xref: /freebsd/contrib/llvm-project/lld/MachO/SyntheticSections.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- SyntheticSections.h -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
10 #define LLD_MACHO_SYNTHETIC_SECTIONS_H
11 
12 #include "Config.h"
13 #include "ExportTrie.h"
14 #include "InputSection.h"
15 #include "OutputSection.h"
16 #include "OutputSegment.h"
17 #include "Target.h"
18 #include "Writer.h"
19 
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/BinaryFormat/MachO.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #include <unordered_map>
29 
30 namespace llvm {
31 class DWARFUnit;
32 } // namespace llvm
33 
34 namespace lld::macho {
35 
36 class Defined;
37 class DylibSymbol;
38 class LoadCommand;
39 class ObjFile;
40 class UnwindInfoSection;
41 
42 class SyntheticSection : public OutputSection {
43 public:
44   SyntheticSection(const char *segname, const char *name);
45   virtual ~SyntheticSection() = default;
46 
classof(const OutputSection * sec)47   static bool classof(const OutputSection *sec) {
48     return sec->kind() == SyntheticKind;
49   }
50 
51   StringRef segname;
52   // This fake InputSection makes it easier for us to write code that applies
53   // generically to both user inputs and synthetics.
54   InputSection *isec;
55 };
56 
57 // All sections in __LINKEDIT should inherit from this.
58 class LinkEditSection : public SyntheticSection {
59 public:
LinkEditSection(const char * segname,const char * name)60   LinkEditSection(const char *segname, const char *name)
61       : SyntheticSection(segname, name) {
62     align = target->wordSize;
63   }
64 
65   // Implementations of this method can assume that the regular (non-__LINKEDIT)
66   // sections already have their addresses assigned.
finalizeContents()67   virtual void finalizeContents() {}
68 
69   // Sections in __LINKEDIT are special: their offsets are recorded in the
70   // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
71   // headers.
isHidden()72   bool isHidden() const final { return true; }
73 
74   virtual uint64_t getRawSize() const = 0;
75 
76   // codesign (or more specifically libstuff) checks that each section in
77   // __LINKEDIT ends where the next one starts -- no gaps are permitted. We
78   // therefore align every section's start and end points to WordSize.
79   //
80   // NOTE: This assumes that the extra bytes required for alignment can be
81   // zero-valued bytes.
getSize()82   uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); }
83 };
84 
85 // The header of the Mach-O file, which must have a file offset of zero.
86 class MachHeaderSection final : public SyntheticSection {
87 public:
88   MachHeaderSection();
isHidden()89   bool isHidden() const override { return true; }
90   uint64_t getSize() const override;
91   void writeTo(uint8_t *buf) const override;
92 
93   void addLoadCommand(LoadCommand *);
94 
95 protected:
96   std::vector<LoadCommand *> loadCommands;
97   uint32_t sizeOfCmds = 0;
98 };
99 
100 // A hidden section that exists solely for the purpose of creating the
101 // __PAGEZERO segment, which is used to catch null pointer dereferences.
102 class PageZeroSection final : public SyntheticSection {
103 public:
104   PageZeroSection();
isHidden()105   bool isHidden() const override { return true; }
isNeeded()106   bool isNeeded() const override { return target->pageZeroSize != 0; }
getSize()107   uint64_t getSize() const override { return target->pageZeroSize; }
getFileSize()108   uint64_t getFileSize() const override { return 0; }
writeTo(uint8_t * buf)109   void writeTo(uint8_t *buf) const override {}
110 };
111 
112 // This is the base class for the GOT and TLVPointer sections, which are nearly
113 // functionally identical -- they will both be populated by dyld with addresses
114 // to non-lazily-loaded dylib symbols. The main difference is that the
115 // TLVPointerSection stores references to thread-local variables.
116 class NonLazyPointerSectionBase : public SyntheticSection {
117 public:
118   NonLazyPointerSectionBase(const char *segname, const char *name);
getEntries()119   const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }
isNeeded()120   bool isNeeded() const override { return !entries.empty(); }
getSize()121   uint64_t getSize() const override {
122     return entries.size() * target->wordSize;
123   }
124   void writeTo(uint8_t *buf) const override;
125   void addEntry(Symbol *sym);
getVA(uint32_t gotIndex)126   uint64_t getVA(uint32_t gotIndex) const {
127     return addr + gotIndex * target->wordSize;
128   }
129 
130 private:
131   llvm::SetVector<const Symbol *> entries;
132 };
133 
134 class GotSection final : public NonLazyPointerSectionBase {
135 public:
136   GotSection();
137 };
138 
139 class TlvPointerSection final : public NonLazyPointerSectionBase {
140 public:
141   TlvPointerSection();
142 };
143 
144 struct Location {
145   const InputSection *isec;
146   uint64_t offset;
147 
LocationLocation148   Location(const InputSection *isec, uint64_t offset)
149       : isec(isec), offset(offset) {}
getVALocation150   uint64_t getVA() const { return isec->getVA(offset); }
151 };
152 
153 // Stores rebase opcodes, which tell dyld where absolute addresses have been
154 // encoded in the binary. If the binary is not loaded at its preferred address,
155 // dyld has to rebase these addresses by adding an offset to them.
156 class RebaseSection final : public LinkEditSection {
157 public:
158   RebaseSection();
159   void finalizeContents() override;
getRawSize()160   uint64_t getRawSize() const override { return contents.size(); }
isNeeded()161   bool isNeeded() const override { return !locations.empty(); }
162   void writeTo(uint8_t *buf) const override;
163 
addEntry(const InputSection * isec,uint64_t offset)164   void addEntry(const InputSection *isec, uint64_t offset) {
165     if (config->isPic)
166       locations.emplace_back(isec, offset);
167   }
168 
169 private:
170   std::vector<Location> locations;
171   SmallVector<char, 128> contents;
172 };
173 
174 struct BindingEntry {
175   int64_t addend;
176   Location target;
BindingEntryBindingEntry177   BindingEntry(int64_t addend, Location target)
178       : addend(addend), target(target) {}
179 };
180 
181 template <class Sym>
182 using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>;
183 
184 // Stores bind opcodes for telling dyld which symbols to load non-lazily.
185 class BindingSection final : public LinkEditSection {
186 public:
187   BindingSection();
188   void finalizeContents() override;
getRawSize()189   uint64_t getRawSize() const override { return contents.size(); }
isNeeded()190   bool isNeeded() const override { return !bindingsMap.empty(); }
191   void writeTo(uint8_t *buf) const override;
192 
193   void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset,
194                 int64_t addend = 0) {
195     bindingsMap[dysym].emplace_back(addend, Location(isec, offset));
196   }
197 
198 private:
199   BindingsMap<const Symbol *> bindingsMap;
200   SmallVector<char, 128> contents;
201 };
202 
203 // Stores bind opcodes for telling dyld which weak symbols need coalescing.
204 // There are two types of entries in this section:
205 //
206 //   1) Non-weak definitions: This is a symbol definition that weak symbols in
207 //   other dylibs should coalesce to.
208 //
209 //   2) Weak bindings: These tell dyld that a given symbol reference should
210 //   coalesce to a non-weak definition if one is found. Note that unlike the
211 //   entries in the BindingSection, the bindings here only refer to these
212 //   symbols by name, but do not specify which dylib to load them from.
213 class WeakBindingSection final : public LinkEditSection {
214 public:
215   WeakBindingSection();
216   void finalizeContents() override;
getRawSize()217   uint64_t getRawSize() const override { return contents.size(); }
isNeeded()218   bool isNeeded() const override {
219     return !bindingsMap.empty() || !definitions.empty();
220   }
221 
222   void writeTo(uint8_t *buf) const override;
223 
224   void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset,
225                 int64_t addend = 0) {
226     bindingsMap[symbol].emplace_back(addend, Location(isec, offset));
227   }
228 
hasEntry()229   bool hasEntry() const { return !bindingsMap.empty(); }
230 
addNonWeakDefinition(const Defined * defined)231   void addNonWeakDefinition(const Defined *defined) {
232     definitions.emplace_back(defined);
233   }
234 
hasNonWeakDefinition()235   bool hasNonWeakDefinition() const { return !definitions.empty(); }
236 
237 private:
238   BindingsMap<const Symbol *> bindingsMap;
239   std::vector<const Defined *> definitions;
240   SmallVector<char, 128> contents;
241 };
242 
243 // The following sections implement lazy symbol binding -- very similar to the
244 // PLT mechanism in ELF.
245 //
246 // ELF's .plt section is broken up into two sections in Mach-O: StubsSection
247 // and StubHelperSection. Calls to functions in dylibs will end up calling into
248 // StubsSection, which contains indirect jumps to addresses stored in the
249 // LazyPointerSection (the counterpart to ELF's .plt.got).
250 //
251 // We will first describe how non-weak symbols are handled.
252 //
253 // At program start, the LazyPointerSection contains addresses that point into
254 // one of the entry points in the middle of the StubHelperSection. The code in
255 // StubHelperSection will push on the stack an offset into the
256 // LazyBindingSection. The push is followed by a jump to the beginning of the
257 // StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
258 // dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
259 // the GOT.
260 //
261 // The stub binder will look up the bind opcodes in the LazyBindingSection at
262 // the given offset. The bind opcodes will tell the binder to update the
263 // address in the LazyPointerSection to point to the symbol, so that subsequent
264 // calls don't have to redo the symbol resolution. The binder will then jump to
265 // the resolved symbol.
266 //
267 // With weak symbols, the situation is slightly different. Since there is no
268 // "weak lazy" lookup, function calls to weak symbols are always non-lazily
269 // bound. We emit both regular non-lazy bindings as well as weak bindings, in
270 // order that the weak bindings may overwrite the non-lazy bindings if an
271 // appropriate symbol is found at runtime. However, the bound addresses will
272 // still be written (non-lazily) into the LazyPointerSection.
273 //
274 // Symbols are always bound eagerly when chained fixups are used. In that case,
275 // StubsSection contains indirect jumps to addresses stored in the GotSection.
276 // The GOT directly contains the fixup entries, which will be replaced by the
277 // address of the target symbols on load. LazyPointerSection and
278 // StubHelperSection are not used.
279 
280 class StubsSection final : public SyntheticSection {
281 public:
282   StubsSection();
283   uint64_t getSize() const override;
isNeeded()284   bool isNeeded() const override { return !entries.empty(); }
285   void finalize() override;
286   void writeTo(uint8_t *buf) const override;
getEntries()287   const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
288   // Creates a stub for the symbol and the corresponding entry in the
289   // LazyPointerSection.
290   void addEntry(Symbol *);
getVA(uint32_t stubsIndex)291   uint64_t getVA(uint32_t stubsIndex) const {
292     assert(isFinal || target->usesThunks());
293     // ConcatOutputSection::finalize() can seek the address of a
294     // stub before its address is assigned. Before __stubs is
295     // finalized, return a contrived out-of-range address.
296     return isFinal ? addr + stubsIndex * target->stubSize
297                    : TargetInfo::outOfRangeVA;
298   }
299 
300   bool isFinal = false; // is address assigned?
301 
302 private:
303   llvm::SetVector<Symbol *> entries;
304 };
305 
306 class StubHelperSection final : public SyntheticSection {
307 public:
308   StubHelperSection();
309   uint64_t getSize() const override;
310   bool isNeeded() const override;
311   void writeTo(uint8_t *buf) const override;
312 
313   void setUp();
314 
315   DylibSymbol *stubBinder = nullptr;
316   Defined *dyldPrivate = nullptr;
317 };
318 
319 class ObjCSelRefsHelper {
320 public:
321   static void initialize();
322   static void cleanup();
323 
324   static ConcatInputSection *getSelRef(StringRef methname);
325   static ConcatInputSection *makeSelRef(StringRef methname);
326 
327 private:
328   static llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *>
329       methnameToSelref;
330 };
331 
332 // Objective-C stubs are hoisted objc_msgSend calls per selector called in the
333 // program. Apple Clang produces undefined symbols to each stub, such as
334 // '_objc_msgSend$foo', which are then synthesized by the linker. The stubs
335 // load the particular selector 'foo' from __objc_selrefs, setting it to the
336 // first argument of the objc_msgSend call, and then jumps to objc_msgSend. The
337 // actual stub contents are mirrored from ld64.
338 class ObjCStubsSection final : public SyntheticSection {
339 public:
340   ObjCStubsSection();
341   void addEntry(Symbol *sym);
342   uint64_t getSize() const override;
isNeeded()343   bool isNeeded() const override { return !symbols.empty(); }
finalize()344   void finalize() override { isec->isFinal = true; }
345   void writeTo(uint8_t *buf) const override;
346   void setUp();
347 
348   static constexpr llvm::StringLiteral symbolPrefix = "_objc_msgSend$";
349   static bool isObjCStubSymbol(Symbol *sym);
350   static StringRef getMethname(Symbol *sym);
351 
352 private:
353   std::vector<Defined *> symbols;
354   Symbol *objcMsgSend = nullptr;
355 };
356 
357 // Note that this section may also be targeted by non-lazy bindings. In
358 // particular, this happens when branch relocations target weak symbols.
359 class LazyPointerSection final : public SyntheticSection {
360 public:
361   LazyPointerSection();
362   uint64_t getSize() const override;
363   bool isNeeded() const override;
364   void writeTo(uint8_t *buf) const override;
getVA(uint32_t index)365   uint64_t getVA(uint32_t index) const {
366     return addr + (index << target->p2WordSize);
367   }
368 };
369 
370 class LazyBindingSection final : public LinkEditSection {
371 public:
372   LazyBindingSection();
373   void finalizeContents() override;
getRawSize()374   uint64_t getRawSize() const override { return contents.size(); }
isNeeded()375   bool isNeeded() const override { return !entries.empty(); }
376   void writeTo(uint8_t *buf) const override;
377   // Note that every entry here will by referenced by a corresponding entry in
378   // the StubHelperSection.
379   void addEntry(Symbol *dysym);
getEntries()380   const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
381 
382 private:
383   uint32_t encode(const Symbol &);
384 
385   llvm::SetVector<Symbol *> entries;
386   SmallVector<char, 128> contents;
387   llvm::raw_svector_ostream os{contents};
388 };
389 
390 // Stores a trie that describes the set of exported symbols.
391 class ExportSection final : public LinkEditSection {
392 public:
393   ExportSection();
394   void finalizeContents() override;
getRawSize()395   uint64_t getRawSize() const override { return size; }
isNeeded()396   bool isNeeded() const override { return size; }
397   void writeTo(uint8_t *buf) const override;
398 
399   bool hasWeakSymbol = false;
400 
401 private:
402   TrieBuilder trieBuilder;
403   size_t size = 0;
404 };
405 
406 // Stores 'data in code' entries that describe the locations of data regions
407 // inside code sections. This is used by llvm-objdump to distinguish jump tables
408 // and stop them from being disassembled as instructions.
409 class DataInCodeSection final : public LinkEditSection {
410 public:
411   DataInCodeSection();
412   void finalizeContents() override;
getRawSize()413   uint64_t getRawSize() const override {
414     return sizeof(llvm::MachO::data_in_code_entry) * entries.size();
415   }
416   void writeTo(uint8_t *buf) const override;
417 
418 private:
419   std::vector<llvm::MachO::data_in_code_entry> entries;
420 };
421 
422 // Stores ULEB128 delta encoded addresses of functions.
423 class FunctionStartsSection final : public LinkEditSection {
424 public:
425   FunctionStartsSection();
426   void finalizeContents() override;
getRawSize()427   uint64_t getRawSize() const override { return contents.size(); }
428   void writeTo(uint8_t *buf) const override;
429 
430 private:
431   SmallVector<char, 128> contents;
432 };
433 
434 // Stores the strings referenced by the symbol table.
435 class StringTableSection final : public LinkEditSection {
436 public:
437   StringTableSection();
438   // Returns the start offset of the added string.
439   uint32_t addString(StringRef);
getRawSize()440   uint64_t getRawSize() const override { return size; }
441   void writeTo(uint8_t *buf) const override;
442 
443   static constexpr size_t emptyStringIndex = 1;
444 
445 private:
446   // ld64 emits string tables which start with a space and a zero byte. We
447   // match its behavior here since some tools depend on it.
448   // Consequently, the empty string will be at index 1, not zero.
449   std::vector<StringRef> strings{" "};
450   size_t size = 2;
451 };
452 
453 struct SymtabEntry {
454   Symbol *sym;
455   size_t strx;
456 };
457 
458 struct StabsEntry {
459   uint8_t type = 0;
460   uint32_t strx = StringTableSection::emptyStringIndex;
461   uint8_t sect = 0;
462   uint16_t desc = 0;
463   uint64_t value = 0;
464 
465   StabsEntry() = default;
StabsEntryStabsEntry466   explicit StabsEntry(uint8_t type) : type(type) {}
467 };
468 
469 // Symbols of the same type must be laid out contiguously: we choose to emit
470 // all local symbols first, then external symbols, and finally undefined
471 // symbols. For each symbol type, the LC_DYSYMTAB load command will record the
472 // range (start index and total number) of those symbols in the symbol table.
473 class SymtabSection : public LinkEditSection {
474 public:
475   void finalizeContents() override;
476   uint32_t getNumSymbols() const;
getNumLocalSymbols()477   uint32_t getNumLocalSymbols() const {
478     return stabs.size() + localSymbols.size();
479   }
getNumExternalSymbols()480   uint32_t getNumExternalSymbols() const { return externalSymbols.size(); }
getNumUndefinedSymbols()481   uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); }
482 
483 private:
484   void emitBeginSourceStab(StringRef);
485   void emitEndSourceStab();
486   void emitObjectFileStab(ObjFile *);
487   void emitEndFunStab(Defined *);
488   void emitStabs();
489 
490 protected:
491   SymtabSection(StringTableSection &);
492 
493   StringTableSection &stringTableSection;
494   // STABS symbols are always local symbols, but we represent them with special
495   // entries because they may use fields like n_sect and n_desc differently.
496   std::vector<StabsEntry> stabs;
497   std::vector<SymtabEntry> localSymbols;
498   std::vector<SymtabEntry> externalSymbols;
499   std::vector<SymtabEntry> undefinedSymbols;
500 };
501 
502 template <class LP> SymtabSection *makeSymtabSection(StringTableSection &);
503 
504 // The indirect symbol table is a list of 32-bit integers that serve as indices
505 // into the (actual) symbol table. The indirect symbol table is a
506 // concatenation of several sub-arrays of indices, each sub-array belonging to
507 // a separate section. The starting offset of each sub-array is stored in the
508 // reserved1 header field of the respective section.
509 //
510 // These sub-arrays provide symbol information for sections that store
511 // contiguous sequences of symbol references. These references can be pointers
512 // (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
513 // function stubs).
514 class IndirectSymtabSection final : public LinkEditSection {
515 public:
516   IndirectSymtabSection();
517   void finalizeContents() override;
518   uint32_t getNumSymbols() const;
getRawSize()519   uint64_t getRawSize() const override {
520     return getNumSymbols() * sizeof(uint32_t);
521   }
522   bool isNeeded() const override;
523   void writeTo(uint8_t *buf) const override;
524 };
525 
526 // The code signature comes at the very end of the linked output file.
527 class CodeSignatureSection final : public LinkEditSection {
528 public:
529   // NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
530   // and any changes here, should be repeated there.
531   static constexpr uint8_t blockSizeShift = 12;
532   static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB
533   static constexpr size_t hashSize = 256 / 8;
534   static constexpr size_t blobHeadersSize = llvm::alignTo<8>(
535       sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex));
536   static constexpr uint32_t fixedHeadersSize =
537       blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory);
538 
539   uint32_t fileNamePad = 0;
540   uint32_t allHeadersSize = 0;
541   StringRef fileName;
542 
543   CodeSignatureSection();
544   uint64_t getRawSize() const override;
isNeeded()545   bool isNeeded() const override { return true; }
546   void writeTo(uint8_t *buf) const override;
547   uint32_t getBlockCount() const;
548   void writeHashes(uint8_t *buf) const;
549 };
550 
551 class CStringSection : public SyntheticSection {
552 public:
553   CStringSection(const char *name);
554   void addInput(CStringInputSection *);
getSize()555   uint64_t getSize() const override { return size; }
556   virtual void finalizeContents();
isNeeded()557   bool isNeeded() const override { return !inputs.empty(); }
558   void writeTo(uint8_t *buf) const override;
559 
560   std::vector<CStringInputSection *> inputs;
561 
562 private:
563   uint64_t size;
564 };
565 
566 class DeduplicatedCStringSection final : public CStringSection {
567 public:
DeduplicatedCStringSection(const char * name)568   DeduplicatedCStringSection(const char *name) : CStringSection(name){};
getSize()569   uint64_t getSize() const override { return size; }
570   void finalizeContents() override;
571   void writeTo(uint8_t *buf) const override;
572 
573   struct StringOffset {
574     uint8_t trailingZeros;
575     uint64_t outSecOff = UINT64_MAX;
576 
StringOffsetStringOffset577     explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {}
578   };
579 
580   StringOffset getStringOffset(StringRef str) const;
581 
582 private:
583   llvm::DenseMap<llvm::CachedHashStringRef, StringOffset> stringOffsetMap;
584   size_t size = 0;
585 };
586 
587 /*
588  * This section contains deduplicated literal values. The 16-byte values are
589  * laid out first, followed by the 8- and then the 4-byte ones.
590  */
591 class WordLiteralSection final : public SyntheticSection {
592 public:
593   using UInt128 = std::pair<uint64_t, uint64_t>;
594   // I don't think the standard guarantees the size of a pair, so let's make
595   // sure it's exact -- that way we can construct it via `mmap`.
596   static_assert(sizeof(UInt128) == 16);
597 
598   WordLiteralSection();
599   void addInput(WordLiteralInputSection *);
600   void finalizeContents();
601   void writeTo(uint8_t *buf) const override;
602 
getSize()603   uint64_t getSize() const override {
604     return literal16Map.size() * 16 + literal8Map.size() * 8 +
605            literal4Map.size() * 4;
606   }
607 
isNeeded()608   bool isNeeded() const override {
609     return !literal16Map.empty() || !literal4Map.empty() ||
610            !literal8Map.empty();
611   }
612 
getLiteral16Offset(uintptr_t buf)613   uint64_t getLiteral16Offset(uintptr_t buf) const {
614     return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16;
615   }
616 
getLiteral8Offset(uintptr_t buf)617   uint64_t getLiteral8Offset(uintptr_t buf) const {
618     return literal16Map.size() * 16 +
619            literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8;
620   }
621 
getLiteral4Offset(uintptr_t buf)622   uint64_t getLiteral4Offset(uintptr_t buf) const {
623     return literal16Map.size() * 16 + literal8Map.size() * 8 +
624            literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4;
625   }
626 
627 private:
628   std::vector<WordLiteralInputSection *> inputs;
629 
630   template <class T> struct Hasher {
operatorHasher631     llvm::hash_code operator()(T v) const { return llvm::hash_value(v); }
632   };
633   // We're using unordered_map instead of DenseMap here because we need to
634   // support all possible integer values -- there are no suitable tombstone
635   // values for DenseMap.
636   std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map;
637   std::unordered_map<uint64_t, uint64_t> literal8Map;
638   std::unordered_map<uint32_t, uint64_t> literal4Map;
639 };
640 
641 class ObjCImageInfoSection final : public SyntheticSection {
642 public:
643   ObjCImageInfoSection();
isNeeded()644   bool isNeeded() const override { return !files.empty(); }
getSize()645   uint64_t getSize() const override { return 8; }
addFile(const InputFile * file)646   void addFile(const InputFile *file) {
647     assert(!file->objCImageInfo.empty());
648     files.push_back(file);
649   }
650   void finalizeContents();
651   void writeTo(uint8_t *buf) const override;
652 
653 private:
654   struct ImageInfo {
655     uint8_t swiftVersion = 0;
656     bool hasCategoryClassProperties = false;
657   } info;
658   static ImageInfo parseImageInfo(const InputFile *);
659   std::vector<const InputFile *> files; // files with image info
660 };
661 
662 // This section stores 32-bit __TEXT segment offsets of initializer functions.
663 //
664 // The compiler stores pointers to initializers in __mod_init_func. These need
665 // to be fixed up at load time, which takes time and dirties memory. By
666 // synthesizing InitOffsetsSection from them, this data can live in the
667 // read-only __TEXT segment instead. This section is used by default when
668 // chained fixups are enabled.
669 //
670 // There is no similar counterpart to __mod_term_func, as that section is
671 // deprecated, and static destructors are instead handled by registering them
672 // via __cxa_atexit from an autogenerated initializer function (see D121736).
673 class InitOffsetsSection final : public SyntheticSection {
674 public:
675   InitOffsetsSection();
isNeeded()676   bool isNeeded() const override { return !sections.empty(); }
677   uint64_t getSize() const override;
678   void writeTo(uint8_t *buf) const override;
679   void setUp();
680 
addInput(ConcatInputSection * isec)681   void addInput(ConcatInputSection *isec) { sections.push_back(isec); }
inputs()682   const std::vector<ConcatInputSection *> &inputs() const { return sections; }
683 
684 private:
685   std::vector<ConcatInputSection *> sections;
686 };
687 
688 // This SyntheticSection is for the __objc_methlist section, which contains
689 // relative method lists if the -objc_relative_method_lists option is enabled.
690 class ObjCMethListSection final : public SyntheticSection {
691 public:
692   ObjCMethListSection();
693 
694   static bool isMethodList(const ConcatInputSection *isec);
addInput(ConcatInputSection * isec)695   void addInput(ConcatInputSection *isec) { inputs.push_back(isec); }
getInputs()696   std::vector<ConcatInputSection *> getInputs() { return inputs; }
697 
698   void setUp();
699   void finalize() override;
isNeeded()700   bool isNeeded() const override { return !inputs.empty(); }
getSize()701   uint64_t getSize() const override { return sectionSize; }
702   void writeTo(uint8_t *bufStart) const override;
703 
704 private:
705   void readMethodListHeader(const uint8_t *buf, uint32_t &structSizeAndFlags,
706                             uint32_t &structCount) const;
707   void writeMethodListHeader(uint8_t *buf, uint32_t structSizeAndFlags,
708                              uint32_t structCount) const;
709   uint32_t computeRelativeMethodListSize(uint32_t absoluteMethodListSize) const;
710   void writeRelativeOffsetForIsec(const ConcatInputSection *isec, uint8_t *buf,
711                                   uint32_t &inSecOff, uint32_t &outSecOff,
712                                   bool useSelRef) const;
713   uint32_t writeRelativeMethodList(const ConcatInputSection *isec,
714                                    uint8_t *buf) const;
715 
716   static constexpr uint32_t methodListHeaderSize =
717       /*structSizeAndFlags*/ sizeof(uint32_t) +
718       /*structCount*/ sizeof(uint32_t);
719   // Relative method lists are supported only for 3-pointer method lists
720   static constexpr uint32_t pointersPerStruct = 3;
721   // The runtime identifies relative method lists via this magic value
722   static constexpr uint32_t relMethodHeaderFlag = 0x80000000;
723   // In the method list header, the first 2 bytes are the size of struct
724   static constexpr uint32_t structSizeMask = 0x0000FFFF;
725   // In the method list header, the last 2 bytes are the flags for the struct
726   static constexpr uint32_t structFlagsMask = 0xFFFF0000;
727   // Relative method lists have 4 byte alignment as all data in the InputSection
728   // is 4 byte
729   static constexpr uint32_t relativeOffsetSize = sizeof(uint32_t);
730 
731   // The output size of the __objc_methlist section, computed during finalize()
732   uint32_t sectionSize = 0;
733   std::vector<ConcatInputSection *> inputs;
734 };
735 
736 // Chained fixups are a replacement for classic dyld opcodes. In this format,
737 // most of the metadata necessary for binding symbols and rebasing addresses is
738 // stored directly in the memory location that will have the fixup applied.
739 //
740 // The fixups form singly linked lists; each one covering a single page in
741 // memory. The __LINKEDIT,__chainfixups section stores the page offset of the
742 // first fixup of each page; the rest can be found by walking the chain using
743 // the offset that is embedded in each entry.
744 //
745 // This setup allows pages to be relocated lazily at page-in time and without
746 // being dirtied. The kernel can discard and load them again as needed. This
747 // technique, called page-in linking, was introduced in macOS 13.
748 //
749 // The benefits of this format are:
750 //  - smaller __LINKEDIT segment, as most of the fixup information is stored in
751 //    the data segment
752 //  - faster startup, since not all relocations need to be done upfront
753 //  - slightly lower memory usage, as fewer pages are dirtied
754 //
755 // Userspace x86_64 and arm64 binaries have two types of fixup entries:
756 //   - Rebase entries contain an absolute address, to which the object's load
757 //     address will be added to get the final value. This is used for loading
758 //     the address of a symbol defined in the same binary.
759 //   - Binding entries are mostly used for symbols imported from other dylibs,
760 //     but for weakly bound and interposable symbols as well. They are looked up
761 //     by a (symbol name, library) pair stored in __chainfixups. This import
762 //     entry also encodes whether the import is weak (i.e. if the symbol is
763 //     missing, it should be set to null instead of producing a load error).
764 //     The fixup encodes an ordinal associated with the import, and an optional
765 //     addend.
766 //
767 // The entries are tightly packed 64-bit bitfields. One of the bits specifies
768 // which kind of fixup to interpret them as.
769 //
770 // LLD generates the fixup data in 5 stages:
771 //   1. While scanning relocations, we make a note of each location that needs
772 //      a fixup by calling addRebase() or addBinding(). During this, we assign
773 //      a unique ordinal for each (symbol name, library, addend) import tuple.
774 //   2. After addresses have been assigned to all sections, and thus the memory
775 //      layout of the linked image is final; finalizeContents() is called. Here,
776 //      the page offsets of the chain start entries are calculated.
777 //   3. ChainedFixupsSection::writeTo() writes the page start offsets and the
778 //      imports table to the output file.
779 //   4. Each section's fixup entries are encoded and written to disk in
780 //      ConcatInputSection::writeTo(), but without writing the offsets that form
781 //      the chain.
782 //   5. Finally, each page's (which might correspond to multiple sections)
783 //      fixups are linked together in Writer::buildFixupChains().
784 class ChainedFixupsSection final : public LinkEditSection {
785 public:
786   ChainedFixupsSection();
787   void finalizeContents() override;
getRawSize()788   uint64_t getRawSize() const override { return size; }
789   bool isNeeded() const override;
790   void writeTo(uint8_t *buf) const override;
791 
addRebase(const InputSection * isec,uint64_t offset)792   void addRebase(const InputSection *isec, uint64_t offset) {
793     locations.emplace_back(isec, offset);
794   }
795   void addBinding(const Symbol *dysym, const InputSection *isec,
796                   uint64_t offset, int64_t addend = 0);
797 
setHasNonWeakDefinition()798   void setHasNonWeakDefinition() { hasNonWeakDef = true; }
799 
800   // Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind.
801   std::pair<uint32_t, uint8_t> getBinding(const Symbol *sym,
802                                           int64_t addend) const;
803 
getLocations()804   const std::vector<Location> &getLocations() const { return locations; }
805 
hasWeakBinding()806   bool hasWeakBinding() const { return hasWeakBind; }
hasNonWeakDefinition()807   bool hasNonWeakDefinition() const { return hasNonWeakDef; }
808 
809 private:
810   // Location::offset initially stores the offset within an InputSection, but
811   // contains output segment offsets after finalizeContents().
812   std::vector<Location> locations;
813   // (target symbol, addend) => import ordinal
814   llvm::MapVector<std::pair<const Symbol *, int64_t>, uint32_t> bindings;
815 
816   struct SegmentInfo {
SegmentInfoSegmentInfo817     SegmentInfo(const OutputSegment *oseg) : oseg(oseg) {}
818 
819     const OutputSegment *oseg;
820     // (page index, fixup starts offset)
821     llvm::SmallVector<std::pair<uint16_t, uint16_t>> pageStarts;
822 
823     size_t getSize() const;
824     size_t writeTo(uint8_t *buf) const;
825   };
826   llvm::SmallVector<SegmentInfo, 4> fixupSegments;
827 
828   size_t symtabSize = 0;
829   size_t size = 0;
830 
831   bool needsAddend = false;
832   bool needsLargeAddend = false;
833   bool hasWeakBind = false;
834   bool hasNonWeakDef = false;
835   llvm::MachO::ChainedImportFormat importFormat;
836 };
837 
838 void writeChainedRebase(uint8_t *buf, uint64_t targetVA);
839 void writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend);
840 
841 struct InStruct {
842   const uint8_t *bufferStart = nullptr;
843   MachHeaderSection *header = nullptr;
844   CStringSection *cStringSection = nullptr;
845   DeduplicatedCStringSection *objcMethnameSection = nullptr;
846   WordLiteralSection *wordLiteralSection = nullptr;
847   RebaseSection *rebase = nullptr;
848   BindingSection *binding = nullptr;
849   WeakBindingSection *weakBinding = nullptr;
850   LazyBindingSection *lazyBinding = nullptr;
851   ExportSection *exports = nullptr;
852   GotSection *got = nullptr;
853   TlvPointerSection *tlvPointers = nullptr;
854   LazyPointerSection *lazyPointers = nullptr;
855   StubsSection *stubs = nullptr;
856   StubHelperSection *stubHelper = nullptr;
857   ObjCStubsSection *objcStubs = nullptr;
858   UnwindInfoSection *unwindInfo = nullptr;
859   ObjCImageInfoSection *objCImageInfo = nullptr;
860   ConcatInputSection *imageLoaderCache = nullptr;
861   InitOffsetsSection *initOffsets = nullptr;
862   ObjCMethListSection *objcMethList = nullptr;
863   ChainedFixupsSection *chainedFixups = nullptr;
864 };
865 
866 extern InStruct in;
867 extern std::vector<SyntheticSection *> syntheticSections;
868 
869 void createSyntheticSymbols();
870 
871 } // namespace lld::macho
872 
873 #endif
874