be used to simplify select or other instructions.
hasAndNot(SDValue X)788   virtual bool hasAndNot(SDValue X) const {
789     // If the target has the more complex version of this operation, assume that
790     // it has this operation too.
791     return hasAndNotCompare(X);
792   }
793 
794   /// Return true if the target has a bit-test instruction:
795   ///   (X & (1 << Y)) ==/!= 0
796   /// This knowledge can be used to prevent breaking the pattern,
797   /// or creating it if it could be recognized.
hasBitTest(SDValue X,SDValue Y)798   virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
799 
800   /// There are two ways to clear extreme bits (either low or high):
801   /// Mask:    x &  (-1 << y)  (the instcombine canonical form)
802   /// Shifts:  x >> y << y
803   /// Return true if the variant with 2 variable shifts is preferred.
804   /// Return false if there is no preference.
shouldFoldMaskToVariableShiftPair(SDValue X)805   virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
806     // By default, let's assume that no one prefers shifts.
807     return false;
808   }
809 
810   /// Return true if it is profitable to fold a pair of shifts into a mask.
811   /// This is usually true on most targets. But some targets, like Thumb1,
812   /// have immediate shift instructions, but no immediate "and" instruction;
813   /// this makes the fold unprofitable.
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level)814   virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
815                                                  CombineLevel Level) const {
816     return true;
817   }
818 
819   /// Should we tranform the IR-optimal check for whether given truncation
820   /// down into KeptBits would be truncating or not:
821   ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
822   /// Into it's more traditional form:
823   ///   ((%x << C) a>> C) dstcond %x
824   /// Return true if we should transform.
825   /// Return false if there is no preference.
shouldTransformSignedTruncationCheck(EVT XVT,unsigned KeptBits)826   virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
827                                                     unsigned KeptBits) const {
828     // By default, let's assume that no one prefers shifts.
829     return false;
830   }
831 
832   /// Given the pattern
833   ///   (X & (C l>>/<< Y)) ==/!= 0
834   /// return true if it should be transformed into:
835   ///   ((X <</l>> Y) & C) ==/!= 0
836   /// WARNING: if 'X' is a constant, the fold may deadlock!
837   /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
838   ///        here because it can end up being not linked in.
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG)839   virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
840       SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
841       unsigned OldShiftOpcode, unsigned NewShiftOpcode,
842       SelectionDAG &DAG) const {
843     if (hasBitTest(X, Y)) {
844       // One interesting pattern that we'd want to form is 'bit test':
845       //   ((1 << Y) & C) ==/!= 0
846       // But we also need to be careful not to try to reverse that fold.
847 
848       // Is this '1 << Y' ?
849       if (OldShiftOpcode == ISD::SHL && CC->isOne())
850         return false; // Keep the 'bit test' pattern.
851 
852       // Will it be '1 << Y' after the transform ?
853       if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
854         return true; // Do form the 'bit test' pattern.
855     }
856 
857     // If 'X' is a constant, and we transform, then we will immediately
858     // try to undo the fold, thus causing endless combine loop.
859     // So by default, let's assume everyone prefers the fold
860     // iff 'X' is not a constant.
861     return !XC;
862   }
863 
864   // Return true if its desirable to perform the following transform:
865   // (fmul C, (uitofp Pow2))
866   //     -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
867   // (fdiv C, (uitofp Pow2))
868   //     -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
869   //
870   // This is only queried after we have verified the transform will be bitwise
871   // equals.
872   //
873   // SDNode *N      : The FDiv/FMul node we want to transform.
874   // SDValue FPConst: The Float constant operand in `N`.
875   // SDValue IntPow2: The Integer power of 2 operand in `N`.
optimizeFMulOrFDivAsShiftAddBitcast(SDNode * N,SDValue FPConst,SDValue IntPow2)876   virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst,
877                                                    SDValue IntPow2) const {
878     // Default to avoiding fdiv which is often very expensive.
879     return N->getOpcode() == ISD::FDIV;
880   }
881 
882   // Given:
883   //    (icmp eq/ne (and X, C0), (shift X, C1))
884   // or
885   //    (icmp eq/ne X, (rotate X, CPow2))
886 
887   // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
888   // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
889   // Do we prefer the shift to be shift-right, shift-left, or rotate.
890   // Note: Its only valid to convert the rotate version to the shift version iff
891   // the shift-amt (`C1`) is a power of 2 (including 0).
892   // If ShiftOpc (current Opcode) is returned, do nothing.
preferedOpcodeForCmpEqPiecesOfOperand(EVT VT,unsigned ShiftOpc,bool MayTransformRotate,const APInt & ShiftOrRotateAmt,const std::optional<APInt> & AndMask)893   virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(
894       EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
895       const APInt &ShiftOrRotateAmt,
896       const std::optional<APInt> &AndMask) const {
897     return ShiftOpc;
898   }
899 
900   /// These two forms are equivalent:
901   ///   sub %y, (xor %x, -1)
902   ///   add (add %x, 1), %y
903   /// The variant with two add's is IR-canonical.
904   /// Some targets may prefer one to the other.
preferIncOfAddToSubOfNot(EVT VT)905   virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
906     // By default, let's assume that everyone prefers the form with two add's.
907     return true;
908   }
909 
910   // By default prefer folding (abs (sub nsw x, y)) -> abds(x, y). Some targets
911   // may want to avoid this to prevent loss of sub_nsw pattern.
preferABDSToABSWithNSW(EVT VT)912   virtual bool preferABDSToABSWithNSW(EVT VT) const {
913     return true;
914   }
915 
916   // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
preferScalarizeSplat(SDNode * N)917   virtual bool preferScalarizeSplat(SDNode *N) const { return true; }
918 
919   // Return true if the target wants to transform:
920   // (TruncVT truncate(sext_in_reg(VT X, ExtVT))
921   //  -> (TruncVT sext_in_reg(truncate(VT X), ExtVT))
922   // Some targets might prefer pre-sextinreg to improve truncation/saturation.
preferSextInRegOfTruncate(EVT TruncVT,EVT VT,EVT ExtVT)923   virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const {
924     return true;
925   }
926 
927   /// Return true if the target wants to use the optimization that
928   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
929   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()930   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
931 
932   /// Return true if the target can combine store(extractelement VectorTy,
933   /// Idx).
934   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)935   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
936                                          unsigned &Cost) const {
937     return false;
938   }
939 
940   /// Return true if the target shall perform extract vector element and store
941   /// given that the vector is known to be splat of constant.
942   /// \p Index[out] gives the index of the vector element to be extracted when
943   /// this is true.
shallExtractConstSplatVectorElementToStore(Type * VectorTy,unsigned ElemSizeInBits,unsigned & Index)944   virtual bool shallExtractConstSplatVectorElementToStore(
945       Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
946     return false;
947   }
948 
949   /// Return true if inserting a scalar into a variable element of an undef
950   /// vector is more efficiently handled by splatting the scalar instead.
shouldSplatInsEltVarIndex(EVT)951   virtual bool shouldSplatInsEltVarIndex(EVT) const {
952     return false;
953   }
954 
955   /// Return true if target always benefits from combining into FMA for a
956   /// given value type. This must typically return false on targets where FMA
957   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)958   virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
959 
960   /// Return true if target always benefits from combining into FMA for a
961   /// given value type. This must typically return false on targets where FMA
962   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(LLT Ty)963   virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
964 
965   /// Return the ValueType of the result of SETCC operations.
966   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
967                                  EVT VT) const;
968 
969   /// Return the ValueType for comparison libcalls. Comparison libcalls include
970   /// floating point comparison calls, and Ordered/Unordered check calls on
971   /// floating point numbers.
972   virtual
973   MVT::SimpleValueType getCmpLibcallReturnType() const;
974 
975   /// For targets without i1 registers, this gives the nature of the high-bits
976   /// of boolean values held in types wider than i1.
977   ///
978   /// "Boolean values" are special true/false values produced by nodes like
979   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
980   /// Not to be confused with general values promoted from i1.  Some cpus
981   /// distinguish between vectors of boolean and scalars; the isVec parameter
982   /// selects between the two kinds.  For example on X86 a scalar boolean should
983   /// be zero extended from i1, while the elements of a vector of booleans
984   /// should be sign extended from i1.
985   ///
986   /// Some cpus also treat floating point types the same way as they treat
987   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)988   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
989     if (isVec)
990       return BooleanVectorContents;
991     return isFloat ? BooleanFloatContents : BooleanContents;
992   }
993 
getBooleanContents(EVT Type)994   BooleanContent getBooleanContents(EVT Type) const {
995     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
996   }
997 
998   /// Promote the given target boolean to a target boolean of the given type.
999   /// A target boolean is an integer value, not necessarily of type i1, the bits
1000   /// of which conform to getBooleanContents.
1001   ///
1002   /// ValVT is the type of values that produced the boolean.
promoteTargetBoolean(SelectionDAG & DAG,SDValue Bool,EVT ValVT)1003   SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool,
1004                                EVT ValVT) const {
1005     SDLoc dl(Bool);
1006     EVT BoolVT =
1007         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
1008     ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(ValVT));
1009     return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1010   }
1011 
1012   /// Return target scheduling preference.
getSchedulingPreference()1013   Sched::Preference getSchedulingPreference() const {
1014     return SchedPreferenceInfo;
1015   }
1016 
1017   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
1018   /// for different nodes. This function returns the preference (or none) for
1019   /// the given node.
getSchedulingPreference(SDNode *)1020   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
1021     return Sched::None;
1022   }
1023 
1024   /// Return the register class that should be used for the specified value
1025   /// type.
1026   virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
1027     (void)isDivergent;
1028     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1029     assert(RC && "This value type is not natively supported!");
1030     return RC;
1031   }
1032 
1033   /// Allows target to decide about the register class of the
1034   /// specific value that is live outside the defining block.
1035   /// Returns true if the value needs uniform register class.
requiresUniformRegister(MachineFunction & MF,const Value *)1036   virtual bool requiresUniformRegister(MachineFunction &MF,
1037                                        const Value *) const {
1038     return false;
1039   }
1040 
1041   /// Return the 'representative' register class for the specified value
1042   /// type.
1043   ///
1044   /// The 'representative' register class is the largest legal super-reg
1045   /// register class for the register class of the value type.  For example, on
1046   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
1047   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)1048   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
1049     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
1050     return RC;
1051   }
1052 
1053   /// Return the cost of the 'representative' register class for the specified
1054   /// value type.
getRepRegClassCostFor(MVT VT)1055   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
1056     return RepRegClassCostForVT[VT.SimpleTy];
1057   }
1058 
1059   /// Return the preferred strategy to legalize tihs SHIFT instruction, with
1060   /// \p ExpansionFactor being the recursion depth - how many expansion needed.
1061   enum class ShiftLegalizationStrategy {
1062     ExpandToParts,
1063     ExpandThroughStack,
1064     LowerToLibcall
1065   };
1066   virtual ShiftLegalizationStrategy
preferredShiftLegalizationStrategy(SelectionDAG & DAG,SDNode * N,unsigned ExpansionFactor)1067   preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
1068                                      unsigned ExpansionFactor) const {
1069     if (ExpansionFactor == 1)
1070       return ShiftLegalizationStrategy::ExpandToParts;
1071     return ShiftLegalizationStrategy::ExpandThroughStack;
1072   }
1073 
1074   /// Return true if the target has native support for the specified value type.
1075   /// This means that it has a register that directly holds it without
1076   /// promotions or expansions.
isTypeLegal(EVT VT)1077   bool isTypeLegal(EVT VT) const {
1078     assert(!VT.isSimple() ||
1079            (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
1080     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
1081   }
1082 
1083   class ValueTypeActionImpl {
1084     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
1085     /// that indicates how instruction selection should deal with the type.
1086     LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
1087 
1088   public:
ValueTypeActionImpl()1089     ValueTypeActionImpl() {
1090       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
1091                 TypeLegal);
1092     }
1093 
getTypeAction(MVT VT)1094     LegalizeTypeAction getTypeAction(MVT VT) const {
1095       return ValueTypeActions[VT.SimpleTy];
1096     }
1097 
setTypeAction(MVT VT,LegalizeTypeAction Action)1098     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
1099       ValueTypeActions[VT.SimpleTy] = Action;
1100     }
1101   };
1102 
getValueTypeActions()1103   const ValueTypeActionImpl &getValueTypeActions() const {
1104     return ValueTypeActions;
1105   }
1106 
1107   /// Return pair that represents the legalization kind (first) that needs to
1108   /// happen to EVT (second) in order to type-legalize it.
1109   ///
1110   /// First: how we should legalize values of this type, either it is already
1111   /// legal (return 'Legal') or we need to promote it to a larger type (return
1112   /// 'Promote'), or we need to expand it into multiple registers of smaller
1113   /// integer type (return 'Expand').  'Custom' is not an option.
1114   ///
1115   /// Second: for types supported by the target, this is an identity function.
1116   /// For types that must be promoted to larger types, this returns the larger
1117   /// type to promote to.  For integer types that are larger than the largest
1118   /// integer register, this contains one step in the expansion to get to the
1119   /// smaller register. For illegal floating point types, this returns the
1120   /// integer type to transform to.
1121   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1122 
1123   /// Return how we should legalize values of this type, either it is already
1124   /// legal (return 'Legal') or we need to promote it to a larger type (return
1125   /// 'Promote'), or we need to expand it into multiple registers of smaller
1126   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)1127   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
1128     return getTypeConversion(Context, VT).first;
1129   }
getTypeAction(MVT VT)1130   LegalizeTypeAction getTypeAction(MVT VT) const {
1131     return ValueTypeActions.getTypeAction(VT);
1132   }
1133 
1134   /// For types supported by the target, this is an identity function.  For
1135   /// types that must be promoted to larger types, this returns the larger type
1136   /// to promote to.  For integer types that are larger than the largest integer
1137   /// register, this contains one step in the expansion to get to the smaller
1138   /// register. For illegal floating point types, this returns the integer type
1139   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)1140   virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
1141     return getTypeConversion(Context, VT).second;
1142   }
1143 
1144   /// For types supported by the target, this is an identity function.  For
1145   /// types that must be expanded (i.e. integer types that are larger than the
1146   /// largest integer register or illegal floating point types), this returns
1147   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)1148   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
1149     assert(!VT.isVector());
1150     while (true) {
1151       switch (getTypeAction(Context, VT)) {
1152       case TypeLegal:
1153         return VT;
1154       case TypeExpandInteger:
1155         VT = getTypeToTransformTo(Context, VT);
1156         break;
1157       default:
1158         llvm_unreachable("Type is not legal nor is it to be expanded!");
1159       }
1160     }
1161   }
1162 
1163   /// Vector types are broken down into some number of legal first class types.
1164   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
1165   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
1166   /// turns into 4 EVT::i32 values with both PPC and X86.
1167   ///
1168   /// This method returns the number of registers needed, and the VT for each
1169   /// register.  It also returns the VT and quantity of the intermediate values
1170   /// before they are promoted/expanded.
1171   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1172                                   EVT &IntermediateVT,
1173                                   unsigned &NumIntermediates,
1174                                   MVT &RegisterVT) const;
1175 
1176   /// Certain targets such as MIPS require that some types such as vectors are
1177   /// always broken down into scalars in some contexts. This occurs even if the
1178   /// vector type is legal.
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT)1179   virtual unsigned getVectorTypeBreakdownForCallingConv(
1180       LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1181       unsigned &NumIntermediates, MVT &RegisterVT) const {
1182     return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
1183                                   RegisterVT);
1184   }
1185 
1186   struct IntrinsicInfo {
1187     unsigned     opc = 0;          // target opcode
1188     EVT          memVT;            // memory VT
1189 
1190     // value representing memory location
1191     PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
1192 
1193     // Fallback address space for use if ptrVal is nullptr. std::nullopt means
1194     // unknown address space.
1195     std::optional<unsigned> fallbackAddressSpace;
1196 
1197     int          offset = 0;       // offset off of ptrVal
1198     uint64_t     size = 0;         // the size of the memory location
1199                                    // (taken from memVT if zero)
1200     MaybeAlign align = Align(1);   // alignment
1201 
1202     MachineMemOperand::Flags flags = MachineMemOperand::MONone;
1203     IntrinsicInfo() = default;
1204   };
1205 
1206   /// Given an intrinsic, checks if on the target the intrinsic will need to map
1207   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1208   /// true and store the intrinsic information into the IntrinsicInfo that was
1209   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,MachineFunction &,unsigned)1210   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
1211                                   MachineFunction &,
1212                                   unsigned /*Intrinsic*/) const {
1213     return false;
1214   }
1215 
1216   /// Returns true if the target can instruction select the specified FP
1217   /// immediate natively. If false, the legalizer will materialize the FP
1218   /// immediate as a load from a constant pool.
1219   virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1220                             bool ForCodeSize = false) const {
1221     return false;
1222   }
1223 
1224   /// Targets can use this to indicate that they only support *some*
1225   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
1226   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1227   /// legal.
isShuffleMaskLegal(ArrayRef<int>,EVT)1228   virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1229     return true;
1230   }
1231 
1232   /// Returns true if the operation can trap for the value type.
1233   ///
1234   /// VT must be a legal type. By default, we optimistically assume most
1235   /// operations don't trap except for integer divide and remainder.
1236   virtual bool canOpTrap(unsigned Op, EVT VT) const;
1237 
1238   /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1239   /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1240   /// constant pool entry.
isVectorClearMaskLegal(ArrayRef<int>,EVT)1241   virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
1242                                       EVT /*VT*/) const {
1243     return false;
1244   }
1245 
1246   /// How to legalize this custom operation?
getCustomOperationAction(SDNode & Op)1247   virtual LegalizeAction getCustomOperationAction(SDNode &Op) const {
1248     return Legal;
1249   }
1250 
1251   /// Return how this operation should be treated: either it is legal, needs to
1252   /// be promoted to a larger size, needs to be expanded to some other code
1253   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)1254   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
1255     // If a target-specific SDNode requires legalization, require the target
1256     // to provide custom legalization for it.
1257     if (Op >= std::size(OpActions[0]))
1258       return Custom;
1259     if (VT.isExtended())
1260       return Expand;
1261     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1262   }
1263 
1264   /// Custom method defined by each target to indicate if an operation which
1265   /// may require a scale is supported natively by the target.
1266   /// If not, the operation is illegal.
isSupportedFixedPointOperation(unsigned Op,EVT VT,unsigned Scale)1267   virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1268                                               unsigned Scale) const {
1269     return false;
1270   }
1271 
1272   /// Some fixed point operations may be natively supported by the target but
1273   /// only for specific scales. This method allows for checking
1274   /// if the width is supported by the target for a given operation that may
1275   /// depend on scale.
getFixedPointOperationAction(unsigned Op,EVT VT,unsigned Scale)1276   LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
1277                                               unsigned Scale) const {
1278     auto Action = getOperationAction(Op, VT);
1279     if (Action != Legal)
1280       return Action;
1281 
1282     // This operation is supported in this type but may only work on specific
1283     // scales.
1284     bool Supported;
1285     switch (Op) {
1286     default:
1287       llvm_unreachable("Unexpected fixed point operation.");
1288     case ISD::SMULFIX:
1289     case ISD::SMULFIXSAT:
1290     case ISD::UMULFIX:
1291     case ISD::UMULFIXSAT:
1292     case ISD::SDIVFIX:
1293     case ISD::SDIVFIXSAT:
1294     case ISD::UDIVFIX:
1295     case ISD::UDIVFIXSAT:
1296       Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1297       break;
1298     }
1299 
1300     return Supported ? Action : Expand;
1301   }
1302 
1303   // If Op is a strict floating-point operation, return the result
1304   // of getOperationAction for the equivalent non-strict operation.
getStrictFPOperationAction(unsigned Op,EVT VT)1305   LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
1306     unsigned EqOpc;
1307     switch (Op) {
1308       default: llvm_unreachable("Unexpected FP pseudo-opcode");
1309 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1310       case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1311 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1312       case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1313 #include "llvm/IR/ConstrainedOps.def"
1314     }
1315 
1316     return getOperationAction(EqOpc, VT);
1317   }
1318 
1319   /// Return true if the specified operation is legal on this target or can be
1320   /// made legal with custom lowering. This is used to help guide high-level
1321   /// lowering decisions. LegalOnly is an optional convenience for code paths
1322   /// traversed pre and post legalisation.
1323   bool isOperationLegalOrCustom(unsigned Op, EVT VT,
1324                                 bool LegalOnly = false) const {
1325     if (LegalOnly)
1326       return isOperationLegal(Op, VT);
1327 
1328     return (VT == MVT::Other || isTypeLegal(VT)) &&
1329       (getOperationAction(Op, VT) == Legal ||
1330        getOperationAction(Op, VT) == Custom);
1331   }
1332 
1333   /// Return true if the specified operation is legal on this target or can be
1334   /// made legal using promotion. This is used to help guide high-level lowering
1335   /// decisions. LegalOnly is an optional convenience for code paths traversed
1336   /// pre and post legalisation.
1337   bool isOperationLegalOrPromote(unsigned Op, EVT VT,
1338                                  bool LegalOnly = false) const {
1339     if (LegalOnly)
1340       return isOperationLegal(Op, VT);
1341 
1342     return (VT == MVT::Other || isTypeLegal(VT)) &&
1343       (getOperationAction(Op, VT) == Legal ||
1344        getOperationAction(Op, VT) == Promote);
1345   }
1346 
1347   /// Return true if the specified operation is legal on this target or can be
1348   /// made legal with custom lowering or using promotion. This is used to help
1349   /// guide high-level lowering decisions. LegalOnly is an optional convenience
1350   /// for code paths traversed pre and post legalisation.
1351   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
1352                                          bool LegalOnly = false) const {
1353     if (LegalOnly)
1354       return isOperationLegal(Op, VT);
1355 
1356     return (VT == MVT::Other || isTypeLegal(VT)) &&
1357       (getOperationAction(Op, VT) == Legal ||
1358        getOperationAction(Op, VT) == Custom ||
1359        getOperationAction(Op, VT) == Promote);
1360   }
1361 
1362   /// Return true if the operation uses custom lowering, regardless of whether
1363   /// the type is legal or not.
isOperationCustom(unsigned Op,EVT VT)1364   bool isOperationCustom(unsigned Op, EVT VT) const {
1365     return getOperationAction(Op, VT) == Custom;
1366   }
1367 
1368   /// Return true if lowering to a jump table is allowed.
areJTsAllowed(const Function * Fn)1369   virtual bool areJTsAllowed(const Function *Fn) const {
1370     if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1371       return false;
1372 
1373     return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1374            isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1375   }
1376 
1377   /// Check whether the range [Low,High] fits in a machine word.
rangeFitsInWord(const APInt & Low,const APInt & High,const DataLayout & DL)1378   bool rangeFitsInWord(const APInt &Low, const APInt &High,
1379                        const DataLayout &DL) const {
1380     // FIXME: Using the pointer type doesn't seem ideal.
1381     uint64_t BW = DL.getIndexSizeInBits(0u);
1382     uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1383     return Range <= BW;
1384   }
1385 
1386   /// Return true if lowering to a jump table is suitable for a set of case
1387   /// clusters which may contain \p NumCases cases, \p Range range of values.
1388   virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1389                                       uint64_t Range, ProfileSummaryInfo *PSI,
1390                                       BlockFrequencyInfo *BFI) const;
1391 
1392   /// Returns preferred type for switch condition.
1393   virtual MVT getPreferredSwitchConditionType(LLVMContext &Context,
1394                                               EVT ConditionVT) const;
1395 
1396   /// Return true if lowering to a bit test is suitable for a set of case
1397   /// clusters which contains \p NumDests unique destinations, \p Low and
1398   /// \p High as its lowest and highest case values, and expects \p NumCmps
1399   /// case value comparisons. Check if the number of destinations, comparison
1400   /// metric, and range are all suitable.
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High,const DataLayout & DL)1401   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1402                              const APInt &Low, const APInt &High,
1403                              const DataLayout &DL) const {
1404     // FIXME: I don't think NumCmps is the correct metric: a single case and a
1405     // range of cases both require only one branch to lower. Just looking at the
1406     // number of clusters and destinations should be enough to decide whether to
1407     // build bit tests.
1408 
1409     // To lower a range with bit tests, the range must fit the bitwidth of a
1410     // machine word.
1411     if (!rangeFitsInWord(Low, High, DL))
1412       return false;
1413 
1414     // Decide whether it's profitable to lower this range with bit tests. Each
1415     // destination requires a bit test and branch, and there is an overall range
1416     // check branch. For a small number of clusters, separate comparisons might
1417     // be cheaper, and for many destinations, splitting the range might be
1418     // better.
1419     return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1420            (NumDests == 3 && NumCmps >= 6);
1421   }
1422 
1423   /// Return true if the specified operation is illegal on this target or
1424   /// unlikely to be made legal with custom lowering. This is used to help guide
1425   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)1426   bool isOperationExpand(unsigned Op, EVT VT) const {
1427     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1428   }
1429 
1430   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)1431   bool isOperationLegal(unsigned Op, EVT VT) const {
1432     return (VT == MVT::Other || isTypeLegal(VT)) &&
1433            getOperationAction(Op, VT) == Legal;
1434   }
1435 
1436   /// Return how this load with extension should be treated: either it is legal,
1437   /// needs to be promoted to a larger size, needs to be expanded to some other
1438   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)1439   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1440                                   EVT MemVT) const {
1441     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1442     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1443     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1444     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::VALUETYPE_SIZE &&
1445            MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1446     unsigned Shift = 4 * ExtType;
1447     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1448   }
1449 
1450   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)1451   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1452     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1453   }
1454 
1455   /// Return true if the specified load with extension is legal or custom
1456   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)1457   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1458     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1459            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1460   }
1461 
1462   /// Same as getLoadExtAction, but for atomic loads.
getAtomicLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)1463   LegalizeAction getAtomicLoadExtAction(unsigned ExtType, EVT ValVT,
1464                                         EVT MemVT) const {
1465     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1466     unsigned ValI = (unsigned)ValVT.getSimpleVT().SimpleTy;
1467     unsigned MemI = (unsigned)MemVT.getSimpleVT().SimpleTy;
1468     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::VALUETYPE_SIZE &&
1469            MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1470     unsigned Shift = 4 * ExtType;
1471     LegalizeAction Action =
1472         (LegalizeAction)((AtomicLoadExtActions[ValI][MemI] >> Shift) & 0xf);
1473     assert((Action == Legal || Action == Expand) &&
1474            "Unsupported atomic load extension action.");
1475     return Action;
1476   }
1477 
1478   /// Return true if the specified atomic load with extension is legal on
1479   /// this target.
isAtomicLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)1480   bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1481     return getAtomicLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1482   }
1483 
1484   /// Return how this store with truncation should be treated: either it is
1485   /// legal, needs to be promoted to a larger size, needs to be expanded to some
1486   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)1487   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1488     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1489     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1490     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1491     assert(ValI < MVT::VALUETYPE_SIZE && MemI < MVT::VALUETYPE_SIZE &&
1492            "Table isn't big enough!");
1493     return TruncStoreActions[ValI][MemI];
1494   }
1495 
1496   /// Return true if the specified store with truncation is legal on this
1497   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)1498   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1499     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1500   }
1501 
1502   /// Return true if the specified store with truncation has solution on this
1503   /// target.
isTruncStoreLegalOrCustom(EVT ValVT,EVT MemVT)1504   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1505     return isTypeLegal(ValVT) &&
1506       (getTruncStoreAction(ValVT, MemVT) == Legal ||
1507        getTruncStoreAction(ValVT, MemVT) == Custom);
1508   }
1509 
canCombineTruncStore(EVT ValVT,EVT MemVT,bool LegalOnly)1510   virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
1511                                     bool LegalOnly) const {
1512     if (LegalOnly)
1513       return isTruncStoreLegal(ValVT, MemVT);
1514 
1515     return isTruncStoreLegalOrCustom(ValVT, MemVT);
1516   }
1517 
1518   /// Return how the indexed load should be treated: either it is legal, needs
1519   /// to be promoted to a larger size, needs to be expanded to some other code
1520   /// sequence, or the target has a custom expander for it.
getIndexedLoadAction(unsigned IdxMode,MVT VT)1521   LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1522     return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1523   }
1524 
1525   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)1526   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1527     return VT.isSimple() &&
1528       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1529        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1530   }
1531 
1532   /// Return how the indexed store should be treated: either it is legal, needs
1533   /// to be promoted to a larger size, needs to be expanded to some other code
1534   /// sequence, or the target has a custom expander for it.
getIndexedStoreAction(unsigned IdxMode,MVT VT)1535   LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1536     return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1537   }
1538 
1539   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)1540   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1541     return VT.isSimple() &&
1542       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1543        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1544   }
1545 
1546   /// Return how the indexed load should be treated: either it is legal, needs
1547   /// to be promoted to a larger size, needs to be expanded to some other code
1548   /// sequence, or the target has a custom expander for it.
getIndexedMaskedLoadAction(unsigned IdxMode,MVT VT)1549   LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1550     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1551   }
1552 
1553   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedLoadLegal(unsigned IdxMode,EVT VT)1554   bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1555     return VT.isSimple() &&
1556            (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1557             getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1558   }
1559 
1560   /// Return how the indexed store should be treated: either it is legal, needs
1561   /// to be promoted to a larger size, needs to be expanded to some other code
1562   /// sequence, or the target has a custom expander for it.
getIndexedMaskedStoreAction(unsigned IdxMode,MVT VT)1563   LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1564     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1565   }
1566 
1567   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedStoreLegal(unsigned IdxMode,EVT VT)1568   bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1569     return VT.isSimple() &&
1570            (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1571             getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1572   }
1573 
1574   /// Returns true if the index type for a masked gather/scatter requires
1575   /// extending
shouldExtendGSIndex(EVT VT,EVT & EltTy)1576   virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1577 
1578   // Returns true if Extend can be folded into the index of a masked gathers/scatters
1579   // on this target.
shouldRemoveExtendFromGSIndex(SDValue Extend,EVT DataVT)1580   virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const {
1581     return false;
1582   }
1583 
1584   // Return true if the target supports a scatter/gather instruction with
1585   // indices which are scaled by the particular value.  Note that all targets
1586   // must by definition support scale of 1.
isLegalScaleForGatherScatter(uint64_t Scale,uint64_t ElemSize)1587   virtual bool isLegalScaleForGatherScatter(uint64_t Scale,
1588                                             uint64_t ElemSize) const {
1589     // MGATHER/MSCATTER are only required to support scaling by one or by the
1590     // element size.
1591     if (Scale != ElemSize && Scale != 1)
1592       return false;
1593     return true;
1594   }
1595 
1596   /// Return how the condition code should be treated: either it is legal, needs
1597   /// to be expanded to some other code sequence, or the target has a custom
1598   /// expander for it.
1599   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)1600   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1601     assert((unsigned)CC < std::size(CondCodeActions) &&
1602            ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
1603            "Table isn't big enough!");
1604     // See setCondCodeAction for how this is encoded.
1605     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1606     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1607     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1608     assert(Action != Promote && "Can't promote condition code!");
1609     return Action;
1610   }
1611 
1612   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)1613   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1614     return getCondCodeAction(CC, VT) == Legal;
1615   }
1616 
1617   /// Return true if the specified condition code is legal or custom on this
1618   /// target.
isCondCodeLegalOrCustom(ISD::CondCode CC,MVT VT)1619   bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1620     return getCondCodeAction(CC, VT) == Legal ||
1621            getCondCodeAction(CC, VT) == Custom;
1622   }
1623 
1624   /// If the action for this operation is to promote, this method returns the
1625   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)1626   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1627     assert(getOperationAction(Op, VT) == Promote &&
1628            "This operation isn't promoted!");
1629 
1630     // See if this has an explicit type specified.
1631     std::map<std::pair<unsigned, MVT::SimpleValueType>,
1632              MVT::SimpleValueType>::const_iterator PTTI =
1633       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1634     if (PTTI != PromoteToType.end()) return PTTI->second;
1635 
1636     assert((VT.isInteger() || VT.isFloatingPoint()) &&
1637            "Cannot autopromote this type, add it with AddPromotedToType.");
1638 
1639     uint64_t VTBits = VT.getScalarSizeInBits();
1640     MVT NVT = VT;
1641     do {
1642       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1643       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1644              "Didn't find type to promote to!");
1645     } while (VTBits >= NVT.getScalarSizeInBits() || !isTypeLegal(NVT) ||
1646              getOperationAction(Op, NVT) == Promote);
1647     return NVT;
1648   }
1649 
1650   virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
1651                                      bool AllowUnknown = false) const {
1652     return getValueType(DL, Ty, AllowUnknown);
1653   }
1654 
1655   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
1656   /// operations except for the pointer size.  If AllowUnknown is true, this
1657   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1658   /// otherwise it will assert.
1659   EVT getValueType(const DataLayout &DL, Type *Ty,
1660                    bool AllowUnknown = false) const {
1661     // Lower scalar pointers to native pointer types.
1662     if (auto *PTy = dyn_cast<PointerType>(Ty))
1663       return getPointerTy(DL, PTy->getAddressSpace());
1664 
1665     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1666       Type *EltTy = VTy->getElementType();
1667       // Lower vectors of pointers to native pointer types.
1668       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1669         EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1670         EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1671       }
1672       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1673                               VTy->getElementCount());
1674     }
1675 
1676     return EVT::getEVT(Ty, AllowUnknown);
1677   }
1678 
1679   EVT getMemValueType(const DataLayout &DL, Type *Ty,
1680                       bool AllowUnknown = false) const {
1681     // Lower scalar pointers to native pointer types.
1682     if (auto *PTy = dyn_cast<PointerType>(Ty))
1683       return getPointerMemTy(DL, PTy->getAddressSpace());
1684 
1685     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1686       Type *EltTy = VTy->getElementType();
1687       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1688         EVT PointerTy(getPointerMemTy(DL, PTy->getAddressSpace()));
1689         EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1690       }
1691       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1692                               VTy->getElementCount());
1693     }
1694 
1695     return getValueType(DL, Ty, AllowUnknown);
1696   }
1697 
1698 
1699   /// Return the MVT corresponding to this LLVM type. See getValueType.
1700   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1701                          bool AllowUnknown = false) const {
1702     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1703   }
1704 
1705   /// Return the desired alignment for ByVal or InAlloca aggregate function
1706   /// arguments in the caller parameter area.  This is the actual alignment, not
1707   /// its logarithm.
1708   virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1709 
1710   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)1711   MVT getRegisterType(MVT VT) const {
1712     assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
1713     return RegisterTypeForVT[VT.SimpleTy];
1714   }
1715 
1716   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)1717   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1718     if (VT.isSimple())
1719       return getRegisterType(VT.getSimpleVT());
1720     if (VT.isVector()) {
1721       EVT VT1;
1722       MVT RegisterVT;
1723       unsigned NumIntermediates;
1724       (void)getVectorTypeBreakdown(Context, VT, VT1,
1725                                    NumIntermediates, RegisterVT);
1726       return RegisterVT;
1727     }
1728     if (VT.isInteger()) {
1729       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1730     }
1731     llvm_unreachable("Unsupported extended type!");
1732   }
1733 
1734   /// Return the number of registers that this ValueType will eventually
1735   /// require.
1736   ///
1737   /// This is one for any types promoted to live in larger registers, but may be
1738   /// more than one for types (like i64) that are split into pieces.  For types
1739   /// like i140, which are first promoted then expanded, it is the number of
1740   /// registers needed to hold all the bits of the original type.  For an i140
1741   /// on a 32 bit machine this means 5 registers.
1742   ///
1743   /// RegisterVT may be passed as a way to override the default settings, for
1744   /// instance with i128 inline assembly operands on SystemZ.
1745   virtual unsigned
1746   getNumRegisters(LLVMContext &Context, EVT VT,
1747                   std::optional<MVT> RegisterVT = std::nullopt) const {
1748     if (VT.isSimple()) {
1749       assert((unsigned)VT.getSimpleVT().SimpleTy <
1750              std::size(NumRegistersForVT));
1751       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1752     }
1753     if (VT.isVector()) {
1754       EVT VT1;
1755       MVT VT2;
1756       unsigned NumIntermediates;
1757       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1758     }
1759     if (VT.isInteger()) {
1760       unsigned BitWidth = VT.getSizeInBits();
1761       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1762       return (BitWidth + RegWidth - 1) / RegWidth;
1763     }
1764     llvm_unreachable("Unsupported extended type!");
1765   }
1766 
1767   /// Certain combinations of ABIs, Targets and features require that types
1768   /// are legal for some operations and not for other operations.
1769   /// For MIPS all vector types must be passed through the integer register set.
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1770   virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1771                                             CallingConv::ID CC, EVT VT) const {
1772     return getRegisterType(Context, VT);
1773   }
1774 
1775   /// Certain targets require unusual breakdowns of certain types. For MIPS,
1776   /// this occurs when a vector type is used, as vector are passed through the
1777   /// integer register set.
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1778   virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1779                                                  CallingConv::ID CC,
1780                                                  EVT VT) const {
1781     return getNumRegisters(Context, VT);
1782   }
1783 
1784   /// Certain targets have context sensitive alignment requirements, where one
1785   /// type has the alignment requirement of another type.
getABIAlignmentForCallingConv(Type * ArgTy,const DataLayout & DL)1786   virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1787                                               const DataLayout &DL) const {
1788     return DL.getABITypeAlign(ArgTy);
1789   }
1790 
1791   /// If true, then instruction selection should seek to shrink the FP constant
1792   /// of the specified type to a smaller type in order to save space and / or
1793   /// reduce runtime.
ShouldShrinkFPConstant(EVT)1794   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1795 
1796   /// Return true if it is profitable to reduce a load to a smaller type.
1797   /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)1798   virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1799                                      EVT NewVT) const {
1800     // By default, assume that it is cheaper to extract a subvector from a wide
1801     // vector load rather than creating multiple narrow vector loads.
1802     if (NewVT.isVector() && !Load->hasOneUse())
1803       return false;
1804 
1805     return true;
1806   }
1807 
1808   /// Return true (the default) if it is profitable to remove a sext_inreg(x)
1809   /// where the sext is redundant, and use x directly.
shouldRemoveRedundantExtend(SDValue Op)1810   virtual bool shouldRemoveRedundantExtend(SDValue Op) const { return true; }
1811 
1812   /// Indicates if any padding is guaranteed to go at the most significant bits
1813   /// when storing the type to memory and the type size isn't equal to the store
1814   /// size.
isPaddedAtMostSignificantBitsWhenStored(EVT VT)1815   bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const {
1816     return VT.isScalarInteger() && !VT.isByteSized();
1817   }
1818 
1819   /// When splitting a value of the specified type into parts, does the Lo
1820   /// or Hi part come first?  This usually follows the endianness, except
1821   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT,const DataLayout & DL)1822   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1823     return DL.isBigEndian() || VT == MVT::ppcf128;
1824   }
1825 
1826   /// If true, the target has custom DAG combine transformations that it can
1827   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)1828   bool hasTargetDAGCombine(ISD::NodeType NT) const {
1829     assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
1830     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1831   }
1832 
getGatherAllAliasesMaxDepth()1833   unsigned getGatherAllAliasesMaxDepth() const {
1834     return GatherAllAliasesMaxDepth;
1835   }
1836 
1837   /// Returns the size of the platform's va_list object.
getVaListSizeInBits(const DataLayout & DL)1838   virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1839     return getPointerTy(DL).getSizeInBits();
1840   }
1841 
1842   /// Get maximum # of store operations permitted for llvm.memset
1843   ///
1844   /// This function returns the maximum number of store operations permitted
1845   /// to replace a call to llvm.memset. The value is set by the target at the
1846   /// performance threshold for such a replacement. If OptSize is true,
1847   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)1848   unsigned getMaxStoresPerMemset(bool OptSize) const {
1849     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1850   }
1851 
1852   /// Get maximum # of store operations permitted for llvm.memcpy
1853   ///
1854   /// This function returns the maximum number of store operations permitted
1855   /// to replace a call to llvm.memcpy. The value is set by the target at the
1856   /// performance threshold for such a replacement. If OptSize is true,
1857   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)1858   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1859     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1860   }
1861 
1862   /// \brief Get maximum # of store operations to be glued together
1863   ///
1864   /// This function returns the maximum number of store operations permitted
1865   /// to glue together during lowering of llvm.memcpy. The value is set by
1866   //  the target at the performance threshold for such a replacement.
getMaxGluedStoresPerMemcpy()1867   virtual unsigned getMaxGluedStoresPerMemcpy() const {
1868     return MaxGluedStoresPerMemcpy;
1869   }
1870 
1871   /// Get maximum # of load operations permitted for memcmp
1872   ///
1873   /// This function returns the maximum number of load operations permitted
1874   /// to replace a call to memcmp. The value is set by the target at the
1875   /// performance threshold for such a replacement. If OptSize is true,
1876   /// return the limit for functions that have OptSize attribute.
getMaxExpandSizeMemcmp(bool OptSize)1877   unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1878     return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1879   }
1880 
1881   /// Get maximum # of store operations permitted for llvm.memmove
1882   ///
1883   /// This function returns the maximum number of store operations permitted
1884   /// to replace a call to llvm.memmove. The value is set by the target at the
1885   /// performance threshold for such a replacement. If OptSize is true,
1886   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)1887   unsigned getMaxStoresPerMemmove(bool OptSize) const {
1888     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1889   }
1890 
1891   /// Determine if the target supports unaligned memory accesses.
1892   ///
1893   /// This function returns true if the target allows unaligned memory accesses
1894   /// of the specified type in the given address space. If true, it also returns
1895   /// a relative speed of the unaligned memory access in the last argument by
1896   /// reference. The higher the speed number the faster the operation comparing
1897   /// to a number returned by another such call. This is used, for example, in
1898   /// situations where an array copy/move/set is converted to a sequence of
1899   /// store operations. Its use helps to ensure that such replacements don't
1900   /// generate code that causes an alignment error (trap) on the target machine.
1901   virtual bool allowsMisalignedMemoryAccesses(
1902       EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1903       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1904       unsigned * /*Fast*/ = nullptr) const {
1905     return false;
1906   }
1907 
1908   /// LLT handling variant.
1909   virtual bool allowsMisalignedMemoryAccesses(
1910       LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1911       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1912       unsigned * /*Fast*/ = nullptr) const {
1913     return false;
1914   }
1915 
1916   /// This function returns true if the memory access is aligned or if the
1917   /// target allows this specific unaligned memory access. If the access is
1918   /// allowed, the optional final parameter returns a relative speed of the
1919   /// access (as defined by the target).
1920   bool allowsMemoryAccessForAlignment(
1921       LLVMContext &Context, const DataLayout &DL, EVT VT,
1922       unsigned AddrSpace = 0, Align Alignment = Align(1),
1923       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1924       unsigned *Fast = nullptr) const;
1925 
1926   /// Return true if the memory access of this type is aligned or if the target
1927   /// allows this specific unaligned access for the given MachineMemOperand.
1928   /// If the access is allowed, the optional final parameter returns a relative
1929   /// speed of the access (as defined by the target).
1930   bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1931                                       const DataLayout &DL, EVT VT,
1932                                       const MachineMemOperand &MMO,
1933                                       unsigned *Fast = nullptr) const;
1934 
1935   /// Return true if the target supports a memory access of this type for the
1936   /// given address space and alignment. If the access is allowed, the optional
1937   /// final parameter returns the relative speed of the access (as defined by
1938   /// the target).
1939   virtual bool
1940   allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1941                      unsigned AddrSpace = 0, Align Alignment = Align(1),
1942                      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1943                      unsigned *Fast = nullptr) const;
1944 
1945   /// Return true if the target supports a memory access of this type for the
1946   /// given MachineMemOperand. If the access is allowed, the optional
1947   /// final parameter returns the relative access speed (as defined by the
1948   /// target).
1949   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1950                           const MachineMemOperand &MMO,
1951                           unsigned *Fast = nullptr) const;
1952 
1953   /// LLT handling variant.
1954   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
1955                           const MachineMemOperand &MMO,
1956                           unsigned *Fast = nullptr) const;
1957 
1958   /// Returns the target specific optimal type for load and store operations as
1959   /// a result of memset, memcpy, and memmove lowering.
1960   /// It returns EVT::Other if the type should be determined using generic
1961   /// target-independent logic.
1962   virtual EVT
getOptimalMemOpType(const MemOp & Op,const AttributeList &)1963   getOptimalMemOpType(const MemOp &Op,
1964                       const AttributeList & /*FuncAttributes*/) const {
1965     return MVT::Other;
1966   }
1967 
1968   /// LLT returning variant.
1969   virtual LLT
getOptimalMemOpLLT(const MemOp & Op,const AttributeList &)1970   getOptimalMemOpLLT(const MemOp &Op,
1971                      const AttributeList & /*FuncAttributes*/) const {
1972     return LLT();
1973   }
1974 
1975   /// Returns true if it's safe to use load / store of the specified type to
1976   /// expand memcpy / memset inline.
1977   ///
1978   /// This is mostly true for all types except for some special cases. For
1979   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1980   /// fstpl which also does type conversion. Note the specified type doesn't
1981   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)1982   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1983 
1984   /// Return lower limit for number of blocks in a jump table.
1985   virtual unsigned getMinimumJumpTableEntries() const;
1986 
1987   /// Return lower limit of the density in a jump table.
1988   unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1989 
1990   /// Return upper limit for number of entries in a jump table.
1991   /// Zero if no limit.
1992   unsigned getMaximumJumpTableSize() const;
1993 
1994   virtual bool isJumpTableRelative() const;
1995 
1996   /// If a physical register, this specifies the register that
1997   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()1998   Register getStackPointerRegisterToSaveRestore() const {
1999     return StackPointerRegisterToSaveRestore;
2000   }
2001 
2002   /// If a physical register, this returns the register that receives the
2003   /// exception address on entry to an EH pad.
2004   virtual Register
getExceptionPointerRegister(const Constant * PersonalityFn)2005   getExceptionPointerRegister(const Constant *PersonalityFn) const {
2006     return Register();
2007   }
2008 
2009   /// If a physical register, this returns the register that receives the
2010   /// exception typeid on entry to a landing pad.
2011   virtual Register
getExceptionSelectorRegister(const Constant * PersonalityFn)2012   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
2013     return Register();
2014   }
2015 
needsFixedCatchObjects()2016   virtual bool needsFixedCatchObjects() const {
2017     report_fatal_error("Funclet EH is not implemented for this target");
2018   }
2019 
2020   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()2021   Align getMinStackArgumentAlignment() const {
2022     return MinStackArgumentAlignment;
2023   }
2024 
2025   /// Return the minimum function alignment.
getMinFunctionAlignment()2026   Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
2027 
2028   /// Return the preferred function alignment.
getPrefFunctionAlignment()2029   Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
2030 
2031   /// Return the preferred loop alignment.
2032   virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
2033 
2034   /// Return the maximum amount of bytes allowed to be emitted when padding for
2035   /// alignment
2036   virtual unsigned
2037   getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const;
2038 
2039   /// Should loops be aligned even when the function is marked OptSize (but not
2040   /// MinSize).
alignLoopsWithOptSize()2041   virtual bool alignLoopsWithOptSize() const { return false; }
2042 
2043   /// If the target has a standard location for the stack protector guard,
2044   /// returns the address of that location. Otherwise, returns nullptr.
2045   /// DEPRECATED: please override useLoadStackGuardNode and customize
2046   ///             LOAD_STACK_GUARD, or customize \@llvm.stackguard().
2047   virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
2048 
2049   /// Inserts necessary declarations for SSP (stack protection) purpose.
2050   /// Should be used only when getIRStackGuard returns nullptr.
2051   virtual void insertSSPDeclarations(Module &M) const;
2052 
2053   /// Return the variable that's previously inserted by insertSSPDeclarations,
2054   /// if any, otherwise return nullptr. Should be used only when
2055   /// getIRStackGuard returns nullptr.
2056   virtual Value *getSDagStackGuard(const Module &M) const;
2057 
2058   /// If this function returns true, stack protection checks should XOR the
2059   /// frame pointer (or whichever pointer is used to address locals) into the
2060   /// stack guard value before checking it. getIRStackGuard must return nullptr
2061   /// if this returns true.
useStackGuardXorFP()2062   virtual bool useStackGuardXorFP() const { return false; }
2063 
2064   /// If the target has a standard stack protection check function that
2065   /// performs validation and error handling, returns the function. Otherwise,
2066   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
2067   /// Should be used only when getIRStackGuard returns nullptr.
2068   virtual Function *getSSPStackGuardCheck(const Module &M) const;
2069 
2070 protected:
2071   Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
2072                                             bool UseTLS) const;
2073 
2074 public:
2075   /// Returns the target-specific address of the unsafe stack pointer.
2076   virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
2077 
2078   /// Returns the name of the symbol used to emit stack probes or the empty
2079   /// string if not applicable.
hasStackProbeSymbol(const MachineFunction & MF)2080   virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
2081 
hasInlineStackProbe(const MachineFunction & MF)2082   virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
2083 
getStackProbeSymbolName(const MachineFunction & MF)2084   virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const {
2085     return "";
2086   }
2087 
2088   /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
2089   /// are happy to sink it into basic blocks. A cast may be free, but not
2090   /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
2091   virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
2092 
2093   /// Return true if the pointer arguments to CI should be aligned by aligning
2094   /// the object whose address is being passed. If so then MinSize is set to the
2095   /// minimum size the object must be to be aligned and PrefAlign is set to the
2096   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,Align &)2097   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
2098                                       Align & /*PrefAlign*/) const {
2099     return false;
2100   }
2101 
2102   //===--------------------------------------------------------------------===//
2103   /// \name Helpers for TargetTransformInfo implementations
2104   /// @{
2105 
2106   /// Get the ISD node that corresponds to the Instruction class opcode.
2107   int InstructionOpcodeToISD(unsigned Opcode) const;
2108 
2109   /// @}
2110 
2111   //===--------------------------------------------------------------------===//
2112   /// \name Helpers for atomic expansion.
2113   /// @{
2114 
2115   /// Returns the maximum atomic operation size (in bits) supported by
2116   /// the backend. Atomic operations greater than this size (as well
2117   /// as ones that are not naturally aligned), will be expanded by
2118   /// AtomicExpandPass into an __atomic_* library call.
getMaxAtomicSizeInBitsSupported()2119   unsigned getMaxAtomicSizeInBitsSupported() const {
2120     return MaxAtomicSizeInBitsSupported;
2121   }
2122 
2123   /// Returns the size in bits of the maximum div/rem the backend supports.
2124   /// Larger operations will be expanded by ExpandLargeDivRem.
getMaxDivRemBitWidthSupported()2125   unsigned getMaxDivRemBitWidthSupported() const {
2126     return MaxDivRemBitWidthSupported;
2127   }
2128 
2129   /// Returns the size in bits of the maximum larget fp convert the backend
2130   /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
getMaxLargeFPConvertBitWidthSupported()2131   unsigned getMaxLargeFPConvertBitWidthSupported() const {
2132     return MaxLargeFPConvertBitWidthSupported;
2133   }
2134 
2135   /// Returns the size of the smallest cmpxchg or ll/sc instruction
2136   /// the backend supports.  Any smaller operations are widened in
2137   /// AtomicExpandPass.
2138   ///
2139   /// Note that *unlike* operations above the maximum size, atomic ops
2140   /// are still natively supported below the minimum; they just
2141   /// require a more complex expansion.
getMinCmpXchgSizeInBits()2142   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
2143 
2144   /// Whether the target supports unaligned atomic operations.
supportsUnalignedAtomics()2145   bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
2146 
2147   /// Whether AtomicExpandPass should automatically insert fences and reduce
2148   /// ordering for this atomic. This should be true for most architectures with
2149   /// weak memory ordering. Defaults to false.
shouldInsertFencesForAtomic(const Instruction * I)2150   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
2151     return false;
2152   }
2153 
2154   /// Whether AtomicExpandPass should automatically insert a trailing fence
2155   /// without reducing the ordering for this atomic. Defaults to false.
2156   virtual bool
shouldInsertTrailingFenceForAtomicStore(const Instruction * I)2157   shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const {
2158     return false;
2159   }
2160 
2161   /// Perform a load-linked operation on Addr, returning a "Value *" with the
2162   /// corresponding pointee type. This may entail some non-trivial operations to
2163   /// truncate or reconstruct types that will be illegal in the backend. See
2164   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilderBase & Builder,Type * ValueTy,Value * Addr,AtomicOrdering Ord)2165   virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
2166                                 Value *Addr, AtomicOrdering Ord) const {
2167     llvm_unreachable("Load linked unimplemented on this target");
2168   }
2169 
2170   /// Perform a store-conditional operation to Addr. Return the status of the
2171   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilderBase & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)2172   virtual Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val,
2173                                       Value *Addr, AtomicOrdering Ord) const {
2174     llvm_unreachable("Store conditional unimplemented on this target");
2175   }
2176 
2177   /// Perform a masked atomicrmw using a target-specific intrinsic. This
2178   /// represents the core LL/SC loop which will be lowered at a late stage by
2179   /// the backend. The target-specific intrinsic returns the loaded value and
2180   /// is not responsible for masking and shifting the result.
emitMaskedAtomicRMWIntrinsic(IRBuilderBase & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord)2181   virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
2182                                               AtomicRMWInst *AI,
2183                                               Value *AlignedAddr, Value *Incr,
2184                                               Value *Mask, Value *ShiftAmt,
2185                                               AtomicOrdering Ord) const {
2186     llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
2187   }
2188 
2189   /// Perform a atomicrmw expansion using a target-specific way. This is
2190   /// expected to be called when masked atomicrmw and bit test atomicrmw don't
2191   /// work, and the target supports another way to lower atomicrmw.
emitExpandAtomicRMW(AtomicRMWInst * AI)2192   virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
2193     llvm_unreachable(
2194         "Generic atomicrmw expansion unimplemented on this target");
2195   }
2196 
2197   /// Perform a bit test atomicrmw using a target-specific intrinsic. This
2198   /// represents the combined bit test intrinsic which will be lowered at a late
2199   /// stage by the backend.
emitBitTestAtomicRMWIntrinsic(AtomicRMWInst * AI)2200   virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
2201     llvm_unreachable(
2202         "Bit test atomicrmw expansion unimplemented on this target");
2203   }
2204 
2205   /// Perform a atomicrmw which the result is only used by comparison, using a
2206   /// target-specific intrinsic. This represents the combined atomic and compare
2207   /// intrinsic which will be lowered at a late stage by the backend.
emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst * AI)2208   virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const {
2209     llvm_unreachable(
2210         "Compare arith atomicrmw expansion unimplemented on this target");
2211   }
2212 
2213   /// Perform a masked cmpxchg using a target-specific intrinsic. This
2214   /// represents the core LL/SC loop which will be lowered at a late stage by
2215   /// the backend. The target-specific intrinsic returns the loaded value and
2216   /// is not responsible for masking and shifting the result.
emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord)2217   virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
2218       IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2219       Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2220     llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
2221   }
2222 
2223   //===--------------------------------------------------------------------===//
2224   /// \name KCFI check lowering.
2225   /// @{
2226 
EmitKCFICheck(MachineBasicBlock & MBB,MachineBasicBlock::instr_iterator & MBBI,const TargetInstrInfo * TII)2227   virtual MachineInstr *EmitKCFICheck(MachineBasicBlock &MBB,
2228                                       MachineBasicBlock::instr_iterator &MBBI,
2229                                       const TargetInstrInfo *TII) const {
2230     llvm_unreachable("KCFI is not supported on this target");
2231   }
2232 
2233   /// @}
2234 
2235   /// Inserts in the IR a target-specific intrinsic specifying a fence.
2236   /// It is called by AtomicExpandPass before expanding an
2237   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
2238   ///   if shouldInsertFencesForAtomic returns true.
2239   ///
2240   /// Inst is the original atomic instruction, prior to other expansions that
2241   /// may be performed.
2242   ///
2243   /// This function should either return a nullptr, or a pointer to an IR-level
2244   ///   Instruction*. Even complex fence sequences can be represented by a
2245   ///   single Instruction* through an intrinsic to be lowered later.
2246   ///
2247   /// The default implementation emits an IR fence before any release (or
2248   ///   stronger) operation that stores, and after any acquire (or stronger)
2249   ///   operation. This is generally a correct implementation, but backends may
2250   ///   override if they wish to use alternative schemes (e.g. the PowerPC
2251   ///   standard ABI uses a fence before a seq_cst load instead of after a
2252   ///   seq_cst store).
2253   /// @{
2254   virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
2255                                         Instruction *Inst,
2256                                         AtomicOrdering Ord) const;
2257 
2258   virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
2259                                          Instruction *Inst,
2260                                          AtomicOrdering Ord) const;
2261   /// @}
2262 
2263   // Emits code that executes when the comparison result in the ll/sc
2264   // expansion of a cmpxchg instruction is such that the store-conditional will
2265   // not execute.  This makes it possible to balance out the load-linked with
2266   // a dedicated instruction, if desired.
2267   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
2268   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase & Builder)2269   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
2270 
2271   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)2272   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
2273     return IsSigned;
2274   }
2275 
2276   /// Returns true if arguments should be extended in lib calls.
shouldExtendTypeInLibCall(EVT Type)2277   virtual bool shouldExtendTypeInLibCall(EVT Type) const {
2278     return true;
2279   }
2280 
2281   /// Returns how the given (atomic) load should be expanded by the
2282   /// IR-level AtomicExpand pass.
shouldExpandAtomicLoadInIR(LoadInst * LI)2283   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
2284     return AtomicExpansionKind::None;
2285   }
2286 
2287   /// Returns how the given (atomic) load should be cast by the IR-level
2288   /// AtomicExpand pass.
shouldCastAtomicLoadInIR(LoadInst * LI)2289   virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const {
2290     if (LI->getType()->isFloatingPointTy())
2291       return AtomicExpansionKind::CastToInteger;
2292     return AtomicExpansionKind::None;
2293   }
2294 
2295   /// Returns how the given (atomic) store should be expanded by the IR-level
2296   /// AtomicExpand pass into. For instance AtomicExpansionKind::Expand will try
2297   /// to use an atomicrmw xchg.
shouldExpandAtomicStoreInIR(StoreInst * SI)2298   virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const {
2299     return AtomicExpansionKind::None;
2300   }
2301 
2302   /// Returns how the given (atomic) store should be cast by the IR-level
2303   /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
2304   /// will try to cast the operands to integer values.
shouldCastAtomicStoreInIR(StoreInst * SI)2305   virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const {
2306     if (SI->getValueOperand()->getType()->isFloatingPointTy())
2307       return AtomicExpansionKind::CastToInteger;
2308     return AtomicExpansionKind::None;
2309   }
2310 
2311   /// Returns how the given atomic cmpxchg should be expanded by the IR-level
2312   /// AtomicExpand pass.
2313   virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI)2314   shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
2315     return AtomicExpansionKind::None;
2316   }
2317 
2318   /// Returns how the IR-level AtomicExpand pass should expand the given
2319   /// AtomicRMW, if at all. Default is to never expand.
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW)2320   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2321     return RMW->isFloatingPointOperation() ?
2322       AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
2323   }
2324 
2325   /// Returns how the given atomic atomicrmw should be cast by the IR-level
2326   /// AtomicExpand pass.
2327   virtual AtomicExpansionKind
shouldCastAtomicRMWIInIR(AtomicRMWInst * RMWI)2328   shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const {
2329     if (RMWI->getOperation() == AtomicRMWInst::Xchg &&
2330         (RMWI->getValOperand()->getType()->isFloatingPointTy() ||
2331          RMWI->getValOperand()->getType()->isPointerTy()))
2332       return AtomicExpansionKind::CastToInteger;
2333 
2334     return AtomicExpansionKind::None;
2335   }
2336 
2337   /// On some platforms, an AtomicRMW that never actually modifies the value
2338   /// (such as fetch_add of 0) can be turned into a fence followed by an
2339   /// atomic load. This may sound useless, but it makes it possible for the
2340   /// processor to keep the cacheline shared, dramatically improving
2341   /// performance. And such idempotent RMWs are useful for implementing some
2342   /// kinds of locks, see for example (justification + benchmarks):
2343   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2344   /// This method tries doing that transformation, returning the atomic load if
2345   /// it succeeds, and nullptr otherwise.
2346   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2347   /// another round of expansion.
2348   virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)2349   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
2350     return nullptr;
2351   }
2352 
2353   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2354   /// SIGN_EXTEND, or ANY_EXTEND).
getExtendForAtomicOps()2355   virtual ISD::NodeType getExtendForAtomicOps() const {
2356     return ISD::ZERO_EXTEND;
2357   }
2358 
2359   /// Returns how the platform's atomic compare and swap expects its comparison
2360   /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2361   /// separate from getExtendForAtomicOps, which is concerned with the
2362   /// sign-extension of the instruction's output, whereas here we are concerned
2363   /// with the sign-extension of the input. For targets with compare-and-swap
2364   /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2365   /// the input can be ANY_EXTEND, but the output will still have a specific
2366   /// extension.
getExtendForAtomicCmpSwapArg()2367   virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
2368     return ISD::ANY_EXTEND;
2369   }
2370 
2371   /// @}
2372 
2373   /// Returns true if we should normalize
2374   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2375   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2376   /// that it saves us from materializing N0 and N1 in an integer register.
2377   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)2378   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
2379                                                EVT VT) const {
2380     // If a target has multiple condition registers, then it likely has logical
2381     // operations on those registers.
2382     if (hasMultipleConditionRegisters())
2383       return false;
2384     // Only do the transform if the value won't be split into multiple
2385     // registers.
2386     LegalizeTypeAction Action = getTypeAction(Context, VT);
2387     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2388       Action != TypeSplitVector;
2389   }
2390 
isProfitableToCombineMinNumMaxNum(EVT VT)2391   virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2392 
2393   /// Return true if a select of constants (select Cond, C1, C2) should be
2394   /// transformed into simple math ops with the condition value. For example:
2395   /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
convertSelectOfConstantsToMath(EVT VT)2396   virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2397     return false;
2398   }
2399 
2400   /// Return true if it is profitable to transform an integer
2401   /// multiplication-by-constant into simpler operations like shifts and adds.
2402   /// This may be true if the target does not directly support the
2403   /// multiplication operation for the specified type or the sequence of simpler
2404   /// ops is faster than the multiply.
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C)2405   virtual bool decomposeMulByConstant(LLVMContext &Context,
2406                                       EVT VT, SDValue C) const {
2407     return false;
2408   }
2409 
2410   /// Return true if it may be profitable to transform
2411   /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
2412   /// This may not be true if c1 and c2 can be represented as immediates but
2413   /// c1*c2 cannot, for example.
2414   /// The target should check if c1, c2 and c1*c2 can be represented as
2415   /// immediates, or have to be materialized into registers. If it is not sure
2416   /// about some cases, a default true can be returned to let the DAGCombiner
2417   /// decide.
2418   /// AddNode is (add x, c1), and ConstNode is c2.
isMulAddWithConstProfitable(SDValue AddNode,SDValue ConstNode)2419   virtual bool isMulAddWithConstProfitable(SDValue AddNode,
2420                                            SDValue ConstNode) const {
2421     return true;
2422   }
2423 
2424   /// Return true if it is more correct/profitable to use strict FP_TO_INT
2425   /// conversion operations - canonicalizing the FP source value instead of
2426   /// converting all cases and then selecting based on value.
2427   /// This may be true if the target throws exceptions for out of bounds
2428   /// conversions or has fast FP CMOV.
shouldUseStrictFP_TO_INT(EVT FpVT,EVT IntVT,bool IsSigned)2429   virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2430                                         bool IsSigned) const {
2431     return false;
2432   }
2433 
2434   /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
2435   /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
2436   /// considered beneficial.
2437   /// If optimizing for size, expansion is only considered beneficial for upto
2438   /// 5 multiplies and a divide (if the exponent is negative).
isBeneficialToExpandPowI(int64_t Exponent,bool OptForSize)2439   bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const {
2440     if (Exponent < 0)
2441       Exponent = -Exponent;
2442     uint64_t E = static_cast<uint64_t>(Exponent);
2443     return !OptForSize || (llvm::popcount(E) + Log2_64(E) < 7);
2444   }
2445 
2446   //===--------------------------------------------------------------------===//
2447   // TargetLowering Configuration Methods - These methods should be invoked by
2448   // the derived class constructor to configure this object for the target.
2449   //
2450 protected:
2451   /// Specify how the target extends the result of integer and floating point
2452   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)2453   void setBooleanContents(BooleanContent Ty) {
2454     BooleanContents = Ty;
2455     BooleanFloatContents = Ty;
2456   }
2457 
2458   /// Specify how the target extends the result of integer and floating point
2459   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)2460   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
2461     BooleanContents = IntTy;
2462     BooleanFloatContents = FloatTy;
2463   }
2464 
2465   /// Specify how the target extends the result of a vector boolean value from a
2466   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)2467   void setBooleanVectorContents(BooleanContent Ty) {
2468     BooleanVectorContents = Ty;
2469   }
2470 
2471   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)2472   void setSchedulingPreference(Sched::Preference Pref) {
2473     SchedPreferenceInfo = Pref;
2474   }
2475 
2476   /// Indicate the minimum number of blocks to generate jump tables.
2477   void setMinimumJumpTableEntries(unsigned Val);
2478 
2479   /// Indicate the maximum number of entries in jump tables.
2480   /// Set to zero to generate unlimited jump tables.
2481   void setMaximumJumpTableSize(unsigned);
2482 
2483   /// If set to a physical register, this specifies the register that
2484   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(Register R)2485   void setStackPointerRegisterToSaveRestore(Register R) {
2486     StackPointerRegisterToSaveRestore = R;
2487   }
2488 
2489   /// Tells the code generator that the target has multiple (allocatable)
2490   /// condition registers that can be used to store the results of comparisons
2491   /// for use by selects and conditional branches. With multiple condition
2492   /// registers, the code generator will not aggressively sink comparisons into
2493   /// the blocks of their users.
2494   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2495     HasMultipleConditionRegisters = hasManyRegs;
2496   }
2497 
2498   /// Tells the code generator that the target has BitExtract instructions.
2499   /// The code generator will aggressively sink "shift"s into the blocks of
2500   /// their users if the users will generate "and" instructions which can be
2501   /// combined with "shift" to BitExtract instructions.
2502   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2503     HasExtractBitsInsn = hasExtractInsn;
2504   }
2505 
2506   /// Tells the code generator not to expand logic operations on comparison
2507   /// predicates into separate sequences that increase the amount of flow
2508   /// control.
2509   void setJumpIsExpensive(bool isExpensive = true);
2510 
2511   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)2512   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2513     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2514   }
2515 
2516   /// Add the specified register class as an available regclass for the
2517   /// specified value type. This indicates the selector can handle values of
2518   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)2519   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
2520     assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
2521     RegClassForVT[VT.SimpleTy] = RC;
2522   }
2523 
2524   /// Return the largest legal super-reg register class of the register class
2525   /// for the specified type and its associated "cost".
2526   virtual std::pair<const TargetRegisterClass *, uint8_t>
2527   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2528 
2529   /// Once all of the register classes are added, this allows us to compute
2530   /// derived properties we expose.
2531   void computeRegisterProperties(const TargetRegisterInfo *TRI);
2532 
2533   /// Indicate that the specified operation does not work with the specified
2534   /// type and indicate what to do about it. Note that VT may refer to either
2535   /// the type of a result or that of an operand of Op.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)2536   void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
2537     assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
2538     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2539   }
setOperationAction(ArrayRef<unsigned> Ops,MVT VT,LegalizeAction Action)2540   void setOperationAction(ArrayRef<unsigned> Ops, MVT VT,
2541                           LegalizeAction Action) {
2542     for (auto Op : Ops)
2543       setOperationAction(Op, VT, Action);
2544   }
setOperationAction(ArrayRef<unsigned> Ops,ArrayRef<MVT> VTs,LegalizeAction Action)2545   void setOperationAction(ArrayRef<unsigned> Ops, ArrayRef<MVT> VTs,
2546                           LegalizeAction Action) {
2547     for (auto VT : VTs)
2548       setOperationAction(Ops, VT, Action);
2549   }
2550 
2551   /// Indicate that the specified load with extension does not work with the
2552   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)2553   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2554                         LegalizeAction Action) {
2555     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2556            MemVT.isValid() && "Table isn't big enough!");
2557     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2558     unsigned Shift = 4 * ExtType;
2559     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2560     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2561   }
setLoadExtAction(ArrayRef<unsigned> ExtTypes,MVT ValVT,MVT MemVT,LegalizeAction Action)2562   void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2563                         LegalizeAction Action) {
2564     for (auto ExtType : ExtTypes)
2565       setLoadExtAction(ExtType, ValVT, MemVT, Action);
2566   }
setLoadExtAction(ArrayRef<unsigned> ExtTypes,MVT ValVT,ArrayRef<MVT> MemVTs,LegalizeAction Action)2567   void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT,
2568                         ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2569     for (auto MemVT : MemVTs)
2570       setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2571   }
2572 
2573   /// Let target indicate that an extending atomic load of the specified type
2574   /// is legal.
setAtomicLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)2575   void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2576                               LegalizeAction Action) {
2577     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2578            MemVT.isValid() && "Table isn't big enough!");
2579     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2580     unsigned Shift = 4 * ExtType;
2581     AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &=
2582         ~((uint16_t)0xF << Shift);
2583     AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |=
2584         ((uint16_t)Action << Shift);
2585   }
setAtomicLoadExtAction(ArrayRef<unsigned> ExtTypes,MVT ValVT,MVT MemVT,LegalizeAction Action)2586   void setAtomicLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2587                               LegalizeAction Action) {
2588     for (auto ExtType : ExtTypes)
2589       setAtomicLoadExtAction(ExtType, ValVT, MemVT, Action);
2590   }
setAtomicLoadExtAction(ArrayRef<unsigned> ExtTypes,MVT ValVT,ArrayRef<MVT> MemVTs,LegalizeAction Action)2591   void setAtomicLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT,
2592                               ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2593     for (auto MemVT : MemVTs)
2594       setAtomicLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2595   }
2596 
2597   /// Indicate that the specified truncating store does not work with the
2598   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)2599   void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
2600     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2601     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2602   }
2603 
2604   /// Indicate that the specified indexed load does or does not work with the
2605   /// specified type and indicate what to do abort it.
2606   ///
2607   /// NOTE: All indexed mode loads are initialized to Expand in
2608   /// TargetLowering.cpp
setIndexedLoadAction(ArrayRef<unsigned> IdxModes,MVT VT,LegalizeAction Action)2609   void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, MVT VT,
2610                             LegalizeAction Action) {
2611     for (auto IdxMode : IdxModes)
2612       setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2613   }
2614 
setIndexedLoadAction(ArrayRef<unsigned> IdxModes,ArrayRef<MVT> VTs,LegalizeAction Action)2615   void setIndexedLoadAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
2616                             LegalizeAction Action) {
2617     for (auto VT : VTs)
2618       setIndexedLoadAction(IdxModes, VT, Action);
2619   }
2620 
2621   /// Indicate that the specified indexed store does or does not work with the
2622   /// specified type and indicate what to do about it.
2623   ///
2624   /// NOTE: All indexed mode stores are initialized to Expand in
2625   /// TargetLowering.cpp
setIndexedStoreAction(ArrayRef<unsigned> IdxModes,MVT VT,LegalizeAction Action)2626   void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, MVT VT,
2627                              LegalizeAction Action) {
2628     for (auto IdxMode : IdxModes)
2629       setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2630   }
2631 
setIndexedStoreAction(ArrayRef<unsigned> IdxModes,ArrayRef<MVT> VTs,LegalizeAction Action)2632   void setIndexedStoreAction(ArrayRef<unsigned> IdxModes, ArrayRef<MVT> VTs,
2633                              LegalizeAction Action) {
2634     for (auto VT : VTs)
2635       setIndexedStoreAction(IdxModes, VT, Action);
2636   }
2637 
2638   /// Indicate that the specified indexed masked load does or does not work with
2639   /// the specified type and indicate what to do about it.
2640   ///
2641   /// NOTE: All indexed mode masked loads are initialized to Expand in
2642   /// TargetLowering.cpp
setIndexedMaskedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2643   void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2644                                   LegalizeAction Action) {
2645     setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2646   }
2647 
2648   /// Indicate that the specified indexed masked store does or does not work
2649   /// with the specified type and indicate what to do about it.
2650   ///
2651   /// NOTE: All indexed mode masked stores are initialized to Expand in
2652   /// TargetLowering.cpp
setIndexedMaskedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2653   void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2654                                    LegalizeAction Action) {
2655     setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2656   }
2657 
2658   /// Indicate that the specified condition code is or isn't supported on the
2659   /// target and indicate what to do about it.
setCondCodeAction(ArrayRef<ISD::CondCode> CCs,MVT VT,LegalizeAction Action)2660   void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, MVT VT,
2661                          LegalizeAction Action) {
2662     for (auto CC : CCs) {
2663       assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
2664              "Table isn't big enough!");
2665       assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2666       /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
2667       /// 32-bit value and the upper 29 bits index into the second dimension of
2668       /// the array to select what 32-bit value to use.
2669       uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2670       CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2671       CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2672     }
2673   }
setCondCodeAction(ArrayRef<ISD::CondCode> CCs,ArrayRef<MVT> VTs,LegalizeAction Action)2674   void setCondCodeAction(ArrayRef<ISD::CondCode> CCs, ArrayRef<MVT> VTs,
2675                          LegalizeAction Action) {
2676     for (auto VT : VTs)
2677       setCondCodeAction(CCs, VT, Action);
2678   }
2679 
2680   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2681   /// to trying a larger integer/fp until it can find one that works. If that
2682   /// default is insufficient, this method can be used by the target to override
2683   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2684   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2685     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2686   }
2687 
2688   /// Convenience method to set an operation to Promote and specify the type
2689   /// in a single call.
setOperationPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2690   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2691     setOperationAction(Opc, OrigVT, Promote);
2692     AddPromotedToType(Opc, OrigVT, DestVT);
2693   }
setOperationPromotedToType(ArrayRef<unsigned> Ops,MVT OrigVT,MVT DestVT)2694   void setOperationPromotedToType(ArrayRef<unsigned> Ops, MVT OrigVT,
2695                                   MVT DestVT) {
2696     for (auto Op : Ops) {
2697       setOperationAction(Op, OrigVT, Promote);
2698       AddPromotedToType(Op, OrigVT, DestVT);
2699     }
2700   }
2701 
2702   /// Targets should invoke this method for each target independent node that
2703   /// they want to provide a custom DAG combiner for by implementing the
2704   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ArrayRef<ISD::NodeType> NTs)2705   void setTargetDAGCombine(ArrayRef<ISD::NodeType> NTs) {
2706     for (auto NT : NTs) {
2707       assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
2708       TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
2709     }
2710   }
2711 
2712   /// Set the target's minimum function alignment.
setMinFunctionAlignment(Align Alignment)2713   void setMinFunctionAlignment(Align Alignment) {
2714     MinFunctionAlignment = Alignment;
2715   }
2716 
2717   /// Set the target's preferred function alignment.  This should be set if
2718   /// there is a performance benefit to higher-than-minimum alignment
setPrefFunctionAlignment(Align Alignment)2719   void setPrefFunctionAlignment(Align Alignment) {
2720     PrefFunctionAlignment = Alignment;
2721   }
2722 
2723   /// Set the target's preferred loop alignment. Default alignment is one, it
2724   /// means the target does not care about loop alignment. The target may also
2725   /// override getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(Align Alignment)2726   void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
setMaxBytesForAlignment(unsigned MaxBytes)2727   void setMaxBytesForAlignment(unsigned MaxBytes) {
2728     MaxBytesForAlignment = MaxBytes;
2729   }
2730 
2731   /// Set the minimum stack alignment of an argument.
setMinStackArgumentAlignment(Align Alignment)2732   void setMinStackArgumentAlignment(Align Alignment) {
2733     MinStackArgumentAlignment = Alignment;
2734   }
2735 
2736   /// Set the maximum atomic operation size supported by the
2737   /// backend. Atomic operations greater than this size (as well as
2738   /// ones that are not naturally aligned), will be expanded by
2739   /// AtomicExpandPass into an __atomic_* library call.
setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)2740   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2741     MaxAtomicSizeInBitsSupported = SizeInBits;
2742   }
2743 
2744   /// Set the size in bits of the maximum div/rem the backend supports.
2745   /// Larger operations will be expanded by ExpandLargeDivRem.
setMaxDivRemBitWidthSupported(unsigned SizeInBits)2746   void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
2747     MaxDivRemBitWidthSupported = SizeInBits;
2748   }
2749 
2750   /// Set the size in bits of the maximum fp convert the backend supports.
2751   /// Larger operations will be expanded by ExpandLargeFPConvert.
setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits)2752   void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
2753     MaxLargeFPConvertBitWidthSupported = SizeInBits;
2754   }
2755 
2756   /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
setMinCmpXchgSizeInBits(unsigned SizeInBits)2757   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2758     MinCmpXchgSizeInBits = SizeInBits;
2759   }
2760 
2761   /// Sets whether unaligned atomic operations are supported.
setSupportsUnalignedAtomics(bool UnalignedSupported)2762   void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2763     SupportsUnalignedAtomics = UnalignedSupported;
2764   }
2765 
2766 public:
2767   //===--------------------------------------------------------------------===//
2768   // Addressing mode description hooks (used by LSR etc).
2769   //
2770 
2771   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2772   /// instructions reading the address. This allows as much computation as
2773   /// possible to be done in the address mode for that operand. This hook lets
2774   /// targets also pass back when this should be done on intrinsics which
2775   /// load/store.
getAddrModeArguments(IntrinsicInst *,SmallVectorImpl<Value * > &,Type * &)2776   virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2777                                     SmallVectorImpl<Value*> &/*Ops*/,
2778                                     Type *&/*AccessTy*/) const {
2779     return false;
2780   }
2781 
2782   /// This represents an addressing mode of:
2783   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*vscale
2784   /// If BaseGV is null,  there is no BaseGV.
2785   /// If BaseOffs is zero, there is no base offset.
2786   /// If HasBaseReg is false, there is no base register.
2787   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
2788   /// no scale.
2789   /// If ScalableOffset is zero, there is no scalable offset.
2790   struct AddrMode {
2791     GlobalValue *BaseGV = nullptr;
2792     int64_t      BaseOffs = 0;
2793     bool         HasBaseReg = false;
2794     int64_t      Scale = 0;
2795     int64_t ScalableOffset = 0;
2796     AddrMode() = default;
2797   };
2798 
2799   /// Return true if the addressing mode represented by AM is legal for this
2800   /// target, for a load/store of the specified type.
2801   ///
2802   /// The type may be VoidTy, in which case only return true if the addressing
2803   /// mode is legal for a load/store of any legal type.  TODO: Handle
2804   /// pre/postinc as well.
2805   ///
2806   /// If the address space cannot be determined, it will be -1.
2807   ///
2808   /// TODO: Remove default argument
2809   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2810                                      Type *Ty, unsigned AddrSpace,
2811                                      Instruction *I = nullptr) const;
2812 
2813   /// Returns true if the targets addressing mode can target thread local
2814   /// storage (TLS).
addressingModeSupportsTLS(const GlobalValue &)2815   virtual bool addressingModeSupportsTLS(const GlobalValue &) const {
2816     return false;
2817   }
2818 
2819   /// Return the prefered common base offset.
getPreferredLargeGEPBaseOffset(int64_t MinOffset,int64_t MaxOffset)2820   virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
2821                                                  int64_t MaxOffset) const {
2822     return 0;
2823   }
2824 
2825   /// Return true if the specified immediate is legal icmp immediate, that is
2826   /// the target has icmp instructions which can compare a register against the
2827   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)2828   virtual bool isLegalICmpImmediate(int64_t) const {
2829     return true;
2830   }
2831 
2832   /// Return true if the specified immediate is legal add immediate, that is the
2833   /// target has add instructions which can add a register with the immediate
2834   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)2835   virtual bool isLegalAddImmediate(int64_t) const {
2836     return true;
2837   }
2838 
2839   /// Return true if adding the specified scalable immediate is legal, that is
2840   /// the target has add instructions which can add a register with the
2841   /// immediate (multiplied by vscale) without having to materialize the
2842   /// immediate into a register.
isLegalAddScalableImmediate(int64_t)2843   virtual bool isLegalAddScalableImmediate(int64_t) const { return false; }
2844 
2845   /// Return true if the specified immediate is legal for the value input of a
2846   /// store instruction.
isLegalStoreImmediate(int64_t Value)2847   virtual bool isLegalStoreImmediate(int64_t Value) const {
2848     // Default implementation assumes that at least 0 works since it is likely
2849     // that a zero register exists or a zero immediate is allowed.
2850     return Value == 0;
2851   }
2852 
2853   /// Return true if it's significantly cheaper to shift a vector by a uniform
2854   /// scalar than by an amount which will vary across each lane. On x86 before
2855   /// AVX2 for example, there is a "psllw" instruction for the former case, but
2856   /// no simple instruction for a general "a << b" operation on vectors.
2857   /// This should also apply to lowering for vector funnel shifts (rotates).
isVectorShiftByScalarCheap(Type * Ty)2858   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2859     return false;
2860   }
2861 
2862   /// Given a shuffle vector SVI representing a vector splat, return a new
2863   /// scalar type of size equal to SVI's scalar type if the new type is more
2864   /// profitable. Returns nullptr otherwise. For example under MVE float splats
2865   /// are converted to integer to prevent the need to move from SPR to GPR
2866   /// registers.
shouldConvertSplatType(ShuffleVectorInst * SVI)2867   virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
2868     return nullptr;
2869   }
2870 
2871   /// Given a set in interconnected phis of type 'From' that are loaded/stored
2872   /// or bitcast to type 'To', return true if the set should be converted to
2873   /// 'To'.
shouldConvertPhiType(Type * From,Type * To)2874   virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2875     return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2876            (To->isIntegerTy() || To->isFloatingPointTy());
2877   }
2878 
2879   /// Returns true if the opcode is a commutative binary operation.
isCommutativeBinOp(unsigned Opcode)2880   virtual bool isCommutativeBinOp(unsigned Opcode) const {
2881     // FIXME: This should get its info from the td file.
2882     switch (Opcode) {
2883     case ISD::ADD:
2884     case ISD::SMIN:
2885     case ISD::SMAX:
2886     case ISD::UMIN:
2887     case ISD::UMAX:
2888     case ISD::MUL:
2889     case ISD::MULHU:
2890     case ISD::MULHS:
2891     case ISD::SMUL_LOHI:
2892     case ISD::UMUL_LOHI:
2893     case ISD::FADD:
2894     case ISD::FMUL:
2895     case ISD::AND:
2896     case ISD::OR:
2897     case ISD::XOR:
2898     case ISD::SADDO:
2899     case ISD::UADDO:
2900     case ISD::ADDC:
2901     case ISD::ADDE:
2902     case ISD::SADDSAT:
2903     case ISD::UADDSAT:
2904     case ISD::FMINNUM:
2905     case ISD::FMAXNUM:
2906     case ISD::FMINNUM_IEEE:
2907     case ISD::FMAXNUM_IEEE:
2908     case ISD::FMINIMUM:
2909     case ISD::FMAXIMUM:
2910     case ISD::AVGFLOORS:
2911     case ISD::AVGFLOORU:
2912     case ISD::AVGCEILS:
2913     case ISD::AVGCEILU:
2914     case ISD::ABDS:
2915     case ISD::ABDU:
2916       return true;
2917     default: return false;
2918     }
2919   }
2920 
2921   /// Return true if the node is a math/logic binary operator.
isBinOp(unsigned Opcode)2922   virtual bool isBinOp(unsigned Opcode) const {
2923     // A commutative binop must be a binop.
2924     if (isCommutativeBinOp(Opcode))
2925       return true;
2926     // These are non-commutative binops.
2927     switch (Opcode) {
2928     case ISD::SUB:
2929     case ISD::SHL:
2930     case ISD::SRL:
2931     case ISD::SRA:
2932     case ISD::ROTL:
2933     case ISD::ROTR:
2934     case ISD::SDIV:
2935     case ISD::UDIV:
2936     case ISD::SREM:
2937     case ISD::UREM:
2938     case ISD::SSUBSAT:
2939     case ISD::USUBSAT:
2940     case ISD::FSUB:
2941     case ISD::FDIV:
2942     case ISD::FREM:
2943       return true;
2944     default:
2945       return false;
2946     }
2947   }
2948 
2949   /// Return true if it's free to truncate a value of type FromTy to type
2950   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2951   /// by referencing its sub-register AX.
2952   /// Targets must return false when FromTy <= ToTy.
isTruncateFree(Type * FromTy,Type * ToTy)2953   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2954     return false;
2955   }
2956 
2957   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2958   /// whether a call is in tail position. Typically this means that both results
2959   /// would be assigned to the same register or stack slot, but it could mean
2960   /// the target performs adequate checks of its own before proceeding with the
2961   /// tail call.  Targets must return false when FromTy <= ToTy.
allowTruncateForTailCall(Type * FromTy,Type * ToTy)2962   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2963     return false;
2964   }
2965 
isTruncateFree(EVT FromVT,EVT ToVT)2966   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
isTruncateFree(LLT FromTy,LLT ToTy,const DataLayout & DL,LLVMContext & Ctx)2967   virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
2968                               LLVMContext &Ctx) const {
2969     return isTruncateFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
2970                           getApproximateEVTForLLT(ToTy, DL, Ctx));
2971   }
2972 
2973   /// Return true if truncating the specific node Val to type VT2 is free.
isTruncateFree(SDValue Val,EVT VT2)2974   virtual bool isTruncateFree(SDValue Val, EVT VT2) const {
2975     // Fallback to type matching.
2976     return isTruncateFree(Val.getValueType(), VT2);
2977   }
2978 
isProfitableToHoist(Instruction * I)2979   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2980 
2981   /// Return true if the extension represented by \p I is free.
2982   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2983   /// this method can use the context provided by \p I to decide
2984   /// whether or not \p I is free.
2985   /// This method extends the behavior of the is[Z|FP]ExtFree family.
2986   /// In other words, if is[Z|FP]Free returns true, then this method
2987   /// returns true as well. The converse is not true.
2988   /// The target can perform the adequate checks by overriding isExtFreeImpl.
2989   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)2990   bool isExtFree(const Instruction *I) const {
2991     switch (I->getOpcode()) {
2992     case Instruction::FPExt:
2993       if (isFPExtFree(EVT::getEVT(I->getType()),
2994                       EVT::getEVT(I->getOperand(0)->getType())))
2995         return true;
2996       break;
2997     case Instruction::ZExt:
2998       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2999         return true;
3000       break;
3001     case Instruction::SExt:
3002       break;
3003     default:
3004       llvm_unreachable("Instruction is not an extension");
3005     }
3006     return isExtFreeImpl(I);
3007   }
3008 
3009   /// Return true if \p Load and \p Ext can form an ExtLoad.
3010   /// For example, in AArch64
3011   ///   %L = load i8, i8* %ptr
3012   ///   %E = zext i8 %L to i32
3013   /// can be lowered into one load instruction
3014   ///   ldrb w0, [x0]
isExtLoad(const LoadInst * Load,const Instruction * Ext,const DataLayout & DL)3015   bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
3016                  const DataLayout &DL) const {
3017     EVT VT = getValueType(DL, Ext->getType());
3018     EVT LoadVT = getValueType(DL, Load->getType());
3019 
3020     // If the load has other users and the truncate is not free, the ext
3021     // probably isn't free.
3022     if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
3023         !isTruncateFree(Ext->getType(), Load->getType()))
3024       return false;
3025 
3026     // Check whether the target supports casts folded into loads.
3027     unsigned LType;
3028     if (isa<ZExtInst>(Ext))
3029       LType = ISD::ZEXTLOAD;
3030     else {
3031       assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
3032       LType = ISD::SEXTLOAD;
3033     }
3034 
3035     return isLoadExtLegal(LType, VT, LoadVT);
3036   }
3037 
3038   /// Return true if any actual instruction that defines a value of type FromTy
3039   /// implicitly zero-extends the value to ToTy in the result register.
3040   ///
3041   /// The function should return true when it is likely that the truncate can
3042   /// be freely folded with an instruction defining a value of FromTy. If
3043   /// the defining instruction is unknown (because you're looking at a
3044   /// function argument, PHI, etc.) then the target may require an
3045   /// explicit truncate, which is not necessarily free, but this function
3046   /// does not deal with those cases.
3047   /// Targets must return false when FromTy >= ToTy.
isZExtFree(Type * FromTy,Type * ToTy)3048   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
3049     return false;
3050   }
3051 
isZExtFree(EVT FromTy,EVT ToTy)3052   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
isZExtFree(LLT FromTy,LLT ToTy,const DataLayout & DL,LLVMContext & Ctx)3053   virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
3054                           LLVMContext &Ctx) const {
3055     return isZExtFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
3056                       getApproximateEVTForLLT(ToTy, DL, Ctx));
3057   }
3058 
3059   /// Return true if zero-extending the specific node Val to type VT2 is free
3060   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
3061   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)3062   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
3063     return isZExtFree(Val.getValueType(), VT2);
3064   }
3065 
3066   /// Return true if sign-extension from FromTy to ToTy is cheaper than
3067   /// zero-extension.
isSExtCheaperThanZExt(EVT FromTy,EVT ToTy)3068   virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
3069     return false;
3070   }
3071 
3072   /// Return true if this constant should be sign extended when promoting to
3073   /// a larger type.
signExtendConstant(const ConstantInt * C)3074   virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
3075 
3076   /// Return true if sinking I's operands to the same basic block as I is
3077   /// profitable, e.g. because the operands can be folded into a target
3078   /// instruction during instruction selection. After calling the function
3079   /// \p Ops contains the Uses to sink ordered by dominance (dominating users
3080   /// come first).
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops)3081   virtual bool shouldSinkOperands(Instruction *I,
3082                                   SmallVectorImpl<Use *> &Ops) const {
3083     return false;
3084   }
3085 
3086   /// Try to optimize extending or truncating conversion instructions (like
3087   /// zext, trunc, fptoui, uitofp) for the target.
3088   virtual bool
optimizeExtendOrTruncateConversion(Instruction * I,Loop * L,const TargetTransformInfo & TTI)3089   optimizeExtendOrTruncateConversion(Instruction *I, Loop *L,
3090                                      const TargetTransformInfo &TTI) const {
3091     return false;
3092   }
3093 
3094   /// Return true if the target supplies and combines to a paired load
3095   /// two loaded values of type LoadedType next to each other in memory.
3096   /// RequiredAlignment gives the minimal alignment constraints that must be met
3097   /// to be able to select this paired load.
3098   ///
3099   /// This information is *not* used to generate actual paired loads, but it is
3100   /// used to generate a sequence of loads that is easier to combine into a
3101   /// paired load.
3102   /// For instance, something like this:
3103   /// a = load i64* addr
3104   /// b = trunc i64 a to i32
3105   /// c = lshr i64 a, 32
3106   /// d = trunc i64 c to i32
3107   /// will be optimized into:
3108   /// b = load i32* addr1
3109   /// d = load i32* addr2
3110   /// Where addr1 = addr2 +/- sizeof(i32).
3111   ///
3112   /// In other words, unless the target performs a post-isel load combining,
3113   /// this information should not be provided because it will generate more
3114   /// loads.
hasPairedLoad(EVT,Align &)3115   virtual bool hasPairedLoad(EVT /*LoadedType*/,
3116                              Align & /*RequiredAlignment*/) const {
3117     return false;
3118   }
3119 
3120   /// Return true if the target has a vector blend instruction.
hasVectorBlend()3121   virtual bool hasVectorBlend() const { return false; }
3122 
3123   /// Get the maximum supported factor for interleaved memory accesses.
3124   /// Default to be the minimum interleave factor: 2.
getMaxSupportedInterleaveFactor()3125   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
3126 
3127   /// Lower an interleaved load to target specific intrinsics. Return
3128   /// true on success.
3129   ///
3130   /// \p LI is the vector load instruction.
3131   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
3132   /// \p Indices is the corresponding indices for each shufflevector.
3133   /// \p Factor is the interleave factor.
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor)3134   virtual bool lowerInterleavedLoad(LoadInst *LI,
3135                                     ArrayRef<ShuffleVectorInst *> Shuffles,
3136                                     ArrayRef<unsigned> Indices,
3137                                     unsigned Factor) const {
3138     return false;
3139   }
3140 
3141   /// Lower an interleaved store to target specific intrinsics. Return
3142   /// true on success.
3143   ///
3144   /// \p SI is the vector store instruction.
3145   /// \p SVI is the shufflevector to RE-interleave the stored vector.
3146   /// \p Factor is the interleave factor.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor)3147   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
3148                                      unsigned Factor) const {
3149     return false;
3150   }
3151 
3152   /// Lower a deinterleave intrinsic to a target specific load intrinsic.
3153   /// Return true on success. Currently only supports
3154   /// llvm.vector.deinterleave2
3155   ///
3156   /// \p DI is the deinterleave intrinsic.
3157   /// \p LI is the accompanying load instruction
lowerDeinterleaveIntrinsicToLoad(IntrinsicInst * DI,LoadInst * LI)3158   virtual bool lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI,
3159                                                 LoadInst *LI) const {
3160     return false;
3161   }
3162 
3163   /// Lower an interleave intrinsic to a target specific store intrinsic.
3164   /// Return true on success. Currently only supports
3165   /// llvm.vector.interleave2
3166   ///
3167   /// \p II is the interleave intrinsic.
3168   /// \p SI is the accompanying store instruction
lowerInterleaveIntrinsicToStore(IntrinsicInst * II,StoreInst * SI)3169   virtual bool lowerInterleaveIntrinsicToStore(IntrinsicInst *II,
3170                                                StoreInst *SI) const {
3171     return false;
3172   }
3173 
3174   /// Return true if an fpext operation is free (for instance, because
3175   /// single-precision floating-point numbers are implicitly extended to
3176   /// double-precision).
isFPExtFree(EVT DestVT,EVT SrcVT)3177   virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
3178     assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
3179            "invalid fpext types");
3180     return false;
3181   }
3182 
3183   /// Return true if an fpext operation input to an \p Opcode operation is free
3184   /// (for instance, because half-precision floating-point numbers are
3185   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const MachineInstr & MI,unsigned Opcode,LLT DestTy,LLT SrcTy)3186   virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
3187                                LLT DestTy, LLT SrcTy) const {
3188     return false;
3189   }
3190 
3191   /// Return true if an fpext operation input to an \p Opcode operation is free
3192   /// (for instance, because half-precision floating-point numbers are
3193   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT)3194   virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
3195                                EVT DestVT, EVT SrcVT) const {
3196     assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
3197            "invalid fpext types");
3198     return isFPExtFree(DestVT, SrcVT);
3199   }
3200 
3201   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
3202   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)3203   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
3204 
3205   /// Return true if an fneg operation is free to the point where it is never
3206   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)3207   virtual bool isFNegFree(EVT VT) const {
3208     assert(VT.isFloatingPoint());
3209     return false;
3210   }
3211 
3212   /// Return true if an fabs operation is free to the point where it is never
3213   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)3214   virtual bool isFAbsFree(EVT VT) const {
3215     assert(VT.isFloatingPoint());
3216     return false;
3217   }
3218 
3219   /// Return true if an FMA operation is faster than a pair of fmul and fadd
3220   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3221   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3222   ///
3223   /// NOTE: This may be called before legalization on types for which FMAs are
3224   /// not legal, but should return true if those types will eventually legalize
3225   /// to types that support FMAs. After legalization, it will only be called on
3226   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT)3227   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
3228                                           EVT) const {
3229     return false;
3230   }
3231 
3232   /// Return true if an FMA operation is faster than a pair of fmul and fadd
3233   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3234   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3235   ///
3236   /// NOTE: This may be called before legalization on types for which FMAs are
3237   /// not legal, but should return true if those types will eventually legalize
3238   /// to types that support FMAs. After legalization, it will only be called on
3239   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,LLT)3240   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
3241                                           LLT) const {
3242     return false;
3243   }
3244 
3245   /// IR version
isFMAFasterThanFMulAndFAdd(const Function & F,Type *)3246   virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
3247     return false;
3248   }
3249 
3250   /// Returns true if \p MI can be combined with another instruction to
3251   /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
3252   /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
3253   /// distributed into an fadd/fsub.
isFMADLegal(const MachineInstr & MI,LLT Ty)3254   virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
3255     assert((MI.getOpcode() == TargetOpcode::G_FADD ||
3256             MI.getOpcode() == TargetOpcode::G_FSUB ||
3257             MI.getOpcode() == TargetOpcode::G_FMUL) &&
3258            "unexpected node in FMAD forming combine");
3259     switch (Ty.getScalarSizeInBits()) {
3260     case 16:
3261       return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
3262     case 32:
3263       return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
3264     case 64:
3265       return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
3266     default:
3267       break;
3268     }
3269 
3270     return false;
3271   }
3272 
3273   /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
3274   /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
3275   /// fadd/fsub.
isFMADLegal(const SelectionDAG & DAG,const SDNode * N)3276   virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
3277     assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
3278             N->getOpcode() == ISD::FMUL) &&
3279            "unexpected node in FMAD forming combine");
3280     return isOperationLegal(ISD::FMAD, N->getValueType(0));
3281   }
3282 
3283   // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
3284   // than FMUL and ADD is delegated to the machine combiner.
generateFMAsInMachineCombiner(EVT VT,CodeGenOptLevel OptLevel)3285   virtual bool generateFMAsInMachineCombiner(EVT VT,
3286                                              CodeGenOptLevel OptLevel) const {
3287     return false;
3288   }
3289 
3290   /// Return true if it's profitable to narrow operations of type SrcVT to
3291   /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
3292   /// i32 to i16.
isNarrowingProfitable(EVT SrcVT,EVT DestVT)3293   virtual bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
3294     return false;
3295   }
3296 
3297   /// Return true if pulling a binary operation into a select with an identity
3298   /// constant is profitable. This is the inverse of an IR transform.
3299   /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,EVT VT)3300   virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
3301                                                     EVT VT) const {
3302     return false;
3303   }
3304 
3305   /// Return true if it is beneficial to convert a load of a constant to
3306   /// just the constant itself.
3307   /// On some targets it might be more efficient to use a combination of
3308   /// arithmetic instructions to materialize the constant instead of loading it
3309   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)3310   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
3311                                                  Type *Ty) const {
3312     return false;
3313   }
3314 
3315   /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
3316   /// from this source type with this index. This is needed because
3317   /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
3318   /// the first element, and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index)3319   virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
3320                                        unsigned Index) const {
3321     return false;
3322   }
3323 
3324   /// Try to convert an extract element of a vector binary operation into an
3325   /// extract element followed by a scalar operation.
shouldScalarizeBinop(SDValue VecOp)3326   virtual bool shouldScalarizeBinop(SDValue VecOp) const {
3327     return false;
3328   }
3329 
3330   /// Return true if extraction of a scalar element from the given vector type
3331   /// at the given index is cheap. For example, if scalar operations occur on
3332   /// the same register file as vector operations, then an extract element may
3333   /// be a sub-register rename rather than an actual instruction.
isExtractVecEltCheap(EVT VT,unsigned Index)3334   virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
3335     return false;
3336   }
3337 
3338   /// Try to convert math with an overflow comparison into the corresponding DAG
3339   /// node operation. Targets may want to override this independently of whether
3340   /// the operation is legal/custom for the given type because it may obscure
3341   /// matching of other patterns.
shouldFormOverflowOp(unsigned Opcode,EVT VT,bool MathUsed)3342   virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
3343                                     bool MathUsed) const {
3344     // TODO: The default logic is inherited from code in CodeGenPrepare.
3345     // The opcode should not make a difference by default?
3346     if (Opcode != ISD::UADDO)
3347       return false;
3348 
3349     // Allow the transform as long as we have an integer type that is not
3350     // obviously illegal and unsupported and if the math result is used
3351     // besides the overflow check. On some targets (e.g. SPARC), it is
3352     // not profitable to form on overflow op if the math result has no
3353     // concrete users.
3354     if (VT.isVector())
3355       return false;
3356     return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
3357   }
3358 
3359   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
3360   // even if the vector itself has multiple uses.
aggressivelyPreferBuildVectorSources(EVT VecVT)3361   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
3362     return false;
3363   }
3364 
3365   // Return true if CodeGenPrepare should consider splitting large offset of a
3366   // GEP to make the GEP fit into the addressing mode and can be sunk into the
3367   // same blocks of its users.
shouldConsiderGEPOffsetSplit()3368   virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
3369 
3370   /// Return true if creating a shift of the type by the given
3371   /// amount is not profitable.
shouldAvoidTransformToShift(EVT VT,unsigned Amount)3372   virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
3373     return false;
3374   }
3375 
3376   // Should we fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x))
3377   // A) where y has a single bit set?
shouldFoldSelectWithSingleBitTest(EVT VT,const APInt & AndMask)3378   virtual bool shouldFoldSelectWithSingleBitTest(EVT VT,
3379                                                  const APInt &AndMask) const {
3380     unsigned ShCt = AndMask.getBitWidth() - 1;
3381     return !shouldAvoidTransformToShift(VT, ShCt);
3382   }
3383 
3384   /// Does this target require the clearing of high-order bits in a register
3385   /// passed to the fp16 to fp conversion library function.
shouldKeepZExtForFP16Conv()3386   virtual bool shouldKeepZExtForFP16Conv() const { return false; }
3387 
3388   /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
3389   /// from min(max(fptoi)) saturation patterns.
shouldConvertFpToSat(unsigned Op,EVT FPVT,EVT VT)3390   virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
3391     return isOperationLegalOrCustom(Op, VT);
3392   }
3393 
3394   /// Should we expand [US]CMP nodes using two selects and two compares, or by
3395   /// doing arithmetic on boolean types
shouldExpandCmpUsingSelects()3396   virtual bool shouldExpandCmpUsingSelects() const { return false; }
3397 
3398   /// Does this target support complex deinterleaving
isComplexDeinterleavingSupported()3399   virtual bool isComplexDeinterleavingSupported() const { return false; }
3400 
3401   /// Does this target support complex deinterleaving with the given operation
3402   /// and type
isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation,Type * Ty)3403   virtual bool isComplexDeinterleavingOperationSupported(
3404       ComplexDeinterleavingOperation Operation, Type *Ty) const {
3405     return false;
3406   }
3407 
3408   /// Create the IR node for the given complex deinterleaving operation.
3409   /// If one cannot be created using all the given inputs, nullptr should be
3410   /// returned.
3411   virtual Value *createComplexDeinterleavingIR(
3412       IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
3413       ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
3414       Value *Accumulator = nullptr) const {
3415     return nullptr;
3416   }
3417 
3418   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)3419   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
3420     Libcalls.setLibcallName(Call, Name);
3421   }
3422 
setLibcallName(ArrayRef<RTLIB::Libcall> Calls,const char * Name)3423   void setLibcallName(ArrayRef<RTLIB::Libcall> Calls, const char *Name) {
3424     Libcalls.setLibcallName(Calls, Name);
3425   }
3426 
3427   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)3428   const char *getLibcallName(RTLIB::Libcall Call) const {
3429     return Libcalls.getLibcallName(Call);
3430   }
3431 
3432   /// Override the default CondCode to be used to test the result of the
3433   /// comparison libcall against zero.
3434   /// FIXME: This can't be merged with 'RuntimeLibcallsInfo' because of the ISD.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)3435   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
3436     CmpLibcallCCs[Call] = CC;
3437   }
3438 
3439 
3440   /// Get the CondCode that's to be used to test the result of the comparison
3441   /// libcall against zero.
3442   /// FIXME: This can't be merged with 'RuntimeLibcallsInfo' because of the ISD.
getCmpLibcallCC(RTLIB::Libcall Call)3443   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
3444     return CmpLibcallCCs[Call];
3445   }
3446 
3447 
3448   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)3449   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
3450     Libcalls.setLibcallCallingConv(Call, CC);
3451   }
3452 
3453   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)3454   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
3455     return Libcalls.getLibcallCallingConv(Call);
3456   }
3457 
3458   /// Execute target specific actions to finalize target lowering.
3459   /// This is used to set extra flags in MachineFrameInformation and freezing
3460   /// the set of reserved registers.
3461   /// The default implementation just freezes the set of reserved registers.
3462   virtual void finalizeLowering(MachineFunction &MF) const;
3463 
3464   //===----------------------------------------------------------------------===//
3465   //  GlobalISel Hooks
3466   //===----------------------------------------------------------------------===//
3467   /// Check whether or not \p MI needs to be moved close to its uses.
3468   virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
3469 
3470 
3471 private:
3472   const TargetMachine &TM;
3473 
3474   /// Tells the code generator that the target has multiple (allocatable)
3475   /// condition registers that can be used to store the results of comparisons
3476   /// for use by selects and conditional branches. With multiple condition
3477   /// registers, the code generator will not aggressively sink comparisons into
3478   /// the blocks of their users.
3479   bool HasMultipleConditionRegisters;
3480 
3481   /// Tells the code generator that the target has BitExtract instructions.
3482   /// The code generator will aggressively sink "shift"s into the blocks of
3483   /// their users if the users will generate "and" instructions which can be
3484   /// combined with "shift" to BitExtract instructions.
3485   bool HasExtractBitsInsn;
3486 
3487   /// Tells the code generator to bypass slow divide or remainder
3488   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
3489   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
3490   /// div/rem when the operands are positive and less than 256.
3491   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
3492 
3493   /// Tells the code generator that it shouldn't generate extra flow control
3494   /// instructions and should attempt to combine flow control instructions via
3495   /// predication.
3496   bool JumpIsExpensive;
3497 
3498   /// Information about the contents of the high-bits in boolean values held in
3499   /// a type wider than i1. See getBooleanContents.
3500   BooleanContent BooleanContents;
3501 
3502   /// Information about the contents of the high-bits in boolean values held in
3503   /// a type wider than i1. See getBooleanContents.
3504   BooleanContent BooleanFloatContents;
3505 
3506   /// Information about the contents of the high-bits in boolean vector values
3507   /// when the element type is wider than i1. See getBooleanContents.
3508   BooleanContent BooleanVectorContents;
3509 
3510   /// The target scheduling preference: shortest possible total cycles or lowest
3511   /// register usage.
3512   Sched::Preference SchedPreferenceInfo;
3513 
3514   /// The minimum alignment that any argument on the stack needs to have.
3515   Align MinStackArgumentAlignment;
3516 
3517   /// The minimum function alignment (used when optimizing for size, and to
3518   /// prevent explicitly provided alignment from leading to incorrect code).
3519   Align MinFunctionAlignment;
3520 
3521   /// The preferred function alignment (used when alignment unspecified and
3522   /// optimizing for speed).
3523   Align PrefFunctionAlignment;
3524 
3525   /// The preferred loop alignment (in log2 bot in bytes).
3526   Align PrefLoopAlignment;
3527   /// The maximum amount of bytes permitted to be emitted for alignment.
3528   unsigned MaxBytesForAlignment;
3529 
3530   /// Size in bits of the maximum atomics size the backend supports.
3531   /// Accesses larger than this will be expanded by AtomicExpandPass.
3532   unsigned MaxAtomicSizeInBitsSupported;
3533 
3534   /// Size in bits of the maximum div/rem size the backend supports.
3535   /// Larger operations will be expanded by ExpandLargeDivRem.
3536   unsigned MaxDivRemBitWidthSupported;
3537 
3538   /// Size in bits of the maximum larget fp convert size the backend
3539   /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
3540   unsigned MaxLargeFPConvertBitWidthSupported;
3541 
3542   /// Size in bits of the minimum cmpxchg or ll/sc operation the
3543   /// backend supports.
3544   unsigned MinCmpXchgSizeInBits;
3545 
3546   /// This indicates if the target supports unaligned atomic operations.
3547   bool SupportsUnalignedAtomics;
3548 
3549   /// If set to a physical register, this specifies the register that
3550   /// llvm.savestack/llvm.restorestack should save and restore.
3551   Register StackPointerRegisterToSaveRestore;
3552 
3553   /// This indicates the default register class to use for each ValueType the
3554   /// target supports natively.
3555   const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
3556   uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
3557   MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
3558 
3559   /// This indicates the "representative" register class to use for each
3560   /// ValueType the target supports natively. This information is used by the
3561   /// scheduler to track register pressure. By default, the representative
3562   /// register class is the largest legal super-reg register class of the
3563   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
3564   /// representative class would be GR32.
3565   const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE] = {0};
3566 
3567   /// This indicates the "cost" of the "representative" register class for each
3568   /// ValueType. The cost is used by the scheduler to approximate register
3569   /// pressure.
3570   uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
3571 
3572   /// For any value types we are promoting or expanding, this contains the value
3573   /// type that we are changing to.  For Expanded types, this contains one step
3574   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
3575   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
3576   /// the same type (e.g. i32 -> i32).
3577   MVT TransformToType[MVT::VALUETYPE_SIZE];
3578 
3579   /// For each operation and each value type, keep a LegalizeAction that
3580   /// indicates how instruction selection should deal with the operation.  Most
3581   /// operations are Legal (aka, supported natively by the target), but
3582   /// operations that are not should be described.  Note that operations on
3583   /// non-legal value types are not described here.
3584   LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
3585 
3586   /// For each load extension type and each value type, keep a LegalizeAction
3587   /// that indicates how instruction selection should deal with a load of a
3588   /// specific value type and extension type. Uses 4-bits to store the action
3589   /// for each of the 4 load ext types.
3590   uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3591 
3592   /// Similar to LoadExtActions, but for atomic loads. Only Legal or Expand
3593   /// (default) values are supported.
3594   uint16_t AtomicLoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3595 
3596   /// For each value type pair keep a LegalizeAction that indicates whether a
3597   /// truncating store of a specific value type and truncating type is legal.
3598   LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3599 
3600   /// For each indexed mode and each value type, keep a quad of LegalizeAction
3601   /// that indicates how instruction selection should deal with the load /
3602   /// store / maskedload / maskedstore.
3603   ///
3604   /// The first dimension is the value_type for the reference. The second
3605   /// dimension represents the various modes for load store.
3606   uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
3607 
3608   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3609   /// indicates how instruction selection should deal with the condition code.
3610   ///
3611   /// Because each CC action takes up 4 bits, we need to have the array size be
3612   /// large enough to fit all of the value types. This can be done by rounding
3613   /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
3614   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
3615 
3616   ValueTypeActionImpl ValueTypeActions;
3617 
3618 private:
3619   /// Targets can specify ISD nodes that they would like PerformDAGCombine
3620   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3621   /// array.
3622   unsigned char
3623   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3624 
3625   /// For operations that must be promoted to a specific type, this holds the
3626   /// destination type.  This map should be sparse, so don't hold it as an
3627   /// array.
3628   ///
3629   /// Targets add entries to this map with AddPromotedToType(..), clients access
3630   /// this with getTypeToPromoteTo(..).
3631   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3632     PromoteToType;
3633 
3634   /// The list of libcalls that the target will use.
3635   RTLIB::RuntimeLibcallsInfo Libcalls;
3636 
3637   /// The ISD::CondCode that should be used to test the result of each of the
3638   /// comparison libcall against zero.
3639   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
3640 
3641   /// The bits of IndexedModeActions used to store the legalisation actions
3642   /// We store the data as   | ML | MS |  L |  S | each taking 4 bits.
3643   enum IndexedModeActionsBits {
3644     IMAB_Store = 0,
3645     IMAB_Load = 4,
3646     IMAB_MaskedStore = 8,
3647     IMAB_MaskedLoad = 12
3648   };
3649 
setIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift,LegalizeAction Action)3650   void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3651                             LegalizeAction Action) {
3652     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3653            (unsigned)Action < 0xf && "Table isn't big enough!");
3654     unsigned Ty = (unsigned)VT.SimpleTy;
3655     IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3656     IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3657   }
3658 
getIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift)3659   LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3660                                       unsigned Shift) const {
3661     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3662            "Table isn't big enough!");
3663     unsigned Ty = (unsigned)VT.SimpleTy;
3664     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3665   }
3666 
3667 protected:
3668   /// Return true if the extension represented by \p I is free.
3669   /// \pre \p I is a sign, zero, or fp extension and
3670   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)3671   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3672 
3673   /// Depth that GatherAllAliases should continue looking for chain
3674   /// dependencies when trying to find a more preferable chain. As an
3675   /// approximation, this should be more than the number of consecutive stores
3676   /// expected to be merged.
3677   unsigned GatherAllAliasesMaxDepth;
3678 
3679   /// \brief Specify maximum number of store instructions per memset call.
3680   ///
3681   /// When lowering \@llvm.memset this field specifies the maximum number of
3682   /// store operations that may be substituted for the call to memset. Targets
3683   /// must set this value based on the cost threshold for that target. Targets
3684   /// should assume that the memset will be done using as many of the largest
3685   /// store operations first, followed by smaller ones, if necessary, per
3686   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3687   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3688   /// store.  This only applies to setting a constant array of a constant size.
3689   unsigned MaxStoresPerMemset;
3690   /// Likewise for functions with the OptSize attribute.
3691   unsigned MaxStoresPerMemsetOptSize;
3692 
3693   /// \brief Specify maximum number of store instructions per memcpy call.
3694   ///
3695   /// When lowering \@llvm.memcpy this field specifies the maximum number of
3696   /// store operations that may be substituted for a call to memcpy. Targets
3697   /// must set this value based on the cost threshold for that target. Targets
3698   /// should assume that the memcpy will be done using as many of the largest
3699   /// store operations first, followed by smaller ones, if necessary, per
3700   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3701   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3702   /// and one 1-byte store. This only applies to copying a constant array of
3703   /// constant size.
3704   unsigned MaxStoresPerMemcpy;
3705   /// Likewise for functions with the OptSize attribute.
3706   unsigned MaxStoresPerMemcpyOptSize;
3707   /// \brief Specify max number of store instructions to glue in inlined memcpy.
3708   ///
3709   /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3710   /// of store instructions to keep together. This helps in pairing and
3711   //  vectorization later on.
3712   unsigned MaxGluedStoresPerMemcpy = 0;
3713 
3714   /// \brief Specify maximum number of load instructions per memcmp call.
3715   ///
3716   /// When lowering \@llvm.memcmp this field specifies the maximum number of
3717   /// pairs of load operations that may be substituted for a call to memcmp.
3718   /// Targets must set this value based on the cost threshold for that target.
3719   /// Targets should assume that the memcmp will be done using as many of the
3720   /// largest load operations first, followed by smaller ones, if necessary, per
3721   /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3722   /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3723   /// and one 1-byte load. This only applies to copying a constant array of
3724   /// constant size.
3725   unsigned MaxLoadsPerMemcmp;
3726   /// Likewise for functions with the OptSize attribute.
3727   unsigned MaxLoadsPerMemcmpOptSize;
3728 
3729   /// \brief Specify maximum number of store instructions per memmove call.
3730   ///
3731   /// When lowering \@llvm.memmove this field specifies the maximum number of
3732   /// store instructions that may be substituted for a call to memmove. Targets
3733   /// must set this value based on the cost threshold for that target. Targets
3734   /// should assume that the memmove will be done using as many of the largest
3735   /// store operations first, followed by smaller ones, if necessary, per
3736   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3737   /// with 8-bit alignment would result in nine 1-byte stores.  This only
3738   /// applies to copying a constant array of constant size.
3739   unsigned MaxStoresPerMemmove;
3740   /// Likewise for functions with the OptSize attribute.
3741   unsigned MaxStoresPerMemmoveOptSize;
3742 
3743   /// Tells the code generator that select is more expensive than a branch if
3744   /// the branch is usually predicted right.
3745   bool PredictableSelectIsExpensive;
3746 
3747   /// \see enableExtLdPromotion.
3748   bool EnableExtLdPromotion;
3749 
3750   /// Return true if the value types that can be represented by the specified
3751   /// register class are all legal.
3752   bool isLegalRC(const TargetRegisterInfo &TRI,
3753                  const TargetRegisterClass &RC) const;
3754 
3755   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3756   /// sequence of memory operands that is recognized by PrologEpilogInserter.
3757   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
3758                                     MachineBasicBlock *MBB) const;
3759 
3760   bool IsStrictFPEnabled;
3761 };
3762 
3763 /// This class defines information used to lower LLVM code to legal SelectionDAG
3764 /// operators that the target instruction selector can accept natively.
3765 ///
3766 /// This class also defines callbacks that targets must implement to lower
3767 /// target-specific constructs to SelectionDAG operators.
3768 class TargetLowering : public TargetLoweringBase {
3769 public:
3770   struct DAGCombinerInfo;
3771   struct MakeLibCallOptions;
3772 
3773   TargetLowering(const TargetLowering &) = delete;
3774   TargetLowering &operator=(const TargetLowering &) = delete;
3775 
3776   explicit TargetLowering(const TargetMachine &TM);
3777 
3778   bool isPositionIndependent() const;
3779 
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,UniformityInfo * UA)3780   virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
3781                                           FunctionLoweringInfo *FLI,
3782                                           UniformityInfo *UA) const {
3783     return false;
3784   }
3785 
3786   // Lets target to control the following reassociation of operands: (op (op x,
3787   // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3788   // default consider profitable any case where N0 has single use.  This
3789   // behavior reflects the condition replaced by this target hook call in the
3790   // DAGCombiner.  Any particular target can implement its own heuristic to
3791   // restrict common combiner.
isReassocProfitable(SelectionDAG & DAG,SDValue N0,SDValue N1)3792   virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0,
3793                                    SDValue N1) const {
3794     return N0.hasOneUse();
3795   }
3796 
3797   // Lets target to control the following reassociation of operands: (op (op x,
3798   // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3799   // default consider profitable any case where N0 has single use.  This
3800   // behavior reflects the condition replaced by this target hook call in the
3801   // combiner.  Any particular target can implement its own heuristic to
3802   // restrict common combiner.
isReassocProfitable(MachineRegisterInfo & MRI,Register N0,Register N1)3803   virtual bool isReassocProfitable(MachineRegisterInfo &MRI, Register N0,
3804                                    Register N1) const {
3805     return MRI.hasOneNonDBGUse(N0);
3806   }
3807 
isSDNodeAlwaysUniform(const SDNode * N)3808   virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3809     return false;
3810   }
3811 
3812   /// Returns true by value, base pointer and offset pointer and addressing mode
3813   /// by reference if the node's address can be legally represented as
3814   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3815   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3816                                          SDValue &/*Offset*/,
3817                                          ISD::MemIndexedMode &/*AM*/,
3818                                          SelectionDAG &/*DAG*/) const {
3819     return false;
3820   }
3821 
3822   /// Returns true by value, base pointer and offset pointer and addressing mode
3823   /// by reference if this node can be combined with a load / store to form a
3824   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3825   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3826                                           SDValue &/*Base*/,
3827                                           SDValue &/*Offset*/,
3828                                           ISD::MemIndexedMode &/*AM*/,
3829                                           SelectionDAG &/*DAG*/) const {
3830     return false;
3831   }
3832 
3833   /// Returns true if the specified base+offset is a legal indexed addressing
3834   /// mode for this target. \p MI is the load or store instruction that is being
3835   /// considered for transformation.
isIndexingLegal(MachineInstr & MI,Register Base,Register Offset,bool IsPre,MachineRegisterInfo & MRI)3836   virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
3837                                bool IsPre, MachineRegisterInfo &MRI) const {
3838     return false;
3839   }
3840 
3841   /// Return the entry encoding for a jump table in the current function.  The
3842   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3843   virtual unsigned getJumpTableEncoding() const;
3844 
3845   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)3846   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3847                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3848                             MCContext &/*Ctx*/) const {
3849     llvm_unreachable("Need to implement this hook if target has custom JTIs");
3850   }
3851 
3852   /// Returns relocation base for the given PIC jumptable.
3853   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3854                                            SelectionDAG &DAG) const;
3855 
3856   /// This returns the relocation base for the given PIC jumptable, the same as
3857   /// getPICJumpTableRelocBase, but as an MCExpr.
3858   virtual const MCExpr *
3859   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3860                                unsigned JTI, MCContext &Ctx) const;
3861 
3862   /// Return true if folding a constant offset with the given GlobalAddress is
3863   /// legal.  It is frequently not legal in PIC relocation models.
3864   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3865 
3866   /// On x86, return true if the operand with index OpNo is a CALL or JUMP
3867   /// instruction, which can use either a memory constraint or an address
3868   /// constraint. -fasm-blocks "__asm call foo" lowers to
3869   /// call void asm sideeffect inteldialect "call ${0:P}", "*m..."
3870   ///
3871   /// This function is used by a hack to choose the address constraint,
3872   /// lowering to a direct call.
3873   virtual bool
isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> & AsmStrs,unsigned OpNo)3874   isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> &AsmStrs,
3875                           unsigned OpNo) const {
3876     return false;
3877   }
3878 
3879   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3880                             SDValue &Chain) const;
3881 
3882   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3883                            SDValue &NewRHS, ISD::CondCode &CCCode,
3884                            const SDLoc &DL, const SDValue OldLHS,
3885                            const SDValue OldRHS) const;
3886 
3887   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3888                            SDValue &NewRHS, ISD::CondCode &CCCode,
3889                            const SDLoc &DL, const SDValue OldLHS,
3890                            const SDValue OldRHS, SDValue &Chain,
3891                            bool IsSignaling = false) const;
3892 
visitMaskedLoad(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,MachineMemOperand * MMO,SDValue & NewLoad,SDValue Ptr,SDValue PassThru,SDValue Mask)3893   virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL,
3894                                   SDValue Chain, MachineMemOperand *MMO,
3895                                   SDValue &NewLoad, SDValue Ptr,
3896                                   SDValue PassThru, SDValue Mask) const {
3897     llvm_unreachable("Not Implemented");
3898   }
3899 
visitMaskedStore(SelectionDAG & DAG,const SDLoc & DL,SDValue Chain,MachineMemOperand * MMO,SDValue Ptr,SDValue Val,SDValue Mask)3900   virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL,
3901                                    SDValue Chain, MachineMemOperand *MMO,
3902                                    SDValue Ptr, SDValue Val,
3903                                    SDValue Mask) const {
3904     llvm_unreachable("Not Implemented");
3905   }
3906 
3907   /// Returns a pair of (return value, chain).
3908   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3909   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3910                                           EVT RetVT, ArrayRef<SDValue> Ops,
3911                                           MakeLibCallOptions CallOptions,
3912                                           const SDLoc &dl,
3913                                           SDValue Chain = SDValue()) const;
3914 
3915   /// Check whether parameters to a call that are passed in callee saved
3916   /// registers are the same as from the calling function.  This needs to be
3917   /// checked for tail call eligibility.
3918   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3919       const uint32_t *CallerPreservedMask,
3920       const SmallVectorImpl<CCValAssign> &ArgLocs,
3921       const SmallVectorImpl<SDValue> &OutVals) const;
3922 
3923   //===--------------------------------------------------------------------===//
3924   // TargetLowering Optimization Methods
3925   //
3926 
3927   /// A convenience struct that encapsulates a DAG, and two SDValues for
3928   /// returning information from TargetLowering to its clients that want to
3929   /// combine.
3930   struct TargetLoweringOpt {
3931     SelectionDAG &DAG;
3932     bool LegalTys;
3933     bool LegalOps;
3934     SDValue Old;
3935     SDValue New;
3936 
TargetLoweringOptTargetLoweringOpt3937     explicit TargetLoweringOpt(SelectionDAG &InDAG,
3938                                bool LT, bool LO) :
3939       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3940 
LegalTypesTargetLoweringOpt3941     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt3942     bool LegalOperations() const { return LegalOps; }
3943 
CombineToTargetLoweringOpt3944     bool CombineTo(SDValue O, SDValue N) {
3945       Old = O;
3946       New = N;
3947       return true;
3948     }
3949   };
3950 
3951   /// Determines the optimal series of memory ops to replace the memset / memcpy.
3952   /// Return true if the number of memory ops is below the threshold (Limit).
3953   /// Note that this is always the case when Limit is ~0.
3954   /// It returns the types of the sequence of memory ops to perform
3955   /// memset / memcpy by reference.
3956   virtual bool
3957   findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3958                            const MemOp &Op, unsigned DstAS, unsigned SrcAS,
3959                            const AttributeList &FuncAttributes) const;
3960 
3961   /// Check to see if the specified operand of the specified instruction is a
3962   /// constant integer.  If so, check to see if there are any bits set in the
3963   /// constant that are not demanded.  If so, shrink the constant and return
3964   /// true.
3965   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3966                               const APInt &DemandedElts,
3967                               TargetLoweringOpt &TLO) const;
3968 
3969   /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3970   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3971                               TargetLoweringOpt &TLO) const;
3972 
3973   // Target hook to do target-specific const optimization, which is called by
3974   // ShrinkDemandedConstant. This function should return true if the target
3975   // doesn't want ShrinkDemandedConstant to further optimize the constant.
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO)3976   virtual bool targetShrinkDemandedConstant(SDValue Op,
3977                                             const APInt &DemandedBits,
3978                                             const APInt &DemandedElts,
3979                                             TargetLoweringOpt &TLO) const {
3980     return false;
3981   }
3982 
3983   /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
3984   /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
3985   /// but it could be generalized for targets with other types of implicit
3986   /// widening casts.
3987   bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
3988                         const APInt &DemandedBits,
3989                         TargetLoweringOpt &TLO) const;
3990 
3991   /// Look at Op.  At this point, we know that only the DemandedBits bits of the
3992   /// result of Op are ever used downstream.  If we can use this information to
3993   /// simplify Op, create a new simplified DAG node and return true, returning
3994   /// the original and new nodes in Old and New.  Otherwise, analyze the
3995   /// expression and return a mask of KnownOne and KnownZero bits for the
3996   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3997   /// be accurate for those bits in the Demanded masks.
3998   /// \p AssumeSingleUse When this parameter is true, this function will
3999   ///    attempt to simplify \p Op even if there are multiple uses.
4000   ///    Callers are responsible for correctly updating the DAG based on the
4001   ///    results of this function, because simply replacing TLO.Old
4002   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
4003   ///    has multiple uses.
4004   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4005                             const APInt &DemandedElts, KnownBits &Known,
4006                             TargetLoweringOpt &TLO, unsigned Depth = 0,
4007                             bool AssumeSingleUse = false) const;
4008 
4009   /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
4010   /// Adds Op back to the worklist upon success.
4011   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4012                             KnownBits &Known, TargetLoweringOpt &TLO,
4013                             unsigned Depth = 0,
4014                             bool AssumeSingleUse = false) const;
4015 
4016   /// Helper wrapper around SimplifyDemandedBits.
4017   /// Adds Op back to the worklist upon success.
4018   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4019                             DAGCombinerInfo &DCI) const;
4020 
4021   /// Helper wrapper around SimplifyDemandedBits.
4022   /// Adds Op back to the worklist upon success.
4023   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
4024                             const APInt &DemandedElts,
4025                             DAGCombinerInfo &DCI) const;
4026 
4027   /// More limited version of SimplifyDemandedBits that can be used to "look
4028   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4029   /// bitwise ops etc.
4030   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
4031                                           const APInt &DemandedElts,
4032                                           SelectionDAG &DAG,
4033                                           unsigned Depth = 0) const;
4034 
4035   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4036   /// elements.
4037   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
4038                                           SelectionDAG &DAG,
4039                                           unsigned Depth = 0) const;
4040 
4041   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4042   /// bits from only some vector elements.
4043   SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
4044                                                 const APInt &DemandedElts,
4045                                                 SelectionDAG &DAG,
4046                                                 unsigned Depth = 0) const;
4047 
4048   /// Look at Vector Op. At this point, we know that only the DemandedElts
4049   /// elements of the result of Op are ever used downstream.  If we can use
4050   /// this information to simplify Op, create a new simplified DAG node and
4051   /// return true, storing the original and new nodes in TLO.
4052   /// Otherwise, analyze the expression and return a mask of KnownUndef and
4053   /// KnownZero elements for the expression (used to simplify the caller).
4054   /// The KnownUndef/Zero elements may only be accurate for those bits
4055   /// in the DemandedMask.
4056   /// \p AssumeSingleUse When this parameter is true, this function will
4057   ///    attempt to simplify \p Op even if there are multiple uses.
4058   ///    Callers are responsible for correctly updating the DAG based on the
4059   ///    results of this function, because simply replacing TLO.Old
4060   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
4061   ///    has multiple uses.
4062   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
4063                                   APInt &KnownUndef, APInt &KnownZero,
4064                                   TargetLoweringOpt &TLO, unsigned Depth = 0,
4065                                   bool AssumeSingleUse = false) const;
4066 
4067   /// Helper wrapper around SimplifyDemandedVectorElts.
4068   /// Adds Op back to the worklist upon success.
4069   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
4070                                   DAGCombinerInfo &DCI) const;
4071 
4072   /// Return true if the target supports simplifying demanded vector elements by
4073   /// converting them to undefs.
4074   virtual bool
shouldSimplifyDemandedVectorElts(SDValue Op,const TargetLoweringOpt & TLO)4075   shouldSimplifyDemandedVectorElts(SDValue Op,
4076                                    const TargetLoweringOpt &TLO) const {
4077     return true;
4078   }
4079 
4080   /// Determine which of the bits specified in Mask are known to be either zero
4081   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4082   /// argument allows us to only collect the known bits that are shared by the
4083   /// requested vector elements.
4084   virtual void computeKnownBitsForTargetNode(const SDValue Op,
4085                                              KnownBits &Known,
4086                                              const APInt &DemandedElts,
4087                                              const SelectionDAG &DAG,
4088                                              unsigned Depth = 0) const;
4089 
4090   /// Determine which of the bits specified in Mask are known to be either zero
4091   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4092   /// argument allows us to only collect the known bits that are shared by the
4093   /// requested vector elements. This is for GISel.
4094   virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
4095                                               Register R, KnownBits &Known,
4096                                               const APInt &DemandedElts,
4097                                               const MachineRegisterInfo &MRI,
4098                                               unsigned Depth = 0) const;
4099 
4100   /// Determine the known alignment for the pointer value \p R. This is can
4101   /// typically be inferred from the number of low known 0 bits. However, for a
4102   /// pointer with a non-integral address space, the alignment value may be
4103   /// independent from the known low bits.
4104   virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
4105                                                 Register R,
4106                                                 const MachineRegisterInfo &MRI,
4107                                                 unsigned Depth = 0) const;
4108 
4109   /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
4110   /// Default implementation computes low bits based on alignment
4111   /// information. This should preserve known bits passed into it.
4112   virtual void computeKnownBitsForFrameIndex(int FIOp,
4113                                              KnownBits &Known,
4114                                              const MachineFunction &MF) const;
4115 
4116   /// This method can be implemented by targets that want to expose additional
4117   /// information about sign bits to the DAG Combiner. The DemandedElts
4118   /// argument allows us to only collect the minimum sign bits that are shared
4119   /// by the requested vector elements.
4120   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
4121                                                    const APInt &DemandedElts,
4122                                                    const SelectionDAG &DAG,
4123                                                    unsigned Depth = 0) const;
4124 
4125   /// This method can be implemented by targets that want to expose additional
4126   /// information about sign bits to GlobalISel combiners. The DemandedElts
4127   /// argument allows us to only collect the minimum sign bits that are shared
4128   /// by the requested vector elements.
4129   virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
4130                                                     Register R,
4131                                                     const APInt &DemandedElts,
4132                                                     const MachineRegisterInfo &MRI,
4133                                                     unsigned Depth = 0) const;
4134 
4135   /// Attempt to simplify any target nodes based on the demanded vector
4136   /// elements, returning true on success. Otherwise, analyze the expression and
4137   /// return a mask of KnownUndef and KnownZero elements for the expression
4138   /// (used to simplify the caller). The KnownUndef/Zero elements may only be
4139   /// accurate for those bits in the DemandedMask.
4140   virtual bool SimplifyDemandedVectorEltsForTargetNode(
4141       SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
4142       APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
4143 
4144   /// Attempt to simplify any target nodes based on the demanded bits/elts,
4145   /// returning true on success. Otherwise, analyze the
4146   /// expression and return a mask of KnownOne and KnownZero bits for the
4147   /// expression (used to simplify the caller).  The KnownZero/One bits may only
4148   /// be accurate for those bits in the Demanded masks.
4149   virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
4150                                                  const APInt &DemandedBits,
4151                                                  const APInt &DemandedElts,
4152                                                  KnownBits &Known,
4153                                                  TargetLoweringOpt &TLO,
4154                                                  unsigned Depth = 0) const;
4155 
4156   /// More limited version of SimplifyDemandedBits that can be used to "look
4157   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4158   /// bitwise ops etc.
4159   virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
4160       SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4161       SelectionDAG &DAG, unsigned Depth) const;
4162 
4163   /// Return true if this function can prove that \p Op is never poison
4164   /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
4165   /// argument limits the check to the requested vector elements.
4166   virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4167       SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4168       bool PoisonOnly, unsigned Depth) const;
4169 
4170   /// Return true if Op can create undef or poison from non-undef & non-poison
4171   /// operands. The DemandedElts argument limits the check to the requested
4172   /// vector elements.
4173   virtual bool
4174   canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts,
4175                                       const SelectionDAG &DAG, bool PoisonOnly,
4176                                       bool ConsiderFlags, unsigned Depth) const;
4177 
4178   /// Tries to build a legal vector shuffle using the provided parameters
4179   /// or equivalent variations. The Mask argument maybe be modified as the
4180   /// function tries different variations.
4181   /// Returns an empty SDValue if the operation fails.
4182   SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
4183                                   SDValue N1, MutableArrayRef<int> Mask,
4184                                   SelectionDAG &DAG) const;
4185 
4186   /// This method returns the constant pool value that will be loaded by LD.
4187   /// NOTE: You must check for implicit extensions of the constant by LD.
4188   virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
4189 
4190   /// If \p SNaN is false, \returns true if \p Op is known to never be any
4191   /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
4192   /// NaN.
4193   virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
4194                                             const SelectionDAG &DAG,
4195                                             bool SNaN = false,
4196                                             unsigned Depth = 0) const;
4197 
4198   /// Return true if vector \p Op has the same value across all \p DemandedElts,
4199   /// indicating any elements which may be undef in the output \p UndefElts.
4200   virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
4201                                          APInt &UndefElts,
4202                                          const SelectionDAG &DAG,
4203                                          unsigned Depth = 0) const;
4204 
4205   /// Returns true if the given Opc is considered a canonical constant for the
4206   /// target, which should not be transformed back into a BUILD_VECTOR.
isTargetCanonicalConstantNode(SDValue Op)4207   virtual bool isTargetCanonicalConstantNode(SDValue Op) const {
4208     return Op.getOpcode() == ISD::SPLAT_VECTOR ||
4209            Op.getOpcode() == ISD::SPLAT_VECTOR_PARTS;
4210   }
4211 
4212   struct DAGCombinerInfo {
4213     void *DC;  // The DAG Combiner object.
4214     CombineLevel Level;
4215     bool CalledByLegalizer;
4216 
4217   public:
4218     SelectionDAG &DAG;
4219 
DAGCombinerInfoDAGCombinerInfo4220     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
4221       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
4222 
isBeforeLegalizeDAGCombinerInfo4223     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo4224     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeDAGDAGCombinerInfo4225     bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
getDAGCombineLevelDAGCombinerInfo4226     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo4227     bool isCalledByLegalizer() const { return CalledByLegalizer; }
4228 
4229     void AddToWorklist(SDNode *N);
4230     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
4231     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
4232     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
4233 
4234     bool recursivelyDeleteUnusedNodes(SDNode *N);
4235 
4236     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
4237   };
4238 
4239   /// Return if the N is a constant or constant vector equal to the true value
4240   /// from getBooleanContents().
4241   bool isConstTrueVal(SDValue N) const;
4242 
4243   /// Return if the N is a constant or constant vector equal to the false value
4244   /// from getBooleanContents().
4245   bool isConstFalseVal(SDValue N) const;
4246 
4247   /// Return if \p N is a True value when extended to \p VT.
4248   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
4249 
4250   /// Try to simplify a setcc built with the specified operands and cc. If it is
4251   /// unable to simplify it, return a null SDValue.
4252   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4253                         bool foldBooleans, DAGCombinerInfo &DCI,
4254                         const SDLoc &dl) const;
4255 
4256   // For targets which wrap address, unwrap for analysis.
unwrapAddress(SDValue N)4257   virtual SDValue unwrapAddress(SDValue N) const { return N; }
4258 
4259   /// Returns true (and the GlobalValue and the offset) if the node is a
4260   /// GlobalAddress + offset.
4261   virtual bool
4262   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
4263 
4264   /// This method will be invoked for all target nodes and for any
4265   /// target-independent nodes that the target has registered with invoke it
4266   /// for.
4267   ///
4268   /// The semantics are as follows:
4269   /// Return Value:
4270   ///   SDValue.Val == 0   - No change was made
4271   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
4272   ///   otherwise          - N should be replaced by the returned Operand.
4273   ///
4274   /// In addition, methods provided by DAGCombinerInfo may be used to perform
4275   /// more complex transformations.
4276   ///
4277   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
4278 
4279   /// Return true if it is profitable to move this shift by a constant amount
4280   /// through its operand, adjusting any immediate operands as necessary to
4281   /// preserve semantics. This transformation may not be desirable if it
4282   /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
4283   /// extraction in AArch64). By default, it returns true.
4284   ///
4285   /// @param N the shift node
4286   /// @param Level the current DAGCombine legalization level.
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level)4287   virtual bool isDesirableToCommuteWithShift(const SDNode *N,
4288                                              CombineLevel Level) const {
4289     return true;
4290   }
4291 
4292   /// GlobalISel - return true if it is profitable to move this shift by a
4293   /// constant amount through its operand, adjusting any immediate operands as
4294   /// necessary to preserve semantics. This transformation may not be desirable
4295   /// if it disrupts a particularly auspicious target-specific tree (e.g.
4296   /// bitfield extraction in AArch64). By default, it returns true.
4297   ///
4298   /// @param MI the shift instruction
4299   /// @param IsAfterLegal true if running after legalization.
isDesirableToCommuteWithShift(const MachineInstr & MI,bool IsAfterLegal)4300   virtual bool isDesirableToCommuteWithShift(const MachineInstr &MI,
4301                                              bool IsAfterLegal) const {
4302     return true;
4303   }
4304 
4305   /// GlobalISel - return true if it's profitable to perform the combine:
4306   /// shl ([sza]ext x), y => zext (shl x, y)
isDesirableToPullExtFromShl(const MachineInstr & MI)4307   virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const {
4308     return true;
4309   }
4310 
4311   // Return AndOrSETCCFoldKind::{AddAnd, ABS} if its desirable to try and
4312   // optimize LogicOp(SETCC0, SETCC1). An example (what is implemented as of
4313   // writing this) is:
4314   //    With C as a power of 2 and C != 0 and C != INT_MIN:
4315   //    AddAnd:
4316   //     (icmp eq A, C) | (icmp eq A, -C)
4317   //            -> (icmp eq and(add(A, C), ~(C + C)), 0)
4318   //     (icmp ne A, C) & (icmp ne A, -C)w
4319   //            -> (icmp ne and(add(A, C), ~(C + C)), 0)
4320   //    ABS:
4321   //     (icmp eq A, C) | (icmp eq A, -C)
4322   //            -> (icmp eq Abs(A), C)
4323   //     (icmp ne A, C) & (icmp ne A, -C)w
4324   //            -> (icmp ne Abs(A), C)
4325   //
4326   // @param LogicOp the logic op
4327   // @param SETCC0 the first of the SETCC nodes
4328   // @param SETCC0 the second of the SETCC nodes
isDesirableToCombineLogicOpOfSETCC(const SDNode * LogicOp,const SDNode * SETCC0,const SDNode * SETCC1)4329   virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(
4330       const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const {
4331     return AndOrSETCCFoldKind::None;
4332   }
4333 
4334   /// Return true if it is profitable to combine an XOR of a logical shift
4335   /// to create a logical shift of NOT. This transformation may not be desirable
4336   /// if it disrupts a particularly auspicious target-specific tree (e.g.
4337   /// BIC on ARM/AArch64). By default, it returns true.
isDesirableToCommuteXorWithShift(const SDNode * N)4338   virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
4339     return true;
4340   }
4341 
4342   /// Return true if the target has native support for the specified value type
4343   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
4344   /// i16 is legal, but undesirable since i16 instruction encodings are longer
4345   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)4346   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
4347     // By default, assume all legal types are desirable.
4348     return isTypeLegal(VT);
4349   }
4350 
4351   /// Return true if it is profitable for dag combiner to transform a floating
4352   /// point op of specified opcode to a equivalent op of an integer
4353   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)4354   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
4355                                                  EVT /*VT*/) const {
4356     return false;
4357   }
4358 
4359   /// This method query the target whether it is beneficial for dag combiner to
4360   /// promote the specified node. If true, it should return the desired
4361   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)4362   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
4363     return false;
4364   }
4365 
4366   /// Return true if the target supports swifterror attribute. It optimizes
4367   /// loads and stores to reading and writing a specific register.
supportSwiftError()4368   virtual bool supportSwiftError() const {
4369     return false;
4370   }
4371 
4372   /// Return true if the target supports that a subset of CSRs for the given
4373   /// machine function is handled explicitly via copies.
supportSplitCSR(MachineFunction * MF)4374   virtual bool supportSplitCSR(MachineFunction *MF) const {
4375     return false;
4376   }
4377 
4378   /// Return true if the target supports kcfi operand bundles.
supportKCFIBundles()4379   virtual bool supportKCFIBundles() const { return false; }
4380 
4381   /// Return true if the target supports ptrauth operand bundles.
supportPtrAuthBundles()4382   virtual bool supportPtrAuthBundles() const { return false; }
4383 
4384   /// Perform necessary initialization to handle a subset of CSRs explicitly
4385   /// via copies. This function is called at the beginning of instruction
4386   /// selection.
initializeSplitCSR(MachineBasicBlock * Entry)4387   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
4388     llvm_unreachable("Not Implemented");
4389   }
4390 
4391   /// Insert explicit copies in entry and exit blocks. We copy a subset of
4392   /// CSRs to virtual registers in the entry block, and copy them back to
4393   /// physical registers in the exit blocks. This function is called at the end
4394   /// of instruction selection.
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits)4395   virtual void insertCopiesSplitCSR(
4396       MachineBasicBlock *Entry,
4397       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
4398     llvm_unreachable("Not Implemented");
4399   }
4400 
4401   /// Return the newly negated expression if the cost is not expensive and
4402   /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
4403   /// do the negation.
4404   virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
4405                                        bool LegalOps, bool OptForSize,
4406                                        NegatibleCost &Cost,
4407                                        unsigned Depth = 0) const;
4408 
4409   SDValue getCheaperOrNeutralNegatedExpression(
4410       SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
4411       const NegatibleCost CostThreshold = NegatibleCost::Neutral,
4412       unsigned Depth = 0) const {
4413     NegatibleCost Cost = NegatibleCost::Expensive;
4414     SDValue Neg =
4415         getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4416     if (!Neg)
4417       return SDValue();
4418 
4419     if (Cost <= CostThreshold)
4420       return Neg;
4421 
4422     // Remove the new created node to avoid the side effect to the DAG.
4423     if (Neg->use_empty())
4424       DAG.RemoveDeadNode(Neg.getNode());
4425     return SDValue();
4426   }
4427 
4428   /// This is the helper function to return the newly negated expression only
4429   /// when the cost is cheaper.
4430   SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
4431                                       bool LegalOps, bool OptForSize,
4432                                       unsigned Depth = 0) const {
4433     return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
4434                                                 NegatibleCost::Cheaper, Depth);
4435   }
4436 
4437   /// This is the helper function to return the newly negated expression if
4438   /// the cost is not expensive.
4439   SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
4440                                bool OptForSize, unsigned Depth = 0) const {
4441     NegatibleCost Cost = NegatibleCost::Expensive;
4442     return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4443   }
4444 
4445   //===--------------------------------------------------------------------===//
4446   // Lowering methods - These methods must be implemented by targets so that
4447   // the SelectionDAGBuilder code knows how to lower these.
4448   //
4449 
4450   /// Target-specific splitting of values into parts that fit a register
4451   /// storing a legal type
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,std::optional<CallingConv::ID> CC)4452   virtual bool splitValueIntoRegisterParts(
4453       SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4454       unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4455     return false;
4456   }
4457 
4458   /// Allows the target to handle physreg-carried dependency
4459   /// in target-specific way. Used from the ScheduleDAGSDNodes to decide whether
4460   /// to add the edge to the dependency graph.
4461   /// Def - input: Selection DAG node defininfg physical register
4462   /// User - input: Selection DAG node using physical register
4463   /// Op - input: Number of User operand
4464   /// PhysReg - inout: set to the physical register if the edge is
4465   /// necessary, unchanged otherwise
4466   /// Cost - inout: physical register copy cost.
4467   /// Returns 'true' is the edge is necessary, 'false' otherwise
checkForPhysRegDependency(SDNode * Def,SDNode * User,unsigned Op,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,unsigned & PhysReg,int & Cost)4468   virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
4469                                          const TargetRegisterInfo *TRI,
4470                                          const TargetInstrInfo *TII,
4471                                          unsigned &PhysReg, int &Cost) const {
4472     return false;
4473   }
4474 
4475   /// Target-specific combining of register parts into its original value
4476   virtual SDValue
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,std::optional<CallingConv::ID> CC)4477   joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
4478                              const SDValue *Parts, unsigned NumParts,
4479                              MVT PartVT, EVT ValueVT,
4480                              std::optional<CallingConv::ID> CC) const {
4481     return SDValue();
4482   }
4483 
4484   /// This hook must be implemented to lower the incoming (formal) arguments,
4485   /// described by the Ins array, into the specified DAG. The implementation
4486   /// should fill in the InVals array with legal-type argument values, and
4487   /// return the resulting token chain value.
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,const SDLoc &,SelectionDAG &,SmallVectorImpl<SDValue> &)4488   virtual SDValue LowerFormalArguments(
4489       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
4490       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
4491       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
4492     llvm_unreachable("Not Implemented");
4493   }
4494 
4495   /// This structure contains the information necessary for lowering
4496   /// pointer-authenticating indirect calls.  It is equivalent to the "ptrauth"
4497   /// operand bundle found on the call instruction, if any.
4498   struct PtrAuthInfo {
4499     uint64_t Key;
4500     SDValue Discriminator;
4501   };
4502 
4503   /// This structure contains all information that is necessary for lowering
4504   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
4505   /// needs to lower a call, and targets will see this struct in their LowerCall
4506   /// implementation.
4507   struct CallLoweringInfo {
4508     SDValue Chain;
4509     Type *RetTy = nullptr;
4510     bool RetSExt           : 1;
4511     bool RetZExt           : 1;
4512     bool IsVarArg          : 1;
4513     bool IsInReg           : 1;
4514     bool DoesNotReturn     : 1;
4515     bool IsReturnValueUsed : 1;
4516     bool IsConvergent      : 1;
4517     bool IsPatchPoint      : 1;
4518     bool IsPreallocated : 1;
4519     bool NoMerge           : 1;
4520 
4521     // IsTailCall should be modified by implementations of
4522     // TargetLowering::LowerCall that perform tail call conversions.
4523     bool IsTailCall = false;
4524 
4525     // Is Call lowering done post SelectionDAG type legalization.
4526     bool IsPostTypeLegalization = false;
4527 
4528     unsigned NumFixedArgs = -1;
4529     CallingConv::ID CallConv = CallingConv::C;
4530     SDValue Callee;
4531     ArgListTy Args;
4532     SelectionDAG &DAG;
4533     SDLoc DL;
4534     const CallBase *CB = nullptr;
4535     SmallVector<ISD::OutputArg, 32> Outs;
4536     SmallVector<SDValue, 32> OutVals;
4537     SmallVector<ISD::InputArg, 32> Ins;
4538     SmallVector<SDValue, 4> InVals;
4539     const ConstantInt *CFIType = nullptr;
4540     SDValue ConvergenceControlToken;
4541 
4542     std::optional<PtrAuthInfo> PAI;
4543 
CallLoweringInfoCallLoweringInfo4544     CallLoweringInfo(SelectionDAG &DAG)
4545         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
4546           DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
4547           IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
4548           DAG(DAG) {}
4549 
setDebugLocCallLoweringInfo4550     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
4551       DL = dl;
4552       return *this;
4553     }
4554 
setChainCallLoweringInfo4555     CallLoweringInfo &setChain(SDValue InChain) {
4556       Chain = InChain;
4557       return *this;
4558     }
4559 
4560     // setCallee with target/module-specific attributes
setLibCalleeCallLoweringInfo4561     CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
4562                                    SDValue Target, ArgListTy &&ArgsList) {
4563       RetTy = ResultType;
4564       Callee = Target;
4565       CallConv = CC;
4566       NumFixedArgs = ArgsList.size();
4567       Args = std::move(ArgsList);
4568 
4569       DAG.getTargetLoweringInfo().markLibCallAttributes(
4570           &(DAG.getMachineFunction()), CC, Args);
4571       return *this;
4572     }
4573 
4574     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
4575                                 SDValue Target, ArgListTy &&ArgsList,
4576                                 AttributeSet ResultAttrs = {}) {
4577       RetTy = ResultType;
4578       IsInReg = ResultAttrs.hasAttribute(Attribute::InReg);
4579       RetSExt = ResultAttrs.hasAttribute(Attribute::SExt);
4580       RetZExt = ResultAttrs.hasAttribute(Attribute::ZExt);
4581       NoMerge = ResultAttrs.hasAttribute(Attribute::NoMerge);
4582 
4583       Callee = Target;
4584       CallConv = CC;
4585       NumFixedArgs = ArgsList.size();
4586       Args = std::move(ArgsList);
4587       return *this;
4588     }
4589 
setCalleeCallLoweringInfo4590     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
4591                                 SDValue Target, ArgListTy &&ArgsList,
4592                                 const CallBase &Call) {
4593       RetTy = ResultType;
4594 
4595       IsInReg = Call.hasRetAttr(Attribute::InReg);
4596       DoesNotReturn =
4597           Call.doesNotReturn() ||
4598           (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
4599       IsVarArg = FTy->isVarArg();
4600       IsReturnValueUsed = !Call.use_empty();
4601       RetSExt = Call.hasRetAttr(Attribute::SExt);
4602       RetZExt = Call.hasRetAttr(Attribute::ZExt);
4603       NoMerge = Call.hasFnAttr(Attribute::NoMerge);
4604 
4605       Callee = Target;
4606 
4607       CallConv = Call.getCallingConv();
4608       NumFixedArgs = FTy->getNumParams();
4609       Args = std::move(ArgsList);
4610 
4611       CB = &Call;
4612 
4613       return *this;
4614     }
4615 
4616     CallLoweringInfo &setInRegister(bool Value = true) {
4617       IsInReg = Value;
4618       return *this;
4619     }
4620 
4621     CallLoweringInfo &setNoReturn(bool Value = true) {
4622       DoesNotReturn = Value;
4623       return *this;
4624     }
4625 
4626     CallLoweringInfo &setVarArg(bool Value = true) {
4627       IsVarArg = Value;
4628       return *this;
4629     }
4630 
4631     CallLoweringInfo &setTailCall(bool Value = true) {
4632       IsTailCall = Value;
4633       return *this;
4634     }
4635 
4636     CallLoweringInfo &setDiscardResult(bool Value = true) {
4637       IsReturnValueUsed = !Value;
4638       return *this;
4639     }
4640 
4641     CallLoweringInfo &setConvergent(bool Value = true) {
4642       IsConvergent = Value;
4643       return *this;
4644     }
4645 
4646     CallLoweringInfo &setSExtResult(bool Value = true) {
4647       RetSExt = Value;
4648       return *this;
4649     }
4650 
4651     CallLoweringInfo &setZExtResult(bool Value = true) {
4652       RetZExt = Value;
4653       return *this;
4654     }
4655 
4656     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
4657       IsPatchPoint = Value;
4658       return *this;
4659     }
4660 
4661     CallLoweringInfo &setIsPreallocated(bool Value = true) {
4662       IsPreallocated = Value;
4663       return *this;
4664     }
4665 
setPtrAuthCallLoweringInfo4666     CallLoweringInfo &setPtrAuth(PtrAuthInfo Value) {
4667       PAI = Value;
4668       return *this;
4669     }
4670 
4671     CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
4672       IsPostTypeLegalization = Value;
4673       return *this;
4674     }
4675 
setCFITypeCallLoweringInfo4676     CallLoweringInfo &setCFIType(const ConstantInt *Type) {
4677       CFIType = Type;
4678       return *this;
4679     }
4680 
setConvergenceControlTokenCallLoweringInfo4681     CallLoweringInfo &setConvergenceControlToken(SDValue Token) {
4682       ConvergenceControlToken = Token;
4683       return *this;
4684     }
4685 
getArgsCallLoweringInfo4686     ArgListTy &getArgs() {
4687       return Args;
4688     }
4689   };
4690 
4691   /// This structure is used to pass arguments to makeLibCall function.
4692   struct MakeLibCallOptions {
4693     // By passing type list before soften to makeLibCall, the target hook
4694     // shouldExtendTypeInLibCall can get the original type before soften.
4695     ArrayRef<EVT> OpsVTBeforeSoften;
4696     EVT RetVTBeforeSoften;
4697     bool IsSExt : 1;
4698     bool DoesNotReturn : 1;
4699     bool IsReturnValueUsed : 1;
4700     bool IsPostTypeLegalization : 1;
4701     bool IsSoften : 1;
4702 
MakeLibCallOptionsMakeLibCallOptions4703     MakeLibCallOptions()
4704         : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
4705           IsPostTypeLegalization(false), IsSoften(false) {}
4706 
4707     MakeLibCallOptions &setSExt(bool Value = true) {
4708       IsSExt = Value;
4709       return *this;
4710     }
4711 
4712     MakeLibCallOptions &setNoReturn(bool Value = true) {
4713       DoesNotReturn = Value;
4714       return *this;
4715     }
4716 
4717     MakeLibCallOptions &setDiscardResult(bool Value = true) {
4718       IsReturnValueUsed = !Value;
4719       return *this;
4720     }
4721 
4722     MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
4723       IsPostTypeLegalization = Value;
4724       return *this;
4725     }
4726 
4727     MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
4728                                                 bool Value = true) {
4729       OpsVTBeforeSoften = OpsVT;
4730       RetVTBeforeSoften = RetVT;
4731       IsSoften = Value;
4732       return *this;
4733     }
4734   };
4735 
4736   /// This function lowers an abstract call to a function into an actual call.
4737   /// This returns a pair of operands.  The first element is the return value
4738   /// for the function (if RetTy is not VoidTy).  The second element is the
4739   /// outgoing token chain. It calls LowerCall to do the actual lowering.
4740   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
4741 
4742   /// This hook must be implemented to lower calls into the specified
4743   /// DAG. The outgoing arguments to the call are described by the Outs array,
4744   /// and the values to be returned by the call are described by the Ins
4745   /// array. The implementation should fill in the InVals array with legal-type
4746   /// return values from the call, and return the resulting token chain value.
4747   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)4748     LowerCall(CallLoweringInfo &/*CLI*/,
4749               SmallVectorImpl<SDValue> &/*InVals*/) const {
4750     llvm_unreachable("Not Implemented");
4751   }
4752 
4753   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,Align)4754   virtual void HandleByVal(CCState *, unsigned &, Align) const {}
4755 
4756   /// This hook should be implemented to check whether the return values
4757   /// described by the Outs array can fit into the return registers.  If false
4758   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)4759   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
4760                               MachineFunction &/*MF*/, bool /*isVarArg*/,
4761                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
4762                LLVMContext &/*Context*/) const
4763   {
4764     // Return true by default to get preexisting behavior.
4765     return true;
4766   }
4767 
4768   /// This hook must be implemented to lower outgoing return values, described
4769   /// by the Outs array, into the specified DAG. The implementation should
4770   /// return the resulting token chain value.
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,const SDLoc &,SelectionDAG &)4771   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
4772                               bool /*isVarArg*/,
4773                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
4774                               const SmallVectorImpl<SDValue> & /*OutVals*/,
4775                               const SDLoc & /*dl*/,
4776                               SelectionDAG & /*DAG*/) const {
4777     llvm_unreachable("Not Implemented");
4778   }
4779 
4780   /// Return true if result of the specified node is used by a return node
4781   /// only. It also compute and return the input chain for the tail call.
4782   ///
4783   /// This is used to determine whether it is possible to codegen a libcall as
4784   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)4785   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
4786     return false;
4787   }
4788 
4789   /// Return true if the target may be able emit the call instruction as a tail
4790   /// call. This is used by optimization passes to determine if it's profitable
4791   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(const CallInst *)4792   virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
4793     return false;
4794   }
4795 
4796   /// Return the register ID of the name passed in. Used by named register
4797   /// global variables extension. There is no target-independent behaviour
4798   /// so the default action is to bail.
getRegisterByName(const char * RegName,LLT Ty,const MachineFunction & MF)4799   virtual Register getRegisterByName(const char* RegName, LLT Ty,
4800                                      const MachineFunction &MF) const {
4801     report_fatal_error("Named registers not implemented for this target");
4802   }
4803 
4804   /// Return the type that should be used to zero or sign extend a
4805   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
4806   /// require the return type to be promoted, but this is not true all the time,
4807   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
4808   /// conventions. The frontend should handle this and include all of the
4809   /// necessary information.
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType)4810   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
4811                                        ISD::NodeType /*ExtendKind*/) const {
4812     EVT MinVT = getRegisterType(MVT::i32);
4813     return VT.bitsLT(MinVT) ? MinVT : VT;
4814   }
4815 
4816   /// For some targets, an LLVM struct type must be broken down into multiple
4817   /// simple types, but the calling convention specifies that the entire struct
4818   /// must be passed in a block of consecutive registers.
4819   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg,const DataLayout & DL)4820   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
4821                                             bool isVarArg,
4822                                             const DataLayout &DL) const {
4823     return false;
4824   }
4825 
4826   /// For most targets, an LLVM type must be broken down into multiple
4827   /// smaller types. Usually the halves are ordered according to the endianness
4828   /// but for some platform that would break. So this method will default to
4829   /// matching the endianness but can be overridden.
4830   virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout & DL)4831   shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
4832     return DL.isLittleEndian();
4833   }
4834 
4835   /// Returns a 0 terminated array of registers that can be safely used as
4836   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)4837   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
4838     return nullptr;
4839   }
4840 
4841   /// Returns a 0 terminated array of rounding control registers that can be
4842   /// attached into strict FP call.
getRoundingControlRegisters()4843   virtual ArrayRef<MCPhysReg> getRoundingControlRegisters() const {
4844     return ArrayRef<MCPhysReg>();
4845   }
4846 
4847   /// This callback is used to prepare for a volatile or atomic load.
4848   /// It takes a chain node as input and returns the chain for the load itself.
4849   ///
4850   /// Having a callback like this is necessary for targets like SystemZ,
4851   /// which allows a CPU to reuse the result of a previous load indefinitely,
4852   /// even if a cache-coherent store is performed by another CPU.  The default
4853   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG)4854   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
4855                                               SelectionDAG &DAG) const {
4856     return Chain;
4857   }
4858 
4859   /// This callback is invoked by the type legalizer to legalize nodes with an
4860   /// illegal operand type but legal result types.  It replaces the
4861   /// LowerOperation callback in the type Legalizer.  The reason we can not do
4862   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4863   /// use this callback.
4864   ///
4865   /// TODO: Consider merging with ReplaceNodeResults.
4866   ///
4867   /// The target places new result values for the node in Results (their number
4868   /// and types must exactly match those of the original return values of
4869   /// the node), or leaves Results empty, which indicates that the node is not
4870   /// to be custom lowered after all.
4871   /// The default implementation calls LowerOperation.
4872   virtual void LowerOperationWrapper(SDNode *N,
4873                                      SmallVectorImpl<SDValue> &Results,
4874                                      SelectionDAG &DAG) const;
4875 
4876   /// This callback is invoked for operations that are unsupported by the
4877   /// target, which are registered to use 'custom' lowering, and whose defined
4878   /// values are all legal.  If the target has no operations that require custom
4879   /// lowering, it need not implement this.  The default implementation of this
4880   /// aborts.
4881   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4882 
4883   /// This callback is invoked when a node result type is illegal for the
4884   /// target, and the operation was registered to use 'custom' lowering for that
4885   /// result type.  The target places new result values for the node in Results
4886   /// (their number and types must exactly match those of the original return
4887   /// values of the node), or leaves Results empty, which indicates that the
4888   /// node is not to be custom lowered after all.
4889   ///
4890   /// If the target has no operations that require custom lowering, it need not
4891   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)4892   virtual void ReplaceNodeResults(SDNode * /*N*/,
4893                                   SmallVectorImpl<SDValue> &/*Results*/,
4894                                   SelectionDAG &/*DAG*/) const {
4895     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4896   }
4897 
4898   /// This method returns the name of a target specific DAG node.
4899   virtual const char *getTargetNodeName(unsigned Opcode) const;
4900 
4901   /// This method returns a target specific FastISel object, or null if the
4902   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)4903   virtual FastISel *createFastISel(FunctionLoweringInfo &,
4904                                    const TargetLibraryInfo *) const {
4905     return nullptr;
4906   }
4907 
4908   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
4909                                              SelectionDAG &DAG) const;
4910 
4911 #ifndef NDEBUG
4912   /// Check the given SDNode.  Aborts if it is invalid.
verifyTargetSDNode(const SDNode * N)4913   virtual void verifyTargetSDNode(const SDNode *N) const {};
4914 #endif
4915 
4916   //===--------------------------------------------------------------------===//
4917   // Inline Asm Support hooks
4918   //
4919 
4920   /// This hook allows the target to expand an inline asm call to be explicit
4921   /// llvm code if it wants to.  This is useful for turning simple inline asms
4922   /// into LLVM intrinsics, which gives the compiler more information about the
4923   /// behavior of the code.
ExpandInlineAsm(CallInst *)4924   virtual bool ExpandInlineAsm(CallInst *) const {
4925     return false;
4926   }
4927 
4928   enum ConstraintType {
4929     C_Register,            // Constraint represents specific register(s).
4930     C_RegisterClass,       // Constraint represents any of register(s) in class.
4931     C_Memory,              // Memory constraint.
4932     C_Address,             // Address constraint.
4933     C_Immediate,           // Requires an immediate.
4934     C_Other,               // Something else.
4935     C_Unknown              // Unsupported constraint.
4936   };
4937 
4938   enum ConstraintWeight {
4939     // Generic weights.
4940     CW_Invalid  = -1,     // No match.
4941     CW_Okay     = 0,      // Acceptable.
4942     CW_Good     = 1,      // Good weight.
4943     CW_Better   = 2,      // Better weight.
4944     CW_Best     = 3,      // Best weight.
4945 
4946     // Well-known weights.
4947     CW_SpecificReg  = CW_Okay,    // Specific register operands.
4948     CW_Register     = CW_Good,    // Register operands.
4949     CW_Memory       = CW_Better,  // Memory operands.
4950     CW_Constant     = CW_Best,    // Constant operand.
4951     CW_Default      = CW_Okay     // Default or don't know type.
4952   };
4953 
4954   /// This contains information for each constraint that we are lowering.
4955   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
4956     /// This contains the actual string for the code, like "m".  TargetLowering
4957     /// picks the 'best' code from ConstraintInfo::Codes that most closely
4958     /// matches the operand.
4959     std::string ConstraintCode;
4960 
4961     /// Information about the constraint code, e.g. Register, RegisterClass,
4962     /// Memory, Other, Unknown.
4963     TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
4964 
4965     /// If this is the result output operand or a clobber, this is null,
4966     /// otherwise it is the incoming operand to the CallInst.  This gets
4967     /// modified as the asm is processed.
4968     Value *CallOperandVal = nullptr;
4969 
4970     /// The ValueType for the operand value.
4971     MVT ConstraintVT = MVT::Other;
4972 
4973     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo4974     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
4975         : InlineAsm::ConstraintInfo(std::move(Info)) {}
4976 
4977     /// Return true of this is an input operand that is a matching constraint
4978     /// like "4".
4979     bool isMatchingInputConstraint() const;
4980 
4981     /// If this is an input matching constraint, this method returns the output
4982     /// operand it matches.
4983     unsigned getMatchedOperand() const;
4984   };
4985 
4986   using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4987 
4988   /// Split up the constraint string from the inline assembly value into the
4989   /// specific constraints and their prefixes, and also tie in the associated
4990   /// operand values.  If this returns an empty vector, and if the constraint
4991   /// string itself isn't empty, there was an error parsing.
4992   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
4993                                                 const TargetRegisterInfo *TRI,
4994                                                 const CallBase &Call) const;
4995 
4996   /// Examine constraint type and operand type and determine a weight value.
4997   /// The operand object must already have been set up with the operand type.
4998   virtual ConstraintWeight getMultipleConstraintMatchWeight(
4999       AsmOperandInfo &info, int maIndex) const;
5000 
5001   /// Examine constraint string and operand type and determine a weight value.
5002   /// The operand object must already have been set up with the operand type.
5003   virtual ConstraintWeight getSingleConstraintMatchWeight(
5004       AsmOperandInfo &info, const char *constraint) const;
5005 
5006   /// Determines the constraint code and constraint type to use for the specific
5007   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5008   /// If the actual operand being passed in is available, it can be passed in as
5009   /// Op, otherwise an empty SDValue can be passed.
5010   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5011                                       SDValue Op,
5012                                       SelectionDAG *DAG = nullptr) const;
5013 
5014   /// Given a constraint, return the type of constraint it is for this target.
5015   virtual ConstraintType getConstraintType(StringRef Constraint) const;
5016 
5017   using ConstraintPair = std::pair<StringRef, TargetLowering::ConstraintType>;
5018   using ConstraintGroup = SmallVector<ConstraintPair>;
5019   /// Given an OpInfo with list of constraints codes as strings, return a
5020   /// sorted Vector of pairs of constraint codes and their types in priority of
5021   /// what we'd prefer to lower them as. This may contain immediates that
5022   /// cannot be lowered, but it is meant to be a machine agnostic order of
5023   /// preferences.
5024   ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const;
5025 
5026   /// Given a physical register constraint (e.g.  {edx}), return the register
5027   /// number and the register class for the register.
5028   ///
5029   /// Given a register class constraint, like 'r', if this corresponds directly
5030   /// to an LLVM register class, return a register of 0 and the register class
5031   /// pointer.
5032   ///
5033   /// This should only be used for C_Register constraints.  On error, this
5034   /// returns a register number of 0 and a null register class pointer.
5035   virtual std::pair<unsigned, const TargetRegisterClass *>
5036   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
5037                                StringRef Constraint, MVT VT) const;
5038 
5039   virtual InlineAsm::ConstraintCode
getInlineAsmMemConstraint(StringRef ConstraintCode)5040   getInlineAsmMemConstraint(StringRef ConstraintCode) const {
5041     if (ConstraintCode == "m")
5042       return InlineAsm::ConstraintCode::m;
5043     if (ConstraintCode == "o")
5044       return InlineAsm::ConstraintCode::o;
5045     if (ConstraintCode == "X")
5046       return InlineAsm::ConstraintCode::X;
5047     if (ConstraintCode == "p")
5048       return InlineAsm::ConstraintCode::p;
5049     return InlineAsm::ConstraintCode::Unknown;
5050   }
5051 
5052   /// Try to replace an X constraint, which matches anything, with another that
5053   /// has more specific requirements based on the type of the corresponding
5054   /// operand.  This returns null if there is no replacement to make.
5055   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
5056 
5057   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
5058   /// add anything to Ops.
5059   virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
5060                                             std::vector<SDValue> &Ops,
5061                                             SelectionDAG &DAG) const;
5062 
5063   // Lower custom output constraints. If invalid, return SDValue().
5064   virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue,
5065                                               const SDLoc &DL,
5066                                               const AsmOperandInfo &OpInfo,
5067                                               SelectionDAG &DAG) const;
5068 
5069   // Targets may override this function to collect operands from the CallInst
5070   // and for example, lower them into the SelectionDAG operands.
5071   virtual void CollectTargetIntrinsicOperands(const CallInst &I,
5072                                               SmallVectorImpl<SDValue> &Ops,
5073                                               SelectionDAG &DAG) const;
5074 
5075   //===--------------------------------------------------------------------===//
5076   // Div utility functions
5077   //
5078 
5079   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5080                     SmallVectorImpl<SDNode *> &Created) const;
5081   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5082                     SmallVectorImpl<SDNode *> &Created) const;
5083   // Build sdiv by power-of-2 with conditional move instructions
5084   SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor,
5085                                 SelectionDAG &DAG,
5086                                 SmallVectorImpl<SDNode *> &Created) const;
5087 
5088   /// Targets may override this function to provide custom SDIV lowering for
5089   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
5090   /// assumes SDIV is expensive and replaces it with a series of other integer
5091   /// operations.
5092   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5093                                 SelectionDAG &DAG,
5094                                 SmallVectorImpl<SDNode *> &Created) const;
5095 
5096   /// Targets may override this function to provide custom SREM lowering for
5097   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
5098   /// assumes SREM is expensive and replaces it with a series of other integer
5099   /// operations.
5100   virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
5101                                 SelectionDAG &DAG,
5102                                 SmallVectorImpl<SDNode *> &Created) const;
5103 
5104   /// Indicate whether this target prefers to combine FDIVs with the same
5105   /// divisor. If the transform should never be done, return zero. If the
5106   /// transform should be done, return the minimum number of divisor uses
5107   /// that must exist.
combineRepeatedFPDivisors()5108   virtual unsigned combineRepeatedFPDivisors() const {
5109     return 0;
5110   }
5111 
5112   /// Hooks for building estimates in place of slower divisions and square
5113   /// roots.
5114 
5115   /// Return either a square root or its reciprocal estimate value for the input
5116   /// operand.
5117   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5118   /// 'Enabled' as set by a potential default override attribute.
5119   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5120   /// refinement iterations required to generate a sufficient (though not
5121   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5122   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
5123   /// algorithm implementation that uses either one or two constants.
5124   /// The boolean Reciprocal is used to select whether the estimate is for the
5125   /// square root of the input operand or the reciprocal of its square root.
5126   /// A target may choose to implement its own refinement within this function.
5127   /// If that's true, then return '0' as the number of RefinementSteps to avoid
5128   /// any further refinement of the estimate.
5129   /// An empty SDValue return means no estimate sequence can be created.
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal)5130   virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
5131                                   int Enabled, int &RefinementSteps,
5132                                   bool &UseOneConstNR, bool Reciprocal) const {
5133     return SDValue();
5134   }
5135 
5136   /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
5137   /// required for correctness since InstCombine might have canonicalized a
5138   /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic.  If we were to fall
5139   /// through to the default expansion/soften to libcall, we might introduce a
5140   /// link-time dependency on libm into a file that originally did not have one.
5141   SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const;
5142 
5143   /// Return a reciprocal estimate value for the input operand.
5144   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5145   /// 'Enabled' as set by a potential default override attribute.
5146   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5147   /// refinement iterations required to generate a sufficient (though not
5148   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5149   /// A target may choose to implement its own refinement within this function.
5150   /// If that's true, then return '0' as the number of RefinementSteps to avoid
5151   /// any further refinement of the estimate.
5152   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps)5153   virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
5154                                    int Enabled, int &RefinementSteps) const {
5155     return SDValue();
5156   }
5157 
5158   /// Return a target-dependent comparison result if the input operand is
5159   /// suitable for use with a square root estimate calculation. For example, the
5160   /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
5161   /// result should be used as the condition operand for a select or branch.
5162   virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
5163                                    const DenormalMode &Mode) const;
5164 
5165   /// Return a target-dependent result if the input operand is not suitable for
5166   /// use with a square root estimate calculation.
getSqrtResultForDenormInput(SDValue Operand,SelectionDAG & DAG)5167   virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
5168                                               SelectionDAG &DAG) const {
5169     return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
5170   }
5171 
5172   //===--------------------------------------------------------------------===//
5173   // Legalization utility functions
5174   //
5175 
5176   /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
5177   /// respectively, each computing an n/2-bit part of the result.
5178   /// \param Result A vector that will be filled with the parts of the result
5179   ///        in little-endian order.
5180   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
5181   ///        if you want to control how low bits are extracted from the LHS.
5182   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
5183   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
5184   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
5185   /// \returns true if the node has been expanded, false if it has not
5186   bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
5187                       SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
5188                       SelectionDAG &DAG, MulExpansionKind Kind,
5189                       SDValue LL = SDValue(), SDValue LH = SDValue(),
5190                       SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5191 
5192   /// Expand a MUL into two nodes.  One that computes the high bits of
5193   /// the result and one that computes the low bits.
5194   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
5195   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
5196   ///        if you want to control how low bits are extracted from the LHS.
5197   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
5198   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
5199   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
5200   /// \returns true if the node has been expanded. false if it has not
5201   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5202                  SelectionDAG &DAG, MulExpansionKind Kind,
5203                  SDValue LL = SDValue(), SDValue LH = SDValue(),
5204                  SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5205 
5206   /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
5207   /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
5208   /// will be expanded by DAGCombiner. This is not possible for all constant
5209   /// divisors.
5210   /// \param N Node to expand
5211   /// \param Result A vector that will be filled with the lo and high parts of
5212   ///        the results. For *DIVREM, this will be the quotient parts followed
5213   ///        by the remainder parts.
5214   /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
5215   ///        half of VT.
5216   /// \param LL Low bits of the LHS of the operation. You can use this
5217   ///        parameter if you want to control how low bits are extracted from
5218   ///        the LHS.
5219   /// \param LH High bits of the LHS of the operation. See LL for meaning.
5220   /// \returns true if the node has been expanded, false if it has not.
5221   bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl<SDValue> &Result,
5222                               EVT HiLoVT, SelectionDAG &DAG,
5223                               SDValue LL = SDValue(),
5224                               SDValue LH = SDValue()) const;
5225 
5226   /// Expand funnel shift.
5227   /// \param N Node to expand
5228   /// \returns The expansion if successful, SDValue() otherwise
5229   SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const;
5230 
5231   /// Expand rotations.
5232   /// \param N Node to expand
5233   /// \param AllowVectorOps expand vector rotate, this should only be performed
5234   ///        if the legalization is happening outside of LegalizeVectorOps
5235   /// \returns The expansion if successful, SDValue() otherwise
5236   SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
5237 
5238   /// Expand shift-by-parts.
5239   /// \param N Node to expand
5240   /// \param Lo lower-output-part after conversion
5241   /// \param Hi upper-output-part after conversion
5242   void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
5243                         SelectionDAG &DAG) const;
5244 
5245   /// Expand float(f32) to SINT(i64) conversion
5246   /// \param N Node to expand
5247   /// \param Result output after conversion
5248   /// \returns True, if the expansion was successful, false otherwise
5249   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
5250 
5251   /// Expand float to UINT conversion
5252   /// \param N Node to expand
5253   /// \param Result output after conversion
5254   /// \param Chain output chain after conversion
5255   /// \returns True, if the expansion was successful, false otherwise
5256   bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
5257                         SelectionDAG &DAG) const;
5258 
5259   /// Expand UINT(i64) to double(f64) conversion
5260   /// \param N Node to expand
5261   /// \param Result output after conversion
5262   /// \param Chain output chain after conversion
5263   /// \returns True, if the expansion was successful, false otherwise
5264   bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
5265                         SelectionDAG &DAG) const;
5266 
5267   /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
5268   SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
5269 
5270   /// Expand fminimum/fmaximum into multiple comparison with selects.
5271   SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const;
5272 
5273   /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
5274   /// \param N Node to expand
5275   /// \returns The expansion result
5276   SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
5277 
5278   /// Truncate Op to ResultVT. If the result is exact, leave it alone. If it is
5279   /// not exact, force the result to be odd.
5280   /// \param ResultVT The type of result.
5281   /// \param Op The value to round.
5282   /// \returns The expansion result
5283   SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL,
5284                                   SelectionDAG &DAG) const;
5285 
5286   /// Expand round(fp) to fp conversion
5287   /// \param N Node to expand
5288   /// \returns The expansion result
5289   SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const;
5290 
5291   /// Expand check for floating point class.
5292   /// \param ResultVT The type of intrinsic call result.
5293   /// \param Op The tested value.
5294   /// \param Test The test to perform.
5295   /// \param Flags The optimization flags.
5296   /// \returns The expansion result or SDValue() if it fails.
5297   SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test,
5298                            SDNodeFlags Flags, const SDLoc &DL,
5299                            SelectionDAG &DAG) const;
5300 
5301   /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
5302   /// vector nodes can only succeed if all operations are legal/custom.
5303   /// \param N Node to expand
5304   /// \returns The expansion result or SDValue() if it fails.
5305   SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
5306 
5307   /// Expand VP_CTPOP nodes.
5308   /// \returns The expansion result or SDValue() if it fails.
5309   SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const;
5310 
5311   /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
5312   /// vector nodes can only succeed if all operations are legal/custom.
5313   /// \param N Node to expand
5314   /// \returns The expansion result or SDValue() if it fails.
5315   SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
5316 
5317   /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
5318   /// \param N Node to expand
5319   /// \returns The expansion result or SDValue() if it fails.
5320   SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const;
5321 
5322   /// Expand CTTZ via Table Lookup.
5323   /// \param N Node to expand
5324   /// \returns The expansion result or SDValue() if it fails.
5325   SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5326                           SDValue Op, unsigned NumBitsPerElt) const;
5327 
5328   /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
5329   /// vector nodes can only succeed if all operations are legal/custom.
5330   /// \param N Node to expand
5331   /// \returns The expansion result or SDValue() if it fails.
5332   SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
5333 
5334   /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
5335   /// \param N Node to expand
5336   /// \returns The expansion result or SDValue() if it fails.
5337   SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const;
5338 
5339   /// Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
5340   /// \param N Node to expand
5341   /// \returns The expansion result or SDValue() if it fails.
5342   SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const;
5343 
5344   /// Expand ABS nodes. Expands vector/scalar ABS nodes,
5345   /// vector nodes can only succeed if all operations are legal/custom.
5346   /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
5347   /// \param N Node to expand
5348   /// \param IsNegative indicate negated abs
5349   /// \returns The expansion result or SDValue() if it fails.
5350   SDValue expandABS(SDNode *N, SelectionDAG &DAG,
5351                     bool IsNegative = false) const;
5352 
5353   /// Expand ABDS/ABDU nodes. Expands vector/scalar ABDS/ABDU nodes.
5354   /// \param N Node to expand
5355   /// \returns The expansion result or SDValue() if it fails.
5356   SDValue expandABD(SDNode *N, SelectionDAG &DAG) const;
5357 
5358   /// Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
5359   /// \param N Node to expand
5360   /// \returns The expansion result or SDValue() if it fails.
5361   SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const;
5362 
5363   /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
5364   /// scalar types. Returns SDValue() if expand fails.
5365   /// \param N Node to expand
5366   /// \returns The expansion result or SDValue() if it fails.
5367   SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
5368 
5369   /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
5370   /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
5371   /// to expand \returns The expansion result or SDValue() if it fails.
5372   SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const;
5373 
5374   /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
5375   /// Returns SDValue() if expand fails.
5376   /// \param N Node to expand
5377   /// \returns The expansion result or SDValue() if it fails.
5378   SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5379 
5380   /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
5381   /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
5382   /// expansion result or SDValue() if it fails.
5383   SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
5384 
5385   /// Turn load of vector type into a load of the individual elements.
5386   /// \param LD load to expand
5387   /// \returns BUILD_VECTOR and TokenFactor nodes.
5388   std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
5389                                                   SelectionDAG &DAG) const;
5390 
5391   // Turn a store of a vector type into stores of the individual elements.
5392   /// \param ST Store with a vector value type
5393   /// \returns TokenFactor of the individual store chains.
5394   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
5395 
5396   /// Expands an unaligned load to 2 half-size loads for an integer, and
5397   /// possibly more for vectors.
5398   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
5399                                                   SelectionDAG &DAG) const;
5400 
5401   /// Expands an unaligned store to 2 half-size stores for integer values, and
5402   /// possibly more for vectors.
5403   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
5404 
5405   /// Increments memory address \p Addr according to the type of the value
5406   /// \p DataVT that should be stored. If the data is stored in compressed
5407   /// form, the memory address should be incremented according to the number of
5408   /// the stored elements. This number is equal to the number of '1's bits
5409   /// in the \p Mask.
5410   /// \p DataVT is a vector type. \p Mask is a vector value.
5411   /// \p DataVT and \p Mask have the same number of vector elements.
5412   SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
5413                                  EVT DataVT, SelectionDAG &DAG,
5414                                  bool IsCompressedMemory) const;
5415 
5416   /// Get a pointer to vector element \p Idx located in memory for a vector of
5417   /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5418   /// bounds the returned pointer is unspecified, but will be within the vector
5419   /// bounds.
5420   SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
5421                                   SDValue Index) const;
5422 
5423   /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
5424   /// in memory for a vector of type \p VecVT starting at a base address of
5425   /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
5426   /// returned pointer is unspecified, but the value returned will be such that
5427   /// the entire subvector would be within the vector bounds.
5428   SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
5429                                  EVT SubVecVT, SDValue Index) const;
5430 
5431   /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
5432   /// method accepts integers as its arguments.
5433   SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
5434 
5435   /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
5436   /// method accepts integers as its arguments.
5437   SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
5438 
5439   /// Method for building the DAG expansion of ISD::[US]CMP. This
5440   /// method accepts integers as its arguments
5441   SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const;
5442 
5443   /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
5444   /// method accepts integers as its arguments.
5445   SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
5446 
5447   /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
5448   /// method accepts integers as its arguments.
5449   SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
5450 
5451   /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
5452   /// method accepts integers as its arguments.
5453   /// Note: This method may fail if the division could not be performed
5454   /// within the type. Clients must retry with a wider type if this happens.
5455   SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
5456                               SDValue LHS, SDValue RHS,
5457                               unsigned Scale, SelectionDAG &DAG) const;
5458 
5459   /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
5460   /// always suceeds and populates the Result and Overflow arguments.
5461   void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5462                       SelectionDAG &DAG) const;
5463 
5464   /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
5465   /// always suceeds and populates the Result and Overflow arguments.
5466   void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5467                       SelectionDAG &DAG) const;
5468 
5469   /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
5470   /// expansion was successful and populates the Result and Overflow arguments.
5471   bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5472                   SelectionDAG &DAG) const;
5473 
5474   /// forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or
5475   /// brute force via a wide multiplication. The expansion works by
5476   /// attempting to do a multiplication on a wider type twice the size of the
5477   /// original operands. LL and LH represent the lower and upper halves of the
5478   /// first operand. RL and RH represent the lower and upper halves of the
5479   /// second operand. The upper and lower halves of the result are stored in Lo
5480   /// and Hi.
5481   void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5482                           EVT WideVT, const SDValue LL, const SDValue LH,
5483                           const SDValue RL, const SDValue RH, SDValue &Lo,
5484                           SDValue &Hi) const;
5485 
5486   /// Same as above, but creates the upper halves of each operand by
5487   /// sign/zero-extending the operands.
5488   void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5489                           const SDValue LHS, const SDValue RHS, SDValue &Lo,
5490                           SDValue &Hi) const;
5491 
5492   /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
5493   /// only the first Count elements of the vector are used.
5494   SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
5495 
5496   /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
5497   SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
5498 
5499   /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
5500   /// Returns true if the expansion was successful.
5501   bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
5502 
5503   /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
5504   /// method accepts vectors as its arguments.
5505   SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
5506 
5507   /// Expand a vector VECTOR_COMPRESS into a sequence of extract element, store
5508   /// temporarily, advance store position, before re-loading the final vector.
5509   SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const;
5510 
5511   /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
5512   /// on the current target. A VP_SETCC will additionally be given a Mask
5513   /// and/or EVL not equal to SDValue().
5514   ///
5515   /// If the SETCC has been legalized using AND / OR, then the legalized node
5516   /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
5517   /// will be set to false. This will also hold if the VP_SETCC has been
5518   /// legalized using VP_AND / VP_OR.
5519   ///
5520   /// If the SETCC / VP_SETCC has been legalized by using
5521   /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
5522   /// swapped, CC will be set to the new condition, and NeedInvert will be set
5523   /// to false.
5524   ///
5525   /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
5526   /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
5527   /// and NeedInvert will be set to true. The caller must invert the result of
5528   /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
5529   /// swap the effect of a true/false result.
5530   ///
5531   /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
5532   /// hasn't.
5533   bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
5534                              SDValue &RHS, SDValue &CC, SDValue Mask,
5535                              SDValue EVL, bool &NeedInvert, const SDLoc &dl,
5536                              SDValue &Chain, bool IsSignaling = false) const;
5537 
5538   //===--------------------------------------------------------------------===//
5539   // Instruction Emitting Hooks
5540   //
5541 
5542   /// This method should be implemented by targets that mark instructions with
5543   /// the 'usesCustomInserter' flag.  These instructions are special in various
5544   /// ways, which require special support to insert.  The specified MachineInstr
5545   /// is created but not inserted into any basic blocks, and this method is
5546   /// called to expand it into a sequence of instructions, potentially also
5547   /// creating new basic blocks and control flow.
5548   /// As long as the returned basic block is different (i.e., we created a new
5549   /// one), the custom inserter is free to modify the rest of \p MBB.
5550   virtual MachineBasicBlock *
5551   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
5552 
5553   /// This method should be implemented by targets that mark instructions with
5554   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
5555   /// instruction selection by target hooks.  e.g. To fill in optional defs for
5556   /// ARM 's' setting instructions.
5557   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
5558                                              SDNode *Node) const;
5559 
5560   /// If this function returns true, SelectionDAGBuilder emits a
5561   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()5562   virtual bool useLoadStackGuardNode() const {
5563     return false;
5564   }
5565 
emitStackGuardXorFP(SelectionDAG & DAG,SDValue Val,const SDLoc & DL)5566   virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
5567                                       const SDLoc &DL) const {
5568     llvm_unreachable("not implemented for this target");
5569   }
5570 
5571   /// Lower TLS global address SDNode for target independent emulated TLS model.
5572   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5573                                           SelectionDAG &DAG) const;
5574 
5575   /// Expands target specific indirect branch for the case of JumpTable
5576   /// expansion.
5577   virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
5578                                          SDValue Addr, int JTI,
5579                                          SelectionDAG &DAG) const;
5580 
5581   // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
5582   // If we're comparing for equality to zero and isCtlzFast is true, expose the
5583   // fact that this can be implemented as a ctlz/srl pair, so that the dag
5584   // combiner can fold the new nodes.
5585   SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
5586 
5587   // Return true if `X & Y eq/ne 0` is preferable to `X & Y ne/eq Y`
isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode,EVT)5588   virtual bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode, EVT) const {
5589     return true;
5590   }
5591 
5592 private:
5593   SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5594                            const SDLoc &DL, DAGCombinerInfo &DCI) const;
5595   SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5596                              const SDLoc &DL, DAGCombinerInfo &DCI) const;
5597 
5598   SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
5599                                                SDValue N1, ISD::CondCode Cond,
5600                                                DAGCombinerInfo &DCI,
5601                                                const SDLoc &DL) const;
5602 
5603   // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
5604   SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
5605       EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
5606       DAGCombinerInfo &DCI, const SDLoc &DL) const;
5607 
5608   SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5609                             SDValue CompTargetNode, ISD::CondCode Cond,
5610                             DAGCombinerInfo &DCI, const SDLoc &DL,
5611                             SmallVectorImpl<SDNode *> &Created) const;
5612   SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5613                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
5614                           const SDLoc &DL) const;
5615 
5616   SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5617                             SDValue CompTargetNode, ISD::CondCode Cond,
5618                             DAGCombinerInfo &DCI, const SDLoc &DL,
5619                             SmallVectorImpl<SDNode *> &Created) const;
5620   SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5621                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
5622                           const SDLoc &DL) const;
5623 };
5624 
5625 /// Given an LLVM IR type and return type attributes, compute the return value
5626 /// EVTs and flags, and optionally also the offsets, if the return value is
5627 /// being lowered to memory.
5628 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
5629                    SmallVectorImpl<ISD::OutputArg> &Outs,
5630                    const TargetLowering &TLI, const DataLayout &DL);
5631 
5632 } // end namespace llvm
5633 
5634 #endif // LLVM_CODEGEN_TARGETLOWERING_H
5635