1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
27 * Copyright 2017 Joyent, Inc.
28 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
29 */
30
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/param.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
36 #include <sys/stat.h>
37 #include <sys/proc.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/tihdr.h>
46 #include <sys/var.h>
47 #include <sys/poll.h>
48 #include <sys/termio.h>
49 #include <sys/ttold.h>
50 #include <sys/systm.h>
51 #include <sys/uio.h>
52 #include <sys/cmn_err.h>
53 #include <sys/sad.h>
54 #include <sys/netstack.h>
55 #include <sys/priocntl.h>
56 #include <sys/jioctl.h>
57 #include <sys/procset.h>
58 #include <sys/session.h>
59 #include <sys/kmem.h>
60 #include <sys/filio.h>
61 #include <sys/vtrace.h>
62 #include <sys/debug.h>
63 #include <sys/strredir.h>
64 #include <sys/fs/fifonode.h>
65 #include <sys/fs/snode.h>
66 #include <sys/strlog.h>
67 #include <sys/strsun.h>
68 #include <sys/project.h>
69 #include <sys/kbio.h>
70 #include <sys/msio.h>
71 #include <sys/tty.h>
72 #include <sys/ptyvar.h>
73 #include <sys/vuid_event.h>
74 #include <sys/modctl.h>
75 #include <sys/sunddi.h>
76 #include <sys/sunldi_impl.h>
77 #include <sys/autoconf.h>
78 #include <sys/policy.h>
79 #include <sys/dld.h>
80 #include <sys/zone.h>
81 #include <sys/ptms.h>
82 #include <sys/limits.h>
83 #include <c2/audit.h>
84
85 /*
86 * This define helps improve the readability of streams code while
87 * still maintaining a very old streams performance enhancement. The
88 * performance enhancement basically involved having all callers
89 * of straccess() perform the first check that straccess() will do
90 * locally before actually calling straccess(). (There by reducing
91 * the number of unnecessary calls to straccess().)
92 */
93 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \
94 (stp->sd_vnode->v_type == VFIFO) ? 0 : \
95 straccess((x), (y)))
96
97 /*
98 * what is mblk_pull_len?
99 *
100 * If a streams message consists of many short messages,
101 * a performance degradation occurs from copyout overhead.
102 * To decrease the per mblk overhead, messages that are
103 * likely to consist of many small mblks are pulled up into
104 * one continuous chunk of memory.
105 *
106 * To avoid the processing overhead of examining every
107 * mblk, a quick heuristic is used. If the first mblk in
108 * the message is shorter than mblk_pull_len, it is likely
109 * that the rest of the mblk will be short.
110 *
111 * This heuristic was decided upon after performance tests
112 * indicated that anything more complex slowed down the main
113 * code path.
114 */
115 #define MBLK_PULL_LEN 64
116 uint32_t mblk_pull_len = MBLK_PULL_LEN;
117
118 /*
119 * The sgttyb_handling flag controls the handling of the old BSD
120 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
121 *
122 * 0 - Emit no warnings at all and retain old, broken behavior.
123 * 1 - Emit no warnings and silently handle new semantics.
124 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
125 * (once per system invocation). Handle with new semantics.
126 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
127 * made (so that offenders drop core and are easy to debug).
128 *
129 * The "new semantics" are that TIOCGETP returns B38400 for
130 * sg_[io]speed if the corresponding value is over B38400, and that
131 * TIOCSET[PN] accept B38400 in these cases to mean "retain current
132 * bit rate."
133 */
134 int sgttyb_handling = 1;
135 static boolean_t sgttyb_complaint;
136
137 /* don't push drcompat module by default on Style-2 streams */
138 static int push_drcompat = 0;
139
140 /*
141 * id value used to distinguish between different ioctl messages
142 */
143 static uint32_t ioc_id;
144
145 static void putback(struct stdata *, queue_t *, mblk_t *, int);
146 static void strcleanall(struct vnode *);
147 static int strwsrv(queue_t *);
148 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
149
150 /*
151 * qinit and module_info structures for stream head read and write queues
152 */
153 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
154 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
155 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
156 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
157 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
158 FIFOLOWAT };
159 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
160 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
161 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
162
163 extern kmutex_t strresources; /* protects global resources */
164 extern kmutex_t muxifier; /* single-threads multiplexor creation */
165
166 static boolean_t msghasdata(mblk_t *bp);
167 #define msgnodata(bp) (!msghasdata(bp))
168
169 /*
170 * Stream head locking notes:
171 * There are four monitors associated with the stream head:
172 * 1. v_stream monitor: in stropen() and strclose() v_lock
173 * is held while the association of vnode and stream
174 * head is established or tested for.
175 * 2. open/close/push/pop monitor: sd_lock is held while each
176 * thread bids for exclusive access to this monitor
177 * for opening or closing a stream. In addition, this
178 * monitor is entered during pushes and pops. This
179 * guarantees that during plumbing operations there
180 * is only one thread trying to change the plumbing.
181 * Any other threads present in the stream are only
182 * using the plumbing.
183 * 3. read/write monitor: in the case of read, a thread holds
184 * sd_lock while trying to get data from the stream
185 * head queue. if there is none to fulfill a read
186 * request, it sets RSLEEP and calls cv_wait_sig() down
187 * in strwaitq() to await the arrival of new data.
188 * when new data arrives in strrput(), sd_lock is acquired
189 * before testing for RSLEEP and calling cv_broadcast().
190 * the behavior of strwrite(), strwsrv(), and WSLEEP
191 * mirror this.
192 * 4. ioctl monitor: sd_lock is gotten to ensure that only one
193 * thread is doing an ioctl at a time.
194 */
195
196 static int
push_mod(queue_t * qp,dev_t * devp,struct stdata * stp,const char * name,int anchor,cred_t * crp,uint_t anchor_zoneid)197 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
198 int anchor, cred_t *crp, uint_t anchor_zoneid)
199 {
200 int error;
201 fmodsw_impl_t *fp;
202
203 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
204 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
205 return (error);
206 }
207 if (stp->sd_pushcnt >= nstrpush) {
208 return (EINVAL);
209 }
210
211 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
212 stp->sd_flag |= STREOPENFAIL;
213 return (EINVAL);
214 }
215
216 /*
217 * push new module and call its open routine via qattach
218 */
219 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
220 return (error);
221
222 /*
223 * Check to see if caller wants a STREAMS anchor
224 * put at this place in the stream, and add if so.
225 */
226 mutex_enter(&stp->sd_lock);
227 if (anchor == stp->sd_pushcnt) {
228 stp->sd_anchor = stp->sd_pushcnt;
229 stp->sd_anchorzone = anchor_zoneid;
230 }
231 mutex_exit(&stp->sd_lock);
232
233 return (0);
234 }
235
236 static int
xpg4_fixup(queue_t * qp,dev_t * devp,struct stdata * stp,cred_t * crp)237 xpg4_fixup(queue_t *qp, dev_t *devp, struct stdata *stp, cred_t *crp)
238 {
239 static const char *ptsmods[] = {
240 "ptem", "ldterm", "ttcompat"
241 };
242 dev_t dummydev = *devp;
243 struct strioctl strioc;
244 zoneid_t zoneid;
245 int32_t rval;
246 uint_t i;
247
248 /*
249 * Push modules required for the slave PTY to have terminal
250 * semantics out of the box; this is required by XPG4v2.
251 * These three modules are flagged as single-instance so that
252 * the system will never end up with duplicate copies pushed
253 * onto a stream.
254 */
255
256 zoneid = crgetzoneid(crp);
257 for (i = 0; i < ARRAY_SIZE(ptsmods); i++) {
258 int error;
259
260 error = push_mod(qp, &dummydev, stp, ptsmods[i], 0,
261 crp, zoneid);
262 if (error != 0)
263 return (error);
264 }
265
266 /*
267 * Send PTSSTTY down the stream
268 */
269
270 strioc.ic_cmd = PTSSTTY;
271 strioc.ic_timout = 0;
272 strioc.ic_len = 0;
273 strioc.ic_dp = NULL;
274
275 (void) strdoioctl(stp, &strioc, FNATIVE, K_TO_K, crp, &rval);
276
277 return (0);
278 }
279
280 /*
281 * Open a stream device.
282 */
283 int
stropen(vnode_t * vp,dev_t * devp,int flag,cred_t * crp)284 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
285 {
286 struct stdata *stp;
287 queue_t *qp;
288 int s;
289 dev_t dummydev, savedev;
290 struct autopush *ap;
291 struct dlautopush dlap;
292 int error = 0;
293 ssize_t rmin, rmax;
294 int cloneopen;
295 queue_t *brq;
296 major_t major;
297 str_stack_t *ss;
298 zoneid_t zoneid;
299 uint_t anchor;
300
301 /*
302 * If the stream already exists, wait for any open in progress
303 * to complete, then call the open function of each module and
304 * driver in the stream. Otherwise create the stream.
305 */
306 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
307 retry:
308 mutex_enter(&vp->v_lock);
309 if ((stp = vp->v_stream) != NULL) {
310
311 /*
312 * Waiting for stream to be created to device
313 * due to another open.
314 */
315 mutex_exit(&vp->v_lock);
316
317 if (STRMATED(stp)) {
318 struct stdata *strmatep = stp->sd_mate;
319
320 STRLOCKMATES(stp);
321 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
322 if (flag & (FNDELAY|FNONBLOCK)) {
323 error = EAGAIN;
324 mutex_exit(&strmatep->sd_lock);
325 goto ckreturn;
326 }
327 mutex_exit(&stp->sd_lock);
328 if (!cv_wait_sig(&strmatep->sd_monitor,
329 &strmatep->sd_lock)) {
330 error = EINTR;
331 mutex_exit(&strmatep->sd_lock);
332 mutex_enter(&stp->sd_lock);
333 goto ckreturn;
334 }
335 mutex_exit(&strmatep->sd_lock);
336 goto retry;
337 }
338 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
339 if (flag & (FNDELAY|FNONBLOCK)) {
340 error = EAGAIN;
341 mutex_exit(&strmatep->sd_lock);
342 goto ckreturn;
343 }
344 mutex_exit(&strmatep->sd_lock);
345 if (!cv_wait_sig(&stp->sd_monitor,
346 &stp->sd_lock)) {
347 error = EINTR;
348 goto ckreturn;
349 }
350 mutex_exit(&stp->sd_lock);
351 goto retry;
352 }
353
354 if (stp->sd_flag & (STRDERR|STWRERR)) {
355 error = EIO;
356 mutex_exit(&strmatep->sd_lock);
357 goto ckreturn;
358 }
359
360 stp->sd_flag |= STWOPEN;
361 STRUNLOCKMATES(stp);
362 } else {
363 mutex_enter(&stp->sd_lock);
364 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
365 if (flag & (FNDELAY|FNONBLOCK)) {
366 error = EAGAIN;
367 goto ckreturn;
368 }
369 if (!cv_wait_sig(&stp->sd_monitor,
370 &stp->sd_lock)) {
371 error = EINTR;
372 goto ckreturn;
373 }
374 mutex_exit(&stp->sd_lock);
375 goto retry; /* could be clone! */
376 }
377
378 if (stp->sd_flag & (STRDERR|STWRERR)) {
379 error = EIO;
380 goto ckreturn;
381 }
382
383 stp->sd_flag |= STWOPEN;
384 mutex_exit(&stp->sd_lock);
385 }
386
387 /*
388 * Open all modules and devices down stream to notify
389 * that another user is streaming. For modules, set the
390 * last argument to MODOPEN and do not pass any open flags.
391 * Ignore dummydev since this is not the first open.
392 */
393 claimstr(stp->sd_wrq);
394 qp = stp->sd_wrq;
395 while (_SAMESTR(qp)) {
396 qp = qp->q_next;
397 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
398 break;
399 }
400 releasestr(stp->sd_wrq);
401 mutex_enter(&stp->sd_lock);
402 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
403 stp->sd_rerror = 0;
404 stp->sd_werror = 0;
405 ckreturn:
406 cv_broadcast(&stp->sd_monitor);
407 mutex_exit(&stp->sd_lock);
408 return (error);
409 }
410
411 /*
412 * This vnode isn't streaming. SPECFS already
413 * checked for multiple vnodes pointing to the
414 * same stream, so create a stream to the driver.
415 */
416 qp = allocq();
417 stp = shalloc(qp);
418
419 /*
420 * Initialize stream head. shalloc() has given us
421 * exclusive access, and we have the vnode locked;
422 * we can do whatever we want with stp.
423 */
424 stp->sd_flag = STWOPEN;
425 stp->sd_siglist = NULL;
426 stp->sd_pollist.ph_list = NULL;
427 stp->sd_sigflags = 0;
428 stp->sd_mark = NULL;
429 stp->sd_closetime = STRTIMOUT;
430 stp->sd_sidp = NULL;
431 stp->sd_pgidp = NULL;
432 stp->sd_vnode = vp;
433 stp->sd_pvnode = NULL;
434 stp->sd_rerror = 0;
435 stp->sd_werror = 0;
436 stp->sd_wroff = 0;
437 stp->sd_tail = 0;
438 stp->sd_iocblk = NULL;
439 stp->sd_cmdblk = NULL;
440 stp->sd_pushcnt = 0;
441 stp->sd_qn_minpsz = 0;
442 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */
443 stp->sd_maxblk = INFPSZ;
444 qp->q_ptr = _WR(qp)->q_ptr = stp;
445 STREAM(qp) = STREAM(_WR(qp)) = stp;
446 vp->v_stream = stp;
447 mutex_exit(&vp->v_lock);
448 if (vp->v_type == VFIFO) {
449 stp->sd_flag |= OLDNDELAY;
450 /*
451 * This means, both for pipes and fifos
452 * strwrite will send SIGPIPE if the other
453 * end is closed. For putmsg it depends
454 * on whether it is a XPG4_2 application
455 * or not
456 */
457 stp->sd_wput_opt = SW_SIGPIPE;
458
459 /* setq might sleep in kmem_alloc - avoid holding locks. */
460 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
461 SQ_CI|SQ_CO, B_FALSE);
462
463 set_qend(qp);
464 stp->sd_strtab = fifo_getinfo();
465 _WR(qp)->q_nfsrv = _WR(qp);
466 qp->q_nfsrv = qp;
467 /*
468 * Wake up others that are waiting for stream to be created.
469 */
470 mutex_enter(&stp->sd_lock);
471 /*
472 * nothing is be pushed on stream yet, so
473 * optimized stream head packetsizes are just that
474 * of the read queue
475 */
476 stp->sd_qn_minpsz = qp->q_minpsz;
477 stp->sd_qn_maxpsz = qp->q_maxpsz;
478 stp->sd_flag &= ~STWOPEN;
479 goto fifo_opendone;
480 }
481 /* setq might sleep in kmem_alloc - avoid holding locks. */
482 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
483
484 set_qend(qp);
485
486 /*
487 * Open driver and create stream to it (via qattach).
488 */
489 savedev = *devp;
490 cloneopen = (getmajor(*devp) == clone_major);
491 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
492 mutex_enter(&vp->v_lock);
493 vp->v_stream = NULL;
494 mutex_exit(&vp->v_lock);
495 mutex_enter(&stp->sd_lock);
496 cv_broadcast(&stp->sd_monitor);
497 mutex_exit(&stp->sd_lock);
498 freeq(_RD(qp));
499 shfree(stp);
500 return (error);
501 }
502 /*
503 * Set sd_strtab after open in order to handle clonable drivers
504 */
505 stp->sd_strtab = STREAMSTAB(getmajor(*devp));
506
507 /*
508 * Historical note: dummydev used to be be prior to the initial
509 * open (via qattach above), which made the value seen
510 * inconsistent between an I_PUSH and an autopush of a module.
511 */
512 dummydev = *devp;
513
514 /*
515 * For clone open of old style (Q not associated) network driver,
516 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
517 */
518 brq = _RD(_WR(qp)->q_next);
519 major = getmajor(*devp);
520 if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
521 ((brq->q_flag & _QASSOCIATED) == 0)) {
522 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
523 cmn_err(CE_WARN, "cannot push " DRMODNAME
524 " streams module");
525 }
526
527 if (!NETWORK_DRV(major)) {
528 savedev = *devp;
529 } else {
530 /*
531 * For network devices, process differently based on the
532 * return value from dld_autopush():
533 *
534 * 0: the passed-in device points to a GLDv3 datalink with
535 * per-link autopush configuration; use that configuration
536 * and ignore any per-driver autopush configuration.
537 *
538 * 1: the passed-in device points to a physical GLDv3
539 * datalink without per-link autopush configuration. The
540 * passed in device was changed to refer to the actual
541 * physical device (if it's not already); we use that new
542 * device to look up any per-driver autopush configuration.
543 *
544 * -1: neither of the above cases applied; use the initial
545 * device to look up any per-driver autopush configuration.
546 */
547 switch (dld_autopush(&savedev, &dlap)) {
548 case 0:
549 zoneid = crgetzoneid(crp);
550 for (s = 0; s < dlap.dap_npush; s++) {
551 error = push_mod(qp, &dummydev, stp,
552 dlap.dap_aplist[s], dlap.dap_anchor, crp,
553 zoneid);
554 if (error != 0)
555 break;
556 }
557 goto opendone;
558 case 1:
559 break;
560 case -1:
561 savedev = *devp;
562 break;
563 }
564 }
565 /*
566 * Find the autopush configuration based on "savedev". Start with the
567 * global zone. If not found check in the local zone.
568 */
569 zoneid = GLOBAL_ZONEID;
570 retryap:
571 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
572 netstack_str;
573 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
574 netstack_rele(ss->ss_netstack);
575 if (zoneid == GLOBAL_ZONEID) {
576 /*
577 * None found. Also look in the zone's autopush table.
578 */
579 zoneid = crgetzoneid(crp);
580 if (zoneid != GLOBAL_ZONEID)
581 goto retryap;
582 }
583 goto opendone;
584 }
585 anchor = ap->ap_anchor;
586 zoneid = crgetzoneid(crp);
587 for (s = 0; s < ap->ap_npush; s++) {
588 error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
589 anchor, crp, zoneid);
590 if (error != 0)
591 break;
592 }
593 sad_ap_rele(ap, ss);
594 netstack_rele(ss->ss_netstack);
595
596 opendone:
597
598 if (error == 0 &&
599 (stp->sd_flag & (STRISTTY|STRXPG4TTY)) == (STRISTTY|STRXPG4TTY)) {
600 error = xpg4_fixup(qp, devp, stp, crp);
601 }
602
603 /*
604 * let specfs know that open failed part way through
605 */
606 if (error != 0) {
607 mutex_enter(&stp->sd_lock);
608 stp->sd_flag |= STREOPENFAIL;
609 mutex_exit(&stp->sd_lock);
610 }
611
612 /*
613 * Wake up others that are waiting for stream to be created.
614 */
615 mutex_enter(&stp->sd_lock);
616 stp->sd_flag &= ~STWOPEN;
617
618 /*
619 * As a performance concern we are caching the values of
620 * q_minpsz and q_maxpsz of the module below the stream
621 * head in the stream head.
622 */
623 mutex_enter(QLOCK(stp->sd_wrq->q_next));
624 rmin = stp->sd_wrq->q_next->q_minpsz;
625 rmax = stp->sd_wrq->q_next->q_maxpsz;
626 mutex_exit(QLOCK(stp->sd_wrq->q_next));
627
628 /* do this processing here as a performance concern */
629 if (strmsgsz != 0) {
630 if (rmax == INFPSZ)
631 rmax = strmsgsz;
632 else
633 rmax = MIN(strmsgsz, rmax);
634 }
635
636 mutex_enter(QLOCK(stp->sd_wrq));
637 stp->sd_qn_minpsz = rmin;
638 stp->sd_qn_maxpsz = rmax;
639 mutex_exit(QLOCK(stp->sd_wrq));
640
641 fifo_opendone:
642 cv_broadcast(&stp->sd_monitor);
643 mutex_exit(&stp->sd_lock);
644 return (error);
645 }
646
647 static int strsink(queue_t *, mblk_t *);
648 static struct qinit deadrend = {
649 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
650 };
651 static struct qinit deadwend = {
652 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
653 };
654
655 /*
656 * Close a stream.
657 * This is called from closef() on the last close of an open stream.
658 * Strclean() will already have removed the siglist and pollist
659 * information, so all that remains is to remove all multiplexor links
660 * for the stream, pop all the modules (and the driver), and free the
661 * stream structure.
662 */
663
664 int
strclose(struct vnode * vp,int flag,cred_t * crp)665 strclose(struct vnode *vp, int flag, cred_t *crp)
666 {
667 struct stdata *stp;
668 queue_t *qp;
669 int rval;
670 int freestp = 1;
671 queue_t *rmq;
672
673 TRACE_1(TR_FAC_STREAMS_FR,
674 TR_STRCLOSE, "strclose:%p", vp);
675 ASSERT(vp->v_stream);
676
677 stp = vp->v_stream;
678 ASSERT(!(stp->sd_flag & STPLEX));
679 qp = stp->sd_wrq;
680
681 /*
682 * Needed so that strpoll will return non-zero for this fd.
683 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
684 */
685 mutex_enter(&stp->sd_lock);
686 stp->sd_flag |= STRHUP;
687 mutex_exit(&stp->sd_lock);
688
689 /*
690 * If the registered process or process group did not have an
691 * open instance of this stream then strclean would not be
692 * called. Thus at the time of closing all remaining siglist entries
693 * are removed.
694 */
695 if (stp->sd_siglist != NULL)
696 strcleanall(vp);
697
698 ASSERT(stp->sd_siglist == NULL);
699 ASSERT(stp->sd_sigflags == 0);
700
701 if (STRMATED(stp)) {
702 struct stdata *strmatep = stp->sd_mate;
703 int waited = 1;
704
705 STRLOCKMATES(stp);
706 while (waited) {
707 waited = 0;
708 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
709 mutex_exit(&strmatep->sd_lock);
710 cv_wait(&stp->sd_monitor, &stp->sd_lock);
711 mutex_exit(&stp->sd_lock);
712 STRLOCKMATES(stp);
713 waited = 1;
714 }
715 while (strmatep->sd_flag &
716 (STWOPEN|STRCLOSE|STRPLUMB)) {
717 mutex_exit(&stp->sd_lock);
718 cv_wait(&strmatep->sd_monitor,
719 &strmatep->sd_lock);
720 mutex_exit(&strmatep->sd_lock);
721 STRLOCKMATES(stp);
722 waited = 1;
723 }
724 }
725 stp->sd_flag |= STRCLOSE;
726 STRUNLOCKMATES(stp);
727 } else {
728 mutex_enter(&stp->sd_lock);
729 stp->sd_flag |= STRCLOSE;
730 mutex_exit(&stp->sd_lock);
731 }
732
733 ASSERT(qp->q_first == NULL); /* No more delayed write */
734
735 /* Check if an I_LINK was ever done on this stream */
736 if (stp->sd_flag & STRHASLINKS) {
737 netstack_t *ns;
738 str_stack_t *ss;
739
740 ns = netstack_find_by_cred(crp);
741 ASSERT(ns != NULL);
742 ss = ns->netstack_str;
743 ASSERT(ss != NULL);
744
745 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
746 netstack_rele(ss->ss_netstack);
747 }
748
749 while (_SAMESTR(qp)) {
750 /*
751 * Holding sd_lock prevents q_next from changing in
752 * this stream.
753 */
754 mutex_enter(&stp->sd_lock);
755 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
756
757 /*
758 * sleep until awakened by strwsrv() or timeout
759 */
760 for (;;) {
761 mutex_enter(QLOCK(qp->q_next));
762 if (!(qp->q_next->q_mblkcnt)) {
763 mutex_exit(QLOCK(qp->q_next));
764 break;
765 }
766 stp->sd_flag |= WSLEEP;
767
768 /* ensure strwsrv gets enabled */
769 qp->q_next->q_flag |= QWANTW;
770 mutex_exit(QLOCK(qp->q_next));
771 /* get out if we timed out or recv'd a signal */
772 if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
773 stp->sd_closetime, 0) <= 0) {
774 break;
775 }
776 }
777 stp->sd_flag &= ~WSLEEP;
778 }
779 mutex_exit(&stp->sd_lock);
780
781 rmq = qp->q_next;
782 if (rmq->q_flag & QISDRV) {
783 ASSERT(!_SAMESTR(rmq));
784 wait_sq_svc(_RD(qp)->q_syncq);
785 }
786
787 qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
788 }
789
790 /*
791 * Since we call pollwakeup in close() now, the poll list should
792 * be empty in most cases. The only exception is the layered devices
793 * (e.g. the console drivers with redirection modules pushed on top
794 * of it). We have to do this after calling qdetach() because
795 * the redirection module won't have torn down the console
796 * redirection until after qdetach() has been invoked.
797 */
798 if (stp->sd_pollist.ph_list != NULL) {
799 pollwakeup(&stp->sd_pollist, POLLERR);
800 pollhead_clean(&stp->sd_pollist);
801 }
802 ASSERT(stp->sd_pollist.ph_list == NULL);
803 ASSERT(stp->sd_sidp == NULL);
804 ASSERT(stp->sd_pgidp == NULL);
805
806 /* Prevent qenable from re-enabling the stream head queue */
807 disable_svc(_RD(qp));
808
809 /*
810 * Wait until service procedure of each queue is
811 * run, if QINSERVICE is set.
812 */
813 wait_svc(_RD(qp));
814
815 /*
816 * Now, flush both queues.
817 */
818 flushq(_RD(qp), FLUSHALL);
819 flushq(qp, FLUSHALL);
820
821 /*
822 * If the write queue of the stream head is pointing to a
823 * read queue, we have a twisted stream. If the read queue
824 * is alive, convert the stream head queues into a dead end.
825 * If the read queue is dead, free the dead pair.
826 */
827 if (qp->q_next && !_SAMESTR(qp)) {
828 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */
829 flushq(qp->q_next, FLUSHALL); /* ensure no message */
830 shfree(qp->q_next->q_stream);
831 freeq(qp->q_next);
832 freeq(_RD(qp));
833 } else if (qp->q_next == _RD(qp)) { /* fifo */
834 freeq(_RD(qp));
835 } else { /* pipe */
836 freestp = 0;
837 /*
838 * The q_info pointers are never accessed when
839 * SQLOCK is held.
840 */
841 ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
842 mutex_enter(SQLOCK(qp->q_syncq));
843 qp->q_qinfo = &deadwend;
844 _RD(qp)->q_qinfo = &deadrend;
845 mutex_exit(SQLOCK(qp->q_syncq));
846 }
847 } else {
848 freeq(_RD(qp)); /* free stream head queue pair */
849 }
850
851 mutex_enter(&vp->v_lock);
852 if (stp->sd_iocblk) {
853 if (stp->sd_iocblk != (mblk_t *)-1) {
854 freemsg(stp->sd_iocblk);
855 }
856 stp->sd_iocblk = NULL;
857 }
858 stp->sd_vnode = stp->sd_pvnode = NULL;
859 vp->v_stream = NULL;
860 mutex_exit(&vp->v_lock);
861 mutex_enter(&stp->sd_lock);
862 freemsg(stp->sd_cmdblk);
863 stp->sd_cmdblk = NULL;
864 stp->sd_flag &= ~STRCLOSE;
865 cv_broadcast(&stp->sd_monitor);
866 mutex_exit(&stp->sd_lock);
867
868 if (freestp)
869 shfree(stp);
870 return (0);
871 }
872
873 static int
strsink(queue_t * q,mblk_t * bp)874 strsink(queue_t *q, mblk_t *bp)
875 {
876 struct copyresp *resp;
877
878 switch (bp->b_datap->db_type) {
879 case M_FLUSH:
880 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
881 *bp->b_rptr &= ~FLUSHR;
882 bp->b_flag |= MSGNOLOOP;
883 /*
884 * Protect against the driver passing up
885 * messages after it has done a qprocsoff.
886 */
887 if (_OTHERQ(q)->q_next == NULL)
888 freemsg(bp);
889 else
890 qreply(q, bp);
891 } else {
892 freemsg(bp);
893 }
894 break;
895
896 case M_COPYIN:
897 case M_COPYOUT:
898 if (bp->b_cont) {
899 freemsg(bp->b_cont);
900 bp->b_cont = NULL;
901 }
902 bp->b_datap->db_type = M_IOCDATA;
903 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
904 resp = (struct copyresp *)bp->b_rptr;
905 resp->cp_rval = (caddr_t)1; /* failure */
906 /*
907 * Protect against the driver passing up
908 * messages after it has done a qprocsoff.
909 */
910 if (_OTHERQ(q)->q_next == NULL)
911 freemsg(bp);
912 else
913 qreply(q, bp);
914 break;
915
916 case M_IOCTL:
917 if (bp->b_cont) {
918 freemsg(bp->b_cont);
919 bp->b_cont = NULL;
920 }
921 bp->b_datap->db_type = M_IOCNAK;
922 /*
923 * Protect against the driver passing up
924 * messages after it has done a qprocsoff.
925 */
926 if (_OTHERQ(q)->q_next == NULL)
927 freemsg(bp);
928 else
929 qreply(q, bp);
930 break;
931
932 default:
933 freemsg(bp);
934 break;
935 }
936
937 return (0);
938 }
939
940 /*
941 * Clean up after a process when it closes a stream. This is called
942 * from closef for all closes, whereas strclose is called only for the
943 * last close on a stream. The siglist is scanned for entries for the
944 * current process, and these are removed.
945 */
946 void
strclean(struct vnode * vp)947 strclean(struct vnode *vp)
948 {
949 strsig_t *ssp, *pssp, *tssp;
950 stdata_t *stp;
951 int update = 0;
952
953 TRACE_1(TR_FAC_STREAMS_FR,
954 TR_STRCLEAN, "strclean:%p", vp);
955 stp = vp->v_stream;
956 pssp = NULL;
957 mutex_enter(&stp->sd_lock);
958 ssp = stp->sd_siglist;
959 while (ssp) {
960 if (ssp->ss_pidp == curproc->p_pidp) {
961 tssp = ssp->ss_next;
962 if (pssp)
963 pssp->ss_next = tssp;
964 else
965 stp->sd_siglist = tssp;
966 mutex_enter(&pidlock);
967 PID_RELE(ssp->ss_pidp);
968 mutex_exit(&pidlock);
969 kmem_free(ssp, sizeof (strsig_t));
970 update = 1;
971 ssp = tssp;
972 } else {
973 pssp = ssp;
974 ssp = ssp->ss_next;
975 }
976 }
977 if (update) {
978 stp->sd_sigflags = 0;
979 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
980 stp->sd_sigflags |= ssp->ss_events;
981 }
982 mutex_exit(&stp->sd_lock);
983 }
984
985 /*
986 * Used on the last close to remove any remaining items on the siglist.
987 * These could be present on the siglist due to I_ESETSIG calls that
988 * use process groups or processed that do not have an open file descriptor
989 * for this stream (Such entries would not be removed by strclean).
990 */
991 static void
strcleanall(struct vnode * vp)992 strcleanall(struct vnode *vp)
993 {
994 strsig_t *ssp, *nssp;
995 stdata_t *stp;
996
997 stp = vp->v_stream;
998 mutex_enter(&stp->sd_lock);
999 ssp = stp->sd_siglist;
1000 stp->sd_siglist = NULL;
1001 while (ssp) {
1002 nssp = ssp->ss_next;
1003 mutex_enter(&pidlock);
1004 PID_RELE(ssp->ss_pidp);
1005 mutex_exit(&pidlock);
1006 kmem_free(ssp, sizeof (strsig_t));
1007 ssp = nssp;
1008 }
1009 stp->sd_sigflags = 0;
1010 mutex_exit(&stp->sd_lock);
1011 }
1012
1013 /*
1014 * Retrieve the next message from the logical stream head read queue
1015 * using either rwnext (if sync stream) or getq_noenab.
1016 * It is the callers responsibility to call qbackenable after
1017 * it is finished with the message. The caller should not call
1018 * qbackenable until after any putback calls to avoid spurious backenabling.
1019 */
1020 mblk_t *
strget(struct stdata * stp,queue_t * q,struct uio * uiop,int first,int * errorp)1021 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
1022 int *errorp)
1023 {
1024 mblk_t *bp;
1025 int error;
1026 ssize_t rbytes = 0;
1027
1028 /* Holding sd_lock prevents the read queue from changing */
1029 ASSERT(MUTEX_HELD(&stp->sd_lock));
1030
1031 if (uiop != NULL && stp->sd_struiordq != NULL &&
1032 q->q_first == NULL &&
1033 (!first || (stp->sd_wakeq & RSLEEP))) {
1034 /*
1035 * Stream supports rwnext() for the read side.
1036 * If this is the first time we're called by e.g. strread
1037 * only do the downcall if there is a deferred wakeup
1038 * (registered in sd_wakeq).
1039 */
1040 struiod_t uiod;
1041 struct iovec buf[IOV_MAX_STACK];
1042 int iovlen = 0;
1043
1044 if (first)
1045 stp->sd_wakeq &= ~RSLEEP;
1046
1047 if (uiop->uio_iovcnt > IOV_MAX_STACK) {
1048 iovlen = uiop->uio_iovcnt * sizeof (iovec_t);
1049 uiod.d_iov = kmem_alloc(iovlen, KM_SLEEP);
1050 } else {
1051 uiod.d_iov = buf;
1052 }
1053
1054 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, uiop->uio_iovcnt);
1055 uiod.d_mp = 0;
1056 /*
1057 * Mark that a thread is in rwnext on the read side
1058 * to prevent strrput from nacking ioctls immediately.
1059 * When the last concurrent rwnext returns
1060 * the ioctls are nack'ed.
1061 */
1062 ASSERT(MUTEX_HELD(&stp->sd_lock));
1063 stp->sd_struiodnak++;
1064 /*
1065 * Note: rwnext will drop sd_lock.
1066 */
1067 error = rwnext(q, &uiod);
1068 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1069 mutex_enter(&stp->sd_lock);
1070 stp->sd_struiodnak--;
1071 while (stp->sd_struiodnak == 0 &&
1072 ((bp = stp->sd_struionak) != NULL)) {
1073 stp->sd_struionak = bp->b_next;
1074 bp->b_next = NULL;
1075 bp->b_datap->db_type = M_IOCNAK;
1076 /*
1077 * Protect against the driver passing up
1078 * messages after it has done a qprocsoff.
1079 */
1080 if (_OTHERQ(q)->q_next == NULL)
1081 freemsg(bp);
1082 else {
1083 mutex_exit(&stp->sd_lock);
1084 qreply(q, bp);
1085 mutex_enter(&stp->sd_lock);
1086 }
1087 }
1088 ASSERT(MUTEX_HELD(&stp->sd_lock));
1089 if (error == 0 || error == EWOULDBLOCK) {
1090 if ((bp = uiod.d_mp) != NULL) {
1091 *errorp = 0;
1092 ASSERT(MUTEX_HELD(&stp->sd_lock));
1093 if (iovlen != 0)
1094 kmem_free(uiod.d_iov, iovlen);
1095 return (bp);
1096 }
1097 error = 0;
1098 } else if (error == EINVAL) {
1099 /*
1100 * The stream plumbing must have
1101 * changed while we were away, so
1102 * just turn off rwnext()s.
1103 */
1104 error = 0;
1105 } else if (error == EBUSY) {
1106 /*
1107 * The module might have data in transit using putnext
1108 * Fall back on waiting + getq.
1109 */
1110 error = 0;
1111 } else {
1112 *errorp = error;
1113 ASSERT(MUTEX_HELD(&stp->sd_lock));
1114 if (iovlen != 0)
1115 kmem_free(uiod.d_iov, iovlen);
1116 return (NULL);
1117 }
1118
1119 if (iovlen != 0)
1120 kmem_free(uiod.d_iov, iovlen);
1121
1122 /*
1123 * Try a getq in case a rwnext() generated mblk
1124 * has bubbled up via strrput().
1125 */
1126 }
1127 *errorp = 0;
1128 ASSERT(MUTEX_HELD(&stp->sd_lock));
1129
1130 /*
1131 * If we have a valid uio, try and use this as a guide for how
1132 * many bytes to retrieve from the queue via getq_noenab().
1133 * Doing this can avoid unneccesary counting of overlong
1134 * messages in putback(). We currently only do this for sockets
1135 * and only if there is no sd_rputdatafunc hook.
1136 *
1137 * The sd_rputdatafunc hook transforms the entire message
1138 * before any bytes in it can be given to a client. So, rbytes
1139 * must be 0 if there is a hook.
1140 */
1141 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1142 (stp->sd_rputdatafunc == NULL))
1143 rbytes = uiop->uio_resid;
1144
1145 return (getq_noenab(q, rbytes));
1146 }
1147
1148 /*
1149 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1150 * If the message does not fit in the uio the remainder of it is returned;
1151 * otherwise NULL is returned. Any embedded zero-length mblk_t's are
1152 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to
1153 * the error code, the message is consumed, and NULL is returned.
1154 */
1155 static mblk_t *
struiocopyout(mblk_t * bp,struct uio * uiop,int * errorp)1156 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1157 {
1158 int error;
1159 ptrdiff_t n;
1160 mblk_t *nbp;
1161
1162 ASSERT(bp->b_wptr >= bp->b_rptr);
1163
1164 do {
1165 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1166 ASSERT(n > 0);
1167
1168 error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1169 if (error != 0) {
1170 freemsg(bp);
1171 *errorp = error;
1172 return (NULL);
1173 }
1174 }
1175
1176 bp->b_rptr += n;
1177 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1178 nbp = bp;
1179 bp = bp->b_cont;
1180 freeb(nbp);
1181 }
1182 } while (bp != NULL && uiop->uio_resid > 0);
1183
1184 *errorp = 0;
1185 return (bp);
1186 }
1187
1188 /*
1189 * Read a stream according to the mode flags in sd_flag:
1190 *
1191 * (default mode) - Byte stream, msg boundaries are ignored
1192 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away
1193 * any data remaining in msg
1194 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1195 * any remaining data on head of read queue
1196 *
1197 * Consume readable messages on the front of the queue until
1198 * ttolwp(curthread)->lwp_count
1199 * is satisfied, the readable messages are exhausted, or a message
1200 * boundary is reached in a message mode. If no data was read and
1201 * the stream was not opened with the NDELAY flag, block until data arrives.
1202 * Otherwise return the data read and update the count.
1203 *
1204 * In default mode a 0 length message signifies end-of-file and terminates
1205 * a read in progress. The 0 length message is removed from the queue
1206 * only if it is the only message read (no data is read).
1207 *
1208 * An attempt to read an M_PROTO or M_PCPROTO message results in an
1209 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1210 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1211 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1212 * are unlinked from and M_DATA blocks in the message, the protos are
1213 * thrown away, and the data is read.
1214 */
1215 /* ARGSUSED */
1216 int
strread(struct vnode * vp,struct uio * uiop,cred_t * crp)1217 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1218 {
1219 struct stdata *stp;
1220 mblk_t *bp, *nbp;
1221 queue_t *q;
1222 int error = 0;
1223 uint_t old_sd_flag;
1224 int first;
1225 char rflg;
1226 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
1227 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
1228 short delim;
1229 unsigned char pri = 0;
1230 char waitflag;
1231 unsigned char type;
1232
1233 TRACE_1(TR_FAC_STREAMS_FR,
1234 TR_STRREAD_ENTER, "strread:%p", vp);
1235 ASSERT(vp->v_stream);
1236 stp = vp->v_stream;
1237
1238 mutex_enter(&stp->sd_lock);
1239
1240 if ((error = i_straccess(stp, JCREAD)) != 0) {
1241 mutex_exit(&stp->sd_lock);
1242 return (error);
1243 }
1244
1245 if (stp->sd_flag & (STRDERR|STPLEX)) {
1246 error = strgeterr(stp, STRDERR|STPLEX, 0);
1247 if (error != 0) {
1248 mutex_exit(&stp->sd_lock);
1249 return (error);
1250 }
1251 }
1252
1253 /*
1254 * Loop terminates when uiop->uio_resid == 0.
1255 */
1256 rflg = 0;
1257 waitflag = READWAIT;
1258 q = _RD(stp->sd_wrq);
1259 for (;;) {
1260 ASSERT(MUTEX_HELD(&stp->sd_lock));
1261 old_sd_flag = stp->sd_flag;
1262 mark = 0;
1263 delim = 0;
1264 first = 1;
1265 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1266 int done = 0;
1267
1268 ASSERT(MUTEX_HELD(&stp->sd_lock));
1269
1270 if (error != 0)
1271 goto oops;
1272
1273 if (stp->sd_flag & (STRHUP|STREOF)) {
1274 goto oops;
1275 }
1276 if (rflg && !(stp->sd_flag & STRDELIM)) {
1277 goto oops;
1278 }
1279 /*
1280 * If a read(fd,buf,0) has been done, there is no
1281 * need to sleep. We always have zero bytes to
1282 * return.
1283 */
1284 if (uiop->uio_resid == 0) {
1285 goto oops;
1286 }
1287
1288 qbackenable(q, 0);
1289
1290 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1291 "strread calls strwaitq:%p, %p, %p",
1292 vp, uiop, crp);
1293 if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1294 uiop->uio_fmode, -1, &done)) != 0 || done) {
1295 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1296 "strread error or done:%p, %p, %p",
1297 vp, uiop, crp);
1298 if ((uiop->uio_fmode & FNDELAY) &&
1299 (stp->sd_flag & OLDNDELAY) &&
1300 (error == EAGAIN))
1301 error = 0;
1302 goto oops;
1303 }
1304 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1305 "strread awakes:%p, %p, %p", vp, uiop, crp);
1306 if ((error = i_straccess(stp, JCREAD)) != 0) {
1307 goto oops;
1308 }
1309 first = 0;
1310 }
1311
1312 ASSERT(MUTEX_HELD(&stp->sd_lock));
1313 ASSERT(bp);
1314 pri = bp->b_band;
1315 /*
1316 * Extract any mark information. If the message is not
1317 * completely consumed this information will be put in the mblk
1318 * that is putback.
1319 * If MSGMARKNEXT is set and the message is completely consumed
1320 * the STRATMARK flag will be set below. Likewise, if
1321 * MSGNOTMARKNEXT is set and the message is
1322 * completely consumed STRNOTATMARK will be set.
1323 *
1324 * For some unknown reason strread only breaks the read at the
1325 * last mark.
1326 */
1327 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1328 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1329 (MSGMARKNEXT|MSGNOTMARKNEXT));
1330 if (mark != 0 && bp == stp->sd_mark) {
1331 if (rflg) {
1332 putback(stp, q, bp, pri);
1333 goto oops;
1334 }
1335 mark |= _LASTMARK;
1336 stp->sd_mark = NULL;
1337 }
1338 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1339 delim = 1;
1340 mutex_exit(&stp->sd_lock);
1341
1342 if (STREAM_NEEDSERVICE(stp))
1343 stream_runservice(stp);
1344
1345 type = bp->b_datap->db_type;
1346
1347 switch (type) {
1348
1349 case M_DATA:
1350 ismdata:
1351 if (msgnodata(bp)) {
1352 if (mark || delim) {
1353 freemsg(bp);
1354 } else if (rflg) {
1355
1356 /*
1357 * If already read data put zero
1358 * length message back on queue else
1359 * free msg and return 0.
1360 */
1361 bp->b_band = pri;
1362 mutex_enter(&stp->sd_lock);
1363 putback(stp, q, bp, pri);
1364 mutex_exit(&stp->sd_lock);
1365 } else {
1366 freemsg(bp);
1367 }
1368 error = 0;
1369 goto oops1;
1370 }
1371
1372 rflg = 1;
1373 waitflag |= NOINTR;
1374 bp = struiocopyout(bp, uiop, &error);
1375 if (error != 0)
1376 goto oops1;
1377
1378 mutex_enter(&stp->sd_lock);
1379 if (bp) {
1380 /*
1381 * Have remaining data in message.
1382 * Free msg if in discard mode.
1383 */
1384 if (stp->sd_read_opt & RD_MSGDIS) {
1385 freemsg(bp);
1386 } else {
1387 bp->b_band = pri;
1388 if ((mark & _LASTMARK) &&
1389 (stp->sd_mark == NULL))
1390 stp->sd_mark = bp;
1391 bp->b_flag |= mark & ~_LASTMARK;
1392 if (delim)
1393 bp->b_flag |= MSGDELIM;
1394 if (msgnodata(bp))
1395 freemsg(bp);
1396 else
1397 putback(stp, q, bp, pri);
1398 }
1399 } else {
1400 /*
1401 * Consumed the complete message.
1402 * Move the MSG*MARKNEXT information
1403 * to the stream head just in case
1404 * the read queue becomes empty.
1405 *
1406 * If the stream head was at the mark
1407 * (STRATMARK) before we dropped sd_lock above
1408 * and some data was consumed then we have
1409 * moved past the mark thus STRATMARK is
1410 * cleared. However, if a message arrived in
1411 * strrput during the copyout above causing
1412 * STRATMARK to be set we can not clear that
1413 * flag.
1414 */
1415 if (mark &
1416 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1417 if (mark & MSGMARKNEXT) {
1418 stp->sd_flag &= ~STRNOTATMARK;
1419 stp->sd_flag |= STRATMARK;
1420 } else if (mark & MSGNOTMARKNEXT) {
1421 stp->sd_flag &= ~STRATMARK;
1422 stp->sd_flag |= STRNOTATMARK;
1423 } else {
1424 stp->sd_flag &=
1425 ~(STRATMARK|STRNOTATMARK);
1426 }
1427 } else if (rflg && (old_sd_flag & STRATMARK)) {
1428 stp->sd_flag &= ~STRATMARK;
1429 }
1430 }
1431
1432 /*
1433 * Check for signal messages at the front of the read
1434 * queue and generate the signal(s) if appropriate.
1435 * The only signal that can be on queue is M_SIG at
1436 * this point.
1437 */
1438 while ((((bp = q->q_first)) != NULL) &&
1439 (bp->b_datap->db_type == M_SIG)) {
1440 bp = getq_noenab(q, 0);
1441 /*
1442 * sd_lock is held so the content of the
1443 * read queue can not change.
1444 */
1445 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
1446 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
1447 mutex_exit(&stp->sd_lock);
1448 freemsg(bp);
1449 if (STREAM_NEEDSERVICE(stp))
1450 stream_runservice(stp);
1451 mutex_enter(&stp->sd_lock);
1452 }
1453
1454 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1455 delim ||
1456 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1457 goto oops;
1458 }
1459 continue;
1460
1461 case M_SIG:
1462 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1463 freemsg(bp);
1464 mutex_enter(&stp->sd_lock);
1465 continue;
1466
1467 case M_PROTO:
1468 case M_PCPROTO:
1469 /*
1470 * Only data messages are readable.
1471 * Any others generate an error, unless
1472 * RD_PROTDIS or RD_PROTDAT is set.
1473 */
1474 if (stp->sd_read_opt & RD_PROTDAT) {
1475 for (nbp = bp; nbp; nbp = nbp->b_next) {
1476 if ((nbp->b_datap->db_type ==
1477 M_PROTO) ||
1478 (nbp->b_datap->db_type ==
1479 M_PCPROTO)) {
1480 nbp->b_datap->db_type = M_DATA;
1481 } else {
1482 break;
1483 }
1484 }
1485 /*
1486 * clear stream head hi pri flag based on
1487 * first message
1488 */
1489 if (type == M_PCPROTO) {
1490 mutex_enter(&stp->sd_lock);
1491 stp->sd_flag &= ~STRPRI;
1492 mutex_exit(&stp->sd_lock);
1493 }
1494 goto ismdata;
1495 } else if (stp->sd_read_opt & RD_PROTDIS) {
1496 /*
1497 * discard non-data messages
1498 */
1499 while (bp &&
1500 ((bp->b_datap->db_type == M_PROTO) ||
1501 (bp->b_datap->db_type == M_PCPROTO))) {
1502 nbp = unlinkb(bp);
1503 freeb(bp);
1504 bp = nbp;
1505 }
1506 /*
1507 * clear stream head hi pri flag based on
1508 * first message
1509 */
1510 if (type == M_PCPROTO) {
1511 mutex_enter(&stp->sd_lock);
1512 stp->sd_flag &= ~STRPRI;
1513 mutex_exit(&stp->sd_lock);
1514 }
1515 if (bp) {
1516 bp->b_band = pri;
1517 goto ismdata;
1518 } else {
1519 break;
1520 }
1521 }
1522 /* FALLTHRU */
1523 case M_PASSFP:
1524 if ((bp->b_datap->db_type == M_PASSFP) &&
1525 (stp->sd_read_opt & RD_PROTDIS)) {
1526 freemsg(bp);
1527 break;
1528 }
1529 mutex_enter(&stp->sd_lock);
1530 putback(stp, q, bp, pri);
1531 mutex_exit(&stp->sd_lock);
1532 if (rflg == 0)
1533 error = EBADMSG;
1534 goto oops1;
1535
1536 default:
1537 /*
1538 * Garbage on stream head read queue.
1539 */
1540 cmn_err(CE_WARN, "bad %x found at stream head\n",
1541 bp->b_datap->db_type);
1542 freemsg(bp);
1543 goto oops1;
1544 }
1545 mutex_enter(&stp->sd_lock);
1546 }
1547 oops:
1548 mutex_exit(&stp->sd_lock);
1549 oops1:
1550 qbackenable(q, pri);
1551 return (error);
1552 #undef _LASTMARK
1553 }
1554
1555 /*
1556 * Default processing of M_PROTO/M_PCPROTO messages.
1557 * Determine which wakeups and signals are needed.
1558 * This can be replaced by a user-specified procedure for kernel users
1559 * of STREAMS.
1560 */
1561 /* ARGSUSED */
1562 mblk_t *
strrput_proto(vnode_t * vp,mblk_t * mp,strwakeup_t * wakeups,strsigset_t * firstmsgsigs,strsigset_t * allmsgsigs,strpollset_t * pollwakeups)1563 strrput_proto(vnode_t *vp, mblk_t *mp,
1564 strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1565 strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1566 {
1567 *wakeups = RSLEEP;
1568 *allmsgsigs = 0;
1569
1570 switch (mp->b_datap->db_type) {
1571 case M_PROTO:
1572 if (mp->b_band == 0) {
1573 *firstmsgsigs = S_INPUT | S_RDNORM;
1574 *pollwakeups = POLLIN | POLLRDNORM;
1575 } else {
1576 *firstmsgsigs = S_INPUT | S_RDBAND;
1577 *pollwakeups = POLLIN | POLLRDBAND;
1578 }
1579 break;
1580 case M_PCPROTO:
1581 *firstmsgsigs = S_HIPRI;
1582 *pollwakeups = POLLPRI;
1583 break;
1584 }
1585 return (mp);
1586 }
1587
1588 /*
1589 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1590 * M_PASSFP messages.
1591 * Determine which wakeups and signals are needed.
1592 * This can be replaced by a user-specified procedure for kernel users
1593 * of STREAMS.
1594 */
1595 /* ARGSUSED */
1596 mblk_t *
strrput_misc(vnode_t * vp,mblk_t * mp,strwakeup_t * wakeups,strsigset_t * firstmsgsigs,strsigset_t * allmsgsigs,strpollset_t * pollwakeups)1597 strrput_misc(vnode_t *vp, mblk_t *mp,
1598 strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1599 strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1600 {
1601 *wakeups = 0;
1602 *firstmsgsigs = 0;
1603 *allmsgsigs = 0;
1604 *pollwakeups = 0;
1605 return (mp);
1606 }
1607
1608 /*
1609 * Stream read put procedure. Called from downstream driver/module
1610 * with messages for the stream head. Data, protocol, and in-stream
1611 * signal messages are placed on the queue, others are handled directly.
1612 */
1613 int
strrput(queue_t * q,mblk_t * bp)1614 strrput(queue_t *q, mblk_t *bp)
1615 {
1616 struct stdata *stp;
1617 ulong_t rput_opt;
1618 strwakeup_t wakeups;
1619 strsigset_t firstmsgsigs; /* Signals if first message on queue */
1620 strsigset_t allmsgsigs; /* Signals for all messages */
1621 strsigset_t signals; /* Signals events to generate */
1622 strpollset_t pollwakeups;
1623 mblk_t *nextbp;
1624 uchar_t band = 0;
1625 int hipri_sig;
1626
1627 stp = (struct stdata *)q->q_ptr;
1628 /*
1629 * Use rput_opt for optimized access to the SR_ flags except
1630 * SR_POLLIN. That flag has to be checked under sd_lock since it
1631 * is modified by strpoll().
1632 */
1633 rput_opt = stp->sd_rput_opt;
1634
1635 ASSERT(qclaimed(q));
1636 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1637 "strrput called with message type:q %p bp %p", q, bp);
1638
1639 /*
1640 * Perform initial processing and pass to the parameterized functions.
1641 */
1642 ASSERT(bp->b_next == NULL);
1643
1644 switch (bp->b_datap->db_type) {
1645 case M_DATA:
1646 /*
1647 * sockfs is the only consumer of STREOF and when it is set,
1648 * it implies that the receiver is not interested in receiving
1649 * any more data, hence the mblk is freed to prevent unnecessary
1650 * message queueing at the stream head.
1651 */
1652 if (stp->sd_flag == STREOF) {
1653 freemsg(bp);
1654 return (0);
1655 }
1656 if ((rput_opt & SR_IGN_ZEROLEN) &&
1657 bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1658 /*
1659 * Ignore zero-length M_DATA messages. These might be
1660 * generated by some transports.
1661 * The zero-length M_DATA messages, even if they
1662 * are ignored, should effect the atmark tracking and
1663 * should wake up a thread sleeping in strwaitmark.
1664 */
1665 mutex_enter(&stp->sd_lock);
1666 if (bp->b_flag & MSGMARKNEXT) {
1667 /*
1668 * Record the position of the mark either
1669 * in q_last or in STRATMARK.
1670 */
1671 if (q->q_last != NULL) {
1672 q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1673 q->q_last->b_flag |= MSGMARKNEXT;
1674 } else {
1675 stp->sd_flag &= ~STRNOTATMARK;
1676 stp->sd_flag |= STRATMARK;
1677 }
1678 } else if (bp->b_flag & MSGNOTMARKNEXT) {
1679 /*
1680 * Record that this is not the position of
1681 * the mark either in q_last or in
1682 * STRNOTATMARK.
1683 */
1684 if (q->q_last != NULL) {
1685 q->q_last->b_flag &= ~MSGMARKNEXT;
1686 q->q_last->b_flag |= MSGNOTMARKNEXT;
1687 } else {
1688 stp->sd_flag &= ~STRATMARK;
1689 stp->sd_flag |= STRNOTATMARK;
1690 }
1691 }
1692 if (stp->sd_flag & RSLEEP) {
1693 stp->sd_flag &= ~RSLEEP;
1694 cv_broadcast(&q->q_wait);
1695 }
1696 mutex_exit(&stp->sd_lock);
1697 freemsg(bp);
1698 return (0);
1699 }
1700 wakeups = RSLEEP;
1701 if (bp->b_band == 0) {
1702 firstmsgsigs = S_INPUT | S_RDNORM;
1703 pollwakeups = POLLIN | POLLRDNORM;
1704 } else {
1705 firstmsgsigs = S_INPUT | S_RDBAND;
1706 pollwakeups = POLLIN | POLLRDBAND;
1707 }
1708 if (rput_opt & SR_SIGALLDATA)
1709 allmsgsigs = firstmsgsigs;
1710 else
1711 allmsgsigs = 0;
1712
1713 mutex_enter(&stp->sd_lock);
1714 if ((rput_opt & SR_CONSOL_DATA) &&
1715 (q->q_last != NULL) &&
1716 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1717 /*
1718 * Consolidate an M_DATA message onto an M_DATA,
1719 * M_PROTO, or M_PCPROTO by merging it with q_last.
1720 * The consolidation does not take place if
1721 * the old message is marked with either of the
1722 * marks or the delim flag or if the new
1723 * message is marked with MSGMARK. The MSGMARK
1724 * check is needed to handle the odd semantics of
1725 * MSGMARK where essentially the whole message
1726 * is to be treated as marked.
1727 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the
1728 * new message to the front of the b_cont chain.
1729 */
1730 mblk_t *lbp = q->q_last;
1731 unsigned char db_type = lbp->b_datap->db_type;
1732
1733 if ((db_type == M_DATA || db_type == M_PROTO ||
1734 db_type == M_PCPROTO) &&
1735 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1736 rmvq_noenab(q, lbp);
1737 /*
1738 * The first message in the b_cont list
1739 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1740 * We need to handle the case where we
1741 * are appending:
1742 *
1743 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1744 * 2) a MSGMARKNEXT to a plain message.
1745 * 3) a MSGNOTMARKNEXT to a plain message
1746 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1747 * message.
1748 *
1749 * Thus we never append a MSGMARKNEXT or
1750 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1751 */
1752 if (bp->b_flag & MSGMARKNEXT) {
1753 lbp->b_flag |= MSGMARKNEXT;
1754 lbp->b_flag &= ~MSGNOTMARKNEXT;
1755 bp->b_flag &= ~MSGMARKNEXT;
1756 } else if (bp->b_flag & MSGNOTMARKNEXT) {
1757 lbp->b_flag |= MSGNOTMARKNEXT;
1758 bp->b_flag &= ~MSGNOTMARKNEXT;
1759 }
1760
1761 linkb(lbp, bp);
1762 bp = lbp;
1763 /*
1764 * The new message logically isn't the first
1765 * even though the q_first check below thinks
1766 * it is. Clear the firstmsgsigs to make it
1767 * not appear to be first.
1768 */
1769 firstmsgsigs = 0;
1770 }
1771 }
1772 break;
1773
1774 case M_PASSFP:
1775 wakeups = RSLEEP;
1776 allmsgsigs = 0;
1777 if (bp->b_band == 0) {
1778 firstmsgsigs = S_INPUT | S_RDNORM;
1779 pollwakeups = POLLIN | POLLRDNORM;
1780 } else {
1781 firstmsgsigs = S_INPUT | S_RDBAND;
1782 pollwakeups = POLLIN | POLLRDBAND;
1783 }
1784 mutex_enter(&stp->sd_lock);
1785 break;
1786
1787 case M_PROTO:
1788 case M_PCPROTO:
1789 ASSERT(stp->sd_rprotofunc != NULL);
1790 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1791 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1792 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1793 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1794 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1795 POLLWRBAND)
1796
1797 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1798 ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1799 ASSERT((allmsgsigs & ~ALLSIG) == 0);
1800 ASSERT((pollwakeups & ~ALLPOLL) == 0);
1801
1802 mutex_enter(&stp->sd_lock);
1803 break;
1804
1805 default:
1806 ASSERT(stp->sd_rmiscfunc != NULL);
1807 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1808 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1809 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1810 ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1811 ASSERT((allmsgsigs & ~ALLSIG) == 0);
1812 ASSERT((pollwakeups & ~ALLPOLL) == 0);
1813 #undef ALLSIG
1814 #undef ALLPOLL
1815 mutex_enter(&stp->sd_lock);
1816 break;
1817 }
1818 ASSERT(MUTEX_HELD(&stp->sd_lock));
1819
1820 /* By default generate superset of signals */
1821 signals = (firstmsgsigs | allmsgsigs);
1822
1823 /*
1824 * The proto and misc functions can return multiple messages
1825 * as a b_next chain. Such messages are processed separately.
1826 */
1827 one_more:
1828 hipri_sig = 0;
1829 if (bp == NULL) {
1830 nextbp = NULL;
1831 } else {
1832 nextbp = bp->b_next;
1833 bp->b_next = NULL;
1834
1835 switch (bp->b_datap->db_type) {
1836 case M_PCPROTO:
1837 /*
1838 * Only one priority protocol message is allowed at the
1839 * stream head at a time.
1840 */
1841 if (stp->sd_flag & STRPRI) {
1842 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1843 "M_PCPROTO already at head");
1844 freemsg(bp);
1845 mutex_exit(&stp->sd_lock);
1846 goto done;
1847 }
1848 stp->sd_flag |= STRPRI;
1849 hipri_sig = 1;
1850 /* FALLTHRU */
1851 case M_DATA:
1852 case M_PROTO:
1853 case M_PASSFP:
1854 band = bp->b_band;
1855 /*
1856 * Marking doesn't work well when messages
1857 * are marked in more than one band. We only
1858 * remember the last message received, even if
1859 * it is placed on the queue ahead of other
1860 * marked messages.
1861 */
1862 if (bp->b_flag & MSGMARK)
1863 stp->sd_mark = bp;
1864 (void) putq(q, bp);
1865
1866 /*
1867 * If message is a PCPROTO message, always use
1868 * firstmsgsigs to determine if a signal should be
1869 * sent as strrput is the only place to send
1870 * signals for PCPROTO. Other messages are based on
1871 * the STRGETINPROG flag. The flag determines if
1872 * strrput or (k)strgetmsg will be responsible for
1873 * sending the signals, in the firstmsgsigs case.
1874 */
1875 if ((hipri_sig == 1) ||
1876 (((stp->sd_flag & STRGETINPROG) == 0) &&
1877 (q->q_first == bp)))
1878 signals = (firstmsgsigs | allmsgsigs);
1879 else
1880 signals = allmsgsigs;
1881 break;
1882
1883 default:
1884 mutex_exit(&stp->sd_lock);
1885 (void) strrput_nondata(q, bp);
1886 mutex_enter(&stp->sd_lock);
1887 break;
1888 }
1889 }
1890 ASSERT(MUTEX_HELD(&stp->sd_lock));
1891 /*
1892 * Wake sleeping read/getmsg and cancel deferred wakeup
1893 */
1894 if (wakeups & RSLEEP)
1895 stp->sd_wakeq &= ~RSLEEP;
1896
1897 wakeups &= stp->sd_flag;
1898 if (wakeups & RSLEEP) {
1899 stp->sd_flag &= ~RSLEEP;
1900 cv_broadcast(&q->q_wait);
1901 }
1902 if (wakeups & WSLEEP) {
1903 stp->sd_flag &= ~WSLEEP;
1904 cv_broadcast(&_WR(q)->q_wait);
1905 }
1906
1907 if (pollwakeups != 0) {
1908 if (pollwakeups == (POLLIN | POLLRDNORM)) {
1909 /*
1910 * Can't use rput_opt since it was not
1911 * read when sd_lock was held and SR_POLLIN is changed
1912 * by strpoll() under sd_lock.
1913 */
1914 if (!(stp->sd_rput_opt & SR_POLLIN))
1915 goto no_pollwake;
1916 stp->sd_rput_opt &= ~SR_POLLIN;
1917 }
1918 mutex_exit(&stp->sd_lock);
1919 pollwakeup(&stp->sd_pollist, pollwakeups);
1920 mutex_enter(&stp->sd_lock);
1921 }
1922 no_pollwake:
1923
1924 /*
1925 * strsendsig can handle multiple signals with a
1926 * single call.
1927 */
1928 if (stp->sd_sigflags & signals)
1929 strsendsig(stp->sd_siglist, signals, band, 0);
1930 mutex_exit(&stp->sd_lock);
1931
1932
1933 done:
1934 if (nextbp == NULL)
1935 return (0);
1936
1937 /*
1938 * Any signals were handled the first time.
1939 * Wakeups and pollwakeups are redone to avoid any race
1940 * conditions - all the messages are not queued until the
1941 * last message has been processed by strrput.
1942 */
1943 bp = nextbp;
1944 signals = firstmsgsigs = allmsgsigs = 0;
1945 mutex_enter(&stp->sd_lock);
1946 goto one_more;
1947 }
1948
1949 static void
log_dupioc(queue_t * rq,mblk_t * bp)1950 log_dupioc(queue_t *rq, mblk_t *bp)
1951 {
1952 queue_t *wq, *qp;
1953 char *modnames, *mnp, *dname;
1954 size_t maxmodstr;
1955 boolean_t islast;
1956
1957 /*
1958 * Allocate a buffer large enough to hold the names of nstrpush modules
1959 * and one driver, with spaces between and NUL terminator. If we can't
1960 * get memory, then we'll just log the driver name.
1961 */
1962 maxmodstr = nstrpush * (FMNAMESZ + 1);
1963 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1964
1965 /* march down write side to print log message down to the driver */
1966 wq = WR(rq);
1967
1968 /* make sure q_next doesn't shift around while we're grabbing data */
1969 claimstr(wq);
1970 qp = wq->q_next;
1971 do {
1972 dname = Q2NAME(qp);
1973 islast = !SAMESTR(qp) || qp->q_next == NULL;
1974 if (modnames == NULL) {
1975 /*
1976 * If we don't have memory, then get the driver name in
1977 * the log where we can see it. Note that memory
1978 * pressure is a possible cause of these sorts of bugs.
1979 */
1980 if (islast) {
1981 modnames = dname;
1982 maxmodstr = 0;
1983 }
1984 } else {
1985 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1986 if (!islast)
1987 *mnp++ = ' ';
1988 }
1989 qp = qp->q_next;
1990 } while (!islast);
1991 releasestr(wq);
1992 /* Cannot happen unless stream head is corrupt. */
1993 ASSERT(modnames != NULL);
1994 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1995 SL_CONSOLE|SL_TRACE|SL_ERROR,
1996 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1997 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1998 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1999 if (maxmodstr != 0)
2000 kmem_free(modnames, maxmodstr);
2001 }
2002
2003 int
strrput_nondata(queue_t * q,mblk_t * bp)2004 strrput_nondata(queue_t *q, mblk_t *bp)
2005 {
2006 struct stdata *stp;
2007 struct iocblk *iocbp;
2008 struct stroptions *sop;
2009 struct copyreq *reqp;
2010 struct copyresp *resp;
2011 unsigned char bpri;
2012 unsigned char flushed_already = 0;
2013
2014 stp = (struct stdata *)q->q_ptr;
2015
2016 ASSERT(!(stp->sd_flag & STPLEX));
2017 ASSERT(qclaimed(q));
2018
2019 switch (bp->b_datap->db_type) {
2020 case M_ERROR:
2021 /*
2022 * An error has occurred downstream, the errno is in the first
2023 * bytes of the message.
2024 */
2025 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */
2026 unsigned char rw = 0;
2027
2028 mutex_enter(&stp->sd_lock);
2029 if (*bp->b_rptr != NOERROR) { /* read error */
2030 if (*bp->b_rptr != 0) {
2031 if (stp->sd_flag & STRDERR)
2032 flushed_already |= FLUSHR;
2033 stp->sd_flag |= STRDERR;
2034 rw |= FLUSHR;
2035 } else {
2036 stp->sd_flag &= ~STRDERR;
2037 }
2038 stp->sd_rerror = *bp->b_rptr;
2039 }
2040 bp->b_rptr++;
2041 if (*bp->b_rptr != NOERROR) { /* write error */
2042 if (*bp->b_rptr != 0) {
2043 if (stp->sd_flag & STWRERR)
2044 flushed_already |= FLUSHW;
2045 stp->sd_flag |= STWRERR;
2046 rw |= FLUSHW;
2047 } else {
2048 stp->sd_flag &= ~STWRERR;
2049 }
2050 stp->sd_werror = *bp->b_rptr;
2051 }
2052 if (rw) {
2053 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
2054 "strrput cv_broadcast:q %p, bp %p",
2055 q, bp);
2056 cv_broadcast(&q->q_wait); /* readers */
2057 cv_broadcast(&_WR(q)->q_wait); /* writers */
2058 cv_broadcast(&stp->sd_monitor); /* ioctllers */
2059
2060 mutex_exit(&stp->sd_lock);
2061 pollwakeup(&stp->sd_pollist, POLLERR);
2062 mutex_enter(&stp->sd_lock);
2063
2064 if (stp->sd_sigflags & S_ERROR)
2065 strsendsig(stp->sd_siglist, S_ERROR, 0,
2066 ((rw & FLUSHR) ? stp->sd_rerror :
2067 stp->sd_werror));
2068 mutex_exit(&stp->sd_lock);
2069 /*
2070 * Send the M_FLUSH only
2071 * for the first M_ERROR
2072 * message on the stream
2073 */
2074 if (flushed_already == rw) {
2075 freemsg(bp);
2076 return (0);
2077 }
2078
2079 bp->b_datap->db_type = M_FLUSH;
2080 *bp->b_rptr = rw;
2081 bp->b_wptr = bp->b_rptr + 1;
2082 /*
2083 * Protect against the driver
2084 * passing up messages after
2085 * it has done a qprocsoff
2086 */
2087 if (_OTHERQ(q)->q_next == NULL)
2088 freemsg(bp);
2089 else
2090 qreply(q, bp);
2091 return (0);
2092 } else
2093 mutex_exit(&stp->sd_lock);
2094 } else if (*bp->b_rptr != 0) { /* Old flavor */
2095 if (stp->sd_flag & (STRDERR|STWRERR))
2096 flushed_already = FLUSHRW;
2097 mutex_enter(&stp->sd_lock);
2098 stp->sd_flag |= (STRDERR|STWRERR);
2099 stp->sd_rerror = *bp->b_rptr;
2100 stp->sd_werror = *bp->b_rptr;
2101 TRACE_2(TR_FAC_STREAMS_FR,
2102 TR_STRRPUT_WAKE2,
2103 "strrput wakeup #2:q %p, bp %p", q, bp);
2104 cv_broadcast(&q->q_wait); /* the readers */
2105 cv_broadcast(&_WR(q)->q_wait); /* the writers */
2106 cv_broadcast(&stp->sd_monitor); /* ioctllers */
2107
2108 mutex_exit(&stp->sd_lock);
2109 pollwakeup(&stp->sd_pollist, POLLERR);
2110 mutex_enter(&stp->sd_lock);
2111
2112 if (stp->sd_sigflags & S_ERROR)
2113 strsendsig(stp->sd_siglist, S_ERROR, 0,
2114 (stp->sd_werror ? stp->sd_werror :
2115 stp->sd_rerror));
2116 mutex_exit(&stp->sd_lock);
2117
2118 /*
2119 * Send the M_FLUSH only
2120 * for the first M_ERROR
2121 * message on the stream
2122 */
2123 if (flushed_already != FLUSHRW) {
2124 bp->b_datap->db_type = M_FLUSH;
2125 *bp->b_rptr = FLUSHRW;
2126 /*
2127 * Protect against the driver passing up
2128 * messages after it has done a
2129 * qprocsoff.
2130 */
2131 if (_OTHERQ(q)->q_next == NULL)
2132 freemsg(bp);
2133 else
2134 qreply(q, bp);
2135 return (0);
2136 }
2137 }
2138 freemsg(bp);
2139 return (0);
2140
2141 case M_HANGUP:
2142
2143 freemsg(bp);
2144 mutex_enter(&stp->sd_lock);
2145 stp->sd_werror = ENXIO;
2146 stp->sd_flag |= STRHUP;
2147 stp->sd_flag &= ~(WSLEEP|RSLEEP);
2148
2149 /*
2150 * send signal if controlling tty
2151 */
2152
2153 if (stp->sd_sidp) {
2154 prsignal(stp->sd_sidp, SIGHUP);
2155 if (stp->sd_sidp != stp->sd_pgidp)
2156 pgsignal(stp->sd_pgidp, SIGTSTP);
2157 }
2158
2159 /*
2160 * wake up read, write, and exception pollers and
2161 * reset wakeup mechanism.
2162 */
2163 cv_broadcast(&q->q_wait); /* the readers */
2164 cv_broadcast(&_WR(q)->q_wait); /* the writers */
2165 cv_broadcast(&stp->sd_monitor); /* the ioctllers */
2166 strhup(stp);
2167 mutex_exit(&stp->sd_lock);
2168 return (0);
2169
2170 case M_UNHANGUP:
2171 freemsg(bp);
2172 mutex_enter(&stp->sd_lock);
2173 stp->sd_werror = 0;
2174 stp->sd_flag &= ~STRHUP;
2175 mutex_exit(&stp->sd_lock);
2176 return (0);
2177
2178 case M_SIG:
2179 /*
2180 * Someone downstream wants to post a signal. The
2181 * signal to post is contained in the first byte of the
2182 * message. If the message would go on the front of
2183 * the queue, send a signal to the process group
2184 * (if not SIGPOLL) or to the siglist processes
2185 * (SIGPOLL). If something is already on the queue,
2186 * OR if we are delivering a delayed suspend (*sigh*
2187 * another "tty" hack) and there's no one sleeping already,
2188 * just enqueue the message.
2189 */
2190 mutex_enter(&stp->sd_lock);
2191 if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2192 !(stp->sd_flag & RSLEEP))) {
2193 (void) putq(q, bp);
2194 mutex_exit(&stp->sd_lock);
2195 return (0);
2196 }
2197 mutex_exit(&stp->sd_lock);
2198 /* FALLTHRU */
2199
2200 case M_PCSIG:
2201 /*
2202 * Don't enqueue, just post the signal.
2203 */
2204 strsignal(stp, *bp->b_rptr, 0L);
2205 freemsg(bp);
2206 return (0);
2207
2208 case M_CMD:
2209 if (MBLKL(bp) != sizeof (cmdblk_t)) {
2210 freemsg(bp);
2211 return (0);
2212 }
2213
2214 mutex_enter(&stp->sd_lock);
2215 if (stp->sd_flag & STRCMDWAIT) {
2216 ASSERT(stp->sd_cmdblk == NULL);
2217 stp->sd_cmdblk = bp;
2218 cv_broadcast(&stp->sd_monitor);
2219 mutex_exit(&stp->sd_lock);
2220 } else {
2221 mutex_exit(&stp->sd_lock);
2222 freemsg(bp);
2223 }
2224 return (0);
2225
2226 case M_FLUSH:
2227 /*
2228 * Flush queues. The indication of which queues to flush
2229 * is in the first byte of the message. If the read queue
2230 * is specified, then flush it. If FLUSHBAND is set, just
2231 * flush the band specified by the second byte of the message.
2232 *
2233 * If a module has issued a M_SETOPT to not flush hi
2234 * priority messages off of the stream head, then pass this
2235 * flag into the flushq code to preserve such messages.
2236 */
2237
2238 if (*bp->b_rptr & FLUSHR) {
2239 mutex_enter(&stp->sd_lock);
2240 if (*bp->b_rptr & FLUSHBAND) {
2241 ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2242 flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2243 } else
2244 flushq_common(q, FLUSHALL,
2245 stp->sd_read_opt & RFLUSHPCPROT);
2246 if ((q->q_first == NULL) ||
2247 (q->q_first->b_datap->db_type < QPCTL))
2248 stp->sd_flag &= ~STRPRI;
2249 else {
2250 ASSERT(stp->sd_flag & STRPRI);
2251 }
2252 mutex_exit(&stp->sd_lock);
2253 }
2254 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2255 *bp->b_rptr &= ~FLUSHR;
2256 bp->b_flag |= MSGNOLOOP;
2257 /*
2258 * Protect against the driver passing up
2259 * messages after it has done a qprocsoff.
2260 */
2261 if (_OTHERQ(q)->q_next == NULL)
2262 freemsg(bp);
2263 else
2264 qreply(q, bp);
2265 return (0);
2266 }
2267 freemsg(bp);
2268 return (0);
2269
2270 case M_IOCACK:
2271 case M_IOCNAK:
2272 iocbp = (struct iocblk *)bp->b_rptr;
2273 /*
2274 * If not waiting for ACK or NAK then just free msg.
2275 * If incorrect id sequence number then just free msg.
2276 * If already have ACK or NAK for user then this is a
2277 * duplicate, display a warning and free the msg.
2278 */
2279 mutex_enter(&stp->sd_lock);
2280 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2281 (stp->sd_iocid != iocbp->ioc_id)) {
2282 /*
2283 * If the ACK/NAK is a dup, display a message
2284 * Dup is when sd_iocid == ioc_id, and
2285 * sd_iocblk == <valid ptr> or -1 (the former
2286 * is when an ioctl has been put on the stream
2287 * head, but has not yet been consumed, the
2288 * later is when it has been consumed).
2289 */
2290 if ((stp->sd_iocid == iocbp->ioc_id) &&
2291 (stp->sd_iocblk != NULL)) {
2292 log_dupioc(q, bp);
2293 }
2294 freemsg(bp);
2295 mutex_exit(&stp->sd_lock);
2296 return (0);
2297 }
2298
2299 /*
2300 * Assign ACK or NAK to user and wake up.
2301 */
2302 stp->sd_iocblk = bp;
2303 cv_broadcast(&stp->sd_monitor);
2304 mutex_exit(&stp->sd_lock);
2305 return (0);
2306
2307 case M_COPYIN:
2308 case M_COPYOUT:
2309 reqp = (struct copyreq *)bp->b_rptr;
2310
2311 /*
2312 * If not waiting for ACK or NAK then just fail request.
2313 * If already have ACK, NAK, or copy request, then just
2314 * fail request.
2315 * If incorrect id sequence number then just fail request.
2316 */
2317 mutex_enter(&stp->sd_lock);
2318 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2319 (stp->sd_iocid != reqp->cq_id)) {
2320 if (bp->b_cont) {
2321 freemsg(bp->b_cont);
2322 bp->b_cont = NULL;
2323 }
2324 bp->b_datap->db_type = M_IOCDATA;
2325 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2326 resp = (struct copyresp *)bp->b_rptr;
2327 resp->cp_rval = (caddr_t)1; /* failure */
2328 mutex_exit(&stp->sd_lock);
2329 putnext(stp->sd_wrq, bp);
2330 return (0);
2331 }
2332
2333 /*
2334 * Assign copy request to user and wake up.
2335 */
2336 stp->sd_iocblk = bp;
2337 cv_broadcast(&stp->sd_monitor);
2338 mutex_exit(&stp->sd_lock);
2339 return (0);
2340
2341 case M_SETOPTS:
2342 /*
2343 * Set stream head options (read option, write offset,
2344 * min/max packet size, and/or high/low water marks for
2345 * the read side only).
2346 */
2347
2348 bpri = 0;
2349 sop = (struct stroptions *)bp->b_rptr;
2350 mutex_enter(&stp->sd_lock);
2351 if (sop->so_flags & SO_READOPT) {
2352 switch (sop->so_readopt & RMODEMASK) {
2353 case RNORM:
2354 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2355 break;
2356
2357 case RMSGD:
2358 stp->sd_read_opt =
2359 ((stp->sd_read_opt & ~RD_MSGNODIS) |
2360 RD_MSGDIS);
2361 break;
2362
2363 case RMSGN:
2364 stp->sd_read_opt =
2365 ((stp->sd_read_opt & ~RD_MSGDIS) |
2366 RD_MSGNODIS);
2367 break;
2368 }
2369 switch (sop->so_readopt & RPROTMASK) {
2370 case RPROTNORM:
2371 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2372 break;
2373
2374 case RPROTDAT:
2375 stp->sd_read_opt =
2376 ((stp->sd_read_opt & ~RD_PROTDIS) |
2377 RD_PROTDAT);
2378 break;
2379
2380 case RPROTDIS:
2381 stp->sd_read_opt =
2382 ((stp->sd_read_opt & ~RD_PROTDAT) |
2383 RD_PROTDIS);
2384 break;
2385 }
2386 switch (sop->so_readopt & RFLUSHMASK) {
2387 case RFLUSHPCPROT:
2388 /*
2389 * This sets the stream head to NOT flush
2390 * M_PCPROTO messages.
2391 */
2392 stp->sd_read_opt |= RFLUSHPCPROT;
2393 break;
2394 }
2395 }
2396 if (sop->so_flags & SO_ERROPT) {
2397 switch (sop->so_erropt & RERRMASK) {
2398 case RERRNORM:
2399 stp->sd_flag &= ~STRDERRNONPERSIST;
2400 break;
2401 case RERRNONPERSIST:
2402 stp->sd_flag |= STRDERRNONPERSIST;
2403 break;
2404 }
2405 switch (sop->so_erropt & WERRMASK) {
2406 case WERRNORM:
2407 stp->sd_flag &= ~STWRERRNONPERSIST;
2408 break;
2409 case WERRNONPERSIST:
2410 stp->sd_flag |= STWRERRNONPERSIST;
2411 break;
2412 }
2413 }
2414 if (sop->so_flags & SO_COPYOPT) {
2415 if (sop->so_copyopt & ZCVMSAFE) {
2416 stp->sd_copyflag |= STZCVMSAFE;
2417 stp->sd_copyflag &= ~STZCVMUNSAFE;
2418 } else if (sop->so_copyopt & ZCVMUNSAFE) {
2419 stp->sd_copyflag |= STZCVMUNSAFE;
2420 stp->sd_copyflag &= ~STZCVMSAFE;
2421 }
2422
2423 if (sop->so_copyopt & COPYCACHED) {
2424 stp->sd_copyflag |= STRCOPYCACHED;
2425 }
2426 }
2427 if (sop->so_flags & SO_WROFF)
2428 stp->sd_wroff = sop->so_wroff;
2429 if (sop->so_flags & SO_TAIL)
2430 stp->sd_tail = sop->so_tail;
2431 if (sop->so_flags & SO_MINPSZ)
2432 q->q_minpsz = sop->so_minpsz;
2433 if (sop->so_flags & SO_MAXPSZ)
2434 q->q_maxpsz = sop->so_maxpsz;
2435 if (sop->so_flags & SO_MAXBLK)
2436 stp->sd_maxblk = sop->so_maxblk;
2437 if (sop->so_flags & SO_HIWAT) {
2438 if (sop->so_flags & SO_BAND) {
2439 if (strqset(q, QHIWAT,
2440 sop->so_band, sop->so_hiwat)) {
2441 cmn_err(CE_WARN, "strrput: could not "
2442 "allocate qband\n");
2443 } else {
2444 bpri = sop->so_band;
2445 }
2446 } else {
2447 q->q_hiwat = sop->so_hiwat;
2448 }
2449 }
2450 if (sop->so_flags & SO_LOWAT) {
2451 if (sop->so_flags & SO_BAND) {
2452 if (strqset(q, QLOWAT,
2453 sop->so_band, sop->so_lowat)) {
2454 cmn_err(CE_WARN, "strrput: could not "
2455 "allocate qband\n");
2456 } else {
2457 bpri = sop->so_band;
2458 }
2459 } else {
2460 q->q_lowat = sop->so_lowat;
2461 }
2462 }
2463 if (sop->so_flags & SO_MREADON)
2464 stp->sd_flag |= SNDMREAD;
2465 if (sop->so_flags & SO_MREADOFF)
2466 stp->sd_flag &= ~SNDMREAD;
2467 if (sop->so_flags & SO_NDELON)
2468 stp->sd_flag |= OLDNDELAY;
2469 if (sop->so_flags & SO_NDELOFF)
2470 stp->sd_flag &= ~OLDNDELAY;
2471 if (sop->so_flags & SO_ISTTY)
2472 stp->sd_flag |= STRISTTY;
2473 if (sop->so_flags & SO_ISNTTY)
2474 stp->sd_flag &= ~STRISTTY;
2475 if (sop->so_flags & SO_TOSTOP)
2476 stp->sd_flag |= STRTOSTOP;
2477 if (sop->so_flags & SO_TONSTOP)
2478 stp->sd_flag &= ~STRTOSTOP;
2479 if (sop->so_flags & SO_DELIM)
2480 stp->sd_flag |= STRDELIM;
2481 if (sop->so_flags & SO_NODELIM)
2482 stp->sd_flag &= ~STRDELIM;
2483
2484 mutex_exit(&stp->sd_lock);
2485 freemsg(bp);
2486
2487 /* Check backenable in case the water marks changed */
2488 qbackenable(q, bpri);
2489 return (0);
2490
2491 /*
2492 * The following set of cases deal with situations where two stream
2493 * heads are connected to each other (twisted streams). These messages
2494 * have no meaning at the stream head.
2495 */
2496 case M_BREAK:
2497 case M_CTL:
2498 case M_DELAY:
2499 case M_START:
2500 case M_STOP:
2501 case M_IOCDATA:
2502 case M_STARTI:
2503 case M_STOPI:
2504 freemsg(bp);
2505 return (0);
2506
2507 case M_IOCTL:
2508 /*
2509 * Always NAK this condition
2510 * (makes no sense)
2511 * If there is one or more threads in the read side
2512 * rwnext we have to defer the nacking until that thread
2513 * returns (in strget).
2514 */
2515 mutex_enter(&stp->sd_lock);
2516 if (stp->sd_struiodnak != 0) {
2517 /*
2518 * Defer NAK to the streamhead. Queue at the end
2519 * the list.
2520 */
2521 mblk_t *mp = stp->sd_struionak;
2522
2523 while (mp && mp->b_next)
2524 mp = mp->b_next;
2525 if (mp)
2526 mp->b_next = bp;
2527 else
2528 stp->sd_struionak = bp;
2529 bp->b_next = NULL;
2530 mutex_exit(&stp->sd_lock);
2531 return (0);
2532 }
2533 mutex_exit(&stp->sd_lock);
2534
2535 bp->b_datap->db_type = M_IOCNAK;
2536 /*
2537 * Protect against the driver passing up
2538 * messages after it has done a qprocsoff.
2539 */
2540 if (_OTHERQ(q)->q_next == NULL)
2541 freemsg(bp);
2542 else
2543 qreply(q, bp);
2544 return (0);
2545
2546 default:
2547 #ifdef DEBUG
2548 cmn_err(CE_WARN,
2549 "bad message type %x received at stream head\n",
2550 bp->b_datap->db_type);
2551 #endif
2552 freemsg(bp);
2553 return (0);
2554 }
2555
2556 /* NOTREACHED */
2557 }
2558
2559 /*
2560 * Check if the stream pointed to by `stp' can be written to, and return an
2561 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set.
2562 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2563 * then always return EPIPE and send a SIGPIPE to the invoking thread.
2564 */
2565 static int
strwriteable(struct stdata * stp,boolean_t eiohup,boolean_t sigpipeok)2566 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2567 {
2568 int error;
2569
2570 ASSERT(MUTEX_HELD(&stp->sd_lock));
2571
2572 /*
2573 * For modem support, POSIX states that on writes, EIO should
2574 * be returned if the stream has been hung up.
2575 */
2576 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2577 error = EIO;
2578 else
2579 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2580
2581 if (error != 0) {
2582 if (!(stp->sd_flag & STPLEX) &&
2583 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2584 tsignal(curthread, SIGPIPE);
2585 error = EPIPE;
2586 }
2587 }
2588
2589 return (error);
2590 }
2591
2592 /*
2593 * Copyin and send data down a stream.
2594 * The caller will allocate and copyin any control part that precedes the
2595 * message and pass that in as mctl.
2596 *
2597 * Caller should *not* hold sd_lock.
2598 * When EWOULDBLOCK is returned the caller has to redo the canputnext
2599 * under sd_lock in order to avoid missing a backenabling wakeup.
2600 *
2601 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2602 *
2603 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2604 * For sync streams we can only ignore flow control by reverting to using
2605 * putnext.
2606 *
2607 * If sd_maxblk is less than *iosize this routine might return without
2608 * transferring all of *iosize. In all cases, on return *iosize will contain
2609 * the amount of data that was transferred.
2610 */
2611 static int
strput(struct stdata * stp,mblk_t * mctl,struct uio * uiop,ssize_t * iosize,int b_flag,int pri,int flags)2612 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2613 int b_flag, int pri, int flags)
2614 {
2615 struiod_t uiod;
2616 struct iovec buf[IOV_MAX_STACK];
2617 int iovlen = 0;
2618 mblk_t *mp;
2619 queue_t *wqp = stp->sd_wrq;
2620 int error = 0;
2621 ssize_t count = *iosize;
2622
2623 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2624
2625 if (uiop != NULL && count >= 0)
2626 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2627
2628 if (!(flags & STRUIO_POSTPONE)) {
2629 /*
2630 * Use regular canputnext, strmakedata, putnext sequence.
2631 */
2632 if (pri == 0) {
2633 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2634 freemsg(mctl);
2635 return (EWOULDBLOCK);
2636 }
2637 } else {
2638 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2639 freemsg(mctl);
2640 return (EWOULDBLOCK);
2641 }
2642 }
2643
2644 if ((error = strmakedata(iosize, uiop, stp, flags,
2645 &mp)) != 0) {
2646 freemsg(mctl);
2647 /*
2648 * need to change return code to ENOMEM
2649 * so that this is not confused with
2650 * flow control, EAGAIN.
2651 */
2652
2653 if (error == EAGAIN)
2654 return (ENOMEM);
2655 else
2656 return (error);
2657 }
2658 if (mctl != NULL) {
2659 if (mctl->b_cont == NULL)
2660 mctl->b_cont = mp;
2661 else if (mp != NULL)
2662 linkb(mctl, mp);
2663 mp = mctl;
2664 } else if (mp == NULL)
2665 return (0);
2666
2667 mp->b_flag |= b_flag;
2668 mp->b_band = (uchar_t)pri;
2669
2670 if (flags & MSG_IGNFLOW) {
2671 /*
2672 * XXX Hack: Don't get stuck running service
2673 * procedures. This is needed for sockfs when
2674 * sending the unbind message out of the rput
2675 * procedure - we don't want a put procedure
2676 * to run service procedures.
2677 */
2678 putnext(wqp, mp);
2679 } else {
2680 stream_willservice(stp);
2681 putnext(wqp, mp);
2682 stream_runservice(stp);
2683 }
2684 return (0);
2685 }
2686 /*
2687 * Stream supports rwnext() for the write side.
2688 */
2689 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2690 freemsg(mctl);
2691 /*
2692 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2693 */
2694 return (error == EAGAIN ? ENOMEM : error);
2695 }
2696 if (mctl != NULL) {
2697 if (mctl->b_cont == NULL)
2698 mctl->b_cont = mp;
2699 else if (mp != NULL)
2700 linkb(mctl, mp);
2701 mp = mctl;
2702 } else if (mp == NULL) {
2703 return (0);
2704 }
2705
2706 mp->b_flag |= b_flag;
2707 mp->b_band = (uchar_t)pri;
2708
2709 if (uiop->uio_iovcnt > IOV_MAX_STACK) {
2710 iovlen = uiop->uio_iovcnt * sizeof (iovec_t);
2711 uiod.d_iov = (struct iovec *)kmem_alloc(iovlen, KM_SLEEP);
2712 } else {
2713 uiod.d_iov = buf;
2714 }
2715
2716 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, uiop->uio_iovcnt);
2717 uiod.d_uio.uio_offset = 0;
2718 uiod.d_mp = mp;
2719 error = rwnext(wqp, &uiod);
2720 if (! uiod.d_mp) {
2721 uioskip(uiop, *iosize);
2722 if (iovlen != 0)
2723 kmem_free(uiod.d_iov, iovlen);
2724 return (error);
2725 }
2726 ASSERT(mp == uiod.d_mp);
2727 if (error == EINVAL) {
2728 /*
2729 * The stream plumbing must have changed while
2730 * we were away, so just turn off rwnext()s.
2731 */
2732 error = 0;
2733 } else if (error == EBUSY || error == EWOULDBLOCK) {
2734 /*
2735 * Couldn't enter a perimeter or took a page fault,
2736 * so fall-back to putnext().
2737 */
2738 error = 0;
2739 } else {
2740 freemsg(mp);
2741 if (iovlen != 0)
2742 kmem_free(uiod.d_iov, iovlen);
2743 return (error);
2744 }
2745 /* Have to check canput before consuming data from the uio */
2746 if (pri == 0) {
2747 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2748 freemsg(mp);
2749 if (iovlen != 0)
2750 kmem_free(uiod.d_iov, iovlen);
2751 return (EWOULDBLOCK);
2752 }
2753 } else {
2754 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2755 freemsg(mp);
2756 if (iovlen != 0)
2757 kmem_free(uiod.d_iov, iovlen);
2758 return (EWOULDBLOCK);
2759 }
2760 }
2761 ASSERT(mp == uiod.d_mp);
2762 /* Copyin data from the uio */
2763 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2764 freemsg(mp);
2765 if (iovlen != 0)
2766 kmem_free(uiod.d_iov, iovlen);
2767 return (error);
2768 }
2769 uioskip(uiop, *iosize);
2770 if (flags & MSG_IGNFLOW) {
2771 /*
2772 * XXX Hack: Don't get stuck running service procedures.
2773 * This is needed for sockfs when sending the unbind message
2774 * out of the rput procedure - we don't want a put procedure
2775 * to run service procedures.
2776 */
2777 putnext(wqp, mp);
2778 } else {
2779 stream_willservice(stp);
2780 putnext(wqp, mp);
2781 stream_runservice(stp);
2782 }
2783 if (iovlen != 0)
2784 kmem_free(uiod.d_iov, iovlen);
2785 return (0);
2786 }
2787
2788 /*
2789 * Write attempts to break the write request into messages conforming
2790 * with the minimum and maximum packet sizes set downstream.
2791 *
2792 * Write will not block if downstream queue is full and
2793 * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2794 *
2795 * A write of zero bytes gets packaged into a zero length message and sent
2796 * downstream like any other message.
2797 *
2798 * If buffers of the requested sizes are not available, the write will
2799 * sleep until the buffers become available.
2800 *
2801 * Write (if specified) will supply a write offset in a message if it
2802 * makes sense. This can be specified by downstream modules as part of
2803 * a M_SETOPTS message. Write will not supply the write offset if it
2804 * cannot supply any data in a buffer. In other words, write will never
2805 * send down an empty packet due to a write offset.
2806 */
2807 /* ARGSUSED2 */
2808 int
strwrite(struct vnode * vp,struct uio * uiop,cred_t * crp)2809 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2810 {
2811 return (strwrite_common(vp, uiop, crp, 0));
2812 }
2813
2814 /* ARGSUSED2 */
2815 int
strwrite_common(struct vnode * vp,struct uio * uiop,cred_t * crp,int wflag)2816 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2817 {
2818 struct stdata *stp;
2819 struct queue *wqp;
2820 ssize_t rmin, rmax;
2821 ssize_t iosize;
2822 int waitflag;
2823 int tempmode;
2824 int error = 0;
2825 int b_flag;
2826
2827 ASSERT(vp->v_stream);
2828 stp = vp->v_stream;
2829
2830 mutex_enter(&stp->sd_lock);
2831
2832 if ((error = i_straccess(stp, JCWRITE)) != 0) {
2833 mutex_exit(&stp->sd_lock);
2834 return (error);
2835 }
2836
2837 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2838 error = strwriteable(stp, B_TRUE, B_TRUE);
2839 if (error != 0) {
2840 mutex_exit(&stp->sd_lock);
2841 return (error);
2842 }
2843 }
2844
2845 mutex_exit(&stp->sd_lock);
2846
2847 wqp = stp->sd_wrq;
2848
2849 /* get these values from them cached in the stream head */
2850 rmin = stp->sd_qn_minpsz;
2851 rmax = stp->sd_qn_maxpsz;
2852
2853 /*
2854 * Check the min/max packet size constraints. If min packet size
2855 * is non-zero, the write cannot be split into multiple messages
2856 * and still guarantee the size constraints.
2857 */
2858 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2859
2860 ASSERT((rmax >= 0) || (rmax == INFPSZ));
2861 if (rmax == 0) {
2862 return (0);
2863 }
2864 if (rmin > 0) {
2865 if (uiop->uio_resid < rmin) {
2866 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2867 "strwrite out:q %p out %d error %d",
2868 wqp, 0, ERANGE);
2869 return (ERANGE);
2870 }
2871 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2872 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2873 "strwrite out:q %p out %d error %d",
2874 wqp, 1, ERANGE);
2875 return (ERANGE);
2876 }
2877 }
2878
2879 /*
2880 * Do until count satisfied or error.
2881 */
2882 waitflag = WRITEWAIT | wflag;
2883 if (stp->sd_flag & OLDNDELAY)
2884 tempmode = uiop->uio_fmode & ~FNDELAY;
2885 else
2886 tempmode = uiop->uio_fmode;
2887
2888 if (rmax == INFPSZ)
2889 rmax = uiop->uio_resid;
2890
2891 /*
2892 * Note that tempmode does not get used in strput/strmakedata
2893 * but only in strwaitq. The other routines use uio_fmode
2894 * unmodified.
2895 */
2896
2897 /* LINTED: constant in conditional context */
2898 while (1) { /* breaks when uio_resid reaches zero */
2899 /*
2900 * Determine the size of the next message to be
2901 * packaged. May have to break write into several
2902 * messages based on max packet size.
2903 */
2904 iosize = MIN(uiop->uio_resid, rmax);
2905
2906 /*
2907 * Put block downstream when flow control allows it.
2908 */
2909 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2910 b_flag = MSGDELIM;
2911 else
2912 b_flag = 0;
2913
2914 for (;;) {
2915 int done = 0;
2916
2917 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2918 if (error == 0)
2919 break;
2920 if (error != EWOULDBLOCK)
2921 goto out;
2922
2923 mutex_enter(&stp->sd_lock);
2924 /*
2925 * Check for a missed wakeup.
2926 * Needed since strput did not hold sd_lock across
2927 * the canputnext.
2928 */
2929 if (canputnext(wqp)) {
2930 /* Try again */
2931 mutex_exit(&stp->sd_lock);
2932 continue;
2933 }
2934 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2935 "strwrite wait:q %p wait", wqp);
2936 if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2937 tempmode, -1, &done)) != 0 || done) {
2938 mutex_exit(&stp->sd_lock);
2939 if ((vp->v_type == VFIFO) &&
2940 (uiop->uio_fmode & FNDELAY) &&
2941 (error == EAGAIN))
2942 error = 0;
2943 goto out;
2944 }
2945 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2946 "strwrite wake:q %p awakes", wqp);
2947 if ((error = i_straccess(stp, JCWRITE)) != 0) {
2948 mutex_exit(&stp->sd_lock);
2949 goto out;
2950 }
2951 mutex_exit(&stp->sd_lock);
2952 }
2953 waitflag |= NOINTR;
2954 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2955 "strwrite resid:q %p uiop %p", wqp, uiop);
2956 if (uiop->uio_resid) {
2957 /* Recheck for errors - needed for sockets */
2958 if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2959 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2960 mutex_enter(&stp->sd_lock);
2961 error = strwriteable(stp, B_FALSE, B_TRUE);
2962 mutex_exit(&stp->sd_lock);
2963 if (error != 0)
2964 return (error);
2965 }
2966 continue;
2967 }
2968 break;
2969 }
2970 out:
2971 /*
2972 * For historical reasons, applications expect EAGAIN when a data
2973 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2974 */
2975 if (error == ENOMEM)
2976 error = EAGAIN;
2977 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2978 "strwrite out:q %p out %d error %d", wqp, 2, error);
2979 return (error);
2980 }
2981
2982 /*
2983 * Stream head write service routine.
2984 * Its job is to wake up any sleeping writers when a queue
2985 * downstream needs data (part of the flow control in putq and getq).
2986 * It also must wake anyone sleeping on a poll().
2987 * For stream head right below mux module, it must also invoke put procedure
2988 * of next downstream module.
2989 */
2990 int
strwsrv(queue_t * q)2991 strwsrv(queue_t *q)
2992 {
2993 struct stdata *stp;
2994 queue_t *tq;
2995 qband_t *qbp;
2996 int i;
2997 qband_t *myqbp;
2998 int isevent;
2999 unsigned char qbf[NBAND]; /* band flushing backenable flags */
3000
3001 TRACE_1(TR_FAC_STREAMS_FR,
3002 TR_STRWSRV, "strwsrv:q %p", q);
3003 stp = (struct stdata *)q->q_ptr;
3004 ASSERT(qclaimed(q));
3005 mutex_enter(&stp->sd_lock);
3006 ASSERT(!(stp->sd_flag & STPLEX));
3007
3008 if (stp->sd_flag & WSLEEP) {
3009 stp->sd_flag &= ~WSLEEP;
3010 cv_broadcast(&q->q_wait);
3011 }
3012 mutex_exit(&stp->sd_lock);
3013
3014 /* The other end of a stream pipe went away. */
3015 if ((tq = q->q_next) == NULL) {
3016 return (0);
3017 }
3018
3019 /* Find the next module forward that has a service procedure */
3020 claimstr(q);
3021 tq = q->q_nfsrv;
3022 ASSERT(tq != NULL);
3023
3024 if ((q->q_flag & QBACK)) {
3025 if ((tq->q_flag & QFULL)) {
3026 mutex_enter(QLOCK(tq));
3027 if (!(tq->q_flag & QFULL)) {
3028 mutex_exit(QLOCK(tq));
3029 goto wakeup;
3030 }
3031 /*
3032 * The queue must have become full again. Set QWANTW
3033 * again so strwsrv will be back enabled when
3034 * the queue becomes non-full next time.
3035 */
3036 tq->q_flag |= QWANTW;
3037 mutex_exit(QLOCK(tq));
3038 } else {
3039 wakeup:
3040 pollwakeup(&stp->sd_pollist, POLLWRNORM);
3041 mutex_enter(&stp->sd_lock);
3042 if (stp->sd_sigflags & S_WRNORM)
3043 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
3044 mutex_exit(&stp->sd_lock);
3045 }
3046 }
3047
3048 isevent = 0;
3049 i = 1;
3050 bzero((caddr_t)qbf, NBAND);
3051 mutex_enter(QLOCK(tq));
3052 if ((myqbp = q->q_bandp) != NULL)
3053 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
3054 ASSERT(myqbp);
3055 if ((myqbp->qb_flag & QB_BACK)) {
3056 if (qbp->qb_flag & QB_FULL) {
3057 /*
3058 * The band must have become full again.
3059 * Set QB_WANTW again so strwsrv will
3060 * be back enabled when the band becomes
3061 * non-full next time.
3062 */
3063 qbp->qb_flag |= QB_WANTW;
3064 } else {
3065 isevent = 1;
3066 qbf[i] = 1;
3067 }
3068 }
3069 myqbp = myqbp->qb_next;
3070 i++;
3071 }
3072 mutex_exit(QLOCK(tq));
3073
3074 if (isevent) {
3075 for (i = tq->q_nband; i; i--) {
3076 if (qbf[i]) {
3077 pollwakeup(&stp->sd_pollist, POLLWRBAND);
3078 mutex_enter(&stp->sd_lock);
3079 if (stp->sd_sigflags & S_WRBAND)
3080 strsendsig(stp->sd_siglist, S_WRBAND,
3081 (uchar_t)i, 0);
3082 mutex_exit(&stp->sd_lock);
3083 }
3084 }
3085 }
3086
3087 releasestr(q);
3088 return (0);
3089 }
3090
3091 /*
3092 * Special case of strcopyin/strcopyout for copying
3093 * struct strioctl that can deal with both data
3094 * models.
3095 */
3096
3097 #ifdef _LP64
3098
3099 static int
strcopyin_strioctl(void * from,void * to,int flag,int copyflag)3100 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3101 {
3102 struct strioctl32 strioc32;
3103 struct strioctl *striocp;
3104
3105 if (copyflag & U_TO_K) {
3106 ASSERT((copyflag & K_TO_K) == 0);
3107
3108 if ((flag & FMODELS) == DATAMODEL_ILP32) {
3109 if (copyin(from, &strioc32, sizeof (strioc32)))
3110 return (EFAULT);
3111
3112 striocp = (struct strioctl *)to;
3113 striocp->ic_cmd = strioc32.ic_cmd;
3114 striocp->ic_timout = strioc32.ic_timout;
3115 striocp->ic_len = strioc32.ic_len;
3116 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp;
3117
3118 } else { /* NATIVE data model */
3119 if (copyin(from, to, sizeof (struct strioctl))) {
3120 return (EFAULT);
3121 } else {
3122 return (0);
3123 }
3124 }
3125 } else {
3126 ASSERT(copyflag & K_TO_K);
3127 bcopy(from, to, sizeof (struct strioctl));
3128 }
3129 return (0);
3130 }
3131
3132 static int
strcopyout_strioctl(void * from,void * to,int flag,int copyflag)3133 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3134 {
3135 struct strioctl32 strioc32;
3136 struct strioctl *striocp;
3137
3138 if (copyflag & U_TO_K) {
3139 ASSERT((copyflag & K_TO_K) == 0);
3140
3141 if ((flag & FMODELS) == DATAMODEL_ILP32) {
3142 striocp = (struct strioctl *)from;
3143 strioc32.ic_cmd = striocp->ic_cmd;
3144 strioc32.ic_timout = striocp->ic_timout;
3145 strioc32.ic_len = striocp->ic_len;
3146 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp;
3147 ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3148 striocp->ic_dp);
3149
3150 if (copyout(&strioc32, to, sizeof (strioc32)))
3151 return (EFAULT);
3152
3153 } else { /* NATIVE data model */
3154 if (copyout(from, to, sizeof (struct strioctl))) {
3155 return (EFAULT);
3156 } else {
3157 return (0);
3158 }
3159 }
3160 } else {
3161 ASSERT(copyflag & K_TO_K);
3162 bcopy(from, to, sizeof (struct strioctl));
3163 }
3164 return (0);
3165 }
3166
3167 #else /* ! _LP64 */
3168
3169 /* ARGSUSED2 */
3170 static int
strcopyin_strioctl(void * from,void * to,int flag,int copyflag)3171 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3172 {
3173 return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3174 }
3175
3176 /* ARGSUSED2 */
3177 static int
strcopyout_strioctl(void * from,void * to,int flag,int copyflag)3178 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3179 {
3180 return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3181 }
3182
3183 #endif /* _LP64 */
3184
3185 /*
3186 * Determine type of job control semantics expected by user. The
3187 * possibilities are:
3188 * JCREAD - Behaves like read() on fd; send SIGTTIN
3189 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set
3190 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3191 * JCGETP - Gets a value in the stream; no signals.
3192 * See straccess in strsubr.c for usage of these values.
3193 *
3194 * This routine also returns -1 for I_STR as a special case; the
3195 * caller must call again with the real ioctl number for
3196 * classification.
3197 */
3198 static int
job_control_type(int cmd)3199 job_control_type(int cmd)
3200 {
3201 switch (cmd) {
3202 case I_STR:
3203 return (-1);
3204
3205 case I_RECVFD:
3206 case I_E_RECVFD:
3207 return (JCREAD);
3208
3209 case I_FDINSERT:
3210 case I_SENDFD:
3211 return (JCWRITE);
3212
3213 case TCSETA:
3214 case TCSETAW:
3215 case TCSETAF:
3216 case TCSBRK:
3217 case TCXONC:
3218 case TCFLSH:
3219 case TCDSET: /* Obsolete */
3220 case TIOCSWINSZ:
3221 case TCSETS:
3222 case TCSETSW:
3223 case TCSETSF:
3224 case TIOCSETD:
3225 case TIOCHPCL:
3226 case TIOCSETP:
3227 case TIOCSETN:
3228 case TIOCEXCL:
3229 case TIOCNXCL:
3230 case TIOCFLUSH:
3231 case TIOCSETC:
3232 case TIOCLBIS:
3233 case TIOCLBIC:
3234 case TIOCLSET:
3235 case TIOCSBRK:
3236 case TIOCCBRK:
3237 case TIOCSDTR:
3238 case TIOCCDTR:
3239 case TIOCSLTC:
3240 case TIOCSTOP:
3241 case TIOCSTART:
3242 case TIOCSTI:
3243 case TIOCSPGRP:
3244 case TIOCMSET:
3245 case TIOCMBIS:
3246 case TIOCMBIC:
3247 case TIOCREMOTE:
3248 case TIOCSIGNAL:
3249 case LDSETT:
3250 case LDSMAP: /* Obsolete */
3251 case DIOCSETP:
3252 case I_FLUSH:
3253 case I_SRDOPT:
3254 case I_SETSIG:
3255 case I_SWROPT:
3256 case I_FLUSHBAND:
3257 case I_SETCLTIME:
3258 case I_SERROPT:
3259 case I_ESETSIG:
3260 case FIONBIO:
3261 case FIOASYNC:
3262 case FIOSETOWN:
3263 case JBOOT: /* Obsolete */
3264 case JTERM: /* Obsolete */
3265 case JTIMOM: /* Obsolete */
3266 case JZOMBOOT: /* Obsolete */
3267 case JAGENT: /* Obsolete */
3268 case JTRUN: /* Obsolete */
3269 case JXTPROTO: /* Obsolete */
3270 return (JCSETP);
3271 }
3272
3273 return (JCGETP);
3274 }
3275
3276 /*
3277 * ioctl for streams
3278 */
3279 int
strioctl(struct vnode * vp,int cmd,intptr_t arg,int flag,int copyflag,cred_t * crp,int * rvalp)3280 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3281 cred_t *crp, int *rvalp)
3282 {
3283 struct stdata *stp;
3284 struct strcmd *scp;
3285 struct strioctl strioc;
3286 struct uio uio;
3287 struct iovec iov;
3288 int access;
3289 mblk_t *mp;
3290 int error = 0;
3291 int done = 0;
3292 ssize_t rmin, rmax;
3293 queue_t *wrq;
3294 queue_t *rdq;
3295 boolean_t kioctl = B_FALSE;
3296 uint32_t auditing = AU_AUDITING();
3297
3298 if (flag & FKIOCTL) {
3299 copyflag = K_TO_K;
3300 kioctl = B_TRUE;
3301 }
3302 ASSERT(vp->v_stream);
3303 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3304 stp = vp->v_stream;
3305
3306 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3307 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3308
3309 /*
3310 * If the copy is kernel to kernel, make sure that the FNATIVE
3311 * flag is set. After this it would be a serious error to have
3312 * no model flag.
3313 */
3314 if (copyflag == K_TO_K)
3315 flag = (flag & ~FMODELS) | FNATIVE;
3316
3317 ASSERT((flag & FMODELS) != 0);
3318
3319 wrq = stp->sd_wrq;
3320 rdq = _RD(wrq);
3321
3322 access = job_control_type(cmd);
3323
3324 /* We should never see these here, should be handled by iwscn */
3325 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3326 return (EINVAL);
3327
3328 mutex_enter(&stp->sd_lock);
3329 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3330 mutex_exit(&stp->sd_lock);
3331 return (error);
3332 }
3333 mutex_exit(&stp->sd_lock);
3334
3335 /*
3336 * Check for sgttyb-related ioctls first, and complain as
3337 * necessary.
3338 */
3339 switch (cmd) {
3340 case TIOCGETP:
3341 case TIOCSETP:
3342 case TIOCSETN:
3343 if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3344 sgttyb_complaint = B_TRUE;
3345 cmn_err(CE_NOTE,
3346 "application used obsolete TIOC[GS]ET");
3347 }
3348 if (sgttyb_handling >= 3) {
3349 tsignal(curthread, SIGSYS);
3350 return (EIO);
3351 }
3352 break;
3353 }
3354
3355 mutex_enter(&stp->sd_lock);
3356
3357 switch (cmd) {
3358 case I_RECVFD:
3359 case I_E_RECVFD:
3360 case I_PEEK:
3361 case I_NREAD:
3362 case FIONREAD:
3363 case FIORDCHK:
3364 case I_ATMARK:
3365 case FIONBIO:
3366 case FIOASYNC:
3367 if (stp->sd_flag & (STRDERR|STPLEX)) {
3368 error = strgeterr(stp, STRDERR|STPLEX, 0);
3369 if (error != 0) {
3370 mutex_exit(&stp->sd_lock);
3371 return (error);
3372 }
3373 }
3374 break;
3375
3376 default:
3377 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3378 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3379 if (error != 0) {
3380 mutex_exit(&stp->sd_lock);
3381 return (error);
3382 }
3383 }
3384 }
3385
3386 mutex_exit(&stp->sd_lock);
3387
3388 switch (cmd) {
3389 default:
3390 /*
3391 * The stream head has hardcoded knowledge of a
3392 * miscellaneous collection of terminal-, keyboard- and
3393 * mouse-related ioctls, enumerated below. This hardcoded
3394 * knowledge allows the stream head to automatically
3395 * convert transparent ioctl requests made by userland
3396 * programs into I_STR ioctls which many old STREAMS
3397 * modules and drivers require.
3398 *
3399 * No new ioctls should ever be added to this list.
3400 * Instead, the STREAMS module or driver should be written
3401 * to either handle transparent ioctls or require any
3402 * userland programs to use I_STR ioctls (by returning
3403 * EINVAL to any transparent ioctl requests).
3404 *
3405 * More importantly, removing ioctls from this list should
3406 * be done with the utmost care, since our STREAMS modules
3407 * and drivers *count* on the stream head performing this
3408 * conversion, and thus may panic while processing
3409 * transparent ioctl request for one of these ioctls (keep
3410 * in mind that third party modules and drivers may have
3411 * similar problems).
3412 */
3413 if (((cmd & IOCTYPE) == LDIOC) ||
3414 ((cmd & IOCTYPE) == tIOC) ||
3415 ((cmd & IOCTYPE) == TIOC) ||
3416 ((cmd & IOCTYPE) == KIOC) ||
3417 ((cmd & IOCTYPE) == MSIOC) ||
3418 ((cmd & IOCTYPE) == VUIOC)) {
3419 /*
3420 * The ioctl is a tty ioctl - set up strioc buffer
3421 * and call strdoioctl() to do the work.
3422 */
3423 if (stp->sd_flag & STRHUP)
3424 return (ENXIO);
3425 strioc.ic_cmd = cmd;
3426 strioc.ic_timout = INFTIM;
3427
3428 switch (cmd) {
3429
3430 case TCXONC:
3431 case TCSBRK:
3432 case TCFLSH:
3433 case TCDSET:
3434 {
3435 int native_arg = (int)arg;
3436 strioc.ic_len = sizeof (int);
3437 strioc.ic_dp = (char *)&native_arg;
3438 return (strdoioctl(stp, &strioc, flag,
3439 K_TO_K, crp, rvalp));
3440 }
3441
3442 case TCSETA:
3443 case TCSETAW:
3444 case TCSETAF:
3445 strioc.ic_len = sizeof (struct termio);
3446 strioc.ic_dp = (char *)arg;
3447 return (strdoioctl(stp, &strioc, flag,
3448 copyflag, crp, rvalp));
3449
3450 case TCSETS:
3451 case TCSETSW:
3452 case TCSETSF:
3453 strioc.ic_len = sizeof (struct termios);
3454 strioc.ic_dp = (char *)arg;
3455 return (strdoioctl(stp, &strioc, flag,
3456 copyflag, crp, rvalp));
3457
3458 case LDSETT:
3459 strioc.ic_len = sizeof (struct termcb);
3460 strioc.ic_dp = (char *)arg;
3461 return (strdoioctl(stp, &strioc, flag,
3462 copyflag, crp, rvalp));
3463
3464 case TIOCSETP:
3465 strioc.ic_len = sizeof (struct sgttyb);
3466 strioc.ic_dp = (char *)arg;
3467 return (strdoioctl(stp, &strioc, flag,
3468 copyflag, crp, rvalp));
3469
3470 case TIOCSTI:
3471 if ((flag & FREAD) == 0 &&
3472 secpolicy_sti(crp) != 0) {
3473 return (EPERM);
3474 }
3475 mutex_enter(&stp->sd_lock);
3476 mutex_enter(&curproc->p_splock);
3477 if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3478 secpolicy_sti(crp) != 0) {
3479 mutex_exit(&curproc->p_splock);
3480 mutex_exit(&stp->sd_lock);
3481 return (EACCES);
3482 }
3483 mutex_exit(&curproc->p_splock);
3484 mutex_exit(&stp->sd_lock);
3485
3486 strioc.ic_len = sizeof (char);
3487 strioc.ic_dp = (char *)arg;
3488 return (strdoioctl(stp, &strioc, flag,
3489 copyflag, crp, rvalp));
3490
3491 case TIOCSWINSZ:
3492 strioc.ic_len = sizeof (struct winsize);
3493 strioc.ic_dp = (char *)arg;
3494 return (strdoioctl(stp, &strioc, flag,
3495 copyflag, crp, rvalp));
3496
3497 case TIOCSSIZE:
3498 strioc.ic_len = sizeof (struct ttysize);
3499 strioc.ic_dp = (char *)arg;
3500 return (strdoioctl(stp, &strioc, flag,
3501 copyflag, crp, rvalp));
3502
3503 case TIOCSSOFTCAR:
3504 case KIOCTRANS:
3505 case KIOCTRANSABLE:
3506 case KIOCCMD:
3507 case KIOCSDIRECT:
3508 case KIOCSCOMPAT:
3509 case KIOCSKABORTEN:
3510 case KIOCSRPTCOUNT:
3511 case KIOCSRPTDELAY:
3512 case KIOCSRPTRATE:
3513 case VUIDSFORMAT:
3514 case TIOCSPPS:
3515 strioc.ic_len = sizeof (int);
3516 strioc.ic_dp = (char *)arg;
3517 return (strdoioctl(stp, &strioc, flag,
3518 copyflag, crp, rvalp));
3519
3520 case KIOCSETKEY:
3521 case KIOCGETKEY:
3522 strioc.ic_len = sizeof (struct kiockey);
3523 strioc.ic_dp = (char *)arg;
3524 return (strdoioctl(stp, &strioc, flag,
3525 copyflag, crp, rvalp));
3526
3527 case KIOCSKEY:
3528 case KIOCGKEY:
3529 strioc.ic_len = sizeof (struct kiockeymap);
3530 strioc.ic_dp = (char *)arg;
3531 return (strdoioctl(stp, &strioc, flag,
3532 copyflag, crp, rvalp));
3533
3534 case KIOCSLED:
3535 /* arg is a pointer to char */
3536 strioc.ic_len = sizeof (char);
3537 strioc.ic_dp = (char *)arg;
3538 return (strdoioctl(stp, &strioc, flag,
3539 copyflag, crp, rvalp));
3540
3541 case MSIOSETPARMS:
3542 strioc.ic_len = sizeof (Ms_parms);
3543 strioc.ic_dp = (char *)arg;
3544 return (strdoioctl(stp, &strioc, flag,
3545 copyflag, crp, rvalp));
3546
3547 case VUIDSADDR:
3548 case VUIDGADDR:
3549 strioc.ic_len = sizeof (struct vuid_addr_probe);
3550 strioc.ic_dp = (char *)arg;
3551 return (strdoioctl(stp, &strioc, flag,
3552 copyflag, crp, rvalp));
3553
3554 /*
3555 * These M_IOCTL's don't require any data to be sent
3556 * downstream, and the driver will allocate and link
3557 * on its own mblk_t upon M_IOCACK -- thus we set
3558 * ic_len to zero and set ic_dp to arg so we know
3559 * where to copyout to later.
3560 */
3561 case TIOCGSOFTCAR:
3562 case TIOCGWINSZ:
3563 case TIOCGSIZE:
3564 case KIOCGTRANS:
3565 case KIOCGTRANSABLE:
3566 case KIOCTYPE:
3567 case KIOCGDIRECT:
3568 case KIOCGCOMPAT:
3569 case KIOCLAYOUT:
3570 case KIOCGLED:
3571 case MSIOGETPARMS:
3572 case MSIOBUTTONS:
3573 case VUIDGFORMAT:
3574 case TIOCGPPS:
3575 case TIOCGPPSEV:
3576 case TCGETA:
3577 case TCGETS:
3578 case LDGETT:
3579 case TIOCGETP:
3580 case KIOCGRPTCOUNT:
3581 case KIOCGRPTDELAY:
3582 case KIOCGRPTRATE:
3583 strioc.ic_len = 0;
3584 strioc.ic_dp = (char *)arg;
3585 return (strdoioctl(stp, &strioc, flag,
3586 copyflag, crp, rvalp));
3587 }
3588 }
3589
3590 /*
3591 * Unknown cmd - send it down as a transparent ioctl.
3592 */
3593 strioc.ic_cmd = cmd;
3594 strioc.ic_timout = INFTIM;
3595 strioc.ic_len = TRANSPARENT;
3596 strioc.ic_dp = (char *)&arg;
3597
3598 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3599
3600 case I_STR:
3601 /*
3602 * Stream ioctl. Read in an strioctl buffer from the user
3603 * along with any data specified and send it downstream.
3604 * Strdoioctl will wait allow only one ioctl message at
3605 * a time, and waits for the acknowledgement.
3606 */
3607
3608 if (stp->sd_flag & STRHUP)
3609 return (ENXIO);
3610
3611 error = strcopyin_strioctl((void *)arg, &strioc, flag,
3612 copyflag);
3613 if (error != 0)
3614 return (error);
3615
3616 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3617 return (EINVAL);
3618
3619 access = job_control_type(strioc.ic_cmd);
3620 mutex_enter(&stp->sd_lock);
3621 if ((access != -1) &&
3622 ((error = i_straccess(stp, access)) != 0)) {
3623 mutex_exit(&stp->sd_lock);
3624 return (error);
3625 }
3626 mutex_exit(&stp->sd_lock);
3627
3628 /*
3629 * The I_STR facility provides a trap door for malicious
3630 * code to send down bogus streamio(4I) ioctl commands to
3631 * unsuspecting STREAMS modules and drivers which expect to
3632 * only get these messages from the stream head.
3633 * Explicitly prohibit any streamio ioctls which can be
3634 * passed downstream by the stream head. Note that we do
3635 * not block all streamio ioctls because the ioctl
3636 * numberspace is not well managed and thus it's possible
3637 * that a module or driver's ioctl numbers may accidentally
3638 * collide with them.
3639 */
3640 switch (strioc.ic_cmd) {
3641 case I_LINK:
3642 case I_PLINK:
3643 case I_UNLINK:
3644 case I_PUNLINK:
3645 case _I_GETPEERCRED:
3646 case _I_PLINK_LH:
3647 return (EINVAL);
3648 }
3649
3650 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3651 if (error == 0) {
3652 error = strcopyout_strioctl(&strioc, (void *)arg,
3653 flag, copyflag);
3654 }
3655 return (error);
3656
3657 case _I_CMD:
3658 /*
3659 * Like I_STR, but without using M_IOC* messages and without
3660 * copyins/copyouts beyond the passed-in argument.
3661 */
3662 if (stp->sd_flag & STRHUP)
3663 return (ENXIO);
3664
3665 if (copyflag == U_TO_K) {
3666 if ((scp = kmem_alloc(sizeof (strcmd_t),
3667 KM_NOSLEEP)) == NULL) {
3668 return (ENOMEM);
3669 }
3670
3671 if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3672 kmem_free(scp, sizeof (strcmd_t));
3673 return (EFAULT);
3674 }
3675 } else {
3676 scp = (strcmd_t *)arg;
3677 }
3678
3679 access = job_control_type(scp->sc_cmd);
3680 mutex_enter(&stp->sd_lock);
3681 if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3682 mutex_exit(&stp->sd_lock);
3683 if (copyflag == U_TO_K)
3684 kmem_free(scp, sizeof (strcmd_t));
3685 return (error);
3686 }
3687 mutex_exit(&stp->sd_lock);
3688
3689 *rvalp = 0;
3690 if ((error = strdocmd(stp, scp, crp)) == 0) {
3691 if (copyflag == U_TO_K &&
3692 copyout(scp, (void *)arg, sizeof (strcmd_t))) {
3693 error = EFAULT;
3694 }
3695 }
3696 if (copyflag == U_TO_K)
3697 kmem_free(scp, sizeof (strcmd_t));
3698 return (error);
3699
3700 case I_NREAD:
3701 /*
3702 * Return number of bytes of data in first message
3703 * in queue in "arg" and return the number of messages
3704 * in queue in return value.
3705 */
3706 {
3707 size_t size;
3708 int retval;
3709 int count = 0;
3710
3711 mutex_enter(QLOCK(rdq));
3712
3713 size = msgdsize(rdq->q_first);
3714 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3715 count++;
3716
3717 mutex_exit(QLOCK(rdq));
3718 if (stp->sd_struiordq) {
3719 infod_t infod;
3720
3721 infod.d_cmd = INFOD_COUNT;
3722 infod.d_count = 0;
3723 if (count == 0) {
3724 infod.d_cmd |= INFOD_FIRSTBYTES;
3725 infod.d_bytes = 0;
3726 }
3727 infod.d_res = 0;
3728 (void) infonext(rdq, &infod);
3729 count += infod.d_count;
3730 if (infod.d_res & INFOD_FIRSTBYTES)
3731 size = infod.d_bytes;
3732 }
3733
3734 /*
3735 * Drop down from size_t to the "int" required by the
3736 * interface. Cap at INT_MAX.
3737 */
3738 retval = MIN(size, INT_MAX);
3739 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3740 copyflag);
3741 if (!error)
3742 *rvalp = count;
3743 return (error);
3744 }
3745
3746 case FIONREAD:
3747 /*
3748 * Return number of bytes of data in all data messages
3749 * in queue in "arg".
3750 */
3751 {
3752 size_t size = 0;
3753 int retval;
3754
3755 mutex_enter(QLOCK(rdq));
3756 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3757 size += msgdsize(mp);
3758 mutex_exit(QLOCK(rdq));
3759
3760 if (stp->sd_struiordq) {
3761 infod_t infod;
3762
3763 infod.d_cmd = INFOD_BYTES;
3764 infod.d_res = 0;
3765 infod.d_bytes = 0;
3766 (void) infonext(rdq, &infod);
3767 size += infod.d_bytes;
3768 }
3769
3770 /*
3771 * Drop down from size_t to the "int" required by the
3772 * interface. Cap at INT_MAX.
3773 */
3774 retval = MIN(size, INT_MAX);
3775 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3776 copyflag);
3777
3778 *rvalp = 0;
3779 return (error);
3780 }
3781 case FIORDCHK:
3782 /*
3783 * FIORDCHK does not use arg value (like FIONREAD),
3784 * instead a count is returned. I_NREAD value may
3785 * not be accurate but safe. The real thing to do is
3786 * to add the msgdsizes of all data messages until
3787 * a non-data message.
3788 */
3789 {
3790 size_t size = 0;
3791
3792 mutex_enter(QLOCK(rdq));
3793 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3794 size += msgdsize(mp);
3795 mutex_exit(QLOCK(rdq));
3796
3797 if (stp->sd_struiordq) {
3798 infod_t infod;
3799
3800 infod.d_cmd = INFOD_BYTES;
3801 infod.d_res = 0;
3802 infod.d_bytes = 0;
3803 (void) infonext(rdq, &infod);
3804 size += infod.d_bytes;
3805 }
3806
3807 /*
3808 * Since ioctl returns an int, and memory sizes under
3809 * LP64 may not fit, we return INT_MAX if the count was
3810 * actually greater.
3811 */
3812 *rvalp = MIN(size, INT_MAX);
3813 return (0);
3814 }
3815
3816 case I_FIND:
3817 /*
3818 * Get module name.
3819 */
3820 {
3821 char mname[FMNAMESZ + 1];
3822 queue_t *q;
3823
3824 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3825 mname, FMNAMESZ + 1, NULL);
3826 if (error)
3827 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3828
3829 /*
3830 * Return EINVAL if we're handed a bogus module name.
3831 */
3832 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3833 TRACE_0(TR_FAC_STREAMS_FR,
3834 TR_I_CANT_FIND, "couldn't I_FIND");
3835 return (EINVAL);
3836 }
3837
3838 *rvalp = 0;
3839
3840 /* Look downstream to see if module is there. */
3841 claimstr(stp->sd_wrq);
3842 for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3843 if (q->q_flag & QREADR) {
3844 q = NULL;
3845 break;
3846 }
3847 if (strcmp(mname, Q2NAME(q)) == 0)
3848 break;
3849 }
3850 releasestr(stp->sd_wrq);
3851
3852 *rvalp = (q ? 1 : 0);
3853 return (error);
3854 }
3855
3856 case I_PUSH:
3857 case __I_PUSH_NOCTTY:
3858 /*
3859 * Push a module.
3860 * For the case __I_PUSH_NOCTTY push a module but
3861 * do not allocate controlling tty. See bugid 4025044
3862 */
3863
3864 {
3865 char mname[FMNAMESZ + 1];
3866 fmodsw_impl_t *fp;
3867 dev_t dummydev;
3868
3869 if (stp->sd_flag & STRHUP)
3870 return (ENXIO);
3871
3872 /*
3873 * Get module name and look up in fmodsw.
3874 */
3875 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3876 mname, FMNAMESZ + 1, NULL);
3877 if (error)
3878 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3879
3880 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3881 NULL)
3882 return (EINVAL);
3883
3884 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3885 "I_PUSH:fp %p stp %p", fp, stp);
3886
3887 /*
3888 * If the module is flagged as single-instance, then check
3889 * to see if the module is already pushed. If it is, return
3890 * as if the push was successful.
3891 */
3892 if (fp->f_qflag & _QSINGLE_INSTANCE) {
3893 queue_t *q;
3894
3895 claimstr(stp->sd_wrq);
3896 for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3897 if (q->q_flag & QREADR) {
3898 q = NULL;
3899 break;
3900 }
3901 if (strcmp(mname, Q2NAME(q)) == 0)
3902 break;
3903 }
3904 releasestr(stp->sd_wrq);
3905 if (q != NULL) {
3906 fmodsw_rele(fp);
3907 return (0);
3908 }
3909 }
3910
3911 if (error = strstartplumb(stp, flag, cmd)) {
3912 fmodsw_rele(fp);
3913 return (error);
3914 }
3915
3916 /*
3917 * See if any more modules can be pushed on this stream.
3918 * Note that this check must be done after strstartplumb()
3919 * since otherwise multiple threads issuing I_PUSHes on
3920 * the same stream will be able to exceed nstrpush.
3921 */
3922 mutex_enter(&stp->sd_lock);
3923 if (stp->sd_pushcnt >= nstrpush) {
3924 fmodsw_rele(fp);
3925 strendplumb(stp);
3926 mutex_exit(&stp->sd_lock);
3927 return (EINVAL);
3928 }
3929 mutex_exit(&stp->sd_lock);
3930
3931 /*
3932 * Push new module and call its open routine
3933 * via qattach(). Modules don't change device
3934 * numbers, so just ignore dummydev here.
3935 */
3936 dummydev = vp->v_rdev;
3937 if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3938 B_FALSE)) == 0) {
3939 if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3940 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3941 /*
3942 * try to allocate it as a controlling terminal
3943 */
3944 (void) strctty(stp);
3945 }
3946 }
3947
3948 mutex_enter(&stp->sd_lock);
3949
3950 /*
3951 * As a performance concern we are caching the values of
3952 * q_minpsz and q_maxpsz of the module below the stream
3953 * head in the stream head.
3954 */
3955 mutex_enter(QLOCK(stp->sd_wrq->q_next));
3956 rmin = stp->sd_wrq->q_next->q_minpsz;
3957 rmax = stp->sd_wrq->q_next->q_maxpsz;
3958 mutex_exit(QLOCK(stp->sd_wrq->q_next));
3959
3960 /* Do this processing here as a performance concern */
3961 if (strmsgsz != 0) {
3962 if (rmax == INFPSZ)
3963 rmax = strmsgsz;
3964 else {
3965 if (vp->v_type == VFIFO)
3966 rmax = MIN(PIPE_BUF, rmax);
3967 else rmax = MIN(strmsgsz, rmax);
3968 }
3969 }
3970
3971 mutex_enter(QLOCK(wrq));
3972 stp->sd_qn_minpsz = rmin;
3973 stp->sd_qn_maxpsz = rmax;
3974 mutex_exit(QLOCK(wrq));
3975
3976 strendplumb(stp);
3977 mutex_exit(&stp->sd_lock);
3978 return (error);
3979 }
3980
3981 case I_POP:
3982 {
3983 queue_t *q;
3984
3985 if (stp->sd_flag & STRHUP)
3986 return (ENXIO);
3987 if (!wrq->q_next) /* for broken pipes */
3988 return (EINVAL);
3989
3990 if (error = strstartplumb(stp, flag, cmd))
3991 return (error);
3992
3993 /*
3994 * If there is an anchor on this stream and popping
3995 * the current module would attempt to pop through the
3996 * anchor, then disallow the pop unless we have sufficient
3997 * privileges; take the cheapest (non-locking) check
3998 * first.
3999 */
4000 if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
4001 (stp->sd_anchorzone != crgetzoneid(crp))) {
4002 mutex_enter(&stp->sd_lock);
4003 /*
4004 * Anchors only apply if there's at least one
4005 * module on the stream (sd_pushcnt > 0).
4006 */
4007 if (stp->sd_pushcnt > 0 &&
4008 stp->sd_pushcnt == stp->sd_anchor &&
4009 stp->sd_vnode->v_type != VFIFO) {
4010 strendplumb(stp);
4011 mutex_exit(&stp->sd_lock);
4012 if (stp->sd_anchorzone != crgetzoneid(crp))
4013 return (EINVAL);
4014 /* Audit and report error */
4015 return (secpolicy_ip_config(crp, B_FALSE));
4016 }
4017 mutex_exit(&stp->sd_lock);
4018 }
4019
4020 q = wrq->q_next;
4021 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
4022 "I_POP:%p from %p", q, stp);
4023 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
4024 error = EINVAL;
4025 } else {
4026 qdetach(_RD(q), 1, flag, crp, B_FALSE);
4027 error = 0;
4028 }
4029 mutex_enter(&stp->sd_lock);
4030
4031 /*
4032 * As a performance concern we are caching the values of
4033 * q_minpsz and q_maxpsz of the module below the stream
4034 * head in the stream head.
4035 */
4036 mutex_enter(QLOCK(wrq->q_next));
4037 rmin = wrq->q_next->q_minpsz;
4038 rmax = wrq->q_next->q_maxpsz;
4039 mutex_exit(QLOCK(wrq->q_next));
4040
4041 /* Do this processing here as a performance concern */
4042 if (strmsgsz != 0) {
4043 if (rmax == INFPSZ)
4044 rmax = strmsgsz;
4045 else {
4046 if (vp->v_type == VFIFO)
4047 rmax = MIN(PIPE_BUF, rmax);
4048 else rmax = MIN(strmsgsz, rmax);
4049 }
4050 }
4051
4052 mutex_enter(QLOCK(wrq));
4053 stp->sd_qn_minpsz = rmin;
4054 stp->sd_qn_maxpsz = rmax;
4055 mutex_exit(QLOCK(wrq));
4056
4057 /* If we popped through the anchor, then reset the anchor. */
4058 if (stp->sd_pushcnt < stp->sd_anchor) {
4059 stp->sd_anchor = 0;
4060 stp->sd_anchorzone = 0;
4061 }
4062 strendplumb(stp);
4063 mutex_exit(&stp->sd_lock);
4064 return (error);
4065 }
4066
4067 case _I_MUXID2FD:
4068 {
4069 /*
4070 * Create a fd for a I_PLINK'ed lower stream with a given
4071 * muxid. With the fd, application can send down ioctls,
4072 * like I_LIST, to the previously I_PLINK'ed stream. Note
4073 * that after getting the fd, the application has to do an
4074 * I_PUNLINK on the muxid before it can do any operation
4075 * on the lower stream. This is required by spec1170.
4076 *
4077 * The fd used to do this ioctl should point to the same
4078 * controlling device used to do the I_PLINK. If it uses
4079 * a different stream or an invalid muxid, I_MUXID2FD will
4080 * fail. The error code is set to EINVAL.
4081 *
4082 * The intended use of this interface is the following.
4083 * An application I_PLINK'ed a stream and exits. The fd
4084 * to the lower stream is gone. Another application
4085 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
4086 */
4087 int muxid = (int)arg;
4088 int fd;
4089 linkinfo_t *linkp;
4090 struct file *fp;
4091 netstack_t *ns;
4092 str_stack_t *ss;
4093
4094 /*
4095 * Do not allow the wildcard muxid. This ioctl is not
4096 * intended to find arbitrary link.
4097 */
4098 if (muxid == 0) {
4099 return (EINVAL);
4100 }
4101
4102 ns = netstack_find_by_cred(crp);
4103 ASSERT(ns != NULL);
4104 ss = ns->netstack_str;
4105 ASSERT(ss != NULL);
4106
4107 mutex_enter(&muxifier);
4108 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
4109 if (linkp == NULL) {
4110 mutex_exit(&muxifier);
4111 netstack_rele(ss->ss_netstack);
4112 return (EINVAL);
4113 }
4114
4115 if ((fd = ufalloc(0)) == -1) {
4116 mutex_exit(&muxifier);
4117 netstack_rele(ss->ss_netstack);
4118 return (EMFILE);
4119 }
4120 fp = linkp->li_fpdown;
4121 mutex_enter(&fp->f_tlock);
4122 fp->f_count++;
4123 mutex_exit(&fp->f_tlock);
4124 mutex_exit(&muxifier);
4125 setf(fd, fp);
4126 *rvalp = fd;
4127 netstack_rele(ss->ss_netstack);
4128 return (0);
4129 }
4130
4131 case _I_INSERT:
4132 {
4133 /*
4134 * To insert a module to a given position in a stream.
4135 * In the first release, only allow privileged user
4136 * to use this ioctl. Furthermore, the insert is only allowed
4137 * below an anchor if the zoneid is the same as the zoneid
4138 * which created the anchor.
4139 *
4140 * Note that we do not plan to support this ioctl
4141 * on pipes in the first release. We want to learn more
4142 * about the implications of these ioctls before extending
4143 * their support. And we do not think these features are
4144 * valuable for pipes.
4145 */
4146 STRUCT_DECL(strmodconf, strmodinsert);
4147 char mod_name[FMNAMESZ + 1];
4148 fmodsw_impl_t *fp;
4149 dev_t dummydev;
4150 queue_t *tmp_wrq;
4151 int pos;
4152 boolean_t is_insert;
4153
4154 STRUCT_INIT(strmodinsert, flag);
4155 if (stp->sd_flag & STRHUP)
4156 return (ENXIO);
4157 if (STRMATED(stp))
4158 return (EINVAL);
4159 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4160 return (error);
4161 if (stp->sd_anchor != 0 &&
4162 stp->sd_anchorzone != crgetzoneid(crp))
4163 return (EINVAL);
4164
4165 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4166 STRUCT_SIZE(strmodinsert), copyflag);
4167 if (error)
4168 return (error);
4169
4170 /*
4171 * Get module name and look up in fmodsw.
4172 */
4173 error = (copyflag & U_TO_K ? copyinstr :
4174 copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4175 mod_name, FMNAMESZ + 1, NULL);
4176 if (error)
4177 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4178
4179 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4180 NULL)
4181 return (EINVAL);
4182
4183 if (error = strstartplumb(stp, flag, cmd)) {
4184 fmodsw_rele(fp);
4185 return (error);
4186 }
4187
4188 /*
4189 * Is this _I_INSERT just like an I_PUSH? We need to know
4190 * this because we do some optimizations if this is a
4191 * module being pushed.
4192 */
4193 pos = STRUCT_FGET(strmodinsert, pos);
4194 is_insert = (pos != 0);
4195
4196 /*
4197 * Make sure pos is valid. Even though it is not an I_PUSH,
4198 * we impose the same limit on the number of modules in a
4199 * stream.
4200 */
4201 mutex_enter(&stp->sd_lock);
4202 if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4203 pos > stp->sd_pushcnt) {
4204 fmodsw_rele(fp);
4205 strendplumb(stp);
4206 mutex_exit(&stp->sd_lock);
4207 return (EINVAL);
4208 }
4209 if (stp->sd_anchor != 0) {
4210 /*
4211 * Is this insert below the anchor?
4212 * Pushcnt hasn't been increased yet hence
4213 * we test for greater than here, and greater or
4214 * equal after qattach.
4215 */
4216 if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4217 stp->sd_anchorzone != crgetzoneid(crp)) {
4218 fmodsw_rele(fp);
4219 strendplumb(stp);
4220 mutex_exit(&stp->sd_lock);
4221 return (EPERM);
4222 }
4223 }
4224
4225 mutex_exit(&stp->sd_lock);
4226
4227 /*
4228 * First find the correct position this module to
4229 * be inserted. We don't need to call claimstr()
4230 * as the stream should not be changing at this point.
4231 *
4232 * Insert new module and call its open routine
4233 * via qattach(). Modules don't change device
4234 * numbers, so just ignore dummydev here.
4235 */
4236 for (tmp_wrq = stp->sd_wrq; pos > 0;
4237 tmp_wrq = tmp_wrq->q_next, pos--) {
4238 ASSERT(SAMESTR(tmp_wrq));
4239 }
4240 dummydev = vp->v_rdev;
4241 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4242 fp, is_insert)) != 0) {
4243 mutex_enter(&stp->sd_lock);
4244 strendplumb(stp);
4245 mutex_exit(&stp->sd_lock);
4246 return (error);
4247 }
4248
4249 mutex_enter(&stp->sd_lock);
4250
4251 /*
4252 * As a performance concern we are caching the values of
4253 * q_minpsz and q_maxpsz of the module below the stream
4254 * head in the stream head.
4255 */
4256 if (!is_insert) {
4257 mutex_enter(QLOCK(stp->sd_wrq->q_next));
4258 rmin = stp->sd_wrq->q_next->q_minpsz;
4259 rmax = stp->sd_wrq->q_next->q_maxpsz;
4260 mutex_exit(QLOCK(stp->sd_wrq->q_next));
4261
4262 /* Do this processing here as a performance concern */
4263 if (strmsgsz != 0) {
4264 if (rmax == INFPSZ) {
4265 rmax = strmsgsz;
4266 } else {
4267 rmax = MIN(strmsgsz, rmax);
4268 }
4269 }
4270
4271 mutex_enter(QLOCK(wrq));
4272 stp->sd_qn_minpsz = rmin;
4273 stp->sd_qn_maxpsz = rmax;
4274 mutex_exit(QLOCK(wrq));
4275 }
4276
4277 /*
4278 * Need to update the anchor value if this module is
4279 * inserted below the anchor point.
4280 */
4281 if (stp->sd_anchor != 0) {
4282 pos = STRUCT_FGET(strmodinsert, pos);
4283 if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4284 stp->sd_anchor++;
4285 }
4286
4287 strendplumb(stp);
4288 mutex_exit(&stp->sd_lock);
4289 return (0);
4290 }
4291
4292 case _I_REMOVE:
4293 {
4294 /*
4295 * To remove a module with a given name in a stream. The
4296 * caller of this ioctl needs to provide both the name and
4297 * the position of the module to be removed. This eliminates
4298 * the ambiguity of removal if a module is inserted/pushed
4299 * multiple times in a stream. In the first release, only
4300 * allow privileged user to use this ioctl.
4301 * Furthermore, the remove is only allowed
4302 * below an anchor if the zoneid is the same as the zoneid
4303 * which created the anchor.
4304 *
4305 * Note that we do not plan to support this ioctl
4306 * on pipes in the first release. We want to learn more
4307 * about the implications of these ioctls before extending
4308 * their support. And we do not think these features are
4309 * valuable for pipes.
4310 *
4311 * Also note that _I_REMOVE cannot be used to remove a
4312 * driver or the stream head.
4313 */
4314 STRUCT_DECL(strmodconf, strmodremove);
4315 queue_t *q;
4316 int pos;
4317 char mod_name[FMNAMESZ + 1];
4318 boolean_t is_remove;
4319
4320 STRUCT_INIT(strmodremove, flag);
4321 if (stp->sd_flag & STRHUP)
4322 return (ENXIO);
4323 if (STRMATED(stp))
4324 return (EINVAL);
4325 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4326 return (error);
4327 if (stp->sd_anchor != 0 &&
4328 stp->sd_anchorzone != crgetzoneid(crp))
4329 return (EINVAL);
4330
4331 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4332 STRUCT_SIZE(strmodremove), copyflag);
4333 if (error)
4334 return (error);
4335
4336 error = (copyflag & U_TO_K ? copyinstr :
4337 copystr)(STRUCT_FGETP(strmodremove, mod_name),
4338 mod_name, FMNAMESZ + 1, NULL);
4339 if (error)
4340 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4341
4342 if ((error = strstartplumb(stp, flag, cmd)) != 0)
4343 return (error);
4344
4345 /*
4346 * Match the name of given module to the name of module at
4347 * the given position.
4348 */
4349 pos = STRUCT_FGET(strmodremove, pos);
4350
4351 is_remove = (pos != 0);
4352 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4353 q = q->q_next, pos--)
4354 ;
4355 if (pos > 0 || !SAMESTR(q) ||
4356 strcmp(Q2NAME(q), mod_name) != 0) {
4357 mutex_enter(&stp->sd_lock);
4358 strendplumb(stp);
4359 mutex_exit(&stp->sd_lock);
4360 return (EINVAL);
4361 }
4362
4363 /*
4364 * If the position is at or below an anchor, then the zoneid
4365 * must match the zoneid that created the anchor.
4366 */
4367 if (stp->sd_anchor != 0) {
4368 pos = STRUCT_FGET(strmodremove, pos);
4369 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4370 stp->sd_anchorzone != crgetzoneid(crp)) {
4371 mutex_enter(&stp->sd_lock);
4372 strendplumb(stp);
4373 mutex_exit(&stp->sd_lock);
4374 return (EPERM);
4375 }
4376 }
4377
4378
4379 ASSERT(!(q->q_flag & QREADR));
4380 qdetach(_RD(q), 1, flag, crp, is_remove);
4381
4382 mutex_enter(&stp->sd_lock);
4383
4384 /*
4385 * As a performance concern we are caching the values of
4386 * q_minpsz and q_maxpsz of the module below the stream
4387 * head in the stream head.
4388 */
4389 if (!is_remove) {
4390 mutex_enter(QLOCK(wrq->q_next));
4391 rmin = wrq->q_next->q_minpsz;
4392 rmax = wrq->q_next->q_maxpsz;
4393 mutex_exit(QLOCK(wrq->q_next));
4394
4395 /* Do this processing here as a performance concern */
4396 if (strmsgsz != 0) {
4397 if (rmax == INFPSZ)
4398 rmax = strmsgsz;
4399 else {
4400 if (vp->v_type == VFIFO)
4401 rmax = MIN(PIPE_BUF, rmax);
4402 else rmax = MIN(strmsgsz, rmax);
4403 }
4404 }
4405
4406 mutex_enter(QLOCK(wrq));
4407 stp->sd_qn_minpsz = rmin;
4408 stp->sd_qn_maxpsz = rmax;
4409 mutex_exit(QLOCK(wrq));
4410 }
4411
4412 /*
4413 * Need to update the anchor value if this module is removed
4414 * at or below the anchor point. If the removed module is at
4415 * the anchor point, remove the anchor for this stream if
4416 * there is no module above the anchor point. Otherwise, if
4417 * the removed module is below the anchor point, decrement the
4418 * anchor point by 1.
4419 */
4420 if (stp->sd_anchor != 0) {
4421 pos = STRUCT_FGET(strmodremove, pos);
4422 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4423 stp->sd_anchor = 0;
4424 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4425 stp->sd_anchor--;
4426 }
4427
4428 strendplumb(stp);
4429 mutex_exit(&stp->sd_lock);
4430 return (0);
4431 }
4432
4433 case I_ANCHOR:
4434 /*
4435 * Set the anchor position on the stream to reside at
4436 * the top module (in other words, the top module
4437 * cannot be popped). Anchors with a FIFO make no
4438 * obvious sense, so they're not allowed.
4439 */
4440 mutex_enter(&stp->sd_lock);
4441
4442 if (stp->sd_vnode->v_type == VFIFO) {
4443 mutex_exit(&stp->sd_lock);
4444 return (EINVAL);
4445 }
4446 /* Only allow the same zoneid to update the anchor */
4447 if (stp->sd_anchor != 0 &&
4448 stp->sd_anchorzone != crgetzoneid(crp)) {
4449 mutex_exit(&stp->sd_lock);
4450 return (EINVAL);
4451 }
4452 stp->sd_anchor = stp->sd_pushcnt;
4453 stp->sd_anchorzone = crgetzoneid(crp);
4454 mutex_exit(&stp->sd_lock);
4455 return (0);
4456
4457 case I_LOOK:
4458 /*
4459 * Get name of first module downstream.
4460 * If no module, return an error.
4461 */
4462 claimstr(wrq);
4463 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
4464 char *name = Q2NAME(wrq->q_next);
4465
4466 error = strcopyout(name, (void *)arg, strlen(name) + 1,
4467 copyflag);
4468 releasestr(wrq);
4469 return (error);
4470 }
4471 releasestr(wrq);
4472 return (EINVAL);
4473
4474 case I_LINK:
4475 case I_PLINK:
4476 /*
4477 * Link a multiplexor.
4478 */
4479 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4480
4481 case _I_PLINK_LH:
4482 /*
4483 * Link a multiplexor: Call must originate from kernel.
4484 */
4485 if (kioctl)
4486 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4487
4488 return (EINVAL);
4489 case I_UNLINK:
4490 case I_PUNLINK:
4491 /*
4492 * Unlink a multiplexor.
4493 * If arg is -1, unlink all links for which this is the
4494 * controlling stream. Otherwise, arg is an index number
4495 * for a link to be removed.
4496 */
4497 {
4498 struct linkinfo *linkp;
4499 int native_arg = (int)arg;
4500 int type;
4501 netstack_t *ns;
4502 str_stack_t *ss;
4503
4504 TRACE_1(TR_FAC_STREAMS_FR,
4505 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4506 if (vp->v_type == VFIFO) {
4507 return (EINVAL);
4508 }
4509 if (cmd == I_UNLINK)
4510 type = LINKNORMAL;
4511 else /* I_PUNLINK */
4512 type = LINKPERSIST;
4513 if (native_arg == 0) {
4514 return (EINVAL);
4515 }
4516 ns = netstack_find_by_cred(crp);
4517 ASSERT(ns != NULL);
4518 ss = ns->netstack_str;
4519 ASSERT(ss != NULL);
4520
4521 if (native_arg == MUXID_ALL)
4522 error = munlinkall(stp, type, crp, rvalp, ss);
4523 else {
4524 mutex_enter(&muxifier);
4525 if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4526 /* invalid user supplied index number */
4527 mutex_exit(&muxifier);
4528 netstack_rele(ss->ss_netstack);
4529 return (EINVAL);
4530 }
4531 /* munlink drops the muxifier lock */
4532 error = munlink(stp, linkp, type, crp, rvalp, ss);
4533 }
4534 netstack_rele(ss->ss_netstack);
4535 return (error);
4536 }
4537
4538 case I_FLUSH:
4539 /*
4540 * send a flush message downstream
4541 * flush message can indicate
4542 * FLUSHR - flush read queue
4543 * FLUSHW - flush write queue
4544 * FLUSHRW - flush read/write queue
4545 */
4546 if (stp->sd_flag & STRHUP)
4547 return (ENXIO);
4548 if (arg & ~FLUSHRW)
4549 return (EINVAL);
4550
4551 for (;;) {
4552 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4553 break;
4554 }
4555 if (error = strwaitbuf(1, BPRI_HI)) {
4556 return (error);
4557 }
4558 }
4559
4560 /*
4561 * Send down an unsupported ioctl and wait for the nack
4562 * in order to allow the M_FLUSH to propagate back
4563 * up to the stream head.
4564 * Replaces if (qready()) runqueues();
4565 */
4566 strioc.ic_cmd = -1; /* The unsupported ioctl */
4567 strioc.ic_timout = 0;
4568 strioc.ic_len = 0;
4569 strioc.ic_dp = NULL;
4570 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4571 *rvalp = 0;
4572 return (0);
4573
4574 case I_FLUSHBAND:
4575 {
4576 struct bandinfo binfo;
4577
4578 error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4579 copyflag);
4580 if (error)
4581 return (error);
4582 if (stp->sd_flag & STRHUP)
4583 return (ENXIO);
4584 if (binfo.bi_flag & ~FLUSHRW)
4585 return (EINVAL);
4586 while (!(mp = allocb(2, BPRI_HI))) {
4587 if (error = strwaitbuf(2, BPRI_HI))
4588 return (error);
4589 }
4590 mp->b_datap->db_type = M_FLUSH;
4591 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4592 *mp->b_wptr++ = binfo.bi_pri;
4593 putnext(stp->sd_wrq, mp);
4594 /*
4595 * Send down an unsupported ioctl and wait for the nack
4596 * in order to allow the M_FLUSH to propagate back
4597 * up to the stream head.
4598 * Replaces if (qready()) runqueues();
4599 */
4600 strioc.ic_cmd = -1; /* The unsupported ioctl */
4601 strioc.ic_timout = 0;
4602 strioc.ic_len = 0;
4603 strioc.ic_dp = NULL;
4604 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4605 *rvalp = 0;
4606 return (0);
4607 }
4608
4609 case I_SRDOPT:
4610 /*
4611 * Set read options
4612 *
4613 * RNORM - default stream mode
4614 * RMSGN - message no discard
4615 * RMSGD - message discard
4616 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4617 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4618 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4619 */
4620 if (arg & ~(RMODEMASK | RPROTMASK))
4621 return (EINVAL);
4622
4623 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4624 return (EINVAL);
4625
4626 mutex_enter(&stp->sd_lock);
4627 switch (arg & RMODEMASK) {
4628 case RNORM:
4629 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4630 break;
4631 case RMSGD:
4632 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4633 RD_MSGDIS;
4634 break;
4635 case RMSGN:
4636 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4637 RD_MSGNODIS;
4638 break;
4639 }
4640
4641 switch (arg & RPROTMASK) {
4642 case RPROTNORM:
4643 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4644 break;
4645
4646 case RPROTDAT:
4647 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4648 RD_PROTDAT);
4649 break;
4650
4651 case RPROTDIS:
4652 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4653 RD_PROTDIS);
4654 break;
4655 }
4656 mutex_exit(&stp->sd_lock);
4657 return (0);
4658
4659 case I_GRDOPT:
4660 /*
4661 * Get read option and return the value
4662 * to spot pointed to by arg
4663 */
4664 {
4665 int rdopt;
4666
4667 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4668 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4669 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4670 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4671
4672 return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4673 copyflag));
4674 }
4675
4676 case I_SERROPT:
4677 /*
4678 * Set error options
4679 *
4680 * RERRNORM - persistent read errors
4681 * RERRNONPERSIST - non-persistent read errors
4682 * WERRNORM - persistent write errors
4683 * WERRNONPERSIST - non-persistent write errors
4684 */
4685 if (arg & ~(RERRMASK | WERRMASK))
4686 return (EINVAL);
4687
4688 mutex_enter(&stp->sd_lock);
4689 switch (arg & RERRMASK) {
4690 case RERRNORM:
4691 stp->sd_flag &= ~STRDERRNONPERSIST;
4692 break;
4693 case RERRNONPERSIST:
4694 stp->sd_flag |= STRDERRNONPERSIST;
4695 break;
4696 }
4697 switch (arg & WERRMASK) {
4698 case WERRNORM:
4699 stp->sd_flag &= ~STWRERRNONPERSIST;
4700 break;
4701 case WERRNONPERSIST:
4702 stp->sd_flag |= STWRERRNONPERSIST;
4703 break;
4704 }
4705 mutex_exit(&stp->sd_lock);
4706 return (0);
4707
4708 case I_GERROPT:
4709 /*
4710 * Get error option and return the value
4711 * to spot pointed to by arg
4712 */
4713 {
4714 int erropt = 0;
4715
4716 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4717 RERRNORM;
4718 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4719 WERRNORM;
4720 return (strcopyout(&erropt, (void *)arg, sizeof (int),
4721 copyflag));
4722 }
4723
4724 case I_SETSIG:
4725 /*
4726 * Register the calling proc to receive the SIGPOLL
4727 * signal based on the events given in arg. If
4728 * arg is zero, remove the proc from register list.
4729 */
4730 {
4731 strsig_t *ssp, *pssp;
4732 struct pid *pidp;
4733
4734 pssp = NULL;
4735 pidp = curproc->p_pidp;
4736 /*
4737 * Hold sd_lock to prevent traversal of sd_siglist while
4738 * it is modified.
4739 */
4740 mutex_enter(&stp->sd_lock);
4741 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4742 pssp = ssp, ssp = ssp->ss_next)
4743 ;
4744
4745 if (arg) {
4746 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4747 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4748 mutex_exit(&stp->sd_lock);
4749 return (EINVAL);
4750 }
4751 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4752 mutex_exit(&stp->sd_lock);
4753 return (EINVAL);
4754 }
4755
4756 /*
4757 * If proc not already registered, add it
4758 * to list.
4759 */
4760 if (!ssp) {
4761 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4762 ssp->ss_pidp = pidp;
4763 ssp->ss_pid = pidp->pid_id;
4764 ssp->ss_next = NULL;
4765 if (pssp)
4766 pssp->ss_next = ssp;
4767 else
4768 stp->sd_siglist = ssp;
4769 mutex_enter(&pidlock);
4770 PID_HOLD(pidp);
4771 mutex_exit(&pidlock);
4772 }
4773
4774 /*
4775 * Set events.
4776 */
4777 ssp->ss_events = (int)arg;
4778 } else {
4779 /*
4780 * Remove proc from register list.
4781 */
4782 if (ssp) {
4783 mutex_enter(&pidlock);
4784 PID_RELE(pidp);
4785 mutex_exit(&pidlock);
4786 if (pssp)
4787 pssp->ss_next = ssp->ss_next;
4788 else
4789 stp->sd_siglist = ssp->ss_next;
4790 kmem_free(ssp, sizeof (strsig_t));
4791 } else {
4792 mutex_exit(&stp->sd_lock);
4793 return (EINVAL);
4794 }
4795 }
4796
4797 /*
4798 * Recalculate OR of sig events.
4799 */
4800 stp->sd_sigflags = 0;
4801 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4802 stp->sd_sigflags |= ssp->ss_events;
4803 mutex_exit(&stp->sd_lock);
4804 return (0);
4805 }
4806
4807 case I_GETSIG:
4808 /*
4809 * Return (in arg) the current registration of events
4810 * for which the calling proc is to be signaled.
4811 */
4812 {
4813 struct strsig *ssp;
4814 struct pid *pidp;
4815
4816 pidp = curproc->p_pidp;
4817 mutex_enter(&stp->sd_lock);
4818 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4819 if (ssp->ss_pidp == pidp) {
4820 error = strcopyout(&ssp->ss_events, (void *)arg,
4821 sizeof (int), copyflag);
4822 mutex_exit(&stp->sd_lock);
4823 return (error);
4824 }
4825 mutex_exit(&stp->sd_lock);
4826 return (EINVAL);
4827 }
4828
4829 case I_ESETSIG:
4830 /*
4831 * Register the ss_pid to receive the SIGPOLL
4832 * signal based on the events is ss_events arg. If
4833 * ss_events is zero, remove the proc from register list.
4834 */
4835 {
4836 struct strsig *ssp, *pssp;
4837 struct proc *proc;
4838 struct pid *pidp;
4839 pid_t pid;
4840 struct strsigset ss;
4841
4842 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4843 if (error)
4844 return (error);
4845
4846 pid = ss.ss_pid;
4847
4848 if (ss.ss_events != 0) {
4849 /*
4850 * Permissions check by sending signal 0.
4851 * Note that when kill fails it does a set_errno
4852 * causing the system call to fail.
4853 */
4854 error = kill(pid, 0);
4855 if (error) {
4856 return (error);
4857 }
4858 }
4859 mutex_enter(&pidlock);
4860 if (pid == 0)
4861 proc = curproc;
4862 else if (pid < 0)
4863 proc = pgfind(-pid);
4864 else
4865 proc = prfind(pid);
4866 if (proc == NULL) {
4867 mutex_exit(&pidlock);
4868 return (ESRCH);
4869 }
4870 if (pid < 0)
4871 pidp = proc->p_pgidp;
4872 else
4873 pidp = proc->p_pidp;
4874 ASSERT(pidp);
4875 /*
4876 * Get a hold on the pid structure while referencing it.
4877 * There is a separate PID_HOLD should it be inserted
4878 * in the list below.
4879 */
4880 PID_HOLD(pidp);
4881 mutex_exit(&pidlock);
4882
4883 pssp = NULL;
4884 /*
4885 * Hold sd_lock to prevent traversal of sd_siglist while
4886 * it is modified.
4887 */
4888 mutex_enter(&stp->sd_lock);
4889 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4890 pssp = ssp, ssp = ssp->ss_next)
4891 ;
4892
4893 if (ss.ss_events) {
4894 if (ss.ss_events &
4895 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4896 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4897 mutex_exit(&stp->sd_lock);
4898 mutex_enter(&pidlock);
4899 PID_RELE(pidp);
4900 mutex_exit(&pidlock);
4901 return (EINVAL);
4902 }
4903 if ((ss.ss_events & S_BANDURG) &&
4904 !(ss.ss_events & S_RDBAND)) {
4905 mutex_exit(&stp->sd_lock);
4906 mutex_enter(&pidlock);
4907 PID_RELE(pidp);
4908 mutex_exit(&pidlock);
4909 return (EINVAL);
4910 }
4911
4912 /*
4913 * If proc not already registered, add it
4914 * to list.
4915 */
4916 if (!ssp) {
4917 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4918 ssp->ss_pidp = pidp;
4919 ssp->ss_pid = pid;
4920 ssp->ss_next = NULL;
4921 if (pssp)
4922 pssp->ss_next = ssp;
4923 else
4924 stp->sd_siglist = ssp;
4925 mutex_enter(&pidlock);
4926 PID_HOLD(pidp);
4927 mutex_exit(&pidlock);
4928 }
4929
4930 /*
4931 * Set events.
4932 */
4933 ssp->ss_events = ss.ss_events;
4934 } else {
4935 /*
4936 * Remove proc from register list.
4937 */
4938 if (ssp) {
4939 mutex_enter(&pidlock);
4940 PID_RELE(pidp);
4941 mutex_exit(&pidlock);
4942 if (pssp)
4943 pssp->ss_next = ssp->ss_next;
4944 else
4945 stp->sd_siglist = ssp->ss_next;
4946 kmem_free(ssp, sizeof (strsig_t));
4947 } else {
4948 mutex_exit(&stp->sd_lock);
4949 mutex_enter(&pidlock);
4950 PID_RELE(pidp);
4951 mutex_exit(&pidlock);
4952 return (EINVAL);
4953 }
4954 }
4955
4956 /*
4957 * Recalculate OR of sig events.
4958 */
4959 stp->sd_sigflags = 0;
4960 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4961 stp->sd_sigflags |= ssp->ss_events;
4962 mutex_exit(&stp->sd_lock);
4963 mutex_enter(&pidlock);
4964 PID_RELE(pidp);
4965 mutex_exit(&pidlock);
4966 return (0);
4967 }
4968
4969 case I_EGETSIG:
4970 /*
4971 * Return (in arg) the current registration of events
4972 * for which the calling proc is to be signaled.
4973 */
4974 {
4975 struct strsig *ssp;
4976 struct proc *proc;
4977 pid_t pid;
4978 struct pid *pidp;
4979 struct strsigset ss;
4980
4981 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4982 if (error)
4983 return (error);
4984
4985 pid = ss.ss_pid;
4986 mutex_enter(&pidlock);
4987 if (pid == 0)
4988 proc = curproc;
4989 else if (pid < 0)
4990 proc = pgfind(-pid);
4991 else
4992 proc = prfind(pid);
4993 if (proc == NULL) {
4994 mutex_exit(&pidlock);
4995 return (ESRCH);
4996 }
4997 if (pid < 0)
4998 pidp = proc->p_pgidp;
4999 else
5000 pidp = proc->p_pidp;
5001
5002 /* Prevent the pidp from being reassigned */
5003 PID_HOLD(pidp);
5004 mutex_exit(&pidlock);
5005
5006 mutex_enter(&stp->sd_lock);
5007 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
5008 if (ssp->ss_pid == pid) {
5009 ss.ss_pid = ssp->ss_pid;
5010 ss.ss_events = ssp->ss_events;
5011 error = strcopyout(&ss, (void *)arg,
5012 sizeof (struct strsigset), copyflag);
5013 mutex_exit(&stp->sd_lock);
5014 mutex_enter(&pidlock);
5015 PID_RELE(pidp);
5016 mutex_exit(&pidlock);
5017 return (error);
5018 }
5019 mutex_exit(&stp->sd_lock);
5020 mutex_enter(&pidlock);
5021 PID_RELE(pidp);
5022 mutex_exit(&pidlock);
5023 return (EINVAL);
5024 }
5025
5026 case I_PEEK:
5027 {
5028 STRUCT_DECL(strpeek, strpeek);
5029 size_t n;
5030 mblk_t *fmp, *tmp_mp = NULL;
5031
5032 STRUCT_INIT(strpeek, flag);
5033
5034 error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
5035 STRUCT_SIZE(strpeek), copyflag);
5036 if (error)
5037 return (error);
5038
5039 mutex_enter(QLOCK(rdq));
5040 /*
5041 * Skip the invalid messages
5042 */
5043 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
5044 if (mp->b_datap->db_type != M_SIG)
5045 break;
5046
5047 /*
5048 * If user has requested to peek at a high priority message
5049 * and first message is not, return 0
5050 */
5051 if (mp != NULL) {
5052 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
5053 queclass(mp) == QNORM) {
5054 *rvalp = 0;
5055 mutex_exit(QLOCK(rdq));
5056 return (0);
5057 }
5058 } else if (stp->sd_struiordq == NULL ||
5059 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
5060 /*
5061 * No mblks to look at at the streamhead and
5062 * 1). This isn't a synch stream or
5063 * 2). This is a synch stream but caller wants high
5064 * priority messages which is not supported by
5065 * the synch stream. (it only supports QNORM)
5066 */
5067 *rvalp = 0;
5068 mutex_exit(QLOCK(rdq));
5069 return (0);
5070 }
5071
5072 fmp = mp;
5073
5074 if (mp && mp->b_datap->db_type == M_PASSFP) {
5075 mutex_exit(QLOCK(rdq));
5076 return (EBADMSG);
5077 }
5078
5079 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
5080 mp->b_datap->db_type == M_PROTO ||
5081 mp->b_datap->db_type == M_DATA);
5082
5083 if (mp && mp->b_datap->db_type == M_PCPROTO) {
5084 STRUCT_FSET(strpeek, flags, RS_HIPRI);
5085 } else {
5086 STRUCT_FSET(strpeek, flags, 0);
5087 }
5088
5089
5090 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
5091 mutex_exit(QLOCK(rdq));
5092 return (ENOSR);
5093 }
5094 mutex_exit(QLOCK(rdq));
5095
5096 /*
5097 * set mp = tmp_mp, so that I_PEEK processing can continue.
5098 * tmp_mp is used to free the dup'd message.
5099 */
5100 mp = tmp_mp;
5101
5102 uio.uio_fmode = 0;
5103 uio.uio_extflg = UIO_COPY_CACHED;
5104 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5105 UIO_SYSSPACE;
5106 uio.uio_limit = 0;
5107 /*
5108 * First process PROTO blocks, if any.
5109 * If user doesn't want to get ctl info by setting maxlen <= 0,
5110 * then set len to -1/0 and skip control blocks part.
5111 */
5112 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
5113 STRUCT_FSET(strpeek, ctlbuf.len, -1);
5114 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
5115 STRUCT_FSET(strpeek, ctlbuf.len, 0);
5116 else {
5117 int ctl_part = 0;
5118
5119 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
5120 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
5121 uio.uio_iov = &iov;
5122 uio.uio_resid = iov.iov_len;
5123 uio.uio_loffset = 0;
5124 uio.uio_iovcnt = 1;
5125 while (mp && mp->b_datap->db_type != M_DATA &&
5126 uio.uio_resid >= 0) {
5127 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5128 mp->b_datap->db_type == M_PROTO :
5129 mp->b_datap->db_type == M_PCPROTO);
5130
5131 if ((n = MIN(uio.uio_resid,
5132 mp->b_wptr - mp->b_rptr)) != 0 &&
5133 (error = uiomove((char *)mp->b_rptr, n,
5134 UIO_READ, &uio)) != 0) {
5135 freemsg(tmp_mp);
5136 return (error);
5137 }
5138 ctl_part = 1;
5139 mp = mp->b_cont;
5140 }
5141 /* No ctl message */
5142 if (ctl_part == 0)
5143 STRUCT_FSET(strpeek, ctlbuf.len, -1);
5144 else
5145 STRUCT_FSET(strpeek, ctlbuf.len,
5146 STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5147 uio.uio_resid);
5148 }
5149
5150 /*
5151 * Now process DATA blocks, if any.
5152 * If user doesn't want to get data info by setting maxlen <= 0,
5153 * then set len to -1/0 and skip data blocks part.
5154 */
5155 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5156 STRUCT_FSET(strpeek, databuf.len, -1);
5157 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5158 STRUCT_FSET(strpeek, databuf.len, 0);
5159 else {
5160 int data_part = 0;
5161
5162 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5163 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5164 uio.uio_iov = &iov;
5165 uio.uio_resid = iov.iov_len;
5166 uio.uio_loffset = 0;
5167 uio.uio_iovcnt = 1;
5168 while (mp && uio.uio_resid) {
5169 if (mp->b_datap->db_type == M_DATA) {
5170 if ((n = MIN(uio.uio_resid,
5171 mp->b_wptr - mp->b_rptr)) != 0 &&
5172 (error = uiomove((char *)mp->b_rptr,
5173 n, UIO_READ, &uio)) != 0) {
5174 freemsg(tmp_mp);
5175 return (error);
5176 }
5177 data_part = 1;
5178 }
5179 ASSERT(data_part == 0 ||
5180 mp->b_datap->db_type == M_DATA);
5181 mp = mp->b_cont;
5182 }
5183 /* No data message */
5184 if (data_part == 0)
5185 STRUCT_FSET(strpeek, databuf.len, -1);
5186 else
5187 STRUCT_FSET(strpeek, databuf.len,
5188 STRUCT_FGET(strpeek, databuf.maxlen) -
5189 uio.uio_resid);
5190 }
5191 freemsg(tmp_mp);
5192
5193 /*
5194 * It is a synch stream and user wants to get
5195 * data (maxlen > 0).
5196 * uio setup is done by the codes that process DATA
5197 * blocks above.
5198 */
5199 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5200 infod_t infod;
5201
5202 infod.d_cmd = INFOD_COPYOUT;
5203 infod.d_res = 0;
5204 infod.d_uiop = &uio;
5205 error = infonext(rdq, &infod);
5206 if (error == EINVAL || error == EBUSY)
5207 error = 0;
5208 if (error)
5209 return (error);
5210 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5211 databuf.maxlen) - uio.uio_resid);
5212 if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5213 /*
5214 * No data found by the infonext().
5215 */
5216 STRUCT_FSET(strpeek, databuf.len, -1);
5217 }
5218 }
5219 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5220 STRUCT_SIZE(strpeek), copyflag);
5221 if (error) {
5222 return (error);
5223 }
5224 /*
5225 * If there is no message retrieved, set return code to 0
5226 * otherwise, set it to 1.
5227 */
5228 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5229 STRUCT_FGET(strpeek, databuf.len) == -1)
5230 *rvalp = 0;
5231 else
5232 *rvalp = 1;
5233 return (0);
5234 }
5235
5236 case I_FDINSERT:
5237 {
5238 STRUCT_DECL(strfdinsert, strfdinsert);
5239 struct file *resftp;
5240 struct stdata *resstp;
5241 t_uscalar_t ival;
5242 ssize_t msgsize;
5243 struct strbuf mctl;
5244
5245 STRUCT_INIT(strfdinsert, flag);
5246 if (stp->sd_flag & STRHUP)
5247 return (ENXIO);
5248 /*
5249 * STRDERR, STWRERR and STPLEX tested above.
5250 */
5251 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5252 STRUCT_SIZE(strfdinsert), copyflag);
5253 if (error)
5254 return (error);
5255
5256 if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5257 (STRUCT_FGET(strfdinsert, offset) %
5258 sizeof (t_uscalar_t)) != 0)
5259 return (EINVAL);
5260 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5261 if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5262 releasef(STRUCT_FGET(strfdinsert, fildes));
5263 return (EINVAL);
5264 }
5265 } else
5266 return (EINVAL);
5267
5268 mutex_enter(&resstp->sd_lock);
5269 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5270 error = strgeterr(resstp,
5271 STRDERR|STWRERR|STRHUP|STPLEX, 0);
5272 if (error != 0) {
5273 mutex_exit(&resstp->sd_lock);
5274 releasef(STRUCT_FGET(strfdinsert, fildes));
5275 return (error);
5276 }
5277 }
5278 mutex_exit(&resstp->sd_lock);
5279
5280 #ifdef _ILP32
5281 {
5282 queue_t *q;
5283 queue_t *mate = NULL;
5284
5285 /* get read queue of stream terminus */
5286 claimstr(resstp->sd_wrq);
5287 for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5288 q = q->q_next)
5289 if (!STRMATED(resstp) && STREAM(q) != resstp &&
5290 mate == NULL) {
5291 ASSERT(q->q_qinfo->qi_srvp);
5292 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5293 claimstr(q);
5294 mate = q;
5295 }
5296 q = _RD(q);
5297 if (mate)
5298 releasestr(mate);
5299 releasestr(resstp->sd_wrq);
5300 ival = (t_uscalar_t)q;
5301 }
5302 #else
5303 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5304 #endif /* _ILP32 */
5305
5306 if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5307 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5308 releasef(STRUCT_FGET(strfdinsert, fildes));
5309 return (EINVAL);
5310 }
5311
5312 /*
5313 * Check for legal flag value.
5314 */
5315 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5316 releasef(STRUCT_FGET(strfdinsert, fildes));
5317 return (EINVAL);
5318 }
5319
5320 /* get these values from those cached in the stream head */
5321 mutex_enter(QLOCK(stp->sd_wrq));
5322 rmin = stp->sd_qn_minpsz;
5323 rmax = stp->sd_qn_maxpsz;
5324 mutex_exit(QLOCK(stp->sd_wrq));
5325
5326 /*
5327 * Make sure ctl and data sizes together fall within
5328 * the limits of the max and min receive packet sizes
5329 * and do not exceed system limit. A negative data
5330 * length means that no data part is to be sent.
5331 */
5332 ASSERT((rmax >= 0) || (rmax == INFPSZ));
5333 if (rmax == 0) {
5334 releasef(STRUCT_FGET(strfdinsert, fildes));
5335 return (ERANGE);
5336 }
5337 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5338 msgsize = 0;
5339 if ((msgsize < rmin) ||
5340 ((msgsize > rmax) && (rmax != INFPSZ)) ||
5341 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5342 releasef(STRUCT_FGET(strfdinsert, fildes));
5343 return (ERANGE);
5344 }
5345
5346 mutex_enter(&stp->sd_lock);
5347 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5348 !canputnext(stp->sd_wrq)) {
5349 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5350 flag, -1, &done)) != 0 || done) {
5351 mutex_exit(&stp->sd_lock);
5352 releasef(STRUCT_FGET(strfdinsert, fildes));
5353 return (error);
5354 }
5355 if ((error = i_straccess(stp, access)) != 0) {
5356 mutex_exit(&stp->sd_lock);
5357 releasef(
5358 STRUCT_FGET(strfdinsert, fildes));
5359 return (error);
5360 }
5361 }
5362 mutex_exit(&stp->sd_lock);
5363
5364 /*
5365 * Copy strfdinsert.ctlbuf into native form of
5366 * ctlbuf to pass down into strmakemsg().
5367 */
5368 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5369 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5370 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5371
5372 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5373 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5374 uio.uio_iov = &iov;
5375 uio.uio_iovcnt = 1;
5376 uio.uio_loffset = 0;
5377 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5378 UIO_SYSSPACE;
5379 uio.uio_fmode = 0;
5380 uio.uio_extflg = UIO_COPY_CACHED;
5381 uio.uio_resid = iov.iov_len;
5382 if ((error = strmakemsg(&mctl,
5383 &msgsize, &uio, stp,
5384 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5385 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5386 releasef(STRUCT_FGET(strfdinsert, fildes));
5387 return (error);
5388 }
5389
5390 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5391
5392 /*
5393 * Place the possibly reencoded queue pointer 'offset' bytes
5394 * from the start of the control portion of the message.
5395 */
5396 *((t_uscalar_t *)(mp->b_rptr +
5397 STRUCT_FGET(strfdinsert, offset))) = ival;
5398
5399 /*
5400 * Put message downstream.
5401 */
5402 stream_willservice(stp);
5403 putnext(stp->sd_wrq, mp);
5404 stream_runservice(stp);
5405 releasef(STRUCT_FGET(strfdinsert, fildes));
5406 return (error);
5407 }
5408
5409 case I_SENDFD:
5410 {
5411 struct file *fp;
5412
5413 if ((fp = getf((int)arg)) == NULL)
5414 return (EBADF);
5415 error = do_sendfp(stp, fp, crp);
5416 if (auditing) {
5417 audit_fdsend((int)arg, fp, error);
5418 }
5419 releasef((int)arg);
5420 return (error);
5421 }
5422
5423 case I_RECVFD:
5424 case I_E_RECVFD:
5425 {
5426 struct k_strrecvfd *srf;
5427 int i, fd;
5428
5429 mutex_enter(&stp->sd_lock);
5430 while (!(mp = getq(rdq))) {
5431 if (stp->sd_flag & (STRHUP|STREOF)) {
5432 mutex_exit(&stp->sd_lock);
5433 return (ENXIO);
5434 }
5435 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5436 flag, -1, &done)) != 0 || done) {
5437 mutex_exit(&stp->sd_lock);
5438 return (error);
5439 }
5440 if ((error = i_straccess(stp, access)) != 0) {
5441 mutex_exit(&stp->sd_lock);
5442 return (error);
5443 }
5444 }
5445 if (mp->b_datap->db_type != M_PASSFP) {
5446 putback(stp, rdq, mp, mp->b_band);
5447 mutex_exit(&stp->sd_lock);
5448 return (EBADMSG);
5449 }
5450 mutex_exit(&stp->sd_lock);
5451
5452 srf = (struct k_strrecvfd *)mp->b_rptr;
5453 if ((fd = ufalloc(0)) == -1) {
5454 mutex_enter(&stp->sd_lock);
5455 putback(stp, rdq, mp, mp->b_band);
5456 mutex_exit(&stp->sd_lock);
5457 return (EMFILE);
5458 }
5459 if (cmd == I_RECVFD) {
5460 struct o_strrecvfd ostrfd;
5461
5462 /* check to see if uid/gid values are too large. */
5463
5464 if (srf->uid > (o_uid_t)USHRT_MAX ||
5465 srf->gid > (o_gid_t)USHRT_MAX) {
5466 mutex_enter(&stp->sd_lock);
5467 putback(stp, rdq, mp, mp->b_band);
5468 mutex_exit(&stp->sd_lock);
5469 setf(fd, NULL); /* release fd entry */
5470 return (EOVERFLOW);
5471 }
5472
5473 ostrfd.fd = fd;
5474 ostrfd.uid = (o_uid_t)srf->uid;
5475 ostrfd.gid = (o_gid_t)srf->gid;
5476
5477 /* Null the filler bits */
5478 for (i = 0; i < 8; i++)
5479 ostrfd.fill[i] = 0;
5480
5481 error = strcopyout(&ostrfd, (void *)arg,
5482 sizeof (struct o_strrecvfd), copyflag);
5483 } else { /* I_E_RECVFD */
5484 struct strrecvfd strfd;
5485
5486 strfd.fd = fd;
5487 strfd.uid = srf->uid;
5488 strfd.gid = srf->gid;
5489
5490 /* null the filler bits */
5491 for (i = 0; i < 8; i++)
5492 strfd.fill[i] = 0;
5493
5494 error = strcopyout(&strfd, (void *)arg,
5495 sizeof (struct strrecvfd), copyflag);
5496 }
5497
5498 if (error) {
5499 setf(fd, NULL); /* release fd entry */
5500 mutex_enter(&stp->sd_lock);
5501 putback(stp, rdq, mp, mp->b_band);
5502 mutex_exit(&stp->sd_lock);
5503 return (error);
5504 }
5505 if (auditing) {
5506 audit_fdrecv(fd, srf->fp);
5507 }
5508
5509 /*
5510 * Always increment f_count since the freemsg() below will
5511 * always call free_passfp() which performs a closef().
5512 */
5513 mutex_enter(&srf->fp->f_tlock);
5514 srf->fp->f_count++;
5515 mutex_exit(&srf->fp->f_tlock);
5516 setf(fd, srf->fp);
5517 freemsg(mp);
5518 return (0);
5519 }
5520
5521 case I_SWROPT:
5522 /*
5523 * Set/clear the write options. arg is a bit
5524 * mask with any of the following bits set...
5525 * SNDZERO - send zero length message
5526 * SNDPIPE - send sigpipe to process if
5527 * sd_werror is set and process is
5528 * doing a write or putmsg.
5529 * The new stream head write options should reflect
5530 * what is in arg.
5531 */
5532 if (arg & ~(SNDZERO|SNDPIPE))
5533 return (EINVAL);
5534
5535 mutex_enter(&stp->sd_lock);
5536 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5537 if (arg & SNDZERO)
5538 stp->sd_wput_opt |= SW_SNDZERO;
5539 if (arg & SNDPIPE)
5540 stp->sd_wput_opt |= SW_SIGPIPE;
5541 mutex_exit(&stp->sd_lock);
5542 return (0);
5543
5544 case I_GWROPT:
5545 {
5546 int wropt = 0;
5547
5548 if (stp->sd_wput_opt & SW_SNDZERO)
5549 wropt |= SNDZERO;
5550 if (stp->sd_wput_opt & SW_SIGPIPE)
5551 wropt |= SNDPIPE;
5552 return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5553 copyflag));
5554 }
5555
5556 case I_LIST:
5557 /*
5558 * Returns all the modules found on this stream,
5559 * upto the driver. If argument is NULL, return the
5560 * number of modules (including driver). If argument
5561 * is not NULL, copy the names into the structure
5562 * provided.
5563 */
5564
5565 {
5566 queue_t *q;
5567 char *qname;
5568 int i, nmods;
5569 struct str_mlist *mlist;
5570 STRUCT_DECL(str_list, strlist);
5571
5572 if (arg == 0) { /* Return number of modules plus driver */
5573 if (stp->sd_vnode->v_type == VFIFO)
5574 *rvalp = stp->sd_pushcnt;
5575 else
5576 *rvalp = stp->sd_pushcnt + 1;
5577 return (0);
5578 }
5579
5580 STRUCT_INIT(strlist, flag);
5581
5582 error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5583 STRUCT_SIZE(strlist), copyflag);
5584 if (error != 0)
5585 return (error);
5586
5587 mlist = STRUCT_FGETP(strlist, sl_modlist);
5588 nmods = STRUCT_FGET(strlist, sl_nmods);
5589 if (nmods <= 0)
5590 return (EINVAL);
5591
5592 claimstr(stp->sd_wrq);
5593 q = stp->sd_wrq;
5594 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5595 qname = Q2NAME(q->q_next);
5596 error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5597 copyflag);
5598 if (error != 0) {
5599 releasestr(stp->sd_wrq);
5600 return (error);
5601 }
5602 }
5603 releasestr(stp->sd_wrq);
5604 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5605 }
5606
5607 case I_CKBAND:
5608 {
5609 queue_t *q;
5610 qband_t *qbp;
5611
5612 if ((arg < 0) || (arg >= NBAND))
5613 return (EINVAL);
5614 q = _RD(stp->sd_wrq);
5615 mutex_enter(QLOCK(q));
5616 if (arg > (int)q->q_nband) {
5617 *rvalp = 0;
5618 } else {
5619 if (arg == 0) {
5620 if (q->q_first)
5621 *rvalp = 1;
5622 else
5623 *rvalp = 0;
5624 } else {
5625 qbp = q->q_bandp;
5626 while (--arg > 0)
5627 qbp = qbp->qb_next;
5628 if (qbp->qb_first)
5629 *rvalp = 1;
5630 else
5631 *rvalp = 0;
5632 }
5633 }
5634 mutex_exit(QLOCK(q));
5635 return (0);
5636 }
5637
5638 case I_GETBAND:
5639 {
5640 int intpri;
5641 queue_t *q;
5642
5643 q = _RD(stp->sd_wrq);
5644 mutex_enter(QLOCK(q));
5645 mp = q->q_first;
5646 if (!mp) {
5647 mutex_exit(QLOCK(q));
5648 return (ENODATA);
5649 }
5650 intpri = (int)mp->b_band;
5651 error = strcopyout(&intpri, (void *)arg, sizeof (int),
5652 copyflag);
5653 mutex_exit(QLOCK(q));
5654 return (error);
5655 }
5656
5657 case I_ATMARK:
5658 {
5659 queue_t *q;
5660
5661 if (arg & ~(ANYMARK|LASTMARK))
5662 return (EINVAL);
5663 q = _RD(stp->sd_wrq);
5664 mutex_enter(&stp->sd_lock);
5665 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5666 *rvalp = 1;
5667 } else {
5668 mutex_enter(QLOCK(q));
5669 mp = q->q_first;
5670
5671 if (mp == NULL)
5672 *rvalp = 0;
5673 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5674 *rvalp = 1;
5675 else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5676 *rvalp = 1;
5677 else
5678 *rvalp = 0;
5679 mutex_exit(QLOCK(q));
5680 }
5681 mutex_exit(&stp->sd_lock);
5682 return (0);
5683 }
5684
5685 case I_CANPUT:
5686 {
5687 char band;
5688
5689 if ((arg < 0) || (arg >= NBAND))
5690 return (EINVAL);
5691 band = (char)arg;
5692 *rvalp = bcanputnext(stp->sd_wrq, band);
5693 return (0);
5694 }
5695
5696 case I_SETCLTIME:
5697 {
5698 int closetime;
5699
5700 error = strcopyin((void *)arg, &closetime, sizeof (int),
5701 copyflag);
5702 if (error)
5703 return (error);
5704 if (closetime < 0)
5705 return (EINVAL);
5706
5707 stp->sd_closetime = closetime;
5708 return (0);
5709 }
5710
5711 case I_GETCLTIME:
5712 {
5713 int closetime;
5714
5715 closetime = stp->sd_closetime;
5716 return (strcopyout(&closetime, (void *)arg, sizeof (int),
5717 copyflag));
5718 }
5719
5720 case TIOCGSID:
5721 {
5722 pid_t sid;
5723
5724 mutex_enter(&stp->sd_lock);
5725 if (stp->sd_sidp == NULL) {
5726 mutex_exit(&stp->sd_lock);
5727 return (ENOTTY);
5728 }
5729 sid = stp->sd_sidp->pid_id;
5730 mutex_exit(&stp->sd_lock);
5731 return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5732 copyflag));
5733 }
5734
5735 case TIOCSPGRP:
5736 {
5737 pid_t pgrp;
5738 proc_t *q;
5739 pid_t sid, fg_pgid, bg_pgid;
5740
5741 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5742 copyflag))
5743 return (error);
5744 mutex_enter(&stp->sd_lock);
5745 mutex_enter(&pidlock);
5746 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5747 mutex_exit(&pidlock);
5748 mutex_exit(&stp->sd_lock);
5749 return (ENOTTY);
5750 }
5751 if (pgrp == stp->sd_pgidp->pid_id) {
5752 mutex_exit(&pidlock);
5753 mutex_exit(&stp->sd_lock);
5754 return (0);
5755 }
5756 if (pgrp <= 0 || pgrp >= maxpid) {
5757 mutex_exit(&pidlock);
5758 mutex_exit(&stp->sd_lock);
5759 return (EINVAL);
5760 }
5761 if ((q = pgfind(pgrp)) == NULL ||
5762 q->p_sessp != ttoproc(curthread)->p_sessp) {
5763 mutex_exit(&pidlock);
5764 mutex_exit(&stp->sd_lock);
5765 return (EPERM);
5766 }
5767 sid = stp->sd_sidp->pid_id;
5768 fg_pgid = q->p_pgrp;
5769 bg_pgid = stp->sd_pgidp->pid_id;
5770 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5771 PID_RELE(stp->sd_pgidp);
5772 ctty_clear_sighuped();
5773 stp->sd_pgidp = q->p_pgidp;
5774 PID_HOLD(stp->sd_pgidp);
5775 mutex_exit(&pidlock);
5776 mutex_exit(&stp->sd_lock);
5777 return (0);
5778 }
5779
5780 case TIOCGPGRP:
5781 {
5782 pid_t pgrp;
5783
5784 mutex_enter(&stp->sd_lock);
5785 if (stp->sd_sidp == NULL) {
5786 mutex_exit(&stp->sd_lock);
5787 return (ENOTTY);
5788 }
5789 pgrp = stp->sd_pgidp->pid_id;
5790 mutex_exit(&stp->sd_lock);
5791 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5792 copyflag));
5793 }
5794
5795 case TIOCSCTTY:
5796 {
5797 return (strctty(stp));
5798 }
5799
5800 case TIOCNOTTY:
5801 {
5802 /* freectty() always assumes curproc. */
5803 if (freectty(B_FALSE) != 0)
5804 return (0);
5805 return (ENOTTY);
5806 }
5807
5808 case FIONBIO:
5809 case FIOASYNC:
5810 return (0); /* handled by the upper layer */
5811 }
5812 }
5813
5814 /*
5815 * Custom free routine used for M_PASSFP messages.
5816 */
5817 static void
free_passfp(struct k_strrecvfd * srf)5818 free_passfp(struct k_strrecvfd *srf)
5819 {
5820 (void) closef(srf->fp);
5821 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5822 }
5823
5824 /* ARGSUSED */
5825 int
do_sendfp(struct stdata * stp,struct file * fp,struct cred * cr)5826 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5827 {
5828 queue_t *qp, *nextqp;
5829 struct k_strrecvfd *srf;
5830 mblk_t *mp;
5831 frtn_t *frtnp;
5832 size_t bufsize;
5833 queue_t *mate = NULL;
5834 syncq_t *sq = NULL;
5835 int retval = 0;
5836
5837 if (stp->sd_flag & STRHUP)
5838 return (ENXIO);
5839
5840 claimstr(stp->sd_wrq);
5841
5842 /* Fastpath, we have a pipe, and we are already mated, use it. */
5843 if (STRMATED(stp)) {
5844 qp = _RD(stp->sd_mate->sd_wrq);
5845 claimstr(qp);
5846 mate = qp;
5847 } else { /* Not already mated. */
5848
5849 /*
5850 * Walk the stream to the end of this one.
5851 * assumes that the claimstr() will prevent
5852 * plumbing between the stream head and the
5853 * driver from changing
5854 */
5855 qp = stp->sd_wrq;
5856
5857 /*
5858 * Loop until we reach the end of this stream.
5859 * On completion, qp points to the write queue
5860 * at the end of the stream, or the read queue
5861 * at the stream head if this is a fifo.
5862 */
5863 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5864 ;
5865
5866 /*
5867 * Just in case we get a q_next which is NULL, but
5868 * not at the end of the stream. This is actually
5869 * broken, so we set an assert to catch it in
5870 * debug, and set an error and return if not debug.
5871 */
5872 ASSERT(qp);
5873 if (qp == NULL) {
5874 releasestr(stp->sd_wrq);
5875 return (EINVAL);
5876 }
5877
5878 /*
5879 * Enter the syncq for the driver, so (hopefully)
5880 * the queue values will not change on us.
5881 * XXXX - This will only prevent the race IFF only
5882 * the write side modifies the q_next member, and
5883 * the put procedure is protected by at least
5884 * MT_PERQ.
5885 */
5886 if ((sq = qp->q_syncq) != NULL)
5887 entersq(sq, SQ_PUT);
5888
5889 /* Now get the q_next value from this qp. */
5890 nextqp = qp->q_next;
5891
5892 /*
5893 * If nextqp exists and the other stream is different
5894 * from this one claim the stream, set the mate, and
5895 * get the read queue at the stream head of the other
5896 * stream. Assumes that nextqp was at least valid when
5897 * we got it. Hopefully the entersq of the driver
5898 * will prevent it from changing on us.
5899 */
5900 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5901 ASSERT(qp->q_qinfo->qi_srvp);
5902 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5903 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5904 claimstr(nextqp);
5905
5906 /* Make sure we still have a q_next */
5907 if (nextqp != qp->q_next) {
5908 releasestr(stp->sd_wrq);
5909 releasestr(nextqp);
5910 return (EINVAL);
5911 }
5912
5913 qp = _RD(STREAM(nextqp)->sd_wrq);
5914 mate = qp;
5915 }
5916 /* If we entered the synq above, leave it. */
5917 if (sq != NULL)
5918 leavesq(sq, SQ_PUT);
5919 } /* STRMATED(STP) */
5920
5921 /* XXX prevents substitution of the ops vector */
5922 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5923 retval = EINVAL;
5924 goto out;
5925 }
5926
5927 if (qp->q_flag & QFULL) {
5928 retval = EAGAIN;
5929 goto out;
5930 }
5931
5932 /*
5933 * Since M_PASSFP messages include a file descriptor, we use
5934 * esballoc() and specify a custom free routine (free_passfp()) that
5935 * will close the descriptor as part of freeing the message. For
5936 * convenience, we stash the frtn_t right after the data block.
5937 */
5938 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5939 srf = kmem_alloc(bufsize, KM_NOSLEEP);
5940 if (srf == NULL) {
5941 retval = EAGAIN;
5942 goto out;
5943 }
5944
5945 frtnp = (frtn_t *)(srf + 1);
5946 frtnp->free_arg = (caddr_t)srf;
5947 frtnp->free_func = free_passfp;
5948
5949 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5950 if (mp == NULL) {
5951 kmem_free(srf, bufsize);
5952 retval = EAGAIN;
5953 goto out;
5954 }
5955 mp->b_wptr += sizeof (struct k_strrecvfd);
5956 mp->b_datap->db_type = M_PASSFP;
5957
5958 srf->fp = fp;
5959 srf->uid = crgetuid(curthread->t_cred);
5960 srf->gid = crgetgid(curthread->t_cred);
5961 mutex_enter(&fp->f_tlock);
5962 fp->f_count++;
5963 mutex_exit(&fp->f_tlock);
5964
5965 put(qp, mp);
5966 out:
5967 releasestr(stp->sd_wrq);
5968 if (mate)
5969 releasestr(mate);
5970 return (retval);
5971 }
5972
5973 /*
5974 * Send an ioctl message downstream and wait for acknowledgement.
5975 * flags may be set to either U_TO_K or K_TO_K and a combination
5976 * of STR_NOERROR or STR_NOSIG
5977 * STR_NOSIG: Signals are essentially ignored or held and have
5978 * no effect for the duration of the call.
5979 * STR_NOERROR: Ignores stream head read, write and hup errors.
5980 * Additionally, if an existing ioctl times out, it is assumed
5981 * lost and and this ioctl will continue as if the previous ioctl had
5982 * finished. ETIME may be returned if this ioctl times out (i.e.
5983 * ic_timout is not INFTIM). Non-stream head errors may be returned if
5984 * the ioc_error indicates that the driver/module had problems,
5985 * an EFAULT was found when accessing user data, a lack of
5986 * resources, etc.
5987 */
5988 int
strdoioctl(struct stdata * stp,struct strioctl * strioc,int fflags,int flag,cred_t * crp,int * rvalp)5989 strdoioctl(
5990 struct stdata *stp,
5991 struct strioctl *strioc,
5992 int fflags, /* file flags with model info */
5993 int flag,
5994 cred_t *crp,
5995 int *rvalp)
5996 {
5997 mblk_t *bp;
5998 struct iocblk *iocbp;
5999 struct copyreq *reqp;
6000 struct copyresp *resp;
6001 int id;
6002 int transparent = 0;
6003 int error = 0;
6004 int len = 0;
6005 caddr_t taddr;
6006 int copyflag = (flag & (U_TO_K | K_TO_K));
6007 int sigflag = (flag & STR_NOSIG);
6008 int errs;
6009 uint_t waitflags;
6010 boolean_t set_iocwaitne = B_FALSE;
6011
6012 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
6013 ASSERT((fflags & FMODELS) != 0);
6014
6015 TRACE_2(TR_FAC_STREAMS_FR,
6016 TR_STRDOIOCTL,
6017 "strdoioctl:stp %p strioc %p", stp, strioc);
6018 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */
6019 transparent = 1;
6020 strioc->ic_len = sizeof (intptr_t);
6021 }
6022
6023 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
6024 return (EINVAL);
6025
6026 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
6027 crp, curproc->p_pid)) == NULL)
6028 return (error);
6029
6030 bzero(bp->b_wptr, sizeof (union ioctypes));
6031
6032 iocbp = (struct iocblk *)bp->b_wptr;
6033 iocbp->ioc_count = strioc->ic_len;
6034 iocbp->ioc_cmd = strioc->ic_cmd;
6035 iocbp->ioc_flag = (fflags & FMODELS);
6036
6037 crhold(crp);
6038 iocbp->ioc_cr = crp;
6039 DB_TYPE(bp) = M_IOCTL;
6040 bp->b_wptr += sizeof (struct iocblk);
6041
6042 if (flag & STR_NOERROR)
6043 errs = STPLEX;
6044 else
6045 errs = STRHUP|STRDERR|STWRERR|STPLEX;
6046
6047 /*
6048 * If there is data to copy into ioctl block, do so.
6049 */
6050 if (iocbp->ioc_count > 0) {
6051 if (transparent)
6052 /*
6053 * Note: STR_NOERROR does not have an effect
6054 * in putiocd()
6055 */
6056 id = K_TO_K | sigflag;
6057 else
6058 id = flag;
6059 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
6060 freemsg(bp);
6061 crfree(crp);
6062 return (error);
6063 }
6064
6065 /*
6066 * We could have slept copying in user pages.
6067 * Recheck the stream head state (the other end
6068 * of a pipe could have gone away).
6069 */
6070 if (stp->sd_flag & errs) {
6071 mutex_enter(&stp->sd_lock);
6072 error = strgeterr(stp, errs, 0);
6073 mutex_exit(&stp->sd_lock);
6074 if (error != 0) {
6075 freemsg(bp);
6076 crfree(crp);
6077 return (error);
6078 }
6079 }
6080 }
6081 if (transparent)
6082 iocbp->ioc_count = TRANSPARENT;
6083
6084 /*
6085 * Block for up to STRTIMOUT milliseconds if there is an outstanding
6086 * ioctl for this stream already running. All processes
6087 * sleeping here will be awakened as a result of an ACK
6088 * or NAK being received for the outstanding ioctl, or
6089 * as a result of the timer expiring on the outstanding
6090 * ioctl (a failure), or as a result of any waiting
6091 * process's timer expiring (also a failure).
6092 */
6093
6094 error = 0;
6095 mutex_enter(&stp->sd_lock);
6096 while ((stp->sd_flag & IOCWAIT) ||
6097 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
6098 clock_t cv_rval;
6099
6100 TRACE_0(TR_FAC_STREAMS_FR,
6101 TR_STRDOIOCTL_WAIT,
6102 "strdoioctl sleeps - IOCWAIT");
6103 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
6104 STRTIMOUT, sigflag);
6105 if (cv_rval <= 0) {
6106 if (cv_rval == 0) {
6107 error = EINTR;
6108 } else {
6109 if (flag & STR_NOERROR) {
6110 /*
6111 * Terminating current ioctl in
6112 * progress -- assume it got lost and
6113 * wake up the other thread so that the
6114 * operation completes.
6115 */
6116 if (!(stp->sd_flag & IOCWAITNE)) {
6117 set_iocwaitne = B_TRUE;
6118 stp->sd_flag |= IOCWAITNE;
6119 cv_broadcast(&stp->sd_monitor);
6120 }
6121 /*
6122 * Otherwise, there's a running
6123 * STR_NOERROR -- we have no choice
6124 * here but to wait forever (or until
6125 * interrupted).
6126 */
6127 } else {
6128 /*
6129 * pending ioctl has caused
6130 * us to time out
6131 */
6132 error = ETIME;
6133 }
6134 }
6135 } else if ((stp->sd_flag & errs)) {
6136 error = strgeterr(stp, errs, 0);
6137 }
6138 if (error) {
6139 mutex_exit(&stp->sd_lock);
6140 freemsg(bp);
6141 crfree(crp);
6142 return (error);
6143 }
6144 }
6145
6146 /*
6147 * Have control of ioctl mechanism.
6148 * Send down ioctl packet and wait for response.
6149 */
6150 if (stp->sd_iocblk != (mblk_t *)-1) {
6151 freemsg(stp->sd_iocblk);
6152 }
6153 stp->sd_iocblk = NULL;
6154
6155 /*
6156 * If this is marked with 'noerror' (internal; mostly
6157 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6158 * in here by setting IOCWAITNE.
6159 */
6160 waitflags = IOCWAIT;
6161 if (flag & STR_NOERROR)
6162 waitflags |= IOCWAITNE;
6163
6164 stp->sd_flag |= waitflags;
6165
6166 /*
6167 * Assign sequence number.
6168 */
6169 iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6170
6171 mutex_exit(&stp->sd_lock);
6172
6173 TRACE_1(TR_FAC_STREAMS_FR,
6174 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6175 stream_willservice(stp);
6176 putnext(stp->sd_wrq, bp);
6177 stream_runservice(stp);
6178
6179 /*
6180 * Timed wait for acknowledgment. The wait time is limited by the
6181 * timeout value, which must be a positive integer (number of
6182 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6183 * milliseconds), or -1 (wait forever). This will be awakened
6184 * either by an ACK/NAK message arriving, the timer expiring, or
6185 * the timer expiring on another ioctl waiting for control of the
6186 * mechanism.
6187 */
6188 waitioc:
6189 mutex_enter(&stp->sd_lock);
6190
6191
6192 /*
6193 * If the reply has already arrived, don't sleep. If awakened from
6194 * the sleep, fail only if the reply has not arrived by then.
6195 * Otherwise, process the reply.
6196 */
6197 while (!stp->sd_iocblk) {
6198 clock_t cv_rval;
6199
6200 if (stp->sd_flag & errs) {
6201 error = strgeterr(stp, errs, 0);
6202 if (error != 0) {
6203 stp->sd_flag &= ~waitflags;
6204 cv_broadcast(&stp->sd_iocmonitor);
6205 mutex_exit(&stp->sd_lock);
6206 crfree(crp);
6207 return (error);
6208 }
6209 }
6210
6211 TRACE_0(TR_FAC_STREAMS_FR,
6212 TR_STRDOIOCTL_WAIT2,
6213 "strdoioctl sleeps awaiting reply");
6214 ASSERT(error == 0);
6215
6216 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6217 (strioc->ic_timout ?
6218 strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6219
6220 /*
6221 * There are four possible cases here: interrupt, timeout,
6222 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6223 * valid M_IOCTL reply).
6224 *
6225 * If we've been awakened by a STR_NOERROR ioctl on some other
6226 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6227 * will be set. Pretend as if we just timed out. Note that
6228 * this other thread waited at least STRTIMOUT before trying to
6229 * awaken our thread, so this is indistinguishable (even for
6230 * INFTIM) from the case where we failed with ETIME waiting on
6231 * IOCWAIT in the prior loop.
6232 */
6233 if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6234 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6235 cv_rval = -1;
6236 }
6237
6238 /*
6239 * note: STR_NOERROR does not protect
6240 * us here.. use ic_timout < 0
6241 */
6242 if (cv_rval <= 0) {
6243 if (cv_rval == 0) {
6244 error = EINTR;
6245 } else {
6246 error = ETIME;
6247 }
6248 /*
6249 * A message could have come in after we were scheduled
6250 * but before we were actually run.
6251 */
6252 bp = stp->sd_iocblk;
6253 stp->sd_iocblk = NULL;
6254 if (bp != NULL) {
6255 if ((bp->b_datap->db_type == M_COPYIN) ||
6256 (bp->b_datap->db_type == M_COPYOUT)) {
6257 mutex_exit(&stp->sd_lock);
6258 if (bp->b_cont) {
6259 freemsg(bp->b_cont);
6260 bp->b_cont = NULL;
6261 }
6262 bp->b_datap->db_type = M_IOCDATA;
6263 bp->b_wptr = bp->b_rptr +
6264 sizeof (struct copyresp);
6265 resp = (struct copyresp *)bp->b_rptr;
6266 resp->cp_rval =
6267 (caddr_t)1; /* failure */
6268 stream_willservice(stp);
6269 putnext(stp->sd_wrq, bp);
6270 stream_runservice(stp);
6271 mutex_enter(&stp->sd_lock);
6272 } else {
6273 freemsg(bp);
6274 }
6275 }
6276 stp->sd_flag &= ~waitflags;
6277 cv_broadcast(&stp->sd_iocmonitor);
6278 mutex_exit(&stp->sd_lock);
6279 crfree(crp);
6280 return (error);
6281 }
6282 }
6283 bp = stp->sd_iocblk;
6284 /*
6285 * Note: it is strictly impossible to get here with sd_iocblk set to
6286 * -1. This is because the initial loop above doesn't allow any new
6287 * ioctls into the fray until all others have passed this point.
6288 */
6289 ASSERT(bp != NULL && bp != (mblk_t *)-1);
6290 TRACE_1(TR_FAC_STREAMS_FR,
6291 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6292 if ((bp->b_datap->db_type == M_IOCACK) ||
6293 (bp->b_datap->db_type == M_IOCNAK)) {
6294 /* for detection of duplicate ioctl replies */
6295 stp->sd_iocblk = (mblk_t *)-1;
6296 stp->sd_flag &= ~waitflags;
6297 cv_broadcast(&stp->sd_iocmonitor);
6298 mutex_exit(&stp->sd_lock);
6299 } else {
6300 /*
6301 * flags not cleared here because we're still doing
6302 * copy in/out for ioctl.
6303 */
6304 stp->sd_iocblk = NULL;
6305 mutex_exit(&stp->sd_lock);
6306 }
6307
6308
6309 /*
6310 * Have received acknowledgment.
6311 */
6312
6313 switch (bp->b_datap->db_type) {
6314 case M_IOCACK:
6315 /*
6316 * Positive ack.
6317 */
6318 iocbp = (struct iocblk *)bp->b_rptr;
6319
6320 /*
6321 * Set error if indicated.
6322 */
6323 if (iocbp->ioc_error) {
6324 error = iocbp->ioc_error;
6325 break;
6326 }
6327
6328 /*
6329 * Set return value.
6330 */
6331 *rvalp = iocbp->ioc_rval;
6332
6333 /*
6334 * Data may have been returned in ACK message (ioc_count > 0).
6335 * If so, copy it out to the user's buffer.
6336 */
6337 if (iocbp->ioc_count && !transparent) {
6338 if (error = getiocd(bp, strioc->ic_dp, copyflag))
6339 break;
6340 }
6341 if (!transparent) {
6342 if (len) /* an M_COPYOUT was used with I_STR */
6343 strioc->ic_len = len;
6344 else
6345 strioc->ic_len = (int)iocbp->ioc_count;
6346 }
6347 break;
6348
6349 case M_IOCNAK:
6350 /*
6351 * Negative ack.
6352 *
6353 * The only thing to do is set error as specified
6354 * in neg ack packet.
6355 */
6356 iocbp = (struct iocblk *)bp->b_rptr;
6357
6358 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6359 break;
6360
6361 case M_COPYIN:
6362 /*
6363 * Driver or module has requested user ioctl data.
6364 */
6365 reqp = (struct copyreq *)bp->b_rptr;
6366
6367 /*
6368 * M_COPYIN should *never* have a message attached, though
6369 * it's harmless if it does -- thus, panic on a DEBUG
6370 * kernel and just free it on a non-DEBUG build.
6371 */
6372 ASSERT(bp->b_cont == NULL);
6373 if (bp->b_cont != NULL) {
6374 freemsg(bp->b_cont);
6375 bp->b_cont = NULL;
6376 }
6377
6378 error = putiocd(bp, reqp->cq_addr, flag, crp);
6379 if (error && bp->b_cont) {
6380 freemsg(bp->b_cont);
6381 bp->b_cont = NULL;
6382 }
6383
6384 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6385 bp->b_datap->db_type = M_IOCDATA;
6386
6387 mblk_setcred(bp, crp, curproc->p_pid);
6388 resp = (struct copyresp *)bp->b_rptr;
6389 resp->cp_rval = (caddr_t)(uintptr_t)error;
6390 resp->cp_flag = (fflags & FMODELS);
6391
6392 stream_willservice(stp);
6393 putnext(stp->sd_wrq, bp);
6394 stream_runservice(stp);
6395
6396 if (error) {
6397 mutex_enter(&stp->sd_lock);
6398 stp->sd_flag &= ~waitflags;
6399 cv_broadcast(&stp->sd_iocmonitor);
6400 mutex_exit(&stp->sd_lock);
6401 crfree(crp);
6402 return (error);
6403 }
6404
6405 goto waitioc;
6406
6407 case M_COPYOUT:
6408 /*
6409 * Driver or module has ioctl data for a user.
6410 */
6411 reqp = (struct copyreq *)bp->b_rptr;
6412 ASSERT(bp->b_cont != NULL);
6413
6414 /*
6415 * Always (transparent or non-transparent )
6416 * use the address specified in the request
6417 */
6418 taddr = reqp->cq_addr;
6419 if (!transparent)
6420 len = (int)reqp->cq_size;
6421
6422 /* copyout data to the provided address */
6423 error = getiocd(bp, taddr, copyflag);
6424
6425 freemsg(bp->b_cont);
6426 bp->b_cont = NULL;
6427
6428 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6429 bp->b_datap->db_type = M_IOCDATA;
6430
6431 mblk_setcred(bp, crp, curproc->p_pid);
6432 resp = (struct copyresp *)bp->b_rptr;
6433 resp->cp_rval = (caddr_t)(uintptr_t)error;
6434 resp->cp_flag = (fflags & FMODELS);
6435
6436 stream_willservice(stp);
6437 putnext(stp->sd_wrq, bp);
6438 stream_runservice(stp);
6439
6440 if (error) {
6441 mutex_enter(&stp->sd_lock);
6442 stp->sd_flag &= ~waitflags;
6443 cv_broadcast(&stp->sd_iocmonitor);
6444 mutex_exit(&stp->sd_lock);
6445 crfree(crp);
6446 return (error);
6447 }
6448 goto waitioc;
6449
6450 default:
6451 ASSERT(0);
6452 mutex_enter(&stp->sd_lock);
6453 stp->sd_flag &= ~waitflags;
6454 cv_broadcast(&stp->sd_iocmonitor);
6455 mutex_exit(&stp->sd_lock);
6456 break;
6457 }
6458
6459 freemsg(bp);
6460 crfree(crp);
6461 return (error);
6462 }
6463
6464 /*
6465 * Send an M_CMD message downstream and wait for a reply. This is a ptools
6466 * special used to retrieve information from modules/drivers a stream without
6467 * being subjected to flow control or interfering with pending messages on the
6468 * stream (e.g. an ioctl in flight).
6469 */
6470 int
strdocmd(struct stdata * stp,struct strcmd * scp,cred_t * crp)6471 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6472 {
6473 mblk_t *mp;
6474 struct cmdblk *cmdp;
6475 int error = 0;
6476 int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6477 clock_t rval, timeout = STRTIMOUT;
6478
6479 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6480 scp->sc_timeout < -1)
6481 return (EINVAL);
6482
6483 if (scp->sc_timeout > 0)
6484 timeout = scp->sc_timeout * MILLISEC;
6485
6486 if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6487 curproc->p_pid)) == NULL)
6488 return (ENOMEM);
6489
6490 crhold(crp);
6491
6492 cmdp = (struct cmdblk *)mp->b_wptr;
6493 cmdp->cb_cr = crp;
6494 cmdp->cb_cmd = scp->sc_cmd;
6495 cmdp->cb_len = scp->sc_len;
6496 cmdp->cb_error = 0;
6497 mp->b_wptr += sizeof (struct cmdblk);
6498
6499 DB_TYPE(mp) = M_CMD;
6500 DB_CPID(mp) = curproc->p_pid;
6501
6502 /*
6503 * Copy in the payload.
6504 */
6505 if (cmdp->cb_len > 0) {
6506 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6507 curproc->p_pid);
6508 if (mp->b_cont == NULL) {
6509 error = ENOMEM;
6510 goto out;
6511 }
6512
6513 /* cb_len comes from sc_len, which has already been checked */
6514 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6515 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6516 mp->b_cont->b_wptr += cmdp->cb_len;
6517 DB_CPID(mp->b_cont) = curproc->p_pid;
6518 }
6519
6520 /*
6521 * Since this mechanism is strictly for ptools, and since only one
6522 * process can be grabbed at a time, we simply fail if there's
6523 * currently an operation pending.
6524 */
6525 mutex_enter(&stp->sd_lock);
6526 if (stp->sd_flag & STRCMDWAIT) {
6527 mutex_exit(&stp->sd_lock);
6528 error = EBUSY;
6529 goto out;
6530 }
6531 stp->sd_flag |= STRCMDWAIT;
6532 ASSERT(stp->sd_cmdblk == NULL);
6533 mutex_exit(&stp->sd_lock);
6534
6535 putnext(stp->sd_wrq, mp);
6536 mp = NULL;
6537
6538 /*
6539 * Timed wait for acknowledgment. If the reply has already arrived,
6540 * don't sleep. If awakened from the sleep, fail only if the reply
6541 * has not arrived by then. Otherwise, process the reply.
6542 */
6543 mutex_enter(&stp->sd_lock);
6544 while (stp->sd_cmdblk == NULL) {
6545 if (stp->sd_flag & errs) {
6546 if ((error = strgeterr(stp, errs, 0)) != 0)
6547 goto waitout;
6548 }
6549
6550 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6551 if (stp->sd_cmdblk != NULL)
6552 break;
6553
6554 if (rval <= 0) {
6555 error = (rval == 0) ? EINTR : ETIME;
6556 goto waitout;
6557 }
6558 }
6559
6560 /*
6561 * We received a reply.
6562 */
6563 mp = stp->sd_cmdblk;
6564 stp->sd_cmdblk = NULL;
6565 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6566 ASSERT(stp->sd_flag & STRCMDWAIT);
6567 stp->sd_flag &= ~STRCMDWAIT;
6568 mutex_exit(&stp->sd_lock);
6569
6570 cmdp = (struct cmdblk *)mp->b_rptr;
6571 if ((error = cmdp->cb_error) != 0)
6572 goto out;
6573
6574 /*
6575 * Data may have been returned in the reply (cb_len > 0).
6576 * If so, copy it out to the user's buffer.
6577 */
6578 if (cmdp->cb_len > 0) {
6579 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6580 error = EPROTO;
6581 goto out;
6582 }
6583
6584 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6585 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6586 }
6587 scp->sc_len = cmdp->cb_len;
6588 out:
6589 freemsg(mp);
6590 crfree(crp);
6591 return (error);
6592 waitout:
6593 ASSERT(stp->sd_cmdblk == NULL);
6594 stp->sd_flag &= ~STRCMDWAIT;
6595 mutex_exit(&stp->sd_lock);
6596 crfree(crp);
6597 return (error);
6598 }
6599
6600 /*
6601 * For the SunOS keyboard driver.
6602 * Return the next available "ioctl" sequence number.
6603 * Exported, so that streams modules can send "ioctl" messages
6604 * downstream from their open routine.
6605 */
6606 int
getiocseqno(void)6607 getiocseqno(void)
6608 {
6609 int i;
6610
6611 mutex_enter(&strresources);
6612 i = ++ioc_id;
6613 mutex_exit(&strresources);
6614 return (i);
6615 }
6616
6617 /*
6618 * Get the next message from the read queue. If the message is
6619 * priority, STRPRI will have been set by strrput(). This flag
6620 * should be reset only when the entire message at the front of the
6621 * queue as been consumed.
6622 *
6623 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6624 */
6625 int
strgetmsg(struct vnode * vp,struct strbuf * mctl,struct strbuf * mdata,unsigned char * prip,int * flagsp,int fmode,rval_t * rvp)6626 strgetmsg(
6627 struct vnode *vp,
6628 struct strbuf *mctl,
6629 struct strbuf *mdata,
6630 unsigned char *prip,
6631 int *flagsp,
6632 int fmode,
6633 rval_t *rvp)
6634 {
6635 struct stdata *stp;
6636 mblk_t *bp, *nbp;
6637 mblk_t *savemp = NULL;
6638 mblk_t *savemptail = NULL;
6639 uint_t old_sd_flag;
6640 int flg = MSG_BAND;
6641 int more = 0;
6642 int error = 0;
6643 char first = 1;
6644 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
6645 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
6646 unsigned char pri = 0;
6647 queue_t *q;
6648 int pr = 0; /* Partial read successful */
6649 struct uio uios;
6650 struct uio *uiop = &uios;
6651 struct iovec iovs;
6652 unsigned char type;
6653
6654 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6655 "strgetmsg:%p", vp);
6656
6657 ASSERT(vp->v_stream);
6658 stp = vp->v_stream;
6659 rvp->r_val1 = 0;
6660
6661 mutex_enter(&stp->sd_lock);
6662
6663 if ((error = i_straccess(stp, JCREAD)) != 0) {
6664 mutex_exit(&stp->sd_lock);
6665 return (error);
6666 }
6667
6668 if (stp->sd_flag & (STRDERR|STPLEX)) {
6669 error = strgeterr(stp, STRDERR|STPLEX, 0);
6670 if (error != 0) {
6671 mutex_exit(&stp->sd_lock);
6672 return (error);
6673 }
6674 }
6675 mutex_exit(&stp->sd_lock);
6676
6677 switch (*flagsp) {
6678 case MSG_HIPRI:
6679 if (*prip != 0)
6680 return (EINVAL);
6681 break;
6682
6683 case MSG_ANY:
6684 case MSG_BAND:
6685 break;
6686
6687 default:
6688 return (EINVAL);
6689 }
6690 /*
6691 * Setup uio and iov for data part
6692 */
6693 iovs.iov_base = mdata->buf;
6694 iovs.iov_len = mdata->maxlen;
6695 uios.uio_iov = &iovs;
6696 uios.uio_iovcnt = 1;
6697 uios.uio_loffset = 0;
6698 uios.uio_segflg = UIO_USERSPACE;
6699 uios.uio_fmode = 0;
6700 uios.uio_extflg = UIO_COPY_CACHED;
6701 uios.uio_resid = mdata->maxlen;
6702 uios.uio_offset = 0;
6703
6704 q = _RD(stp->sd_wrq);
6705 mutex_enter(&stp->sd_lock);
6706 old_sd_flag = stp->sd_flag;
6707 mark = 0;
6708 for (;;) {
6709 int done = 0;
6710 mblk_t *q_first = q->q_first;
6711
6712 /*
6713 * Get the next message of appropriate priority
6714 * from the stream head. If the caller is interested
6715 * in band or hipri messages, then they should already
6716 * be enqueued at the stream head. On the other hand
6717 * if the caller wants normal (band 0) messages, they
6718 * might be deferred in a synchronous stream and they
6719 * will need to be pulled up.
6720 *
6721 * After we have dequeued a message, we might find that
6722 * it was a deferred M_SIG that was enqueued at the
6723 * stream head. It must now be posted as part of the
6724 * read by calling strsignal_nolock().
6725 *
6726 * Also note that strrput does not enqueue an M_PCSIG,
6727 * and there cannot be more than one hipri message,
6728 * so there was no need to have the M_PCSIG case.
6729 *
6730 * At some time it might be nice to try and wrap the
6731 * functionality of kstrgetmsg() and strgetmsg() into
6732 * a common routine so to reduce the amount of replicated
6733 * code (since they are extremely similar).
6734 */
6735 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6736 /* Asking for normal, band0 data */
6737 bp = strget(stp, q, uiop, first, &error);
6738 ASSERT(MUTEX_HELD(&stp->sd_lock));
6739 if (bp != NULL) {
6740 if (DB_TYPE(bp) == M_SIG) {
6741 strsignal_nolock(stp, *bp->b_rptr,
6742 bp->b_band);
6743 freemsg(bp);
6744 continue;
6745 } else {
6746 break;
6747 }
6748 }
6749 if (error != 0)
6750 goto getmout;
6751
6752 /*
6753 * We can't depend on the value of STRPRI here because
6754 * the stream head may be in transit. Therefore, we
6755 * must look at the type of the first message to
6756 * determine if a high priority messages is waiting
6757 */
6758 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6759 DB_TYPE(q_first) >= QPCTL &&
6760 (bp = getq_noenab(q, 0)) != NULL) {
6761 /* Asked for HIPRI and got one */
6762 ASSERT(DB_TYPE(bp) >= QPCTL);
6763 break;
6764 } else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6765 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6766 (bp = getq_noenab(q, 0)) != NULL) {
6767 /*
6768 * Asked for at least band "prip" and got either at
6769 * least that band or a hipri message.
6770 */
6771 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6772 if (DB_TYPE(bp) == M_SIG) {
6773 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6774 freemsg(bp);
6775 continue;
6776 } else {
6777 break;
6778 }
6779 }
6780
6781 /* No data. Time to sleep? */
6782 qbackenable(q, 0);
6783
6784 /*
6785 * If STRHUP or STREOF, return 0 length control and data.
6786 * If resid is 0, then a read(fd,buf,0) was done. Do not
6787 * sleep to satisfy this request because by default we have
6788 * zero bytes to return.
6789 */
6790 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6791 mdata->maxlen == 0)) {
6792 mctl->len = mdata->len = 0;
6793 *flagsp = 0;
6794 mutex_exit(&stp->sd_lock);
6795 return (0);
6796 }
6797 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6798 "strgetmsg calls strwaitq:%p, %p",
6799 vp, uiop);
6800 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6801 &done)) != 0) || done) {
6802 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6803 "strgetmsg error or done:%p, %p",
6804 vp, uiop);
6805 mutex_exit(&stp->sd_lock);
6806 return (error);
6807 }
6808 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6809 "strgetmsg awakes:%p, %p", vp, uiop);
6810 if ((error = i_straccess(stp, JCREAD)) != 0) {
6811 mutex_exit(&stp->sd_lock);
6812 return (error);
6813 }
6814 first = 0;
6815 }
6816 ASSERT(bp != NULL);
6817 /*
6818 * Extract any mark information. If the message is not completely
6819 * consumed this information will be put in the mblk
6820 * that is putback.
6821 * If MSGMARKNEXT is set and the message is completely consumed
6822 * the STRATMARK flag will be set below. Likewise, if
6823 * MSGNOTMARKNEXT is set and the message is
6824 * completely consumed STRNOTATMARK will be set.
6825 */
6826 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6827 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6828 (MSGMARKNEXT|MSGNOTMARKNEXT));
6829 if (mark != 0 && bp == stp->sd_mark) {
6830 mark |= _LASTMARK;
6831 stp->sd_mark = NULL;
6832 }
6833 /*
6834 * keep track of the original message type and priority
6835 */
6836 pri = bp->b_band;
6837 type = bp->b_datap->db_type;
6838 if (type == M_PASSFP) {
6839 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6840 stp->sd_mark = bp;
6841 bp->b_flag |= mark & ~_LASTMARK;
6842 putback(stp, q, bp, pri);
6843 qbackenable(q, pri);
6844 mutex_exit(&stp->sd_lock);
6845 return (EBADMSG);
6846 }
6847 ASSERT(type != M_SIG);
6848
6849 /*
6850 * Set this flag so strrput will not generate signals. Need to
6851 * make sure this flag is cleared before leaving this routine
6852 * else signals will stop being sent.
6853 */
6854 stp->sd_flag |= STRGETINPROG;
6855 mutex_exit(&stp->sd_lock);
6856
6857 if (STREAM_NEEDSERVICE(stp))
6858 stream_runservice(stp);
6859
6860 /*
6861 * Set HIPRI flag if message is priority.
6862 */
6863 if (type >= QPCTL)
6864 flg = MSG_HIPRI;
6865 else
6866 flg = MSG_BAND;
6867
6868 /*
6869 * First process PROTO or PCPROTO blocks, if any.
6870 */
6871 if (mctl->maxlen >= 0 && type != M_DATA) {
6872 size_t n, bcnt;
6873 char *ubuf;
6874
6875 bcnt = mctl->maxlen;
6876 ubuf = mctl->buf;
6877 while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6878 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6879 copyout(bp->b_rptr, ubuf, n)) {
6880 error = EFAULT;
6881 mutex_enter(&stp->sd_lock);
6882 /*
6883 * clear stream head pri flag based on
6884 * first message type
6885 */
6886 if (type >= QPCTL) {
6887 ASSERT(type == M_PCPROTO);
6888 stp->sd_flag &= ~STRPRI;
6889 }
6890 more = 0;
6891 freemsg(bp);
6892 goto getmout;
6893 }
6894 ubuf += n;
6895 bp->b_rptr += n;
6896 if (bp->b_rptr >= bp->b_wptr) {
6897 nbp = bp;
6898 bp = bp->b_cont;
6899 freeb(nbp);
6900 }
6901 ASSERT(n <= bcnt);
6902 bcnt -= n;
6903 if (bcnt == 0)
6904 break;
6905 }
6906 mctl->len = mctl->maxlen - bcnt;
6907 } else
6908 mctl->len = -1;
6909
6910 if (bp && bp->b_datap->db_type != M_DATA) {
6911 /*
6912 * More PROTO blocks in msg.
6913 */
6914 more |= MORECTL;
6915 savemp = bp;
6916 while (bp && bp->b_datap->db_type != M_DATA) {
6917 savemptail = bp;
6918 bp = bp->b_cont;
6919 }
6920 savemptail->b_cont = NULL;
6921 }
6922
6923 /*
6924 * Now process DATA blocks, if any.
6925 */
6926 if (mdata->maxlen >= 0 && bp) {
6927 /*
6928 * struiocopyout will consume a potential zero-length
6929 * M_DATA even if uio_resid is zero.
6930 */
6931 size_t oldresid = uiop->uio_resid;
6932
6933 bp = struiocopyout(bp, uiop, &error);
6934 if (error != 0) {
6935 mutex_enter(&stp->sd_lock);
6936 /*
6937 * clear stream head hi pri flag based on
6938 * first message
6939 */
6940 if (type >= QPCTL) {
6941 ASSERT(type == M_PCPROTO);
6942 stp->sd_flag &= ~STRPRI;
6943 }
6944 more = 0;
6945 freemsg(savemp);
6946 goto getmout;
6947 }
6948 /*
6949 * (pr == 1) indicates a partial read.
6950 */
6951 if (oldresid > uiop->uio_resid)
6952 pr = 1;
6953 mdata->len = mdata->maxlen - uiop->uio_resid;
6954 } else
6955 mdata->len = -1;
6956
6957 if (bp) { /* more data blocks in msg */
6958 more |= MOREDATA;
6959 if (savemp)
6960 savemptail->b_cont = bp;
6961 else
6962 savemp = bp;
6963 }
6964
6965 mutex_enter(&stp->sd_lock);
6966 if (savemp) {
6967 if (pr && (savemp->b_datap->db_type == M_DATA) &&
6968 msgnodata(savemp)) {
6969 /*
6970 * Avoid queuing a zero-length tail part of
6971 * a message. pr=1 indicates that we read some of
6972 * the message.
6973 */
6974 freemsg(savemp);
6975 more &= ~MOREDATA;
6976 /*
6977 * clear stream head hi pri flag based on
6978 * first message
6979 */
6980 if (type >= QPCTL) {
6981 ASSERT(type == M_PCPROTO);
6982 stp->sd_flag &= ~STRPRI;
6983 }
6984 } else {
6985 savemp->b_band = pri;
6986 /*
6987 * If the first message was HIPRI and the one we're
6988 * putting back isn't, then clear STRPRI, otherwise
6989 * set STRPRI again. Note that we must set STRPRI
6990 * again since the flush logic in strrput_nondata()
6991 * may have cleared it while we had sd_lock dropped.
6992 */
6993 if (type >= QPCTL) {
6994 ASSERT(type == M_PCPROTO);
6995 if (queclass(savemp) < QPCTL)
6996 stp->sd_flag &= ~STRPRI;
6997 else
6998 stp->sd_flag |= STRPRI;
6999 } else if (queclass(savemp) >= QPCTL) {
7000 /*
7001 * The first message was not a HIPRI message,
7002 * but the one we are about to putback is.
7003 * For simplicitly, we do not allow for HIPRI
7004 * messages to be embedded in the message
7005 * body, so just force it to same type as
7006 * first message.
7007 */
7008 ASSERT(type == M_DATA || type == M_PROTO);
7009 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7010 savemp->b_datap->db_type = type;
7011 }
7012 if (mark != 0) {
7013 savemp->b_flag |= mark & ~_LASTMARK;
7014 if ((mark & _LASTMARK) &&
7015 (stp->sd_mark == NULL)) {
7016 /*
7017 * If another marked message arrived
7018 * while sd_lock was not held sd_mark
7019 * would be non-NULL.
7020 */
7021 stp->sd_mark = savemp;
7022 }
7023 }
7024 putback(stp, q, savemp, pri);
7025 }
7026 } else {
7027 /*
7028 * The complete message was consumed.
7029 *
7030 * If another M_PCPROTO arrived while sd_lock was not held
7031 * it would have been discarded since STRPRI was still set.
7032 *
7033 * Move the MSG*MARKNEXT information
7034 * to the stream head just in case
7035 * the read queue becomes empty.
7036 * clear stream head hi pri flag based on
7037 * first message
7038 *
7039 * If the stream head was at the mark
7040 * (STRATMARK) before we dropped sd_lock above
7041 * and some data was consumed then we have
7042 * moved past the mark thus STRATMARK is
7043 * cleared. However, if a message arrived in
7044 * strrput during the copyout above causing
7045 * STRATMARK to be set we can not clear that
7046 * flag.
7047 */
7048 if (type >= QPCTL) {
7049 ASSERT(type == M_PCPROTO);
7050 stp->sd_flag &= ~STRPRI;
7051 }
7052 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7053 if (mark & MSGMARKNEXT) {
7054 stp->sd_flag &= ~STRNOTATMARK;
7055 stp->sd_flag |= STRATMARK;
7056 } else if (mark & MSGNOTMARKNEXT) {
7057 stp->sd_flag &= ~STRATMARK;
7058 stp->sd_flag |= STRNOTATMARK;
7059 } else {
7060 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7061 }
7062 } else if (pr && (old_sd_flag & STRATMARK)) {
7063 stp->sd_flag &= ~STRATMARK;
7064 }
7065 }
7066
7067 *flagsp = flg;
7068 *prip = pri;
7069
7070 /*
7071 * Getmsg cleanup processing - if the state of the queue has changed
7072 * some signals may need to be sent and/or poll awakened.
7073 */
7074 getmout:
7075 qbackenable(q, pri);
7076
7077 /*
7078 * We dropped the stream head lock above. Send all M_SIG messages
7079 * before processing stream head for SIGPOLL messages.
7080 */
7081 ASSERT(MUTEX_HELD(&stp->sd_lock));
7082 while ((bp = q->q_first) != NULL &&
7083 (bp->b_datap->db_type == M_SIG)) {
7084 /*
7085 * sd_lock is held so the content of the read queue can not
7086 * change.
7087 */
7088 bp = getq(q);
7089 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7090
7091 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7092 mutex_exit(&stp->sd_lock);
7093 freemsg(bp);
7094 if (STREAM_NEEDSERVICE(stp))
7095 stream_runservice(stp);
7096 mutex_enter(&stp->sd_lock);
7097 }
7098
7099 /*
7100 * stream head cannot change while we make the determination
7101 * whether or not to send a signal. Drop the flag to allow strrput
7102 * to send firstmsgsigs again.
7103 */
7104 stp->sd_flag &= ~STRGETINPROG;
7105
7106 /*
7107 * If the type of message at the front of the queue changed
7108 * due to the receive the appropriate signals and pollwakeup events
7109 * are generated. The type of changes are:
7110 * Processed a hipri message, q_first is not hipri.
7111 * Processed a band X message, and q_first is band Y.
7112 * The generated signals and pollwakeups are identical to what
7113 * strrput() generates should the message that is now on q_first
7114 * arrive to an empty read queue.
7115 *
7116 * Note: only strrput will send a signal for a hipri message.
7117 */
7118 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7119 strsigset_t signals = 0;
7120 strpollset_t pollwakeups = 0;
7121
7122 if (flg & MSG_HIPRI) {
7123 /*
7124 * Removed a hipri message. Regular data at
7125 * the front of the queue.
7126 */
7127 if (bp->b_band == 0) {
7128 signals = S_INPUT | S_RDNORM;
7129 pollwakeups = POLLIN | POLLRDNORM;
7130 } else {
7131 signals = S_INPUT | S_RDBAND;
7132 pollwakeups = POLLIN | POLLRDBAND;
7133 }
7134 } else if (pri != bp->b_band) {
7135 /*
7136 * The band is different for the new q_first.
7137 */
7138 if (bp->b_band == 0) {
7139 signals = S_RDNORM;
7140 pollwakeups = POLLIN | POLLRDNORM;
7141 } else {
7142 signals = S_RDBAND;
7143 pollwakeups = POLLIN | POLLRDBAND;
7144 }
7145 }
7146
7147 if (pollwakeups != 0) {
7148 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7149 if (!(stp->sd_rput_opt & SR_POLLIN))
7150 goto no_pollwake;
7151 stp->sd_rput_opt &= ~SR_POLLIN;
7152 }
7153 mutex_exit(&stp->sd_lock);
7154 pollwakeup(&stp->sd_pollist, pollwakeups);
7155 mutex_enter(&stp->sd_lock);
7156 }
7157 no_pollwake:
7158
7159 if (stp->sd_sigflags & signals)
7160 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7161 }
7162 mutex_exit(&stp->sd_lock);
7163
7164 rvp->r_val1 = more;
7165 return (error);
7166 #undef _LASTMARK
7167 }
7168
7169 /*
7170 * Get the next message from the read queue. If the message is
7171 * priority, STRPRI will have been set by strrput(). This flag
7172 * should be reset only when the entire message at the front of the
7173 * queue as been consumed.
7174 *
7175 * If uiop is NULL all data is returned in mctlp.
7176 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7177 * not enabled.
7178 * The timeout parameter is in milliseconds; -1 for infinity.
7179 * This routine handles the consolidation private flags:
7180 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7181 * MSG_DELAYERROR Defer the error check until the queue is empty.
7182 * MSG_HOLDSIG Hold signals while waiting for data.
7183 * MSG_IPEEK Only peek at messages.
7184 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message
7185 * that doesn't fit.
7186 * MSG_NOMARK If the message is marked leave it on the queue.
7187 *
7188 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7189 */
7190 int
kstrgetmsg(struct vnode * vp,mblk_t ** mctlp,struct uio * uiop,unsigned char * prip,int * flagsp,clock_t timout,rval_t * rvp)7191 kstrgetmsg(
7192 struct vnode *vp,
7193 mblk_t **mctlp,
7194 struct uio *uiop,
7195 unsigned char *prip,
7196 int *flagsp,
7197 clock_t timout,
7198 rval_t *rvp)
7199 {
7200 struct stdata *stp;
7201 mblk_t *bp, *nbp;
7202 mblk_t *savemp = NULL;
7203 mblk_t *savemptail = NULL;
7204 int flags;
7205 uint_t old_sd_flag;
7206 int flg = MSG_BAND;
7207 int more = 0;
7208 int error = 0;
7209 char first = 1;
7210 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
7211 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
7212 unsigned char pri = 0;
7213 queue_t *q;
7214 int pr = 0; /* Partial read successful */
7215 unsigned char type;
7216
7217 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7218 "kstrgetmsg:%p", vp);
7219
7220 ASSERT(vp->v_stream);
7221 stp = vp->v_stream;
7222 rvp->r_val1 = 0;
7223
7224 mutex_enter(&stp->sd_lock);
7225
7226 if ((error = i_straccess(stp, JCREAD)) != 0) {
7227 mutex_exit(&stp->sd_lock);
7228 return (error);
7229 }
7230
7231 flags = *flagsp;
7232 if (stp->sd_flag & (STRDERR|STPLEX)) {
7233 if ((stp->sd_flag & STPLEX) ||
7234 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7235 error = strgeterr(stp, STRDERR|STPLEX,
7236 (flags & MSG_IPEEK));
7237 if (error != 0) {
7238 mutex_exit(&stp->sd_lock);
7239 return (error);
7240 }
7241 }
7242 }
7243 mutex_exit(&stp->sd_lock);
7244
7245 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7246 case MSG_HIPRI:
7247 if (*prip != 0)
7248 return (EINVAL);
7249 break;
7250
7251 case MSG_ANY:
7252 case MSG_BAND:
7253 break;
7254
7255 default:
7256 return (EINVAL);
7257 }
7258
7259 retry:
7260 q = _RD(stp->sd_wrq);
7261 mutex_enter(&stp->sd_lock);
7262 old_sd_flag = stp->sd_flag;
7263 mark = 0;
7264 for (;;) {
7265 int done = 0;
7266 int waitflag;
7267 int fmode;
7268 mblk_t *q_first = q->q_first;
7269
7270 /*
7271 * This section of the code operates just like the code
7272 * in strgetmsg(). There is a comment there about what
7273 * is going on here.
7274 */
7275 if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7276 /* Asking for normal, band0 data */
7277 bp = strget(stp, q, uiop, first, &error);
7278 ASSERT(MUTEX_HELD(&stp->sd_lock));
7279 if (bp != NULL) {
7280 if (DB_TYPE(bp) == M_SIG) {
7281 strsignal_nolock(stp, *bp->b_rptr,
7282 bp->b_band);
7283 freemsg(bp);
7284 continue;
7285 } else {
7286 break;
7287 }
7288 }
7289 if (error != 0) {
7290 goto getmout;
7291 }
7292 /*
7293 * We can't depend on the value of STRPRI here because
7294 * the stream head may be in transit. Therefore, we
7295 * must look at the type of the first message to
7296 * determine if a high priority messages is waiting
7297 */
7298 } else if ((flags & MSG_HIPRI) && q_first != NULL &&
7299 DB_TYPE(q_first) >= QPCTL &&
7300 (bp = getq_noenab(q, 0)) != NULL) {
7301 ASSERT(DB_TYPE(bp) >= QPCTL);
7302 break;
7303 } else if ((flags & MSG_BAND) && q_first != NULL &&
7304 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7305 (bp = getq_noenab(q, 0)) != NULL) {
7306 /*
7307 * Asked for at least band "prip" and got either at
7308 * least that band or a hipri message.
7309 */
7310 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7311 if (DB_TYPE(bp) == M_SIG) {
7312 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7313 freemsg(bp);
7314 continue;
7315 } else {
7316 break;
7317 }
7318 }
7319
7320 /* No data. Time to sleep? */
7321 qbackenable(q, 0);
7322
7323 /*
7324 * Delayed error notification?
7325 */
7326 if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7327 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7328 error = strgeterr(stp, STRDERR|STPLEX,
7329 (flags & MSG_IPEEK));
7330 if (error != 0) {
7331 mutex_exit(&stp->sd_lock);
7332 return (error);
7333 }
7334 }
7335
7336 /*
7337 * If STRHUP or STREOF, return 0 length control and data.
7338 * If a read(fd,buf,0) has been done, do not sleep, just
7339 * return.
7340 *
7341 * If mctlp == NULL and uiop == NULL, then the code will
7342 * do the strwaitq. This is an understood way of saying
7343 * sleep "polling" until a message is received.
7344 */
7345 if ((stp->sd_flag & (STRHUP|STREOF)) ||
7346 (uiop != NULL && uiop->uio_resid == 0)) {
7347 if (mctlp != NULL)
7348 *mctlp = NULL;
7349 *flagsp = 0;
7350 mutex_exit(&stp->sd_lock);
7351 return (0);
7352 }
7353
7354 waitflag = GETWAIT;
7355 if (flags &
7356 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7357 if (flags & MSG_HOLDSIG)
7358 waitflag |= STR_NOSIG;
7359 if (flags & MSG_IGNERROR)
7360 waitflag |= STR_NOERROR;
7361 if (flags & MSG_IPEEK)
7362 waitflag |= STR_PEEK;
7363 if (flags & MSG_DELAYERROR)
7364 waitflag |= STR_DELAYERR;
7365 }
7366 if (uiop != NULL)
7367 fmode = uiop->uio_fmode;
7368 else
7369 fmode = 0;
7370
7371 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7372 "kstrgetmsg calls strwaitq:%p, %p",
7373 vp, uiop);
7374 if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7375 fmode, timout, &done))) != 0 || done) {
7376 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7377 "kstrgetmsg error or done:%p, %p",
7378 vp, uiop);
7379 mutex_exit(&stp->sd_lock);
7380 return (error);
7381 }
7382 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7383 "kstrgetmsg awakes:%p, %p", vp, uiop);
7384 if ((error = i_straccess(stp, JCREAD)) != 0) {
7385 mutex_exit(&stp->sd_lock);
7386 return (error);
7387 }
7388 first = 0;
7389 }
7390 ASSERT(bp != NULL);
7391 /*
7392 * Extract any mark information. If the message is not completely
7393 * consumed this information will be put in the mblk
7394 * that is putback.
7395 * If MSGMARKNEXT is set and the message is completely consumed
7396 * the STRATMARK flag will be set below. Likewise, if
7397 * MSGNOTMARKNEXT is set and the message is
7398 * completely consumed STRNOTATMARK will be set.
7399 */
7400 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7401 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7402 (MSGMARKNEXT|MSGNOTMARKNEXT));
7403 pri = bp->b_band;
7404 if (mark != 0) {
7405 /*
7406 * If the caller doesn't want the mark return.
7407 * Used to implement MSG_WAITALL in sockets.
7408 */
7409 if (flags & MSG_NOMARK) {
7410 putback(stp, q, bp, pri);
7411 qbackenable(q, pri);
7412 mutex_exit(&stp->sd_lock);
7413 return (EWOULDBLOCK);
7414 }
7415 if (bp == stp->sd_mark) {
7416 mark |= _LASTMARK;
7417 stp->sd_mark = NULL;
7418 }
7419 }
7420
7421 /*
7422 * keep track of the first message type
7423 */
7424 type = bp->b_datap->db_type;
7425
7426 if (bp->b_datap->db_type == M_PASSFP) {
7427 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7428 stp->sd_mark = bp;
7429 bp->b_flag |= mark & ~_LASTMARK;
7430 putback(stp, q, bp, pri);
7431 qbackenable(q, pri);
7432 mutex_exit(&stp->sd_lock);
7433 return (EBADMSG);
7434 }
7435 ASSERT(type != M_SIG);
7436
7437 if (flags & MSG_IPEEK) {
7438 /*
7439 * Clear any struioflag - we do the uiomove over again
7440 * when peeking since it simplifies the code.
7441 *
7442 * Dup the message and put the original back on the queue.
7443 * If dupmsg() fails, try again with copymsg() to see if
7444 * there is indeed a shortage of memory. dupmsg() may fail
7445 * if db_ref in any of the messages reaches its limit.
7446 */
7447
7448 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7449 /*
7450 * Restore the state of the stream head since we
7451 * need to drop sd_lock (strwaitbuf is sleeping).
7452 */
7453 size_t size = msgdsize(bp);
7454
7455 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7456 stp->sd_mark = bp;
7457 bp->b_flag |= mark & ~_LASTMARK;
7458 putback(stp, q, bp, pri);
7459 mutex_exit(&stp->sd_lock);
7460 error = strwaitbuf(size, BPRI_HI);
7461 if (error) {
7462 /*
7463 * There is no net change to the queue thus
7464 * no need to qbackenable.
7465 */
7466 return (error);
7467 }
7468 goto retry;
7469 }
7470
7471 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7472 stp->sd_mark = bp;
7473 bp->b_flag |= mark & ~_LASTMARK;
7474 putback(stp, q, bp, pri);
7475 bp = nbp;
7476 }
7477
7478 /*
7479 * Set this flag so strrput will not generate signals. Need to
7480 * make sure this flag is cleared before leaving this routine
7481 * else signals will stop being sent.
7482 */
7483 stp->sd_flag |= STRGETINPROG;
7484 mutex_exit(&stp->sd_lock);
7485
7486 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7487 mblk_t *tmp, *prevmp;
7488
7489 /*
7490 * Put first non-data mblk back to stream head and
7491 * cut the mblk chain so sd_rputdatafunc only sees
7492 * M_DATA mblks. We can skip the first mblk since it
7493 * is M_DATA according to the condition above.
7494 */
7495 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7496 prevmp = tmp, tmp = tmp->b_cont) {
7497 if (DB_TYPE(tmp) != M_DATA) {
7498 prevmp->b_cont = NULL;
7499 mutex_enter(&stp->sd_lock);
7500 putback(stp, q, tmp, tmp->b_band);
7501 mutex_exit(&stp->sd_lock);
7502 break;
7503 }
7504 }
7505
7506 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7507 NULL, NULL, NULL, NULL);
7508
7509 if (bp == NULL)
7510 goto retry;
7511 }
7512
7513 if (STREAM_NEEDSERVICE(stp))
7514 stream_runservice(stp);
7515
7516 /*
7517 * Set HIPRI flag if message is priority.
7518 */
7519 if (type >= QPCTL)
7520 flg = MSG_HIPRI;
7521 else
7522 flg = MSG_BAND;
7523
7524 /*
7525 * First process PROTO or PCPROTO blocks, if any.
7526 */
7527 if (mctlp != NULL && type != M_DATA) {
7528 mblk_t *nbp;
7529
7530 *mctlp = bp;
7531 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7532 bp = bp->b_cont;
7533 nbp = bp->b_cont;
7534 bp->b_cont = NULL;
7535 bp = nbp;
7536 }
7537
7538 if (bp && bp->b_datap->db_type != M_DATA) {
7539 /*
7540 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7541 */
7542 more |= MORECTL;
7543 savemp = bp;
7544 while (bp && bp->b_datap->db_type != M_DATA) {
7545 savemptail = bp;
7546 bp = bp->b_cont;
7547 }
7548 savemptail->b_cont = NULL;
7549 }
7550
7551 /*
7552 * Now process DATA blocks, if any.
7553 */
7554 if (uiop == NULL) {
7555 /* Append data to tail of mctlp */
7556
7557 if (mctlp != NULL) {
7558 mblk_t **mpp = mctlp;
7559
7560 while (*mpp != NULL)
7561 mpp = &((*mpp)->b_cont);
7562 *mpp = bp;
7563 bp = NULL;
7564 }
7565 } else if (uiop->uio_resid >= 0 && bp) {
7566 size_t oldresid = uiop->uio_resid;
7567
7568 /*
7569 * If a streams message is likely to consist
7570 * of many small mblks, it is pulled up into
7571 * one continuous chunk of memory.
7572 * The size of the first mblk may be bogus because
7573 * successive read() calls on the socket reduce
7574 * the size of this mblk until it is exhausted
7575 * and then the code walks on to the next. Thus
7576 * the size of the mblk may not be the original size
7577 * that was passed up, it's simply a remainder
7578 * and hence can be very small without any
7579 * implication that the packet is badly fragmented.
7580 * So the size of the possible second mblk is
7581 * used to spot a badly fragmented packet.
7582 * see longer comment at top of page
7583 * by mblk_pull_len declaration.
7584 */
7585
7586 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7587 (void) pullupmsg(bp, -1);
7588 }
7589
7590 bp = struiocopyout(bp, uiop, &error);
7591 if (error != 0) {
7592 if (mctlp != NULL) {
7593 freemsg(*mctlp);
7594 *mctlp = NULL;
7595 } else
7596 freemsg(savemp);
7597 mutex_enter(&stp->sd_lock);
7598 /*
7599 * clear stream head hi pri flag based on
7600 * first message
7601 */
7602 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7603 ASSERT(type == M_PCPROTO);
7604 stp->sd_flag &= ~STRPRI;
7605 }
7606 more = 0;
7607 goto getmout;
7608 }
7609 /*
7610 * (pr == 1) indicates a partial read.
7611 */
7612 if (oldresid > uiop->uio_resid)
7613 pr = 1;
7614 }
7615
7616 if (bp) { /* more data blocks in msg */
7617 more |= MOREDATA;
7618 if (savemp)
7619 savemptail->b_cont = bp;
7620 else
7621 savemp = bp;
7622 }
7623
7624 mutex_enter(&stp->sd_lock);
7625 if (savemp) {
7626 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7627 /*
7628 * When MSG_DISCARDTAIL is set or
7629 * when peeking discard any tail. When peeking this
7630 * is the tail of the dup that was copied out - the
7631 * message has already been putback on the queue.
7632 * Return MOREDATA to the caller even though the data
7633 * is discarded. This is used by sockets (to
7634 * set MSG_TRUNC).
7635 */
7636 freemsg(savemp);
7637 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7638 ASSERT(type == M_PCPROTO);
7639 stp->sd_flag &= ~STRPRI;
7640 }
7641 } else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7642 msgnodata(savemp)) {
7643 /*
7644 * Avoid queuing a zero-length tail part of
7645 * a message. pr=1 indicates that we read some of
7646 * the message.
7647 */
7648 freemsg(savemp);
7649 more &= ~MOREDATA;
7650 if (type >= QPCTL) {
7651 ASSERT(type == M_PCPROTO);
7652 stp->sd_flag &= ~STRPRI;
7653 }
7654 } else {
7655 savemp->b_band = pri;
7656 /*
7657 * If the first message was HIPRI and the one we're
7658 * putting back isn't, then clear STRPRI, otherwise
7659 * set STRPRI again. Note that we must set STRPRI
7660 * again since the flush logic in strrput_nondata()
7661 * may have cleared it while we had sd_lock dropped.
7662 */
7663
7664 if (type >= QPCTL) {
7665 ASSERT(type == M_PCPROTO);
7666 if (queclass(savemp) < QPCTL)
7667 stp->sd_flag &= ~STRPRI;
7668 else
7669 stp->sd_flag |= STRPRI;
7670 } else if (queclass(savemp) >= QPCTL) {
7671 /*
7672 * The first message was not a HIPRI message,
7673 * but the one we are about to putback is.
7674 * For simplicitly, we do not allow for HIPRI
7675 * messages to be embedded in the message
7676 * body, so just force it to same type as
7677 * first message.
7678 */
7679 ASSERT(type == M_DATA || type == M_PROTO);
7680 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7681 savemp->b_datap->db_type = type;
7682 }
7683 if (mark != 0) {
7684 if ((mark & _LASTMARK) &&
7685 (stp->sd_mark == NULL)) {
7686 /*
7687 * If another marked message arrived
7688 * while sd_lock was not held sd_mark
7689 * would be non-NULL.
7690 */
7691 stp->sd_mark = savemp;
7692 }
7693 savemp->b_flag |= mark & ~_LASTMARK;
7694 }
7695 putback(stp, q, savemp, pri);
7696 }
7697 } else if (!(flags & MSG_IPEEK)) {
7698 /*
7699 * The complete message was consumed.
7700 *
7701 * If another M_PCPROTO arrived while sd_lock was not held
7702 * it would have been discarded since STRPRI was still set.
7703 *
7704 * Move the MSG*MARKNEXT information
7705 * to the stream head just in case
7706 * the read queue becomes empty.
7707 * clear stream head hi pri flag based on
7708 * first message
7709 *
7710 * If the stream head was at the mark
7711 * (STRATMARK) before we dropped sd_lock above
7712 * and some data was consumed then we have
7713 * moved past the mark thus STRATMARK is
7714 * cleared. However, if a message arrived in
7715 * strrput during the copyout above causing
7716 * STRATMARK to be set we can not clear that
7717 * flag.
7718 * XXX A "perimeter" would help by single-threading strrput,
7719 * strread, strgetmsg and kstrgetmsg.
7720 */
7721 if (type >= QPCTL) {
7722 ASSERT(type == M_PCPROTO);
7723 stp->sd_flag &= ~STRPRI;
7724 }
7725 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7726 if (mark & MSGMARKNEXT) {
7727 stp->sd_flag &= ~STRNOTATMARK;
7728 stp->sd_flag |= STRATMARK;
7729 } else if (mark & MSGNOTMARKNEXT) {
7730 stp->sd_flag &= ~STRATMARK;
7731 stp->sd_flag |= STRNOTATMARK;
7732 } else {
7733 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7734 }
7735 } else if (pr && (old_sd_flag & STRATMARK)) {
7736 stp->sd_flag &= ~STRATMARK;
7737 }
7738 }
7739
7740 *flagsp = flg;
7741 *prip = pri;
7742
7743 /*
7744 * Getmsg cleanup processing - if the state of the queue has changed
7745 * some signals may need to be sent and/or poll awakened.
7746 */
7747 getmout:
7748 qbackenable(q, pri);
7749
7750 /*
7751 * We dropped the stream head lock above. Send all M_SIG messages
7752 * before processing stream head for SIGPOLL messages.
7753 */
7754 ASSERT(MUTEX_HELD(&stp->sd_lock));
7755 while ((bp = q->q_first) != NULL &&
7756 (bp->b_datap->db_type == M_SIG)) {
7757 /*
7758 * sd_lock is held so the content of the read queue can not
7759 * change.
7760 */
7761 bp = getq(q);
7762 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7763
7764 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7765 mutex_exit(&stp->sd_lock);
7766 freemsg(bp);
7767 if (STREAM_NEEDSERVICE(stp))
7768 stream_runservice(stp);
7769 mutex_enter(&stp->sd_lock);
7770 }
7771
7772 /*
7773 * stream head cannot change while we make the determination
7774 * whether or not to send a signal. Drop the flag to allow strrput
7775 * to send firstmsgsigs again.
7776 */
7777 stp->sd_flag &= ~STRGETINPROG;
7778
7779 /*
7780 * If the type of message at the front of the queue changed
7781 * due to the receive the appropriate signals and pollwakeup events
7782 * are generated. The type of changes are:
7783 * Processed a hipri message, q_first is not hipri.
7784 * Processed a band X message, and q_first is band Y.
7785 * The generated signals and pollwakeups are identical to what
7786 * strrput() generates should the message that is now on q_first
7787 * arrive to an empty read queue.
7788 *
7789 * Note: only strrput will send a signal for a hipri message.
7790 */
7791 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7792 strsigset_t signals = 0;
7793 strpollset_t pollwakeups = 0;
7794
7795 if (flg & MSG_HIPRI) {
7796 /*
7797 * Removed a hipri message. Regular data at
7798 * the front of the queue.
7799 */
7800 if (bp->b_band == 0) {
7801 signals = S_INPUT | S_RDNORM;
7802 pollwakeups = POLLIN | POLLRDNORM;
7803 } else {
7804 signals = S_INPUT | S_RDBAND;
7805 pollwakeups = POLLIN | POLLRDBAND;
7806 }
7807 } else if (pri != bp->b_band) {
7808 /*
7809 * The band is different for the new q_first.
7810 */
7811 if (bp->b_band == 0) {
7812 signals = S_RDNORM;
7813 pollwakeups = POLLIN | POLLRDNORM;
7814 } else {
7815 signals = S_RDBAND;
7816 pollwakeups = POLLIN | POLLRDBAND;
7817 }
7818 }
7819
7820 if (pollwakeups != 0) {
7821 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7822 if (!(stp->sd_rput_opt & SR_POLLIN))
7823 goto no_pollwake;
7824 stp->sd_rput_opt &= ~SR_POLLIN;
7825 }
7826 mutex_exit(&stp->sd_lock);
7827 pollwakeup(&stp->sd_pollist, pollwakeups);
7828 mutex_enter(&stp->sd_lock);
7829 }
7830 no_pollwake:
7831
7832 if (stp->sd_sigflags & signals)
7833 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7834 }
7835 mutex_exit(&stp->sd_lock);
7836
7837 rvp->r_val1 = more;
7838 return (error);
7839 #undef _LASTMARK
7840 }
7841
7842 /*
7843 * Put a message downstream.
7844 *
7845 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7846 */
7847 int
strputmsg(struct vnode * vp,struct strbuf * mctl,struct strbuf * mdata,unsigned char pri,int flag,int fmode)7848 strputmsg(
7849 struct vnode *vp,
7850 struct strbuf *mctl,
7851 struct strbuf *mdata,
7852 unsigned char pri,
7853 int flag,
7854 int fmode)
7855 {
7856 struct stdata *stp;
7857 queue_t *wqp;
7858 mblk_t *mp;
7859 ssize_t msgsize;
7860 ssize_t rmin, rmax;
7861 int error;
7862 struct uio uios;
7863 struct uio *uiop = &uios;
7864 struct iovec iovs;
7865 int xpg4 = 0;
7866
7867 ASSERT(vp->v_stream);
7868 stp = vp->v_stream;
7869 wqp = stp->sd_wrq;
7870
7871 /*
7872 * If it is an XPG4 application, we need to send
7873 * SIGPIPE below
7874 */
7875
7876 xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7877 flag &= ~MSG_XPG4;
7878
7879 if (AU_AUDITING())
7880 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7881
7882 mutex_enter(&stp->sd_lock);
7883
7884 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7885 mutex_exit(&stp->sd_lock);
7886 return (error);
7887 }
7888
7889 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7890 error = strwriteable(stp, B_FALSE, xpg4);
7891 if (error != 0) {
7892 mutex_exit(&stp->sd_lock);
7893 return (error);
7894 }
7895 }
7896
7897 mutex_exit(&stp->sd_lock);
7898
7899 /*
7900 * Check for legal flag value.
7901 */
7902 switch (flag) {
7903 case MSG_HIPRI:
7904 if ((mctl->len < 0) || (pri != 0))
7905 return (EINVAL);
7906 break;
7907 case MSG_BAND:
7908 break;
7909
7910 default:
7911 return (EINVAL);
7912 }
7913
7914 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7915 "strputmsg in:stp %p", stp);
7916
7917 /* get these values from those cached in the stream head */
7918 rmin = stp->sd_qn_minpsz;
7919 rmax = stp->sd_qn_maxpsz;
7920
7921 /*
7922 * Make sure ctl and data sizes together fall within the
7923 * limits of the max and min receive packet sizes and do
7924 * not exceed system limit.
7925 */
7926 ASSERT((rmax >= 0) || (rmax == INFPSZ));
7927 if (rmax == 0) {
7928 return (ERANGE);
7929 }
7930 /*
7931 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7932 * Needed to prevent partial failures in the strmakedata loop.
7933 */
7934 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7935 rmax = stp->sd_maxblk;
7936
7937 if ((msgsize = mdata->len) < 0) {
7938 msgsize = 0;
7939 rmin = 0; /* no range check for NULL data part */
7940 }
7941 if ((msgsize < rmin) ||
7942 ((msgsize > rmax) && (rmax != INFPSZ)) ||
7943 (mctl->len > strctlsz)) {
7944 return (ERANGE);
7945 }
7946
7947 /*
7948 * Setup uio and iov for data part
7949 */
7950 iovs.iov_base = mdata->buf;
7951 iovs.iov_len = msgsize;
7952 uios.uio_iov = &iovs;
7953 uios.uio_iovcnt = 1;
7954 uios.uio_loffset = 0;
7955 uios.uio_segflg = UIO_USERSPACE;
7956 uios.uio_fmode = fmode;
7957 uios.uio_extflg = UIO_COPY_DEFAULT;
7958 uios.uio_resid = msgsize;
7959 uios.uio_offset = 0;
7960
7961 /* Ignore flow control in strput for HIPRI */
7962 if (flag & MSG_HIPRI)
7963 flag |= MSG_IGNFLOW;
7964
7965 for (;;) {
7966 int done = 0;
7967
7968 /*
7969 * strput will always free the ctl mblk - even when strput
7970 * fails.
7971 */
7972 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7973 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7974 "strputmsg out:stp %p out %d error %d",
7975 stp, 1, error);
7976 return (error);
7977 }
7978 /*
7979 * Verify that the whole message can be transferred by
7980 * strput.
7981 */
7982 ASSERT(stp->sd_maxblk == INFPSZ ||
7983 stp->sd_maxblk >= mdata->len);
7984
7985 msgsize = mdata->len;
7986 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7987 mdata->len = msgsize;
7988
7989 if (error == 0)
7990 break;
7991
7992 if (error != EWOULDBLOCK)
7993 goto out;
7994
7995 mutex_enter(&stp->sd_lock);
7996 /*
7997 * Check for a missed wakeup.
7998 * Needed since strput did not hold sd_lock across
7999 * the canputnext.
8000 */
8001 if (bcanputnext(wqp, pri)) {
8002 /* Try again */
8003 mutex_exit(&stp->sd_lock);
8004 continue;
8005 }
8006 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
8007 "strputmsg wait:stp %p waits pri %d", stp, pri);
8008 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
8009 &done)) != 0) || done) {
8010 mutex_exit(&stp->sd_lock);
8011 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
8012 "strputmsg out:q %p out %d error %d",
8013 stp, 0, error);
8014 return (error);
8015 }
8016 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
8017 "strputmsg wake:stp %p wakes", stp);
8018 if ((error = i_straccess(stp, JCWRITE)) != 0) {
8019 mutex_exit(&stp->sd_lock);
8020 return (error);
8021 }
8022 mutex_exit(&stp->sd_lock);
8023 }
8024 out:
8025 /*
8026 * For historic reasons, applications expect EAGAIN
8027 * when data mblk could not be allocated. so change
8028 * ENOMEM back to EAGAIN
8029 */
8030 if (error == ENOMEM)
8031 error = EAGAIN;
8032 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
8033 "strputmsg out:stp %p out %d error %d", stp, 2, error);
8034 return (error);
8035 }
8036
8037 /*
8038 * Put a message downstream.
8039 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
8040 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
8041 * and the fmode parameter.
8042 *
8043 * This routine handles the consolidation private flags:
8044 * MSG_IGNERROR Ignore any stream head error except STPLEX.
8045 * MSG_HOLDSIG Hold signals while waiting for data.
8046 * MSG_IGNFLOW Don't check streams flow control.
8047 *
8048 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
8049 */
8050 int
kstrputmsg(struct vnode * vp,mblk_t * mctl,struct uio * uiop,ssize_t msgsize,unsigned char pri,int flag,int fmode)8051 kstrputmsg(
8052 struct vnode *vp,
8053 mblk_t *mctl,
8054 struct uio *uiop,
8055 ssize_t msgsize,
8056 unsigned char pri,
8057 int flag,
8058 int fmode)
8059 {
8060 struct stdata *stp;
8061 queue_t *wqp;
8062 ssize_t rmin, rmax;
8063 int error;
8064
8065 ASSERT(vp->v_stream);
8066 stp = vp->v_stream;
8067 wqp = stp->sd_wrq;
8068 if (AU_AUDITING())
8069 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
8070 if (mctl == NULL)
8071 return (EINVAL);
8072
8073 mutex_enter(&stp->sd_lock);
8074
8075 if ((error = i_straccess(stp, JCWRITE)) != 0) {
8076 mutex_exit(&stp->sd_lock);
8077 freemsg(mctl);
8078 return (error);
8079 }
8080
8081 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
8082 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
8083 error = strwriteable(stp, B_FALSE, B_TRUE);
8084 if (error != 0) {
8085 mutex_exit(&stp->sd_lock);
8086 freemsg(mctl);
8087 return (error);
8088 }
8089 }
8090 }
8091
8092 mutex_exit(&stp->sd_lock);
8093
8094 /*
8095 * Check for legal flag value.
8096 */
8097 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
8098 case MSG_HIPRI:
8099 if (pri != 0) {
8100 freemsg(mctl);
8101 return (EINVAL);
8102 }
8103 break;
8104 case MSG_BAND:
8105 break;
8106 default:
8107 freemsg(mctl);
8108 return (EINVAL);
8109 }
8110
8111 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
8112 "kstrputmsg in:stp %p", stp);
8113
8114 /* get these values from those cached in the stream head */
8115 rmin = stp->sd_qn_minpsz;
8116 rmax = stp->sd_qn_maxpsz;
8117
8118 /*
8119 * Make sure ctl and data sizes together fall within the
8120 * limits of the max and min receive packet sizes and do
8121 * not exceed system limit.
8122 */
8123 ASSERT((rmax >= 0) || (rmax == INFPSZ));
8124 if (rmax == 0) {
8125 freemsg(mctl);
8126 return (ERANGE);
8127 }
8128 /*
8129 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8130 * Needed to prevent partial failures in the strmakedata loop.
8131 */
8132 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8133 rmax = stp->sd_maxblk;
8134
8135 if (uiop == NULL) {
8136 msgsize = -1;
8137 rmin = -1; /* no range check for NULL data part */
8138 } else {
8139 /* Use uio flags as well as the fmode parameter flags */
8140 fmode |= uiop->uio_fmode;
8141
8142 if ((msgsize < rmin) ||
8143 ((msgsize > rmax) && (rmax != INFPSZ))) {
8144 freemsg(mctl);
8145 return (ERANGE);
8146 }
8147 }
8148
8149 /* Ignore flow control in strput for HIPRI */
8150 if (flag & MSG_HIPRI)
8151 flag |= MSG_IGNFLOW;
8152
8153 for (;;) {
8154 int done = 0;
8155 int waitflag;
8156 mblk_t *mp;
8157
8158 /*
8159 * strput will always free the ctl mblk - even when strput
8160 * fails. If MSG_IGNFLOW is set then any error returned
8161 * will cause us to break the loop, so we don't need a copy
8162 * of the message. If MSG_IGNFLOW is not set, then we can
8163 * get hit by flow control and be forced to try again. In
8164 * this case we need to have a copy of the message. We
8165 * do this using copymsg since the message may get modified
8166 * by something below us.
8167 *
8168 * We've observed that many TPI providers do not check db_ref
8169 * on the control messages but blindly reuse them for the
8170 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8171 * friendly to such providers than using dupmsg. Also, note
8172 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8173 * Only data messages are subject to flow control, hence
8174 * subject to this copymsg.
8175 */
8176 if (flag & MSG_IGNFLOW) {
8177 mp = mctl;
8178 mctl = NULL;
8179 } else {
8180 do {
8181 /*
8182 * If a message has a free pointer, the message
8183 * must be dupmsg to maintain this pointer.
8184 * Code using this facility must be sure
8185 * that modules below will not change the
8186 * contents of the dblk without checking db_ref
8187 * first. If db_ref is > 1, then the module
8188 * needs to do a copymsg first. Otherwise,
8189 * the contents of the dblk may become
8190 * inconsistent because the freesmg/freeb below
8191 * may end up calling atomic_add_32_nv.
8192 * The atomic_add_32_nv in freeb (accessing
8193 * all of db_ref, db_type, db_flags, and
8194 * db_struioflag) does not prevent other threads
8195 * from concurrently trying to modify e.g.
8196 * db_type.
8197 */
8198 if (mctl->b_datap->db_frtnp != NULL)
8199 mp = dupmsg(mctl);
8200 else
8201 mp = copymsg(mctl);
8202
8203 if (mp != NULL)
8204 break;
8205
8206 error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8207 if (error) {
8208 freemsg(mctl);
8209 return (error);
8210 }
8211 } while (mp == NULL);
8212 }
8213 /*
8214 * Verify that all of msgsize can be transferred by
8215 * strput.
8216 */
8217 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8218 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8219 if (error == 0)
8220 break;
8221
8222 if (error != EWOULDBLOCK)
8223 goto out;
8224
8225 /*
8226 * IF MSG_IGNFLOW is set we should have broken out of loop
8227 * above.
8228 */
8229 ASSERT(!(flag & MSG_IGNFLOW));
8230 mutex_enter(&stp->sd_lock);
8231 /*
8232 * Check for a missed wakeup.
8233 * Needed since strput did not hold sd_lock across
8234 * the canputnext.
8235 */
8236 if (bcanputnext(wqp, pri)) {
8237 /* Try again */
8238 mutex_exit(&stp->sd_lock);
8239 continue;
8240 }
8241 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8242 "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8243
8244 waitflag = WRITEWAIT;
8245 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8246 if (flag & MSG_HOLDSIG)
8247 waitflag |= STR_NOSIG;
8248 if (flag & MSG_IGNERROR)
8249 waitflag |= STR_NOERROR;
8250 }
8251 if (((error = strwaitq(stp, waitflag,
8252 (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8253 mutex_exit(&stp->sd_lock);
8254 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8255 "kstrputmsg out:stp %p out %d error %d",
8256 stp, 0, error);
8257 freemsg(mctl);
8258 return (error);
8259 }
8260 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8261 "kstrputmsg wake:stp %p wakes", stp);
8262 if ((error = i_straccess(stp, JCWRITE)) != 0) {
8263 mutex_exit(&stp->sd_lock);
8264 freemsg(mctl);
8265 return (error);
8266 }
8267 mutex_exit(&stp->sd_lock);
8268 }
8269 out:
8270 freemsg(mctl);
8271 /*
8272 * For historic reasons, applications expect EAGAIN
8273 * when data mblk could not be allocated. so change
8274 * ENOMEM back to EAGAIN
8275 */
8276 if (error == ENOMEM)
8277 error = EAGAIN;
8278 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8279 "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8280 return (error);
8281 }
8282
8283 /*
8284 * Determines whether the necessary conditions are set on a stream
8285 * for it to be readable, writeable, or have exceptions.
8286 *
8287 * strpoll handles the consolidation private events:
8288 * POLLNOERR Do not return POLLERR even if there are stream
8289 * head errors.
8290 * Used by sockfs.
8291 * POLLRDDATA Do not return POLLIN unless at least one message on
8292 * the queue contains one or more M_DATA mblks. Thus
8293 * when this flag is set a queue with only
8294 * M_PROTO/M_PCPROTO mblks does not return POLLIN.
8295 * Used by sockfs to ignore T_EXDATA_IND messages.
8296 *
8297 * Note: POLLRDDATA assumes that synch streams only return messages with
8298 * an M_DATA attached (i.e. not messages consisting of only
8299 * an M_PROTO/M_PCPROTO part).
8300 */
8301 int
strpoll(struct stdata * stp,short events_arg,int anyyet,short * reventsp,struct pollhead ** phpp)8302 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp,
8303 struct pollhead **phpp)
8304 {
8305 int events = (ushort_t)events_arg;
8306 int retevents = 0;
8307 mblk_t *mp;
8308 qband_t *qbp;
8309 long sd_flags = stp->sd_flag;
8310 int headlocked = 0;
8311
8312 /*
8313 * For performance, a single 'if' tests for most possible edge
8314 * conditions in one shot
8315 */
8316 if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8317 if (sd_flags & STPLEX) {
8318 *reventsp = POLLNVAL;
8319 return (EINVAL);
8320 }
8321 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8322 (sd_flags & STRDERR)) ||
8323 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8324 (sd_flags & STWRERR))) {
8325 if (!(events & POLLNOERR)) {
8326 *reventsp = POLLERR;
8327 return (0);
8328 }
8329 }
8330 }
8331 if (sd_flags & STRHUP) {
8332 retevents |= POLLHUP;
8333 } else if (events & (POLLWRNORM | POLLWRBAND)) {
8334 queue_t *tq;
8335 queue_t *qp = stp->sd_wrq;
8336
8337 claimstr(qp);
8338 /* Find next module forward that has a service procedure */
8339 tq = qp->q_next->q_nfsrv;
8340 ASSERT(tq != NULL);
8341
8342 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) {
8343 releasestr(qp);
8344 *reventsp = POLLNVAL;
8345 return (0);
8346 }
8347 if (events & POLLWRNORM) {
8348 queue_t *sqp;
8349
8350 if (tq->q_flag & QFULL)
8351 /* ensure backq svc procedure runs */
8352 tq->q_flag |= QWANTW;
8353 else if ((sqp = stp->sd_struiowrq) != NULL) {
8354 /* Check sync stream barrier write q */
8355 mutex_exit(QLOCK(tq));
8356 if (polllock(&stp->sd_pollist,
8357 QLOCK(sqp)) != 0) {
8358 releasestr(qp);
8359 *reventsp = POLLNVAL;
8360 return (0);
8361 }
8362 if (sqp->q_flag & QFULL)
8363 /* ensure pollwakeup() is done */
8364 sqp->q_flag |= QWANTWSYNC;
8365 else
8366 retevents |= POLLOUT;
8367 /* More write events to process ??? */
8368 if (! (events & POLLWRBAND)) {
8369 mutex_exit(QLOCK(sqp));
8370 releasestr(qp);
8371 goto chkrd;
8372 }
8373 mutex_exit(QLOCK(sqp));
8374 if (polllock(&stp->sd_pollist,
8375 QLOCK(tq)) != 0) {
8376 releasestr(qp);
8377 *reventsp = POLLNVAL;
8378 return (0);
8379 }
8380 } else
8381 retevents |= POLLOUT;
8382 }
8383 if (events & POLLWRBAND) {
8384 qbp = tq->q_bandp;
8385 if (qbp) {
8386 while (qbp) {
8387 if (qbp->qb_flag & QB_FULL)
8388 qbp->qb_flag |= QB_WANTW;
8389 else
8390 retevents |= POLLWRBAND;
8391 qbp = qbp->qb_next;
8392 }
8393 } else {
8394 retevents |= POLLWRBAND;
8395 }
8396 }
8397 mutex_exit(QLOCK(tq));
8398 releasestr(qp);
8399 }
8400 chkrd:
8401 if (sd_flags & STRPRI) {
8402 retevents |= (events & POLLPRI);
8403 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8404 queue_t *qp = _RD(stp->sd_wrq);
8405 int normevents = (events & (POLLIN | POLLRDNORM));
8406
8407 /*
8408 * Note: Need to do polllock() here since ps_lock may be
8409 * held. See bug 4191544.
8410 */
8411 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8412 *reventsp = POLLNVAL;
8413 return (0);
8414 }
8415 headlocked = 1;
8416 mp = qp->q_first;
8417 while (mp) {
8418 /*
8419 * For POLLRDDATA we scan b_cont and b_next until we
8420 * find an M_DATA.
8421 */
8422 if ((events & POLLRDDATA) &&
8423 mp->b_datap->db_type != M_DATA) {
8424 mblk_t *nmp = mp->b_cont;
8425
8426 while (nmp != NULL &&
8427 nmp->b_datap->db_type != M_DATA)
8428 nmp = nmp->b_cont;
8429 if (nmp == NULL) {
8430 mp = mp->b_next;
8431 continue;
8432 }
8433 }
8434 if (mp->b_band == 0)
8435 retevents |= normevents;
8436 else
8437 retevents |= (events & (POLLIN | POLLRDBAND));
8438 break;
8439 }
8440 if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) {
8441 /*
8442 * Sync stream barrier read queue has data.
8443 */
8444 retevents |= normevents;
8445 }
8446 /* Treat eof as normal data */
8447 if (sd_flags & STREOF)
8448 retevents |= normevents;
8449 }
8450
8451 /*
8452 * Pass back a pollhead if no events are pending or if edge-triggering
8453 * has been configured on this resource.
8454 */
8455 if ((retevents == 0 && !anyyet) || (events & POLLET)) {
8456 *phpp = &stp->sd_pollist;
8457 if (headlocked == 0) {
8458 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8459 *reventsp = POLLNVAL;
8460 return (0);
8461 }
8462 headlocked = 1;
8463 }
8464 stp->sd_rput_opt |= SR_POLLIN;
8465 }
8466
8467 *reventsp = (short)retevents;
8468 if (headlocked)
8469 mutex_exit(&stp->sd_lock);
8470 return (0);
8471 }
8472
8473 /*
8474 * The purpose of putback() is to assure sleeping polls/reads
8475 * are awakened when there are no new messages arriving at the,
8476 * stream head, and a message is placed back on the read queue.
8477 *
8478 * sd_lock must be held when messages are placed back on stream
8479 * head. (getq() holds sd_lock when it removes messages from
8480 * the queue)
8481 */
8482
8483 static void
putback(struct stdata * stp,queue_t * q,mblk_t * bp,int band)8484 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8485 {
8486 mblk_t *qfirst;
8487 ASSERT(MUTEX_HELD(&stp->sd_lock));
8488
8489 /*
8490 * As a result of lock-step ordering around q_lock and sd_lock,
8491 * it's possible for function calls like putnext() and
8492 * canputnext() to get an inaccurate picture of how much
8493 * data is really being processed at the stream head.
8494 * We only consolidate with existing messages on the queue
8495 * if the length of the message we want to put back is smaller
8496 * than the queue hiwater mark.
8497 */
8498 if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8499 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8500 (DB_TYPE(qfirst) == M_DATA) &&
8501 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8502 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8503 (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8504 /*
8505 * We use the same logic as defined in strrput()
8506 * but in reverse as we are putting back onto the
8507 * queue and want to retain byte ordering.
8508 * Consolidate M_DATA messages with M_DATA ONLY.
8509 * strrput() allows the consolidation of M_DATA onto
8510 * M_PROTO | M_PCPROTO but not the other way round.
8511 *
8512 * The consolidation does not take place if the message
8513 * we are returning to the queue is marked with either
8514 * of the marks or the delim flag or if q_first
8515 * is marked with MSGMARK. The MSGMARK check is needed to
8516 * handle the odd semantics of MSGMARK where essentially
8517 * the whole message is to be treated as marked.
8518 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8519 * to the front of the b_cont chain.
8520 */
8521 rmvq_noenab(q, qfirst);
8522
8523 /*
8524 * The first message in the b_cont list
8525 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8526 * We need to handle the case where we
8527 * are appending:
8528 *
8529 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8530 * 2) a MSGMARKNEXT to a plain message.
8531 * 3) a MSGNOTMARKNEXT to a plain message
8532 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8533 * message.
8534 *
8535 * Thus we never append a MSGMARKNEXT or
8536 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8537 */
8538 if (qfirst->b_flag & MSGMARKNEXT) {
8539 bp->b_flag |= MSGMARKNEXT;
8540 bp->b_flag &= ~MSGNOTMARKNEXT;
8541 qfirst->b_flag &= ~MSGMARKNEXT;
8542 } else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8543 bp->b_flag |= MSGNOTMARKNEXT;
8544 qfirst->b_flag &= ~MSGNOTMARKNEXT;
8545 }
8546
8547 linkb(bp, qfirst);
8548 }
8549 (void) putbq(q, bp);
8550
8551 /*
8552 * A message may have come in when the sd_lock was dropped in the
8553 * calling routine. If this is the case and STR*ATMARK info was
8554 * received, need to move that from the stream head to the q_last
8555 * so that SIOCATMARK can return the proper value.
8556 */
8557 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8558 unsigned short *flagp = &q->q_last->b_flag;
8559 uint_t b_flag = (uint_t)*flagp;
8560
8561 if (stp->sd_flag & STRATMARK) {
8562 b_flag &= ~MSGNOTMARKNEXT;
8563 b_flag |= MSGMARKNEXT;
8564 stp->sd_flag &= ~STRATMARK;
8565 } else {
8566 b_flag &= ~MSGMARKNEXT;
8567 b_flag |= MSGNOTMARKNEXT;
8568 stp->sd_flag &= ~STRNOTATMARK;
8569 }
8570 *flagp = (unsigned short) b_flag;
8571 }
8572
8573 #ifdef DEBUG
8574 /*
8575 * Make sure that the flags are not messed up.
8576 */
8577 {
8578 mblk_t *mp;
8579 mp = q->q_last;
8580 while (mp != NULL) {
8581 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8582 (MSGMARKNEXT|MSGNOTMARKNEXT));
8583 mp = mp->b_cont;
8584 }
8585 }
8586 #endif
8587 if (q->q_first == bp) {
8588 short pollevents;
8589
8590 if (stp->sd_flag & RSLEEP) {
8591 stp->sd_flag &= ~RSLEEP;
8592 cv_broadcast(&q->q_wait);
8593 }
8594 if (stp->sd_flag & STRPRI) {
8595 pollevents = POLLPRI;
8596 } else {
8597 if (band == 0) {
8598 if (!(stp->sd_rput_opt & SR_POLLIN))
8599 return;
8600 stp->sd_rput_opt &= ~SR_POLLIN;
8601 pollevents = POLLIN | POLLRDNORM;
8602 } else {
8603 pollevents = POLLIN | POLLRDBAND;
8604 }
8605 }
8606 mutex_exit(&stp->sd_lock);
8607 pollwakeup(&stp->sd_pollist, pollevents);
8608 mutex_enter(&stp->sd_lock);
8609 }
8610 }
8611
8612 /*
8613 * Return the held vnode attached to the stream head of a
8614 * given queue
8615 * It is the responsibility of the calling routine to ensure
8616 * that the queue does not go away (e.g. pop).
8617 */
8618 vnode_t *
strq2vp(queue_t * qp)8619 strq2vp(queue_t *qp)
8620 {
8621 vnode_t *vp;
8622 vp = STREAM(qp)->sd_vnode;
8623 ASSERT(vp != NULL);
8624 VN_HOLD(vp);
8625 return (vp);
8626 }
8627
8628 /*
8629 * return the stream head write queue for the given vp
8630 * It is the responsibility of the calling routine to ensure
8631 * that the stream or vnode do not close.
8632 */
8633 queue_t *
strvp2wq(vnode_t * vp)8634 strvp2wq(vnode_t *vp)
8635 {
8636 ASSERT(vp->v_stream != NULL);
8637 return (vp->v_stream->sd_wrq);
8638 }
8639
8640 /*
8641 * pollwakeup stream head
8642 * It is the responsibility of the calling routine to ensure
8643 * that the stream or vnode do not close.
8644 */
8645 void
strpollwakeup(vnode_t * vp,short event)8646 strpollwakeup(vnode_t *vp, short event)
8647 {
8648 ASSERT(vp->v_stream);
8649 pollwakeup(&vp->v_stream->sd_pollist, event);
8650 }
8651
8652 /*
8653 * Mate the stream heads of two vnodes together. If the two vnodes are the
8654 * same, we just make the write-side point at the read-side -- otherwise,
8655 * we do a full mate. Only works on vnodes associated with streams that are
8656 * still being built and thus have only a stream head.
8657 */
8658 void
strmate(vnode_t * vp1,vnode_t * vp2)8659 strmate(vnode_t *vp1, vnode_t *vp2)
8660 {
8661 queue_t *wrq1 = strvp2wq(vp1);
8662 queue_t *wrq2 = strvp2wq(vp2);
8663
8664 /*
8665 * Verify that there are no modules on the stream yet. We also
8666 * rely on the stream head always having a service procedure to
8667 * avoid tweaking q_nfsrv.
8668 */
8669 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8670 ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8671 ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8672
8673 /*
8674 * If the queues are the same, just twist; otherwise do a full mate.
8675 */
8676 if (wrq1 == wrq2) {
8677 wrq1->q_next = _RD(wrq1);
8678 } else {
8679 wrq1->q_next = _RD(wrq2);
8680 wrq2->q_next = _RD(wrq1);
8681 STREAM(wrq1)->sd_mate = STREAM(wrq2);
8682 STREAM(wrq1)->sd_flag |= STRMATE;
8683 STREAM(wrq2)->sd_mate = STREAM(wrq1);
8684 STREAM(wrq2)->sd_flag |= STRMATE;
8685 }
8686 }
8687
8688 /*
8689 * XXX will go away when console is correctly fixed.
8690 * Clean up the console PIDS, from previous I_SETSIG,
8691 * called only for cnopen which never calls strclean().
8692 */
8693 void
str_cn_clean(struct vnode * vp)8694 str_cn_clean(struct vnode *vp)
8695 {
8696 strsig_t *ssp, *pssp, *tssp;
8697 struct stdata *stp;
8698 struct pid *pidp;
8699 int update = 0;
8700
8701 ASSERT(vp->v_stream);
8702 stp = vp->v_stream;
8703 pssp = NULL;
8704 mutex_enter(&stp->sd_lock);
8705 ssp = stp->sd_siglist;
8706 while (ssp) {
8707 mutex_enter(&pidlock);
8708 pidp = ssp->ss_pidp;
8709 /*
8710 * Get rid of PID if the proc is gone.
8711 */
8712 if (pidp->pid_prinactive) {
8713 tssp = ssp->ss_next;
8714 if (pssp)
8715 pssp->ss_next = tssp;
8716 else
8717 stp->sd_siglist = tssp;
8718 ASSERT(pidp->pid_ref <= 1);
8719 PID_RELE(ssp->ss_pidp);
8720 mutex_exit(&pidlock);
8721 kmem_free(ssp, sizeof (strsig_t));
8722 update = 1;
8723 ssp = tssp;
8724 continue;
8725 } else
8726 mutex_exit(&pidlock);
8727 pssp = ssp;
8728 ssp = ssp->ss_next;
8729 }
8730 if (update) {
8731 stp->sd_sigflags = 0;
8732 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8733 stp->sd_sigflags |= ssp->ss_events;
8734 }
8735 mutex_exit(&stp->sd_lock);
8736 }
8737
8738 /*
8739 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8740 */
8741 static boolean_t
msghasdata(mblk_t * bp)8742 msghasdata(mblk_t *bp)
8743 {
8744 for (; bp; bp = bp->b_cont)
8745 if (bp->b_datap->db_type == M_DATA) {
8746 ASSERT(bp->b_wptr >= bp->b_rptr);
8747 if (bp->b_wptr > bp->b_rptr)
8748 return (B_TRUE);
8749 }
8750 return (B_FALSE);
8751 }
8752