xref: /linux/drivers/crypto/allwinner/sun8i-ce/sun8i-ce-core.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sun8i-ce-core.c - hardware cryptographic offloader for
4  * Allwinner H3/A64/H5/H2+/H6/R40 SoC
5  *
6  * Copyright (C) 2015-2019 Corentin Labbe <clabbe.montjoie@gmail.com>
7  *
8  * Core file which registers crypto algorithms supported by the CryptoEngine.
9  *
10  * You could find a link for the datasheet in Documentation/arch/arm/sunxi.rst
11  */
12 
13 #include <crypto/engine.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/rng.h>
16 #include <crypto/internal/skcipher.h>
17 #include <linux/clk.h>
18 #include <linux/delay.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #include "sun8i-ce.h"
32 
33 /*
34  * mod clock is lower on H3 than other SoC due to some DMA timeout occurring
35  * with high value.
36  * If you want to tune mod clock, loading driver and passing selftest is
37  * insufficient, you need to test with some LUKS test (mount and write to it)
38  */
39 static const struct ce_variant ce_h3_variant = {
40 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
41 	},
42 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
43 		CE_ALG_SHA384, CE_ALG_SHA512
44 	},
45 	.op_mode = { CE_OP_ECB, CE_OP_CBC
46 	},
47 	.ce_clks = {
48 		{ "bus", 0, 200000000 },
49 		{ "mod", 50000000, 0 },
50 		},
51 	.esr = ESR_H3,
52 	.prng = CE_ALG_PRNG,
53 	.trng = CE_ID_NOTSUPP,
54 };
55 
56 static const struct ce_variant ce_h5_variant = {
57 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
58 	},
59 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
60 		CE_ID_NOTSUPP, CE_ID_NOTSUPP
61 	},
62 	.op_mode = { CE_OP_ECB, CE_OP_CBC
63 	},
64 	.ce_clks = {
65 		{ "bus", 0, 200000000 },
66 		{ "mod", 300000000, 0 },
67 		},
68 	.esr = ESR_H5,
69 	.prng = CE_ALG_PRNG,
70 	.trng = CE_ID_NOTSUPP,
71 };
72 
73 static const struct ce_variant ce_h6_variant = {
74 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
75 	},
76 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
77 		CE_ALG_SHA384, CE_ALG_SHA512
78 	},
79 	.op_mode = { CE_OP_ECB, CE_OP_CBC
80 	},
81 	.cipher_t_dlen_in_bytes = true,
82 	.hash_t_dlen_in_bits = true,
83 	.prng_t_dlen_in_bytes = true,
84 	.trng_t_dlen_in_bytes = true,
85 	.ce_clks = {
86 		{ "bus", 0, 200000000 },
87 		{ "mod", 300000000, 0 },
88 		{ "ram", 0, 400000000 },
89 		},
90 	.esr = ESR_H6,
91 	.prng = CE_ALG_PRNG_V2,
92 	.trng = CE_ALG_TRNG_V2,
93 };
94 
95 static const struct ce_variant ce_h616_variant = {
96 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
97 	},
98 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
99 		CE_ALG_SHA384, CE_ALG_SHA512
100 	},
101 	.op_mode = { CE_OP_ECB, CE_OP_CBC
102 	},
103 	.cipher_t_dlen_in_bytes = true,
104 	.hash_t_dlen_in_bits = true,
105 	.prng_t_dlen_in_bytes = true,
106 	.trng_t_dlen_in_bytes = true,
107 	.needs_word_addresses = true,
108 	.ce_clks = {
109 		{ "bus", 0, 200000000 },
110 		{ "mod", 300000000, 0 },
111 		{ "ram", 0, 400000000 },
112 		{ "trng", 0, 0 },
113 		},
114 	.esr = ESR_H6,
115 	.prng = CE_ALG_PRNG_V2,
116 	.trng = CE_ALG_TRNG_V2,
117 };
118 
119 static const struct ce_variant ce_a64_variant = {
120 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
121 	},
122 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
123 		CE_ID_NOTSUPP, CE_ID_NOTSUPP
124 	},
125 	.op_mode = { CE_OP_ECB, CE_OP_CBC
126 	},
127 	.ce_clks = {
128 		{ "bus", 0, 200000000 },
129 		{ "mod", 300000000, 0 },
130 		},
131 	.esr = ESR_A64,
132 	.prng = CE_ALG_PRNG,
133 	.trng = CE_ID_NOTSUPP,
134 };
135 
136 static const struct ce_variant ce_d1_variant = {
137 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
138 	},
139 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
140 		CE_ALG_SHA384, CE_ALG_SHA512
141 	},
142 	.op_mode = { CE_OP_ECB, CE_OP_CBC
143 	},
144 	.ce_clks = {
145 		{ "bus", 0, 200000000 },
146 		{ "mod", 300000000, 0 },
147 		{ "ram", 0, 400000000 },
148 		{ "trng", 0, 0 },
149 		},
150 	.esr = ESR_D1,
151 	.prng = CE_ALG_PRNG,
152 	.trng = CE_ALG_TRNG,
153 };
154 
155 static const struct ce_variant ce_r40_variant = {
156 	.alg_cipher = { CE_ALG_AES, CE_ALG_DES, CE_ALG_3DES,
157 	},
158 	.alg_hash = { CE_ALG_MD5, CE_ALG_SHA1, CE_ALG_SHA224, CE_ALG_SHA256,
159 		CE_ID_NOTSUPP, CE_ID_NOTSUPP
160 	},
161 	.op_mode = { CE_OP_ECB, CE_OP_CBC
162 	},
163 	.ce_clks = {
164 		{ "bus", 0, 200000000 },
165 		{ "mod", 300000000, 0 },
166 		},
167 	.esr = ESR_R40,
168 	.prng = CE_ALG_PRNG,
169 	.trng = CE_ID_NOTSUPP,
170 };
171 
172 /*
173  * sun8i_ce_get_engine_number() get the next channel slot
174  * This is a simple round-robin way of getting the next channel
175  * The flow 3 is reserve for xRNG operations
176  */
sun8i_ce_get_engine_number(struct sun8i_ce_dev * ce)177 int sun8i_ce_get_engine_number(struct sun8i_ce_dev *ce)
178 {
179 	return atomic_inc_return(&ce->flow) % (MAXFLOW - 1);
180 }
181 
sun8i_ce_run_task(struct sun8i_ce_dev * ce,int flow,const char * name)182 int sun8i_ce_run_task(struct sun8i_ce_dev *ce, int flow, const char *name)
183 {
184 	u32 v;
185 	int err = 0;
186 	struct ce_task *cet = ce->chanlist[flow].tl;
187 
188 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
189 	ce->chanlist[flow].stat_req++;
190 #endif
191 
192 	mutex_lock(&ce->mlock);
193 
194 	v = readl(ce->base + CE_ICR);
195 	v |= 1 << flow;
196 	writel(v, ce->base + CE_ICR);
197 
198 	reinit_completion(&ce->chanlist[flow].complete);
199 	writel(desc_addr_val(ce, ce->chanlist[flow].t_phy), ce->base + CE_TDQ);
200 
201 	ce->chanlist[flow].status = 0;
202 	/* Be sure all data is written before enabling the task */
203 	wmb();
204 
205 	/* Only H6 needs to write a part of t_common_ctl along with "1", but since it is ignored
206 	 * on older SoCs, we have no reason to complicate things.
207 	 */
208 	v = 1 | ((le32_to_cpu(ce->chanlist[flow].tl->t_common_ctl) & 0x7F) << 8);
209 	writel(v, ce->base + CE_TLR);
210 	mutex_unlock(&ce->mlock);
211 
212 	wait_for_completion_interruptible_timeout(&ce->chanlist[flow].complete,
213 			msecs_to_jiffies(ce->chanlist[flow].timeout));
214 
215 	if (ce->chanlist[flow].status == 0) {
216 		dev_err(ce->dev, "DMA timeout for %s (tm=%d) on flow %d\n", name,
217 			ce->chanlist[flow].timeout, flow);
218 		err = -EFAULT;
219 	}
220 	/* No need to lock for this read, the channel is locked so
221 	 * nothing could modify the error value for this channel
222 	 */
223 	v = readl(ce->base + CE_ESR);
224 	switch (ce->variant->esr) {
225 	case ESR_H3:
226 		/* Sadly, the error bit is not per flow */
227 		if (v) {
228 			dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
229 			err = -EFAULT;
230 			print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
231 				       cet, sizeof(struct ce_task), false);
232 		}
233 		if (v & CE_ERR_ALGO_NOTSUP)
234 			dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
235 		if (v & CE_ERR_DATALEN)
236 			dev_err(ce->dev, "CE ERROR: data length error\n");
237 		if (v & CE_ERR_KEYSRAM)
238 			dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
239 		break;
240 	case ESR_A64:
241 	case ESR_D1:
242 	case ESR_H5:
243 	case ESR_R40:
244 		v >>= (flow * 4);
245 		v &= 0xF;
246 		if (v) {
247 			dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
248 			err = -EFAULT;
249 			print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
250 				       cet, sizeof(struct ce_task), false);
251 		}
252 		if (v & CE_ERR_ALGO_NOTSUP)
253 			dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
254 		if (v & CE_ERR_DATALEN)
255 			dev_err(ce->dev, "CE ERROR: data length error\n");
256 		if (v & CE_ERR_KEYSRAM)
257 			dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
258 		break;
259 	case ESR_H6:
260 		v >>= (flow * 8);
261 		v &= 0xFF;
262 		if (v) {
263 			dev_err(ce->dev, "CE ERROR: %x for flow %x\n", v, flow);
264 			err = -EFAULT;
265 			print_hex_dump(KERN_INFO, "TASK: ", DUMP_PREFIX_NONE, 16, 4,
266 				       cet, sizeof(struct ce_task), false);
267 		}
268 		if (v & CE_ERR_ALGO_NOTSUP)
269 			dev_err(ce->dev, "CE ERROR: algorithm not supported\n");
270 		if (v & CE_ERR_DATALEN)
271 			dev_err(ce->dev, "CE ERROR: data length error\n");
272 		if (v & CE_ERR_KEYSRAM)
273 			dev_err(ce->dev, "CE ERROR: keysram access error for AES\n");
274 		if (v & CE_ERR_ADDR_INVALID)
275 			dev_err(ce->dev, "CE ERROR: address invalid\n");
276 		if (v & CE_ERR_KEYLADDER)
277 			dev_err(ce->dev, "CE ERROR: key ladder configuration error\n");
278 		break;
279 	}
280 
281 	return err;
282 }
283 
ce_irq_handler(int irq,void * data)284 static irqreturn_t ce_irq_handler(int irq, void *data)
285 {
286 	struct sun8i_ce_dev *ce = (struct sun8i_ce_dev *)data;
287 	int flow = 0;
288 	u32 p;
289 
290 	p = readl(ce->base + CE_ISR);
291 	for (flow = 0; flow < MAXFLOW; flow++) {
292 		if (p & (BIT(flow))) {
293 			writel(BIT(flow), ce->base + CE_ISR);
294 			ce->chanlist[flow].status = 1;
295 			complete(&ce->chanlist[flow].complete);
296 		}
297 	}
298 
299 	return IRQ_HANDLED;
300 }
301 
302 static struct sun8i_ce_alg_template ce_algs[] = {
303 {
304 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
305 	.ce_algo_id = CE_ID_CIPHER_AES,
306 	.ce_blockmode = CE_ID_OP_CBC,
307 	.alg.skcipher.base = {
308 		.base = {
309 			.cra_name = "cbc(aes)",
310 			.cra_driver_name = "cbc-aes-sun8i-ce",
311 			.cra_priority = 400,
312 			.cra_blocksize = AES_BLOCK_SIZE,
313 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
314 				CRYPTO_ALG_ASYNC |
315 				CRYPTO_ALG_NEED_FALLBACK,
316 			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
317 			.cra_module = THIS_MODULE,
318 			.cra_alignmask = 0xf,
319 			.cra_init = sun8i_ce_cipher_init,
320 			.cra_exit = sun8i_ce_cipher_exit,
321 		},
322 		.min_keysize	= AES_MIN_KEY_SIZE,
323 		.max_keysize	= AES_MAX_KEY_SIZE,
324 		.ivsize		= AES_BLOCK_SIZE,
325 		.setkey		= sun8i_ce_aes_setkey,
326 		.encrypt	= sun8i_ce_skencrypt,
327 		.decrypt	= sun8i_ce_skdecrypt,
328 	},
329 	.alg.skcipher.op = {
330 		.do_one_request = sun8i_ce_cipher_do_one,
331 	},
332 },
333 {
334 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
335 	.ce_algo_id = CE_ID_CIPHER_AES,
336 	.ce_blockmode = CE_ID_OP_ECB,
337 	.alg.skcipher.base = {
338 		.base = {
339 			.cra_name = "ecb(aes)",
340 			.cra_driver_name = "ecb-aes-sun8i-ce",
341 			.cra_priority = 400,
342 			.cra_blocksize = AES_BLOCK_SIZE,
343 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
344 				CRYPTO_ALG_ASYNC |
345 				CRYPTO_ALG_NEED_FALLBACK,
346 			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
347 			.cra_module = THIS_MODULE,
348 			.cra_alignmask = 0xf,
349 			.cra_init = sun8i_ce_cipher_init,
350 			.cra_exit = sun8i_ce_cipher_exit,
351 		},
352 		.min_keysize	= AES_MIN_KEY_SIZE,
353 		.max_keysize	= AES_MAX_KEY_SIZE,
354 		.setkey		= sun8i_ce_aes_setkey,
355 		.encrypt	= sun8i_ce_skencrypt,
356 		.decrypt	= sun8i_ce_skdecrypt,
357 	},
358 	.alg.skcipher.op = {
359 		.do_one_request = sun8i_ce_cipher_do_one,
360 	},
361 },
362 {
363 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
364 	.ce_algo_id = CE_ID_CIPHER_DES3,
365 	.ce_blockmode = CE_ID_OP_CBC,
366 	.alg.skcipher.base = {
367 		.base = {
368 			.cra_name = "cbc(des3_ede)",
369 			.cra_driver_name = "cbc-des3-sun8i-ce",
370 			.cra_priority = 400,
371 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
372 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
373 				CRYPTO_ALG_ASYNC |
374 				CRYPTO_ALG_NEED_FALLBACK,
375 			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
376 			.cra_module = THIS_MODULE,
377 			.cra_alignmask = 0xf,
378 			.cra_init = sun8i_ce_cipher_init,
379 			.cra_exit = sun8i_ce_cipher_exit,
380 		},
381 		.min_keysize	= DES3_EDE_KEY_SIZE,
382 		.max_keysize	= DES3_EDE_KEY_SIZE,
383 		.ivsize		= DES3_EDE_BLOCK_SIZE,
384 		.setkey		= sun8i_ce_des3_setkey,
385 		.encrypt	= sun8i_ce_skencrypt,
386 		.decrypt	= sun8i_ce_skdecrypt,
387 	},
388 	.alg.skcipher.op = {
389 		.do_one_request = sun8i_ce_cipher_do_one,
390 	},
391 },
392 {
393 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
394 	.ce_algo_id = CE_ID_CIPHER_DES3,
395 	.ce_blockmode = CE_ID_OP_ECB,
396 	.alg.skcipher.base = {
397 		.base = {
398 			.cra_name = "ecb(des3_ede)",
399 			.cra_driver_name = "ecb-des3-sun8i-ce",
400 			.cra_priority = 400,
401 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
402 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
403 				CRYPTO_ALG_ASYNC |
404 				CRYPTO_ALG_NEED_FALLBACK,
405 			.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
406 			.cra_module = THIS_MODULE,
407 			.cra_alignmask = 0xf,
408 			.cra_init = sun8i_ce_cipher_init,
409 			.cra_exit = sun8i_ce_cipher_exit,
410 		},
411 		.min_keysize	= DES3_EDE_KEY_SIZE,
412 		.max_keysize	= DES3_EDE_KEY_SIZE,
413 		.setkey		= sun8i_ce_des3_setkey,
414 		.encrypt	= sun8i_ce_skencrypt,
415 		.decrypt	= sun8i_ce_skdecrypt,
416 	},
417 	.alg.skcipher.op = {
418 		.do_one_request = sun8i_ce_cipher_do_one,
419 	},
420 },
421 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_HASH
422 {	.type = CRYPTO_ALG_TYPE_AHASH,
423 	.ce_algo_id = CE_ID_HASH_MD5,
424 	.alg.hash.base = {
425 		.init = sun8i_ce_hash_init,
426 		.update = sun8i_ce_hash_update,
427 		.final = sun8i_ce_hash_final,
428 		.finup = sun8i_ce_hash_finup,
429 		.digest = sun8i_ce_hash_digest,
430 		.export = sun8i_ce_hash_export,
431 		.import = sun8i_ce_hash_import,
432 		.init_tfm = sun8i_ce_hash_init_tfm,
433 		.exit_tfm = sun8i_ce_hash_exit_tfm,
434 		.halg = {
435 			.digestsize = MD5_DIGEST_SIZE,
436 			.statesize = sizeof(struct md5_state),
437 			.base = {
438 				.cra_name = "md5",
439 				.cra_driver_name = "md5-sun8i-ce",
440 				.cra_priority = 300,
441 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
442 					CRYPTO_ALG_ASYNC |
443 					CRYPTO_ALG_NEED_FALLBACK,
444 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
445 				.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
446 				.cra_module = THIS_MODULE,
447 			}
448 		}
449 	},
450 	.alg.hash.op = {
451 		.do_one_request = sun8i_ce_hash_run,
452 	},
453 
454 },
455 {	.type = CRYPTO_ALG_TYPE_AHASH,
456 	.ce_algo_id = CE_ID_HASH_SHA1,
457 	.alg.hash.base = {
458 		.init = sun8i_ce_hash_init,
459 		.update = sun8i_ce_hash_update,
460 		.final = sun8i_ce_hash_final,
461 		.finup = sun8i_ce_hash_finup,
462 		.digest = sun8i_ce_hash_digest,
463 		.export = sun8i_ce_hash_export,
464 		.import = sun8i_ce_hash_import,
465 		.init_tfm = sun8i_ce_hash_init_tfm,
466 		.exit_tfm = sun8i_ce_hash_exit_tfm,
467 		.halg = {
468 			.digestsize = SHA1_DIGEST_SIZE,
469 			.statesize = sizeof(struct sha1_state),
470 			.base = {
471 				.cra_name = "sha1",
472 				.cra_driver_name = "sha1-sun8i-ce",
473 				.cra_priority = 300,
474 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
475 					CRYPTO_ALG_ASYNC |
476 					CRYPTO_ALG_NEED_FALLBACK,
477 				.cra_blocksize = SHA1_BLOCK_SIZE,
478 				.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
479 				.cra_module = THIS_MODULE,
480 			}
481 		}
482 	},
483 	.alg.hash.op = {
484 		.do_one_request = sun8i_ce_hash_run,
485 	},
486 },
487 {	.type = CRYPTO_ALG_TYPE_AHASH,
488 	.ce_algo_id = CE_ID_HASH_SHA224,
489 	.alg.hash.base = {
490 		.init = sun8i_ce_hash_init,
491 		.update = sun8i_ce_hash_update,
492 		.final = sun8i_ce_hash_final,
493 		.finup = sun8i_ce_hash_finup,
494 		.digest = sun8i_ce_hash_digest,
495 		.export = sun8i_ce_hash_export,
496 		.import = sun8i_ce_hash_import,
497 		.init_tfm = sun8i_ce_hash_init_tfm,
498 		.exit_tfm = sun8i_ce_hash_exit_tfm,
499 		.halg = {
500 			.digestsize = SHA224_DIGEST_SIZE,
501 			.statesize = sizeof(struct sha256_state),
502 			.base = {
503 				.cra_name = "sha224",
504 				.cra_driver_name = "sha224-sun8i-ce",
505 				.cra_priority = 300,
506 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
507 					CRYPTO_ALG_ASYNC |
508 					CRYPTO_ALG_NEED_FALLBACK,
509 				.cra_blocksize = SHA224_BLOCK_SIZE,
510 				.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
511 				.cra_module = THIS_MODULE,
512 			}
513 		}
514 	},
515 	.alg.hash.op = {
516 		.do_one_request = sun8i_ce_hash_run,
517 	},
518 },
519 {	.type = CRYPTO_ALG_TYPE_AHASH,
520 	.ce_algo_id = CE_ID_HASH_SHA256,
521 	.alg.hash.base = {
522 		.init = sun8i_ce_hash_init,
523 		.update = sun8i_ce_hash_update,
524 		.final = sun8i_ce_hash_final,
525 		.finup = sun8i_ce_hash_finup,
526 		.digest = sun8i_ce_hash_digest,
527 		.export = sun8i_ce_hash_export,
528 		.import = sun8i_ce_hash_import,
529 		.init_tfm = sun8i_ce_hash_init_tfm,
530 		.exit_tfm = sun8i_ce_hash_exit_tfm,
531 		.halg = {
532 			.digestsize = SHA256_DIGEST_SIZE,
533 			.statesize = sizeof(struct sha256_state),
534 			.base = {
535 				.cra_name = "sha256",
536 				.cra_driver_name = "sha256-sun8i-ce",
537 				.cra_priority = 300,
538 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
539 					CRYPTO_ALG_ASYNC |
540 					CRYPTO_ALG_NEED_FALLBACK,
541 				.cra_blocksize = SHA256_BLOCK_SIZE,
542 				.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
543 				.cra_module = THIS_MODULE,
544 			}
545 		}
546 	},
547 	.alg.hash.op = {
548 		.do_one_request = sun8i_ce_hash_run,
549 	},
550 },
551 {	.type = CRYPTO_ALG_TYPE_AHASH,
552 	.ce_algo_id = CE_ID_HASH_SHA384,
553 	.alg.hash.base = {
554 		.init = sun8i_ce_hash_init,
555 		.update = sun8i_ce_hash_update,
556 		.final = sun8i_ce_hash_final,
557 		.finup = sun8i_ce_hash_finup,
558 		.digest = sun8i_ce_hash_digest,
559 		.export = sun8i_ce_hash_export,
560 		.import = sun8i_ce_hash_import,
561 		.init_tfm = sun8i_ce_hash_init_tfm,
562 		.exit_tfm = sun8i_ce_hash_exit_tfm,
563 		.halg = {
564 			.digestsize = SHA384_DIGEST_SIZE,
565 			.statesize = sizeof(struct sha512_state),
566 			.base = {
567 				.cra_name = "sha384",
568 				.cra_driver_name = "sha384-sun8i-ce",
569 				.cra_priority = 300,
570 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
571 					CRYPTO_ALG_ASYNC |
572 					CRYPTO_ALG_NEED_FALLBACK,
573 				.cra_blocksize = SHA384_BLOCK_SIZE,
574 				.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
575 				.cra_module = THIS_MODULE,
576 			}
577 		}
578 	},
579 	.alg.hash.op = {
580 		.do_one_request = sun8i_ce_hash_run,
581 	},
582 },
583 {	.type = CRYPTO_ALG_TYPE_AHASH,
584 	.ce_algo_id = CE_ID_HASH_SHA512,
585 	.alg.hash.base = {
586 		.init = sun8i_ce_hash_init,
587 		.update = sun8i_ce_hash_update,
588 		.final = sun8i_ce_hash_final,
589 		.finup = sun8i_ce_hash_finup,
590 		.digest = sun8i_ce_hash_digest,
591 		.export = sun8i_ce_hash_export,
592 		.import = sun8i_ce_hash_import,
593 		.init_tfm = sun8i_ce_hash_init_tfm,
594 		.exit_tfm = sun8i_ce_hash_exit_tfm,
595 		.halg = {
596 			.digestsize = SHA512_DIGEST_SIZE,
597 			.statesize = sizeof(struct sha512_state),
598 			.base = {
599 				.cra_name = "sha512",
600 				.cra_driver_name = "sha512-sun8i-ce",
601 				.cra_priority = 300,
602 				.cra_flags = CRYPTO_ALG_TYPE_AHASH |
603 					CRYPTO_ALG_ASYNC |
604 					CRYPTO_ALG_NEED_FALLBACK,
605 				.cra_blocksize = SHA512_BLOCK_SIZE,
606 				.cra_ctxsize = sizeof(struct sun8i_ce_hash_tfm_ctx),
607 				.cra_module = THIS_MODULE,
608 			}
609 		}
610 	},
611 	.alg.hash.op = {
612 		.do_one_request = sun8i_ce_hash_run,
613 	},
614 },
615 #endif
616 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_PRNG
617 {
618 	.type = CRYPTO_ALG_TYPE_RNG,
619 	.alg.rng = {
620 		.base = {
621 			.cra_name		= "stdrng",
622 			.cra_driver_name	= "sun8i-ce-prng",
623 			.cra_priority		= 300,
624 			.cra_ctxsize		= sizeof(struct sun8i_ce_rng_tfm_ctx),
625 			.cra_module		= THIS_MODULE,
626 			.cra_init		= sun8i_ce_prng_init,
627 			.cra_exit		= sun8i_ce_prng_exit,
628 		},
629 		.generate               = sun8i_ce_prng_generate,
630 		.seed                   = sun8i_ce_prng_seed,
631 		.seedsize               = PRNG_SEED_SIZE,
632 	}
633 },
634 #endif
635 };
636 
sun8i_ce_debugfs_show(struct seq_file * seq,void * v)637 static int sun8i_ce_debugfs_show(struct seq_file *seq, void *v)
638 {
639 	struct sun8i_ce_dev *ce __maybe_unused = seq->private;
640 	unsigned int i;
641 
642 	for (i = 0; i < MAXFLOW; i++)
643 		seq_printf(seq, "Channel %d: nreq %lu\n", i,
644 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
645 			   ce->chanlist[i].stat_req);
646 #else
647 			   0ul);
648 #endif
649 
650 	for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
651 		if (!ce_algs[i].ce)
652 			continue;
653 		switch (ce_algs[i].type) {
654 		case CRYPTO_ALG_TYPE_SKCIPHER:
655 			seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n",
656 				   ce_algs[i].alg.skcipher.base.base.cra_driver_name,
657 				   ce_algs[i].alg.skcipher.base.base.cra_name,
658 				   ce_algs[i].stat_req, ce_algs[i].stat_fb);
659 			seq_printf(seq, "\tLast fallback is: %s\n",
660 				   ce_algs[i].fbname);
661 			seq_printf(seq, "\tFallback due to 0 length: %lu\n",
662 				   ce_algs[i].stat_fb_len0);
663 			seq_printf(seq, "\tFallback due to length !mod16: %lu\n",
664 				   ce_algs[i].stat_fb_mod16);
665 			seq_printf(seq, "\tFallback due to length < IV: %lu\n",
666 				   ce_algs[i].stat_fb_leniv);
667 			seq_printf(seq, "\tFallback due to source alignment: %lu\n",
668 				   ce_algs[i].stat_fb_srcali);
669 			seq_printf(seq, "\tFallback due to dest alignment: %lu\n",
670 				   ce_algs[i].stat_fb_dstali);
671 			seq_printf(seq, "\tFallback due to source length: %lu\n",
672 				   ce_algs[i].stat_fb_srclen);
673 			seq_printf(seq, "\tFallback due to dest length: %lu\n",
674 				   ce_algs[i].stat_fb_dstlen);
675 			seq_printf(seq, "\tFallback due to SG numbers: %lu\n",
676 				   ce_algs[i].stat_fb_maxsg);
677 			break;
678 		case CRYPTO_ALG_TYPE_AHASH:
679 			seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n",
680 				   ce_algs[i].alg.hash.base.halg.base.cra_driver_name,
681 				   ce_algs[i].alg.hash.base.halg.base.cra_name,
682 				   ce_algs[i].stat_req, ce_algs[i].stat_fb);
683 			seq_printf(seq, "\tLast fallback is: %s\n",
684 				   ce_algs[i].fbname);
685 			seq_printf(seq, "\tFallback due to 0 length: %lu\n",
686 				   ce_algs[i].stat_fb_len0);
687 			seq_printf(seq, "\tFallback due to length: %lu\n",
688 				   ce_algs[i].stat_fb_srclen);
689 			seq_printf(seq, "\tFallback due to alignment: %lu\n",
690 				   ce_algs[i].stat_fb_srcali);
691 			seq_printf(seq, "\tFallback due to SG numbers: %lu\n",
692 				   ce_algs[i].stat_fb_maxsg);
693 			break;
694 		case CRYPTO_ALG_TYPE_RNG:
695 			seq_printf(seq, "%s %s reqs=%lu bytes=%lu\n",
696 				   ce_algs[i].alg.rng.base.cra_driver_name,
697 				   ce_algs[i].alg.rng.base.cra_name,
698 				   ce_algs[i].stat_req, ce_algs[i].stat_bytes);
699 			break;
700 		}
701 	}
702 #if defined(CONFIG_CRYPTO_DEV_SUN8I_CE_TRNG) && \
703     defined(CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG)
704 	seq_printf(seq, "HWRNG %lu %lu\n",
705 		   ce->hwrng_stat_req, ce->hwrng_stat_bytes);
706 #endif
707 	return 0;
708 }
709 
710 DEFINE_SHOW_ATTRIBUTE(sun8i_ce_debugfs);
711 
sun8i_ce_free_chanlist(struct sun8i_ce_dev * ce,int i)712 static void sun8i_ce_free_chanlist(struct sun8i_ce_dev *ce, int i)
713 {
714 	while (i >= 0) {
715 		crypto_engine_exit(ce->chanlist[i].engine);
716 		if (ce->chanlist[i].tl)
717 			dma_free_coherent(ce->dev, sizeof(struct ce_task),
718 					  ce->chanlist[i].tl,
719 					  ce->chanlist[i].t_phy);
720 		i--;
721 	}
722 }
723 
724 /*
725  * Allocate the channel list structure
726  */
sun8i_ce_allocate_chanlist(struct sun8i_ce_dev * ce)727 static int sun8i_ce_allocate_chanlist(struct sun8i_ce_dev *ce)
728 {
729 	int i, err;
730 
731 	ce->chanlist = devm_kcalloc(ce->dev, MAXFLOW,
732 				    sizeof(struct sun8i_ce_flow), GFP_KERNEL);
733 	if (!ce->chanlist)
734 		return -ENOMEM;
735 
736 	for (i = 0; i < MAXFLOW; i++) {
737 		init_completion(&ce->chanlist[i].complete);
738 
739 		ce->chanlist[i].engine = crypto_engine_alloc_init(ce->dev, true);
740 		if (!ce->chanlist[i].engine) {
741 			dev_err(ce->dev, "Cannot allocate engine\n");
742 			i--;
743 			err = -ENOMEM;
744 			goto error_engine;
745 		}
746 		err = crypto_engine_start(ce->chanlist[i].engine);
747 		if (err) {
748 			dev_err(ce->dev, "Cannot start engine\n");
749 			goto error_engine;
750 		}
751 		ce->chanlist[i].tl = dma_alloc_coherent(ce->dev,
752 							sizeof(struct ce_task),
753 							&ce->chanlist[i].t_phy,
754 							GFP_KERNEL);
755 		if (!ce->chanlist[i].tl) {
756 			dev_err(ce->dev, "Cannot get DMA memory for task %d\n",
757 				i);
758 			err = -ENOMEM;
759 			goto error_engine;
760 		}
761 		ce->chanlist[i].bounce_iv = devm_kmalloc(ce->dev, AES_BLOCK_SIZE,
762 							 GFP_KERNEL | GFP_DMA);
763 		if (!ce->chanlist[i].bounce_iv) {
764 			err = -ENOMEM;
765 			goto error_engine;
766 		}
767 		ce->chanlist[i].backup_iv = devm_kmalloc(ce->dev, AES_BLOCK_SIZE,
768 							 GFP_KERNEL);
769 		if (!ce->chanlist[i].backup_iv) {
770 			err = -ENOMEM;
771 			goto error_engine;
772 		}
773 	}
774 	return 0;
775 error_engine:
776 	sun8i_ce_free_chanlist(ce, i);
777 	return err;
778 }
779 
780 /*
781  * Power management strategy: The device is suspended unless a TFM exists for
782  * one of the algorithms proposed by this driver.
783  */
sun8i_ce_pm_suspend(struct device * dev)784 static int sun8i_ce_pm_suspend(struct device *dev)
785 {
786 	struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
787 	int i;
788 
789 	reset_control_assert(ce->reset);
790 	for (i = 0; i < CE_MAX_CLOCKS; i++)
791 		clk_disable_unprepare(ce->ceclks[i]);
792 	return 0;
793 }
794 
sun8i_ce_pm_resume(struct device * dev)795 static int sun8i_ce_pm_resume(struct device *dev)
796 {
797 	struct sun8i_ce_dev *ce = dev_get_drvdata(dev);
798 	int err, i;
799 
800 	for (i = 0; i < CE_MAX_CLOCKS; i++) {
801 		if (!ce->variant->ce_clks[i].name)
802 			continue;
803 		err = clk_prepare_enable(ce->ceclks[i]);
804 		if (err) {
805 			dev_err(ce->dev, "Cannot prepare_enable %s\n",
806 				ce->variant->ce_clks[i].name);
807 			goto error;
808 		}
809 	}
810 	err = reset_control_deassert(ce->reset);
811 	if (err) {
812 		dev_err(ce->dev, "Cannot deassert reset control\n");
813 		goto error;
814 	}
815 	return 0;
816 error:
817 	sun8i_ce_pm_suspend(dev);
818 	return err;
819 }
820 
821 static const struct dev_pm_ops sun8i_ce_pm_ops = {
822 	SET_RUNTIME_PM_OPS(sun8i_ce_pm_suspend, sun8i_ce_pm_resume, NULL)
823 };
824 
sun8i_ce_pm_init(struct sun8i_ce_dev * ce)825 static int sun8i_ce_pm_init(struct sun8i_ce_dev *ce)
826 {
827 	int err;
828 
829 	pm_runtime_use_autosuspend(ce->dev);
830 	pm_runtime_set_autosuspend_delay(ce->dev, 2000);
831 
832 	err = pm_runtime_set_suspended(ce->dev);
833 	if (err)
834 		return err;
835 	pm_runtime_enable(ce->dev);
836 	return err;
837 }
838 
sun8i_ce_pm_exit(struct sun8i_ce_dev * ce)839 static void sun8i_ce_pm_exit(struct sun8i_ce_dev *ce)
840 {
841 	pm_runtime_disable(ce->dev);
842 }
843 
sun8i_ce_get_clks(struct sun8i_ce_dev * ce)844 static int sun8i_ce_get_clks(struct sun8i_ce_dev *ce)
845 {
846 	unsigned long cr;
847 	int err, i;
848 
849 	for (i = 0; i < CE_MAX_CLOCKS; i++) {
850 		if (!ce->variant->ce_clks[i].name)
851 			continue;
852 		ce->ceclks[i] = devm_clk_get(ce->dev, ce->variant->ce_clks[i].name);
853 		if (IS_ERR(ce->ceclks[i])) {
854 			err = PTR_ERR(ce->ceclks[i]);
855 			dev_err(ce->dev, "Cannot get %s CE clock err=%d\n",
856 				ce->variant->ce_clks[i].name, err);
857 			return err;
858 		}
859 		cr = clk_get_rate(ce->ceclks[i]);
860 		if (!cr)
861 			return -EINVAL;
862 		if (ce->variant->ce_clks[i].freq > 0 &&
863 		    cr != ce->variant->ce_clks[i].freq) {
864 			dev_info(ce->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n",
865 				 ce->variant->ce_clks[i].name,
866 				 ce->variant->ce_clks[i].freq,
867 				 ce->variant->ce_clks[i].freq / 1000000,
868 				 cr, cr / 1000000);
869 			err = clk_set_rate(ce->ceclks[i], ce->variant->ce_clks[i].freq);
870 			if (err)
871 				dev_err(ce->dev, "Fail to set %s clk speed to %lu hz\n",
872 					ce->variant->ce_clks[i].name,
873 					ce->variant->ce_clks[i].freq);
874 		}
875 		if (ce->variant->ce_clks[i].max_freq > 0 &&
876 		    cr > ce->variant->ce_clks[i].max_freq)
877 			dev_warn(ce->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommendation (%lu hz)",
878 				 ce->variant->ce_clks[i].name, cr,
879 				 ce->variant->ce_clks[i].max_freq);
880 	}
881 	return 0;
882 }
883 
sun8i_ce_register_algs(struct sun8i_ce_dev * ce)884 static int sun8i_ce_register_algs(struct sun8i_ce_dev *ce)
885 {
886 	int ce_method, err, id;
887 	unsigned int i;
888 
889 	for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
890 		ce_algs[i].ce = ce;
891 		switch (ce_algs[i].type) {
892 		case CRYPTO_ALG_TYPE_SKCIPHER:
893 			id = ce_algs[i].ce_algo_id;
894 			ce_method = ce->variant->alg_cipher[id];
895 			if (ce_method == CE_ID_NOTSUPP) {
896 				dev_dbg(ce->dev,
897 					"DEBUG: Algo of %s not supported\n",
898 					ce_algs[i].alg.skcipher.base.base.cra_name);
899 				ce_algs[i].ce = NULL;
900 				break;
901 			}
902 			id = ce_algs[i].ce_blockmode;
903 			ce_method = ce->variant->op_mode[id];
904 			if (ce_method == CE_ID_NOTSUPP) {
905 				dev_dbg(ce->dev, "DEBUG: Blockmode of %s not supported\n",
906 					ce_algs[i].alg.skcipher.base.base.cra_name);
907 				ce_algs[i].ce = NULL;
908 				break;
909 			}
910 			dev_info(ce->dev, "Register %s\n",
911 				 ce_algs[i].alg.skcipher.base.base.cra_name);
912 			err = crypto_engine_register_skcipher(&ce_algs[i].alg.skcipher);
913 			if (err) {
914 				dev_err(ce->dev, "ERROR: Fail to register %s\n",
915 					ce_algs[i].alg.skcipher.base.base.cra_name);
916 				ce_algs[i].ce = NULL;
917 				return err;
918 			}
919 			break;
920 		case CRYPTO_ALG_TYPE_AHASH:
921 			id = ce_algs[i].ce_algo_id;
922 			ce_method = ce->variant->alg_hash[id];
923 			if (ce_method == CE_ID_NOTSUPP) {
924 				dev_info(ce->dev,
925 					 "DEBUG: Algo of %s not supported\n",
926 					 ce_algs[i].alg.hash.base.halg.base.cra_name);
927 				ce_algs[i].ce = NULL;
928 				break;
929 			}
930 			dev_info(ce->dev, "Register %s\n",
931 				 ce_algs[i].alg.hash.base.halg.base.cra_name);
932 			err = crypto_engine_register_ahash(&ce_algs[i].alg.hash);
933 			if (err) {
934 				dev_err(ce->dev, "ERROR: Fail to register %s\n",
935 					ce_algs[i].alg.hash.base.halg.base.cra_name);
936 				ce_algs[i].ce = NULL;
937 				return err;
938 			}
939 			break;
940 		case CRYPTO_ALG_TYPE_RNG:
941 			if (ce->variant->prng == CE_ID_NOTSUPP) {
942 				dev_info(ce->dev,
943 					 "DEBUG: Algo of %s not supported\n",
944 					 ce_algs[i].alg.rng.base.cra_name);
945 				ce_algs[i].ce = NULL;
946 				break;
947 			}
948 			dev_info(ce->dev, "Register %s\n",
949 				 ce_algs[i].alg.rng.base.cra_name);
950 			err = crypto_register_rng(&ce_algs[i].alg.rng);
951 			if (err) {
952 				dev_err(ce->dev, "Fail to register %s\n",
953 					ce_algs[i].alg.rng.base.cra_name);
954 				ce_algs[i].ce = NULL;
955 			}
956 			break;
957 		default:
958 			ce_algs[i].ce = NULL;
959 			dev_err(ce->dev, "ERROR: tried to register an unknown algo\n");
960 		}
961 	}
962 	return 0;
963 }
964 
sun8i_ce_unregister_algs(struct sun8i_ce_dev * ce)965 static void sun8i_ce_unregister_algs(struct sun8i_ce_dev *ce)
966 {
967 	unsigned int i;
968 
969 	for (i = 0; i < ARRAY_SIZE(ce_algs); i++) {
970 		if (!ce_algs[i].ce)
971 			continue;
972 		switch (ce_algs[i].type) {
973 		case CRYPTO_ALG_TYPE_SKCIPHER:
974 			dev_info(ce->dev, "Unregister %d %s\n", i,
975 				 ce_algs[i].alg.skcipher.base.base.cra_name);
976 			crypto_engine_unregister_skcipher(&ce_algs[i].alg.skcipher);
977 			break;
978 		case CRYPTO_ALG_TYPE_AHASH:
979 			dev_info(ce->dev, "Unregister %d %s\n", i,
980 				 ce_algs[i].alg.hash.base.halg.base.cra_name);
981 			crypto_engine_unregister_ahash(&ce_algs[i].alg.hash);
982 			break;
983 		case CRYPTO_ALG_TYPE_RNG:
984 			dev_info(ce->dev, "Unregister %d %s\n", i,
985 				 ce_algs[i].alg.rng.base.cra_name);
986 			crypto_unregister_rng(&ce_algs[i].alg.rng);
987 			break;
988 		}
989 	}
990 }
991 
sun8i_ce_probe(struct platform_device * pdev)992 static int sun8i_ce_probe(struct platform_device *pdev)
993 {
994 	struct sun8i_ce_dev *ce;
995 	int err, irq;
996 	u32 v;
997 
998 	ce = devm_kzalloc(&pdev->dev, sizeof(*ce), GFP_KERNEL);
999 	if (!ce)
1000 		return -ENOMEM;
1001 
1002 	ce->dev = &pdev->dev;
1003 	platform_set_drvdata(pdev, ce);
1004 
1005 	ce->variant = of_device_get_match_data(&pdev->dev);
1006 	if (!ce->variant) {
1007 		dev_err(&pdev->dev, "Missing Crypto Engine variant\n");
1008 		return -EINVAL;
1009 	}
1010 
1011 	ce->base = devm_platform_ioremap_resource(pdev, 0);
1012 	if (IS_ERR(ce->base))
1013 		return PTR_ERR(ce->base);
1014 
1015 	err = sun8i_ce_get_clks(ce);
1016 	if (err)
1017 		return err;
1018 
1019 	/* Get Non Secure IRQ */
1020 	irq = platform_get_irq(pdev, 0);
1021 	if (irq < 0)
1022 		return irq;
1023 
1024 	ce->reset = devm_reset_control_get(&pdev->dev, NULL);
1025 	if (IS_ERR(ce->reset))
1026 		return dev_err_probe(&pdev->dev, PTR_ERR(ce->reset),
1027 				     "No reset control found\n");
1028 
1029 	mutex_init(&ce->mlock);
1030 	mutex_init(&ce->rnglock);
1031 
1032 	err = sun8i_ce_allocate_chanlist(ce);
1033 	if (err)
1034 		return err;
1035 
1036 	err = sun8i_ce_pm_init(ce);
1037 	if (err)
1038 		goto error_pm;
1039 
1040 	err = devm_request_irq(&pdev->dev, irq, ce_irq_handler, 0,
1041 			       "sun8i-ce-ns", ce);
1042 	if (err) {
1043 		dev_err(ce->dev, "Cannot request CryptoEngine Non-secure IRQ (err=%d)\n", err);
1044 		goto error_irq;
1045 	}
1046 
1047 	err = sun8i_ce_register_algs(ce);
1048 	if (err)
1049 		goto error_alg;
1050 
1051 	err = pm_runtime_resume_and_get(ce->dev);
1052 	if (err < 0)
1053 		goto error_alg;
1054 
1055 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_TRNG
1056 	sun8i_ce_hwrng_register(ce);
1057 #endif
1058 
1059 	v = readl(ce->base + CE_CTR);
1060 	v >>= CE_DIE_ID_SHIFT;
1061 	v &= CE_DIE_ID_MASK;
1062 	dev_info(&pdev->dev, "CryptoEngine Die ID %x\n", v);
1063 
1064 	pm_runtime_put_sync(ce->dev);
1065 
1066 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG)) {
1067 		struct dentry *dbgfs_dir __maybe_unused;
1068 		struct dentry *dbgfs_stats __maybe_unused;
1069 
1070 		/* Ignore error of debugfs */
1071 		dbgfs_dir = debugfs_create_dir("sun8i-ce", NULL);
1072 		dbgfs_stats = debugfs_create_file("stats", 0444,
1073 						  dbgfs_dir, ce,
1074 						  &sun8i_ce_debugfs_fops);
1075 
1076 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
1077 		ce->dbgfs_dir = dbgfs_dir;
1078 		ce->dbgfs_stats = dbgfs_stats;
1079 #endif
1080 	}
1081 
1082 	return 0;
1083 error_alg:
1084 	sun8i_ce_unregister_algs(ce);
1085 error_irq:
1086 	sun8i_ce_pm_exit(ce);
1087 error_pm:
1088 	sun8i_ce_free_chanlist(ce, MAXFLOW - 1);
1089 	return err;
1090 }
1091 
sun8i_ce_remove(struct platform_device * pdev)1092 static void sun8i_ce_remove(struct platform_device *pdev)
1093 {
1094 	struct sun8i_ce_dev *ce = platform_get_drvdata(pdev);
1095 
1096 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_TRNG
1097 	sun8i_ce_hwrng_unregister(ce);
1098 #endif
1099 
1100 	sun8i_ce_unregister_algs(ce);
1101 
1102 #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
1103 	debugfs_remove_recursive(ce->dbgfs_dir);
1104 #endif
1105 
1106 	sun8i_ce_free_chanlist(ce, MAXFLOW - 1);
1107 
1108 	sun8i_ce_pm_exit(ce);
1109 }
1110 
1111 static const struct of_device_id sun8i_ce_crypto_of_match_table[] = {
1112 	{ .compatible = "allwinner,sun8i-h3-crypto",
1113 	  .data = &ce_h3_variant },
1114 	{ .compatible = "allwinner,sun8i-r40-crypto",
1115 	  .data = &ce_r40_variant },
1116 	{ .compatible = "allwinner,sun20i-d1-crypto",
1117 	  .data = &ce_d1_variant },
1118 	{ .compatible = "allwinner,sun50i-a64-crypto",
1119 	  .data = &ce_a64_variant },
1120 	{ .compatible = "allwinner,sun50i-h5-crypto",
1121 	  .data = &ce_h5_variant },
1122 	{ .compatible = "allwinner,sun50i-h6-crypto",
1123 	  .data = &ce_h6_variant },
1124 	{ .compatible = "allwinner,sun50i-h616-crypto",
1125 	  .data = &ce_h616_variant },
1126 	{}
1127 };
1128 MODULE_DEVICE_TABLE(of, sun8i_ce_crypto_of_match_table);
1129 
1130 static struct platform_driver sun8i_ce_driver = {
1131 	.probe		 = sun8i_ce_probe,
1132 	.remove_new	 = sun8i_ce_remove,
1133 	.driver		 = {
1134 		.name		= "sun8i-ce",
1135 		.pm		= &sun8i_ce_pm_ops,
1136 		.of_match_table	= sun8i_ce_crypto_of_match_table,
1137 	},
1138 };
1139 
1140 module_platform_driver(sun8i_ce_driver);
1141 
1142 MODULE_DESCRIPTION("Allwinner Crypto Engine cryptographic offloader");
1143 MODULE_LICENSE("GPL");
1144 MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");
1145