1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68 struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71 } __attribute__ ((__packed__));
72
73 struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81 } __attribute__ ((__packed__));
82
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 __s64 send_fd; /* in */
90 __u64 clone_sources_count; /* in */
91 compat_uptr_t clone_sources; /* in */
92 __u64 parent_root; /* in */
93 __u64 flags; /* in */
94 __u32 version; /* in */
95 __u8 reserved[28]; /* in */
96 } __attribute__ ((__packed__));
97
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 struct btrfs_ioctl_send_args_32)
100
101 struct btrfs_ioctl_encoded_io_args_32 {
102 compat_uptr_t iov;
103 compat_ulong_t iovcnt;
104 __s64 offset;
105 __u64 flags;
106 __u64 len;
107 __u64 unencoded_len;
108 __u64 unencoded_offset;
109 __u32 compression;
110 __u32 encryption;
111 __u8 reserved[64];
112 };
113
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
122 unsigned int flags)
123 {
124 if (S_ISDIR(inode->i_mode))
125 return flags;
126 else if (S_ISREG(inode->i_mode))
127 return flags & ~FS_DIRSYNC_FL;
128 else
129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131
132 /*
133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134 * ioctl.
135 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)136 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
137 {
138 unsigned int iflags = 0;
139 u32 flags = binode->flags;
140 u32 ro_flags = binode->ro_flags;
141
142 if (flags & BTRFS_INODE_SYNC)
143 iflags |= FS_SYNC_FL;
144 if (flags & BTRFS_INODE_IMMUTABLE)
145 iflags |= FS_IMMUTABLE_FL;
146 if (flags & BTRFS_INODE_APPEND)
147 iflags |= FS_APPEND_FL;
148 if (flags & BTRFS_INODE_NODUMP)
149 iflags |= FS_NODUMP_FL;
150 if (flags & BTRFS_INODE_NOATIME)
151 iflags |= FS_NOATIME_FL;
152 if (flags & BTRFS_INODE_DIRSYNC)
153 iflags |= FS_DIRSYNC_FL;
154 if (flags & BTRFS_INODE_NODATACOW)
155 iflags |= FS_NOCOW_FL;
156 if (ro_flags & BTRFS_INODE_RO_VERITY)
157 iflags |= FS_VERITY_FL;
158
159 if (flags & BTRFS_INODE_NOCOMPRESS)
160 iflags |= FS_NOCOMP_FL;
161 else if (flags & BTRFS_INODE_COMPRESS)
162 iflags |= FS_COMPR_FL;
163
164 return iflags;
165 }
166
167 /*
168 * Update inode->i_flags based on the btrfs internal flags.
169 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
171 {
172 struct btrfs_inode *binode = BTRFS_I(inode);
173 unsigned int new_fl = 0;
174
175 if (binode->flags & BTRFS_INODE_SYNC)
176 new_fl |= S_SYNC;
177 if (binode->flags & BTRFS_INODE_IMMUTABLE)
178 new_fl |= S_IMMUTABLE;
179 if (binode->flags & BTRFS_INODE_APPEND)
180 new_fl |= S_APPEND;
181 if (binode->flags & BTRFS_INODE_NOATIME)
182 new_fl |= S_NOATIME;
183 if (binode->flags & BTRFS_INODE_DIRSYNC)
184 new_fl |= S_DIRSYNC;
185 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
186 new_fl |= S_VERITY;
187
188 set_mask_bits(&inode->i_flags,
189 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
190 S_VERITY, new_fl);
191 }
192
193 /*
194 * Check if @flags are a supported and valid set of FS_*_FL flags and that
195 * the old and new flags are not conflicting
196 */
check_fsflags(unsigned int old_flags,unsigned int flags)197 static int check_fsflags(unsigned int old_flags, unsigned int flags)
198 {
199 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
200 FS_NOATIME_FL | FS_NODUMP_FL | \
201 FS_SYNC_FL | FS_DIRSYNC_FL | \
202 FS_NOCOMP_FL | FS_COMPR_FL |
203 FS_NOCOW_FL))
204 return -EOPNOTSUPP;
205
206 /* COMPR and NOCOMP on new/old are valid */
207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 return -EINVAL;
209
210 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
211 return -EINVAL;
212
213 /* NOCOW and compression options are mutually exclusive */
214 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
215 return -EINVAL;
216 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
217 return -EINVAL;
218
219 return 0;
220 }
221
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)222 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
223 unsigned int flags)
224 {
225 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
226 return -EPERM;
227
228 return 0;
229 }
230
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)231 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
232 {
233 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
234 return -ENAMETOOLONG;
235 return 0;
236 }
237
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)238 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
239 {
240 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
241 return -ENAMETOOLONG;
242 return 0;
243 }
244
245 /*
246 * Set flags/xflags from the internal inode flags. The remaining items of
247 * fsxattr are zeroed.
248 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)249 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
250 {
251 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
252
253 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
254 return 0;
255 }
256
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)257 int btrfs_fileattr_set(struct mnt_idmap *idmap,
258 struct dentry *dentry, struct fileattr *fa)
259 {
260 struct inode *inode = d_inode(dentry);
261 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
262 struct btrfs_inode *binode = BTRFS_I(inode);
263 struct btrfs_root *root = binode->root;
264 struct btrfs_trans_handle *trans;
265 unsigned int fsflags, old_fsflags;
266 int ret;
267 const char *comp = NULL;
268 u32 binode_flags;
269
270 if (btrfs_root_readonly(root))
271 return -EROFS;
272
273 if (fileattr_has_fsx(fa))
274 return -EOPNOTSUPP;
275
276 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
277 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
278 ret = check_fsflags(old_fsflags, fsflags);
279 if (ret)
280 return ret;
281
282 ret = check_fsflags_compatible(fs_info, fsflags);
283 if (ret)
284 return ret;
285
286 binode_flags = binode->flags;
287 if (fsflags & FS_SYNC_FL)
288 binode_flags |= BTRFS_INODE_SYNC;
289 else
290 binode_flags &= ~BTRFS_INODE_SYNC;
291 if (fsflags & FS_IMMUTABLE_FL)
292 binode_flags |= BTRFS_INODE_IMMUTABLE;
293 else
294 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
295 if (fsflags & FS_APPEND_FL)
296 binode_flags |= BTRFS_INODE_APPEND;
297 else
298 binode_flags &= ~BTRFS_INODE_APPEND;
299 if (fsflags & FS_NODUMP_FL)
300 binode_flags |= BTRFS_INODE_NODUMP;
301 else
302 binode_flags &= ~BTRFS_INODE_NODUMP;
303 if (fsflags & FS_NOATIME_FL)
304 binode_flags |= BTRFS_INODE_NOATIME;
305 else
306 binode_flags &= ~BTRFS_INODE_NOATIME;
307
308 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
309 if (!fa->flags_valid) {
310 /* 1 item for the inode */
311 trans = btrfs_start_transaction(root, 1);
312 if (IS_ERR(trans))
313 return PTR_ERR(trans);
314 goto update_flags;
315 }
316
317 if (fsflags & FS_DIRSYNC_FL)
318 binode_flags |= BTRFS_INODE_DIRSYNC;
319 else
320 binode_flags &= ~BTRFS_INODE_DIRSYNC;
321 if (fsflags & FS_NOCOW_FL) {
322 if (S_ISREG(inode->i_mode)) {
323 /*
324 * It's safe to turn csums off here, no extents exist.
325 * Otherwise we want the flag to reflect the real COW
326 * status of the file and will not set it.
327 */
328 if (inode->i_size == 0)
329 binode_flags |= BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM;
331 } else {
332 binode_flags |= BTRFS_INODE_NODATACOW;
333 }
334 } else {
335 /*
336 * Revert back under same assumptions as above
337 */
338 if (S_ISREG(inode->i_mode)) {
339 if (inode->i_size == 0)
340 binode_flags &= ~(BTRFS_INODE_NODATACOW |
341 BTRFS_INODE_NODATASUM);
342 } else {
343 binode_flags &= ~BTRFS_INODE_NODATACOW;
344 }
345 }
346
347 /*
348 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
349 * flag may be changed automatically if compression code won't make
350 * things smaller.
351 */
352 if (fsflags & FS_NOCOMP_FL) {
353 binode_flags &= ~BTRFS_INODE_COMPRESS;
354 binode_flags |= BTRFS_INODE_NOCOMPRESS;
355 } else if (fsflags & FS_COMPR_FL) {
356
357 if (IS_SWAPFILE(inode))
358 return -ETXTBSY;
359
360 binode_flags |= BTRFS_INODE_COMPRESS;
361 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
362
363 comp = btrfs_compress_type2str(fs_info->compress_type);
364 if (!comp || comp[0] == 0)
365 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
366 } else {
367 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
368 }
369
370 /*
371 * 1 for inode item
372 * 2 for properties
373 */
374 trans = btrfs_start_transaction(root, 3);
375 if (IS_ERR(trans))
376 return PTR_ERR(trans);
377
378 if (comp) {
379 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
380 comp, strlen(comp), 0);
381 if (ret) {
382 btrfs_abort_transaction(trans, ret);
383 goto out_end_trans;
384 }
385 } else {
386 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression",
387 NULL, 0, 0);
388 if (ret && ret != -ENODATA) {
389 btrfs_abort_transaction(trans, ret);
390 goto out_end_trans;
391 }
392 }
393
394 update_flags:
395 binode->flags = binode_flags;
396 btrfs_sync_inode_flags_to_i_flags(inode);
397 inode_inc_iversion(inode);
398 inode_set_ctime_current(inode);
399 ret = btrfs_update_inode(trans, BTRFS_I(inode));
400
401 out_end_trans:
402 btrfs_end_transaction(trans);
403 return ret;
404 }
405
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)406 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
407 {
408 return put_user(inode->i_generation, arg);
409 }
410
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)411 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
412 void __user *arg)
413 {
414 struct btrfs_device *device;
415 struct fstrim_range range;
416 u64 minlen = ULLONG_MAX;
417 u64 num_devices = 0;
418 int ret;
419
420 if (!capable(CAP_SYS_ADMIN))
421 return -EPERM;
422
423 /*
424 * btrfs_trim_block_group() depends on space cache, which is not
425 * available in zoned filesystem. So, disallow fitrim on a zoned
426 * filesystem for now.
427 */
428 if (btrfs_is_zoned(fs_info))
429 return -EOPNOTSUPP;
430
431 /*
432 * If the fs is mounted with nologreplay, which requires it to be
433 * mounted in RO mode as well, we can not allow discard on free space
434 * inside block groups, because log trees refer to extents that are not
435 * pinned in a block group's free space cache (pinning the extents is
436 * precisely the first phase of replaying a log tree).
437 */
438 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
439 return -EROFS;
440
441 rcu_read_lock();
442 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
443 dev_list) {
444 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
445 continue;
446 num_devices++;
447 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
448 minlen);
449 }
450 rcu_read_unlock();
451
452 if (!num_devices)
453 return -EOPNOTSUPP;
454 if (copy_from_user(&range, arg, sizeof(range)))
455 return -EFAULT;
456
457 /*
458 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
459 * block group is in the logical address space, which can be any
460 * sectorsize aligned bytenr in the range [0, U64_MAX].
461 */
462 if (range.len < fs_info->sectorsize)
463 return -EINVAL;
464
465 range.minlen = max(range.minlen, minlen);
466 ret = btrfs_trim_fs(fs_info, &range);
467
468 if (copy_to_user(arg, &range, sizeof(range)))
469 return -EFAULT;
470
471 return ret;
472 }
473
474 /*
475 * Calculate the number of transaction items to reserve for creating a subvolume
476 * or snapshot, not including the inode, directory entries, or parent directory.
477 */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)478 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
479 {
480 /*
481 * 1 to add root block
482 * 1 to add root item
483 * 1 to add root ref
484 * 1 to add root backref
485 * 1 to add UUID item
486 * 1 to add qgroup info
487 * 1 to add qgroup limit
488 *
489 * Ideally the last two would only be accounted if qgroups are enabled,
490 * but that can change between now and the time we would insert them.
491 */
492 unsigned int num_items = 7;
493
494 if (inherit) {
495 /* 2 to add qgroup relations for each inherited qgroup */
496 num_items += 2 * inherit->num_qgroups;
497 }
498 return num_items;
499 }
500
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)501 static noinline int create_subvol(struct mnt_idmap *idmap,
502 struct inode *dir, struct dentry *dentry,
503 struct btrfs_qgroup_inherit *inherit)
504 {
505 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
506 struct btrfs_trans_handle *trans;
507 struct btrfs_key key;
508 struct btrfs_root_item *root_item;
509 struct btrfs_inode_item *inode_item;
510 struct extent_buffer *leaf;
511 struct btrfs_root *root = BTRFS_I(dir)->root;
512 struct btrfs_root *new_root;
513 struct btrfs_block_rsv block_rsv;
514 struct timespec64 cur_time = current_time(dir);
515 struct btrfs_new_inode_args new_inode_args = {
516 .dir = dir,
517 .dentry = dentry,
518 .subvol = true,
519 };
520 unsigned int trans_num_items;
521 int ret;
522 dev_t anon_dev;
523 u64 objectid;
524 u64 qgroup_reserved = 0;
525
526 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
527 if (!root_item)
528 return -ENOMEM;
529
530 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
531 if (ret)
532 goto out_root_item;
533
534 /*
535 * Don't create subvolume whose level is not zero. Or qgroup will be
536 * screwed up since it assumes subvolume qgroup's level to be 0.
537 */
538 if (btrfs_qgroup_level(objectid)) {
539 ret = -ENOSPC;
540 goto out_root_item;
541 }
542
543 ret = get_anon_bdev(&anon_dev);
544 if (ret < 0)
545 goto out_root_item;
546
547 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
548 if (!new_inode_args.inode) {
549 ret = -ENOMEM;
550 goto out_anon_dev;
551 }
552 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
553 if (ret)
554 goto out_inode;
555 trans_num_items += create_subvol_num_items(inherit);
556
557 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
558 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
559 trans_num_items, false);
560 if (ret)
561 goto out_new_inode_args;
562 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
563
564 trans = btrfs_start_transaction(root, 0);
565 if (IS_ERR(trans)) {
566 ret = PTR_ERR(trans);
567 goto out_release_rsv;
568 }
569 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
570 qgroup_reserved = 0;
571 trans->block_rsv = &block_rsv;
572 trans->bytes_reserved = block_rsv.size;
573
574 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
575 if (ret)
576 goto out;
577
578 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
579 0, BTRFS_NESTING_NORMAL);
580 if (IS_ERR(leaf)) {
581 ret = PTR_ERR(leaf);
582 goto out;
583 }
584
585 btrfs_mark_buffer_dirty(trans, leaf);
586
587 inode_item = &root_item->inode;
588 btrfs_set_stack_inode_generation(inode_item, 1);
589 btrfs_set_stack_inode_size(inode_item, 3);
590 btrfs_set_stack_inode_nlink(inode_item, 1);
591 btrfs_set_stack_inode_nbytes(inode_item,
592 fs_info->nodesize);
593 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
594
595 btrfs_set_root_flags(root_item, 0);
596 btrfs_set_root_limit(root_item, 0);
597 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
598
599 btrfs_set_root_bytenr(root_item, leaf->start);
600 btrfs_set_root_generation(root_item, trans->transid);
601 btrfs_set_root_level(root_item, 0);
602 btrfs_set_root_refs(root_item, 1);
603 btrfs_set_root_used(root_item, leaf->len);
604 btrfs_set_root_last_snapshot(root_item, 0);
605
606 btrfs_set_root_generation_v2(root_item,
607 btrfs_root_generation(root_item));
608 generate_random_guid(root_item->uuid);
609 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
610 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
611 root_item->ctime = root_item->otime;
612 btrfs_set_root_ctransid(root_item, trans->transid);
613 btrfs_set_root_otransid(root_item, trans->transid);
614
615 btrfs_tree_unlock(leaf);
616
617 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
618
619 key.objectid = objectid;
620 key.offset = 0;
621 key.type = BTRFS_ROOT_ITEM_KEY;
622 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
623 root_item);
624 if (ret) {
625 int ret2;
626
627 /*
628 * Since we don't abort the transaction in this case, free the
629 * tree block so that we don't leak space and leave the
630 * filesystem in an inconsistent state (an extent item in the
631 * extent tree with a backreference for a root that does not
632 * exists).
633 */
634 btrfs_tree_lock(leaf);
635 btrfs_clear_buffer_dirty(trans, leaf);
636 btrfs_tree_unlock(leaf);
637 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
638 if (ret2 < 0)
639 btrfs_abort_transaction(trans, ret2);
640 free_extent_buffer(leaf);
641 goto out;
642 }
643
644 free_extent_buffer(leaf);
645 leaf = NULL;
646
647 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
648 if (IS_ERR(new_root)) {
649 ret = PTR_ERR(new_root);
650 btrfs_abort_transaction(trans, ret);
651 goto out;
652 }
653 /* anon_dev is owned by new_root now. */
654 anon_dev = 0;
655 BTRFS_I(new_inode_args.inode)->root = new_root;
656 /* ... and new_root is owned by new_inode_args.inode now. */
657
658 ret = btrfs_record_root_in_trans(trans, new_root);
659 if (ret) {
660 btrfs_abort_transaction(trans, ret);
661 goto out;
662 }
663
664 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
665 BTRFS_UUID_KEY_SUBVOL, objectid);
666 if (ret) {
667 btrfs_abort_transaction(trans, ret);
668 goto out;
669 }
670
671 ret = btrfs_create_new_inode(trans, &new_inode_args);
672 if (ret) {
673 btrfs_abort_transaction(trans, ret);
674 goto out;
675 }
676
677 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
678
679 d_instantiate_new(dentry, new_inode_args.inode);
680 new_inode_args.inode = NULL;
681
682 out:
683 trans->block_rsv = NULL;
684 trans->bytes_reserved = 0;
685 btrfs_end_transaction(trans);
686 out_release_rsv:
687 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
688 if (qgroup_reserved)
689 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
690 out_new_inode_args:
691 btrfs_new_inode_args_destroy(&new_inode_args);
692 out_inode:
693 iput(new_inode_args.inode);
694 out_anon_dev:
695 if (anon_dev)
696 free_anon_bdev(anon_dev);
697 out_root_item:
698 kfree(root_item);
699 return ret;
700 }
701
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)702 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
703 struct dentry *dentry, bool readonly,
704 struct btrfs_qgroup_inherit *inherit)
705 {
706 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
707 struct inode *inode;
708 struct btrfs_pending_snapshot *pending_snapshot;
709 unsigned int trans_num_items;
710 struct btrfs_trans_handle *trans;
711 struct btrfs_block_rsv *block_rsv;
712 u64 qgroup_reserved = 0;
713 int ret;
714
715 /* We do not support snapshotting right now. */
716 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
717 btrfs_warn(fs_info,
718 "extent tree v2 doesn't support snapshotting yet");
719 return -EOPNOTSUPP;
720 }
721
722 if (btrfs_root_refs(&root->root_item) == 0)
723 return -ENOENT;
724
725 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
726 return -EINVAL;
727
728 if (atomic_read(&root->nr_swapfiles)) {
729 btrfs_warn(fs_info,
730 "cannot snapshot subvolume with active swapfile");
731 return -ETXTBSY;
732 }
733
734 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
735 if (!pending_snapshot)
736 return -ENOMEM;
737
738 ret = get_anon_bdev(&pending_snapshot->anon_dev);
739 if (ret < 0)
740 goto free_pending;
741 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
742 GFP_KERNEL);
743 pending_snapshot->path = btrfs_alloc_path();
744 if (!pending_snapshot->root_item || !pending_snapshot->path) {
745 ret = -ENOMEM;
746 goto free_pending;
747 }
748
749 block_rsv = &pending_snapshot->block_rsv;
750 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
751 /*
752 * 1 to add dir item
753 * 1 to add dir index
754 * 1 to update parent inode item
755 */
756 trans_num_items = create_subvol_num_items(inherit) + 3;
757 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
758 trans_num_items, false);
759 if (ret)
760 goto free_pending;
761 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
762
763 pending_snapshot->dentry = dentry;
764 pending_snapshot->root = root;
765 pending_snapshot->readonly = readonly;
766 pending_snapshot->dir = BTRFS_I(dir);
767 pending_snapshot->inherit = inherit;
768
769 trans = btrfs_start_transaction(root, 0);
770 if (IS_ERR(trans)) {
771 ret = PTR_ERR(trans);
772 goto fail;
773 }
774 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
775 if (ret) {
776 btrfs_end_transaction(trans);
777 goto fail;
778 }
779 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
780 qgroup_reserved = 0;
781
782 trans->pending_snapshot = pending_snapshot;
783
784 ret = btrfs_commit_transaction(trans);
785 if (ret)
786 goto fail;
787
788 ret = pending_snapshot->error;
789 if (ret)
790 goto fail;
791
792 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
793 if (ret)
794 goto fail;
795
796 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
797 if (IS_ERR(inode)) {
798 ret = PTR_ERR(inode);
799 goto fail;
800 }
801
802 d_instantiate(dentry, inode);
803 ret = 0;
804 pending_snapshot->anon_dev = 0;
805 fail:
806 /* Prevent double freeing of anon_dev */
807 if (ret && pending_snapshot->snap)
808 pending_snapshot->snap->anon_dev = 0;
809 btrfs_put_root(pending_snapshot->snap);
810 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
811 if (qgroup_reserved)
812 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
813 free_pending:
814 if (pending_snapshot->anon_dev)
815 free_anon_bdev(pending_snapshot->anon_dev);
816 kfree(pending_snapshot->root_item);
817 btrfs_free_path(pending_snapshot->path);
818 kfree(pending_snapshot);
819
820 return ret;
821 }
822
823 /* copy of may_delete in fs/namei.c()
824 * Check whether we can remove a link victim from directory dir, check
825 * whether the type of victim is right.
826 * 1. We can't do it if dir is read-only (done in permission())
827 * 2. We should have write and exec permissions on dir
828 * 3. We can't remove anything from append-only dir
829 * 4. We can't do anything with immutable dir (done in permission())
830 * 5. If the sticky bit on dir is set we should either
831 * a. be owner of dir, or
832 * b. be owner of victim, or
833 * c. have CAP_FOWNER capability
834 * 6. If the victim is append-only or immutable we can't do anything with
835 * links pointing to it.
836 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
837 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
838 * 9. We can't remove a root or mountpoint.
839 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
840 * nfs_async_unlink().
841 */
842
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)843 static int btrfs_may_delete(struct mnt_idmap *idmap,
844 struct inode *dir, struct dentry *victim, int isdir)
845 {
846 int error;
847
848 if (d_really_is_negative(victim))
849 return -ENOENT;
850
851 /* The @victim is not inside @dir. */
852 if (d_inode(victim->d_parent) != dir)
853 return -EINVAL;
854 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
855
856 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
857 if (error)
858 return error;
859 if (IS_APPEND(dir))
860 return -EPERM;
861 if (check_sticky(idmap, dir, d_inode(victim)) ||
862 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
863 IS_SWAPFILE(d_inode(victim)))
864 return -EPERM;
865 if (isdir) {
866 if (!d_is_dir(victim))
867 return -ENOTDIR;
868 if (IS_ROOT(victim))
869 return -EBUSY;
870 } else if (d_is_dir(victim))
871 return -EISDIR;
872 if (IS_DEADDIR(dir))
873 return -ENOENT;
874 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
875 return -EBUSY;
876 return 0;
877 }
878
879 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)880 static inline int btrfs_may_create(struct mnt_idmap *idmap,
881 struct inode *dir, struct dentry *child)
882 {
883 if (d_really_is_positive(child))
884 return -EEXIST;
885 if (IS_DEADDIR(dir))
886 return -ENOENT;
887 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
888 return -EOVERFLOW;
889 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
890 }
891
892 /*
893 * Create a new subvolume below @parent. This is largely modeled after
894 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
895 * inside this filesystem so it's quite a bit simpler.
896 */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)897 static noinline int btrfs_mksubvol(const struct path *parent,
898 struct mnt_idmap *idmap,
899 const char *name, int namelen,
900 struct btrfs_root *snap_src,
901 bool readonly,
902 struct btrfs_qgroup_inherit *inherit)
903 {
904 struct inode *dir = d_inode(parent->dentry);
905 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
906 struct dentry *dentry;
907 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
908 int error;
909
910 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
911 if (error == -EINTR)
912 return error;
913
914 dentry = lookup_one(idmap, name, parent->dentry, namelen);
915 error = PTR_ERR(dentry);
916 if (IS_ERR(dentry))
917 goto out_unlock;
918
919 error = btrfs_may_create(idmap, dir, dentry);
920 if (error)
921 goto out_dput;
922
923 /*
924 * even if this name doesn't exist, we may get hash collisions.
925 * check for them now when we can safely fail
926 */
927 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
928 dir->i_ino, &name_str);
929 if (error)
930 goto out_dput;
931
932 down_read(&fs_info->subvol_sem);
933
934 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
935 goto out_up_read;
936
937 if (snap_src)
938 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
939 else
940 error = create_subvol(idmap, dir, dentry, inherit);
941
942 if (!error)
943 fsnotify_mkdir(dir, dentry);
944 out_up_read:
945 up_read(&fs_info->subvol_sem);
946 out_dput:
947 dput(dentry);
948 out_unlock:
949 btrfs_inode_unlock(BTRFS_I(dir), 0);
950 return error;
951 }
952
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)953 static noinline int btrfs_mksnapshot(const struct path *parent,
954 struct mnt_idmap *idmap,
955 const char *name, int namelen,
956 struct btrfs_root *root,
957 bool readonly,
958 struct btrfs_qgroup_inherit *inherit)
959 {
960 int ret;
961
962 /*
963 * Force new buffered writes to reserve space even when NOCOW is
964 * possible. This is to avoid later writeback (running dealloc) to
965 * fallback to COW mode and unexpectedly fail with ENOSPC.
966 */
967 btrfs_drew_read_lock(&root->snapshot_lock);
968
969 ret = btrfs_start_delalloc_snapshot(root, false);
970 if (ret)
971 goto out;
972
973 /*
974 * All previous writes have started writeback in NOCOW mode, so now
975 * we force future writes to fallback to COW mode during snapshot
976 * creation.
977 */
978 atomic_inc(&root->snapshot_force_cow);
979
980 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
981
982 ret = btrfs_mksubvol(parent, idmap, name, namelen,
983 root, readonly, inherit);
984 atomic_dec(&root->snapshot_force_cow);
985 out:
986 btrfs_drew_read_unlock(&root->snapshot_lock);
987 return ret;
988 }
989
990 /*
991 * Try to start exclusive operation @type or cancel it if it's running.
992 *
993 * Return:
994 * 0 - normal mode, newly claimed op started
995 * >0 - normal mode, something else is running,
996 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
997 * ECANCELED - cancel mode, successful cancel
998 * ENOTCONN - cancel mode, operation not running anymore
999 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1000 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1001 enum btrfs_exclusive_operation type, bool cancel)
1002 {
1003 if (!cancel) {
1004 /* Start normal op */
1005 if (!btrfs_exclop_start(fs_info, type))
1006 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1007 /* Exclusive operation is now claimed */
1008 return 0;
1009 }
1010
1011 /* Cancel running op */
1012 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1013 /*
1014 * This blocks any exclop finish from setting it to NONE, so we
1015 * request cancellation. Either it runs and we will wait for it,
1016 * or it has finished and no waiting will happen.
1017 */
1018 atomic_inc(&fs_info->reloc_cancel_req);
1019 btrfs_exclop_start_unlock(fs_info);
1020
1021 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1022 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1023 TASK_INTERRUPTIBLE);
1024
1025 return -ECANCELED;
1026 }
1027
1028 /* Something else is running or none */
1029 return -ENOTCONN;
1030 }
1031
btrfs_ioctl_resize(struct file * file,void __user * arg)1032 static noinline int btrfs_ioctl_resize(struct file *file,
1033 void __user *arg)
1034 {
1035 BTRFS_DEV_LOOKUP_ARGS(args);
1036 struct inode *inode = file_inode(file);
1037 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1038 u64 new_size;
1039 u64 old_size;
1040 u64 devid = 1;
1041 struct btrfs_root *root = BTRFS_I(inode)->root;
1042 struct btrfs_ioctl_vol_args *vol_args;
1043 struct btrfs_trans_handle *trans;
1044 struct btrfs_device *device = NULL;
1045 char *sizestr;
1046 char *retptr;
1047 char *devstr = NULL;
1048 int ret = 0;
1049 int mod = 0;
1050 bool cancel;
1051
1052 if (!capable(CAP_SYS_ADMIN))
1053 return -EPERM;
1054
1055 ret = mnt_want_write_file(file);
1056 if (ret)
1057 return ret;
1058
1059 /*
1060 * Read the arguments before checking exclusivity to be able to
1061 * distinguish regular resize and cancel
1062 */
1063 vol_args = memdup_user(arg, sizeof(*vol_args));
1064 if (IS_ERR(vol_args)) {
1065 ret = PTR_ERR(vol_args);
1066 goto out_drop;
1067 }
1068 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1069 if (ret < 0)
1070 goto out_free;
1071
1072 sizestr = vol_args->name;
1073 cancel = (strcmp("cancel", sizestr) == 0);
1074 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1075 if (ret)
1076 goto out_free;
1077 /* Exclusive operation is now claimed */
1078
1079 devstr = strchr(sizestr, ':');
1080 if (devstr) {
1081 sizestr = devstr + 1;
1082 *devstr = '\0';
1083 devstr = vol_args->name;
1084 ret = kstrtoull(devstr, 10, &devid);
1085 if (ret)
1086 goto out_finish;
1087 if (!devid) {
1088 ret = -EINVAL;
1089 goto out_finish;
1090 }
1091 btrfs_info(fs_info, "resizing devid %llu", devid);
1092 }
1093
1094 args.devid = devid;
1095 device = btrfs_find_device(fs_info->fs_devices, &args);
1096 if (!device) {
1097 btrfs_info(fs_info, "resizer unable to find device %llu",
1098 devid);
1099 ret = -ENODEV;
1100 goto out_finish;
1101 }
1102
1103 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1104 btrfs_info(fs_info,
1105 "resizer unable to apply on readonly device %llu",
1106 devid);
1107 ret = -EPERM;
1108 goto out_finish;
1109 }
1110
1111 if (!strcmp(sizestr, "max"))
1112 new_size = bdev_nr_bytes(device->bdev);
1113 else {
1114 if (sizestr[0] == '-') {
1115 mod = -1;
1116 sizestr++;
1117 } else if (sizestr[0] == '+') {
1118 mod = 1;
1119 sizestr++;
1120 }
1121 new_size = memparse(sizestr, &retptr);
1122 if (*retptr != '\0' || new_size == 0) {
1123 ret = -EINVAL;
1124 goto out_finish;
1125 }
1126 }
1127
1128 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1129 ret = -EPERM;
1130 goto out_finish;
1131 }
1132
1133 old_size = btrfs_device_get_total_bytes(device);
1134
1135 if (mod < 0) {
1136 if (new_size > old_size) {
1137 ret = -EINVAL;
1138 goto out_finish;
1139 }
1140 new_size = old_size - new_size;
1141 } else if (mod > 0) {
1142 if (new_size > ULLONG_MAX - old_size) {
1143 ret = -ERANGE;
1144 goto out_finish;
1145 }
1146 new_size = old_size + new_size;
1147 }
1148
1149 if (new_size < SZ_256M) {
1150 ret = -EINVAL;
1151 goto out_finish;
1152 }
1153 if (new_size > bdev_nr_bytes(device->bdev)) {
1154 ret = -EFBIG;
1155 goto out_finish;
1156 }
1157
1158 new_size = round_down(new_size, fs_info->sectorsize);
1159
1160 if (new_size > old_size) {
1161 trans = btrfs_start_transaction(root, 0);
1162 if (IS_ERR(trans)) {
1163 ret = PTR_ERR(trans);
1164 goto out_finish;
1165 }
1166 ret = btrfs_grow_device(trans, device, new_size);
1167 btrfs_commit_transaction(trans);
1168 } else if (new_size < old_size) {
1169 ret = btrfs_shrink_device(device, new_size);
1170 } /* equal, nothing need to do */
1171
1172 if (ret == 0 && new_size != old_size)
1173 btrfs_info_in_rcu(fs_info,
1174 "resize device %s (devid %llu) from %llu to %llu",
1175 btrfs_dev_name(device), device->devid,
1176 old_size, new_size);
1177 out_finish:
1178 btrfs_exclop_finish(fs_info);
1179 out_free:
1180 kfree(vol_args);
1181 out_drop:
1182 mnt_drop_write_file(file);
1183 return ret;
1184 }
1185
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1186 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1187 struct mnt_idmap *idmap,
1188 const char *name, unsigned long fd, int subvol,
1189 bool readonly,
1190 struct btrfs_qgroup_inherit *inherit)
1191 {
1192 int namelen;
1193 int ret = 0;
1194
1195 if (!S_ISDIR(file_inode(file)->i_mode))
1196 return -ENOTDIR;
1197
1198 ret = mnt_want_write_file(file);
1199 if (ret)
1200 goto out;
1201
1202 namelen = strlen(name);
1203 if (strchr(name, '/')) {
1204 ret = -EINVAL;
1205 goto out_drop_write;
1206 }
1207
1208 if (name[0] == '.' &&
1209 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1210 ret = -EEXIST;
1211 goto out_drop_write;
1212 }
1213
1214 if (subvol) {
1215 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1216 namelen, NULL, readonly, inherit);
1217 } else {
1218 CLASS(fd, src)(fd);
1219 struct inode *src_inode;
1220 if (fd_empty(src)) {
1221 ret = -EINVAL;
1222 goto out_drop_write;
1223 }
1224
1225 src_inode = file_inode(fd_file(src));
1226 if (src_inode->i_sb != file_inode(file)->i_sb) {
1227 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1228 "Snapshot src from another FS");
1229 ret = -EXDEV;
1230 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1231 /*
1232 * Subvolume creation is not restricted, but snapshots
1233 * are limited to own subvolumes only
1234 */
1235 ret = -EPERM;
1236 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1237 /*
1238 * Snapshots must be made with the src_inode referring
1239 * to the subvolume inode, otherwise the permission
1240 * checking above is useless because we may have
1241 * permission on a lower directory but not the subvol
1242 * itself.
1243 */
1244 ret = -EINVAL;
1245 } else {
1246 ret = btrfs_mksnapshot(&file->f_path, idmap,
1247 name, namelen,
1248 BTRFS_I(src_inode)->root,
1249 readonly, inherit);
1250 }
1251 }
1252 out_drop_write:
1253 mnt_drop_write_file(file);
1254 out:
1255 return ret;
1256 }
1257
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1258 static noinline int btrfs_ioctl_snap_create(struct file *file,
1259 void __user *arg, int subvol)
1260 {
1261 struct btrfs_ioctl_vol_args *vol_args;
1262 int ret;
1263
1264 if (!S_ISDIR(file_inode(file)->i_mode))
1265 return -ENOTDIR;
1266
1267 vol_args = memdup_user(arg, sizeof(*vol_args));
1268 if (IS_ERR(vol_args))
1269 return PTR_ERR(vol_args);
1270 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1271 if (ret < 0)
1272 goto out;
1273
1274 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1275 vol_args->name, vol_args->fd, subvol,
1276 false, NULL);
1277
1278 out:
1279 kfree(vol_args);
1280 return ret;
1281 }
1282
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1283 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1284 void __user *arg, int subvol)
1285 {
1286 struct btrfs_ioctl_vol_args_v2 *vol_args;
1287 int ret;
1288 bool readonly = false;
1289 struct btrfs_qgroup_inherit *inherit = NULL;
1290
1291 if (!S_ISDIR(file_inode(file)->i_mode))
1292 return -ENOTDIR;
1293
1294 vol_args = memdup_user(arg, sizeof(*vol_args));
1295 if (IS_ERR(vol_args))
1296 return PTR_ERR(vol_args);
1297 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1298 if (ret < 0)
1299 goto free_args;
1300
1301 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1302 ret = -EOPNOTSUPP;
1303 goto free_args;
1304 }
1305
1306 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1307 readonly = true;
1308 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1309 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1310
1311 if (vol_args->size < sizeof(*inherit) ||
1312 vol_args->size > PAGE_SIZE) {
1313 ret = -EINVAL;
1314 goto free_args;
1315 }
1316 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1317 if (IS_ERR(inherit)) {
1318 ret = PTR_ERR(inherit);
1319 goto free_args;
1320 }
1321
1322 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1323 if (ret < 0)
1324 goto free_inherit;
1325 }
1326
1327 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1328 vol_args->name, vol_args->fd, subvol,
1329 readonly, inherit);
1330 if (ret)
1331 goto free_inherit;
1332 free_inherit:
1333 kfree(inherit);
1334 free_args:
1335 kfree(vol_args);
1336 return ret;
1337 }
1338
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)1339 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1340 void __user *arg)
1341 {
1342 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1343 struct btrfs_root *root = BTRFS_I(inode)->root;
1344 int ret = 0;
1345 u64 flags = 0;
1346
1347 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1348 return -EINVAL;
1349
1350 down_read(&fs_info->subvol_sem);
1351 if (btrfs_root_readonly(root))
1352 flags |= BTRFS_SUBVOL_RDONLY;
1353 up_read(&fs_info->subvol_sem);
1354
1355 if (copy_to_user(arg, &flags, sizeof(flags)))
1356 ret = -EFAULT;
1357
1358 return ret;
1359 }
1360
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1361 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1362 void __user *arg)
1363 {
1364 struct inode *inode = file_inode(file);
1365 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1366 struct btrfs_root *root = BTRFS_I(inode)->root;
1367 struct btrfs_trans_handle *trans;
1368 u64 root_flags;
1369 u64 flags;
1370 int ret = 0;
1371
1372 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1373 return -EPERM;
1374
1375 ret = mnt_want_write_file(file);
1376 if (ret)
1377 goto out;
1378
1379 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1380 ret = -EINVAL;
1381 goto out_drop_write;
1382 }
1383
1384 if (copy_from_user(&flags, arg, sizeof(flags))) {
1385 ret = -EFAULT;
1386 goto out_drop_write;
1387 }
1388
1389 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1390 ret = -EOPNOTSUPP;
1391 goto out_drop_write;
1392 }
1393
1394 down_write(&fs_info->subvol_sem);
1395
1396 /* nothing to do */
1397 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1398 goto out_drop_sem;
1399
1400 root_flags = btrfs_root_flags(&root->root_item);
1401 if (flags & BTRFS_SUBVOL_RDONLY) {
1402 btrfs_set_root_flags(&root->root_item,
1403 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1404 } else {
1405 /*
1406 * Block RO -> RW transition if this subvolume is involved in
1407 * send
1408 */
1409 spin_lock(&root->root_item_lock);
1410 if (root->send_in_progress == 0) {
1411 btrfs_set_root_flags(&root->root_item,
1412 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1413 spin_unlock(&root->root_item_lock);
1414 } else {
1415 spin_unlock(&root->root_item_lock);
1416 btrfs_warn(fs_info,
1417 "Attempt to set subvolume %llu read-write during send",
1418 btrfs_root_id(root));
1419 ret = -EPERM;
1420 goto out_drop_sem;
1421 }
1422 }
1423
1424 trans = btrfs_start_transaction(root, 1);
1425 if (IS_ERR(trans)) {
1426 ret = PTR_ERR(trans);
1427 goto out_reset;
1428 }
1429
1430 ret = btrfs_update_root(trans, fs_info->tree_root,
1431 &root->root_key, &root->root_item);
1432 if (ret < 0) {
1433 btrfs_end_transaction(trans);
1434 goto out_reset;
1435 }
1436
1437 ret = btrfs_commit_transaction(trans);
1438
1439 out_reset:
1440 if (ret)
1441 btrfs_set_root_flags(&root->root_item, root_flags);
1442 out_drop_sem:
1443 up_write(&fs_info->subvol_sem);
1444 out_drop_write:
1445 mnt_drop_write_file(file);
1446 out:
1447 return ret;
1448 }
1449
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1450 static noinline int key_in_sk(struct btrfs_key *key,
1451 struct btrfs_ioctl_search_key *sk)
1452 {
1453 struct btrfs_key test;
1454 int ret;
1455
1456 test.objectid = sk->min_objectid;
1457 test.type = sk->min_type;
1458 test.offset = sk->min_offset;
1459
1460 ret = btrfs_comp_cpu_keys(key, &test);
1461 if (ret < 0)
1462 return 0;
1463
1464 test.objectid = sk->max_objectid;
1465 test.type = sk->max_type;
1466 test.offset = sk->max_offset;
1467
1468 ret = btrfs_comp_cpu_keys(key, &test);
1469 if (ret > 0)
1470 return 0;
1471 return 1;
1472 }
1473
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1474 static noinline int copy_to_sk(struct btrfs_path *path,
1475 struct btrfs_key *key,
1476 struct btrfs_ioctl_search_key *sk,
1477 u64 *buf_size,
1478 char __user *ubuf,
1479 unsigned long *sk_offset,
1480 int *num_found)
1481 {
1482 u64 found_transid;
1483 struct extent_buffer *leaf;
1484 struct btrfs_ioctl_search_header sh;
1485 struct btrfs_key test;
1486 unsigned long item_off;
1487 unsigned long item_len;
1488 int nritems;
1489 int i;
1490 int slot;
1491 int ret = 0;
1492
1493 leaf = path->nodes[0];
1494 slot = path->slots[0];
1495 nritems = btrfs_header_nritems(leaf);
1496
1497 if (btrfs_header_generation(leaf) > sk->max_transid) {
1498 i = nritems;
1499 goto advance_key;
1500 }
1501 found_transid = btrfs_header_generation(leaf);
1502
1503 for (i = slot; i < nritems; i++) {
1504 item_off = btrfs_item_ptr_offset(leaf, i);
1505 item_len = btrfs_item_size(leaf, i);
1506
1507 btrfs_item_key_to_cpu(leaf, key, i);
1508 if (!key_in_sk(key, sk))
1509 continue;
1510
1511 if (sizeof(sh) + item_len > *buf_size) {
1512 if (*num_found) {
1513 ret = 1;
1514 goto out;
1515 }
1516
1517 /*
1518 * return one empty item back for v1, which does not
1519 * handle -EOVERFLOW
1520 */
1521
1522 *buf_size = sizeof(sh) + item_len;
1523 item_len = 0;
1524 ret = -EOVERFLOW;
1525 }
1526
1527 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1528 ret = 1;
1529 goto out;
1530 }
1531
1532 sh.objectid = key->objectid;
1533 sh.offset = key->offset;
1534 sh.type = key->type;
1535 sh.len = item_len;
1536 sh.transid = found_transid;
1537
1538 /*
1539 * Copy search result header. If we fault then loop again so we
1540 * can fault in the pages and -EFAULT there if there's a
1541 * problem. Otherwise we'll fault and then copy the buffer in
1542 * properly this next time through
1543 */
1544 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1545 ret = 0;
1546 goto out;
1547 }
1548
1549 *sk_offset += sizeof(sh);
1550
1551 if (item_len) {
1552 char __user *up = ubuf + *sk_offset;
1553 /*
1554 * Copy the item, same behavior as above, but reset the
1555 * * sk_offset so we copy the full thing again.
1556 */
1557 if (read_extent_buffer_to_user_nofault(leaf, up,
1558 item_off, item_len)) {
1559 ret = 0;
1560 *sk_offset -= sizeof(sh);
1561 goto out;
1562 }
1563
1564 *sk_offset += item_len;
1565 }
1566 (*num_found)++;
1567
1568 if (ret) /* -EOVERFLOW from above */
1569 goto out;
1570
1571 if (*num_found >= sk->nr_items) {
1572 ret = 1;
1573 goto out;
1574 }
1575 }
1576 advance_key:
1577 ret = 0;
1578 test.objectid = sk->max_objectid;
1579 test.type = sk->max_type;
1580 test.offset = sk->max_offset;
1581 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1582 ret = 1;
1583 else if (key->offset < (u64)-1)
1584 key->offset++;
1585 else if (key->type < (u8)-1) {
1586 key->offset = 0;
1587 key->type++;
1588 } else if (key->objectid < (u64)-1) {
1589 key->offset = 0;
1590 key->type = 0;
1591 key->objectid++;
1592 } else
1593 ret = 1;
1594 out:
1595 /*
1596 * 0: all items from this leaf copied, continue with next
1597 * 1: * more items can be copied, but unused buffer is too small
1598 * * all items were found
1599 * Either way, it will stops the loop which iterates to the next
1600 * leaf
1601 * -EOVERFLOW: item was to large for buffer
1602 * -EFAULT: could not copy extent buffer back to userspace
1603 */
1604 return ret;
1605 }
1606
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1607 static noinline int search_ioctl(struct inode *inode,
1608 struct btrfs_ioctl_search_key *sk,
1609 u64 *buf_size,
1610 char __user *ubuf)
1611 {
1612 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1613 struct btrfs_root *root;
1614 struct btrfs_key key;
1615 struct btrfs_path *path;
1616 int ret;
1617 int num_found = 0;
1618 unsigned long sk_offset = 0;
1619
1620 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1621 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1622 return -EOVERFLOW;
1623 }
1624
1625 path = btrfs_alloc_path();
1626 if (!path)
1627 return -ENOMEM;
1628
1629 if (sk->tree_id == 0) {
1630 /* search the root of the inode that was passed */
1631 root = btrfs_grab_root(BTRFS_I(inode)->root);
1632 } else {
1633 root = btrfs_get_fs_root(info, sk->tree_id, true);
1634 if (IS_ERR(root)) {
1635 btrfs_free_path(path);
1636 return PTR_ERR(root);
1637 }
1638 }
1639
1640 key.objectid = sk->min_objectid;
1641 key.type = sk->min_type;
1642 key.offset = sk->min_offset;
1643
1644 while (1) {
1645 ret = -EFAULT;
1646 /*
1647 * Ensure that the whole user buffer is faulted in at sub-page
1648 * granularity, otherwise the loop may live-lock.
1649 */
1650 if (fault_in_subpage_writeable(ubuf + sk_offset,
1651 *buf_size - sk_offset))
1652 break;
1653
1654 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1655 if (ret != 0) {
1656 if (ret > 0)
1657 ret = 0;
1658 goto err;
1659 }
1660 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1661 &sk_offset, &num_found);
1662 btrfs_release_path(path);
1663 if (ret)
1664 break;
1665
1666 }
1667 if (ret > 0)
1668 ret = 0;
1669 err:
1670 sk->nr_items = num_found;
1671 btrfs_put_root(root);
1672 btrfs_free_path(path);
1673 return ret;
1674 }
1675
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)1676 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1677 void __user *argp)
1678 {
1679 struct btrfs_ioctl_search_args __user *uargs = argp;
1680 struct btrfs_ioctl_search_key sk;
1681 int ret;
1682 u64 buf_size;
1683
1684 if (!capable(CAP_SYS_ADMIN))
1685 return -EPERM;
1686
1687 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1688 return -EFAULT;
1689
1690 buf_size = sizeof(uargs->buf);
1691
1692 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1693
1694 /*
1695 * In the origin implementation an overflow is handled by returning a
1696 * search header with a len of zero, so reset ret.
1697 */
1698 if (ret == -EOVERFLOW)
1699 ret = 0;
1700
1701 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1702 ret = -EFAULT;
1703 return ret;
1704 }
1705
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)1706 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1707 void __user *argp)
1708 {
1709 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1710 struct btrfs_ioctl_search_args_v2 args;
1711 int ret;
1712 u64 buf_size;
1713 const u64 buf_limit = SZ_16M;
1714
1715 if (!capable(CAP_SYS_ADMIN))
1716 return -EPERM;
1717
1718 /* copy search header and buffer size */
1719 if (copy_from_user(&args, uarg, sizeof(args)))
1720 return -EFAULT;
1721
1722 buf_size = args.buf_size;
1723
1724 /* limit result size to 16MB */
1725 if (buf_size > buf_limit)
1726 buf_size = buf_limit;
1727
1728 ret = search_ioctl(inode, &args.key, &buf_size,
1729 (char __user *)(&uarg->buf[0]));
1730 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1731 ret = -EFAULT;
1732 else if (ret == -EOVERFLOW &&
1733 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1734 ret = -EFAULT;
1735
1736 return ret;
1737 }
1738
1739 /*
1740 * Search INODE_REFs to identify path name of 'dirid' directory
1741 * in a 'tree_id' tree. and sets path name to 'name'.
1742 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1743 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1744 u64 tree_id, u64 dirid, char *name)
1745 {
1746 struct btrfs_root *root;
1747 struct btrfs_key key;
1748 char *ptr;
1749 int ret = -1;
1750 int slot;
1751 int len;
1752 int total_len = 0;
1753 struct btrfs_inode_ref *iref;
1754 struct extent_buffer *l;
1755 struct btrfs_path *path;
1756
1757 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1758 name[0]='\0';
1759 return 0;
1760 }
1761
1762 path = btrfs_alloc_path();
1763 if (!path)
1764 return -ENOMEM;
1765
1766 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1767
1768 root = btrfs_get_fs_root(info, tree_id, true);
1769 if (IS_ERR(root)) {
1770 ret = PTR_ERR(root);
1771 root = NULL;
1772 goto out;
1773 }
1774
1775 key.objectid = dirid;
1776 key.type = BTRFS_INODE_REF_KEY;
1777 key.offset = (u64)-1;
1778
1779 while (1) {
1780 ret = btrfs_search_backwards(root, &key, path);
1781 if (ret < 0)
1782 goto out;
1783 else if (ret > 0) {
1784 ret = -ENOENT;
1785 goto out;
1786 }
1787
1788 l = path->nodes[0];
1789 slot = path->slots[0];
1790
1791 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1792 len = btrfs_inode_ref_name_len(l, iref);
1793 ptr -= len + 1;
1794 total_len += len + 1;
1795 if (ptr < name) {
1796 ret = -ENAMETOOLONG;
1797 goto out;
1798 }
1799
1800 *(ptr + len) = '/';
1801 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1802
1803 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1804 break;
1805
1806 btrfs_release_path(path);
1807 key.objectid = key.offset;
1808 key.offset = (u64)-1;
1809 dirid = key.objectid;
1810 }
1811 memmove(name, ptr, total_len);
1812 name[total_len] = '\0';
1813 ret = 0;
1814 out:
1815 btrfs_put_root(root);
1816 btrfs_free_path(path);
1817 return ret;
1818 }
1819
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1820 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1821 struct inode *inode,
1822 struct btrfs_ioctl_ino_lookup_user_args *args)
1823 {
1824 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1825 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1826 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1827 u64 dirid = args->dirid;
1828 unsigned long item_off;
1829 unsigned long item_len;
1830 struct btrfs_inode_ref *iref;
1831 struct btrfs_root_ref *rref;
1832 struct btrfs_root *root = NULL;
1833 struct btrfs_path *path;
1834 struct btrfs_key key, key2;
1835 struct extent_buffer *leaf;
1836 struct inode *temp_inode;
1837 char *ptr;
1838 int slot;
1839 int len;
1840 int total_len = 0;
1841 int ret;
1842
1843 path = btrfs_alloc_path();
1844 if (!path)
1845 return -ENOMEM;
1846
1847 /*
1848 * If the bottom subvolume does not exist directly under upper_limit,
1849 * construct the path in from the bottom up.
1850 */
1851 if (dirid != upper_limit) {
1852 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1853
1854 root = btrfs_get_fs_root(fs_info, treeid, true);
1855 if (IS_ERR(root)) {
1856 ret = PTR_ERR(root);
1857 goto out;
1858 }
1859
1860 key.objectid = dirid;
1861 key.type = BTRFS_INODE_REF_KEY;
1862 key.offset = (u64)-1;
1863 while (1) {
1864 ret = btrfs_search_backwards(root, &key, path);
1865 if (ret < 0)
1866 goto out_put;
1867 else if (ret > 0) {
1868 ret = -ENOENT;
1869 goto out_put;
1870 }
1871
1872 leaf = path->nodes[0];
1873 slot = path->slots[0];
1874
1875 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1876 len = btrfs_inode_ref_name_len(leaf, iref);
1877 ptr -= len + 1;
1878 total_len += len + 1;
1879 if (ptr < args->path) {
1880 ret = -ENAMETOOLONG;
1881 goto out_put;
1882 }
1883
1884 *(ptr + len) = '/';
1885 read_extent_buffer(leaf, ptr,
1886 (unsigned long)(iref + 1), len);
1887
1888 /* Check the read+exec permission of this directory */
1889 ret = btrfs_previous_item(root, path, dirid,
1890 BTRFS_INODE_ITEM_KEY);
1891 if (ret < 0) {
1892 goto out_put;
1893 } else if (ret > 0) {
1894 ret = -ENOENT;
1895 goto out_put;
1896 }
1897
1898 leaf = path->nodes[0];
1899 slot = path->slots[0];
1900 btrfs_item_key_to_cpu(leaf, &key2, slot);
1901 if (key2.objectid != dirid) {
1902 ret = -ENOENT;
1903 goto out_put;
1904 }
1905
1906 /*
1907 * We don't need the path anymore, so release it and
1908 * avoid deadlocks and lockdep warnings in case
1909 * btrfs_iget() needs to lookup the inode from its root
1910 * btree and lock the same leaf.
1911 */
1912 btrfs_release_path(path);
1913 temp_inode = btrfs_iget(key2.objectid, root);
1914 if (IS_ERR(temp_inode)) {
1915 ret = PTR_ERR(temp_inode);
1916 goto out_put;
1917 }
1918 ret = inode_permission(idmap, temp_inode,
1919 MAY_READ | MAY_EXEC);
1920 iput(temp_inode);
1921 if (ret) {
1922 ret = -EACCES;
1923 goto out_put;
1924 }
1925
1926 if (key.offset == upper_limit)
1927 break;
1928 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1929 ret = -EACCES;
1930 goto out_put;
1931 }
1932
1933 key.objectid = key.offset;
1934 key.offset = (u64)-1;
1935 dirid = key.objectid;
1936 }
1937
1938 memmove(args->path, ptr, total_len);
1939 args->path[total_len] = '\0';
1940 btrfs_put_root(root);
1941 root = NULL;
1942 btrfs_release_path(path);
1943 }
1944
1945 /* Get the bottom subvolume's name from ROOT_REF */
1946 key.objectid = treeid;
1947 key.type = BTRFS_ROOT_REF_KEY;
1948 key.offset = args->treeid;
1949 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1950 if (ret < 0) {
1951 goto out;
1952 } else if (ret > 0) {
1953 ret = -ENOENT;
1954 goto out;
1955 }
1956
1957 leaf = path->nodes[0];
1958 slot = path->slots[0];
1959 btrfs_item_key_to_cpu(leaf, &key, slot);
1960
1961 item_off = btrfs_item_ptr_offset(leaf, slot);
1962 item_len = btrfs_item_size(leaf, slot);
1963 /* Check if dirid in ROOT_REF corresponds to passed dirid */
1964 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1965 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1966 ret = -EINVAL;
1967 goto out;
1968 }
1969
1970 /* Copy subvolume's name */
1971 item_off += sizeof(struct btrfs_root_ref);
1972 item_len -= sizeof(struct btrfs_root_ref);
1973 read_extent_buffer(leaf, args->name, item_off, item_len);
1974 args->name[item_len] = 0;
1975
1976 out_put:
1977 btrfs_put_root(root);
1978 out:
1979 btrfs_free_path(path);
1980 return ret;
1981 }
1982
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1983 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1984 void __user *argp)
1985 {
1986 struct btrfs_ioctl_ino_lookup_args *args;
1987 int ret = 0;
1988
1989 args = memdup_user(argp, sizeof(*args));
1990 if (IS_ERR(args))
1991 return PTR_ERR(args);
1992
1993 /*
1994 * Unprivileged query to obtain the containing subvolume root id. The
1995 * path is reset so it's consistent with btrfs_search_path_in_tree.
1996 */
1997 if (args->treeid == 0)
1998 args->treeid = btrfs_root_id(root);
1999
2000 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2001 args->name[0] = 0;
2002 goto out;
2003 }
2004
2005 if (!capable(CAP_SYS_ADMIN)) {
2006 ret = -EPERM;
2007 goto out;
2008 }
2009
2010 ret = btrfs_search_path_in_tree(root->fs_info,
2011 args->treeid, args->objectid,
2012 args->name);
2013
2014 out:
2015 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2016 ret = -EFAULT;
2017
2018 kfree(args);
2019 return ret;
2020 }
2021
2022 /*
2023 * Version of ino_lookup ioctl (unprivileged)
2024 *
2025 * The main differences from ino_lookup ioctl are:
2026 *
2027 * 1. Read + Exec permission will be checked using inode_permission() during
2028 * path construction. -EACCES will be returned in case of failure.
2029 * 2. Path construction will be stopped at the inode number which corresponds
2030 * to the fd with which this ioctl is called. If constructed path does not
2031 * exist under fd's inode, -EACCES will be returned.
2032 * 3. The name of bottom subvolume is also searched and filled.
2033 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2034 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2035 {
2036 struct btrfs_ioctl_ino_lookup_user_args *args;
2037 struct inode *inode;
2038 int ret;
2039
2040 args = memdup_user(argp, sizeof(*args));
2041 if (IS_ERR(args))
2042 return PTR_ERR(args);
2043
2044 inode = file_inode(file);
2045
2046 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2047 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2048 /*
2049 * The subvolume does not exist under fd with which this is
2050 * called
2051 */
2052 kfree(args);
2053 return -EACCES;
2054 }
2055
2056 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2057
2058 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2059 ret = -EFAULT;
2060
2061 kfree(args);
2062 return ret;
2063 }
2064
2065 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2066 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2067 {
2068 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2069 struct btrfs_fs_info *fs_info;
2070 struct btrfs_root *root;
2071 struct btrfs_path *path;
2072 struct btrfs_key key;
2073 struct btrfs_root_item *root_item;
2074 struct btrfs_root_ref *rref;
2075 struct extent_buffer *leaf;
2076 unsigned long item_off;
2077 unsigned long item_len;
2078 int slot;
2079 int ret = 0;
2080
2081 path = btrfs_alloc_path();
2082 if (!path)
2083 return -ENOMEM;
2084
2085 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2086 if (!subvol_info) {
2087 btrfs_free_path(path);
2088 return -ENOMEM;
2089 }
2090
2091 fs_info = BTRFS_I(inode)->root->fs_info;
2092
2093 /* Get root_item of inode's subvolume */
2094 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2095 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2096 if (IS_ERR(root)) {
2097 ret = PTR_ERR(root);
2098 goto out_free;
2099 }
2100 root_item = &root->root_item;
2101
2102 subvol_info->treeid = key.objectid;
2103
2104 subvol_info->generation = btrfs_root_generation(root_item);
2105 subvol_info->flags = btrfs_root_flags(root_item);
2106
2107 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2108 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2109 BTRFS_UUID_SIZE);
2110 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2111 BTRFS_UUID_SIZE);
2112
2113 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2114 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2115 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2116
2117 subvol_info->otransid = btrfs_root_otransid(root_item);
2118 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2119 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2120
2121 subvol_info->stransid = btrfs_root_stransid(root_item);
2122 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2123 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2124
2125 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2126 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2127 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2128
2129 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2130 /* Search root tree for ROOT_BACKREF of this subvolume */
2131 key.type = BTRFS_ROOT_BACKREF_KEY;
2132 key.offset = 0;
2133 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2134 if (ret < 0) {
2135 goto out;
2136 } else if (path->slots[0] >=
2137 btrfs_header_nritems(path->nodes[0])) {
2138 ret = btrfs_next_leaf(fs_info->tree_root, path);
2139 if (ret < 0) {
2140 goto out;
2141 } else if (ret > 0) {
2142 ret = -EUCLEAN;
2143 goto out;
2144 }
2145 }
2146
2147 leaf = path->nodes[0];
2148 slot = path->slots[0];
2149 btrfs_item_key_to_cpu(leaf, &key, slot);
2150 if (key.objectid == subvol_info->treeid &&
2151 key.type == BTRFS_ROOT_BACKREF_KEY) {
2152 subvol_info->parent_id = key.offset;
2153
2154 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2155 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2156
2157 item_off = btrfs_item_ptr_offset(leaf, slot)
2158 + sizeof(struct btrfs_root_ref);
2159 item_len = btrfs_item_size(leaf, slot)
2160 - sizeof(struct btrfs_root_ref);
2161 read_extent_buffer(leaf, subvol_info->name,
2162 item_off, item_len);
2163 } else {
2164 ret = -ENOENT;
2165 goto out;
2166 }
2167 }
2168
2169 btrfs_free_path(path);
2170 path = NULL;
2171 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2172 ret = -EFAULT;
2173
2174 out:
2175 btrfs_put_root(root);
2176 out_free:
2177 btrfs_free_path(path);
2178 kfree(subvol_info);
2179 return ret;
2180 }
2181
2182 /*
2183 * Return ROOT_REF information of the subvolume containing this inode
2184 * except the subvolume name.
2185 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2186 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2187 void __user *argp)
2188 {
2189 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2190 struct btrfs_root_ref *rref;
2191 struct btrfs_path *path;
2192 struct btrfs_key key;
2193 struct extent_buffer *leaf;
2194 u64 objectid;
2195 int slot;
2196 int ret;
2197 u8 found;
2198
2199 path = btrfs_alloc_path();
2200 if (!path)
2201 return -ENOMEM;
2202
2203 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2204 if (IS_ERR(rootrefs)) {
2205 btrfs_free_path(path);
2206 return PTR_ERR(rootrefs);
2207 }
2208
2209 objectid = btrfs_root_id(root);
2210 key.objectid = objectid;
2211 key.type = BTRFS_ROOT_REF_KEY;
2212 key.offset = rootrefs->min_treeid;
2213 found = 0;
2214
2215 root = root->fs_info->tree_root;
2216 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2217 if (ret < 0) {
2218 goto out;
2219 } else if (path->slots[0] >=
2220 btrfs_header_nritems(path->nodes[0])) {
2221 ret = btrfs_next_leaf(root, path);
2222 if (ret < 0) {
2223 goto out;
2224 } else if (ret > 0) {
2225 ret = -EUCLEAN;
2226 goto out;
2227 }
2228 }
2229 while (1) {
2230 leaf = path->nodes[0];
2231 slot = path->slots[0];
2232
2233 btrfs_item_key_to_cpu(leaf, &key, slot);
2234 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2235 ret = 0;
2236 goto out;
2237 }
2238
2239 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2240 ret = -EOVERFLOW;
2241 goto out;
2242 }
2243
2244 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2245 rootrefs->rootref[found].treeid = key.offset;
2246 rootrefs->rootref[found].dirid =
2247 btrfs_root_ref_dirid(leaf, rref);
2248 found++;
2249
2250 ret = btrfs_next_item(root, path);
2251 if (ret < 0) {
2252 goto out;
2253 } else if (ret > 0) {
2254 ret = -EUCLEAN;
2255 goto out;
2256 }
2257 }
2258
2259 out:
2260 btrfs_free_path(path);
2261
2262 if (!ret || ret == -EOVERFLOW) {
2263 rootrefs->num_items = found;
2264 /* update min_treeid for next search */
2265 if (found)
2266 rootrefs->min_treeid =
2267 rootrefs->rootref[found - 1].treeid + 1;
2268 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2269 ret = -EFAULT;
2270 }
2271
2272 kfree(rootrefs);
2273
2274 return ret;
2275 }
2276
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2277 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2278 void __user *arg,
2279 bool destroy_v2)
2280 {
2281 struct dentry *parent = file->f_path.dentry;
2282 struct dentry *dentry;
2283 struct inode *dir = d_inode(parent);
2284 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2285 struct inode *inode;
2286 struct btrfs_root *root = BTRFS_I(dir)->root;
2287 struct btrfs_root *dest = NULL;
2288 struct btrfs_ioctl_vol_args *vol_args = NULL;
2289 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2290 struct mnt_idmap *idmap = file_mnt_idmap(file);
2291 char *subvol_name, *subvol_name_ptr = NULL;
2292 int subvol_namelen;
2293 int ret = 0;
2294 bool destroy_parent = false;
2295
2296 /* We don't support snapshots with extent tree v2 yet. */
2297 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2298 btrfs_err(fs_info,
2299 "extent tree v2 doesn't support snapshot deletion yet");
2300 return -EOPNOTSUPP;
2301 }
2302
2303 if (destroy_v2) {
2304 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2305 if (IS_ERR(vol_args2))
2306 return PTR_ERR(vol_args2);
2307
2308 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2309 ret = -EOPNOTSUPP;
2310 goto out;
2311 }
2312
2313 /*
2314 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2315 * name, same as v1 currently does.
2316 */
2317 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2318 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2319 if (ret < 0)
2320 goto out;
2321 subvol_name = vol_args2->name;
2322
2323 ret = mnt_want_write_file(file);
2324 if (ret)
2325 goto out;
2326 } else {
2327 struct inode *old_dir;
2328
2329 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2330 ret = -EINVAL;
2331 goto out;
2332 }
2333
2334 ret = mnt_want_write_file(file);
2335 if (ret)
2336 goto out;
2337
2338 dentry = btrfs_get_dentry(fs_info->sb,
2339 BTRFS_FIRST_FREE_OBJECTID,
2340 vol_args2->subvolid, 0);
2341 if (IS_ERR(dentry)) {
2342 ret = PTR_ERR(dentry);
2343 goto out_drop_write;
2344 }
2345
2346 /*
2347 * Change the default parent since the subvolume being
2348 * deleted can be outside of the current mount point.
2349 */
2350 parent = btrfs_get_parent(dentry);
2351
2352 /*
2353 * At this point dentry->d_name can point to '/' if the
2354 * subvolume we want to destroy is outsite of the
2355 * current mount point, so we need to release the
2356 * current dentry and execute the lookup to return a new
2357 * one with ->d_name pointing to the
2358 * <mount point>/subvol_name.
2359 */
2360 dput(dentry);
2361 if (IS_ERR(parent)) {
2362 ret = PTR_ERR(parent);
2363 goto out_drop_write;
2364 }
2365 old_dir = dir;
2366 dir = d_inode(parent);
2367
2368 /*
2369 * If v2 was used with SPEC_BY_ID, a new parent was
2370 * allocated since the subvolume can be outside of the
2371 * current mount point. Later on we need to release this
2372 * new parent dentry.
2373 */
2374 destroy_parent = true;
2375
2376 /*
2377 * On idmapped mounts, deletion via subvolid is
2378 * restricted to subvolumes that are immediate
2379 * ancestors of the inode referenced by the file
2380 * descriptor in the ioctl. Otherwise the idmapping
2381 * could potentially be abused to delete subvolumes
2382 * anywhere in the filesystem the user wouldn't be able
2383 * to delete without an idmapped mount.
2384 */
2385 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2386 ret = -EOPNOTSUPP;
2387 goto free_parent;
2388 }
2389
2390 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2391 fs_info, vol_args2->subvolid);
2392 if (IS_ERR(subvol_name_ptr)) {
2393 ret = PTR_ERR(subvol_name_ptr);
2394 goto free_parent;
2395 }
2396 /* subvol_name_ptr is already nul terminated */
2397 subvol_name = (char *)kbasename(subvol_name_ptr);
2398 }
2399 } else {
2400 vol_args = memdup_user(arg, sizeof(*vol_args));
2401 if (IS_ERR(vol_args))
2402 return PTR_ERR(vol_args);
2403
2404 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2405 if (ret < 0)
2406 goto out;
2407
2408 subvol_name = vol_args->name;
2409
2410 ret = mnt_want_write_file(file);
2411 if (ret)
2412 goto out;
2413 }
2414
2415 subvol_namelen = strlen(subvol_name);
2416
2417 if (strchr(subvol_name, '/') ||
2418 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2419 ret = -EINVAL;
2420 goto free_subvol_name;
2421 }
2422
2423 if (!S_ISDIR(dir->i_mode)) {
2424 ret = -ENOTDIR;
2425 goto free_subvol_name;
2426 }
2427
2428 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2429 if (ret == -EINTR)
2430 goto free_subvol_name;
2431 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2432 if (IS_ERR(dentry)) {
2433 ret = PTR_ERR(dentry);
2434 goto out_unlock_dir;
2435 }
2436
2437 if (d_really_is_negative(dentry)) {
2438 ret = -ENOENT;
2439 goto out_dput;
2440 }
2441
2442 inode = d_inode(dentry);
2443 dest = BTRFS_I(inode)->root;
2444 if (!capable(CAP_SYS_ADMIN)) {
2445 /*
2446 * Regular user. Only allow this with a special mount
2447 * option, when the user has write+exec access to the
2448 * subvol root, and when rmdir(2) would have been
2449 * allowed.
2450 *
2451 * Note that this is _not_ check that the subvol is
2452 * empty or doesn't contain data that we wouldn't
2453 * otherwise be able to delete.
2454 *
2455 * Users who want to delete empty subvols should try
2456 * rmdir(2).
2457 */
2458 ret = -EPERM;
2459 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2460 goto out_dput;
2461
2462 /*
2463 * Do not allow deletion if the parent dir is the same
2464 * as the dir to be deleted. That means the ioctl
2465 * must be called on the dentry referencing the root
2466 * of the subvol, not a random directory contained
2467 * within it.
2468 */
2469 ret = -EINVAL;
2470 if (root == dest)
2471 goto out_dput;
2472
2473 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2474 if (ret)
2475 goto out_dput;
2476 }
2477
2478 /* check if subvolume may be deleted by a user */
2479 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2480 if (ret)
2481 goto out_dput;
2482
2483 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2484 ret = -EINVAL;
2485 goto out_dput;
2486 }
2487
2488 btrfs_inode_lock(BTRFS_I(inode), 0);
2489 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2490 btrfs_inode_unlock(BTRFS_I(inode), 0);
2491 if (!ret)
2492 d_delete_notify(dir, dentry);
2493
2494 out_dput:
2495 dput(dentry);
2496 out_unlock_dir:
2497 btrfs_inode_unlock(BTRFS_I(dir), 0);
2498 free_subvol_name:
2499 kfree(subvol_name_ptr);
2500 free_parent:
2501 if (destroy_parent)
2502 dput(parent);
2503 out_drop_write:
2504 mnt_drop_write_file(file);
2505 out:
2506 kfree(vol_args2);
2507 kfree(vol_args);
2508 return ret;
2509 }
2510
btrfs_ioctl_defrag(struct file * file,void __user * argp)2511 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2512 {
2513 struct inode *inode = file_inode(file);
2514 struct btrfs_root *root = BTRFS_I(inode)->root;
2515 struct btrfs_ioctl_defrag_range_args range = {0};
2516 int ret;
2517
2518 ret = mnt_want_write_file(file);
2519 if (ret)
2520 return ret;
2521
2522 if (btrfs_root_readonly(root)) {
2523 ret = -EROFS;
2524 goto out;
2525 }
2526
2527 switch (inode->i_mode & S_IFMT) {
2528 case S_IFDIR:
2529 if (!capable(CAP_SYS_ADMIN)) {
2530 ret = -EPERM;
2531 goto out;
2532 }
2533 ret = btrfs_defrag_root(root);
2534 break;
2535 case S_IFREG:
2536 /*
2537 * Note that this does not check the file descriptor for write
2538 * access. This prevents defragmenting executables that are
2539 * running and allows defrag on files open in read-only mode.
2540 */
2541 if (!capable(CAP_SYS_ADMIN) &&
2542 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2543 ret = -EPERM;
2544 goto out;
2545 }
2546
2547 /*
2548 * Don't allow defrag on pre-content watched files, as it could
2549 * populate the page cache with 0's via readahead.
2550 */
2551 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2552 ret = -EINVAL;
2553 goto out;
2554 }
2555
2556 if (argp) {
2557 if (copy_from_user(&range, argp, sizeof(range))) {
2558 ret = -EFAULT;
2559 goto out;
2560 }
2561 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2562 ret = -EOPNOTSUPP;
2563 goto out;
2564 }
2565 /* compression requires us to start the IO */
2566 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2567 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2568 range.extent_thresh = (u32)-1;
2569 }
2570 } else {
2571 /* the rest are all set to zero by kzalloc */
2572 range.len = (u64)-1;
2573 }
2574 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2575 &range, BTRFS_OLDEST_GENERATION, 0);
2576 if (ret > 0)
2577 ret = 0;
2578 break;
2579 default:
2580 ret = -EINVAL;
2581 }
2582 out:
2583 mnt_drop_write_file(file);
2584 return ret;
2585 }
2586
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2587 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2588 {
2589 struct btrfs_ioctl_vol_args *vol_args;
2590 bool restore_op = false;
2591 int ret;
2592
2593 if (!capable(CAP_SYS_ADMIN))
2594 return -EPERM;
2595
2596 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2597 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2598 return -EINVAL;
2599 }
2600
2601 if (fs_info->fs_devices->temp_fsid) {
2602 btrfs_err(fs_info,
2603 "device add not supported on cloned temp-fsid mount");
2604 return -EINVAL;
2605 }
2606
2607 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2608 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2609 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2610
2611 /*
2612 * We can do the device add because we have a paused balanced,
2613 * change the exclusive op type and remember we should bring
2614 * back the paused balance
2615 */
2616 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2617 btrfs_exclop_start_unlock(fs_info);
2618 restore_op = true;
2619 }
2620
2621 vol_args = memdup_user(arg, sizeof(*vol_args));
2622 if (IS_ERR(vol_args)) {
2623 ret = PTR_ERR(vol_args);
2624 goto out;
2625 }
2626
2627 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2628 if (ret < 0)
2629 goto out_free;
2630
2631 ret = btrfs_init_new_device(fs_info, vol_args->name);
2632
2633 if (!ret)
2634 btrfs_info(fs_info, "disk added %s", vol_args->name);
2635
2636 out_free:
2637 kfree(vol_args);
2638 out:
2639 if (restore_op)
2640 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2641 else
2642 btrfs_exclop_finish(fs_info);
2643 return ret;
2644 }
2645
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2646 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2647 {
2648 BTRFS_DEV_LOOKUP_ARGS(args);
2649 struct inode *inode = file_inode(file);
2650 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2651 struct btrfs_ioctl_vol_args_v2 *vol_args;
2652 struct file *bdev_file = NULL;
2653 int ret;
2654 bool cancel = false;
2655
2656 if (!capable(CAP_SYS_ADMIN))
2657 return -EPERM;
2658
2659 vol_args = memdup_user(arg, sizeof(*vol_args));
2660 if (IS_ERR(vol_args))
2661 return PTR_ERR(vol_args);
2662
2663 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2664 ret = -EOPNOTSUPP;
2665 goto out;
2666 }
2667
2668 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2669 if (ret < 0)
2670 goto out;
2671
2672 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2673 args.devid = vol_args->devid;
2674 } else if (!strcmp("cancel", vol_args->name)) {
2675 cancel = true;
2676 } else {
2677 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2678 if (ret)
2679 goto out;
2680 }
2681
2682 ret = mnt_want_write_file(file);
2683 if (ret)
2684 goto out;
2685
2686 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2687 cancel);
2688 if (ret)
2689 goto err_drop;
2690
2691 /* Exclusive operation is now claimed */
2692 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2693
2694 btrfs_exclop_finish(fs_info);
2695
2696 if (!ret) {
2697 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2698 btrfs_info(fs_info, "device deleted: id %llu",
2699 vol_args->devid);
2700 else
2701 btrfs_info(fs_info, "device deleted: %s",
2702 vol_args->name);
2703 }
2704 err_drop:
2705 mnt_drop_write_file(file);
2706 if (bdev_file)
2707 fput(bdev_file);
2708 out:
2709 btrfs_put_dev_args_from_path(&args);
2710 kfree(vol_args);
2711 return ret;
2712 }
2713
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2714 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2715 {
2716 BTRFS_DEV_LOOKUP_ARGS(args);
2717 struct inode *inode = file_inode(file);
2718 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2719 struct btrfs_ioctl_vol_args *vol_args;
2720 struct file *bdev_file = NULL;
2721 int ret;
2722 bool cancel = false;
2723
2724 if (!capable(CAP_SYS_ADMIN))
2725 return -EPERM;
2726
2727 vol_args = memdup_user(arg, sizeof(*vol_args));
2728 if (IS_ERR(vol_args))
2729 return PTR_ERR(vol_args);
2730
2731 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2732 if (ret < 0)
2733 goto out_free;
2734
2735 if (!strcmp("cancel", vol_args->name)) {
2736 cancel = true;
2737 } else {
2738 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2739 if (ret)
2740 goto out;
2741 }
2742
2743 ret = mnt_want_write_file(file);
2744 if (ret)
2745 goto out;
2746
2747 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2748 cancel);
2749 if (ret == 0) {
2750 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2751 if (!ret)
2752 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2753 btrfs_exclop_finish(fs_info);
2754 }
2755
2756 mnt_drop_write_file(file);
2757 if (bdev_file)
2758 fput(bdev_file);
2759 out:
2760 btrfs_put_dev_args_from_path(&args);
2761 out_free:
2762 kfree(vol_args);
2763 return ret;
2764 }
2765
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2766 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2767 void __user *arg)
2768 {
2769 struct btrfs_ioctl_fs_info_args *fi_args;
2770 struct btrfs_device *device;
2771 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2772 u64 flags_in;
2773 int ret = 0;
2774
2775 fi_args = memdup_user(arg, sizeof(*fi_args));
2776 if (IS_ERR(fi_args))
2777 return PTR_ERR(fi_args);
2778
2779 flags_in = fi_args->flags;
2780 memset(fi_args, 0, sizeof(*fi_args));
2781
2782 rcu_read_lock();
2783 fi_args->num_devices = fs_devices->num_devices;
2784
2785 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2786 if (device->devid > fi_args->max_id)
2787 fi_args->max_id = device->devid;
2788 }
2789 rcu_read_unlock();
2790
2791 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2792 fi_args->nodesize = fs_info->nodesize;
2793 fi_args->sectorsize = fs_info->sectorsize;
2794 fi_args->clone_alignment = fs_info->sectorsize;
2795
2796 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2797 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2798 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2799 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2800 }
2801
2802 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2803 fi_args->generation = btrfs_get_fs_generation(fs_info);
2804 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2805 }
2806
2807 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2808 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2809 sizeof(fi_args->metadata_uuid));
2810 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2811 }
2812
2813 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2814 ret = -EFAULT;
2815
2816 kfree(fi_args);
2817 return ret;
2818 }
2819
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2820 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2821 void __user *arg)
2822 {
2823 BTRFS_DEV_LOOKUP_ARGS(args);
2824 struct btrfs_ioctl_dev_info_args *di_args;
2825 struct btrfs_device *dev;
2826 int ret = 0;
2827
2828 di_args = memdup_user(arg, sizeof(*di_args));
2829 if (IS_ERR(di_args))
2830 return PTR_ERR(di_args);
2831
2832 args.devid = di_args->devid;
2833 if (!btrfs_is_empty_uuid(di_args->uuid))
2834 args.uuid = di_args->uuid;
2835
2836 rcu_read_lock();
2837 dev = btrfs_find_device(fs_info->fs_devices, &args);
2838 if (!dev) {
2839 ret = -ENODEV;
2840 goto out;
2841 }
2842
2843 di_args->devid = dev->devid;
2844 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2845 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2846 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2847 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2848 if (dev->name)
2849 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2850 else
2851 di_args->path[0] = '\0';
2852
2853 out:
2854 rcu_read_unlock();
2855 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2856 ret = -EFAULT;
2857
2858 kfree(di_args);
2859 return ret;
2860 }
2861
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2862 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2863 {
2864 struct inode *inode = file_inode(file);
2865 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2866 struct btrfs_root *root = BTRFS_I(inode)->root;
2867 struct btrfs_root *new_root;
2868 struct btrfs_dir_item *di;
2869 struct btrfs_trans_handle *trans;
2870 struct btrfs_path *path = NULL;
2871 struct btrfs_disk_key disk_key;
2872 struct fscrypt_str name = FSTR_INIT("default", 7);
2873 u64 objectid = 0;
2874 u64 dir_id;
2875 int ret;
2876
2877 if (!capable(CAP_SYS_ADMIN))
2878 return -EPERM;
2879
2880 ret = mnt_want_write_file(file);
2881 if (ret)
2882 return ret;
2883
2884 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2885 ret = -EFAULT;
2886 goto out;
2887 }
2888
2889 if (!objectid)
2890 objectid = BTRFS_FS_TREE_OBJECTID;
2891
2892 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2893 if (IS_ERR(new_root)) {
2894 ret = PTR_ERR(new_root);
2895 goto out;
2896 }
2897 if (!is_fstree(btrfs_root_id(new_root))) {
2898 ret = -ENOENT;
2899 goto out_free;
2900 }
2901
2902 path = btrfs_alloc_path();
2903 if (!path) {
2904 ret = -ENOMEM;
2905 goto out_free;
2906 }
2907
2908 trans = btrfs_start_transaction(root, 1);
2909 if (IS_ERR(trans)) {
2910 ret = PTR_ERR(trans);
2911 goto out_free;
2912 }
2913
2914 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2915 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2916 dir_id, &name, 1);
2917 if (IS_ERR_OR_NULL(di)) {
2918 btrfs_release_path(path);
2919 btrfs_end_transaction(trans);
2920 btrfs_err(fs_info,
2921 "Umm, you don't have the default diritem, this isn't going to work");
2922 ret = -ENOENT;
2923 goto out_free;
2924 }
2925
2926 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2927 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2928 btrfs_release_path(path);
2929
2930 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2931 btrfs_end_transaction(trans);
2932 out_free:
2933 btrfs_put_root(new_root);
2934 btrfs_free_path(path);
2935 out:
2936 mnt_drop_write_file(file);
2937 return ret;
2938 }
2939
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2940 static void get_block_group_info(struct list_head *groups_list,
2941 struct btrfs_ioctl_space_info *space)
2942 {
2943 struct btrfs_block_group *block_group;
2944
2945 space->total_bytes = 0;
2946 space->used_bytes = 0;
2947 space->flags = 0;
2948 list_for_each_entry(block_group, groups_list, list) {
2949 space->flags = block_group->flags;
2950 space->total_bytes += block_group->length;
2951 space->used_bytes += block_group->used;
2952 }
2953 }
2954
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2955 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2956 void __user *arg)
2957 {
2958 struct btrfs_ioctl_space_args space_args = { 0 };
2959 struct btrfs_ioctl_space_info space;
2960 struct btrfs_ioctl_space_info *dest;
2961 struct btrfs_ioctl_space_info *dest_orig;
2962 struct btrfs_ioctl_space_info __user *user_dest;
2963 struct btrfs_space_info *info;
2964 static const u64 types[] = {
2965 BTRFS_BLOCK_GROUP_DATA,
2966 BTRFS_BLOCK_GROUP_SYSTEM,
2967 BTRFS_BLOCK_GROUP_METADATA,
2968 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2969 };
2970 int num_types = 4;
2971 int alloc_size;
2972 int ret = 0;
2973 u64 slot_count = 0;
2974 int i, c;
2975
2976 if (copy_from_user(&space_args,
2977 (struct btrfs_ioctl_space_args __user *)arg,
2978 sizeof(space_args)))
2979 return -EFAULT;
2980
2981 for (i = 0; i < num_types; i++) {
2982 struct btrfs_space_info *tmp;
2983
2984 info = NULL;
2985 list_for_each_entry(tmp, &fs_info->space_info, list) {
2986 if (tmp->flags == types[i]) {
2987 info = tmp;
2988 break;
2989 }
2990 }
2991
2992 if (!info)
2993 continue;
2994
2995 down_read(&info->groups_sem);
2996 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2997 if (!list_empty(&info->block_groups[c]))
2998 slot_count++;
2999 }
3000 up_read(&info->groups_sem);
3001 }
3002
3003 /*
3004 * Global block reserve, exported as a space_info
3005 */
3006 slot_count++;
3007
3008 /* space_slots == 0 means they are asking for a count */
3009 if (space_args.space_slots == 0) {
3010 space_args.total_spaces = slot_count;
3011 goto out;
3012 }
3013
3014 slot_count = min_t(u64, space_args.space_slots, slot_count);
3015
3016 alloc_size = sizeof(*dest) * slot_count;
3017
3018 /* we generally have at most 6 or so space infos, one for each raid
3019 * level. So, a whole page should be more than enough for everyone
3020 */
3021 if (alloc_size > PAGE_SIZE)
3022 return -ENOMEM;
3023
3024 space_args.total_spaces = 0;
3025 dest = kmalloc(alloc_size, GFP_KERNEL);
3026 if (!dest)
3027 return -ENOMEM;
3028 dest_orig = dest;
3029
3030 /* now we have a buffer to copy into */
3031 for (i = 0; i < num_types; i++) {
3032 struct btrfs_space_info *tmp;
3033
3034 if (!slot_count)
3035 break;
3036
3037 info = NULL;
3038 list_for_each_entry(tmp, &fs_info->space_info, list) {
3039 if (tmp->flags == types[i]) {
3040 info = tmp;
3041 break;
3042 }
3043 }
3044
3045 if (!info)
3046 continue;
3047 down_read(&info->groups_sem);
3048 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3049 if (!list_empty(&info->block_groups[c])) {
3050 get_block_group_info(&info->block_groups[c],
3051 &space);
3052 memcpy(dest, &space, sizeof(space));
3053 dest++;
3054 space_args.total_spaces++;
3055 slot_count--;
3056 }
3057 if (!slot_count)
3058 break;
3059 }
3060 up_read(&info->groups_sem);
3061 }
3062
3063 /*
3064 * Add global block reserve
3065 */
3066 if (slot_count) {
3067 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3068
3069 spin_lock(&block_rsv->lock);
3070 space.total_bytes = block_rsv->size;
3071 space.used_bytes = block_rsv->size - block_rsv->reserved;
3072 spin_unlock(&block_rsv->lock);
3073 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3074 memcpy(dest, &space, sizeof(space));
3075 space_args.total_spaces++;
3076 }
3077
3078 user_dest = (struct btrfs_ioctl_space_info __user *)
3079 (arg + sizeof(struct btrfs_ioctl_space_args));
3080
3081 if (copy_to_user(user_dest, dest_orig, alloc_size))
3082 ret = -EFAULT;
3083
3084 kfree(dest_orig);
3085 out:
3086 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3087 ret = -EFAULT;
3088
3089 return ret;
3090 }
3091
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3092 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3093 void __user *argp)
3094 {
3095 struct btrfs_trans_handle *trans;
3096 u64 transid;
3097
3098 /*
3099 * Start orphan cleanup here for the given root in case it hasn't been
3100 * started already by other means. Errors are handled in the other
3101 * functions during transaction commit.
3102 */
3103 btrfs_orphan_cleanup(root);
3104
3105 trans = btrfs_attach_transaction_barrier(root);
3106 if (IS_ERR(trans)) {
3107 if (PTR_ERR(trans) != -ENOENT)
3108 return PTR_ERR(trans);
3109
3110 /* No running transaction, don't bother */
3111 transid = btrfs_get_last_trans_committed(root->fs_info);
3112 goto out;
3113 }
3114 transid = trans->transid;
3115 btrfs_commit_transaction_async(trans);
3116 out:
3117 if (argp)
3118 if (copy_to_user(argp, &transid, sizeof(transid)))
3119 return -EFAULT;
3120 return 0;
3121 }
3122
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3123 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3124 void __user *argp)
3125 {
3126 /* By default wait for the current transaction. */
3127 u64 transid = 0;
3128
3129 if (argp)
3130 if (copy_from_user(&transid, argp, sizeof(transid)))
3131 return -EFAULT;
3132
3133 return btrfs_wait_for_commit(fs_info, transid);
3134 }
3135
btrfs_ioctl_scrub(struct file * file,void __user * arg)3136 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3137 {
3138 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3139 struct btrfs_ioctl_scrub_args *sa;
3140 int ret;
3141
3142 if (!capable(CAP_SYS_ADMIN))
3143 return -EPERM;
3144
3145 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3146 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3147 return -EINVAL;
3148 }
3149
3150 sa = memdup_user(arg, sizeof(*sa));
3151 if (IS_ERR(sa))
3152 return PTR_ERR(sa);
3153
3154 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3155 ret = -EOPNOTSUPP;
3156 goto out;
3157 }
3158
3159 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3160 ret = mnt_want_write_file(file);
3161 if (ret)
3162 goto out;
3163 }
3164
3165 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3166 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3167 0);
3168
3169 /*
3170 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3171 * error. This is important as it allows user space to know how much
3172 * progress scrub has done. For example, if scrub is canceled we get
3173 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3174 * space. Later user space can inspect the progress from the structure
3175 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3176 * previously (btrfs-progs does this).
3177 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3178 * then return -EFAULT to signal the structure was not copied or it may
3179 * be corrupt and unreliable due to a partial copy.
3180 */
3181 if (copy_to_user(arg, sa, sizeof(*sa)))
3182 ret = -EFAULT;
3183
3184 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3185 mnt_drop_write_file(file);
3186 out:
3187 kfree(sa);
3188 return ret;
3189 }
3190
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3191 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3192 {
3193 if (!capable(CAP_SYS_ADMIN))
3194 return -EPERM;
3195
3196 return btrfs_scrub_cancel(fs_info);
3197 }
3198
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3199 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3200 void __user *arg)
3201 {
3202 struct btrfs_ioctl_scrub_args *sa;
3203 int ret;
3204
3205 if (!capable(CAP_SYS_ADMIN))
3206 return -EPERM;
3207
3208 sa = memdup_user(arg, sizeof(*sa));
3209 if (IS_ERR(sa))
3210 return PTR_ERR(sa);
3211
3212 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3213
3214 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3215 ret = -EFAULT;
3216
3217 kfree(sa);
3218 return ret;
3219 }
3220
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3221 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3222 void __user *arg)
3223 {
3224 struct btrfs_ioctl_get_dev_stats *sa;
3225 int ret;
3226
3227 sa = memdup_user(arg, sizeof(*sa));
3228 if (IS_ERR(sa))
3229 return PTR_ERR(sa);
3230
3231 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3232 kfree(sa);
3233 return -EPERM;
3234 }
3235
3236 ret = btrfs_get_dev_stats(fs_info, sa);
3237
3238 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3239 ret = -EFAULT;
3240
3241 kfree(sa);
3242 return ret;
3243 }
3244
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3245 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3246 void __user *arg)
3247 {
3248 struct btrfs_ioctl_dev_replace_args *p;
3249 int ret;
3250
3251 if (!capable(CAP_SYS_ADMIN))
3252 return -EPERM;
3253
3254 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3255 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3256 return -EINVAL;
3257 }
3258
3259 p = memdup_user(arg, sizeof(*p));
3260 if (IS_ERR(p))
3261 return PTR_ERR(p);
3262
3263 switch (p->cmd) {
3264 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3265 if (sb_rdonly(fs_info->sb)) {
3266 ret = -EROFS;
3267 goto out;
3268 }
3269 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3270 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3271 } else {
3272 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3273 btrfs_exclop_finish(fs_info);
3274 }
3275 break;
3276 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3277 btrfs_dev_replace_status(fs_info, p);
3278 ret = 0;
3279 break;
3280 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3281 p->result = btrfs_dev_replace_cancel(fs_info);
3282 ret = 0;
3283 break;
3284 default:
3285 ret = -EINVAL;
3286 break;
3287 }
3288
3289 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3290 ret = -EFAULT;
3291 out:
3292 kfree(p);
3293 return ret;
3294 }
3295
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3296 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3297 {
3298 int ret = 0;
3299 int i;
3300 u64 rel_ptr;
3301 int size;
3302 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3303 struct inode_fs_paths *ipath = NULL;
3304 struct btrfs_path *path;
3305
3306 if (!capable(CAP_DAC_READ_SEARCH))
3307 return -EPERM;
3308
3309 path = btrfs_alloc_path();
3310 if (!path) {
3311 ret = -ENOMEM;
3312 goto out;
3313 }
3314
3315 ipa = memdup_user(arg, sizeof(*ipa));
3316 if (IS_ERR(ipa)) {
3317 ret = PTR_ERR(ipa);
3318 ipa = NULL;
3319 goto out;
3320 }
3321
3322 size = min_t(u32, ipa->size, 4096);
3323 ipath = init_ipath(size, root, path);
3324 if (IS_ERR(ipath)) {
3325 ret = PTR_ERR(ipath);
3326 ipath = NULL;
3327 goto out;
3328 }
3329
3330 ret = paths_from_inode(ipa->inum, ipath);
3331 if (ret < 0)
3332 goto out;
3333
3334 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3335 rel_ptr = ipath->fspath->val[i] -
3336 (u64)(unsigned long)ipath->fspath->val;
3337 ipath->fspath->val[i] = rel_ptr;
3338 }
3339
3340 btrfs_free_path(path);
3341 path = NULL;
3342 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3343 ipath->fspath, size);
3344 if (ret) {
3345 ret = -EFAULT;
3346 goto out;
3347 }
3348
3349 out:
3350 btrfs_free_path(path);
3351 free_ipath(ipath);
3352 kfree(ipa);
3353
3354 return ret;
3355 }
3356
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3357 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3358 void __user *arg, int version)
3359 {
3360 int ret = 0;
3361 int size;
3362 struct btrfs_ioctl_logical_ino_args *loi;
3363 struct btrfs_data_container *inodes = NULL;
3364 struct btrfs_path *path = NULL;
3365 bool ignore_offset;
3366
3367 if (!capable(CAP_SYS_ADMIN))
3368 return -EPERM;
3369
3370 loi = memdup_user(arg, sizeof(*loi));
3371 if (IS_ERR(loi))
3372 return PTR_ERR(loi);
3373
3374 if (version == 1) {
3375 ignore_offset = false;
3376 size = min_t(u32, loi->size, SZ_64K);
3377 } else {
3378 /* All reserved bits must be 0 for now */
3379 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3380 ret = -EINVAL;
3381 goto out_loi;
3382 }
3383 /* Only accept flags we have defined so far */
3384 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3385 ret = -EINVAL;
3386 goto out_loi;
3387 }
3388 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3389 size = min_t(u32, loi->size, SZ_16M);
3390 }
3391
3392 inodes = init_data_container(size);
3393 if (IS_ERR(inodes)) {
3394 ret = PTR_ERR(inodes);
3395 goto out_loi;
3396 }
3397
3398 path = btrfs_alloc_path();
3399 if (!path) {
3400 ret = -ENOMEM;
3401 goto out;
3402 }
3403 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3404 inodes, ignore_offset);
3405 btrfs_free_path(path);
3406 if (ret == -EINVAL)
3407 ret = -ENOENT;
3408 if (ret < 0)
3409 goto out;
3410
3411 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3412 size);
3413 if (ret)
3414 ret = -EFAULT;
3415
3416 out:
3417 kvfree(inodes);
3418 out_loi:
3419 kfree(loi);
3420
3421 return ret;
3422 }
3423
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3424 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3425 struct btrfs_ioctl_balance_args *bargs)
3426 {
3427 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3428
3429 bargs->flags = bctl->flags;
3430
3431 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3432 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3433 if (atomic_read(&fs_info->balance_pause_req))
3434 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3435 if (atomic_read(&fs_info->balance_cancel_req))
3436 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3437
3438 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3439 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3440 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3441
3442 spin_lock(&fs_info->balance_lock);
3443 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3444 spin_unlock(&fs_info->balance_lock);
3445 }
3446
3447 /*
3448 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3449 * required.
3450 *
3451 * @fs_info: the filesystem
3452 * @excl_acquired: ptr to boolean value which is set to false in case balance
3453 * is being resumed
3454 *
3455 * Return 0 on success in which case both fs_info::balance is acquired as well
3456 * as exclusive ops are blocked. In case of failure return an error code.
3457 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3458 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3459 {
3460 int ret;
3461
3462 /*
3463 * Exclusive operation is locked. Three possibilities:
3464 * (1) some other op is running
3465 * (2) balance is running
3466 * (3) balance is paused -- special case (think resume)
3467 */
3468 while (1) {
3469 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3470 *excl_acquired = true;
3471 mutex_lock(&fs_info->balance_mutex);
3472 return 0;
3473 }
3474
3475 mutex_lock(&fs_info->balance_mutex);
3476 if (fs_info->balance_ctl) {
3477 /* This is either (2) or (3) */
3478 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3479 /* This is (2) */
3480 ret = -EINPROGRESS;
3481 goto out_failure;
3482
3483 } else {
3484 mutex_unlock(&fs_info->balance_mutex);
3485 /*
3486 * Lock released to allow other waiters to
3487 * continue, we'll reexamine the status again.
3488 */
3489 mutex_lock(&fs_info->balance_mutex);
3490
3491 if (fs_info->balance_ctl &&
3492 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3493 /* This is (3) */
3494 *excl_acquired = false;
3495 return 0;
3496 }
3497 }
3498 } else {
3499 /* This is (1) */
3500 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3501 goto out_failure;
3502 }
3503
3504 mutex_unlock(&fs_info->balance_mutex);
3505 }
3506
3507 out_failure:
3508 mutex_unlock(&fs_info->balance_mutex);
3509 *excl_acquired = false;
3510 return ret;
3511 }
3512
btrfs_ioctl_balance(struct file * file,void __user * arg)3513 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3514 {
3515 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3516 struct btrfs_fs_info *fs_info = root->fs_info;
3517 struct btrfs_ioctl_balance_args *bargs;
3518 struct btrfs_balance_control *bctl;
3519 bool need_unlock = true;
3520 int ret;
3521
3522 if (!capable(CAP_SYS_ADMIN))
3523 return -EPERM;
3524
3525 ret = mnt_want_write_file(file);
3526 if (ret)
3527 return ret;
3528
3529 bargs = memdup_user(arg, sizeof(*bargs));
3530 if (IS_ERR(bargs)) {
3531 ret = PTR_ERR(bargs);
3532 bargs = NULL;
3533 goto out;
3534 }
3535
3536 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3537 if (ret)
3538 goto out;
3539
3540 lockdep_assert_held(&fs_info->balance_mutex);
3541
3542 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3543 if (!fs_info->balance_ctl) {
3544 ret = -ENOTCONN;
3545 goto out_unlock;
3546 }
3547
3548 bctl = fs_info->balance_ctl;
3549 spin_lock(&fs_info->balance_lock);
3550 bctl->flags |= BTRFS_BALANCE_RESUME;
3551 spin_unlock(&fs_info->balance_lock);
3552 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3553
3554 goto do_balance;
3555 }
3556
3557 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3558 ret = -EINVAL;
3559 goto out_unlock;
3560 }
3561
3562 if (fs_info->balance_ctl) {
3563 ret = -EINPROGRESS;
3564 goto out_unlock;
3565 }
3566
3567 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3568 if (!bctl) {
3569 ret = -ENOMEM;
3570 goto out_unlock;
3571 }
3572
3573 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3574 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3575 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3576
3577 bctl->flags = bargs->flags;
3578 do_balance:
3579 /*
3580 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3581 * bctl is freed in reset_balance_state, or, if restriper was paused
3582 * all the way until unmount, in free_fs_info. The flag should be
3583 * cleared after reset_balance_state.
3584 */
3585 need_unlock = false;
3586
3587 ret = btrfs_balance(fs_info, bctl, bargs);
3588 bctl = NULL;
3589
3590 if (ret == 0 || ret == -ECANCELED) {
3591 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3592 ret = -EFAULT;
3593 }
3594
3595 kfree(bctl);
3596 out_unlock:
3597 mutex_unlock(&fs_info->balance_mutex);
3598 if (need_unlock)
3599 btrfs_exclop_finish(fs_info);
3600 out:
3601 mnt_drop_write_file(file);
3602 kfree(bargs);
3603 return ret;
3604 }
3605
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3606 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3607 {
3608 if (!capable(CAP_SYS_ADMIN))
3609 return -EPERM;
3610
3611 switch (cmd) {
3612 case BTRFS_BALANCE_CTL_PAUSE:
3613 return btrfs_pause_balance(fs_info);
3614 case BTRFS_BALANCE_CTL_CANCEL:
3615 return btrfs_cancel_balance(fs_info);
3616 }
3617
3618 return -EINVAL;
3619 }
3620
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3621 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3622 void __user *arg)
3623 {
3624 struct btrfs_ioctl_balance_args *bargs;
3625 int ret = 0;
3626
3627 if (!capable(CAP_SYS_ADMIN))
3628 return -EPERM;
3629
3630 mutex_lock(&fs_info->balance_mutex);
3631 if (!fs_info->balance_ctl) {
3632 ret = -ENOTCONN;
3633 goto out;
3634 }
3635
3636 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3637 if (!bargs) {
3638 ret = -ENOMEM;
3639 goto out;
3640 }
3641
3642 btrfs_update_ioctl_balance_args(fs_info, bargs);
3643
3644 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3645 ret = -EFAULT;
3646
3647 kfree(bargs);
3648 out:
3649 mutex_unlock(&fs_info->balance_mutex);
3650 return ret;
3651 }
3652
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3653 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3654 {
3655 struct inode *inode = file_inode(file);
3656 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3657 struct btrfs_ioctl_quota_ctl_args *sa;
3658 int ret;
3659
3660 if (!capable(CAP_SYS_ADMIN))
3661 return -EPERM;
3662
3663 ret = mnt_want_write_file(file);
3664 if (ret)
3665 return ret;
3666
3667 sa = memdup_user(arg, sizeof(*sa));
3668 if (IS_ERR(sa)) {
3669 ret = PTR_ERR(sa);
3670 goto drop_write;
3671 }
3672
3673 switch (sa->cmd) {
3674 case BTRFS_QUOTA_CTL_ENABLE:
3675 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3676 down_write(&fs_info->subvol_sem);
3677 ret = btrfs_quota_enable(fs_info, sa);
3678 up_write(&fs_info->subvol_sem);
3679 break;
3680 case BTRFS_QUOTA_CTL_DISABLE:
3681 /*
3682 * Lock the cleaner mutex to prevent races with concurrent
3683 * relocation, because relocation may be building backrefs for
3684 * blocks of the quota root while we are deleting the root. This
3685 * is like dropping fs roots of deleted snapshots/subvolumes, we
3686 * need the same protection.
3687 *
3688 * This also prevents races between concurrent tasks trying to
3689 * disable quotas, because we will unlock and relock
3690 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3691 *
3692 * We take this here because we have the dependency of
3693 *
3694 * inode_lock -> subvol_sem
3695 *
3696 * because of rename. With relocation we can prealloc extents,
3697 * so that makes the dependency chain
3698 *
3699 * cleaner_mutex -> inode_lock -> subvol_sem
3700 *
3701 * so we must take the cleaner_mutex here before we take the
3702 * subvol_sem. The deadlock can't actually happen, but this
3703 * quiets lockdep.
3704 */
3705 mutex_lock(&fs_info->cleaner_mutex);
3706 down_write(&fs_info->subvol_sem);
3707 ret = btrfs_quota_disable(fs_info);
3708 up_write(&fs_info->subvol_sem);
3709 mutex_unlock(&fs_info->cleaner_mutex);
3710 break;
3711 default:
3712 ret = -EINVAL;
3713 break;
3714 }
3715
3716 kfree(sa);
3717 drop_write:
3718 mnt_drop_write_file(file);
3719 return ret;
3720 }
3721
3722 /*
3723 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be
3724 * done before any operations.
3725 */
qgroup_enabled(struct btrfs_fs_info * fs_info)3726 static bool qgroup_enabled(struct btrfs_fs_info *fs_info)
3727 {
3728 bool ret = true;
3729
3730 mutex_lock(&fs_info->qgroup_ioctl_lock);
3731 if (!fs_info->quota_root)
3732 ret = false;
3733 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3734
3735 return ret;
3736 }
3737
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3738 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3739 {
3740 struct inode *inode = file_inode(file);
3741 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3742 struct btrfs_root *root = BTRFS_I(inode)->root;
3743 struct btrfs_ioctl_qgroup_assign_args *sa;
3744 struct btrfs_qgroup_list *prealloc = NULL;
3745 struct btrfs_trans_handle *trans;
3746 int ret;
3747 int err;
3748
3749 if (!capable(CAP_SYS_ADMIN))
3750 return -EPERM;
3751
3752 if (!qgroup_enabled(root->fs_info))
3753 return -ENOTCONN;
3754
3755 ret = mnt_want_write_file(file);
3756 if (ret)
3757 return ret;
3758
3759 sa = memdup_user(arg, sizeof(*sa));
3760 if (IS_ERR(sa)) {
3761 ret = PTR_ERR(sa);
3762 goto drop_write;
3763 }
3764
3765 if (sa->assign) {
3766 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3767 if (!prealloc) {
3768 ret = -ENOMEM;
3769 goto drop_write;
3770 }
3771 }
3772
3773 trans = btrfs_join_transaction(root);
3774 if (IS_ERR(trans)) {
3775 ret = PTR_ERR(trans);
3776 goto out;
3777 }
3778
3779 /*
3780 * Prealloc ownership is moved to the relation handler, there it's used
3781 * or freed on error.
3782 */
3783 if (sa->assign) {
3784 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3785 prealloc = NULL;
3786 } else {
3787 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3788 }
3789
3790 /* update qgroup status and info */
3791 mutex_lock(&fs_info->qgroup_ioctl_lock);
3792 err = btrfs_run_qgroups(trans);
3793 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3794 if (err < 0)
3795 btrfs_warn(fs_info,
3796 "qgroup status update failed after %s relation, marked as inconsistent",
3797 sa->assign ? "adding" : "deleting");
3798 err = btrfs_end_transaction(trans);
3799 if (err && !ret)
3800 ret = err;
3801
3802 out:
3803 kfree(prealloc);
3804 kfree(sa);
3805 drop_write:
3806 mnt_drop_write_file(file);
3807 return ret;
3808 }
3809
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3810 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3811 {
3812 struct inode *inode = file_inode(file);
3813 struct btrfs_root *root = BTRFS_I(inode)->root;
3814 struct btrfs_ioctl_qgroup_create_args *sa;
3815 struct btrfs_trans_handle *trans;
3816 int ret;
3817 int err;
3818
3819 if (!capable(CAP_SYS_ADMIN))
3820 return -EPERM;
3821
3822 if (!qgroup_enabled(root->fs_info))
3823 return -ENOTCONN;
3824
3825 ret = mnt_want_write_file(file);
3826 if (ret)
3827 return ret;
3828
3829 sa = memdup_user(arg, sizeof(*sa));
3830 if (IS_ERR(sa)) {
3831 ret = PTR_ERR(sa);
3832 goto drop_write;
3833 }
3834
3835 if (!sa->qgroupid) {
3836 ret = -EINVAL;
3837 goto out;
3838 }
3839
3840 if (sa->create && is_fstree(sa->qgroupid)) {
3841 ret = -EINVAL;
3842 goto out;
3843 }
3844
3845 trans = btrfs_join_transaction(root);
3846 if (IS_ERR(trans)) {
3847 ret = PTR_ERR(trans);
3848 goto out;
3849 }
3850
3851 if (sa->create) {
3852 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3853 } else {
3854 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3855 }
3856
3857 err = btrfs_end_transaction(trans);
3858 if (err && !ret)
3859 ret = err;
3860
3861 out:
3862 kfree(sa);
3863 drop_write:
3864 mnt_drop_write_file(file);
3865 return ret;
3866 }
3867
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3868 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3869 {
3870 struct inode *inode = file_inode(file);
3871 struct btrfs_root *root = BTRFS_I(inode)->root;
3872 struct btrfs_ioctl_qgroup_limit_args *sa;
3873 struct btrfs_trans_handle *trans;
3874 int ret;
3875 int err;
3876 u64 qgroupid;
3877
3878 if (!capable(CAP_SYS_ADMIN))
3879 return -EPERM;
3880
3881 if (!qgroup_enabled(root->fs_info))
3882 return -ENOTCONN;
3883
3884 ret = mnt_want_write_file(file);
3885 if (ret)
3886 return ret;
3887
3888 sa = memdup_user(arg, sizeof(*sa));
3889 if (IS_ERR(sa)) {
3890 ret = PTR_ERR(sa);
3891 goto drop_write;
3892 }
3893
3894 trans = btrfs_join_transaction(root);
3895 if (IS_ERR(trans)) {
3896 ret = PTR_ERR(trans);
3897 goto out;
3898 }
3899
3900 qgroupid = sa->qgroupid;
3901 if (!qgroupid) {
3902 /* take the current subvol as qgroup */
3903 qgroupid = btrfs_root_id(root);
3904 }
3905
3906 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3907
3908 err = btrfs_end_transaction(trans);
3909 if (err && !ret)
3910 ret = err;
3911
3912 out:
3913 kfree(sa);
3914 drop_write:
3915 mnt_drop_write_file(file);
3916 return ret;
3917 }
3918
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3919 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3920 {
3921 struct inode *inode = file_inode(file);
3922 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3923 struct btrfs_ioctl_quota_rescan_args *qsa;
3924 int ret;
3925
3926 if (!capable(CAP_SYS_ADMIN))
3927 return -EPERM;
3928
3929 if (!qgroup_enabled(fs_info))
3930 return -ENOTCONN;
3931
3932 ret = mnt_want_write_file(file);
3933 if (ret)
3934 return ret;
3935
3936 qsa = memdup_user(arg, sizeof(*qsa));
3937 if (IS_ERR(qsa)) {
3938 ret = PTR_ERR(qsa);
3939 goto drop_write;
3940 }
3941
3942 if (qsa->flags) {
3943 ret = -EINVAL;
3944 goto out;
3945 }
3946
3947 ret = btrfs_qgroup_rescan(fs_info);
3948
3949 out:
3950 kfree(qsa);
3951 drop_write:
3952 mnt_drop_write_file(file);
3953 return ret;
3954 }
3955
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3956 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3957 void __user *arg)
3958 {
3959 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3960
3961 if (!capable(CAP_SYS_ADMIN))
3962 return -EPERM;
3963
3964 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3965 qsa.flags = 1;
3966 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3967 }
3968
3969 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3970 return -EFAULT;
3971
3972 return 0;
3973 }
3974
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3975 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3976 {
3977 if (!capable(CAP_SYS_ADMIN))
3978 return -EPERM;
3979
3980 return btrfs_qgroup_wait_for_completion(fs_info, true);
3981 }
3982
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3983 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3984 struct mnt_idmap *idmap,
3985 struct btrfs_ioctl_received_subvol_args *sa)
3986 {
3987 struct inode *inode = file_inode(file);
3988 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3989 struct btrfs_root *root = BTRFS_I(inode)->root;
3990 struct btrfs_root_item *root_item = &root->root_item;
3991 struct btrfs_trans_handle *trans;
3992 struct timespec64 ct = current_time(inode);
3993 int ret = 0;
3994 int received_uuid_changed;
3995
3996 if (!inode_owner_or_capable(idmap, inode))
3997 return -EPERM;
3998
3999 ret = mnt_want_write_file(file);
4000 if (ret < 0)
4001 return ret;
4002
4003 down_write(&fs_info->subvol_sem);
4004
4005 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4006 ret = -EINVAL;
4007 goto out;
4008 }
4009
4010 if (btrfs_root_readonly(root)) {
4011 ret = -EROFS;
4012 goto out;
4013 }
4014
4015 /*
4016 * 1 - root item
4017 * 2 - uuid items (received uuid + subvol uuid)
4018 */
4019 trans = btrfs_start_transaction(root, 3);
4020 if (IS_ERR(trans)) {
4021 ret = PTR_ERR(trans);
4022 trans = NULL;
4023 goto out;
4024 }
4025
4026 sa->rtransid = trans->transid;
4027 sa->rtime.sec = ct.tv_sec;
4028 sa->rtime.nsec = ct.tv_nsec;
4029
4030 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4031 BTRFS_UUID_SIZE);
4032 if (received_uuid_changed &&
4033 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4034 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4035 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036 btrfs_root_id(root));
4037 if (ret && ret != -ENOENT) {
4038 btrfs_abort_transaction(trans, ret);
4039 btrfs_end_transaction(trans);
4040 goto out;
4041 }
4042 }
4043 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4044 btrfs_set_root_stransid(root_item, sa->stransid);
4045 btrfs_set_root_rtransid(root_item, sa->rtransid);
4046 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4047 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4048 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4049 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4050
4051 ret = btrfs_update_root(trans, fs_info->tree_root,
4052 &root->root_key, &root->root_item);
4053 if (ret < 0) {
4054 btrfs_end_transaction(trans);
4055 goto out;
4056 }
4057 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4058 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4059 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4060 btrfs_root_id(root));
4061 if (ret < 0 && ret != -EEXIST) {
4062 btrfs_abort_transaction(trans, ret);
4063 btrfs_end_transaction(trans);
4064 goto out;
4065 }
4066 }
4067 ret = btrfs_commit_transaction(trans);
4068 out:
4069 up_write(&fs_info->subvol_sem);
4070 mnt_drop_write_file(file);
4071 return ret;
4072 }
4073
4074 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4075 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4076 void __user *arg)
4077 {
4078 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4079 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4080 int ret = 0;
4081
4082 args32 = memdup_user(arg, sizeof(*args32));
4083 if (IS_ERR(args32))
4084 return PTR_ERR(args32);
4085
4086 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4087 if (!args64) {
4088 ret = -ENOMEM;
4089 goto out;
4090 }
4091
4092 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4093 args64->stransid = args32->stransid;
4094 args64->rtransid = args32->rtransid;
4095 args64->stime.sec = args32->stime.sec;
4096 args64->stime.nsec = args32->stime.nsec;
4097 args64->rtime.sec = args32->rtime.sec;
4098 args64->rtime.nsec = args32->rtime.nsec;
4099 args64->flags = args32->flags;
4100
4101 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4102 if (ret)
4103 goto out;
4104
4105 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4106 args32->stransid = args64->stransid;
4107 args32->rtransid = args64->rtransid;
4108 args32->stime.sec = args64->stime.sec;
4109 args32->stime.nsec = args64->stime.nsec;
4110 args32->rtime.sec = args64->rtime.sec;
4111 args32->rtime.nsec = args64->rtime.nsec;
4112 args32->flags = args64->flags;
4113
4114 ret = copy_to_user(arg, args32, sizeof(*args32));
4115 if (ret)
4116 ret = -EFAULT;
4117
4118 out:
4119 kfree(args32);
4120 kfree(args64);
4121 return ret;
4122 }
4123 #endif
4124
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4125 static long btrfs_ioctl_set_received_subvol(struct file *file,
4126 void __user *arg)
4127 {
4128 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4129 int ret = 0;
4130
4131 sa = memdup_user(arg, sizeof(*sa));
4132 if (IS_ERR(sa))
4133 return PTR_ERR(sa);
4134
4135 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4136
4137 if (ret)
4138 goto out;
4139
4140 ret = copy_to_user(arg, sa, sizeof(*sa));
4141 if (ret)
4142 ret = -EFAULT;
4143
4144 out:
4145 kfree(sa);
4146 return ret;
4147 }
4148
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4149 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4150 void __user *arg)
4151 {
4152 size_t len;
4153 int ret;
4154 char label[BTRFS_LABEL_SIZE];
4155
4156 spin_lock(&fs_info->super_lock);
4157 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4158 spin_unlock(&fs_info->super_lock);
4159
4160 len = strnlen(label, BTRFS_LABEL_SIZE);
4161
4162 if (len == BTRFS_LABEL_SIZE) {
4163 btrfs_warn(fs_info,
4164 "label is too long, return the first %zu bytes",
4165 --len);
4166 }
4167
4168 ret = copy_to_user(arg, label, len);
4169
4170 return ret ? -EFAULT : 0;
4171 }
4172
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4173 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4174 {
4175 struct inode *inode = file_inode(file);
4176 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4177 struct btrfs_root *root = BTRFS_I(inode)->root;
4178 struct btrfs_super_block *super_block = fs_info->super_copy;
4179 struct btrfs_trans_handle *trans;
4180 char label[BTRFS_LABEL_SIZE];
4181 int ret;
4182
4183 if (!capable(CAP_SYS_ADMIN))
4184 return -EPERM;
4185
4186 if (copy_from_user(label, arg, sizeof(label)))
4187 return -EFAULT;
4188
4189 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4190 btrfs_err(fs_info,
4191 "unable to set label with more than %d bytes",
4192 BTRFS_LABEL_SIZE - 1);
4193 return -EINVAL;
4194 }
4195
4196 ret = mnt_want_write_file(file);
4197 if (ret)
4198 return ret;
4199
4200 trans = btrfs_start_transaction(root, 0);
4201 if (IS_ERR(trans)) {
4202 ret = PTR_ERR(trans);
4203 goto out_unlock;
4204 }
4205
4206 spin_lock(&fs_info->super_lock);
4207 strcpy(super_block->label, label);
4208 spin_unlock(&fs_info->super_lock);
4209 ret = btrfs_commit_transaction(trans);
4210
4211 out_unlock:
4212 mnt_drop_write_file(file);
4213 return ret;
4214 }
4215
4216 #define INIT_FEATURE_FLAGS(suffix) \
4217 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4218 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4219 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4220
btrfs_ioctl_get_supported_features(void __user * arg)4221 int btrfs_ioctl_get_supported_features(void __user *arg)
4222 {
4223 static const struct btrfs_ioctl_feature_flags features[3] = {
4224 INIT_FEATURE_FLAGS(SUPP),
4225 INIT_FEATURE_FLAGS(SAFE_SET),
4226 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4227 };
4228
4229 if (copy_to_user(arg, &features, sizeof(features)))
4230 return -EFAULT;
4231
4232 return 0;
4233 }
4234
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4235 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4236 void __user *arg)
4237 {
4238 struct btrfs_super_block *super_block = fs_info->super_copy;
4239 struct btrfs_ioctl_feature_flags features;
4240
4241 features.compat_flags = btrfs_super_compat_flags(super_block);
4242 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4243 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4244
4245 if (copy_to_user(arg, &features, sizeof(features)))
4246 return -EFAULT;
4247
4248 return 0;
4249 }
4250
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4251 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4252 enum btrfs_feature_set set,
4253 u64 change_mask, u64 flags, u64 supported_flags,
4254 u64 safe_set, u64 safe_clear)
4255 {
4256 const char *type = btrfs_feature_set_name(set);
4257 char *names;
4258 u64 disallowed, unsupported;
4259 u64 set_mask = flags & change_mask;
4260 u64 clear_mask = ~flags & change_mask;
4261
4262 unsupported = set_mask & ~supported_flags;
4263 if (unsupported) {
4264 names = btrfs_printable_features(set, unsupported);
4265 if (names) {
4266 btrfs_warn(fs_info,
4267 "this kernel does not support the %s feature bit%s",
4268 names, strchr(names, ',') ? "s" : "");
4269 kfree(names);
4270 } else
4271 btrfs_warn(fs_info,
4272 "this kernel does not support %s bits 0x%llx",
4273 type, unsupported);
4274 return -EOPNOTSUPP;
4275 }
4276
4277 disallowed = set_mask & ~safe_set;
4278 if (disallowed) {
4279 names = btrfs_printable_features(set, disallowed);
4280 if (names) {
4281 btrfs_warn(fs_info,
4282 "can't set the %s feature bit%s while mounted",
4283 names, strchr(names, ',') ? "s" : "");
4284 kfree(names);
4285 } else
4286 btrfs_warn(fs_info,
4287 "can't set %s bits 0x%llx while mounted",
4288 type, disallowed);
4289 return -EPERM;
4290 }
4291
4292 disallowed = clear_mask & ~safe_clear;
4293 if (disallowed) {
4294 names = btrfs_printable_features(set, disallowed);
4295 if (names) {
4296 btrfs_warn(fs_info,
4297 "can't clear the %s feature bit%s while mounted",
4298 names, strchr(names, ',') ? "s" : "");
4299 kfree(names);
4300 } else
4301 btrfs_warn(fs_info,
4302 "can't clear %s bits 0x%llx while mounted",
4303 type, disallowed);
4304 return -EPERM;
4305 }
4306
4307 return 0;
4308 }
4309
4310 #define check_feature(fs_info, change_mask, flags, mask_base) \
4311 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4312 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4313 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4314 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4315
btrfs_ioctl_set_features(struct file * file,void __user * arg)4316 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4317 {
4318 struct inode *inode = file_inode(file);
4319 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4320 struct btrfs_root *root = BTRFS_I(inode)->root;
4321 struct btrfs_super_block *super_block = fs_info->super_copy;
4322 struct btrfs_ioctl_feature_flags flags[2];
4323 struct btrfs_trans_handle *trans;
4324 u64 newflags;
4325 int ret;
4326
4327 if (!capable(CAP_SYS_ADMIN))
4328 return -EPERM;
4329
4330 if (copy_from_user(flags, arg, sizeof(flags)))
4331 return -EFAULT;
4332
4333 /* Nothing to do */
4334 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4335 !flags[0].incompat_flags)
4336 return 0;
4337
4338 ret = check_feature(fs_info, flags[0].compat_flags,
4339 flags[1].compat_flags, COMPAT);
4340 if (ret)
4341 return ret;
4342
4343 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4344 flags[1].compat_ro_flags, COMPAT_RO);
4345 if (ret)
4346 return ret;
4347
4348 ret = check_feature(fs_info, flags[0].incompat_flags,
4349 flags[1].incompat_flags, INCOMPAT);
4350 if (ret)
4351 return ret;
4352
4353 ret = mnt_want_write_file(file);
4354 if (ret)
4355 return ret;
4356
4357 trans = btrfs_start_transaction(root, 0);
4358 if (IS_ERR(trans)) {
4359 ret = PTR_ERR(trans);
4360 goto out_drop_write;
4361 }
4362
4363 spin_lock(&fs_info->super_lock);
4364 newflags = btrfs_super_compat_flags(super_block);
4365 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4366 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4367 btrfs_set_super_compat_flags(super_block, newflags);
4368
4369 newflags = btrfs_super_compat_ro_flags(super_block);
4370 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4371 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4372 btrfs_set_super_compat_ro_flags(super_block, newflags);
4373
4374 newflags = btrfs_super_incompat_flags(super_block);
4375 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4376 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4377 btrfs_set_super_incompat_flags(super_block, newflags);
4378 spin_unlock(&fs_info->super_lock);
4379
4380 ret = btrfs_commit_transaction(trans);
4381 out_drop_write:
4382 mnt_drop_write_file(file);
4383
4384 return ret;
4385 }
4386
_btrfs_ioctl_send(struct btrfs_inode * inode,void __user * argp,bool compat)4387 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat)
4388 {
4389 struct btrfs_ioctl_send_args *arg;
4390 int ret;
4391
4392 if (compat) {
4393 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4394 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4395
4396 ret = copy_from_user(&args32, argp, sizeof(args32));
4397 if (ret)
4398 return -EFAULT;
4399 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4400 if (!arg)
4401 return -ENOMEM;
4402 arg->send_fd = args32.send_fd;
4403 arg->clone_sources_count = args32.clone_sources_count;
4404 arg->clone_sources = compat_ptr(args32.clone_sources);
4405 arg->parent_root = args32.parent_root;
4406 arg->flags = args32.flags;
4407 arg->version = args32.version;
4408 memcpy(arg->reserved, args32.reserved,
4409 sizeof(args32.reserved));
4410 #else
4411 return -ENOTTY;
4412 #endif
4413 } else {
4414 arg = memdup_user(argp, sizeof(*arg));
4415 if (IS_ERR(arg))
4416 return PTR_ERR(arg);
4417 }
4418 ret = btrfs_ioctl_send(inode, arg);
4419 kfree(arg);
4420 return ret;
4421 }
4422
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4423 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4424 bool compat)
4425 {
4426 struct btrfs_ioctl_encoded_io_args args = { 0 };
4427 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4428 flags);
4429 size_t copy_end;
4430 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4432 struct extent_io_tree *io_tree = &inode->io_tree;
4433 struct iovec iovstack[UIO_FASTIOV];
4434 struct iovec *iov = iovstack;
4435 struct iov_iter iter;
4436 loff_t pos;
4437 struct kiocb kiocb;
4438 ssize_t ret;
4439 u64 disk_bytenr, disk_io_size;
4440 struct extent_state *cached_state = NULL;
4441
4442 if (!capable(CAP_SYS_ADMIN)) {
4443 ret = -EPERM;
4444 goto out_acct;
4445 }
4446
4447 if (compat) {
4448 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4449 struct btrfs_ioctl_encoded_io_args_32 args32;
4450
4451 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4452 flags);
4453 if (copy_from_user(&args32, argp, copy_end)) {
4454 ret = -EFAULT;
4455 goto out_acct;
4456 }
4457 args.iov = compat_ptr(args32.iov);
4458 args.iovcnt = args32.iovcnt;
4459 args.offset = args32.offset;
4460 args.flags = args32.flags;
4461 #else
4462 return -ENOTTY;
4463 #endif
4464 } else {
4465 copy_end = copy_end_kernel;
4466 if (copy_from_user(&args, argp, copy_end)) {
4467 ret = -EFAULT;
4468 goto out_acct;
4469 }
4470 }
4471 if (args.flags != 0) {
4472 ret = -EINVAL;
4473 goto out_acct;
4474 }
4475
4476 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4477 &iov, &iter);
4478 if (ret < 0)
4479 goto out_acct;
4480
4481 if (iov_iter_count(&iter) == 0) {
4482 ret = 0;
4483 goto out_iov;
4484 }
4485 pos = args.offset;
4486 ret = rw_verify_area(READ, file, &pos, args.len);
4487 if (ret < 0)
4488 goto out_iov;
4489
4490 init_sync_kiocb(&kiocb, file);
4491 kiocb.ki_pos = pos;
4492
4493 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4494 &disk_bytenr, &disk_io_size);
4495
4496 if (ret == -EIOCBQUEUED) {
4497 bool unlocked = false;
4498 u64 start, lockend, count;
4499
4500 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4501 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4502
4503 if (args.compression)
4504 count = disk_io_size;
4505 else
4506 count = args.len;
4507
4508 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4509 &cached_state, disk_bytenr,
4510 disk_io_size, count,
4511 args.compression, &unlocked);
4512
4513 if (!unlocked) {
4514 unlock_extent(io_tree, start, lockend, &cached_state);
4515 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4516 }
4517 }
4518
4519 if (ret >= 0) {
4520 fsnotify_access(file);
4521 if (copy_to_user(argp + copy_end,
4522 (char *)&args + copy_end_kernel,
4523 sizeof(args) - copy_end_kernel))
4524 ret = -EFAULT;
4525 }
4526
4527 out_iov:
4528 kfree(iov);
4529 out_acct:
4530 if (ret > 0)
4531 add_rchar(current, ret);
4532 inc_syscr(current);
4533 return ret;
4534 }
4535
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4536 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4537 {
4538 struct btrfs_ioctl_encoded_io_args args;
4539 struct iovec iovstack[UIO_FASTIOV];
4540 struct iovec *iov = iovstack;
4541 struct iov_iter iter;
4542 loff_t pos;
4543 struct kiocb kiocb;
4544 ssize_t ret;
4545
4546 if (!capable(CAP_SYS_ADMIN)) {
4547 ret = -EPERM;
4548 goto out_acct;
4549 }
4550
4551 if (!(file->f_mode & FMODE_WRITE)) {
4552 ret = -EBADF;
4553 goto out_acct;
4554 }
4555
4556 if (compat) {
4557 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4558 struct btrfs_ioctl_encoded_io_args_32 args32;
4559
4560 if (copy_from_user(&args32, argp, sizeof(args32))) {
4561 ret = -EFAULT;
4562 goto out_acct;
4563 }
4564 args.iov = compat_ptr(args32.iov);
4565 args.iovcnt = args32.iovcnt;
4566 args.offset = args32.offset;
4567 args.flags = args32.flags;
4568 args.len = args32.len;
4569 args.unencoded_len = args32.unencoded_len;
4570 args.unencoded_offset = args32.unencoded_offset;
4571 args.compression = args32.compression;
4572 args.encryption = args32.encryption;
4573 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4574 #else
4575 return -ENOTTY;
4576 #endif
4577 } else {
4578 if (copy_from_user(&args, argp, sizeof(args))) {
4579 ret = -EFAULT;
4580 goto out_acct;
4581 }
4582 }
4583
4584 ret = -EINVAL;
4585 if (args.flags != 0)
4586 goto out_acct;
4587 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4588 goto out_acct;
4589 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4590 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4591 goto out_acct;
4592 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4593 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4594 goto out_acct;
4595 if (args.unencoded_offset > args.unencoded_len)
4596 goto out_acct;
4597 if (args.len > args.unencoded_len - args.unencoded_offset)
4598 goto out_acct;
4599
4600 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4601 &iov, &iter);
4602 if (ret < 0)
4603 goto out_acct;
4604
4605 if (iov_iter_count(&iter) == 0) {
4606 ret = 0;
4607 goto out_iov;
4608 }
4609 pos = args.offset;
4610 ret = rw_verify_area(WRITE, file, &pos, args.len);
4611 if (ret < 0)
4612 goto out_iov;
4613
4614 init_sync_kiocb(&kiocb, file);
4615 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4616 if (ret)
4617 goto out_iov;
4618 kiocb.ki_pos = pos;
4619
4620 file_start_write(file);
4621
4622 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4623 if (ret > 0)
4624 fsnotify_modify(file);
4625
4626 file_end_write(file);
4627 out_iov:
4628 kfree(iov);
4629 out_acct:
4630 if (ret > 0)
4631 add_wchar(current, ret);
4632 inc_syscw(current);
4633 return ret;
4634 }
4635
4636 /*
4637 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4638 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4639 * off and cleanup the I/O in btrfs_uring_read_finished.
4640 */
4641 struct btrfs_uring_priv {
4642 struct io_uring_cmd *cmd;
4643 struct page **pages;
4644 unsigned long nr_pages;
4645 struct kiocb iocb;
4646 struct iovec *iov;
4647 struct iov_iter iter;
4648 struct extent_state *cached_state;
4649 u64 count;
4650 u64 start;
4651 u64 lockend;
4652 int err;
4653 bool compressed;
4654 };
4655
4656 struct io_btrfs_cmd {
4657 struct btrfs_uring_priv *priv;
4658 };
4659
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4660 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4661 {
4662 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4663 struct btrfs_uring_priv *priv = bc->priv;
4664 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4665 struct extent_io_tree *io_tree = &inode->io_tree;
4666 unsigned long index;
4667 u64 cur;
4668 size_t page_offset;
4669 ssize_t ret;
4670
4671 /* The inode lock has already been acquired in btrfs_uring_read_extent. */
4672 btrfs_lockdep_inode_acquire(inode, i_rwsem);
4673
4674 if (priv->err) {
4675 ret = priv->err;
4676 goto out;
4677 }
4678
4679 if (priv->compressed) {
4680 index = 0;
4681 page_offset = 0;
4682 } else {
4683 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4684 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4685 }
4686 cur = 0;
4687 while (cur < priv->count) {
4688 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4689
4690 if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4691 &priv->iter) != bytes) {
4692 ret = -EFAULT;
4693 goto out;
4694 }
4695
4696 index++;
4697 cur += bytes;
4698 page_offset = 0;
4699 }
4700 ret = priv->count;
4701
4702 out:
4703 unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4704 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4705
4706 io_uring_cmd_done(cmd, ret, 0, issue_flags);
4707 add_rchar(current, ret);
4708
4709 for (index = 0; index < priv->nr_pages; index++)
4710 __free_page(priv->pages[index]);
4711
4712 kfree(priv->pages);
4713 kfree(priv->iov);
4714 kfree(priv);
4715 }
4716
btrfs_uring_read_extent_endio(void * ctx,int err)4717 void btrfs_uring_read_extent_endio(void *ctx, int err)
4718 {
4719 struct btrfs_uring_priv *priv = ctx;
4720 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4721
4722 priv->err = err;
4723 bc->priv = priv;
4724
4725 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4726 }
4727
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4728 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4729 u64 start, u64 lockend,
4730 struct extent_state *cached_state,
4731 u64 disk_bytenr, u64 disk_io_size,
4732 size_t count, bool compressed,
4733 struct iovec *iov, struct io_uring_cmd *cmd)
4734 {
4735 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4736 struct extent_io_tree *io_tree = &inode->io_tree;
4737 struct page **pages;
4738 struct btrfs_uring_priv *priv = NULL;
4739 unsigned long nr_pages;
4740 int ret;
4741
4742 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4743 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4744 if (!pages)
4745 return -ENOMEM;
4746 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4747 if (ret) {
4748 ret = -ENOMEM;
4749 goto out_fail;
4750 }
4751
4752 priv = kmalloc(sizeof(*priv), GFP_NOFS);
4753 if (!priv) {
4754 ret = -ENOMEM;
4755 goto out_fail;
4756 }
4757
4758 priv->iocb = *iocb;
4759 priv->iov = iov;
4760 priv->iter = *iter;
4761 priv->count = count;
4762 priv->cmd = cmd;
4763 priv->cached_state = cached_state;
4764 priv->compressed = compressed;
4765 priv->nr_pages = nr_pages;
4766 priv->pages = pages;
4767 priv->start = start;
4768 priv->lockend = lockend;
4769 priv->err = 0;
4770
4771 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4772 disk_io_size, pages, priv);
4773 if (ret && ret != -EIOCBQUEUED)
4774 goto out_fail;
4775
4776 /*
4777 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4778 * btrfs_uring_read_finished(), which will handle unlocking the extent
4779 * and inode and freeing the allocations.
4780 */
4781
4782 /*
4783 * We're returning to userspace with the inode lock held, and that's
4784 * okay - it'll get unlocked in a worker thread. Call
4785 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4786 */
4787 btrfs_lockdep_inode_release(inode, i_rwsem);
4788
4789 return -EIOCBQUEUED;
4790
4791 out_fail:
4792 unlock_extent(io_tree, start, lockend, &cached_state);
4793 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4794 kfree(priv);
4795 return ret;
4796 }
4797
4798 struct btrfs_uring_encoded_data {
4799 struct btrfs_ioctl_encoded_io_args args;
4800 struct iovec iovstack[UIO_FASTIOV];
4801 struct iovec *iov;
4802 struct iov_iter iter;
4803 };
4804
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4805 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4806 {
4807 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4808 size_t copy_end;
4809 int ret;
4810 u64 disk_bytenr, disk_io_size;
4811 struct file *file;
4812 struct btrfs_inode *inode;
4813 struct btrfs_fs_info *fs_info;
4814 struct extent_io_tree *io_tree;
4815 loff_t pos;
4816 struct kiocb kiocb;
4817 struct extent_state *cached_state = NULL;
4818 u64 start, lockend;
4819 void __user *sqe_addr;
4820 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4821
4822 if (!capable(CAP_SYS_ADMIN)) {
4823 ret = -EPERM;
4824 goto out_acct;
4825 }
4826 file = cmd->file;
4827 inode = BTRFS_I(file->f_inode);
4828 fs_info = inode->root->fs_info;
4829 io_tree = &inode->io_tree;
4830 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4831
4832 if (issue_flags & IO_URING_F_COMPAT) {
4833 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4834 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4835 #else
4836 return -ENOTTY;
4837 #endif
4838 } else {
4839 copy_end = copy_end_kernel;
4840 }
4841
4842 if (!data) {
4843 data = kzalloc(sizeof(*data), GFP_NOFS);
4844 if (!data) {
4845 ret = -ENOMEM;
4846 goto out_acct;
4847 }
4848
4849 io_uring_cmd_get_async_data(cmd)->op_data = data;
4850
4851 if (issue_flags & IO_URING_F_COMPAT) {
4852 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4853 struct btrfs_ioctl_encoded_io_args_32 args32;
4854
4855 if (copy_from_user(&args32, sqe_addr, copy_end)) {
4856 ret = -EFAULT;
4857 goto out_acct;
4858 }
4859
4860 data->args.iov = compat_ptr(args32.iov);
4861 data->args.iovcnt = args32.iovcnt;
4862 data->args.offset = args32.offset;
4863 data->args.flags = args32.flags;
4864 #endif
4865 } else {
4866 if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4867 ret = -EFAULT;
4868 goto out_acct;
4869 }
4870 }
4871
4872 if (data->args.flags != 0) {
4873 ret = -EINVAL;
4874 goto out_acct;
4875 }
4876
4877 data->iov = data->iovstack;
4878 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4879 ARRAY_SIZE(data->iovstack), &data->iov,
4880 &data->iter);
4881 if (ret < 0)
4882 goto out_acct;
4883
4884 if (iov_iter_count(&data->iter) == 0) {
4885 ret = 0;
4886 goto out_free;
4887 }
4888 }
4889
4890 pos = data->args.offset;
4891 ret = rw_verify_area(READ, file, &pos, data->args.len);
4892 if (ret < 0)
4893 goto out_free;
4894
4895 init_sync_kiocb(&kiocb, file);
4896 kiocb.ki_pos = pos;
4897
4898 if (issue_flags & IO_URING_F_NONBLOCK)
4899 kiocb.ki_flags |= IOCB_NOWAIT;
4900
4901 start = ALIGN_DOWN(pos, fs_info->sectorsize);
4902 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4903
4904 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4905 &disk_bytenr, &disk_io_size);
4906 if (ret < 0 && ret != -EIOCBQUEUED)
4907 goto out_free;
4908
4909 file_accessed(file);
4910
4911 if (copy_to_user(sqe_addr + copy_end,
4912 (const char *)&data->args + copy_end_kernel,
4913 sizeof(data->args) - copy_end_kernel)) {
4914 if (ret == -EIOCBQUEUED) {
4915 unlock_extent(io_tree, start, lockend, &cached_state);
4916 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4917 }
4918 ret = -EFAULT;
4919 goto out_free;
4920 }
4921
4922 if (ret == -EIOCBQUEUED) {
4923 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4924
4925 /* Match ioctl by not returning past EOF if uncompressed. */
4926 if (!data->args.compression)
4927 count = min_t(u64, count, data->args.len);
4928
4929 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4930 cached_state, disk_bytenr, disk_io_size,
4931 count, data->args.compression,
4932 data->iov, cmd);
4933
4934 goto out_acct;
4935 }
4936
4937 out_free:
4938 kfree(data->iov);
4939
4940 out_acct:
4941 if (ret > 0)
4942 add_rchar(current, ret);
4943 inc_syscr(current);
4944
4945 return ret;
4946 }
4947
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4948 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4949 {
4950 loff_t pos;
4951 struct kiocb kiocb;
4952 struct file *file;
4953 ssize_t ret;
4954 void __user *sqe_addr;
4955 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data;
4956
4957 if (!capable(CAP_SYS_ADMIN)) {
4958 ret = -EPERM;
4959 goto out_acct;
4960 }
4961
4962 file = cmd->file;
4963 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4964
4965 if (!(file->f_mode & FMODE_WRITE)) {
4966 ret = -EBADF;
4967 goto out_acct;
4968 }
4969
4970 if (!data) {
4971 data = kzalloc(sizeof(*data), GFP_NOFS);
4972 if (!data) {
4973 ret = -ENOMEM;
4974 goto out_acct;
4975 }
4976
4977 io_uring_cmd_get_async_data(cmd)->op_data = data;
4978
4979 if (issue_flags & IO_URING_F_COMPAT) {
4980 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4981 struct btrfs_ioctl_encoded_io_args_32 args32;
4982
4983 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4984 ret = -EFAULT;
4985 goto out_acct;
4986 }
4987 data->args.iov = compat_ptr(args32.iov);
4988 data->args.iovcnt = args32.iovcnt;
4989 data->args.offset = args32.offset;
4990 data->args.flags = args32.flags;
4991 data->args.len = args32.len;
4992 data->args.unencoded_len = args32.unencoded_len;
4993 data->args.unencoded_offset = args32.unencoded_offset;
4994 data->args.compression = args32.compression;
4995 data->args.encryption = args32.encryption;
4996 memcpy(data->args.reserved, args32.reserved,
4997 sizeof(data->args.reserved));
4998 #else
4999 ret = -ENOTTY;
5000 goto out_acct;
5001 #endif
5002 } else {
5003 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
5004 ret = -EFAULT;
5005 goto out_acct;
5006 }
5007 }
5008
5009 ret = -EINVAL;
5010 if (data->args.flags != 0)
5011 goto out_acct;
5012 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5013 goto out_acct;
5014 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5015 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5016 goto out_acct;
5017 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5018 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5019 goto out_acct;
5020 if (data->args.unencoded_offset > data->args.unencoded_len)
5021 goto out_acct;
5022 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5023 goto out_acct;
5024
5025 data->iov = data->iovstack;
5026 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5027 ARRAY_SIZE(data->iovstack), &data->iov,
5028 &data->iter);
5029 if (ret < 0)
5030 goto out_acct;
5031
5032 if (iov_iter_count(&data->iter) == 0) {
5033 ret = 0;
5034 goto out_iov;
5035 }
5036 }
5037
5038 if (issue_flags & IO_URING_F_NONBLOCK) {
5039 ret = -EAGAIN;
5040 goto out_acct;
5041 }
5042
5043 pos = data->args.offset;
5044 ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5045 if (ret < 0)
5046 goto out_iov;
5047
5048 init_sync_kiocb(&kiocb, file);
5049 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5050 if (ret)
5051 goto out_iov;
5052 kiocb.ki_pos = pos;
5053
5054 file_start_write(file);
5055
5056 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5057 if (ret > 0)
5058 fsnotify_modify(file);
5059
5060 file_end_write(file);
5061 out_iov:
5062 kfree(data->iov);
5063 out_acct:
5064 if (ret > 0)
5065 add_wchar(current, ret);
5066 inc_syscw(current);
5067 return ret;
5068 }
5069
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5070 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5071 {
5072 switch (cmd->cmd_op) {
5073 case BTRFS_IOC_ENCODED_READ:
5074 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5075 case BTRFS_IOC_ENCODED_READ_32:
5076 #endif
5077 return btrfs_uring_encoded_read(cmd, issue_flags);
5078
5079 case BTRFS_IOC_ENCODED_WRITE:
5080 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5081 case BTRFS_IOC_ENCODED_WRITE_32:
5082 #endif
5083 return btrfs_uring_encoded_write(cmd, issue_flags);
5084 }
5085
5086 return -EINVAL;
5087 }
5088
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5089 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5090 {
5091 struct btrfs_root *root;
5092 struct btrfs_ioctl_subvol_wait args = { 0 };
5093 signed long sched_ret;
5094 int refs;
5095 u64 root_flags;
5096 bool wait_for_deletion = false;
5097 bool found = false;
5098
5099 if (copy_from_user(&args, argp, sizeof(args)))
5100 return -EFAULT;
5101
5102 switch (args.mode) {
5103 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5104 /*
5105 * Wait for the first one deleted that waits until all previous
5106 * are cleaned.
5107 */
5108 spin_lock(&fs_info->trans_lock);
5109 if (!list_empty(&fs_info->dead_roots)) {
5110 root = list_last_entry(&fs_info->dead_roots,
5111 struct btrfs_root, root_list);
5112 args.subvolid = btrfs_root_id(root);
5113 found = true;
5114 }
5115 spin_unlock(&fs_info->trans_lock);
5116 if (!found)
5117 return -ENOENT;
5118
5119 fallthrough;
5120 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5121 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5122 BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5123 return -EINVAL;
5124 break;
5125 case BTRFS_SUBVOL_SYNC_COUNT:
5126 spin_lock(&fs_info->trans_lock);
5127 args.count = list_count_nodes(&fs_info->dead_roots);
5128 spin_unlock(&fs_info->trans_lock);
5129 if (copy_to_user(argp, &args, sizeof(args)))
5130 return -EFAULT;
5131 return 0;
5132 case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5133 spin_lock(&fs_info->trans_lock);
5134 /* Last in the list was deleted first. */
5135 if (!list_empty(&fs_info->dead_roots)) {
5136 root = list_last_entry(&fs_info->dead_roots,
5137 struct btrfs_root, root_list);
5138 args.subvolid = btrfs_root_id(root);
5139 } else {
5140 args.subvolid = 0;
5141 }
5142 spin_unlock(&fs_info->trans_lock);
5143 if (copy_to_user(argp, &args, sizeof(args)))
5144 return -EFAULT;
5145 return 0;
5146 case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5147 spin_lock(&fs_info->trans_lock);
5148 /* First in the list was deleted last. */
5149 if (!list_empty(&fs_info->dead_roots)) {
5150 root = list_first_entry(&fs_info->dead_roots,
5151 struct btrfs_root, root_list);
5152 args.subvolid = btrfs_root_id(root);
5153 } else {
5154 args.subvolid = 0;
5155 }
5156 spin_unlock(&fs_info->trans_lock);
5157 if (copy_to_user(argp, &args, sizeof(args)))
5158 return -EFAULT;
5159 return 0;
5160 default:
5161 return -EINVAL;
5162 }
5163
5164 /* 32bit limitation: fs_roots_radix key is not wide enough. */
5165 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5166 return -EOVERFLOW;
5167
5168 while (1) {
5169 /* Wait for the specific one. */
5170 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5171 return -EINTR;
5172 refs = -1;
5173 spin_lock(&fs_info->fs_roots_radix_lock);
5174 root = radix_tree_lookup(&fs_info->fs_roots_radix,
5175 (unsigned long)args.subvolid);
5176 if (root) {
5177 spin_lock(&root->root_item_lock);
5178 refs = btrfs_root_refs(&root->root_item);
5179 root_flags = btrfs_root_flags(&root->root_item);
5180 spin_unlock(&root->root_item_lock);
5181 }
5182 spin_unlock(&fs_info->fs_roots_radix_lock);
5183 up_read(&fs_info->subvol_sem);
5184
5185 /* Subvolume does not exist. */
5186 if (!root)
5187 return -ENOENT;
5188
5189 /* Subvolume not deleted at all. */
5190 if (refs > 0)
5191 return -EEXIST;
5192 /* We've waited and now the subvolume is gone. */
5193 if (wait_for_deletion && refs == -1) {
5194 /* Return the one we waited for as the last one. */
5195 if (copy_to_user(argp, &args, sizeof(args)))
5196 return -EFAULT;
5197 return 0;
5198 }
5199
5200 /* Subvolume not found on the first try (deleted or never existed). */
5201 if (refs == -1)
5202 return -ENOENT;
5203
5204 wait_for_deletion = true;
5205 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5206 sched_ret = schedule_timeout_interruptible(HZ);
5207 /* Early wake up or error. */
5208 if (sched_ret != 0)
5209 return -EINTR;
5210 }
5211
5212 return 0;
5213 }
5214
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5215 long btrfs_ioctl(struct file *file, unsigned int
5216 cmd, unsigned long arg)
5217 {
5218 struct inode *inode = file_inode(file);
5219 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5220 struct btrfs_root *root = BTRFS_I(inode)->root;
5221 void __user *argp = (void __user *)arg;
5222
5223 switch (cmd) {
5224 case FS_IOC_GETVERSION:
5225 return btrfs_ioctl_getversion(inode, argp);
5226 case FS_IOC_GETFSLABEL:
5227 return btrfs_ioctl_get_fslabel(fs_info, argp);
5228 case FS_IOC_SETFSLABEL:
5229 return btrfs_ioctl_set_fslabel(file, argp);
5230 case FITRIM:
5231 return btrfs_ioctl_fitrim(fs_info, argp);
5232 case BTRFS_IOC_SNAP_CREATE:
5233 return btrfs_ioctl_snap_create(file, argp, 0);
5234 case BTRFS_IOC_SNAP_CREATE_V2:
5235 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5236 case BTRFS_IOC_SUBVOL_CREATE:
5237 return btrfs_ioctl_snap_create(file, argp, 1);
5238 case BTRFS_IOC_SUBVOL_CREATE_V2:
5239 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5240 case BTRFS_IOC_SNAP_DESTROY:
5241 return btrfs_ioctl_snap_destroy(file, argp, false);
5242 case BTRFS_IOC_SNAP_DESTROY_V2:
5243 return btrfs_ioctl_snap_destroy(file, argp, true);
5244 case BTRFS_IOC_SUBVOL_GETFLAGS:
5245 return btrfs_ioctl_subvol_getflags(inode, argp);
5246 case BTRFS_IOC_SUBVOL_SETFLAGS:
5247 return btrfs_ioctl_subvol_setflags(file, argp);
5248 case BTRFS_IOC_DEFAULT_SUBVOL:
5249 return btrfs_ioctl_default_subvol(file, argp);
5250 case BTRFS_IOC_DEFRAG:
5251 return btrfs_ioctl_defrag(file, NULL);
5252 case BTRFS_IOC_DEFRAG_RANGE:
5253 return btrfs_ioctl_defrag(file, argp);
5254 case BTRFS_IOC_RESIZE:
5255 return btrfs_ioctl_resize(file, argp);
5256 case BTRFS_IOC_ADD_DEV:
5257 return btrfs_ioctl_add_dev(fs_info, argp);
5258 case BTRFS_IOC_RM_DEV:
5259 return btrfs_ioctl_rm_dev(file, argp);
5260 case BTRFS_IOC_RM_DEV_V2:
5261 return btrfs_ioctl_rm_dev_v2(file, argp);
5262 case BTRFS_IOC_FS_INFO:
5263 return btrfs_ioctl_fs_info(fs_info, argp);
5264 case BTRFS_IOC_DEV_INFO:
5265 return btrfs_ioctl_dev_info(fs_info, argp);
5266 case BTRFS_IOC_TREE_SEARCH:
5267 return btrfs_ioctl_tree_search(inode, argp);
5268 case BTRFS_IOC_TREE_SEARCH_V2:
5269 return btrfs_ioctl_tree_search_v2(inode, argp);
5270 case BTRFS_IOC_INO_LOOKUP:
5271 return btrfs_ioctl_ino_lookup(root, argp);
5272 case BTRFS_IOC_INO_PATHS:
5273 return btrfs_ioctl_ino_to_path(root, argp);
5274 case BTRFS_IOC_LOGICAL_INO:
5275 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5276 case BTRFS_IOC_LOGICAL_INO_V2:
5277 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5278 case BTRFS_IOC_SPACE_INFO:
5279 return btrfs_ioctl_space_info(fs_info, argp);
5280 case BTRFS_IOC_SYNC: {
5281 int ret;
5282
5283 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5284 if (ret)
5285 return ret;
5286 ret = btrfs_sync_fs(inode->i_sb, 1);
5287 /*
5288 * There may be work for the cleaner kthread to do (subvolume
5289 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5290 */
5291 wake_up_process(fs_info->cleaner_kthread);
5292 return ret;
5293 }
5294 case BTRFS_IOC_START_SYNC:
5295 return btrfs_ioctl_start_sync(root, argp);
5296 case BTRFS_IOC_WAIT_SYNC:
5297 return btrfs_ioctl_wait_sync(fs_info, argp);
5298 case BTRFS_IOC_SCRUB:
5299 return btrfs_ioctl_scrub(file, argp);
5300 case BTRFS_IOC_SCRUB_CANCEL:
5301 return btrfs_ioctl_scrub_cancel(fs_info);
5302 case BTRFS_IOC_SCRUB_PROGRESS:
5303 return btrfs_ioctl_scrub_progress(fs_info, argp);
5304 case BTRFS_IOC_BALANCE_V2:
5305 return btrfs_ioctl_balance(file, argp);
5306 case BTRFS_IOC_BALANCE_CTL:
5307 return btrfs_ioctl_balance_ctl(fs_info, arg);
5308 case BTRFS_IOC_BALANCE_PROGRESS:
5309 return btrfs_ioctl_balance_progress(fs_info, argp);
5310 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5311 return btrfs_ioctl_set_received_subvol(file, argp);
5312 #ifdef CONFIG_64BIT
5313 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5314 return btrfs_ioctl_set_received_subvol_32(file, argp);
5315 #endif
5316 case BTRFS_IOC_SEND:
5317 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false);
5318 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5319 case BTRFS_IOC_SEND_32:
5320 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true);
5321 #endif
5322 case BTRFS_IOC_GET_DEV_STATS:
5323 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5324 case BTRFS_IOC_QUOTA_CTL:
5325 return btrfs_ioctl_quota_ctl(file, argp);
5326 case BTRFS_IOC_QGROUP_ASSIGN:
5327 return btrfs_ioctl_qgroup_assign(file, argp);
5328 case BTRFS_IOC_QGROUP_CREATE:
5329 return btrfs_ioctl_qgroup_create(file, argp);
5330 case BTRFS_IOC_QGROUP_LIMIT:
5331 return btrfs_ioctl_qgroup_limit(file, argp);
5332 case BTRFS_IOC_QUOTA_RESCAN:
5333 return btrfs_ioctl_quota_rescan(file, argp);
5334 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5335 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5336 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5337 return btrfs_ioctl_quota_rescan_wait(fs_info);
5338 case BTRFS_IOC_DEV_REPLACE:
5339 return btrfs_ioctl_dev_replace(fs_info, argp);
5340 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5341 return btrfs_ioctl_get_supported_features(argp);
5342 case BTRFS_IOC_GET_FEATURES:
5343 return btrfs_ioctl_get_features(fs_info, argp);
5344 case BTRFS_IOC_SET_FEATURES:
5345 return btrfs_ioctl_set_features(file, argp);
5346 case BTRFS_IOC_GET_SUBVOL_INFO:
5347 return btrfs_ioctl_get_subvol_info(inode, argp);
5348 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5349 return btrfs_ioctl_get_subvol_rootref(root, argp);
5350 case BTRFS_IOC_INO_LOOKUP_USER:
5351 return btrfs_ioctl_ino_lookup_user(file, argp);
5352 case FS_IOC_ENABLE_VERITY:
5353 return fsverity_ioctl_enable(file, (const void __user *)argp);
5354 case FS_IOC_MEASURE_VERITY:
5355 return fsverity_ioctl_measure(file, argp);
5356 case FS_IOC_READ_VERITY_METADATA:
5357 return fsverity_ioctl_read_metadata(file, argp);
5358 case BTRFS_IOC_ENCODED_READ:
5359 return btrfs_ioctl_encoded_read(file, argp, false);
5360 case BTRFS_IOC_ENCODED_WRITE:
5361 return btrfs_ioctl_encoded_write(file, argp, false);
5362 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5363 case BTRFS_IOC_ENCODED_READ_32:
5364 return btrfs_ioctl_encoded_read(file, argp, true);
5365 case BTRFS_IOC_ENCODED_WRITE_32:
5366 return btrfs_ioctl_encoded_write(file, argp, true);
5367 #endif
5368 case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5369 return btrfs_ioctl_subvol_sync(fs_info, argp);
5370 }
5371
5372 return -ENOTTY;
5373 }
5374
5375 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5376 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5377 {
5378 /*
5379 * These all access 32-bit values anyway so no further
5380 * handling is necessary.
5381 */
5382 switch (cmd) {
5383 case FS_IOC32_GETVERSION:
5384 cmd = FS_IOC_GETVERSION;
5385 break;
5386 }
5387
5388 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5389 }
5390 #endif
5391