1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Dump an elf file.
29 */
30 #include <stddef.h>
31 #include <sys/elf_386.h>
32 #include <sys/elf_amd64.h>
33 #include <sys/elf_SPARC.h>
34 #include <_libelf.h>
35 #include <dwarf.h>
36 #include <stdio.h>
37 #include <unistd.h>
38 #include <errno.h>
39 #include <strings.h>
40 #include <debug.h>
41 #include <conv.h>
42 #include <msg.h>
43 #include <_elfdump.h>
44
45
46 /*
47 * VERSYM_STATE is used to maintain information about the VERSYM section
48 * in the object being analyzed. It is filled in by versions(), and used
49 * by init_symtbl_state() when displaying symbol information.
50 *
51 * There are three forms of symbol versioning known to us:
52 *
53 * 1) The original form, introduced with Solaris 2.5, in which
54 * the Versym contains indexes to Verdef records, and the
55 * Versym values for UNDEF symbols resolved by other objects
56 * are all set to 0.
57 * 2) The GNU form, which is backward compatible with the original
58 * Solaris form, but which adds several extensions:
59 * - The Versym also contains indexes to Verneed records, recording
60 * which object/version contributed the external symbol at
61 * link time. These indexes start with the next value following
62 * the final Verdef index. The index is written to the previously
63 * reserved vna_other field of the ELF Vernaux structure.
64 * - The top bit of the Versym value is no longer part of the index,
65 * but is used as a "hidden bit" to prevent binding to the symbol.
66 * - Multiple implementations of a given symbol, contained in varying
67 * versions are allowed, using special assembler pseudo ops,
68 * and encoded in the symbol name using '@' characters.
69 * 3) Modified Solaris form, in which we adopt the first GNU extension
70 * (Versym indexes to Verneed records), but not the others.
71 *
72 * elfdump can handle any of these cases. The presence of a DT_VERSYM
73 * dynamic element indicates a full GNU object. An object that lacks
74 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
75 * structures is a modified Solaris object. An object that has neither of
76 * these uses the original form.
77 *
78 * max_verndx contains the largest version index that can appear
79 * in a Versym entry. This can never be less than 1: In the case where
80 * there is no verdef/verneed sections, the [0] index is reserved
81 * for local symbols, and the [1] index for globals. If the original
82 * Solaris versioning rules are in effect and there is a verdef section,
83 * then max_verndex is the number of defined versions. If one of the
84 * other versioning forms is in effect, then:
85 * 1) If there is no verneed section, it is the same as for
86 * original Solaris versioning.
87 * 2) If there is a verneed section, the vna_other field of the
88 * Vernaux structs contain versions, and max_verndx is the
89 * largest such index.
90 *
91 * If gnu_full is True, the object uses the full GNU form of versioning.
92 * The value of the gnu_full field is based on the presence of
93 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
94 * Solaris ld does not.
95 *
96 * The gnu_needed field is True if the Versym contains indexes to
97 * Verneed records, as indicated by non-zero vna_other fields in the Verneed
98 * section. If gnu_full is True, then gnu_needed will always be true.
99 * However, gnu_needed can be true without gnu_full. This is the modified
100 * Solaris form.
101 */
102 typedef struct {
103 Cache *cache; /* Pointer to cache entry for VERSYM */
104 Versym *data; /* Pointer to versym array */
105 int gnu_full; /* True if object uses GNU versioning rules */
106 int gnu_needed; /* True if object uses VERSYM indexes for */
107 /* VERNEED (subset of gnu_full) */
108 int max_verndx; /* largest versym index value */
109 } VERSYM_STATE;
110
111 /*
112 * SYMTBL_STATE is used to maintain information about a single symbol
113 * table section, for use by the routines that display symbol information.
114 */
115 typedef struct {
116 const char *file; /* Name of file */
117 Ehdr *ehdr; /* ELF header for file */
118 Cache *cache; /* Cache of all section headers */
119 uchar_t osabi; /* OSABI to use */
120 Word shnum; /* # of sections in cache */
121 Cache *seccache; /* Cache of symbol table section hdr */
122 Word secndx; /* Index of symbol table section hdr */
123 const char *secname; /* Name of section */
124 uint_t flags; /* Command line option flags */
125 struct { /* Extended section index data */
126 int checked; /* TRUE if already checked for shxndx */
127 Word *data; /* NULL, or extended section index */
128 /* used for symbol table entries */
129 uint_t n; /* # items in shxndx.data */
130 } shxndx;
131 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */
132 Sym *sym; /* Array of symbols */
133 Word symn; /* # of symbols */
134 } SYMTBL_STATE;
135
136 /*
137 * A variable of this type is used to track information related to
138 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
139 */
140 typedef struct {
141 Word frame_cnt; /* # .eh_frame sections seen */
142 Word frame_ndx; /* Section index of 1st .eh_frame */
143 Word hdr_cnt; /* # .eh_frame_hdr sections seen */
144 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */
145 uint64_t frame_ptr; /* Value of FramePtr field from first */
146 /* .eh_frame_hdr section */
147 uint64_t frame_base; /* Data addr of 1st .eh_frame */
148 } gnu_eh_state_t;
149
150 /*
151 * C++ .exception_ranges entries make use of the signed ptrdiff_t
152 * type to record self-relative pointer values. We need a type
153 * for this that is matched to the ELFCLASS being processed.
154 */
155 #if defined(_ELF64)
156 typedef int64_t PTRDIFF_T;
157 #else
158 typedef int32_t PTRDIFF_T;
159 #endif
160
161 /*
162 * The Sun C++ ABI uses this struct to define each .exception_ranges
163 * entry. From the ABI:
164 *
165 * The field ret_addr is a self relative pointer to the start of the address
166 * range. The name was chosen because in the current implementation the range
167 * typically starts at the return address for a call site.
168 *
169 * The field length is the difference, in bytes, between the pc of the last
170 * instruction covered by the exception range and the first. When only a
171 * single call site is represented without optimization, this will equal zero.
172 *
173 * The field handler_addr is a relative pointer which stores the difference
174 * between the start of the exception range and the address of all code to
175 * catch exceptions and perform the cleanup for stack unwinding.
176 *
177 * The field type_block is a relative pointer which stores the difference
178 * between the start of the exception range and the address of an array used
179 * for storing a list of the types of exceptions which can be caught within
180 * the exception range.
181 */
182 typedef struct {
183 PTRDIFF_T ret_addr;
184 Xword length;
185 PTRDIFF_T handler_addr;
186 PTRDIFF_T type_block;
187 Xword reserved;
188 } exception_range_entry;
189
190 /*
191 * Focal point for verifying symbol names.
192 */
193 static const char *
string(Cache * refsec,Word ndx,Cache * strsec,const char * file,Word name)194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
195 {
196 /*
197 * If an error in this routine is due to a property of the string
198 * section, as opposed to a bad offset into the section (a property of
199 * the referencing section), then we will detect the same error on
200 * every call involving those sections. We use these static variables
201 * to retain the information needed to only issue each such error once.
202 */
203 static Cache *last_refsec; /* Last referencing section seen */
204 static int strsec_err; /* True if error issued */
205
206 const char *strs;
207 Word strn;
208
209 if (strsec->c_data == NULL)
210 return (NULL);
211
212 strs = (char *)strsec->c_data->d_buf;
213 strn = strsec->c_data->d_size;
214
215 /*
216 * We only print a diagnostic regarding a bad string table once per
217 * input section being processed. If the refsec has changed, reset
218 * our retained error state.
219 */
220 if (last_refsec != refsec) {
221 last_refsec = refsec;
222 strsec_err = 0;
223 }
224
225 /* Verify that strsec really is a string table */
226 if (strsec->c_shdr->sh_type != SHT_STRTAB) {
227 if (!strsec_err) {
228 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
229 file, strsec->c_ndx, refsec->c_ndx);
230 strsec_err = 1;
231 }
232 return (MSG_INTL(MSG_STR_UNKNOWN));
233 }
234
235 /*
236 * Is the string table offset within range of the available strings?
237 */
238 if (name >= strn) {
239 /*
240 * Do we have a empty string table?
241 */
242 if (strs == NULL) {
243 if (!strsec_err) {
244 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245 file, strsec->c_name);
246 strsec_err = 1;
247 }
248 } else {
249 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
250 file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
251 EC_WORD(name), EC_WORD(strn - 1));
252 }
253
254 /*
255 * Return the empty string so that the calling function can
256 * continue it's output diagnostics.
257 */
258 return (MSG_INTL(MSG_STR_UNKNOWN));
259 }
260 return (strs + name);
261 }
262
263 /*
264 * Relocations can reference section symbols and standard symbols. If the
265 * former, establish the section name.
266 */
267 static const char *
relsymname(Cache * cache,Cache * csec,Cache * strsec,Word symndx,Word symnum,Word relndx,Sym * syms,char * secstr,size_t secsz,const char * file)268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
269 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
270 {
271 Sym *sym;
272 const char *name;
273
274 if (symndx >= symnum) {
275 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
276 file, EC_WORD(symndx), EC_WORD(relndx));
277 return (MSG_INTL(MSG_STR_UNKNOWN));
278 }
279
280 sym = (Sym *)(syms + symndx);
281 name = string(csec, symndx, strsec, file, sym->st_name);
282
283 /*
284 * If the symbol represents a section offset construct an appropriate
285 * string. Note, although section symbol table entries typically have
286 * a NULL name pointer, entries do exist that point into the string
287 * table to their own NULL strings.
288 */
289 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
290 ((sym->st_name == 0) || (*name == '\0'))) {
291 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
292 cache[sym->st_shndx].c_name);
293 return ((const char *)secstr);
294 }
295
296 return (name);
297 }
298
299 /*
300 * Focal point for establishing a string table section. Data such as the
301 * dynamic information simply points to a string table. Data such as
302 * relocations, reference a symbol table, which in turn is associated with a
303 * string table.
304 */
305 static int
stringtbl(Cache * cache,int symtab,Word ndx,Word shnum,const char * file,Word * symnum,Cache ** symsec,Cache ** strsec)306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
307 Word *symnum, Cache **symsec, Cache **strsec)
308 {
309 Shdr *shdr = cache[ndx].c_shdr;
310
311 if (symtab) {
312 /*
313 * Validate the symbol table section.
314 */
315 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
316 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
317 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
318 return (0);
319 }
320 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
321 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
322 file, cache[ndx].c_name);
323 return (0);
324 }
325
326 /*
327 * Obtain, and verify the symbol table data.
328 */
329 if ((cache[ndx].c_data == NULL) ||
330 (cache[ndx].c_data->d_buf == NULL)) {
331 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
332 file, cache[ndx].c_name);
333 return (0);
334 }
335
336 /*
337 * Establish the string table index.
338 */
339 ndx = shdr->sh_link;
340 shdr = cache[ndx].c_shdr;
341
342 /*
343 * Return symbol table information.
344 */
345 if (symnum)
346 *symnum = (shdr->sh_size / shdr->sh_entsize);
347 if (symsec)
348 *symsec = &cache[ndx];
349 }
350
351 /*
352 * Validate the associated string table section.
353 */
354 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
355 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
356 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
357 return (0);
358 }
359
360 if (strsec)
361 *strsec = &cache[shdr->sh_link];
362
363 return (1);
364 }
365
366 /*
367 * Lookup a symbol and set Sym accordingly.
368 *
369 * entry:
370 * name - Name of symbol to lookup
371 * cache - Cache of all section headers
372 * shnum - # of sections in cache
373 * sym - Address of pointer to receive symbol
374 * target - NULL, or section to which the symbol must be associated.
375 * symtab - Symbol table to search for symbol
376 * file - Name of file
377 *
378 * exit:
379 * If the symbol is found, *sym is set to reference it, and True is
380 * returned. If target is non-NULL, the symbol must reference the given
381 * section --- otherwise the section is not checked.
382 *
383 * If no symbol is found, False is returned.
384 */
385 static int
symlookup(const char * name,Cache * cache,Word shnum,Sym ** sym,Cache * target,Cache * symtab,const char * file)386 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
387 Cache *target, Cache *symtab, const char *file)
388 {
389 Shdr *shdr;
390 Word symn, cnt;
391 Sym *syms;
392
393 if (symtab == 0)
394 return (0);
395
396 shdr = symtab->c_shdr;
397
398 /*
399 * Determine the symbol data and number.
400 */
401 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
402 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
403 file, symtab->c_name);
404 return (0);
405 }
406 if (symtab->c_data == NULL)
407 return (0);
408
409 /* LINTED */
410 symn = (Word)(shdr->sh_size / shdr->sh_entsize);
411 syms = (Sym *)symtab->c_data->d_buf;
412
413 /*
414 * Get the associated string table section.
415 */
416 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
417 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
418 file, symtab->c_name, EC_WORD(shdr->sh_link));
419 return (0);
420 }
421
422 /*
423 * Loop through the symbol table to find a match.
424 */
425 *sym = NULL;
426 for (cnt = 0; cnt < symn; syms++, cnt++) {
427 const char *symname;
428
429 symname = string(symtab, cnt, &cache[shdr->sh_link], file,
430 syms->st_name);
431
432 if (symname && (strcmp(name, symname) == 0) &&
433 ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
434 /*
435 * It is possible, though rare, for a local and
436 * global symbol of the same name to exist, each
437 * contributed by a different input object. If the
438 * symbol just found is local, remember it, but
439 * continue looking.
440 */
441 *sym = syms;
442 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
443 break;
444 }
445 }
446
447 return (*sym != NULL);
448 }
449
450 /*
451 * Print section headers.
452 */
453 static void
sections(const char * file,Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi)454 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
455 {
456 size_t seccnt;
457
458 for (seccnt = 1; seccnt < shnum; seccnt++) {
459 Cache *_cache = &cache[seccnt];
460 Shdr *shdr = _cache->c_shdr;
461 const char *secname = _cache->c_name;
462
463 /*
464 * Although numerous section header entries can be zero, it's
465 * usually a sign of trouble if the type is zero.
466 */
467 if (shdr->sh_type == 0) {
468 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
469 file, secname, EC_WORD(shdr->sh_type));
470 }
471
472 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
473 continue;
474
475 /*
476 * Identify any sections that are suspicious. A .got section
477 * shouldn't exist in a relocatable object.
478 */
479 if (ehdr->e_type == ET_REL) {
480 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
481 MSG_ELF_GOT_SIZE) == 0) {
482 (void) fprintf(stderr,
483 MSG_INTL(MSG_GOT_UNEXPECTED), file,
484 secname);
485 }
486 }
487
488 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
489 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
490 Elf_shdr(0, osabi, ehdr->e_machine, shdr);
491 }
492 }
493
494 /*
495 * Obtain a specified Phdr entry.
496 */
497 static Phdr *
getphdr(Word phnum,Word * type_arr,Word type_cnt,const char * file,Elf * elf)498 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
499 {
500 Word cnt, tcnt;
501 Phdr *phdr;
502
503 if ((phdr = elf_getphdr(elf)) == NULL) {
504 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
505 return (NULL);
506 }
507
508 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
509 for (tcnt = 0; tcnt < type_cnt; tcnt++) {
510 if (phdr->p_type == type_arr[tcnt])
511 return (phdr);
512 }
513 }
514 return (NULL);
515 }
516
517 /*
518 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
519 * sections.
520 *
521 * entry:
522 * cache - Cache of all section headers
523 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
524 * shnum - Total number of sections which exist
525 * uphdr - NULL, or unwind program header associated with
526 * the .eh_frame_hdr section.
527 * ehdr - ELF header for file
528 * eh_state - Data used across calls to this routine. The
529 * caller should zero it before the first call, and
530 * pass it on every call.
531 * osabi - OSABI to use in displaying information
532 * file - Name of file
533 * flags - Command line option flags
534 */
535 static void
unwind_eh_frame(Cache * cache,Word shndx,Word shnum,Phdr * uphdr,Ehdr * ehdr,gnu_eh_state_t * eh_state,uchar_t osabi,const char * file,uint_t flags)536 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
537 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
538 {
539 #if defined(_ELF64)
540 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64
541 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64
542 #else
543 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32
544 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32
545 #endif
546
547 Cache *_cache = &cache[shndx];
548 Shdr *shdr = _cache->c_shdr;
549 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf);
550 size_t datasize = _cache->c_data->d_size;
551 Conv_dwarf_ehe_buf_t dwarf_ehe_buf;
552 uint64_t ndx, frame_ptr, fde_cnt, tabndx;
553 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc;
554 uint64_t initloc, initloc0 = 0;
555 uint64_t gotaddr = 0;
556 int cnt;
557
558 for (cnt = 1; cnt < shnum; cnt++) {
559 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
560 MSG_ELF_GOT_SIZE) == 0) {
561 gotaddr = cache[cnt].c_shdr->sh_addr;
562 break;
563 }
564 }
565
566 if ((data == NULL) || (datasize == 0)) {
567 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
568 file, _cache ->c_name);
569 return;
570 }
571
572 /*
573 * Is this a .eh_frame_hdr?
574 */
575 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
576 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
577 MSG_SCN_FRMHDR_SIZE) == 0)) {
578 /*
579 * There can only be a single .eh_frame_hdr.
580 * Flag duplicates.
581 */
582 if (++eh_state->hdr_cnt > 1)
583 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
584 file, EC_WORD(shndx), _cache->c_name);
585
586 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
587 ndx = 0;
588
589 vers = data[ndx++];
590 frame_ptr_enc = data[ndx++];
591 fde_cnt_enc = data[ndx++];
592 table_enc = data[ndx++];
593
594 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
595
596 switch (dwarf_ehe_extract(data, datasize, &ndx,
597 &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE,
598 shdr->sh_addr, ndx, gotaddr)) {
599 case DW_OVERFLOW:
600 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
601 file, _cache->c_name);
602 return;
603 case DW_BAD_ENCODING:
604 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
605 file, _cache->c_name, frame_ptr_enc);
606 return;
607 case DW_SUCCESS:
608 break;
609 }
610 if (eh_state->hdr_cnt == 1) {
611 eh_state->hdr_ndx = shndx;
612 eh_state->frame_ptr = frame_ptr;
613 }
614
615 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
616 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
617 EC_XWORD(frame_ptr));
618
619 switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt,
620 fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx,
621 gotaddr)) {
622 case DW_OVERFLOW:
623 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
624 file, _cache->c_name);
625 return;
626 case DW_BAD_ENCODING:
627 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
628 file, _cache->c_name, fde_cnt_enc);
629 return;
630 case DW_SUCCESS:
631 break;
632 }
633
634 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
635 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
636 EC_XWORD(fde_cnt));
637 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
638 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
639 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
640 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
641
642 for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
643 uint64_t table;
644
645 switch (dwarf_ehe_extract(data, datasize, &ndx,
646 &initloc, table_enc, ehdr->e_ident, B_TRUE,
647 shdr->sh_addr, ndx, gotaddr)) {
648 case DW_OVERFLOW:
649 (void) fprintf(stderr,
650 MSG_INTL(MSG_ERR_DWOVRFLW), file,
651 _cache->c_name);
652 return;
653 case DW_BAD_ENCODING:
654 (void) fprintf(stderr,
655 MSG_INTL(MSG_ERR_DWBADENC), file,
656 _cache->c_name, table_enc);
657 return;
658 case DW_SUCCESS:
659 break;
660 }
661 if ((tabndx != 0) && (initloc0 > initloc))
662 (void) fprintf(stderr,
663 MSG_INTL(MSG_ERR_BADSORT), file,
664 _cache->c_name, EC_WORD(tabndx));
665 switch (dwarf_ehe_extract(data, datasize, &ndx, &table,
666 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
667 ndx, gotaddr)) {
668 case DW_OVERFLOW:
669 (void) fprintf(stderr,
670 MSG_INTL(MSG_ERR_DWOVRFLW), file,
671 _cache->c_name);
672 return;
673 case DW_BAD_ENCODING:
674 (void) fprintf(stderr,
675 MSG_INTL(MSG_ERR_DWBADENC), file,
676 _cache->c_name, table_enc);
677 return;
678 case DW_SUCCESS:
679 break;
680 }
681
682 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
683 EC_XWORD(initloc),
684 EC_XWORD(table));
685 initloc0 = initloc;
686 }
687 } else { /* Display the .eh_frame section */
688 eh_state->frame_cnt++;
689 if (eh_state->frame_cnt == 1) {
690 eh_state->frame_ndx = shndx;
691 eh_state->frame_base = shdr->sh_addr;
692 } else if ((eh_state->frame_cnt > 1) &&
693 (ehdr->e_type != ET_REL)) {
694 Conv_inv_buf_t inv_buf;
695
696 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
697 file, EC_WORD(shndx), _cache->c_name,
698 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
699 }
700 dump_eh_frame(file, _cache->c_name, data, datasize,
701 shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr);
702 }
703
704 /*
705 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
706 * compare the header frame_ptr to the address of the actual frame
707 * section to ensure the link-editor got this right. Note, this
708 * diagnostic is only produced when unwind information is explicitly
709 * asked for, as shared objects built with an older ld(1) may reveal
710 * this inconsistency. Although an inconsistency, it doesn't seem to
711 * have any adverse effect on existing tools.
712 */
713 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
714 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
715 (eh_state->frame_ptr != eh_state->frame_base))
716 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
717 file, EC_WORD(eh_state->hdr_ndx),
718 cache[eh_state->hdr_ndx].c_name,
719 EC_XWORD(eh_state->frame_ptr),
720 EC_WORD(eh_state->frame_ndx),
721 cache[eh_state->frame_ndx].c_name,
722 EC_XWORD(eh_state->frame_base));
723 #undef MSG_UNW_BINSRTAB2
724 #undef MSG_UNW_BINSRTABENT
725 }
726
727 /*
728 * Convert a self relative pointer into an address. A self relative
729 * pointer adds the address where the pointer resides to the offset
730 * contained in the pointer. The benefit is that the value of the
731 * pointer does not require relocation.
732 *
733 * entry:
734 * base_addr - Address of the pointer.
735 * delta - Offset relative to base_addr giving desired address
736 *
737 * exit:
738 * The computed address is returned.
739 *
740 * note:
741 * base_addr is an unsigned value, while ret_addr is signed. This routine
742 * used explicit testing and casting to explicitly control type
743 * conversion, and ensure that we handle the maximum possible range.
744 */
745 static Addr
srelptr(Addr base_addr,PTRDIFF_T delta)746 srelptr(Addr base_addr, PTRDIFF_T delta)
747 {
748 if (delta < 0)
749 return (base_addr - (Addr) (-delta));
750
751 return (base_addr + (Addr) delta);
752 }
753
754 /*
755 * Byte swap a PTRDIFF_T value.
756 */
757 static PTRDIFF_T
swap_ptrdiff(PTRDIFF_T value)758 swap_ptrdiff(PTRDIFF_T value)
759 {
760 PTRDIFF_T r;
761 uchar_t *dst = (uchar_t *)&r;
762 uchar_t *src = (uchar_t *)&value;
763
764 UL_ASSIGN_BSWAP_XWORD(dst, src);
765 return (r);
766 }
767
768 /*
769 * Display exception_range_entry items from the .exception_ranges section
770 * of a Sun C++ object.
771 */
772 static void
unwind_exception_ranges(Cache * _cache,const char * file,int do_swap)773 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
774 {
775 /*
776 * Translate a PTRDIFF_T self-relative address field of
777 * an exception_range_entry struct into an address.
778 *
779 * entry:
780 * exc_addr - Address of base of exception_range_entry struct
781 * cur_ent - Pointer to data in the struct to be translated
782 *
783 * _f - Field of struct to be translated
784 */
785 #define SRELPTR(_f) \
786 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
787
788 #if defined(_ELF64)
789 #define MSG_EXR_TITLE MSG_EXR_TITLE_64
790 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64
791 #else
792 #define MSG_EXR_TITLE MSG_EXR_TITLE_32
793 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32
794 #endif
795
796 exception_range_entry scratch, *ent, *cur_ent = &scratch;
797 char index[MAXNDXSIZE];
798 Word i, nelts;
799 Addr addr, addr0 = 0, offset = 0;
800 Addr exc_addr = _cache->c_shdr->sh_addr;
801
802 dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
803 ent = (exception_range_entry *)(_cache->c_data->d_buf);
804 nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
805
806 for (i = 0; i < nelts; i++, ent++) {
807 if (do_swap) {
808 /*
809 * Copy byte swapped values into the scratch buffer.
810 * The reserved field is not used, so we skip it.
811 */
812 scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
813 scratch.length = BSWAP_XWORD(ent->length);
814 scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
815 scratch.type_block = swap_ptrdiff(ent->type_block);
816 } else {
817 cur_ent = ent;
818 }
819
820 /*
821 * The table is required to be sorted by the address
822 * derived from ret_addr, to allow binary searching. Ensure
823 * that addresses grow monotonically.
824 */
825 addr = SRELPTR(ret_addr);
826 if ((i != 0) && (addr0 > addr))
827 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
828 file, _cache->c_name, EC_WORD(i));
829
830 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
831 EC_XWORD(i));
832 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
833 EC_ADDR(addr), EC_ADDR(cur_ent->length),
834 EC_ADDR(SRELPTR(handler_addr)),
835 EC_ADDR(SRELPTR(type_block)));
836
837 addr0 = addr;
838 exc_addr += sizeof (exception_range_entry);
839 offset += sizeof (exception_range_entry);
840 }
841
842 #undef SRELPTR
843 #undef MSG_EXR_TITLE
844 #undef MSG_EXR_ENTRY
845 }
846
847 /*
848 * Display information from unwind/exception sections:
849 *
850 * - GNU/amd64 .eh_frame and .eh_frame_hdr
851 * - Sun C++ .exception_ranges
852 *
853 */
854 static void
unwind(Cache * cache,Word shnum,Word phnum,Ehdr * ehdr,uchar_t osabi,const char * file,Elf * elf,uint_t flags)855 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
856 const char *file, Elf *elf, uint_t flags)
857 {
858 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
859
860 Word cnt;
861 Phdr *uphdr = NULL;
862 gnu_eh_state_t eh_state;
863
864 /*
865 * Historical background: .eh_frame and .eh_frame_hdr sections
866 * come from the GNU compilers (particularly C++), and are used
867 * under all architectures. Their format is based on DWARF. When
868 * the amd64 ABI was defined, these sections were adopted wholesale
869 * from the existing practice.
870 *
871 * When amd64 support was added to Solaris, support for these
872 * sections was added, using the SHT_AMD64_UNWIND section type
873 * to identify them. At first, we ignored them in objects for
874 * non-amd64 targets, but later broadened our support to include
875 * other architectures in order to better support gcc-generated
876 * objects.
877 *
878 * .exception_ranges implement the same basic concepts, but
879 * were invented at Sun for the Sun C++ compiler.
880 *
881 * We match these sections by name, rather than section type,
882 * because they can come in as either SHT_AMD64_UNWIND, or as
883 * SHT_PROGBITS, and because the type isn't enough to determine
884 * how they should be interpreted.
885 */
886 /* Find the program header for .eh_frame_hdr if present */
887 if (phnum)
888 uphdr = getphdr(phnum, phdr_types,
889 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
890
891 /*
892 * eh_state is used to retain data used by unwind_eh_frame()
893 * across calls.
894 */
895 bzero(&eh_state, sizeof (eh_state));
896
897 for (cnt = 1; cnt < shnum; cnt++) {
898 Cache *_cache = &cache[cnt];
899 Shdr *shdr = _cache->c_shdr;
900 int is_exrange;
901
902 /*
903 * Skip sections of the wrong type. On amd64, they
904 * can be SHT_AMD64_UNWIND. On all platforms, they
905 * can be SHT_PROGBITS (including amd64, if using
906 * the GNU compilers).
907 *
908 * Skip anything other than these two types. The name
909 * test below will thin out the SHT_PROGBITS that don't apply.
910 */
911 if ((shdr->sh_type != SHT_PROGBITS) &&
912 (shdr->sh_type != SHT_AMD64_UNWIND))
913 continue;
914
915 /*
916 * Only sections with certain well known names are of interest.
917 * These are:
918 *
919 * .eh_frame - amd64/GNU-compiler unwind sections
920 * .eh_frame_hdr - Sorted table referencing .eh_frame
921 * .exception_ranges - Sun C++ unwind sections
922 *
923 * We do a prefix comparison, allowing for naming conventions
924 * like .eh_frame.foo, hence the use of strncmp() rather than
925 * strcmp(). This means that we only really need to test for
926 * .eh_frame, as it's a prefix of .eh_frame_hdr.
927 */
928 is_exrange = strncmp(_cache->c_name,
929 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
930 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
931 MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
932 continue;
933
934 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
935 continue;
936
937 if (_cache->c_data == NULL)
938 continue;
939
940 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
941 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
942
943 if (is_exrange)
944 unwind_exception_ranges(_cache, file,
945 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
946 else
947 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
948 &eh_state, osabi, file, flags);
949 }
950 }
951
952 /*
953 * Initialize a symbol table state structure
954 *
955 * entry:
956 * state - State structure to be initialized
957 * cache - Cache of all section headers
958 * shnum - # of sections in cache
959 * secndx - Index of symbol table section
960 * ehdr - ELF header for file
961 * versym - Information about versym section
962 * file - Name of file
963 * flags - Command line option flags
964 */
965 static int
init_symtbl_state(SYMTBL_STATE * state,Cache * cache,Word shnum,Word secndx,Ehdr * ehdr,uchar_t osabi,VERSYM_STATE * versym,const char * file,uint_t flags)966 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
967 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
968 uint_t flags)
969 {
970 Shdr *shdr;
971
972 state->file = file;
973 state->ehdr = ehdr;
974 state->cache = cache;
975 state->osabi = osabi;
976 state->shnum = shnum;
977 state->seccache = &cache[secndx];
978 state->secndx = secndx;
979 state->secname = state->seccache->c_name;
980 state->flags = flags;
981 state->shxndx.checked = 0;
982 state->shxndx.data = NULL;
983 state->shxndx.n = 0;
984
985 shdr = state->seccache->c_shdr;
986
987 /*
988 * Check the symbol data and per-item size.
989 */
990 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
991 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
992 file, state->secname);
993 return (0);
994 }
995 if (state->seccache->c_data == NULL)
996 return (0);
997
998 /* LINTED */
999 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1000 state->sym = (Sym *)state->seccache->c_data->d_buf;
1001
1002 /*
1003 * Check associated string table section.
1004 */
1005 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1006 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1007 file, state->secname, EC_WORD(shdr->sh_link));
1008 return (0);
1009 }
1010
1011 /*
1012 * Determine if there is a associated Versym section
1013 * with this Symbol Table.
1014 */
1015 if (versym && versym->cache &&
1016 (versym->cache->c_shdr->sh_link == state->secndx))
1017 state->versym = versym;
1018 else
1019 state->versym = NULL;
1020
1021
1022 return (1);
1023 }
1024
1025 /*
1026 * Determine the extended section index used for symbol tables entries.
1027 */
1028 static void
symbols_getxindex(SYMTBL_STATE * state)1029 symbols_getxindex(SYMTBL_STATE *state)
1030 {
1031 uint_t symn;
1032 Word symcnt;
1033
1034 state->shxndx.checked = 1; /* Note that we've been called */
1035 for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1036 Cache *_cache = &state->cache[symcnt];
1037 Shdr *shdr = _cache->c_shdr;
1038
1039 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1040 (shdr->sh_link != state->secndx))
1041 continue;
1042
1043 if ((shdr->sh_entsize) &&
1044 /* LINTED */
1045 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1046 continue;
1047
1048 if (_cache->c_data == NULL)
1049 continue;
1050
1051 state->shxndx.data = _cache->c_data->d_buf;
1052 state->shxndx.n = symn;
1053 return;
1054 }
1055 }
1056
1057 /*
1058 * Produce a line of output for the given symbol
1059 *
1060 * entry:
1061 * state - Symbol table state
1062 * symndx - Index of symbol within the table
1063 * info - Value of st_info (indicates local/global range)
1064 * symndx_disp - Index to display. This may not be the same
1065 * as symndx if the display is relative to the logical
1066 * combination of the SUNW_ldynsym/dynsym tables.
1067 * sym - Symbol to display
1068 */
1069 static void
output_symbol(SYMTBL_STATE * state,Word symndx,Word info,Word disp_symndx,Sym * sym)1070 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1071 Sym *sym)
1072 {
1073 /*
1074 * Symbol types for which we check that the specified
1075 * address/size land inside the target section.
1076 */
1077 static const int addr_symtype[] = {
1078 0, /* STT_NOTYPE */
1079 1, /* STT_OBJECT */
1080 1, /* STT_FUNC */
1081 0, /* STT_SECTION */
1082 0, /* STT_FILE */
1083 1, /* STT_COMMON */
1084 0, /* STT_TLS */
1085 0, /* 7 */
1086 0, /* 8 */
1087 0, /* 9 */
1088 0, /* 10 */
1089 0, /* 11 */
1090 0, /* 12 */
1091 0, /* STT_SPARC_REGISTER */
1092 0, /* 14 */
1093 0, /* 15 */
1094 };
1095 #if STT_NUM != (STT_TLS + 1)
1096 #error "STT_NUM has grown. Update addr_symtype[]"
1097 #endif
1098
1099 char index[MAXNDXSIZE];
1100 const char *symname, *sec;
1101 Versym verndx;
1102 int gnuver;
1103 uchar_t type;
1104 Shdr *tshdr;
1105 Word shndx;
1106 Conv_inv_buf_t inv_buf;
1107
1108 /* Ensure symbol index is in range */
1109 if (symndx >= state->symn) {
1110 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1111 state->file, state->secname, EC_WORD(symndx));
1112 return;
1113 }
1114
1115 /*
1116 * If we are using extended symbol indexes, find the
1117 * corresponding SHN_SYMTAB_SHNDX table.
1118 */
1119 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1120 symbols_getxindex(state);
1121
1122 /* LINTED */
1123 symname = string(state->seccache, symndx,
1124 &state->cache[state->seccache->c_shdr->sh_link], state->file,
1125 sym->st_name);
1126
1127 tshdr = NULL;
1128 sec = NULL;
1129
1130 if (state->ehdr->e_type == ET_CORE) {
1131 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1132 } else if (state->flags & FLG_CTL_FAKESHDR) {
1133 /*
1134 * If we are using fake section headers derived from
1135 * the program headers, then the section indexes
1136 * in the symbols do not correspond to these headers.
1137 * The section names are not available, so all we can
1138 * do is to display them in numeric form.
1139 */
1140 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1141 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1142 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1143 (sym->st_shndx < state->shnum)) {
1144 shndx = sym->st_shndx;
1145 tshdr = state->cache[shndx].c_shdr;
1146 sec = state->cache[shndx].c_name;
1147 } else if (sym->st_shndx == SHN_XINDEX) {
1148 if (state->shxndx.data) {
1149 Word _shxndx;
1150
1151 if (symndx > state->shxndx.n) {
1152 (void) fprintf(stderr,
1153 MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1154 state->file, state->secname,
1155 EC_WORD(symndx));
1156 } else if ((_shxndx =
1157 state->shxndx.data[symndx]) > state->shnum) {
1158 (void) fprintf(stderr,
1159 MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1160 state->file, state->secname,
1161 EC_WORD(symndx), EC_WORD(_shxndx));
1162 } else {
1163 shndx = _shxndx;
1164 tshdr = state->cache[shndx].c_shdr;
1165 sec = state->cache[shndx].c_name;
1166 }
1167 } else {
1168 (void) fprintf(stderr,
1169 MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1170 state->file, state->secname, EC_WORD(symndx));
1171 }
1172 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1173 (sym->st_shndx >= state->shnum)) {
1174 (void) fprintf(stderr,
1175 MSG_INTL(MSG_ERR_BADSYM5), state->file,
1176 state->secname, EC_WORD(symndx),
1177 demangle(symname, state->flags), sym->st_shndx);
1178 }
1179
1180 /*
1181 * If versioning is available display the
1182 * version index. If not, then use 0.
1183 */
1184 if (state->versym) {
1185 Versym test_verndx;
1186
1187 verndx = test_verndx = state->versym->data[symndx];
1188 gnuver = state->versym->gnu_full;
1189
1190 /*
1191 * Check to see if this is a defined symbol with a
1192 * version index that is outside the valid range for
1193 * the file. The interpretation of this depends on
1194 * the style of versioning used by the object.
1195 *
1196 * Versions >= VER_NDX_LORESERVE have special meanings,
1197 * and are exempt from this checking.
1198 *
1199 * GNU style version indexes use the top bit of the
1200 * 16-bit index value (0x8000) as the "hidden bit".
1201 * We must mask off this bit in order to compare
1202 * the version against the maximum value.
1203 */
1204 if (gnuver)
1205 test_verndx &= ~0x8000;
1206
1207 if ((test_verndx > state->versym->max_verndx) &&
1208 (verndx < VER_NDX_LORESERVE))
1209 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1210 state->file, state->secname, EC_WORD(symndx),
1211 EC_HALF(test_verndx), state->versym->max_verndx);
1212 } else {
1213 verndx = 0;
1214 gnuver = 0;
1215 }
1216
1217 /*
1218 * Error checking for TLS.
1219 */
1220 type = ELF_ST_TYPE(sym->st_info);
1221 if (type == STT_TLS) {
1222 if (tshdr &&
1223 (sym->st_shndx != SHN_UNDEF) &&
1224 ((tshdr->sh_flags & SHF_TLS) == 0)) {
1225 (void) fprintf(stderr,
1226 MSG_INTL(MSG_ERR_BADSYM3), state->file,
1227 state->secname, EC_WORD(symndx),
1228 demangle(symname, state->flags));
1229 }
1230 } else if ((type != STT_SECTION) && sym->st_size &&
1231 tshdr && (tshdr->sh_flags & SHF_TLS)) {
1232 (void) fprintf(stderr,
1233 MSG_INTL(MSG_ERR_BADSYM4), state->file,
1234 state->secname, EC_WORD(symndx),
1235 demangle(symname, state->flags));
1236 }
1237
1238 /*
1239 * If a symbol with non-zero size has a type that
1240 * specifies an address, then make sure the location
1241 * it references is actually contained within the
1242 * section. UNDEF symbols don't count in this case,
1243 * so we ignore them.
1244 *
1245 * The meaning of the st_value field in a symbol
1246 * depends on the type of object. For a relocatable
1247 * object, it is the offset within the section.
1248 * For sharable objects, it is the offset relative to
1249 * the base of the object, and for other types, it is
1250 * the virtual address. To get an offset within the
1251 * section for non-ET_REL files, we subtract the
1252 * base address of the section.
1253 */
1254 if (addr_symtype[type] && (sym->st_size > 0) &&
1255 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1256 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1257 Word v = sym->st_value;
1258 if (state->ehdr->e_type != ET_REL)
1259 v -= tshdr->sh_addr;
1260 if (((v + sym->st_size) > tshdr->sh_size)) {
1261 (void) fprintf(stderr,
1262 MSG_INTL(MSG_ERR_BADSYM6), state->file,
1263 state->secname, EC_WORD(symndx),
1264 demangle(symname, state->flags),
1265 EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1266 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1267 }
1268 }
1269
1270 /*
1271 * A typical symbol table uses the sh_info field to indicate one greater
1272 * than the symbol table index of the last local symbol, STB_LOCAL.
1273 * Therefore, symbol indexes less than sh_info should have local
1274 * binding. Symbol indexes greater than, or equal to sh_info, should
1275 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero
1276 * value and size, as these symbols may be the result of an mcs(1)
1277 * section deletion.
1278 */
1279 if (info) {
1280 uchar_t bind = ELF_ST_BIND(sym->st_info);
1281
1282 if ((symndx < info) && (bind != STB_LOCAL)) {
1283 (void) fprintf(stderr,
1284 MSG_INTL(MSG_ERR_BADSYM7), state->file,
1285 state->secname, EC_WORD(symndx),
1286 demangle(symname, state->flags), EC_XWORD(info));
1287
1288 } else if ((symndx >= info) && (bind == STB_LOCAL) &&
1289 ((sym->st_shndx != SHN_UNDEF) ||
1290 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1291 (sym->st_size != 0) || (sym->st_value != 0))) {
1292 (void) fprintf(stderr,
1293 MSG_INTL(MSG_ERR_BADSYM8), state->file,
1294 state->secname, EC_WORD(symndx),
1295 demangle(symname, state->flags), EC_XWORD(info));
1296 }
1297 }
1298
1299 (void) snprintf(index, MAXNDXSIZE,
1300 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1301 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1302 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1303 }
1304
1305 /*
1306 * Process a SHT_SUNW_cap capabilities section.
1307 */
1308 static int
cap_section(const char * file,Cache * cache,Word shnum,Cache * ccache,uchar_t osabi,Ehdr * ehdr,uint_t flags)1309 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1310 uchar_t osabi, Ehdr *ehdr, uint_t flags)
1311 {
1312 SYMTBL_STATE state;
1313 Word cnum, capnum, nulls, symcaps;
1314 int descapndx, objcap, title;
1315 Cap *cap = (Cap *)ccache->c_data->d_buf;
1316 Shdr *cishdr, *cshdr = ccache->c_shdr;
1317 Cache *cicache, *strcache;
1318 Capinfo *capinfo = NULL;
1319 Word capinfonum;
1320 const char *strs = NULL;
1321 size_t strs_size;
1322
1323 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1324 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1325 file, ccache->c_name);
1326 return (0);
1327 }
1328
1329 /*
1330 * If this capabilities section is associated with symbols, then the
1331 * sh_link field points to the associated capabilities information
1332 * section. The sh_link field of the capabilities information section
1333 * points to the associated symbol table.
1334 */
1335 if (cshdr->sh_link) {
1336 Cache *scache;
1337 Shdr *sshdr;
1338
1339 /*
1340 * Validate that the sh_link field points to a capabilities
1341 * information section.
1342 */
1343 if (cshdr->sh_link >= shnum) {
1344 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1345 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1346 return (0);
1347 }
1348
1349 cicache = &cache[cshdr->sh_link];
1350 cishdr = cicache->c_shdr;
1351
1352 if (cishdr->sh_type != SHT_SUNW_capinfo) {
1353 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1354 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1355 return (0);
1356 }
1357
1358 capinfo = cicache->c_data->d_buf;
1359 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1360
1361 /*
1362 * Validate that the sh_link field of the capabilities
1363 * information section points to a valid symbol table.
1364 */
1365 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1366 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1367 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1368 return (0);
1369 }
1370 scache = &cache[cishdr->sh_link];
1371 sshdr = scache->c_shdr;
1372
1373 if ((sshdr->sh_type != SHT_SYMTAB) &&
1374 (sshdr->sh_type != SHT_DYNSYM)) {
1375 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1376 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1377 return (0);
1378 }
1379
1380 if (!init_symtbl_state(&state, cache, shnum,
1381 cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1382 return (0);
1383 }
1384
1385 /*
1386 * If this capabilities section contains capability string entries,
1387 * then determine the associated string table. Capabilities entries
1388 * that define names require that the capability section indicate
1389 * which string table to use via sh_info.
1390 */
1391 if (cshdr->sh_info) {
1392 Shdr *strshdr;
1393
1394 /*
1395 * Validate that the sh_info field points to a string table.
1396 */
1397 if (cshdr->sh_info >= shnum) {
1398 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1399 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1400 return (0);
1401 }
1402
1403 strcache = &cache[cshdr->sh_info];
1404 strshdr = strcache->c_shdr;
1405
1406 if (strshdr->sh_type != SHT_STRTAB) {
1407 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1408 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1409 return (0);
1410 }
1411 strs = (const char *)strcache->c_data->d_buf;
1412 strs_size = strcache->c_data->d_size;
1413 }
1414
1415 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1416 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1417
1418 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1419
1420 nulls = symcaps = 0;
1421 objcap = title = 1;
1422 descapndx = -1;
1423
1424 /*
1425 * Traverse the capabilities section printing each capability group.
1426 * The first capabilities group defines any object capabilities. Any
1427 * following groups define symbol capabilities. In the case where no
1428 * object capabilities exist, but symbol capabilities do, a single
1429 * CA_SUNW_NULL terminator for the object capabilities exists.
1430 */
1431 for (cnum = 0; cnum < capnum; cap++, cnum++) {
1432 if (cap->c_tag == CA_SUNW_NULL) {
1433 /*
1434 * A CA_SUNW_NULL tag terminates a capabilities group.
1435 * If the first capabilities tag is CA_SUNW_NULL, then
1436 * no object capabilities exist.
1437 */
1438 if ((nulls++ == 0) && (cnum == 0))
1439 objcap = 0;
1440 title = 1;
1441 } else {
1442 if (title) {
1443 if (nulls == 0) {
1444 /*
1445 * If this capabilities group represents
1446 * the object capabilities (i.e., no
1447 * CA_SUNW_NULL tag has been processed
1448 * yet), then display an object
1449 * capabilities title.
1450 */
1451 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1452 dbg_print(0,
1453 MSG_INTL(MSG_OBJ_CAP_TITLE));
1454 } else {
1455 /*
1456 * If this is a symbols capabilities
1457 * group (i.e., a CA_SUNW_NULL tag has
1458 * already be found that terminates
1459 * the object capabilities group), then
1460 * display a symbol capabilities title,
1461 * and retain this capabilities index
1462 * for later processing.
1463 */
1464 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1465 dbg_print(0,
1466 MSG_INTL(MSG_SYM_CAP_TITLE));
1467 descapndx = cnum;
1468 }
1469 Elf_cap_title(0);
1470 title = 0;
1471 }
1472
1473 /*
1474 * Print the capabilities data.
1475 *
1476 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1477 * entries require a string table, which should have
1478 * already been established.
1479 */
1480 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1481 (cap->c_tag == CA_SUNW_MACH) ||
1482 (cap->c_tag == CA_SUNW_ID))) {
1483 (void) fprintf(stderr,
1484 MSG_INTL(MSG_WARN_INVCAP4), file,
1485 EC_WORD(elf_ndxscn(ccache->c_scn)),
1486 ccache->c_name, EC_WORD(cshdr->sh_info));
1487 }
1488 Elf_cap_entry(0, cap, cnum, strs, strs_size,
1489 ehdr->e_machine);
1490 }
1491
1492 /*
1493 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1494 * group, determine the associated symbols.
1495 */
1496 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1497 (descapndx != -1)) {
1498 Capinfo *cip;
1499 Word inum;
1500
1501 symcaps++;
1502
1503 /*
1504 * Make sure we've discovered a SHT_SUNW_capinfo table.
1505 */
1506 if ((cip = capinfo) == NULL) {
1507 (void) fprintf(stderr,
1508 MSG_INTL(MSG_ERR_INVCAP), file,
1509 ccache->c_name, EC_WORD(cshdr->sh_link));
1510 return (0);
1511 }
1512
1513 /*
1514 * Determine what symbols reference this capabilities
1515 * group.
1516 */
1517 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1518 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1519 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1520
1521 for (inum = 1, cip++; inum < capinfonum;
1522 inum++, cip++) {
1523 Word gndx = (Word)ELF_C_GROUP(*cip);
1524
1525 if (gndx && (gndx == descapndx)) {
1526 output_symbol(&state, inum, 0,
1527 inum, state.sym + inum);
1528 }
1529 }
1530 descapndx = -1;
1531 continue;
1532 }
1533
1534 /*
1535 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1536 * object is suspicious as it has no effect.
1537 */
1538 if ((cap->c_tag == CA_SUNW_SF_1) &&
1539 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1540 (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1541 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1542 file, ccache->c_name);
1543 }
1544 }
1545
1546 /*
1547 * If this is a dynamic object, with symbol capabilities, then a
1548 * .SUNW_capchain section should exist. This section contains a chain
1549 * of symbol indexes for each capabilities family. This is the list
1550 * that is searched by ld.so.1 to determine the best capabilities
1551 * candidate.
1552 *
1553 * Note, more than one capabilities lead symbol can point to the same
1554 * family chain. For example, a weak/global pair of symbols can both
1555 * represent the same family of capabilities symbols. Therefore, to
1556 * display all possible families we traverse the capabilities
1557 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1558 * From these we determine the associated capabilities chain to inspect.
1559 */
1560 if (symcaps &&
1561 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1562 Capinfo *cip;
1563 Capchain *chain;
1564 Cache *chcache;
1565 Shdr *chshdr;
1566 Word chainnum, inum;
1567
1568 /*
1569 * Validate that the sh_info field of the capabilities
1570 * information section points to a capabilities chain section.
1571 */
1572 if (cishdr->sh_info >= shnum) {
1573 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1574 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1575 return (0);
1576 }
1577
1578 chcache = &cache[cishdr->sh_info];
1579 chshdr = chcache->c_shdr;
1580
1581 if (chshdr->sh_type != SHT_SUNW_capchain) {
1582 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1583 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1584 return (0);
1585 }
1586
1587 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1588 chain = (Capchain *)chcache->c_data->d_buf;
1589
1590 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1591 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1592
1593 /*
1594 * Traverse the capabilities information section looking for
1595 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1596 */
1597 cip = capinfo;
1598 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1599 const char *name;
1600 Sym *sym;
1601 Word sndx, cndx;
1602 Word gndx = (Word)ELF_C_GROUP(*cip);
1603
1604 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1605 continue;
1606
1607 /*
1608 * Determine the symbol that is associated with this
1609 * capability information entry, and use this to
1610 * identify this capability family.
1611 */
1612 sym = (Sym *)(state.sym + inum);
1613 name = string(cicache, inum, strcache, file,
1614 sym->st_name);
1615
1616 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1617 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1618 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1619
1620 cndx = (Word)ELF_C_SYM(*cip);
1621
1622 /*
1623 * Traverse this families chain and identify each
1624 * family member.
1625 */
1626 for (;;) {
1627 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1628
1629 if (cndx >= chainnum) {
1630 (void) fprintf(stderr,
1631 MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1632 cicache->c_name, EC_WORD(inum),
1633 EC_WORD(cndx));
1634 break;
1635 }
1636 if ((sndx = chain[cndx]) == 0)
1637 break;
1638
1639 /*
1640 * Determine this entries symbol reference.
1641 */
1642 if (sndx > state.symn) {
1643 (void) fprintf(stderr,
1644 MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1645 EC_WORD(sndx), chcache->c_name,
1646 EC_WORD(cndx));
1647 name = MSG_INTL(MSG_STR_UNKNOWN);
1648 } else {
1649 sym = (Sym *)(state.sym + sndx);
1650 name = string(chcache, sndx,
1651 strcache, file, sym->st_name);
1652 }
1653
1654 /*
1655 * Display the family member.
1656 */
1657 (void) snprintf(_chain, MAXNDXSIZE,
1658 MSG_ORIG(MSG_FMT_INTEGER), cndx);
1659 (void) snprintf(_symndx, MAXNDXSIZE,
1660 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1661 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1662 _chain, _symndx, demangle(name, flags));
1663
1664 cndx++;
1665 }
1666 }
1667 }
1668 return (objcap);
1669 }
1670
1671 /*
1672 * Print the capabilities.
1673 *
1674 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1675 * capabilities groups. The first group defines the object capabilities.
1676 * This group defines the minimum capability requirements of the entire
1677 * object file. If this is a dynamic object, this group should be associated
1678 * with a PT_SUNWCAP program header.
1679 *
1680 * Additional capabilities groups define the association of individual symbols
1681 * to specific capabilities.
1682 */
1683 static void
cap(const char * file,Cache * cache,Word shnum,Word phnum,Ehdr * ehdr,uchar_t osabi,Elf * elf,uint_t flags)1684 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1685 uchar_t osabi, Elf *elf, uint_t flags)
1686 {
1687 Word cnt;
1688 Shdr *cshdr = NULL;
1689 Cache *ccache;
1690 Off cphdr_off = 0;
1691 Xword cphdr_sz;
1692
1693 /*
1694 * Determine if a global capabilities header exists.
1695 */
1696 if (phnum) {
1697 Phdr *phdr;
1698
1699 if ((phdr = elf_getphdr(elf)) == NULL) {
1700 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1701 return;
1702 }
1703
1704 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1705 if (phdr->p_type == PT_SUNWCAP) {
1706 cphdr_off = phdr->p_offset;
1707 cphdr_sz = phdr->p_filesz;
1708 break;
1709 }
1710 }
1711 }
1712
1713 /*
1714 * Determine if a capabilities section exists.
1715 */
1716 for (cnt = 1; cnt < shnum; cnt++) {
1717 Cache *_cache = &cache[cnt];
1718 Shdr *shdr = _cache->c_shdr;
1719
1720 /*
1721 * Process any capabilities information.
1722 */
1723 if (shdr->sh_type == SHT_SUNW_cap) {
1724 if (cap_section(file, cache, shnum, _cache, osabi,
1725 ehdr, flags)) {
1726 /*
1727 * If this section defined an object capability
1728 * group, retain the section information for
1729 * program header validation.
1730 */
1731 ccache = _cache;
1732 cshdr = shdr;
1733 }
1734 continue;
1735 }
1736 }
1737
1738 if ((cshdr == NULL) && (cphdr_off == 0))
1739 return;
1740
1741 if (cphdr_off && (cshdr == NULL))
1742 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1743
1744 /*
1745 * If this object is an executable or shared object, and it provided
1746 * an object capabilities group, then the group should have an
1747 * accompanying PT_SUNWCAP program header.
1748 */
1749 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1750 if (cphdr_off == 0) {
1751 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1752 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1753 ccache->c_name);
1754 } else if ((cphdr_off != cshdr->sh_offset) ||
1755 (cphdr_sz != cshdr->sh_size)) {
1756 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1757 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1758 ccache->c_name);
1759 }
1760 }
1761 }
1762
1763 /*
1764 * Print the interpretor.
1765 */
1766 static void
interp(const char * file,Cache * cache,Word shnum,Word phnum,Elf * elf)1767 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1768 {
1769 static Word phdr_types[] = { PT_INTERP };
1770
1771
1772 Word cnt;
1773 Shdr *ishdr = NULL;
1774 Cache *icache;
1775 Off iphdr_off = 0;
1776 Xword iphdr_fsz;
1777
1778 /*
1779 * Determine if an interp header exists.
1780 */
1781 if (phnum) {
1782 Phdr *phdr;
1783
1784 phdr = getphdr(phnum, phdr_types,
1785 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1786 if (phdr != NULL) {
1787 iphdr_off = phdr->p_offset;
1788 iphdr_fsz = phdr->p_filesz;
1789 }
1790 }
1791
1792 if (iphdr_off == 0)
1793 return;
1794
1795 /*
1796 * Determine if an interp section exists.
1797 */
1798 for (cnt = 1; cnt < shnum; cnt++) {
1799 Cache *_cache = &cache[cnt];
1800 Shdr *shdr = _cache->c_shdr;
1801
1802 /*
1803 * Scan sections to find a section which contains the PT_INTERP
1804 * string. The target section can't be in a NOBITS section.
1805 */
1806 if ((shdr->sh_type == SHT_NOBITS) ||
1807 (iphdr_off < shdr->sh_offset) ||
1808 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1809 continue;
1810
1811 icache = _cache;
1812 ishdr = shdr;
1813 break;
1814 }
1815
1816 /*
1817 * Print the interpreter string based on the offset defined in the
1818 * program header, as this is the offset used by the kernel.
1819 */
1820 if (ishdr && icache->c_data) {
1821 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1822 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1823 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1824 (char *)icache->c_data->d_buf +
1825 (iphdr_off - ishdr->sh_offset));
1826 } else
1827 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1828
1829 /*
1830 * If there are any inconsistences between the program header and
1831 * section information, flag them.
1832 */
1833 if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1834 (iphdr_fsz != ishdr->sh_size))) {
1835 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1836 icache->c_name);
1837 }
1838 }
1839
1840 /*
1841 * Print the syminfo section.
1842 */
1843 static void
syminfo(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,const char * file)1844 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1845 {
1846 Shdr *infoshdr;
1847 Syminfo *info;
1848 Sym *syms;
1849 Dyn *dyns;
1850 Word infonum, cnt, ndx, symnum, dynnum;
1851 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1852 Boolean *dynerr;
1853
1854 for (cnt = 1; cnt < shnum; cnt++) {
1855 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1856 infocache = &cache[cnt];
1857 break;
1858 }
1859 }
1860 if (infocache == NULL)
1861 return;
1862
1863 infoshdr = infocache->c_shdr;
1864 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1865 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1866 file, infocache->c_name);
1867 return;
1868 }
1869 if (infocache->c_data == NULL)
1870 return;
1871
1872 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1873 info = (Syminfo *)infocache->c_data->d_buf;
1874
1875 /*
1876 * If there is no associated dynamic section, determine if one
1877 * is needed, and if so issue a warning. If there is an
1878 * associated dynamic section, validate it and get the data buffer
1879 * for it.
1880 */
1881 dyns = NULL;
1882 dynnum = 0;
1883 if (infoshdr->sh_info == 0) {
1884 Syminfo *_info = info + 1;
1885
1886 for (ndx = 1; ndx < infonum; ndx++, _info++) {
1887 if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1888 continue;
1889
1890 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1891 (void) fprintf(stderr,
1892 MSG_INTL(MSG_ERR_BADSHINFO), file,
1893 infocache->c_name,
1894 EC_WORD(infoshdr->sh_info));
1895 }
1896 } else if ((infoshdr->sh_info >= shnum) ||
1897 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1898 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1899 file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1900 } else {
1901 dyncache = &cache[infoshdr->sh_info];
1902 if ((dyncache->c_data == NULL) ||
1903 ((dyns = dyncache->c_data->d_buf) == NULL)) {
1904 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1905 file, dyncache->c_name);
1906 }
1907 if (dyns != NULL) {
1908 dynnum = dyncache->c_shdr->sh_size /
1909 dyncache->c_shdr->sh_entsize;
1910
1911 /*
1912 * We validate the type of dynamic elements referenced
1913 * from the syminfo. This array is used report any
1914 * bad dynamic entries.
1915 */
1916 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1917 NULL) {
1918 int err = errno;
1919 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1920 file, strerror(err));
1921 return;
1922 }
1923 }
1924 }
1925
1926 /*
1927 * Get the data buffer for the associated symbol table and string table.
1928 */
1929 if (stringtbl(cache, 1, cnt, shnum, file,
1930 &symnum, &symsec, &strsec) == 0)
1931 return;
1932
1933 syms = symsec->c_data->d_buf;
1934
1935 /*
1936 * Loop through the syminfo entries.
1937 */
1938 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1939 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1940 Elf_syminfo_title(0);
1941
1942 for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1943 Sym *sym;
1944 const char *needed, *name;
1945 Word expect_dt;
1946 Word boundto = info->si_boundto;
1947
1948 if ((info->si_flags == 0) && (boundto == 0))
1949 continue;
1950
1951 sym = &syms[ndx];
1952 name = string(infocache, ndx, strsec, file, sym->st_name);
1953
1954 /* Is si_boundto set to one of the reserved values? */
1955 if (boundto >= SYMINFO_BT_LOWRESERVE) {
1956 Elf_syminfo_entry(0, ndx, info, name, NULL);
1957 continue;
1958 }
1959
1960 /*
1961 * si_boundto is referencing a dynamic section. If we don't
1962 * have one, an error was already issued above, so it suffices
1963 * to display an empty string. If we are out of bounds, then
1964 * report that and then display an empty string.
1965 */
1966 if ((dyns == NULL) || (boundto >= dynnum)) {
1967 if (dyns != NULL)
1968 (void) fprintf(stderr,
1969 MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
1970 infocache->c_ndx, infocache->c_name,
1971 EC_WORD(ndx), EC_WORD(dynnum - 1),
1972 EC_WORD(boundto));
1973 Elf_syminfo_entry(0, ndx, info, name,
1974 MSG_ORIG(MSG_STR_EMPTY));
1975 continue;
1976 }
1977
1978 /*
1979 * The si_boundto reference expects a specific dynamic element
1980 * type at the given index. The dynamic element is always a
1981 * string that gives an object name. The specific type depends
1982 * on the si_flags present. Ensure that we've got the right
1983 * type.
1984 */
1985 if (info->si_flags & SYMINFO_FLG_FILTER)
1986 expect_dt = DT_SUNW_FILTER;
1987 else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
1988 expect_dt = DT_SUNW_AUXILIARY;
1989 else if (info->si_flags & (SYMINFO_FLG_DIRECT |
1990 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
1991 expect_dt = DT_NEEDED;
1992 else
1993 expect_dt = DT_NULL; /* means we ignore the type */
1994
1995 if ((dyns[boundto].d_tag != expect_dt) &&
1996 (expect_dt != DT_NULL)) {
1997 Conv_inv_buf_t buf1, buf2;
1998
1999 /* Only complain about each dynamic element once */
2000 if (!dynerr[boundto]) {
2001 (void) fprintf(stderr,
2002 MSG_INTL(MSG_ERR_BADSIDYNTAG),
2003 file, infocache->c_ndx, infocache->c_name,
2004 EC_WORD(ndx), dyncache->c_ndx,
2005 dyncache->c_name, EC_WORD(boundto),
2006 conv_dyn_tag(expect_dt, osabi,
2007 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
2008 conv_dyn_tag(dyns[boundto].d_tag, osabi,
2009 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
2010 dynerr[boundto] = TRUE;
2011 }
2012 }
2013
2014 /*
2015 * Whether or not the DT item we're pointing at is
2016 * of the right type, if it's a type we recognize as
2017 * providing a string, go ahead and show it. Otherwise
2018 * an empty string.
2019 */
2020 switch (dyns[boundto].d_tag) {
2021 case DT_NEEDED:
2022 case DT_SONAME:
2023 case DT_RPATH:
2024 case DT_RUNPATH:
2025 case DT_CONFIG:
2026 case DT_DEPAUDIT:
2027 case DT_USED:
2028 case DT_AUDIT:
2029 case DT_SUNW_AUXILIARY:
2030 case DT_SUNW_FILTER:
2031 case DT_FILTER:
2032 case DT_AUXILIARY:
2033 needed = string(infocache, boundto,
2034 strsec, file, dyns[boundto].d_un.d_val);
2035 break;
2036 default:
2037 needed = MSG_ORIG(MSG_STR_EMPTY);
2038 }
2039 Elf_syminfo_entry(0, ndx, info, name, needed);
2040 }
2041 if (dyns != NULL)
2042 free(dynerr);
2043 }
2044
2045 /*
2046 * Print version definition section entries.
2047 */
2048 static void
version_def(Verdef * vdf,Word vdf_num,Cache * vcache,Cache * scache,const char * file)2049 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
2050 const char *file)
2051 {
2052 Word cnt;
2053 char index[MAXNDXSIZE];
2054
2055 Elf_ver_def_title(0);
2056
2057 for (cnt = 1; cnt <= vdf_num; cnt++,
2058 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2059 Conv_ver_flags_buf_t ver_flags_buf;
2060 const char *name, *dep;
2061 Half vcnt = vdf->vd_cnt - 1;
2062 Half ndx = vdf->vd_ndx;
2063 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2064
2065 /*
2066 * Obtain the name and first dependency (if any).
2067 */
2068 name = string(vcache, cnt, scache, file, vdap->vda_name);
2069 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2070 if (vcnt)
2071 dep = string(vcache, cnt, scache, file, vdap->vda_name);
2072 else
2073 dep = MSG_ORIG(MSG_STR_EMPTY);
2074
2075 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2076 EC_XWORD(ndx));
2077 Elf_ver_line_1(0, index, name, dep,
2078 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2079
2080 /*
2081 * Print any additional dependencies.
2082 */
2083 if (vcnt) {
2084 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2085 for (vcnt--; vcnt; vcnt--,
2086 vdap = (Verdaux *)((uintptr_t)vdap +
2087 vdap->vda_next)) {
2088 dep = string(vcache, cnt, scache, file,
2089 vdap->vda_name);
2090 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2091 }
2092 }
2093 }
2094 }
2095
2096 /*
2097 * Print version needed section entries.
2098 *
2099 * entry:
2100 * vnd - Address of verneed data
2101 * vnd_num - # of Verneed entries
2102 * vcache - Cache of verneed section being processed
2103 * scache - Cache of associated string table section
2104 * file - Name of object being processed.
2105 * versym - Information about versym section
2106 *
2107 * exit:
2108 * The versions have been printed. If GNU style versioning
2109 * is in effect, versym->max_verndx has been updated to
2110 * contain the largest version index seen.
2111 *
2112 * note:
2113 * The versym section of an object that follows the original
2114 * Solaris versioning rules only contains indexes into the verdef
2115 * section. Symbols defined in other objects (UNDEF) are given
2116 * a version of 0, indicating that they are not defined by
2117 * this file, and the Verneed entries do not have associated version
2118 * indexes. For these reasons, we do not display a version index
2119 * for original-style Verneed sections.
2120 *
2121 * The GNU versioning extensions alter this: Symbols defined in other
2122 * objects receive a version index in the range above those defined
2123 * by the Verdef section, and the vna_other field of the Vernaux
2124 * structs inside the Verneed section contain the version index for
2125 * that item. We therefore display the index when showing the
2126 * contents of a GNU style Verneed section. You should not
2127 * necessarily expect these indexes to appear in sorted
2128 * order --- it seems that the GNU ld assigns the versions as
2129 * symbols are encountered during linking, and then the results
2130 * are assembled into the Verneed section afterwards.
2131 */
2132 static void
version_need(Verneed * vnd,Word vnd_num,Cache * vcache,Cache * scache,const char * file,VERSYM_STATE * versym)2133 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2134 const char *file, VERSYM_STATE *versym)
2135 {
2136 Word cnt;
2137 char index[MAXNDXSIZE];
2138 const char *index_str;
2139
2140 Elf_ver_need_title(0, versym->gnu_needed);
2141
2142 for (cnt = 1; cnt <= vnd_num; cnt++,
2143 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2144 Conv_ver_flags_buf_t ver_flags_buf;
2145 const char *name, *dep;
2146 Half vcnt = vnd->vn_cnt;
2147 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2148
2149 /*
2150 * Obtain the name of the needed file and the version name
2151 * within it that we're dependent on. Note that the count
2152 * should be at least one, otherwise this is a pretty bogus
2153 * entry.
2154 */
2155 name = string(vcache, cnt, scache, file, vnd->vn_file);
2156 if (vcnt)
2157 dep = string(vcache, cnt, scache, file, vnap->vna_name);
2158 else
2159 dep = MSG_INTL(MSG_STR_NULL);
2160
2161 if (vnap->vna_other == 0) { /* Traditional form */
2162 index_str = MSG_ORIG(MSG_STR_EMPTY);
2163 } else { /* GNU form */
2164 index_str = index;
2165 /* Format the version index value */
2166 (void) snprintf(index, MAXNDXSIZE,
2167 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2168 if (vnap->vna_other > versym->max_verndx)
2169 versym->max_verndx = vnap->vna_other;
2170 }
2171 Elf_ver_line_1(0, index_str, name, dep,
2172 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2173
2174 /*
2175 * Print any additional version dependencies.
2176 */
2177 if (vcnt) {
2178 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2179 for (vcnt--; vcnt; vcnt--,
2180 vnap = (Vernaux *)((uintptr_t)vnap +
2181 vnap->vna_next)) {
2182 dep = string(vcache, cnt, scache, file,
2183 vnap->vna_name);
2184 if (vnap->vna_other > 0) {
2185 /* Format the next index value */
2186 (void) snprintf(index, MAXNDXSIZE,
2187 MSG_ORIG(MSG_FMT_INDEX),
2188 EC_XWORD(vnap->vna_other));
2189 Elf_ver_line_1(0, index,
2190 MSG_ORIG(MSG_STR_EMPTY), dep,
2191 conv_ver_flags(vnap->vna_flags,
2192 0, &ver_flags_buf));
2193 if (vnap->vna_other >
2194 versym->max_verndx)
2195 versym->max_verndx =
2196 vnap->vna_other;
2197 } else {
2198 Elf_ver_line_3(0,
2199 MSG_ORIG(MSG_STR_EMPTY), dep,
2200 conv_ver_flags(vnap->vna_flags,
2201 0, &ver_flags_buf));
2202 }
2203 }
2204 }
2205 }
2206 }
2207
2208 /*
2209 * Examine the Verneed section for information related to GNU
2210 * style Versym indexing:
2211 * - A non-zero vna_other field indicates that Versym indexes can
2212 * reference Verneed records.
2213 * - If the object uses GNU style Versym indexing, the
2214 * maximum index value is needed to detect bad Versym entries.
2215 *
2216 * entry:
2217 * vnd - Address of verneed data
2218 * vnd_num - # of Verneed entries
2219 * versym - Information about versym section
2220 *
2221 * exit:
2222 * If a non-zero vna_other field is seen, versym->gnu_needed is set.
2223 *
2224 * versym->max_verndx has been updated to contain the largest
2225 * version index seen.
2226 */
2227 static void
update_gnu_verndx(Verneed * vnd,Word vnd_num,VERSYM_STATE * versym)2228 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2229 {
2230 Word cnt;
2231
2232 for (cnt = 1; cnt <= vnd_num; cnt++,
2233 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2234 Half vcnt = vnd->vn_cnt;
2235 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2236
2237 /*
2238 * A non-zero value of vna_other indicates that this
2239 * object references VERNEED items from the VERSYM
2240 * array.
2241 */
2242 if (vnap->vna_other != 0) {
2243 versym->gnu_needed = 1;
2244 if (vnap->vna_other > versym->max_verndx)
2245 versym->max_verndx = vnap->vna_other;
2246 }
2247
2248 /*
2249 * Check any additional version dependencies.
2250 */
2251 if (vcnt) {
2252 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2253 for (vcnt--; vcnt; vcnt--,
2254 vnap = (Vernaux *)((uintptr_t)vnap +
2255 vnap->vna_next)) {
2256 if (vnap->vna_other == 0)
2257 continue;
2258
2259 versym->gnu_needed = 1;
2260 if (vnap->vna_other > versym->max_verndx)
2261 versym->max_verndx = vnap->vna_other;
2262 }
2263 }
2264 }
2265 }
2266
2267 /*
2268 * Display version section information if the flags require it.
2269 * Return version information needed by other output.
2270 *
2271 * entry:
2272 * cache - Cache of all section headers
2273 * shnum - # of sections in cache
2274 * file - Name of file
2275 * flags - Command line option flags
2276 * versym - VERSYM_STATE block to be filled in.
2277 */
2278 static void
versions(Cache * cache,Word shnum,const char * file,uint_t flags,VERSYM_STATE * versym)2279 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2280 VERSYM_STATE *versym)
2281 {
2282 GElf_Word cnt;
2283 Cache *verdef_cache = NULL, *verneed_cache = NULL;
2284
2285
2286 /* Gather information about the version sections */
2287 versym->max_verndx = 1;
2288 for (cnt = 1; cnt < shnum; cnt++) {
2289 Cache *_cache = &cache[cnt];
2290 Shdr *shdr = _cache->c_shdr;
2291 Dyn *dyn;
2292 ulong_t numdyn;
2293
2294 switch (shdr->sh_type) {
2295 case SHT_DYNAMIC:
2296 /*
2297 * The GNU ld puts a DT_VERSYM entry in the dynamic
2298 * section so that the runtime linker can use it to
2299 * implement their versioning rules. They allow multiple
2300 * incompatible functions with the same name to exist
2301 * in different versions. The Solaris ld does not
2302 * support this mechanism, and as such, does not
2303 * produce DT_VERSYM. We use this fact to determine
2304 * which ld produced this object, and how to interpret
2305 * the version values.
2306 */
2307 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
2308 (_cache->c_data == NULL))
2309 continue;
2310 numdyn = shdr->sh_size / shdr->sh_entsize;
2311 dyn = (Dyn *)_cache->c_data->d_buf;
2312 for (; numdyn-- > 0; dyn++)
2313 if (dyn->d_tag == DT_VERSYM) {
2314 versym->gnu_full =
2315 versym->gnu_needed = 1;
2316 break;
2317 }
2318 break;
2319
2320 case SHT_SUNW_versym:
2321 /* Record data address for later symbol processing */
2322 if (_cache->c_data != NULL) {
2323 versym->cache = _cache;
2324 versym->data = _cache->c_data->d_buf;
2325 continue;
2326 }
2327 break;
2328
2329 case SHT_SUNW_verdef:
2330 case SHT_SUNW_verneed:
2331 /*
2332 * Ensure the data is non-NULL and the number
2333 * of items is non-zero. Otherwise, we don't
2334 * understand the section, and will not use it.
2335 */
2336 if ((_cache->c_data == NULL) ||
2337 (_cache->c_data->d_buf == NULL)) {
2338 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2339 file, _cache->c_name);
2340 continue;
2341 }
2342 if (shdr->sh_info == 0) {
2343 (void) fprintf(stderr,
2344 MSG_INTL(MSG_ERR_BADSHINFO),
2345 file, _cache->c_name,
2346 EC_WORD(shdr->sh_info));
2347 continue;
2348 }
2349
2350 /* Make sure the string table index is in range */
2351 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2352 (void) fprintf(stderr,
2353 MSG_INTL(MSG_ERR_BADSHLINK), file,
2354 _cache->c_name, EC_WORD(shdr->sh_link));
2355 continue;
2356 }
2357
2358 /*
2359 * The section is usable. Save the cache entry.
2360 */
2361 if (shdr->sh_type == SHT_SUNW_verdef) {
2362 verdef_cache = _cache;
2363 /*
2364 * Under Solaris rules, if there is a verdef
2365 * section, the max versym index is number
2366 * of version definitions it supplies.
2367 */
2368 versym->max_verndx = shdr->sh_info;
2369 } else {
2370 verneed_cache = _cache;
2371 }
2372 break;
2373 }
2374 }
2375
2376 /*
2377 * If there is a Verneed section, examine it for information
2378 * related to GNU style versioning.
2379 */
2380 if (verneed_cache != NULL)
2381 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2382 verneed_cache->c_shdr->sh_info, versym);
2383
2384 /*
2385 * Now that all the information is available, display the
2386 * Verdef and Verneed section contents, if requested.
2387 */
2388 if ((flags & FLG_SHOW_VERSIONS) == 0)
2389 return;
2390 if (verdef_cache != NULL) {
2391 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2392 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2393 verdef_cache->c_name);
2394 version_def((Verdef *)verdef_cache->c_data->d_buf,
2395 verdef_cache->c_shdr->sh_info, verdef_cache,
2396 &cache[verdef_cache->c_shdr->sh_link], file);
2397 }
2398 if (verneed_cache != NULL) {
2399 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2400 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2401 verneed_cache->c_name);
2402 /*
2403 * If GNU versioning applies to this object, version_need()
2404 * will update versym->max_verndx, and it is not
2405 * necessary to call update_gnu_verndx().
2406 */
2407 version_need((Verneed *)verneed_cache->c_data->d_buf,
2408 verneed_cache->c_shdr->sh_info, verneed_cache,
2409 &cache[verneed_cache->c_shdr->sh_link], file, versym);
2410 }
2411 }
2412
2413 /*
2414 * Search for and process any symbol tables.
2415 */
2416 void
symbols(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,VERSYM_STATE * versym,const char * file,uint_t flags)2417 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2418 VERSYM_STATE *versym, const char *file, uint_t flags)
2419 {
2420 SYMTBL_STATE state;
2421 Cache *_cache;
2422 Word secndx;
2423
2424 for (secndx = 1; secndx < shnum; secndx++) {
2425 Word symcnt;
2426 Shdr *shdr;
2427
2428 _cache = &cache[secndx];
2429 shdr = _cache->c_shdr;
2430
2431 if ((shdr->sh_type != SHT_SYMTAB) &&
2432 (shdr->sh_type != SHT_DYNSYM) &&
2433 ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2434 (osabi != ELFOSABI_SOLARIS)))
2435 continue;
2436 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2437 continue;
2438
2439 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2440 osabi, versym, file, flags))
2441 continue;
2442 /*
2443 * Loop through the symbol tables entries.
2444 */
2445 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2446 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2447 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2448
2449 for (symcnt = 0; symcnt < state.symn; symcnt++)
2450 output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2451 state.sym + symcnt);
2452 }
2453 }
2454
2455 /*
2456 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2457 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2458 */
2459 static void
sunw_sort(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,VERSYM_STATE * versym,const char * file,uint_t flags)2460 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2461 VERSYM_STATE *versym, const char *file, uint_t flags)
2462 {
2463 SYMTBL_STATE ldynsym_state, dynsym_state;
2464 Cache *sortcache, *symcache;
2465 Shdr *sortshdr, *symshdr;
2466 Word sortsecndx, symsecndx;
2467 Word ldynsym_cnt;
2468 Word *ndx;
2469 Word ndxn;
2470 int output_cnt = 0;
2471 Conv_inv_buf_t inv_buf;
2472
2473 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2474
2475 sortcache = &cache[sortsecndx];
2476 sortshdr = sortcache->c_shdr;
2477
2478 if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2479 (sortshdr->sh_type != SHT_SUNW_tlssort))
2480 continue;
2481 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2482 sortshdr->sh_type))
2483 continue;
2484
2485 /*
2486 * If the section references a SUNW_ldynsym, then we
2487 * expect to see the associated .dynsym immediately
2488 * following. If it references a .dynsym, there is no
2489 * SUNW_ldynsym. If it is any other type, then we don't
2490 * know what to do with it.
2491 */
2492 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2493 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2494 file, sortcache->c_name,
2495 EC_WORD(sortshdr->sh_link));
2496 continue;
2497 }
2498 symcache = &cache[sortshdr->sh_link];
2499 symshdr = symcache->c_shdr;
2500 symsecndx = sortshdr->sh_link;
2501 ldynsym_cnt = 0;
2502 switch (symshdr->sh_type) {
2503 case SHT_SUNW_LDYNSYM:
2504 if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2505 symsecndx, ehdr, osabi, versym, file, flags))
2506 continue;
2507 ldynsym_cnt = ldynsym_state.symn;
2508 /*
2509 * We know that the dynsym follows immediately
2510 * after the SUNW_ldynsym, and so, should be at
2511 * (sortshdr->sh_link + 1). However, elfdump is a
2512 * diagnostic tool, so we do the full paranoid
2513 * search instead.
2514 */
2515 for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2516 symcache = &cache[symsecndx];
2517 symshdr = symcache->c_shdr;
2518 if (symshdr->sh_type == SHT_DYNSYM)
2519 break;
2520 }
2521 if (symsecndx >= shnum) { /* Dynsym not found! */
2522 (void) fprintf(stderr,
2523 MSG_INTL(MSG_ERR_NODYNSYM),
2524 file, sortcache->c_name);
2525 continue;
2526 }
2527 /* Fallthrough to process associated dynsym */
2528 /* FALLTHROUGH */
2529 case SHT_DYNSYM:
2530 if (!init_symtbl_state(&dynsym_state, cache, shnum,
2531 symsecndx, ehdr, osabi, versym, file, flags))
2532 continue;
2533 break;
2534 default:
2535 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2536 file, sortcache->c_name,
2537 conv_sec_type(osabi, ehdr->e_machine,
2538 symshdr->sh_type, 0, &inv_buf));
2539 continue;
2540 }
2541
2542 /*
2543 * Output header
2544 */
2545 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2546 if (ldynsym_cnt > 0) {
2547 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2548 sortcache->c_name, ldynsym_state.secname,
2549 dynsym_state.secname);
2550 /*
2551 * The data for .SUNW_ldynsym and dynsym sections
2552 * is supposed to be adjacent with SUNW_ldynsym coming
2553 * first. Check, and issue a warning if it isn't so.
2554 */
2555 if (((ldynsym_state.sym + ldynsym_state.symn)
2556 != dynsym_state.sym) &&
2557 ((flags & FLG_CTL_FAKESHDR) == 0))
2558 (void) fprintf(stderr,
2559 MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2560 ldynsym_state.secname,
2561 dynsym_state.secname);
2562 } else {
2563 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2564 sortcache->c_name, dynsym_state.secname);
2565 }
2566 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2567
2568 /* If not first one, insert a line of white space */
2569 if (output_cnt++ > 0)
2570 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2571
2572 /*
2573 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2574 * symbol indices. Iterate over the array entries,
2575 * dispaying the referenced symbols.
2576 */
2577 ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2578 ndx = (Word *)sortcache->c_data->d_buf;
2579 for (; ndxn-- > 0; ndx++) {
2580 if (*ndx >= ldynsym_cnt) {
2581 Word sec_ndx = *ndx - ldynsym_cnt;
2582
2583 output_symbol(&dynsym_state, sec_ndx, 0,
2584 *ndx, dynsym_state.sym + sec_ndx);
2585 } else {
2586 output_symbol(&ldynsym_state, *ndx, 0,
2587 *ndx, ldynsym_state.sym + *ndx);
2588 }
2589 }
2590 }
2591 }
2592
2593 /*
2594 * Search for and process any relocation sections.
2595 */
2596 static void
reloc(Cache * cache,Word shnum,Ehdr * ehdr,const char * file)2597 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2598 {
2599 Word cnt;
2600
2601 for (cnt = 1; cnt < shnum; cnt++) {
2602 Word type, symnum;
2603 Xword relndx, relnum, relsize;
2604 void *rels;
2605 Sym *syms;
2606 Cache *symsec, *strsec;
2607 Cache *_cache = &cache[cnt];
2608 Shdr *shdr = _cache->c_shdr;
2609 char *relname = _cache->c_name;
2610 Conv_inv_buf_t inv_buf;
2611
2612 if (((type = shdr->sh_type) != SHT_RELA) &&
2613 (type != SHT_REL))
2614 continue;
2615 if (!match(MATCH_F_ALL, relname, cnt, type))
2616 continue;
2617
2618 /*
2619 * Decide entry size.
2620 */
2621 if (((relsize = shdr->sh_entsize) == 0) ||
2622 (relsize > shdr->sh_size)) {
2623 if (type == SHT_RELA)
2624 relsize = sizeof (Rela);
2625 else
2626 relsize = sizeof (Rel);
2627 }
2628
2629 /*
2630 * Determine the number of relocations available.
2631 */
2632 if (shdr->sh_size == 0) {
2633 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2634 file, relname);
2635 continue;
2636 }
2637 if (_cache->c_data == NULL)
2638 continue;
2639
2640 rels = _cache->c_data->d_buf;
2641 relnum = shdr->sh_size / relsize;
2642
2643 /*
2644 * Get the data buffer for the associated symbol table and
2645 * string table.
2646 */
2647 if (stringtbl(cache, 1, cnt, shnum, file,
2648 &symnum, &symsec, &strsec) == 0)
2649 continue;
2650
2651 syms = symsec->c_data->d_buf;
2652
2653 /*
2654 * Loop through the relocation entries.
2655 */
2656 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2657 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2658 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2659
2660 for (relndx = 0; relndx < relnum; relndx++,
2661 rels = (void *)((char *)rels + relsize)) {
2662 Half mach = ehdr->e_machine;
2663 char section[BUFSIZ];
2664 const char *symname;
2665 Word symndx, reltype;
2666 Rela *rela;
2667 Rel *rel;
2668
2669 /*
2670 * Unravel the relocation and determine the symbol with
2671 * which this relocation is associated.
2672 */
2673 if (type == SHT_RELA) {
2674 rela = (Rela *)rels;
2675 symndx = ELF_R_SYM(rela->r_info);
2676 reltype = ELF_R_TYPE(rela->r_info, mach);
2677 } else {
2678 rel = (Rel *)rels;
2679 symndx = ELF_R_SYM(rel->r_info);
2680 reltype = ELF_R_TYPE(rel->r_info, mach);
2681 }
2682
2683 symname = relsymname(cache, _cache, strsec, symndx,
2684 symnum, relndx, syms, section, BUFSIZ, file);
2685
2686 /*
2687 * A zero symbol index is only valid for a few
2688 * relocations.
2689 */
2690 if (symndx == 0) {
2691 int badrel = 0;
2692
2693 if ((mach == EM_SPARC) ||
2694 (mach == EM_SPARC32PLUS) ||
2695 (mach == EM_SPARCV9)) {
2696 if ((reltype != R_SPARC_NONE) &&
2697 (reltype != R_SPARC_REGISTER) &&
2698 (reltype != R_SPARC_RELATIVE))
2699 badrel++;
2700 } else if (mach == EM_386) {
2701 if ((reltype != R_386_NONE) &&
2702 (reltype != R_386_RELATIVE))
2703 badrel++;
2704 } else if (mach == EM_AMD64) {
2705 if ((reltype != R_AMD64_NONE) &&
2706 (reltype != R_AMD64_RELATIVE))
2707 badrel++;
2708 }
2709
2710 if (badrel) {
2711 (void) fprintf(stderr,
2712 MSG_INTL(MSG_ERR_BADREL1), file,
2713 conv_reloc_type(mach, reltype,
2714 0, &inv_buf));
2715 }
2716 }
2717
2718 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2719 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2720 rels, relname, symname, 0);
2721 }
2722 }
2723 }
2724
2725
2726 /*
2727 * This value controls which test dyn_test() performs.
2728 */
2729 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2730
2731 /*
2732 * Used by dynamic() to compare the value of a dynamic element against
2733 * the starting address of the section it references.
2734 *
2735 * entry:
2736 * test_type - Specify which dyn item is being tested.
2737 * sh_type - SHT_* type value for required section.
2738 * sec_cache - Cache entry for section, or NULL if the object lacks
2739 * a section of this type.
2740 * dyn - Dyn entry to be tested
2741 * dynsec_cnt - # of dynamic section being examined. The first
2742 * dynamic section is 1, the next is 2, and so on...
2743 * ehdr - ELF header for file
2744 * file - Name of file
2745 */
2746 static void
dyn_test(dyn_test_t test_type,Word sh_type,Cache * sec_cache,Dyn * dyn,Word dynsec_cnt,Ehdr * ehdr,uchar_t osabi,const char * file)2747 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2748 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2749 {
2750 Conv_inv_buf_t buf1, buf2;
2751
2752 /*
2753 * These tests are based around the implicit assumption that
2754 * there is only one dynamic section in an object, and also only
2755 * one of the sections it references. We have therefore gathered
2756 * all of the necessary information to test this in a single pass
2757 * over the section headers, which is very efficient. We are not
2758 * aware of any case where more than one dynamic section would
2759 * be meaningful in an ELF object, so this is a reasonable solution.
2760 *
2761 * To test multiple dynamic sections correctly would be more
2762 * expensive in code and time. We would have to build a data structure
2763 * containing all the dynamic elements. Then, we would use the address
2764 * to locate the section it references and ensure the section is of
2765 * the right type and that the address in the dynamic element is
2766 * to the start of the section. Then, we could check the size and
2767 * entsize values against those same sections. This is O(n^2), and
2768 * also complicated.
2769 *
2770 * In the highly unlikely case that there is more than one dynamic
2771 * section, we only test the first one, and simply allow the values
2772 * of the subsequent one to be displayed unchallenged.
2773 */
2774 if (dynsec_cnt != 1)
2775 return;
2776
2777 /*
2778 * A DT_ item that references a section address should always find
2779 * the section in the file.
2780 */
2781 if (sec_cache == NULL) {
2782 const char *name;
2783
2784 /*
2785 * Supply section names instead of section types for
2786 * things that reference progbits so that the error
2787 * message will make more sense.
2788 */
2789 switch (dyn->d_tag) {
2790 case DT_INIT:
2791 name = MSG_ORIG(MSG_ELF_INIT);
2792 break;
2793 case DT_FINI:
2794 name = MSG_ORIG(MSG_ELF_FINI);
2795 break;
2796 default:
2797 name = conv_sec_type(osabi, ehdr->e_machine,
2798 sh_type, 0, &buf1);
2799 break;
2800 }
2801 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2802 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2803 CONV_FMT_ALT_CF, &buf2));
2804 return;
2805 }
2806
2807
2808 switch (test_type) {
2809 case DYN_TEST_ADDR:
2810 /* The section address should match the DT_ item value */
2811 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2812 (void) fprintf(stderr,
2813 MSG_INTL(MSG_ERR_DYNBADADDR), file,
2814 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2815 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2816 sec_cache->c_ndx, sec_cache->c_name,
2817 EC_ADDR(sec_cache->c_shdr->sh_addr));
2818 break;
2819
2820 case DYN_TEST_SIZE:
2821 /* The section size should match the DT_ item value */
2822 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2823 (void) fprintf(stderr,
2824 MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2825 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2826 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2827 sec_cache->c_ndx, sec_cache->c_name,
2828 EC_XWORD(sec_cache->c_shdr->sh_size));
2829 break;
2830
2831 case DYN_TEST_ENTSIZE:
2832 /* The sh_entsize value should match the DT_ item value */
2833 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2834 (void) fprintf(stderr,
2835 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2836 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2837 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2838 sec_cache->c_ndx, sec_cache->c_name,
2839 EC_XWORD(sec_cache->c_shdr->sh_entsize));
2840 break;
2841 }
2842 }
2843
2844 /*
2845 * There are some DT_ entries that have corresponding symbols
2846 * (e.g. DT_INIT and _init). It is expected that these items will
2847 * both have the same value if both are present. This routine
2848 * examines the well known symbol tables for such symbols and
2849 * issues warnings for any that don't match.
2850 *
2851 * entry:
2852 * dyn - Dyn entry to be tested
2853 * symname - Name of symbol that corresponds to dyn
2854 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2855 * target_cache - Section the symname section is expected to be
2856 * associated with.
2857 * cache - Cache of all section headers
2858 * shnum - # of sections in cache
2859 * ehdr - ELF header for file
2860 * osabi - OSABI to apply when interpreting object
2861 * file - Name of file
2862 */
2863 static void
dyn_symtest(Dyn * dyn,const char * symname,Cache * symtab_cache,Cache * dynsym_cache,Cache * ldynsym_cache,Cache * target_cache,Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,const char * file)2864 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2865 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2866 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2867 {
2868 Conv_inv_buf_t buf;
2869 int i;
2870 Sym *sym;
2871 Cache *_cache;
2872
2873 for (i = 0; i < 3; i++) {
2874 switch (i) {
2875 case 0:
2876 _cache = symtab_cache;
2877 break;
2878 case 1:
2879 _cache = dynsym_cache;
2880 break;
2881 case 2:
2882 _cache = ldynsym_cache;
2883 break;
2884 }
2885
2886 if ((_cache != NULL) &&
2887 symlookup(symname, cache, shnum, &sym, target_cache,
2888 _cache, file) && (sym->st_value != dyn->d_un.d_val))
2889 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2890 file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2891 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2892 symname, EC_ADDR(sym->st_value));
2893 }
2894 }
2895
2896 /*
2897 * Search for and process a .dynamic section.
2898 */
2899 static void
dynamic(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,const char * file)2900 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2901 {
2902 struct {
2903 Cache *symtab;
2904 Cache *dynstr;
2905 Cache *dynsym;
2906 Cache *hash;
2907 Cache *fini;
2908 Cache *fini_array;
2909 Cache *init;
2910 Cache *init_array;
2911 Cache *preinit_array;
2912 Cache *rel;
2913 Cache *rela;
2914 Cache *sunw_cap;
2915 Cache *sunw_capinfo;
2916 Cache *sunw_capchain;
2917 Cache *sunw_ldynsym;
2918 Cache *sunw_move;
2919 Cache *sunw_syminfo;
2920 Cache *sunw_symsort;
2921 Cache *sunw_tlssort;
2922 Cache *sunw_verdef;
2923 Cache *sunw_verneed;
2924 Cache *sunw_versym;
2925 } sec;
2926 Word dynsec_ndx;
2927 Word dynsec_num;
2928 int dynsec_cnt;
2929 Word cnt;
2930 int osabi_solaris = osabi == ELFOSABI_SOLARIS;
2931
2932 /*
2933 * Make a pass over all the sections, gathering section information
2934 * we'll need below.
2935 */
2936 dynsec_num = 0;
2937 bzero(&sec, sizeof (sec));
2938 for (cnt = 1; cnt < shnum; cnt++) {
2939 Cache *_cache = &cache[cnt];
2940
2941 switch (_cache->c_shdr->sh_type) {
2942 case SHT_DYNAMIC:
2943 if (dynsec_num == 0) {
2944 dynsec_ndx = cnt;
2945
2946 /* Does it have a valid string table? */
2947 (void) stringtbl(cache, 0, cnt, shnum, file,
2948 0, 0, &sec.dynstr);
2949 }
2950 dynsec_num++;
2951 break;
2952
2953
2954 case SHT_PROGBITS:
2955 /*
2956 * We want to detect the .init and .fini sections,
2957 * if present. These are SHT_PROGBITS, so all we
2958 * have to go on is the section name. Normally comparing
2959 * names is a bad idea, but there are some special
2960 * names (i.e. .init/.fini/.interp) that are very
2961 * difficult to use in any other context, and for
2962 * these symbols, we do the heuristic match.
2963 */
2964 if (strcmp(_cache->c_name,
2965 MSG_ORIG(MSG_ELF_INIT)) == 0) {
2966 if (sec.init == NULL)
2967 sec.init = _cache;
2968 } else if (strcmp(_cache->c_name,
2969 MSG_ORIG(MSG_ELF_FINI)) == 0) {
2970 if (sec.fini == NULL)
2971 sec.fini = _cache;
2972 }
2973 break;
2974
2975 case SHT_REL:
2976 /*
2977 * We want the SHT_REL section with the lowest
2978 * offset. The linker gathers them together,
2979 * and puts the address of the first one
2980 * into the DT_REL dynamic element.
2981 */
2982 if ((sec.rel == NULL) ||
2983 (_cache->c_shdr->sh_offset <
2984 sec.rel->c_shdr->sh_offset))
2985 sec.rel = _cache;
2986 break;
2987
2988 case SHT_RELA:
2989 /* RELA is handled just like RELA above */
2990 if ((sec.rela == NULL) ||
2991 (_cache->c_shdr->sh_offset <
2992 sec.rela->c_shdr->sh_offset))
2993 sec.rela = _cache;
2994 break;
2995
2996 /*
2997 * The GRAB macro is used for the simple case in which
2998 * we simply grab the first section of the desired type.
2999 */
3000 #define GRAB(_sec_type, _sec_field) \
3001 case _sec_type: \
3002 if (sec._sec_field == NULL) \
3003 sec._sec_field = _cache; \
3004 break
3005 GRAB(SHT_SYMTAB, symtab);
3006 GRAB(SHT_DYNSYM, dynsym);
3007 GRAB(SHT_FINI_ARRAY, fini_array);
3008 GRAB(SHT_HASH, hash);
3009 GRAB(SHT_INIT_ARRAY, init_array);
3010 GRAB(SHT_SUNW_move, sunw_move);
3011 GRAB(SHT_PREINIT_ARRAY, preinit_array);
3012 GRAB(SHT_SUNW_cap, sunw_cap);
3013 GRAB(SHT_SUNW_capinfo, sunw_capinfo);
3014 GRAB(SHT_SUNW_capchain, sunw_capchain);
3015 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3016 GRAB(SHT_SUNW_syminfo, sunw_syminfo);
3017 GRAB(SHT_SUNW_symsort, sunw_symsort);
3018 GRAB(SHT_SUNW_tlssort, sunw_tlssort);
3019 GRAB(SHT_SUNW_verdef, sunw_verdef);
3020 GRAB(SHT_SUNW_verneed, sunw_verneed);
3021 GRAB(SHT_SUNW_versym, sunw_versym);
3022 #undef GRAB
3023 }
3024 }
3025
3026 /*
3027 * If no dynamic section, return immediately. If more than one
3028 * dynamic section, then something odd is going on and an error
3029 * is in order, but then continue on and display them all.
3030 */
3031 if (dynsec_num == 0)
3032 return;
3033 if (dynsec_num > 1)
3034 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
3035 file, EC_WORD(dynsec_num));
3036
3037
3038 dynsec_cnt = 0;
3039 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
3040 cnt++) {
3041 Dyn *dyn;
3042 ulong_t numdyn;
3043 int ndx, end_ndx;
3044 Cache *_cache = &cache[cnt], *strsec;
3045 Shdr *shdr = _cache->c_shdr;
3046 int dumped = 0;
3047
3048 if (shdr->sh_type != SHT_DYNAMIC)
3049 continue;
3050 dynsec_cnt++;
3051
3052 /*
3053 * Verify the associated string table section.
3054 */
3055 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
3056 continue;
3057
3058 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3059 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3060 file, _cache->c_name);
3061 continue;
3062 }
3063 if (_cache->c_data == NULL)
3064 continue;
3065
3066 numdyn = shdr->sh_size / shdr->sh_entsize;
3067 dyn = (Dyn *)_cache->c_data->d_buf;
3068
3069 /*
3070 * We expect the REL/RELA entries to reference the reloc
3071 * section with the lowest address. However, this is
3072 * not true for dumped objects. Detect if this object has
3073 * been dumped so that we can skip the reloc address test
3074 * in that case.
3075 */
3076 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3077 if (dyn->d_tag == DT_FLAGS_1) {
3078 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3079 break;
3080 }
3081 }
3082 dyn = (Dyn *)_cache->c_data->d_buf;
3083
3084 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3085 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3086
3087 Elf_dyn_title(0);
3088
3089 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3090 union {
3091 Conv_inv_buf_t inv;
3092 Conv_dyn_flag_buf_t flag;
3093 Conv_dyn_flag1_buf_t flag1;
3094 Conv_dyn_posflag1_buf_t posflag1;
3095 Conv_dyn_feature1_buf_t feature1;
3096 } c_buf;
3097 const char *name = NULL;
3098
3099 /*
3100 * Print the information numerically, and if possible
3101 * as a string. If a string is available, name is
3102 * set to reference it.
3103 *
3104 * Also, take this opportunity to sanity check
3105 * the values of DT elements. In the code above,
3106 * we gathered information on sections that are
3107 * referenced by the dynamic section. Here, we
3108 * compare the attributes of those sections to
3109 * the DT_ items that reference them and report
3110 * on inconsistencies.
3111 *
3112 * Things not currently tested that could be improved
3113 * in later revisions include:
3114 * - We don't check PLT or GOT related items
3115 * - We don't handle computing the lengths of
3116 * relocation arrays. To handle this
3117 * requires examining data that spans
3118 * across sections, in a contiguous span
3119 * within a single segment.
3120 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be
3121 * verified without parsing the sections.
3122 * - We don't handle DT_SUNW_SYMSZ, which would
3123 * be the sum of the lengths of .dynsym and
3124 * .SUNW_ldynsym
3125 * - DT_SUNW_STRPAD can't be verified other than
3126 * to check that it's not larger than
3127 * the string table.
3128 * - Some items come in "all or none" clusters
3129 * that give an address, element size,
3130 * and data length in bytes. We don't
3131 * verify that there are no missing items
3132 * in such groups.
3133 */
3134 switch (dyn->d_tag) {
3135 case DT_NULL:
3136 /*
3137 * Special case: DT_NULLs can come in groups
3138 * that we prefer to reduce to a single line.
3139 */
3140 end_ndx = ndx;
3141 while ((end_ndx < (numdyn - 1)) &&
3142 ((dyn + 1)->d_tag == DT_NULL)) {
3143 dyn++;
3144 end_ndx++;
3145 }
3146 Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3147 ndx = end_ndx;
3148 continue;
3149
3150 /*
3151 * String items all reference the dynstr. The string()
3152 * function does the necessary sanity checking.
3153 */
3154 case DT_NEEDED:
3155 case DT_SONAME:
3156 case DT_FILTER:
3157 case DT_AUXILIARY:
3158 case DT_CONFIG:
3159 case DT_RPATH:
3160 case DT_RUNPATH:
3161 case DT_USED:
3162 case DT_DEPAUDIT:
3163 case DT_AUDIT:
3164 name = string(_cache, ndx, strsec,
3165 file, dyn->d_un.d_ptr);
3166 break;
3167
3168 case DT_SUNW_AUXILIARY:
3169 case DT_SUNW_FILTER:
3170 if (osabi_solaris)
3171 name = string(_cache, ndx, strsec,
3172 file, dyn->d_un.d_ptr);
3173 break;
3174
3175 case DT_FLAGS:
3176 name = conv_dyn_flag(dyn->d_un.d_val,
3177 0, &c_buf.flag);
3178 break;
3179 case DT_FLAGS_1:
3180 name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3181 &c_buf.flag1);
3182 break;
3183 case DT_POSFLAG_1:
3184 name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3185 &c_buf.posflag1);
3186 break;
3187 case DT_FEATURE_1:
3188 name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3189 &c_buf.feature1);
3190 break;
3191 case DT_DEPRECATED_SPARC_REGISTER:
3192 name = MSG_INTL(MSG_STR_DEPRECATED);
3193 break;
3194
3195 case DT_SUNW_LDMACH:
3196 if (!osabi_solaris)
3197 break;
3198 name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3199 0, &c_buf.inv);
3200 break;
3201
3202 /*
3203 * Cases below this point are strictly sanity checking,
3204 * and do not generate a name string. The TEST_ macros
3205 * are used to hide the boiler plate arguments neeeded
3206 * by dyn_test().
3207 */
3208 #define TEST_ADDR(_sh_type, _sec_field) \
3209 dyn_test(DYN_TEST_ADDR, _sh_type, \
3210 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3211 osabi, file)
3212 #define TEST_SIZE(_sh_type, _sec_field) \
3213 dyn_test(DYN_TEST_SIZE, _sh_type, \
3214 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3215 osabi, file)
3216 #define TEST_ENTSIZE(_sh_type, _sec_field) \
3217 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3218 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3219 osabi, file)
3220
3221 case DT_FINI:
3222 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3223 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3224 sec.fini, cache, shnum, ehdr, osabi, file);
3225 TEST_ADDR(SHT_PROGBITS, fini);
3226 break;
3227
3228 case DT_FINI_ARRAY:
3229 TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3230 break;
3231
3232 case DT_FINI_ARRAYSZ:
3233 TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3234 break;
3235
3236 case DT_HASH:
3237 TEST_ADDR(SHT_HASH, hash);
3238 break;
3239
3240 case DT_INIT:
3241 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3242 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3243 sec.init, cache, shnum, ehdr, osabi, file);
3244 TEST_ADDR(SHT_PROGBITS, init);
3245 break;
3246
3247 case DT_INIT_ARRAY:
3248 TEST_ADDR(SHT_INIT_ARRAY, init_array);
3249 break;
3250
3251 case DT_INIT_ARRAYSZ:
3252 TEST_SIZE(SHT_INIT_ARRAY, init_array);
3253 break;
3254
3255 case DT_MOVEENT:
3256 TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3257 break;
3258
3259 case DT_MOVESZ:
3260 TEST_SIZE(SHT_SUNW_move, sunw_move);
3261 break;
3262
3263 case DT_MOVETAB:
3264 TEST_ADDR(SHT_SUNW_move, sunw_move);
3265 break;
3266
3267 case DT_PREINIT_ARRAY:
3268 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3269 break;
3270
3271 case DT_PREINIT_ARRAYSZ:
3272 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3273 break;
3274
3275 case DT_REL:
3276 if (!dumped)
3277 TEST_ADDR(SHT_REL, rel);
3278 break;
3279
3280 case DT_RELENT:
3281 TEST_ENTSIZE(SHT_REL, rel);
3282 break;
3283
3284 case DT_RELA:
3285 if (!dumped)
3286 TEST_ADDR(SHT_RELA, rela);
3287 break;
3288
3289 case DT_RELAENT:
3290 TEST_ENTSIZE(SHT_RELA, rela);
3291 break;
3292
3293 case DT_STRTAB:
3294 TEST_ADDR(SHT_STRTAB, dynstr);
3295 break;
3296
3297 case DT_STRSZ:
3298 TEST_SIZE(SHT_STRTAB, dynstr);
3299 break;
3300
3301 case DT_SUNW_CAP:
3302 if (osabi_solaris)
3303 TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3304 break;
3305
3306 case DT_SUNW_CAPINFO:
3307 if (osabi_solaris)
3308 TEST_ADDR(SHT_SUNW_capinfo,
3309 sunw_capinfo);
3310 break;
3311
3312 case DT_SUNW_CAPCHAIN:
3313 if (osabi_solaris)
3314 TEST_ADDR(SHT_SUNW_capchain,
3315 sunw_capchain);
3316 break;
3317
3318 case DT_SUNW_SYMTAB:
3319 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3320 break;
3321
3322 case DT_SYMENT:
3323 TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3324 break;
3325
3326 case DT_SYMINENT:
3327 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3328 break;
3329
3330 case DT_SYMINFO:
3331 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3332 break;
3333
3334 case DT_SYMINSZ:
3335 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3336 break;
3337
3338 case DT_SYMTAB:
3339 TEST_ADDR(SHT_DYNSYM, dynsym);
3340 break;
3341
3342 case DT_SUNW_SORTENT:
3343 /*
3344 * This entry is related to both the symsort and
3345 * tlssort sections.
3346 */
3347 if (osabi_solaris) {
3348 int test_tls =
3349 (sec.sunw_tlssort != NULL);
3350 int test_sym =
3351 (sec.sunw_symsort != NULL) ||
3352 !test_tls;
3353 if (test_sym)
3354 TEST_ENTSIZE(SHT_SUNW_symsort,
3355 sunw_symsort);
3356 if (test_tls)
3357 TEST_ENTSIZE(SHT_SUNW_tlssort,
3358 sunw_tlssort);
3359 }
3360 break;
3361
3362
3363 case DT_SUNW_SYMSORT:
3364 if (osabi_solaris)
3365 TEST_ADDR(SHT_SUNW_symsort,
3366 sunw_symsort);
3367 break;
3368
3369 case DT_SUNW_SYMSORTSZ:
3370 if (osabi_solaris)
3371 TEST_SIZE(SHT_SUNW_symsort,
3372 sunw_symsort);
3373 break;
3374
3375 case DT_SUNW_TLSSORT:
3376 if (osabi_solaris)
3377 TEST_ADDR(SHT_SUNW_tlssort,
3378 sunw_tlssort);
3379 break;
3380
3381 case DT_SUNW_TLSSORTSZ:
3382 if (osabi_solaris)
3383 TEST_SIZE(SHT_SUNW_tlssort,
3384 sunw_tlssort);
3385 break;
3386
3387 case DT_VERDEF:
3388 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3389 break;
3390
3391 case DT_VERNEED:
3392 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3393 break;
3394
3395 case DT_VERSYM:
3396 TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3397 break;
3398 #undef TEST_ADDR
3399 #undef TEST_SIZE
3400 #undef TEST_ENTSIZE
3401 }
3402
3403 if (name == NULL)
3404 name = MSG_ORIG(MSG_STR_EMPTY);
3405 Elf_dyn_entry(0, dyn, ndx, name,
3406 osabi, ehdr->e_machine);
3407 }
3408 }
3409 }
3410
3411 /*
3412 * Search for and process a MOVE section.
3413 */
3414 static void
move(Cache * cache,Word shnum,const char * file,uint_t flags)3415 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3416 {
3417 Word cnt;
3418 const char *fmt = NULL;
3419
3420 for (cnt = 1; cnt < shnum; cnt++) {
3421 Word movenum, symnum, ndx;
3422 Sym *syms;
3423 Cache *_cache = &cache[cnt];
3424 Shdr *shdr = _cache->c_shdr;
3425 Cache *symsec, *strsec;
3426 Move *move;
3427
3428 if (shdr->sh_type != SHT_SUNW_move)
3429 continue;
3430 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3431 continue;
3432
3433 /*
3434 * Determine the move data and number.
3435 */
3436 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3437 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3438 file, _cache->c_name);
3439 continue;
3440 }
3441 if (_cache->c_data == NULL)
3442 continue;
3443
3444 move = (Move *)_cache->c_data->d_buf;
3445 movenum = shdr->sh_size / shdr->sh_entsize;
3446
3447 /*
3448 * Get the data buffer for the associated symbol table and
3449 * string table.
3450 */
3451 if (stringtbl(cache, 1, cnt, shnum, file,
3452 &symnum, &symsec, &strsec) == 0)
3453 return;
3454
3455 syms = (Sym *)symsec->c_data->d_buf;
3456
3457 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3458 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3459 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3460
3461 if (fmt == NULL)
3462 fmt = MSG_INTL(MSG_MOVE_ENTRY);
3463
3464 for (ndx = 0; ndx < movenum; move++, ndx++) {
3465 const char *symname;
3466 char index[MAXNDXSIZE], section[BUFSIZ];
3467 Word symndx, shndx;
3468 Sym *sym;
3469
3470 /*
3471 * Check for null entries
3472 */
3473 if ((move->m_info == 0) && (move->m_value == 0) &&
3474 (move->m_poffset == 0) && (move->m_repeat == 0) &&
3475 (move->m_stride == 0)) {
3476 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3477 EC_XWORD(move->m_poffset), 0, 0, 0,
3478 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3479 continue;
3480 }
3481 if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3482 (symndx >= symnum)) {
3483 (void) fprintf(stderr,
3484 MSG_INTL(MSG_ERR_BADMINFO), file,
3485 _cache->c_name, EC_XWORD(move->m_info));
3486
3487 (void) snprintf(index, MAXNDXSIZE,
3488 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3489 dbg_print(0, fmt, index,
3490 EC_XWORD(move->m_poffset),
3491 ELF_M_SIZE(move->m_info), move->m_repeat,
3492 move->m_stride, move->m_value,
3493 MSG_INTL(MSG_STR_UNKNOWN));
3494 continue;
3495 }
3496
3497 symname = relsymname(cache, _cache, strsec,
3498 symndx, symnum, ndx, syms, section, BUFSIZ, file);
3499 sym = (Sym *)(syms + symndx);
3500
3501 /*
3502 * Additional sanity check.
3503 */
3504 shndx = sym->st_shndx;
3505 if (!((shndx == SHN_COMMON) ||
3506 (((shndx >= 1) && (shndx <= shnum)) &&
3507 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3508 (void) fprintf(stderr,
3509 MSG_INTL(MSG_ERR_BADSYM2), file,
3510 _cache->c_name, EC_WORD(symndx),
3511 demangle(symname, flags));
3512 }
3513
3514 (void) snprintf(index, MAXNDXSIZE,
3515 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3516 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3517 ELF_M_SIZE(move->m_info), move->m_repeat,
3518 move->m_stride, move->m_value,
3519 demangle(symname, flags));
3520 }
3521 }
3522 }
3523
3524 /*
3525 * parse_note_t is used to track the state used by parse_note_entry()
3526 * between calls, and also to return the results of each call.
3527 */
3528 typedef struct {
3529 /* pns_ fields track progress through the data */
3530 const char *pns_file; /* File name */
3531 Cache *pns_cache; /* Note section cache entry */
3532 size_t pns_size; /* # unprocessed data bytes */
3533 Word *pns_data; /* # to next unused data byte */
3534
3535 /* pn_ fields return the results for a single call */
3536 Word pn_namesz; /* Value of note namesz field */
3537 Word pn_descsz; /* Value of note descsz field */
3538 Word pn_type; /* Value of note type field */
3539 const char *pn_name; /* if (namesz > 0) ptr to name bytes */
3540 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */
3541 } parse_note_t;
3542
3543 /*
3544 * Extract the various sub-parts of a note entry, and advance the
3545 * data pointer past it.
3546 *
3547 * entry:
3548 * The state pns_ fields contain current values for the Note section
3549 *
3550 * exit:
3551 * On success, True (1) is returned, the state pns_ fields have been
3552 * advanced to point at the start of the next entry, and the information
3553 * for the recovered note entry is found in the state pn_ fields.
3554 *
3555 * On failure, False (0) is returned. The values contained in state
3556 * are undefined.
3557 */
3558 static int
parse_note_entry(parse_note_t * state)3559 parse_note_entry(parse_note_t *state)
3560 {
3561 size_t pad, noteoff;
3562
3563 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3564 /*
3565 * Make sure we can at least reference the 3 initial entries
3566 * (4-byte words) of the note information block.
3567 */
3568 if (state->pns_size >= (sizeof (Word) * 3)) {
3569 state->pns_size -= (sizeof (Word) * 3);
3570 } else {
3571 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3572 state->pns_file, state->pns_cache->c_name,
3573 EC_WORD(noteoff));
3574 return (0);
3575 }
3576
3577 /*
3578 * Make sure any specified name string can be referenced.
3579 */
3580 if ((state->pn_namesz = *state->pns_data++) != 0) {
3581 if (state->pns_size >= state->pn_namesz) {
3582 state->pns_size -= state->pn_namesz;
3583 } else {
3584 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3585 state->pns_file, state->pns_cache->c_name,
3586 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3587 return (0);
3588 }
3589 }
3590
3591 /*
3592 * Make sure any specified descriptor can be referenced.
3593 */
3594 if ((state->pn_descsz = *state->pns_data++) != 0) {
3595 /*
3596 * If namesz isn't a 4-byte multiple, account for any
3597 * padding that must exist before the descriptor.
3598 */
3599 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3600 pad = sizeof (Word) - pad;
3601 state->pns_size -= pad;
3602 }
3603 if (state->pns_size >= state->pn_descsz) {
3604 state->pns_size -= state->pn_descsz;
3605 } else {
3606 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3607 state->pns_file, state->pns_cache->c_name,
3608 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3609 return (0);
3610 }
3611 }
3612
3613 state->pn_type = *state->pns_data++;
3614
3615 /* Name */
3616 if (state->pn_namesz) {
3617 state->pn_name = (char *)state->pns_data;
3618 pad = (state->pn_namesz +
3619 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3620 /* LINTED */
3621 state->pns_data = (Word *)(state->pn_name + pad);
3622 }
3623
3624 /*
3625 * If multiple information blocks exist within a .note section
3626 * account for any padding that must exist before the next
3627 * information block.
3628 */
3629 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3630 pad = sizeof (Word) - pad;
3631 if (state->pns_size > pad)
3632 state->pns_size -= pad;
3633 }
3634
3635 /* Data */
3636 if (state->pn_descsz) {
3637 state->pn_desc = (const char *)state->pns_data;
3638 /* LINTED */
3639 state->pns_data = (Word *)(state->pn_desc +
3640 state->pn_descsz + pad);
3641 }
3642
3643 return (1);
3644 }
3645
3646 /*
3647 * Callback function for use with conv_str_to_c_literal() below.
3648 */
3649 /*ARGSUSED2*/
3650 static void
c_literal_cb(const void * ptr,size_t size,void * uvalue)3651 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3652 {
3653 (void) fwrite(ptr, size, 1, stdout);
3654 }
3655
3656 /*
3657 * Traverse a note section analyzing each note information block.
3658 * The data buffers size is used to validate references before they are made,
3659 * and is decremented as each element is processed.
3660 */
3661 void
note_entry(Cache * cache,Word * data,size_t size,Ehdr * ehdr,const char * file)3662 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3663 {
3664 int cnt = 0;
3665 int is_corenote;
3666 int do_swap;
3667 Conv_inv_buf_t inv_buf;
3668 parse_note_t pnstate;
3669
3670 pnstate.pns_file = file;
3671 pnstate.pns_cache = cache;
3672 pnstate.pns_size = size;
3673 pnstate.pns_data = data;
3674 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3675
3676 /*
3677 * Print out a single `note' information block.
3678 */
3679 while (pnstate.pns_size > 0) {
3680
3681 if (parse_note_entry(&pnstate) == 0)
3682 return;
3683
3684 /*
3685 * Is this a Solaris core note? Such notes all have
3686 * the name "CORE".
3687 */
3688 is_corenote = (ehdr->e_type == ET_CORE) &&
3689 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3690 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3691 MSG_STR_CORE_SIZE + 1) == 0);
3692
3693 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3694 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3695 cnt++;
3696 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3697 EC_WORD(pnstate.pn_namesz));
3698 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3699 EC_WORD(pnstate.pn_descsz));
3700
3701 if (is_corenote)
3702 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3703 conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3704 else
3705 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3706 EC_WORD(pnstate.pn_type));
3707 if (pnstate.pn_namesz) {
3708 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3709 /*
3710 * The name string can contain embedded 'null'
3711 * bytes and/or unprintable characters. Also,
3712 * the final NULL is documented in the ELF ABI
3713 * as being included in the namesz. So, display
3714 * the name using C literal string notation, and
3715 * include the terminating NULL in the output.
3716 * We don't show surrounding double quotes, as
3717 * that implies the termination that we are showing
3718 * explicitly.
3719 */
3720 (void) fwrite(MSG_ORIG(MSG_STR_8SP),
3721 MSG_STR_8SP_SIZE, 1, stdout);
3722 conv_str_to_c_literal(pnstate.pn_name,
3723 pnstate.pn_namesz, c_literal_cb, NULL);
3724 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3725 }
3726
3727 if (pnstate.pn_descsz) {
3728 int hexdump = 1;
3729
3730 /*
3731 * If this is a core note, let the corenote()
3732 * function handle it.
3733 */
3734 if (is_corenote) {
3735 /* We only issue the bad arch error once */
3736 static int badnote_done = 0;
3737 corenote_ret_t corenote_ret;
3738
3739 corenote_ret = corenote(ehdr->e_machine,
3740 do_swap, pnstate.pn_type, pnstate.pn_desc,
3741 pnstate.pn_descsz);
3742 switch (corenote_ret) {
3743 case CORENOTE_R_OK_DUMP:
3744 hexdump = 1;
3745 break;
3746 case CORENOTE_R_OK:
3747 hexdump = 0;
3748 break;
3749 case CORENOTE_R_BADDATA:
3750 (void) fprintf(stderr,
3751 MSG_INTL(MSG_NOTE_BADCOREDATA),
3752 file);
3753 break;
3754 case CORENOTE_R_BADARCH:
3755 if (badnote_done)
3756 break;
3757 (void) fprintf(stderr,
3758 MSG_INTL(MSG_NOTE_BADCOREARCH),
3759 file,
3760 conv_ehdr_mach(ehdr->e_machine,
3761 0, &inv_buf));
3762 break;
3763 case CORENOTE_R_BADTYPE:
3764 (void) fprintf(stderr,
3765 MSG_INTL(MSG_NOTE_BADCORETYPE),
3766 file,
3767 EC_WORD(pnstate.pn_type));
3768 break;
3769
3770 }
3771 }
3772
3773 /*
3774 * The default thing when we don't understand
3775 * the note data is to display it as hex bytes.
3776 */
3777 if (hexdump) {
3778 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3779 dump_hex_bytes(pnstate.pn_desc,
3780 pnstate.pn_descsz, 8, 4, 4);
3781 }
3782 }
3783 }
3784 }
3785
3786 /*
3787 * Search for and process .note sections.
3788 *
3789 * Returns the number of note sections seen.
3790 */
3791 static Word
note(Cache * cache,Word shnum,Ehdr * ehdr,const char * file)3792 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3793 {
3794 Word cnt, note_cnt = 0;
3795
3796 /*
3797 * Otherwise look for any .note sections.
3798 */
3799 for (cnt = 1; cnt < shnum; cnt++) {
3800 Cache *_cache = &cache[cnt];
3801 Shdr *shdr = _cache->c_shdr;
3802
3803 if (shdr->sh_type != SHT_NOTE)
3804 continue;
3805 note_cnt++;
3806 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3807 continue;
3808
3809 /*
3810 * As these sections are often hand rolled, make sure they're
3811 * properly aligned before proceeding, and issue an error
3812 * as necessary.
3813 *
3814 * Note that we will continue on to display the note even
3815 * if it has bad alignment. We can do this safely, because
3816 * libelf knows the alignment required for SHT_NOTE, and
3817 * takes steps to deliver a properly aligned buffer to us
3818 * even if the actual file is misaligned.
3819 */
3820 if (shdr->sh_offset & (sizeof (Word) - 1))
3821 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3822 file, _cache->c_name);
3823
3824 if (_cache->c_data == NULL)
3825 continue;
3826
3827 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3828 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3829 note_entry(_cache, (Word *)_cache->c_data->d_buf,
3830 /* LINTED */
3831 (Word)_cache->c_data->d_size, ehdr, file);
3832 }
3833
3834 return (note_cnt);
3835 }
3836
3837 /*
3838 * The Linux Standard Base defines a special note named .note.ABI-tag
3839 * that is used to maintain Linux ABI information. Presence of this section
3840 * is a strong indication that the object should be considered to be
3841 * ELFOSABI_LINUX.
3842 *
3843 * This function returns True (1) if such a note is seen, and False (0)
3844 * otherwise.
3845 */
3846 static int
has_linux_abi_note(Cache * cache,Word shnum,const char * file)3847 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3848 {
3849 Word cnt;
3850
3851 for (cnt = 1; cnt < shnum; cnt++) {
3852 parse_note_t pnstate;
3853 Cache *_cache = &cache[cnt];
3854 Shdr *shdr = _cache->c_shdr;
3855
3856 /*
3857 * Section must be SHT_NOTE, must have the name
3858 * .note.ABI-tag, and must have data.
3859 */
3860 if ((shdr->sh_type != SHT_NOTE) ||
3861 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3862 _cache->c_name) != 0) || (_cache->c_data == NULL))
3863 continue;
3864
3865 pnstate.pns_file = file;
3866 pnstate.pns_cache = _cache;
3867 pnstate.pns_size = _cache->c_data->d_size;
3868 pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3869
3870 while (pnstate.pns_size > 0) {
3871 Word *w;
3872
3873 if (parse_note_entry(&pnstate) == 0)
3874 break;
3875
3876 /*
3877 * The type must be 1, and the name must be "GNU".
3878 * The descsz must be at least 16 bytes.
3879 */
3880 if ((pnstate.pn_type != 1) ||
3881 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3882 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3883 MSG_STR_CORE_SIZE + 1) != 0) ||
3884 (pnstate.pn_descsz < 16))
3885 continue;
3886
3887 /*
3888 * desc contains 4 32-bit fields. Field 0 must be 0,
3889 * indicating Linux. The second, third, and fourth
3890 * fields represent the earliest Linux kernel
3891 * version compatible with this object.
3892 */
3893 /*LINTED*/
3894 w = (Word *) pnstate.pn_desc;
3895 if (*w == 0)
3896 return (1);
3897 }
3898 }
3899
3900 return (0);
3901 }
3902
3903 /*
3904 * Determine an individual hash entry. This may be the initial hash entry,
3905 * or an associated chain entry.
3906 */
3907 static void
hash_entry(Cache * refsec,Cache * strsec,const char * hsecname,Word hashndx,Word symndx,Word symn,Sym * syms,const char * file,ulong_t bkts,uint_t flags,int chain)3908 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3909 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3910 uint_t flags, int chain)
3911 {
3912 Sym *sym;
3913 const char *symname, *str;
3914 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3915 ulong_t nbkt, nhash;
3916
3917 if (symndx > symn) {
3918 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3919 EC_WORD(symndx), EC_WORD(hashndx));
3920 symname = MSG_INTL(MSG_STR_UNKNOWN);
3921 } else {
3922 sym = (Sym *)(syms + symndx);
3923 symname = string(refsec, symndx, strsec, file, sym->st_name);
3924 }
3925
3926 if (chain == 0) {
3927 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3928 hashndx);
3929 str = (const char *)_bucket;
3930 } else
3931 str = MSG_ORIG(MSG_STR_EMPTY);
3932
3933 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3934 EC_WORD(symndx));
3935 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3936 demangle(symname, flags));
3937
3938 /*
3939 * Determine if this string is in the correct bucket.
3940 */
3941 nhash = elf_hash(symname);
3942 nbkt = nhash % bkts;
3943
3944 if (nbkt != hashndx) {
3945 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3946 hsecname, symname, EC_WORD(hashndx), nbkt);
3947 }
3948 }
3949
3950 #define MAXCOUNT 500
3951
3952 static void
hash(Cache * cache,Word shnum,const char * file,uint_t flags)3953 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3954 {
3955 static int count[MAXCOUNT];
3956 Word cnt;
3957 ulong_t ndx, bkts;
3958 char number[MAXNDXSIZE];
3959
3960 for (cnt = 1; cnt < shnum; cnt++) {
3961 uint_t *hash, *chain;
3962 Cache *_cache = &cache[cnt];
3963 Shdr *sshdr, *hshdr = _cache->c_shdr;
3964 char *ssecname, *hsecname = _cache->c_name;
3965 Sym *syms;
3966 Word symn;
3967
3968 if (hshdr->sh_type != SHT_HASH)
3969 continue;
3970
3971 /*
3972 * Determine the hash table data and size.
3973 */
3974 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3975 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3976 file, hsecname);
3977 continue;
3978 }
3979 if (_cache->c_data == NULL)
3980 continue;
3981
3982 hash = (uint_t *)_cache->c_data->d_buf;
3983 bkts = *hash;
3984 chain = hash + 2 + bkts;
3985 hash += 2;
3986
3987 /*
3988 * Get the data buffer for the associated symbol table.
3989 */
3990 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3991 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3992 file, hsecname, EC_WORD(hshdr->sh_link));
3993 continue;
3994 }
3995
3996 _cache = &cache[hshdr->sh_link];
3997 ssecname = _cache->c_name;
3998
3999 if (_cache->c_data == NULL)
4000 continue;
4001
4002 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
4003 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4004 file, ssecname);
4005 continue;
4006 }
4007
4008 sshdr = _cache->c_shdr;
4009 /* LINTED */
4010 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
4011
4012 /*
4013 * Get the associated string table section.
4014 */
4015 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
4016 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
4017 file, ssecname, EC_WORD(sshdr->sh_link));
4018 continue;
4019 }
4020
4021 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4022 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
4023 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
4024
4025 /*
4026 * Loop through the hash buckets, printing the appropriate
4027 * symbols.
4028 */
4029 for (ndx = 0; ndx < bkts; ndx++, hash++) {
4030 Word _ndx, _cnt;
4031
4032 if (*hash == 0) {
4033 count[0]++;
4034 continue;
4035 }
4036
4037 hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
4038 ndx, *hash, symn, syms, file, bkts, flags, 0);
4039
4040 /*
4041 * Determine if any other symbols are chained to this
4042 * bucket.
4043 */
4044 _ndx = chain[*hash];
4045 _cnt = 1;
4046 while (_ndx) {
4047 hash_entry(_cache, &cache[sshdr->sh_link],
4048 hsecname, ndx, _ndx, symn, syms, file,
4049 bkts, flags, 1);
4050 _ndx = chain[_ndx];
4051 _cnt++;
4052 }
4053
4054 if (_cnt >= MAXCOUNT) {
4055 (void) fprintf(stderr,
4056 MSG_INTL(MSG_HASH_OVERFLW), file,
4057 _cache->c_name, EC_WORD(ndx),
4058 EC_WORD(_cnt));
4059 } else
4060 count[_cnt]++;
4061 }
4062 break;
4063 }
4064
4065 /*
4066 * Print out the count information.
4067 */
4068 bkts = cnt = 0;
4069 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4070
4071 for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4072 Word _cnt;
4073
4074 if ((_cnt = count[ndx]) == 0)
4075 continue;
4076
4077 (void) snprintf(number, MAXNDXSIZE,
4078 MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4079 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4080 EC_WORD(ndx));
4081 bkts += _cnt;
4082 cnt += (Word)(ndx * _cnt);
4083 }
4084 if (cnt) {
4085 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4086 bkts);
4087 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4088 EC_WORD(cnt));
4089 }
4090 }
4091
4092 static void
group(Cache * cache,Word shnum,const char * file,uint_t flags)4093 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4094 {
4095 Word scnt;
4096
4097 for (scnt = 1; scnt < shnum; scnt++) {
4098 Cache *_cache = &cache[scnt];
4099 Shdr *shdr = _cache->c_shdr;
4100 Word *grpdata, gcnt, grpcnt, symnum, unknown;
4101 Cache *symsec, *strsec;
4102 Sym *syms, *sym;
4103 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4104 const char *grpnam;
4105
4106 if (shdr->sh_type != SHT_GROUP)
4107 continue;
4108 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4109 continue;
4110 if ((_cache->c_data == NULL) ||
4111 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4112 continue;
4113 grpcnt = shdr->sh_size / sizeof (Word);
4114
4115 /*
4116 * Get the data buffer for the associated symbol table and
4117 * string table.
4118 */
4119 if (stringtbl(cache, 1, scnt, shnum, file,
4120 &symnum, &symsec, &strsec) == 0)
4121 return;
4122
4123 syms = symsec->c_data->d_buf;
4124
4125 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4126 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4127 dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4128
4129 /*
4130 * The first element of the group defines the group. The
4131 * associated symbol is defined by the sh_link field.
4132 */
4133 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4134 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4135 file, _cache->c_name, EC_WORD(shdr->sh_info));
4136 return;
4137 }
4138
4139 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4140 if (grpdata[0] & GRP_COMDAT) {
4141 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4142 }
4143 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4144 size_t len = strlen(flgstrbuf);
4145
4146 (void) snprintf(&flgstrbuf[len],
4147 (MSG_GRP_COMDAT_SIZE + 10 - len),
4148 MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4149 }
4150 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4151 sym = (Sym *)(syms + shdr->sh_info);
4152
4153 /*
4154 * The GNU assembler can use section symbols as the signature
4155 * symbol as described by this comment in the gold linker
4156 * (found via google):
4157 *
4158 * It seems that some versions of gas will create a
4159 * section group associated with a section symbol, and
4160 * then fail to give a name to the section symbol. In
4161 * such a case, use the name of the section.
4162 *
4163 * In order to support such objects, we do the same.
4164 */
4165 grpnam = string(_cache, 0, strsec, file, sym->st_name);
4166 if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4167 (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4168 grpnam = cache[sym->st_shndx].c_name;
4169
4170 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4171 demangle(grpnam, flags));
4172
4173 for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4174 char index[MAXNDXSIZE];
4175 const char *name;
4176
4177 (void) snprintf(index, MAXNDXSIZE,
4178 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4179
4180 if (grpdata[gcnt] >= shnum)
4181 name = MSG_INTL(MSG_GRP_INVALSCN);
4182 else
4183 name = cache[grpdata[gcnt]].c_name;
4184
4185 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4186 EC_XWORD(grpdata[gcnt]));
4187 }
4188 }
4189 }
4190
4191 static void
got(Cache * cache,Word shnum,Ehdr * ehdr,const char * file)4192 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4193 {
4194 Cache *gotcache = NULL, *symtab = NULL;
4195 Addr gotbgn, gotend;
4196 Shdr *gotshdr;
4197 Word cnt, gotents, gotndx;
4198 size_t gentsize;
4199 Got_info *gottable;
4200 char *gotdata;
4201 Sym *gotsym;
4202 Xword gotsymaddr;
4203 uint_t sys_encoding;
4204
4205 /*
4206 * First, find the got.
4207 */
4208 for (cnt = 1; cnt < shnum; cnt++) {
4209 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4210 MSG_ELF_GOT_SIZE) == 0) {
4211 gotcache = &cache[cnt];
4212 break;
4213 }
4214 }
4215 if (gotcache == NULL)
4216 return;
4217
4218 /*
4219 * A got section within a relocatable object is suspicious.
4220 */
4221 if (ehdr->e_type == ET_REL) {
4222 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4223 gotcache->c_name);
4224 }
4225
4226 gotshdr = gotcache->c_shdr;
4227 if (gotshdr->sh_size == 0) {
4228 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4229 file, gotcache->c_name);
4230 return;
4231 }
4232
4233 gotbgn = gotshdr->sh_addr;
4234 gotend = gotbgn + gotshdr->sh_size;
4235
4236 /*
4237 * Some architectures don't properly set the sh_entsize for the GOT
4238 * table. If it's not set, default to a size of a pointer.
4239 */
4240 if ((gentsize = gotshdr->sh_entsize) == 0)
4241 gentsize = sizeof (Xword);
4242
4243 if (gotcache->c_data == NULL)
4244 return;
4245
4246 /* LINTED */
4247 gotents = (Word)(gotshdr->sh_size / gentsize);
4248 gotdata = gotcache->c_data->d_buf;
4249
4250 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4251 int err = errno;
4252 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4253 strerror(err));
4254 return;
4255 }
4256
4257 /*
4258 * Now we scan through all the sections looking for any relocations
4259 * that may be against the GOT. Since these may not be isolated to a
4260 * .rel[a].got section we check them all.
4261 * While scanning sections save the symbol table entry (a symtab
4262 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4263 */
4264 for (cnt = 1; cnt < shnum; cnt++) {
4265 Word type, symnum;
4266 Xword relndx, relnum, relsize;
4267 void *rels;
4268 Sym *syms;
4269 Cache *symsec, *strsec;
4270 Cache *_cache = &cache[cnt];
4271 Shdr *shdr;
4272
4273 shdr = _cache->c_shdr;
4274 type = shdr->sh_type;
4275
4276 if ((symtab == 0) && (type == SHT_DYNSYM)) {
4277 symtab = _cache;
4278 continue;
4279 }
4280 if (type == SHT_SYMTAB) {
4281 symtab = _cache;
4282 continue;
4283 }
4284 if ((type != SHT_RELA) && (type != SHT_REL))
4285 continue;
4286
4287 /*
4288 * Decide entry size.
4289 */
4290 if (((relsize = shdr->sh_entsize) == 0) ||
4291 (relsize > shdr->sh_size)) {
4292 if (type == SHT_RELA)
4293 relsize = sizeof (Rela);
4294 else
4295 relsize = sizeof (Rel);
4296 }
4297
4298 /*
4299 * Determine the number of relocations available.
4300 */
4301 if (shdr->sh_size == 0) {
4302 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4303 file, _cache->c_name);
4304 continue;
4305 }
4306 if (_cache->c_data == NULL)
4307 continue;
4308
4309 rels = _cache->c_data->d_buf;
4310 relnum = shdr->sh_size / relsize;
4311
4312 /*
4313 * Get the data buffer for the associated symbol table and
4314 * string table.
4315 */
4316 if (stringtbl(cache, 1, cnt, shnum, file,
4317 &symnum, &symsec, &strsec) == 0)
4318 continue;
4319
4320 syms = symsec->c_data->d_buf;
4321
4322 /*
4323 * Loop through the relocation entries.
4324 */
4325 for (relndx = 0; relndx < relnum; relndx++,
4326 rels = (void *)((char *)rels + relsize)) {
4327 char section[BUFSIZ];
4328 Addr offset;
4329 Got_info *gip;
4330 Word symndx, reltype;
4331 Rela *rela;
4332 Rel *rel;
4333
4334 /*
4335 * Unravel the relocation.
4336 */
4337 if (type == SHT_RELA) {
4338 rela = (Rela *)rels;
4339 symndx = ELF_R_SYM(rela->r_info);
4340 reltype = ELF_R_TYPE(rela->r_info,
4341 ehdr->e_machine);
4342 offset = rela->r_offset;
4343 } else {
4344 rel = (Rel *)rels;
4345 symndx = ELF_R_SYM(rel->r_info);
4346 reltype = ELF_R_TYPE(rel->r_info,
4347 ehdr->e_machine);
4348 offset = rel->r_offset;
4349 }
4350
4351 /*
4352 * Only pay attention to relocations against the GOT.
4353 */
4354 if ((offset < gotbgn) || (offset >= gotend))
4355 continue;
4356
4357 /* LINTED */
4358 gotndx = (Word)((offset - gotbgn) /
4359 gotshdr->sh_entsize);
4360 gip = &gottable[gotndx];
4361
4362 if (gip->g_reltype != 0) {
4363 (void) fprintf(stderr,
4364 MSG_INTL(MSG_GOT_MULTIPLE), file,
4365 EC_WORD(gotndx), EC_ADDR(offset));
4366 continue;
4367 }
4368
4369 if (symndx)
4370 gip->g_symname = relsymname(cache, _cache,
4371 strsec, symndx, symnum, relndx, syms,
4372 section, BUFSIZ, file);
4373 gip->g_reltype = reltype;
4374 gip->g_rel = rels;
4375 }
4376 }
4377
4378 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4379 symtab, file))
4380 gotsymaddr = gotsym->st_value;
4381 else
4382 gotsymaddr = gotbgn;
4383
4384 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4385 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4386 Elf_got_title(0);
4387
4388 sys_encoding = _elf_sys_encoding();
4389 for (gotndx = 0; gotndx < gotents; gotndx++) {
4390 Got_info *gip;
4391 Sword gindex;
4392 Addr gaddr;
4393 Xword gotentry;
4394
4395 gip = &gottable[gotndx];
4396
4397 gaddr = gotbgn + (gotndx * gentsize);
4398 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4399
4400 if (gentsize == sizeof (Word))
4401 /* LINTED */
4402 gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4403 else
4404 /* LINTED */
4405 gotentry = *((Xword *)(gotdata) + gotndx);
4406
4407 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4408 ehdr->e_ident[EI_DATA], sys_encoding,
4409 gip->g_reltype, gip->g_rel, gip->g_symname);
4410 }
4411 free(gottable);
4412 }
4413
4414 void
checksum(Elf * elf)4415 checksum(Elf *elf)
4416 {
4417 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4418 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4419 }
4420
4421 /*
4422 * This variable is used by regular() to communicate the address of
4423 * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4424 * the qsort() interface does not include a userdata argument by which
4425 * such arbitrary data can be passed, so we are stuck using global data.
4426 */
4427 static Cache *sort_shdr_ndx_arr_cache;
4428
4429
4430 /*
4431 * Used with qsort() to sort the section indices so that they can be
4432 * used to access the section headers in order of increasing data offset.
4433 *
4434 * entry:
4435 * sort_shdr_ndx_arr_cache - Contains address of
4436 * section header cache.
4437 * v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4438 *
4439 * exit:
4440 * Returns -1 (less than), 0 (equal) or 1 (greater than).
4441 */
4442 static int
sort_shdr_ndx_arr(const void * v1,const void * v2)4443 sort_shdr_ndx_arr(const void *v1, const void *v2)
4444 {
4445 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4446 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4447
4448 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4449 return (-1);
4450
4451 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4452 return (1);
4453
4454 return (0);
4455 }
4456
4457
4458 static int
shdr_cache(const char * file,Elf * elf,Ehdr * ehdr,size_t shstrndx,size_t shnum,Cache ** cache_ret,Word flags)4459 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4460 size_t shnum, Cache **cache_ret, Word flags)
4461 {
4462 Elf_Scn *scn;
4463 Elf_Data *data;
4464 size_t ndx;
4465 Shdr *nameshdr;
4466 char *names = NULL;
4467 Cache *cache, *_cache;
4468 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt;
4469
4470
4471 /*
4472 * Obtain the .shstrtab data buffer to provide the required section
4473 * name strings.
4474 */
4475 if (shstrndx == SHN_UNDEF) {
4476 /*
4477 * It is rare, but legal, for an object to lack a
4478 * header string table section.
4479 */
4480 names = NULL;
4481 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4482 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4483 failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4484 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4485 EC_XWORD(shstrndx));
4486
4487 } else if ((data = elf_getdata(scn, NULL)) == NULL) {
4488 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4489 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4490 EC_XWORD(shstrndx));
4491
4492 } else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4493 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4494 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4495 EC_WORD(elf_ndxscn(scn)));
4496
4497 } else if ((names = data->d_buf) == NULL)
4498 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4499
4500 /*
4501 * Allocate a cache to maintain a descriptor for each section.
4502 */
4503 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4504 int err = errno;
4505 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4506 file, strerror(err));
4507 return (0);
4508 }
4509
4510 *cache = cache_init;
4511 _cache = cache;
4512 _cache++;
4513
4514 /*
4515 * Allocate an array that will hold the section index for
4516 * each section that has data in the ELF file:
4517 *
4518 * - Is not a NOBITS section
4519 * - Data has non-zero length
4520 *
4521 * Note that shnum is an upper bound on the size required. It
4522 * is likely that we won't use a few of these array elements.
4523 * Allocating a modest amount of extra memory in this case means
4524 * that we can avoid an extra loop to count the number of needed
4525 * items, and can fill this array immediately in the first loop
4526 * below.
4527 */
4528 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4529 int err = errno;
4530 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4531 file, strerror(err));
4532 return (0);
4533 }
4534 shdr_ndx_arr_cnt = 0;
4535
4536 /*
4537 * Traverse the sections of the file. This gathering of data is
4538 * carried out in two passes. First, the section headers are captured
4539 * and the section header names are evaluated. A verification pass is
4540 * then carried out over the section information. Files have been
4541 * known to exhibit overlapping (and hence erroneous) section header
4542 * information.
4543 *
4544 * Finally, the data for each section is obtained. This processing is
4545 * carried out after section verification because should any section
4546 * header overlap occur, and a file needs translating (ie. xlate'ing
4547 * information from a non-native architecture file), then the process
4548 * of translation can corrupt the section header information. Of
4549 * course, if there is any section overlap, the data related to the
4550 * sections is going to be compromised. However, it is the translation
4551 * of this data that has caused problems with elfdump()'s ability to
4552 * extract the data.
4553 */
4554 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4555 ndx++, _cache++) {
4556 char scnndxnm[100];
4557
4558 _cache->c_ndx = ndx;
4559 _cache->c_scn = scn;
4560
4561 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4562 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4563 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4564 EC_WORD(elf_ndxscn(scn)));
4565 }
4566
4567 /*
4568 * If this section has data in the file, include it in
4569 * the array of sections to check for address overlap.
4570 */
4571 if ((_cache->c_shdr->sh_size != 0) &&
4572 (_cache->c_shdr->sh_type != SHT_NOBITS))
4573 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4574
4575 /*
4576 * If a shstrtab exists, assign the section name.
4577 */
4578 if (names && _cache->c_shdr) {
4579 if (_cache->c_shdr->sh_name &&
4580 /* LINTED */
4581 (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4582 const char *symname;
4583 char *secname;
4584
4585 secname = names + _cache->c_shdr->sh_name;
4586
4587 /*
4588 * A SUN naming convention employs a "%" within
4589 * a section name to indicate a section/symbol
4590 * name. This originated from the compilers
4591 * -xF option, that places functions into their
4592 * own sections. This convention (which has no
4593 * formal standard) has also been followed for
4594 * COMDAT sections. To demangle the symbol
4595 * name, the name must be separated from the
4596 * section name.
4597 */
4598 if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4599 ((symname = strchr(secname, '%')) == NULL))
4600 _cache->c_name = secname;
4601 else {
4602 size_t secsz = ++symname - secname;
4603 size_t strsz;
4604
4605 symname = demangle(symname, flags);
4606 strsz = secsz + strlen(symname) + 1;
4607
4608 if ((_cache->c_name =
4609 malloc(strsz)) == NULL) {
4610 int err = errno;
4611 (void) fprintf(stderr,
4612 MSG_INTL(MSG_ERR_MALLOC),
4613 file, strerror(err));
4614 return (0);
4615 }
4616 (void) snprintf(_cache->c_name, strsz,
4617 MSG_ORIG(MSG_FMT_SECSYM),
4618 EC_WORD(secsz), secname, symname);
4619 }
4620
4621 continue;
4622 }
4623
4624 /*
4625 * Generate an error if the section name index is zero
4626 * or exceeds the shstrtab data. Fall through to
4627 * fabricate a section name.
4628 */
4629 if ((_cache->c_shdr->sh_name == 0) ||
4630 /* LINTED */
4631 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4632 (void) fprintf(stderr,
4633 MSG_INTL(MSG_ERR_BADSHNAME), file,
4634 EC_WORD(ndx),
4635 EC_XWORD(_cache->c_shdr->sh_name));
4636 }
4637 }
4638
4639 /*
4640 * If there exists no shstrtab data, or a section header has no
4641 * name (an invalid index of 0), then compose a name for the
4642 * section.
4643 */
4644 (void) snprintf(scnndxnm, sizeof (scnndxnm),
4645 MSG_INTL(MSG_FMT_SCNNDX), ndx);
4646
4647 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4648 int err = errno;
4649 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4650 file, strerror(err));
4651 return (0);
4652 }
4653 (void) strcpy(_cache->c_name, scnndxnm);
4654 }
4655
4656 /*
4657 * Having collected all the sections, validate their address range.
4658 * Cases have existed where the section information has been invalid.
4659 * This can lead to all sorts of other, hard to diagnose errors, as
4660 * each section is processed individually (ie. with elf_getdata()).
4661 * Here, we carry out some address comparisons to catch a family of
4662 * overlapping memory issues we have observed (likely, there are others
4663 * that we have yet to discover).
4664 *
4665 * Note, should any memory overlap occur, obtaining any additional
4666 * data from the file is questionable. However, it might still be
4667 * possible to inspect the ELF header, Programs headers, or individual
4668 * sections, so rather than bailing on an error condition, continue
4669 * processing to see if any data can be salvaged.
4670 */
4671 if (shdr_ndx_arr_cnt > 1) {
4672 sort_shdr_ndx_arr_cache = cache;
4673 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4674 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4675 }
4676 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4677 Cache *_cache = cache + shdr_ndx_arr[ndx];
4678 Shdr *shdr = _cache->c_shdr;
4679 Off bgn1, bgn = shdr->sh_offset;
4680 Off end1, end = shdr->sh_offset + shdr->sh_size;
4681 size_t ndx1;
4682
4683 /*
4684 * Check the section against all following ones, reporting
4685 * any overlaps. Since we've sorted the sections by offset,
4686 * we can stop after the first comparison that fails. There
4687 * are no overlaps in a properly formed ELF file, in which
4688 * case this algorithm runs in O(n) time. This will degenerate
4689 * to O(n^2) for a completely broken file. Such a file is
4690 * (1) highly unlikely, and (2) unusable, so it is reasonable
4691 * for the analysis to take longer.
4692 */
4693 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4694 Cache *_cache1 = cache + shdr_ndx_arr[ndx1];
4695 Shdr *shdr1 = _cache1->c_shdr;
4696
4697 bgn1 = shdr1->sh_offset;
4698 end1 = shdr1->sh_offset + shdr1->sh_size;
4699
4700 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4701 ((bgn1 < end) && (end1 >= end))) {
4702 (void) fprintf(stderr,
4703 MSG_INTL(MSG_ERR_SECMEMOVER), file,
4704 EC_WORD(elf_ndxscn(_cache->c_scn)),
4705 _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4706 EC_WORD(elf_ndxscn(_cache1->c_scn)),
4707 _cache1->c_name, EC_OFF(bgn1),
4708 EC_OFF(end1));
4709 } else { /* No overlap, so can stop */
4710 break;
4711 }
4712 }
4713
4714 /*
4715 * In addition to checking for sections overlapping
4716 * each other (done above), we should also make sure
4717 * the section doesn't overlap the section header array.
4718 */
4719 bgn1 = ehdr->e_shoff;
4720 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4721
4722 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4723 ((bgn1 < end) && (end1 >= end))) {
4724 (void) fprintf(stderr,
4725 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4726 EC_OFF(end1),
4727 EC_WORD(elf_ndxscn(_cache->c_scn)),
4728 _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4729 }
4730 }
4731
4732 /*
4733 * Obtain the data for each section.
4734 */
4735 for (ndx = 1; ndx < shnum; ndx++) {
4736 Cache *_cache = &cache[ndx];
4737 Elf_Scn *scn = _cache->c_scn;
4738
4739 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4740 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4741 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4742 EC_WORD(elf_ndxscn(scn)));
4743 }
4744
4745 /*
4746 * If a string table, verify that it has NULL first and
4747 * final bytes.
4748 */
4749 if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4750 (_cache->c_data->d_buf != NULL) &&
4751 (_cache->c_data->d_size > 0)) {
4752 const char *s = _cache->c_data->d_buf;
4753
4754 if ((*s != '\0') ||
4755 (*(s + _cache->c_data->d_size - 1) != '\0'))
4756 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4757 file, _cache->c_name);
4758 }
4759 }
4760
4761 return (1);
4762 }
4763
4764
4765
4766 /*
4767 * Generate a cache of section headers and related information
4768 * for use by the rest of elfdump. If requested (or the file
4769 * contains no section headers), we generate a fake set of
4770 * headers from the information accessible from the program headers.
4771 * Otherwise, we use the real section headers contained in the file.
4772 */
4773 static int
create_cache(const char * file,int fd,Elf * elf,Ehdr * ehdr,Cache ** cache,size_t shstrndx,size_t * shnum,uint_t * flags)4774 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4775 size_t shstrndx, size_t *shnum, uint_t *flags)
4776 {
4777 /*
4778 * If there are no section headers, then resort to synthesizing
4779 * section headers from the program headers. This is normally
4780 * only done by explicit request, but in this case there's no
4781 * reason not to go ahead, since the alternative is simply to quit.
4782 */
4783 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4784 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4785 *flags |= FLG_CTL_FAKESHDR;
4786 }
4787
4788 if (*flags & FLG_CTL_FAKESHDR) {
4789 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4790 return (0);
4791 } else {
4792 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4793 cache, *flags) == 0)
4794 return (0);
4795 }
4796
4797 return (1);
4798 }
4799
4800 int
regular(const char * file,int fd,Elf * elf,uint_t flags,const char * wname,int wfd,uchar_t osabi)4801 regular(const char *file, int fd, Elf *elf, uint_t flags,
4802 const char *wname, int wfd, uchar_t osabi)
4803 {
4804 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4805 Elf_Scn *scn;
4806 Ehdr *ehdr;
4807 size_t ndx, shstrndx, shnum, phnum;
4808 Shdr *shdr;
4809 Cache *cache;
4810 VERSYM_STATE versym = { 0 };
4811 int ret = 0;
4812 int addr_align;
4813
4814 if ((ehdr = elf_getehdr(elf)) == NULL) {
4815 failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4816 return (ret);
4817 }
4818
4819 if (elf_getshdrnum(elf, &shnum) == -1) {
4820 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4821 return (ret);
4822 }
4823
4824 if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4825 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4826 return (ret);
4827 }
4828
4829 if (elf_getphdrnum(elf, &phnum) == -1) {
4830 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4831 return (ret);
4832 }
4833 /*
4834 * If the user requested section headers derived from the
4835 * program headers (-P option) and this file doesn't have
4836 * any program headers (i.e. ET_REL), then we can't do it.
4837 */
4838 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4839 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4840 return (ret);
4841 }
4842
4843
4844 if ((scn = elf_getscn(elf, 0)) != NULL) {
4845 if ((shdr = elf_getshdr(scn)) == NULL) {
4846 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4847 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4848 return (ret);
4849 }
4850 } else
4851 shdr = NULL;
4852
4853 /*
4854 * Print the elf header.
4855 */
4856 if (flags & FLG_SHOW_EHDR)
4857 Elf_ehdr(0, ehdr, shdr);
4858
4859 /*
4860 * If the section headers or program headers have inadequate
4861 * alignment for the class of object, print a warning. libelf
4862 * can handle such files, but programs that use them can crash
4863 * when they dereference unaligned items.
4864 *
4865 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4866 * allows access to data types smaller than 128-bits to be on
4867 * word alignment.
4868 */
4869 if (ehdr->e_machine == EM_AMD64)
4870 addr_align = sizeof (Word);
4871 else
4872 addr_align = sizeof (Addr);
4873
4874 if (ehdr->e_phoff & (addr_align - 1))
4875 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4876 if (ehdr->e_shoff & (addr_align - 1))
4877 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4878
4879
4880 /*
4881 * Determine the Operating System ABI (osabi) we will use to
4882 * interpret the object.
4883 */
4884 if (flags & FLG_CTL_OSABI) {
4885 /*
4886 * If the user explicitly specifies '-O none', we need
4887 * to display a completely generic view of the file.
4888 * However, libconv is written to assume that ELFOSABI_NONE
4889 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4890 * effect, we use an osabi that libconv has no knowledge of.
4891 */
4892 if (osabi == ELFOSABI_NONE)
4893 osabi = ELFOSABI_UNKNOWN4;
4894 } else {
4895 /* Determine osabi from file */
4896 osabi = ehdr->e_ident[EI_OSABI];
4897 if (osabi == ELFOSABI_NONE) {
4898 /*
4899 * Chicken/Egg scenario:
4900 *
4901 * Ideally, we wait to create the section header cache
4902 * until after the program headers are printed. If we
4903 * only output program headers, we can skip building
4904 * the cache entirely.
4905 *
4906 * Proper interpretation of program headers requires
4907 * the osabi, which is supposed to be in the ELF header.
4908 * However, many systems (Solaris and Linux included)
4909 * have a history of setting the osabi to the generic
4910 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4911 * in such cases, but would like to check the object
4912 * to see if it has a Linux .note.ABI-tag section,
4913 * which implies ELFOSABI_LINUX. This requires a
4914 * section header cache.
4915 *
4916 * To break the cycle, we create section headers now
4917 * if osabi is ELFOSABI_NONE, and later otherwise.
4918 * If it succeeds, we use them, if not, we defer
4919 * exiting until after the program headers are out.
4920 */
4921 if (create_cache(file, fd, elf, ehdr, &cache,
4922 shstrndx, &shnum, &flags) == 0) {
4923 cache_state = CACHE_FAIL;
4924 } else {
4925 cache_state = CACHE_OK;
4926 if (has_linux_abi_note(cache, shnum, file)) {
4927 Conv_inv_buf_t ibuf1, ibuf2;
4928
4929 (void) fprintf(stderr,
4930 MSG_INTL(MSG_INFO_LINUXOSABI), file,
4931 conv_ehdr_osabi(osabi, 0, &ibuf1),
4932 conv_ehdr_osabi(ELFOSABI_LINUX,
4933 0, &ibuf2));
4934 osabi = ELFOSABI_LINUX;
4935 }
4936 }
4937 }
4938 /*
4939 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4940 * Mapping NONE to SOLARIS simplifies the required test.
4941 */
4942 if (osabi == ELFOSABI_NONE)
4943 osabi = ELFOSABI_SOLARIS;
4944 }
4945
4946 /*
4947 * Print the program headers.
4948 */
4949 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4950 Phdr *phdr;
4951
4952 if ((phdr = elf_getphdr(elf)) == NULL) {
4953 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4954 return (ret);
4955 }
4956
4957 for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4958 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4959 NULL, ndx, phdr->p_type))
4960 continue;
4961
4962 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4963 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4964 Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4965 }
4966 }
4967
4968 /*
4969 * If we have flag bits set that explicitly require a show or calc
4970 * operation, but none of them require the section headers, then
4971 * we are done and can return now.
4972 */
4973 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4974 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4975 return (ret);
4976
4977 /*
4978 * Everything from this point on requires section headers.
4979 * If we have no section headers, there is no reason to continue.
4980 *
4981 * If we tried above to create the section header cache and failed,
4982 * it is time to exit. Otherwise, create it if needed.
4983 */
4984 switch (cache_state) {
4985 case CACHE_NEEDED:
4986 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4987 &shnum, &flags) == 0)
4988 return (ret);
4989 break;
4990 case CACHE_OK:
4991 break;
4992 case CACHE_FAIL:
4993 return (ret);
4994 }
4995 if (shnum <= 1)
4996 goto done;
4997
4998 /*
4999 * If -w was specified, find and write out the section(s) data.
5000 */
5001 if (wfd) {
5002 for (ndx = 1; ndx < shnum; ndx++) {
5003 Cache *_cache = &cache[ndx];
5004
5005 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5006 ndx, _cache->c_shdr->sh_type) &&
5007 _cache->c_data && _cache->c_data->d_buf) {
5008 if (write(wfd, _cache->c_data->d_buf,
5009 _cache->c_data->d_size) !=
5010 _cache->c_data->d_size) {
5011 int err = errno;
5012 (void) fprintf(stderr,
5013 MSG_INTL(MSG_ERR_WRITE), wname,
5014 strerror(err));
5015 /*
5016 * Return an exit status of 1, because
5017 * the failure is not related to the
5018 * ELF file, but by system resources.
5019 */
5020 ret = 1;
5021 goto done;
5022 }
5023 }
5024 }
5025 }
5026
5027 /*
5028 * If we have no flag bits set that explicitly require a show or calc
5029 * operation, but match options (-I, -N, -T) were used, then run
5030 * through the section headers and see if we can't deduce show flags
5031 * from the match options given.
5032 *
5033 * We don't do this if -w was specified, because (-I, -N, -T) used
5034 * with -w in lieu of some other option is supposed to be quiet.
5035 */
5036 if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
5037 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
5038 for (ndx = 1; ndx < shnum; ndx++) {
5039 Cache *_cache = &cache[ndx];
5040
5041 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5042 ndx, _cache->c_shdr->sh_type))
5043 continue;
5044
5045 switch (_cache->c_shdr->sh_type) {
5046 case SHT_PROGBITS:
5047 /*
5048 * Heuristic time: It is usually bad form
5049 * to assume the meaning/format of a PROGBITS
5050 * section based on its name. However, there
5051 * are ABI mandated exceptions. Check for
5052 * these special names.
5053 */
5054
5055 /* The ELF ABI specifies .interp and .got */
5056 if (strcmp(_cache->c_name,
5057 MSG_ORIG(MSG_ELF_INTERP)) == 0) {
5058 flags |= FLG_SHOW_INTERP;
5059 break;
5060 }
5061 if (strcmp(_cache->c_name,
5062 MSG_ORIG(MSG_ELF_GOT)) == 0) {
5063 flags |= FLG_SHOW_GOT;
5064 break;
5065 }
5066 /*
5067 * The GNU compilers, and amd64 ABI, define
5068 * .eh_frame and .eh_frame_hdr. The Sun
5069 * C++ ABI defines .exception_ranges.
5070 */
5071 if ((strncmp(_cache->c_name,
5072 MSG_ORIG(MSG_SCN_FRM),
5073 MSG_SCN_FRM_SIZE) == 0) ||
5074 (strncmp(_cache->c_name,
5075 MSG_ORIG(MSG_SCN_EXRANGE),
5076 MSG_SCN_EXRANGE_SIZE) == 0)) {
5077 flags |= FLG_SHOW_UNWIND;
5078 break;
5079 }
5080 break;
5081
5082 case SHT_SYMTAB:
5083 case SHT_DYNSYM:
5084 case SHT_SUNW_LDYNSYM:
5085 case SHT_SUNW_versym:
5086 case SHT_SYMTAB_SHNDX:
5087 flags |= FLG_SHOW_SYMBOLS;
5088 break;
5089
5090 case SHT_RELA:
5091 case SHT_REL:
5092 flags |= FLG_SHOW_RELOC;
5093 break;
5094
5095 case SHT_HASH:
5096 flags |= FLG_SHOW_HASH;
5097 break;
5098
5099 case SHT_DYNAMIC:
5100 flags |= FLG_SHOW_DYNAMIC;
5101 break;
5102
5103 case SHT_NOTE:
5104 flags |= FLG_SHOW_NOTE;
5105 break;
5106
5107 case SHT_GROUP:
5108 flags |= FLG_SHOW_GROUP;
5109 break;
5110
5111 case SHT_SUNW_symsort:
5112 case SHT_SUNW_tlssort:
5113 flags |= FLG_SHOW_SORT;
5114 break;
5115
5116 case SHT_SUNW_cap:
5117 flags |= FLG_SHOW_CAP;
5118 break;
5119
5120 case SHT_SUNW_move:
5121 flags |= FLG_SHOW_MOVE;
5122 break;
5123
5124 case SHT_SUNW_syminfo:
5125 flags |= FLG_SHOW_SYMINFO;
5126 break;
5127
5128 case SHT_SUNW_verdef:
5129 case SHT_SUNW_verneed:
5130 flags |= FLG_SHOW_VERSIONS;
5131 break;
5132
5133 case SHT_AMD64_UNWIND:
5134 flags |= FLG_SHOW_UNWIND;
5135 break;
5136 }
5137 }
5138 }
5139
5140
5141 if (flags & FLG_SHOW_SHDR)
5142 sections(file, cache, shnum, ehdr, osabi);
5143
5144 if (flags & FLG_SHOW_INTERP)
5145 interp(file, cache, shnum, phnum, elf);
5146
5147 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5148 versions(cache, shnum, file, flags, &versym);
5149
5150 if (flags & FLG_SHOW_SYMBOLS)
5151 symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5152
5153 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5154 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5155
5156 if (flags & FLG_SHOW_HASH)
5157 hash(cache, shnum, file, flags);
5158
5159 if (flags & FLG_SHOW_GOT)
5160 got(cache, shnum, ehdr, file);
5161
5162 if (flags & FLG_SHOW_GROUP)
5163 group(cache, shnum, file, flags);
5164
5165 if (flags & FLG_SHOW_SYMINFO)
5166 syminfo(cache, shnum, ehdr, osabi, file);
5167
5168 if (flags & FLG_SHOW_RELOC)
5169 reloc(cache, shnum, ehdr, file);
5170
5171 if (flags & FLG_SHOW_DYNAMIC)
5172 dynamic(cache, shnum, ehdr, osabi, file);
5173
5174 if (flags & FLG_SHOW_NOTE) {
5175 Word note_cnt;
5176 size_t note_shnum;
5177 Cache *note_cache;
5178
5179 note_cnt = note(cache, shnum, ehdr, file);
5180
5181 /*
5182 * Solaris core files have section headers, but these
5183 * headers do not include SHT_NOTE sections that reference
5184 * the core note sections. This means that note() won't
5185 * find the core notes. Fake section headers (-P option)
5186 * recover these sections, but it is inconvenient to require
5187 * users to specify -P in this situation. If the following
5188 * are all true:
5189 *
5190 * - No note sections were found
5191 * - This is a core file
5192 * - We are not already using fake section headers
5193 *
5194 * then we will automatically generate fake section headers
5195 * and then process them in a second call to note().
5196 */
5197 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5198 !(flags & FLG_CTL_FAKESHDR) &&
5199 (fake_shdr_cache(file, fd, elf, ehdr,
5200 ¬e_cache, ¬e_shnum) != 0)) {
5201 (void) note(note_cache, note_shnum, ehdr, file);
5202 fake_shdr_cache_free(note_cache, note_shnum);
5203 }
5204 }
5205
5206 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5207 move(cache, shnum, file, flags);
5208
5209 if (flags & FLG_CALC_CHECKSUM)
5210 checksum(elf);
5211
5212 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5213 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5214
5215 if ((flags & FLG_SHOW_UNWIND) &&
5216 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5217 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5218
5219
5220 /* Release the memory used to cache section headers */
5221 done:
5222 if (flags & FLG_CTL_FAKESHDR)
5223 fake_shdr_cache_free(cache, shnum);
5224 else
5225 free(cache);
5226
5227 return (ret);
5228 }
5229