1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14 };
15
16 struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38 };
39
40 struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_min;
51
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(READ_ONCE(sg_policy->limits_changed))) {
85 WRITE_ONCE(sg_policy->limits_changed, false);
86 sg_policy->need_freq_update = true;
87
88 /*
89 * The above limits_changed update must occur before the reads
90 * of policy limits in cpufreq_driver_resolve_freq() or a policy
91 * limits update might be missed, so use a memory barrier to
92 * ensure it.
93 *
94 * This pairs with the write memory barrier in sugov_limits().
95 */
96 smp_mb();
97
98 return true;
99 } else if (sg_policy->need_freq_update) {
100 /* ignore_dl_rate_limit() wants a new frequency to be found. */
101 return true;
102 }
103
104 delta_ns = time - sg_policy->last_freq_update_time;
105
106 return delta_ns >= sg_policy->freq_update_delay_ns;
107 }
108
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)109 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
110 unsigned int next_freq)
111 {
112 if (sg_policy->need_freq_update) {
113 sg_policy->need_freq_update = false;
114 /*
115 * The policy limits have changed, but if the return value of
116 * cpufreq_driver_resolve_freq() after applying the new limits
117 * is still equal to the previously selected frequency, the
118 * driver callback need not be invoked unless the driver
119 * specifically wants that to happen on every update of the
120 * policy limits.
121 */
122 if (sg_policy->next_freq == next_freq &&
123 !cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS))
124 return false;
125 } else if (sg_policy->next_freq == next_freq) {
126 return false;
127 }
128
129 sg_policy->next_freq = next_freq;
130 sg_policy->last_freq_update_time = time;
131
132 return true;
133 }
134
sugov_deferred_update(struct sugov_policy * sg_policy)135 static void sugov_deferred_update(struct sugov_policy *sg_policy)
136 {
137 if (!sg_policy->work_in_progress) {
138 sg_policy->work_in_progress = true;
139 irq_work_queue(&sg_policy->irq_work);
140 }
141 }
142
143 /**
144 * get_capacity_ref_freq - get the reference frequency that has been used to
145 * correlate frequency and compute capacity for a given cpufreq policy. We use
146 * the CPU managing it for the arch_scale_freq_ref() call in the function.
147 * @policy: the cpufreq policy of the CPU in question.
148 *
149 * Return: the reference CPU frequency to compute a capacity.
150 */
151 static __always_inline
get_capacity_ref_freq(struct cpufreq_policy * policy)152 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
153 {
154 unsigned int freq = arch_scale_freq_ref(policy->cpu);
155
156 if (freq)
157 return freq;
158
159 if (arch_scale_freq_invariant())
160 return policy->cpuinfo.max_freq;
161
162 /*
163 * Apply a 25% margin so that we select a higher frequency than
164 * the current one before the CPU is fully busy:
165 */
166 return policy->cur + (policy->cur >> 2);
167 }
168
169 /**
170 * get_next_freq - Compute a new frequency for a given cpufreq policy.
171 * @sg_policy: schedutil policy object to compute the new frequency for.
172 * @util: Current CPU utilization.
173 * @max: CPU capacity.
174 *
175 * If the utilization is frequency-invariant, choose the new frequency to be
176 * proportional to it, that is
177 *
178 * next_freq = C * max_freq * util / max
179 *
180 * Otherwise, approximate the would-be frequency-invariant utilization by
181 * util_raw * (curr_freq / max_freq) which leads to
182 *
183 * next_freq = C * curr_freq * util_raw / max
184 *
185 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
186 *
187 * The lowest driver-supported frequency which is equal or greater than the raw
188 * next_freq (as calculated above) is returned, subject to policy min/max and
189 * cpufreq driver limitations.
190 */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)191 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
192 unsigned long util, unsigned long max)
193 {
194 struct cpufreq_policy *policy = sg_policy->policy;
195 unsigned int freq;
196
197 freq = get_capacity_ref_freq(policy);
198 freq = map_util_freq(util, freq, max);
199
200 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
201 return sg_policy->next_freq;
202
203 sg_policy->cached_raw_freq = freq;
204 return cpufreq_driver_resolve_freq(policy, freq);
205 }
206
sugov_effective_cpu_perf(int cpu,unsigned long actual,unsigned long min,unsigned long max)207 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
208 unsigned long min,
209 unsigned long max)
210 {
211 /* Add dvfs headroom to actual utilization */
212 actual = map_util_perf(actual);
213 /* Actually we don't need to target the max performance */
214 if (actual < max)
215 max = actual;
216
217 /*
218 * Ensure at least minimum performance while providing more compute
219 * capacity when possible.
220 */
221 return max(min, max);
222 }
223
sugov_get_util(struct sugov_cpu * sg_cpu,unsigned long boost)224 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
225 {
226 unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
227
228 if (!scx_switched_all())
229 util += cpu_util_cfs_boost(sg_cpu->cpu);
230 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
231 util = max(util, boost);
232 sg_cpu->bw_min = min;
233 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
234 }
235
236 /**
237 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
238 * @sg_cpu: the sugov data for the CPU to boost
239 * @time: the update time from the caller
240 * @set_iowait_boost: true if an IO boost has been requested
241 *
242 * The IO wait boost of a task is disabled after a tick since the last update
243 * of a CPU. If a new IO wait boost is requested after more then a tick, then
244 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
245 * efficiency by ignoring sporadic wakeups from IO.
246 */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)247 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
248 bool set_iowait_boost)
249 {
250 s64 delta_ns = time - sg_cpu->last_update;
251
252 /* Reset boost only if a tick has elapsed since last request */
253 if (delta_ns <= TICK_NSEC)
254 return false;
255
256 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
257 sg_cpu->iowait_boost_pending = set_iowait_boost;
258
259 return true;
260 }
261
262 /**
263 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
264 * @sg_cpu: the sugov data for the CPU to boost
265 * @time: the update time from the caller
266 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
267 *
268 * Each time a task wakes up after an IO operation, the CPU utilization can be
269 * boosted to a certain utilization which doubles at each "frequent and
270 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
271 * of the maximum OPP.
272 *
273 * To keep doubling, an IO boost has to be requested at least once per tick,
274 * otherwise we restart from the utilization of the minimum OPP.
275 */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)276 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
277 unsigned int flags)
278 {
279 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
280
281 /* Reset boost if the CPU appears to have been idle enough */
282 if (sg_cpu->iowait_boost &&
283 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
284 return;
285
286 /* Boost only tasks waking up after IO */
287 if (!set_iowait_boost)
288 return;
289
290 /* Ensure boost doubles only one time at each request */
291 if (sg_cpu->iowait_boost_pending)
292 return;
293 sg_cpu->iowait_boost_pending = true;
294
295 /* Double the boost at each request */
296 if (sg_cpu->iowait_boost) {
297 sg_cpu->iowait_boost =
298 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
299 return;
300 }
301
302 /* First wakeup after IO: start with minimum boost */
303 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
304 }
305
306 /**
307 * sugov_iowait_apply() - Apply the IO boost to a CPU.
308 * @sg_cpu: the sugov data for the cpu to boost
309 * @time: the update time from the caller
310 * @max_cap: the max CPU capacity
311 *
312 * A CPU running a task which woken up after an IO operation can have its
313 * utilization boosted to speed up the completion of those IO operations.
314 * The IO boost value is increased each time a task wakes up from IO, in
315 * sugov_iowait_apply(), and it's instead decreased by this function,
316 * each time an increase has not been requested (!iowait_boost_pending).
317 *
318 * A CPU which also appears to have been idle for at least one tick has also
319 * its IO boost utilization reset.
320 *
321 * This mechanism is designed to boost high frequently IO waiting tasks, while
322 * being more conservative on tasks which does sporadic IO operations.
323 */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap)324 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
325 unsigned long max_cap)
326 {
327 /* No boost currently required */
328 if (!sg_cpu->iowait_boost)
329 return 0;
330
331 /* Reset boost if the CPU appears to have been idle enough */
332 if (sugov_iowait_reset(sg_cpu, time, false))
333 return 0;
334
335 if (!sg_cpu->iowait_boost_pending) {
336 /*
337 * No boost pending; reduce the boost value.
338 */
339 sg_cpu->iowait_boost >>= 1;
340 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
341 sg_cpu->iowait_boost = 0;
342 return 0;
343 }
344 }
345
346 sg_cpu->iowait_boost_pending = false;
347
348 /*
349 * sg_cpu->util is already in capacity scale; convert iowait_boost
350 * into the same scale so we can compare.
351 */
352 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
353 }
354
355 #ifdef CONFIG_NO_HZ_COMMON
sugov_hold_freq(struct sugov_cpu * sg_cpu)356 static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
357 {
358 unsigned long idle_calls;
359 bool ret;
360
361 /*
362 * The heuristics in this function is for the fair class. For SCX, the
363 * performance target comes directly from the BPF scheduler. Let's just
364 * follow it.
365 */
366 if (scx_switched_all())
367 return false;
368
369 /* if capped by uclamp_max, always update to be in compliance */
370 if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
371 return false;
372
373 /*
374 * Maintain the frequency if the CPU has not been idle recently, as
375 * reduction is likely to be premature.
376 */
377 idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
378 ret = idle_calls == sg_cpu->saved_idle_calls;
379
380 sg_cpu->saved_idle_calls = idle_calls;
381 return ret;
382 }
383 #else
sugov_hold_freq(struct sugov_cpu * sg_cpu)384 static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
385 #endif /* CONFIG_NO_HZ_COMMON */
386
387 /*
388 * Make sugov_should_update_freq() ignore the rate limit when DL
389 * has increased the utilization.
390 */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu)391 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
392 {
393 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
394 sg_cpu->sg_policy->need_freq_update = true;
395 }
396
sugov_update_single_common(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap,unsigned int flags)397 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
398 u64 time, unsigned long max_cap,
399 unsigned int flags)
400 {
401 unsigned long boost;
402
403 sugov_iowait_boost(sg_cpu, time, flags);
404 sg_cpu->last_update = time;
405
406 ignore_dl_rate_limit(sg_cpu);
407
408 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
409 return false;
410
411 boost = sugov_iowait_apply(sg_cpu, time, max_cap);
412 sugov_get_util(sg_cpu, boost);
413
414 return true;
415 }
416
sugov_update_single_freq(struct update_util_data * hook,u64 time,unsigned int flags)417 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
418 unsigned int flags)
419 {
420 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
421 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
422 unsigned int cached_freq = sg_policy->cached_raw_freq;
423 unsigned long max_cap;
424 unsigned int next_f;
425
426 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
427
428 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
429 return;
430
431 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
432
433 if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
434 !sg_policy->need_freq_update) {
435 next_f = sg_policy->next_freq;
436
437 /* Restore cached freq as next_freq has changed */
438 sg_policy->cached_raw_freq = cached_freq;
439 }
440
441 if (!sugov_update_next_freq(sg_policy, time, next_f))
442 return;
443
444 /*
445 * This code runs under rq->lock for the target CPU, so it won't run
446 * concurrently on two different CPUs for the same target and it is not
447 * necessary to acquire the lock in the fast switch case.
448 */
449 if (sg_policy->policy->fast_switch_enabled) {
450 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
451 } else {
452 raw_spin_lock(&sg_policy->update_lock);
453 sugov_deferred_update(sg_policy);
454 raw_spin_unlock(&sg_policy->update_lock);
455 }
456 }
457
sugov_update_single_perf(struct update_util_data * hook,u64 time,unsigned int flags)458 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
459 unsigned int flags)
460 {
461 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
462 unsigned long prev_util = sg_cpu->util;
463 unsigned long max_cap;
464
465 /*
466 * Fall back to the "frequency" path if frequency invariance is not
467 * supported, because the direct mapping between the utilization and
468 * the performance levels depends on the frequency invariance.
469 */
470 if (!arch_scale_freq_invariant()) {
471 sugov_update_single_freq(hook, time, flags);
472 return;
473 }
474
475 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
476
477 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
478 return;
479
480 if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
481 sg_cpu->util = prev_util;
482
483 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
484 sg_cpu->util, max_cap);
485
486 sg_cpu->sg_policy->last_freq_update_time = time;
487 }
488
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)489 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
490 {
491 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
492 struct cpufreq_policy *policy = sg_policy->policy;
493 unsigned long util = 0, max_cap;
494 unsigned int j;
495
496 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
497
498 for_each_cpu(j, policy->cpus) {
499 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
500 unsigned long boost;
501
502 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
503 sugov_get_util(j_sg_cpu, boost);
504
505 util = max(j_sg_cpu->util, util);
506 }
507
508 return get_next_freq(sg_policy, util, max_cap);
509 }
510
511 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)512 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
513 {
514 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
515 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
516 unsigned int next_f;
517
518 raw_spin_lock(&sg_policy->update_lock);
519
520 sugov_iowait_boost(sg_cpu, time, flags);
521 sg_cpu->last_update = time;
522
523 ignore_dl_rate_limit(sg_cpu);
524
525 if (sugov_should_update_freq(sg_policy, time)) {
526 next_f = sugov_next_freq_shared(sg_cpu, time);
527
528 if (!sugov_update_next_freq(sg_policy, time, next_f))
529 goto unlock;
530
531 if (sg_policy->policy->fast_switch_enabled)
532 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
533 else
534 sugov_deferred_update(sg_policy);
535 }
536 unlock:
537 raw_spin_unlock(&sg_policy->update_lock);
538 }
539
sugov_work(struct kthread_work * work)540 static void sugov_work(struct kthread_work *work)
541 {
542 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
543 unsigned int freq;
544 unsigned long flags;
545
546 /*
547 * Hold sg_policy->update_lock shortly to handle the case where:
548 * in case sg_policy->next_freq is read here, and then updated by
549 * sugov_deferred_update() just before work_in_progress is set to false
550 * here, we may miss queueing the new update.
551 *
552 * Note: If a work was queued after the update_lock is released,
553 * sugov_work() will just be called again by kthread_work code; and the
554 * request will be proceed before the sugov thread sleeps.
555 */
556 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
557 freq = sg_policy->next_freq;
558 sg_policy->work_in_progress = false;
559 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
560
561 mutex_lock(&sg_policy->work_lock);
562 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
563 mutex_unlock(&sg_policy->work_lock);
564 }
565
sugov_irq_work(struct irq_work * irq_work)566 static void sugov_irq_work(struct irq_work *irq_work)
567 {
568 struct sugov_policy *sg_policy;
569
570 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
571
572 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
573 }
574
575 /************************** sysfs interface ************************/
576
577 static struct sugov_tunables *global_tunables;
578 static DEFINE_MUTEX(global_tunables_lock);
579
to_sugov_tunables(struct gov_attr_set * attr_set)580 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
581 {
582 return container_of(attr_set, struct sugov_tunables, attr_set);
583 }
584
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)585 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
586 {
587 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
588
589 return sprintf(buf, "%u\n", tunables->rate_limit_us);
590 }
591
592 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)593 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
594 {
595 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
596 struct sugov_policy *sg_policy;
597 unsigned int rate_limit_us;
598
599 if (kstrtouint(buf, 10, &rate_limit_us))
600 return -EINVAL;
601
602 tunables->rate_limit_us = rate_limit_us;
603
604 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
605 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
606
607 return count;
608 }
609
610 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
611
612 static struct attribute *sugov_attrs[] = {
613 &rate_limit_us.attr,
614 NULL
615 };
616 ATTRIBUTE_GROUPS(sugov);
617
sugov_tunables_free(struct kobject * kobj)618 static void sugov_tunables_free(struct kobject *kobj)
619 {
620 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
621
622 kfree(to_sugov_tunables(attr_set));
623 }
624
625 static const struct kobj_type sugov_tunables_ktype = {
626 .default_groups = sugov_groups,
627 .sysfs_ops = &governor_sysfs_ops,
628 .release = &sugov_tunables_free,
629 };
630
631 /********************** cpufreq governor interface *********************/
632
633 static struct cpufreq_governor schedutil_gov;
634
sugov_policy_alloc(struct cpufreq_policy * policy)635 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
636 {
637 struct sugov_policy *sg_policy;
638
639 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
640 if (!sg_policy)
641 return NULL;
642
643 sg_policy->policy = policy;
644 raw_spin_lock_init(&sg_policy->update_lock);
645 return sg_policy;
646 }
647
sugov_policy_free(struct sugov_policy * sg_policy)648 static void sugov_policy_free(struct sugov_policy *sg_policy)
649 {
650 kfree(sg_policy);
651 }
652
sugov_kthread_create(struct sugov_policy * sg_policy)653 static int sugov_kthread_create(struct sugov_policy *sg_policy)
654 {
655 struct task_struct *thread;
656 struct sched_attr attr = {
657 .size = sizeof(struct sched_attr),
658 .sched_policy = SCHED_DEADLINE,
659 .sched_flags = SCHED_FLAG_SUGOV,
660 .sched_nice = 0,
661 .sched_priority = 0,
662 /*
663 * Fake (unused) bandwidth; workaround to "fix"
664 * priority inheritance.
665 */
666 .sched_runtime = NSEC_PER_MSEC,
667 .sched_deadline = 10 * NSEC_PER_MSEC,
668 .sched_period = 10 * NSEC_PER_MSEC,
669 };
670 struct cpufreq_policy *policy = sg_policy->policy;
671 int ret;
672
673 /* kthread only required for slow path */
674 if (policy->fast_switch_enabled)
675 return 0;
676
677 kthread_init_work(&sg_policy->work, sugov_work);
678 kthread_init_worker(&sg_policy->worker);
679 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
680 "sugov:%d",
681 cpumask_first(policy->related_cpus));
682 if (IS_ERR(thread)) {
683 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
684 return PTR_ERR(thread);
685 }
686
687 ret = sched_setattr_nocheck(thread, &attr);
688 if (ret) {
689 kthread_stop(thread);
690 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
691 return ret;
692 }
693
694 sg_policy->thread = thread;
695 if (policy->dvfs_possible_from_any_cpu)
696 set_cpus_allowed_ptr(thread, policy->related_cpus);
697 else
698 kthread_bind_mask(thread, policy->related_cpus);
699
700 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
701 mutex_init(&sg_policy->work_lock);
702
703 wake_up_process(thread);
704
705 return 0;
706 }
707
sugov_kthread_stop(struct sugov_policy * sg_policy)708 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
709 {
710 /* kthread only required for slow path */
711 if (sg_policy->policy->fast_switch_enabled)
712 return;
713
714 kthread_flush_worker(&sg_policy->worker);
715 kthread_stop(sg_policy->thread);
716 mutex_destroy(&sg_policy->work_lock);
717 }
718
sugov_tunables_alloc(struct sugov_policy * sg_policy)719 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
720 {
721 struct sugov_tunables *tunables;
722
723 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
724 if (tunables) {
725 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
726 if (!have_governor_per_policy())
727 global_tunables = tunables;
728 }
729 return tunables;
730 }
731
sugov_clear_global_tunables(void)732 static void sugov_clear_global_tunables(void)
733 {
734 if (!have_governor_per_policy())
735 global_tunables = NULL;
736 }
737
sugov_init(struct cpufreq_policy * policy)738 static int sugov_init(struct cpufreq_policy *policy)
739 {
740 struct sugov_policy *sg_policy;
741 struct sugov_tunables *tunables;
742 int ret = 0;
743
744 /* State should be equivalent to EXIT */
745 if (policy->governor_data)
746 return -EBUSY;
747
748 cpufreq_enable_fast_switch(policy);
749
750 sg_policy = sugov_policy_alloc(policy);
751 if (!sg_policy) {
752 ret = -ENOMEM;
753 goto disable_fast_switch;
754 }
755
756 ret = sugov_kthread_create(sg_policy);
757 if (ret)
758 goto free_sg_policy;
759
760 mutex_lock(&global_tunables_lock);
761
762 if (global_tunables) {
763 if (WARN_ON(have_governor_per_policy())) {
764 ret = -EINVAL;
765 goto stop_kthread;
766 }
767 policy->governor_data = sg_policy;
768 sg_policy->tunables = global_tunables;
769
770 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
771 goto out;
772 }
773
774 tunables = sugov_tunables_alloc(sg_policy);
775 if (!tunables) {
776 ret = -ENOMEM;
777 goto stop_kthread;
778 }
779
780 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
781
782 policy->governor_data = sg_policy;
783 sg_policy->tunables = tunables;
784
785 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
786 get_governor_parent_kobj(policy), "%s",
787 schedutil_gov.name);
788 if (ret)
789 goto fail;
790
791 out:
792 /*
793 * Schedutil is the preferred governor for EAS, so rebuild sched domains
794 * on governor changes to make sure the scheduler knows about them.
795 */
796 em_rebuild_sched_domains();
797 mutex_unlock(&global_tunables_lock);
798 return 0;
799
800 fail:
801 kobject_put(&tunables->attr_set.kobj);
802 policy->governor_data = NULL;
803 sugov_clear_global_tunables();
804
805 stop_kthread:
806 sugov_kthread_stop(sg_policy);
807 mutex_unlock(&global_tunables_lock);
808
809 free_sg_policy:
810 sugov_policy_free(sg_policy);
811
812 disable_fast_switch:
813 cpufreq_disable_fast_switch(policy);
814
815 pr_err("initialization failed (error %d)\n", ret);
816 return ret;
817 }
818
sugov_exit(struct cpufreq_policy * policy)819 static void sugov_exit(struct cpufreq_policy *policy)
820 {
821 struct sugov_policy *sg_policy = policy->governor_data;
822 struct sugov_tunables *tunables = sg_policy->tunables;
823 unsigned int count;
824
825 mutex_lock(&global_tunables_lock);
826
827 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
828 policy->governor_data = NULL;
829 if (!count)
830 sugov_clear_global_tunables();
831
832 mutex_unlock(&global_tunables_lock);
833
834 sugov_kthread_stop(sg_policy);
835 sugov_policy_free(sg_policy);
836 cpufreq_disable_fast_switch(policy);
837
838 em_rebuild_sched_domains();
839 }
840
sugov_start(struct cpufreq_policy * policy)841 static int sugov_start(struct cpufreq_policy *policy)
842 {
843 struct sugov_policy *sg_policy = policy->governor_data;
844 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
845 unsigned int cpu;
846
847 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
848 sg_policy->last_freq_update_time = 0;
849 sg_policy->next_freq = 0;
850 sg_policy->work_in_progress = false;
851 sg_policy->limits_changed = false;
852 sg_policy->cached_raw_freq = 0;
853
854 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
855
856 if (policy_is_shared(policy))
857 uu = sugov_update_shared;
858 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
859 uu = sugov_update_single_perf;
860 else
861 uu = sugov_update_single_freq;
862
863 for_each_cpu(cpu, policy->cpus) {
864 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
865
866 memset(sg_cpu, 0, sizeof(*sg_cpu));
867 sg_cpu->cpu = cpu;
868 sg_cpu->sg_policy = sg_policy;
869 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
870 }
871 return 0;
872 }
873
sugov_stop(struct cpufreq_policy * policy)874 static void sugov_stop(struct cpufreq_policy *policy)
875 {
876 struct sugov_policy *sg_policy = policy->governor_data;
877 unsigned int cpu;
878
879 for_each_cpu(cpu, policy->cpus)
880 cpufreq_remove_update_util_hook(cpu);
881
882 synchronize_rcu();
883
884 if (!policy->fast_switch_enabled) {
885 irq_work_sync(&sg_policy->irq_work);
886 kthread_cancel_work_sync(&sg_policy->work);
887 }
888 }
889
sugov_limits(struct cpufreq_policy * policy)890 static void sugov_limits(struct cpufreq_policy *policy)
891 {
892 struct sugov_policy *sg_policy = policy->governor_data;
893
894 if (!policy->fast_switch_enabled) {
895 mutex_lock(&sg_policy->work_lock);
896 cpufreq_policy_apply_limits(policy);
897 mutex_unlock(&sg_policy->work_lock);
898 }
899
900 /*
901 * The limits_changed update below must take place before the updates
902 * of policy limits in cpufreq_set_policy() or a policy limits update
903 * might be missed, so use a memory barrier to ensure it.
904 *
905 * This pairs with the memory barrier in sugov_should_update_freq().
906 */
907 smp_wmb();
908
909 WRITE_ONCE(sg_policy->limits_changed, true);
910 }
911
912 static struct cpufreq_governor schedutil_gov = {
913 .name = "schedutil",
914 .owner = THIS_MODULE,
915 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
916 .init = sugov_init,
917 .exit = sugov_exit,
918 .start = sugov_start,
919 .stop = sugov_stop,
920 .limits = sugov_limits,
921 };
922
923 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)924 struct cpufreq_governor *cpufreq_default_governor(void)
925 {
926 return &schedutil_gov;
927 }
928 #endif
929
sugov_is_governor(struct cpufreq_policy * policy)930 bool sugov_is_governor(struct cpufreq_policy *policy)
931 {
932 return policy->governor == &schedutil_gov;
933 }
934
935 cpufreq_governor_init(schedutil_gov);
936