1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the Type class. For more "Type" 10 // stuff, look in DerivedTypes.h. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_IR_TYPE_H 15 #define LLVM_IR_TYPE_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/Support/CBindingWrapping.h" 19 #include "llvm/Support/Casting.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TypeSize.h" 23 #include <cassert> 24 #include <cstdint> 25 #include <iterator> 26 27 namespace llvm { 28 29 class IntegerType; 30 struct fltSemantics; 31 class LLVMContext; 32 class PointerType; 33 class raw_ostream; 34 class StringRef; 35 template <typename PtrType> class SmallPtrSetImpl; 36 37 /// The instances of the Type class are immutable: once they are created, 38 /// they are never changed. Also note that only one instance of a particular 39 /// type is ever created. Thus seeing if two types are equal is a matter of 40 /// doing a trivial pointer comparison. To enforce that no two equal instances 41 /// are created, Type instances can only be created via static factory methods 42 /// in class Type and in derived classes. Once allocated, Types are never 43 /// free'd. 44 /// 45 class Type { 46 public: 47 //===--------------------------------------------------------------------===// 48 /// Definitions of all of the base types for the Type system. Based on this 49 /// value, you can cast to a class defined in DerivedTypes.h. 50 /// Note: If you add an element to this, you need to add an element to the 51 /// Type::getPrimitiveType function, or else things will break! 52 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. 53 /// 54 enum TypeID { 55 // PrimitiveTypes 56 HalfTyID = 0, ///< 16-bit floating point type 57 BFloatTyID, ///< 16-bit floating point type (7-bit significand) 58 FloatTyID, ///< 32-bit floating point type 59 DoubleTyID, ///< 64-bit floating point type 60 X86_FP80TyID, ///< 80-bit floating point type (X87) 61 FP128TyID, ///< 128-bit floating point type (112-bit significand) 62 PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) 63 VoidTyID, ///< type with no size 64 LabelTyID, ///< Labels 65 MetadataTyID, ///< Metadata 66 X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) 67 X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) 68 TokenTyID, ///< Tokens 69 70 // Derived types... see DerivedTypes.h file. 71 IntegerTyID, ///< Arbitrary bit width integers 72 FunctionTyID, ///< Functions 73 PointerTyID, ///< Pointers 74 StructTyID, ///< Structures 75 ArrayTyID, ///< Arrays 76 FixedVectorTyID, ///< Fixed width SIMD vector type 77 ScalableVectorTyID, ///< Scalable SIMD vector type 78 TypedPointerTyID, ///< Typed pointer used by some GPU targets 79 TargetExtTyID, ///< Target extension type 80 }; 81 82 private: 83 /// This refers to the LLVMContext in which this type was uniqued. 84 LLVMContext &Context; 85 86 TypeID ID : 8; // The current base type of this type. 87 unsigned SubclassData : 24; // Space for subclasses to store data. 88 // Note that this should be synchronized with 89 // MAX_INT_BITS value in IntegerType class. 90 91 protected: 92 friend class LLVMContextImpl; 93 94 explicit Type(LLVMContext &C, TypeID tid) 95 : Context(C), ID(tid), SubclassData(0) {} 96 ~Type() = default; 97 98 unsigned getSubclassData() const { return SubclassData; } 99 100 void setSubclassData(unsigned val) { 101 SubclassData = val; 102 // Ensure we don't have any accidental truncation. 103 assert(getSubclassData() == val && "Subclass data too large for field"); 104 } 105 106 /// Keeps track of how many Type*'s there are in the ContainedTys list. 107 unsigned NumContainedTys = 0; 108 109 /// A pointer to the array of Types contained by this Type. For example, this 110 /// includes the arguments of a function type, the elements of a structure, 111 /// the pointee of a pointer, the element type of an array, etc. This pointer 112 /// may be 0 for types that don't contain other types (Integer, Double, 113 /// Float). 114 Type * const *ContainedTys = nullptr; 115 116 public: 117 /// Print the current type. 118 /// Omit the type details if \p NoDetails == true. 119 /// E.g., let %st = type { i32, i16 } 120 /// When \p NoDetails is true, we only print %st. 121 /// Put differently, \p NoDetails prints the type as if 122 /// inlined with the operands when printing an instruction. 123 void print(raw_ostream &O, bool IsForDebug = false, 124 bool NoDetails = false) const; 125 126 void dump() const; 127 128 /// Return the LLVMContext in which this type was uniqued. 129 LLVMContext &getContext() const { return Context; } 130 131 //===--------------------------------------------------------------------===// 132 // Accessors for working with types. 133 // 134 135 /// Return the type id for the type. This will return one of the TypeID enum 136 /// elements defined above. 137 TypeID getTypeID() const { return ID; } 138 139 /// Return true if this is 'void'. 140 bool isVoidTy() const { return getTypeID() == VoidTyID; } 141 142 /// Return true if this is 'half', a 16-bit IEEE fp type. 143 bool isHalfTy() const { return getTypeID() == HalfTyID; } 144 145 /// Return true if this is 'bfloat', a 16-bit bfloat type. 146 bool isBFloatTy() const { return getTypeID() == BFloatTyID; } 147 148 /// Return true if this is a 16-bit float type. 149 bool is16bitFPTy() const { 150 return getTypeID() == BFloatTyID || getTypeID() == HalfTyID; 151 } 152 153 /// Return true if this is 'float', a 32-bit IEEE fp type. 154 bool isFloatTy() const { return getTypeID() == FloatTyID; } 155 156 /// Return true if this is 'double', a 64-bit IEEE fp type. 157 bool isDoubleTy() const { return getTypeID() == DoubleTyID; } 158 159 /// Return true if this is x86 long double. 160 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } 161 162 /// Return true if this is 'fp128'. 163 bool isFP128Ty() const { return getTypeID() == FP128TyID; } 164 165 /// Return true if this is powerpc long double. 166 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } 167 168 /// Return true if this is a well-behaved IEEE-like type, which has a IEEE 169 /// compatible layout as defined by APFloat::isIEEE(), and does not have 170 /// non-IEEE values, such as x86_fp80's unnormal values. 171 bool isIEEELikeFPTy() const { 172 switch (getTypeID()) { 173 case DoubleTyID: 174 case FloatTyID: 175 case HalfTyID: 176 case BFloatTyID: 177 case FP128TyID: 178 return true; 179 default: 180 return false; 181 } 182 } 183 184 /// Return true if this is one of the floating-point types 185 bool isFloatingPointTy() const { 186 return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID || 187 getTypeID() == PPC_FP128TyID; 188 } 189 190 /// Returns true if this is a floating-point type that is an unevaluated sum 191 /// of multiple floating-point units. 192 /// An example of such a type is ppc_fp128, also known as double-double, which 193 /// consists of two IEEE 754 doubles. 194 bool isMultiUnitFPType() const { 195 return getTypeID() == PPC_FP128TyID; 196 } 197 198 const fltSemantics &getFltSemantics() const; 199 200 /// Return true if this is X86 MMX. 201 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } 202 203 /// Return true if this is X86 AMX. 204 bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } 205 206 /// Return true if this is a target extension type. 207 bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; } 208 209 /// Return true if this is a target extension type with a scalable layout. 210 bool isScalableTargetExtTy() const; 211 212 /// Return true if this is a type whose size is a known multiple of vscale. 213 bool isScalableTy() const; 214 215 /// Return true if this is a FP type or a vector of FP. 216 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } 217 218 /// Return true if this is 'label'. 219 bool isLabelTy() const { return getTypeID() == LabelTyID; } 220 221 /// Return true if this is 'metadata'. 222 bool isMetadataTy() const { return getTypeID() == MetadataTyID; } 223 224 /// Return true if this is 'token'. 225 bool isTokenTy() const { return getTypeID() == TokenTyID; } 226 227 /// True if this is an instance of IntegerType. 228 bool isIntegerTy() const { return getTypeID() == IntegerTyID; } 229 230 /// Return true if this is an IntegerType of the given width. 231 bool isIntegerTy(unsigned Bitwidth) const; 232 233 /// Return true if this is an integer type or a vector of integer types. 234 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } 235 236 /// Return true if this is an integer type or a vector of integer types of 237 /// the given width. 238 bool isIntOrIntVectorTy(unsigned BitWidth) const { 239 return getScalarType()->isIntegerTy(BitWidth); 240 } 241 242 /// Return true if this is an integer type or a pointer type. 243 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } 244 245 /// True if this is an instance of FunctionType. 246 bool isFunctionTy() const { return getTypeID() == FunctionTyID; } 247 248 /// True if this is an instance of StructType. 249 bool isStructTy() const { return getTypeID() == StructTyID; } 250 251 /// True if this is an instance of ArrayType. 252 bool isArrayTy() const { return getTypeID() == ArrayTyID; } 253 254 /// True if this is an instance of PointerType. 255 bool isPointerTy() const { return getTypeID() == PointerTyID; } 256 257 /// True if this is an instance of an opaque PointerType. 258 LLVM_DEPRECATED("Use isPointerTy() instead", "isPointerTy") 259 bool isOpaquePointerTy() const { return isPointerTy(); }; 260 261 /// Return true if this is a pointer type or a vector of pointer types. 262 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } 263 264 /// True if this is an instance of VectorType. 265 inline bool isVectorTy() const { 266 return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; 267 } 268 269 /// Return true if this type could be converted with a lossless BitCast to 270 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the 271 /// same size only where no re-interpretation of the bits is done. 272 /// Determine if this type could be losslessly bitcast to Ty 273 bool canLosslesslyBitCastTo(Type *Ty) const; 274 275 /// Return true if this type is empty, that is, it has no elements or all of 276 /// its elements are empty. 277 bool isEmptyTy() const; 278 279 /// Return true if the type is "first class", meaning it is a valid type for a 280 /// Value. 281 bool isFirstClassType() const { 282 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; 283 } 284 285 /// Return true if the type is a valid type for a register in codegen. This 286 /// includes all first-class types except struct and array types. 287 bool isSingleValueType() const { 288 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || 289 isPointerTy() || isVectorTy() || isX86_AMXTy() || isTargetExtTy(); 290 } 291 292 /// Return true if the type is an aggregate type. This means it is valid as 293 /// the first operand of an insertvalue or extractvalue instruction. This 294 /// includes struct and array types, but does not include vector types. 295 bool isAggregateType() const { 296 return getTypeID() == StructTyID || getTypeID() == ArrayTyID; 297 } 298 299 /// Return true if it makes sense to take the size of this type. To get the 300 /// actual size for a particular target, it is reasonable to use the 301 /// DataLayout subsystem to do this. 302 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { 303 // If it's a primitive, it is always sized. 304 if (getTypeID() == IntegerTyID || isFloatingPointTy() || 305 getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || 306 getTypeID() == X86_AMXTyID) 307 return true; 308 // If it is not something that can have a size (e.g. a function or label), 309 // it doesn't have a size. 310 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && 311 !isVectorTy() && getTypeID() != TargetExtTyID) 312 return false; 313 // Otherwise we have to try harder to decide. 314 return isSizedDerivedType(Visited); 315 } 316 317 /// Return the basic size of this type if it is a primitive type. These are 318 /// fixed by LLVM and are not target-dependent. 319 /// This will return zero if the type does not have a size or is not a 320 /// primitive type. 321 /// 322 /// If this is a scalable vector type, the scalable property will be set and 323 /// the runtime size will be a positive integer multiple of the base size. 324 /// 325 /// Note that this may not reflect the size of memory allocated for an 326 /// instance of the type or the number of bytes that are written when an 327 /// instance of the type is stored to memory. The DataLayout class provides 328 /// additional query functions to provide this information. 329 /// 330 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY; 331 332 /// If this is a vector type, return the getPrimitiveSizeInBits value for the 333 /// element type. Otherwise return the getPrimitiveSizeInBits value for this 334 /// type. 335 unsigned getScalarSizeInBits() const LLVM_READONLY; 336 337 /// Return the width of the mantissa of this type. This is only valid on 338 /// floating-point types. If the FP type does not have a stable mantissa (e.g. 339 /// ppc long double), this method returns -1. 340 int getFPMantissaWidth() const; 341 342 /// Return whether the type is IEEE compatible, as defined by the eponymous 343 /// method in APFloat. 344 bool isIEEE() const; 345 346 /// If this is a vector type, return the element type, otherwise return 347 /// 'this'. 348 inline Type *getScalarType() const { 349 if (isVectorTy()) 350 return getContainedType(0); 351 return const_cast<Type *>(this); 352 } 353 354 //===--------------------------------------------------------------------===// 355 // Type Iteration support. 356 // 357 using subtype_iterator = Type * const *; 358 359 subtype_iterator subtype_begin() const { return ContainedTys; } 360 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} 361 ArrayRef<Type*> subtypes() const { 362 return ArrayRef(subtype_begin(), subtype_end()); 363 } 364 365 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; 366 367 subtype_reverse_iterator subtype_rbegin() const { 368 return subtype_reverse_iterator(subtype_end()); 369 } 370 subtype_reverse_iterator subtype_rend() const { 371 return subtype_reverse_iterator(subtype_begin()); 372 } 373 374 /// This method is used to implement the type iterator (defined at the end of 375 /// the file). For derived types, this returns the types 'contained' in the 376 /// derived type. 377 Type *getContainedType(unsigned i) const { 378 assert(i < NumContainedTys && "Index out of range!"); 379 return ContainedTys[i]; 380 } 381 382 /// Return the number of types in the derived type. 383 unsigned getNumContainedTypes() const { return NumContainedTys; } 384 385 //===--------------------------------------------------------------------===// 386 // Helper methods corresponding to subclass methods. This forces a cast to 387 // the specified subclass and calls its accessor. "getArrayNumElements" (for 388 // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is 389 // only intended to cover the core methods that are frequently used, helper 390 // methods should not be added here. 391 392 inline unsigned getIntegerBitWidth() const; 393 394 inline Type *getFunctionParamType(unsigned i) const; 395 inline unsigned getFunctionNumParams() const; 396 inline bool isFunctionVarArg() const; 397 398 inline StringRef getStructName() const; 399 inline unsigned getStructNumElements() const; 400 inline Type *getStructElementType(unsigned N) const; 401 402 inline uint64_t getArrayNumElements() const; 403 404 Type *getArrayElementType() const { 405 assert(getTypeID() == ArrayTyID); 406 return ContainedTys[0]; 407 } 408 409 inline StringRef getTargetExtName() const; 410 411 /// Only use this method in code that is not reachable with opaque pointers, 412 /// or part of deprecated methods that will be removed as part of the opaque 413 /// pointers transition. 414 [[deprecated("Pointers no longer have element types")]] 415 Type *getNonOpaquePointerElementType() const { 416 llvm_unreachable("Pointers no longer have element types"); 417 } 418 419 /// Given vector type, change the element type, 420 /// whilst keeping the old number of elements. 421 /// For non-vectors simply returns \p EltTy. 422 inline Type *getWithNewType(Type *EltTy) const; 423 424 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, 425 /// whilst keeping the old number of lanes. 426 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; 427 428 /// Given scalar/vector integer type, returns a type with elements twice as 429 /// wide as in the original type. For vectors, preserves element count. 430 inline Type *getExtendedType() const; 431 432 /// Get the address space of this pointer or pointer vector type. 433 inline unsigned getPointerAddressSpace() const; 434 435 //===--------------------------------------------------------------------===// 436 // Static members exported by the Type class itself. Useful for getting 437 // instances of Type. 438 // 439 440 /// Return a type based on an identifier. 441 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); 442 443 //===--------------------------------------------------------------------===// 444 // These are the builtin types that are always available. 445 // 446 static Type *getVoidTy(LLVMContext &C); 447 static Type *getLabelTy(LLVMContext &C); 448 static Type *getHalfTy(LLVMContext &C); 449 static Type *getBFloatTy(LLVMContext &C); 450 static Type *getFloatTy(LLVMContext &C); 451 static Type *getDoubleTy(LLVMContext &C); 452 static Type *getMetadataTy(LLVMContext &C); 453 static Type *getX86_FP80Ty(LLVMContext &C); 454 static Type *getFP128Ty(LLVMContext &C); 455 static Type *getPPC_FP128Ty(LLVMContext &C); 456 static Type *getX86_MMXTy(LLVMContext &C); 457 static Type *getX86_AMXTy(LLVMContext &C); 458 static Type *getTokenTy(LLVMContext &C); 459 static IntegerType *getIntNTy(LLVMContext &C, unsigned N); 460 static IntegerType *getInt1Ty(LLVMContext &C); 461 static IntegerType *getInt8Ty(LLVMContext &C); 462 static IntegerType *getInt16Ty(LLVMContext &C); 463 static IntegerType *getInt32Ty(LLVMContext &C); 464 static IntegerType *getInt64Ty(LLVMContext &C); 465 static IntegerType *getInt128Ty(LLVMContext &C); 466 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { 467 int noOfBits = sizeof(ScalarTy) * CHAR_BIT; 468 if (std::is_integral<ScalarTy>::value) { 469 return (Type*) Type::getIntNTy(C, noOfBits); 470 } else if (std::is_floating_point<ScalarTy>::value) { 471 switch (noOfBits) { 472 case 32: 473 return Type::getFloatTy(C); 474 case 64: 475 return Type::getDoubleTy(C); 476 } 477 } 478 llvm_unreachable("Unsupported type in Type::getScalarTy"); 479 } 480 static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S); 481 482 //===--------------------------------------------------------------------===// 483 // Convenience methods for getting pointer types. 484 // 485 static Type *getWasm_ExternrefTy(LLVMContext &C); 486 static Type *getWasm_FuncrefTy(LLVMContext &C); 487 488 /// Return a pointer to the current type. This is equivalent to 489 /// PointerType::get(Foo, AddrSpace). 490 /// TODO: Remove this after opaque pointer transition is complete. 491 PointerType *getPointerTo(unsigned AddrSpace = 0) const; 492 493 private: 494 /// Derived types like structures and arrays are sized iff all of the members 495 /// of the type are sized as well. Since asking for their size is relatively 496 /// uncommon, move this operation out-of-line. 497 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; 498 }; 499 500 // Printing of types. 501 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { 502 T.print(OS); 503 return OS; 504 } 505 506 // allow isa<PointerType>(x) to work without DerivedTypes.h included. 507 template <> struct isa_impl<PointerType, Type> { 508 static inline bool doit(const Type &Ty) { 509 return Ty.getTypeID() == Type::PointerTyID; 510 } 511 }; 512 513 // Create wrappers for C Binding types (see CBindingWrapping.h). 514 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef) 515 516 /* Specialized opaque type conversions. 517 */ 518 inline Type **unwrap(LLVMTypeRef* Tys) { 519 return reinterpret_cast<Type**>(Tys); 520 } 521 522 inline LLVMTypeRef *wrap(Type **Tys) { 523 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); 524 } 525 526 } // end namespace llvm 527 528 #endif // LLVM_IR_TYPE_H 529