1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27 */
28
29 /*
30 * Copyright (c) 2014 by Delphix. All rights reserved.
31 */
32
33 /*
34 * Utility routines for run-time linker. some are duplicated here from libc
35 * (with different names) to avoid name space collisions.
36 */
37 #include <sys/systeminfo.h>
38 #include <stdio.h>
39 #include <sys/time.h>
40 #include <sys/types.h>
41 #include <sys/mman.h>
42 #include <sys/lwp.h>
43 #include <sys/debug.h>
44 #include <stdarg.h>
45 #include <fcntl.h>
46 #include <string.h>
47 #include <dlfcn.h>
48 #include <unistd.h>
49 #include <stdlib.h>
50 #include <sys/auxv.h>
51 #include <limits.h>
52 #include <debug.h>
53 #include <conv.h>
54 #include <upanic.h>
55 #include "_rtld.h"
56 #include "_audit.h"
57 #include "_elf.h"
58 #include "msg.h"
59
60 /*
61 * Null function used as place where a debugger can set a breakpoint.
62 */
63 void
rtld_db_dlactivity(Lm_list * lml)64 rtld_db_dlactivity(Lm_list *lml)
65 {
66 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
67 r_debug.rtd_rdebug.r_state));
68 }
69
70 /*
71 * Null function used as place where debugger can set a pre .init
72 * processing breakpoint.
73 */
74 void
rtld_db_preinit(Lm_list * lml)75 rtld_db_preinit(Lm_list *lml)
76 {
77 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
78 r_debug.rtd_rdebug.r_state));
79 }
80
81 /*
82 * Null function used as place where debugger can set a post .init
83 * processing breakpoint.
84 */
85 void
rtld_db_postinit(Lm_list * lml)86 rtld_db_postinit(Lm_list *lml)
87 {
88 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent,
89 r_debug.rtd_rdebug.r_state));
90 }
91
92 /*
93 * Debugger Event Notification
94 *
95 * This function centralizes all debugger event notification (ala rtld_db).
96 *
97 * There's a simple intent, focused on insuring the primary link-map control
98 * list (or each link-map list) is consistent, and the indication that objects
99 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE
100 * event are posted for each of these, most debuggers don't care, as their
101 * view is that these events simply convey an "inconsistent" state.
102 *
103 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we
104 * enter ld.so.1.
105 *
106 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is
107 * required later (RT_FL_DBNOTIF):
108 *
109 * i. the first time we add or delete an object to the primary link-map
110 * control list.
111 * ii. the first time we move a secondary link-map control list to the primary
112 * link-map control list (effectively, this is like adding a group of
113 * objects to the primary link-map control list).
114 *
115 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set):
116 *
117 * i. each time we leave the runtime linker.
118 */
119 void
rd_event(Lm_list * lml,rd_event_e event,r_state_e state)120 rd_event(Lm_list *lml, rd_event_e event, r_state_e state)
121 {
122 void (*fptr)(Lm_list *);
123
124 switch (event) {
125 case RD_PREINIT:
126 fptr = rtld_db_preinit;
127 break;
128 case RD_POSTINIT:
129 fptr = rtld_db_postinit;
130 break;
131 case RD_DLACTIVITY:
132 switch (state) {
133 case RT_CONSISTENT:
134 /*
135 * Do we need to send a notification?
136 */
137 if ((rtld_flags & RT_FL_DBNOTIF) == 0)
138 return;
139 rtld_flags &= ~RT_FL_DBNOTIF;
140 break;
141 case RT_ADD:
142 case RT_DELETE:
143 /*
144 * If we are already in an inconsistent state, no
145 * notification is required.
146 */
147 if (rtld_flags & RT_FL_DBNOTIF)
148 return;
149 rtld_flags |= RT_FL_DBNOTIF;
150 break;
151 };
152 fptr = rtld_db_dlactivity;
153 break;
154 default:
155 /*
156 * RD_NONE - do nothing
157 */
158 break;
159 };
160
161 /*
162 * Set event state and call 'notification' function.
163 *
164 * The debugging clients have previously been told about these
165 * notification functions and have set breakpoints on them if they
166 * are interested in the notification.
167 */
168 r_debug.rtd_rdebug.r_state = state;
169 r_debug.rtd_rdebug.r_rdevent = event;
170 fptr(lml);
171 r_debug.rtd_rdebug.r_rdevent = RD_NONE;
172 }
173
174 #if defined(__sparc) || defined(__x86)
175 /*
176 * Stack Cleanup.
177 *
178 * This function is invoked to 'remove' arguments that were passed in on the
179 * stack. This is most likely if ld.so.1 was invoked directly. In that case
180 * we want to remove ld.so.1 as well as it's arguments from the argv[] array.
181 * Which means we then need to slide everything above it on the stack down
182 * accordingly.
183 *
184 * While the stack layout is platform specific - it just so happens that __x86,
185 * and __sparc platforms share the following initial stack layout.
186 *
187 * !_______________________! high addresses
188 * ! !
189 * ! Information !
190 * ! Block !
191 * ! (size varies) !
192 * !_______________________!
193 * ! 0 word !
194 * !_______________________!
195 * ! Auxiliary !
196 * ! vector !
197 * ! 2 word entries !
198 * ! !
199 * !_______________________!
200 * ! 0 word !
201 * !_______________________!
202 * ! Environment !
203 * ! pointers !
204 * ! ... !
205 * ! (one word each) !
206 * !_______________________!
207 * ! 0 word !
208 * !_______________________!
209 * ! Argument ! low addresses
210 * ! pointers !
211 * ! Argc words !
212 * !_______________________!
213 * ! !
214 * ! Argc !
215 * !_______________________!
216 * ! ... !
217 *
218 */
219 static void
stack_cleanup(char ** argv,char *** envp,auxv_t ** auxv,int rmcnt)220 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt)
221 {
222 int ndx;
223 long *argc;
224 char **oargv, **nargv;
225 char **oenvp, **nenvp;
226 auxv_t *oauxv, *nauxv;
227
228 /*
229 * Slide ARGV[] and update argc. The argv pointer remains the same,
230 * however slide the applications arguments over the arguments to
231 * ld.so.1.
232 */
233 nargv = &argv[0];
234 oargv = &argv[rmcnt];
235
236 for (ndx = 0; oargv[ndx]; ndx++)
237 nargv[ndx] = oargv[ndx];
238 nargv[ndx] = oargv[ndx];
239
240 argc = (long *)((uintptr_t)argv - sizeof (long *));
241 *argc -= rmcnt;
242
243 /*
244 * Slide ENVP[], and update the environment array pointer.
245 */
246 ndx++;
247 nenvp = &nargv[ndx];
248 oenvp = &oargv[ndx];
249 *envp = nenvp;
250
251 for (ndx = 0; oenvp[ndx]; ndx++)
252 nenvp[ndx] = oenvp[ndx];
253 nenvp[ndx] = oenvp[ndx];
254
255 /*
256 * Slide AUXV[], and update the aux vector pointer.
257 */
258 ndx++;
259 nauxv = (auxv_t *)&nenvp[ndx];
260 oauxv = (auxv_t *)&oenvp[ndx];
261 *auxv = nauxv;
262
263 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++)
264 nauxv[ndx] = oauxv[ndx];
265 nauxv[ndx] = oauxv[ndx];
266 }
267 #else
268 /*
269 * Verify that the above routine is appropriate for any new platforms.
270 */
271 #error unsupported architecture!
272 #endif
273
274 /*
275 * Compare function for PathNode AVL tree.
276 */
277 static int
pnavl_compare(const void * n1,const void * n2)278 pnavl_compare(const void *n1, const void *n2)
279 {
280 uint_t hash1, hash2;
281 const char *st1, *st2;
282 int rc;
283
284 hash1 = ((PathNode *)n1)->pn_hash;
285 hash2 = ((PathNode *)n2)->pn_hash;
286
287 if (hash1 > hash2)
288 return (1);
289 if (hash1 < hash2)
290 return (-1);
291
292 st1 = ((PathNode *)n1)->pn_name;
293 st2 = ((PathNode *)n2)->pn_name;
294
295 rc = strcmp(st1, st2);
296 if (rc > 0)
297 return (1);
298 if (rc < 0)
299 return (-1);
300 return (0);
301 }
302
303 /*
304 * Create an AVL tree.
305 */
306 static avl_tree_t *
pnavl_create(size_t size)307 pnavl_create(size_t size)
308 {
309 avl_tree_t *avlt;
310
311 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL)
312 return (NULL);
313 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl));
314 return (avlt);
315 }
316
317 /*
318 * Determine whether a PathNode is recorded.
319 */
320 int
pnavl_recorded(avl_tree_t ** pnavl,const char * name,uint_t hash,avl_index_t * where)321 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash,
322 avl_index_t *where)
323 {
324 PathNode pn;
325
326 /*
327 * Create the avl tree if required.
328 */
329 if ((*pnavl == NULL) &&
330 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL))
331 return (0);
332
333 pn.pn_name = name;
334 if ((pn.pn_hash = hash) == 0)
335 pn.pn_hash = sgs_str_hash(name);
336
337 if (avl_find(*pnavl, &pn, where) == NULL)
338 return (0);
339
340 return (1);
341 }
342
343 /*
344 * Determine if a pathname has already been recorded on the full path name
345 * AVL tree. This tree maintains a node for each path name that ld.so.1 has
346 * successfully loaded. If the path name does not exist in this AVL tree, then
347 * the next insertion point is deposited in "where". This value can be used by
348 * fpavl_insert() to expedite the insertion.
349 */
350 Rt_map *
fpavl_recorded(Lm_list * lml,const char * name,uint_t hash,avl_index_t * where)351 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where)
352 {
353 FullPathNode fpn, *fpnp;
354
355 /*
356 * Create the avl tree if required.
357 */
358 if ((lml->lm_fpavl == NULL) &&
359 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL))
360 return (NULL);
361
362 fpn.fpn_node.pn_name = name;
363 if ((fpn.fpn_node.pn_hash = hash) == 0)
364 fpn.fpn_node.pn_hash = sgs_str_hash(name);
365
366 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL)
367 return (NULL);
368
369 return (fpnp->fpn_lmp);
370 }
371
372 /*
373 * Insert a name into the FullPathNode AVL tree for the link-map list. The
374 * objects NAME() is the path that would have originally been searched for, and
375 * is therefore the name to associate with any "where" value. If the object has
376 * a different PATHNAME(), perhaps because it has resolved to a different file
377 * (see fullpath()), then this name will be recorded as a separate FullPathNode
378 * (see load_file()).
379 */
380 int
fpavl_insert(Lm_list * lml,Rt_map * lmp,const char * name,avl_index_t where)381 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where)
382 {
383 FullPathNode *fpnp;
384 uint_t hash = sgs_str_hash(name);
385
386 if (where == 0) {
387 Rt_map *_lmp __maybe_unused;
388
389 _lmp = fpavl_recorded(lml, name, hash, &where);
390
391 /*
392 * We better not get a hit now, we do not want duplicates in
393 * the tree.
394 */
395 ASSERT(_lmp == NULL);
396 }
397
398 /*
399 * Insert new node in tree.
400 */
401 if ((fpnp = calloc(1, sizeof (FullPathNode))) == NULL)
402 return (0);
403
404 fpnp->fpn_node.pn_name = name;
405 fpnp->fpn_node.pn_hash = hash;
406 fpnp->fpn_lmp = lmp;
407
408 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) {
409 free(fpnp);
410 return (0);
411 }
412
413 ASSERT(lml->lm_fpavl != NULL);
414 avl_insert(lml->lm_fpavl, fpnp, where);
415 return (1);
416 }
417
418 /*
419 * Remove an object from the FullPathNode AVL tree.
420 */
421 void
fpavl_remove(Rt_map * lmp)422 fpavl_remove(Rt_map *lmp)
423 {
424 FullPathNode *fpnp;
425 Aliste idx;
426
427 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) {
428 avl_remove(LIST(lmp)->lm_fpavl, fpnp);
429 free(fpnp);
430 }
431 free(FPNODE(lmp));
432 FPNODE(lmp) = NULL;
433 }
434
435 /*
436 * Insert a path name into the not-found AVL tree.
437 *
438 * This tree maintains a node for each path name that ld.so.1 has explicitly
439 * inspected, but has failed to load during a single ld.so.1 operation. If the
440 * path name does not exist in this AVL tree, then the next insertion point is
441 * deposited in "where". This value can be used by nfavl_insert() to expedite
442 * the insertion.
443 */
444 void
nfavl_insert(const char * name,avl_index_t where)445 nfavl_insert(const char *name, avl_index_t where)
446 {
447 PathNode *pnp;
448 uint_t hash = sgs_str_hash(name);
449
450 if (where == 0) {
451 int in_nfavl __maybe_unused;
452
453 in_nfavl = pnavl_recorded(&nfavl, name, hash, &where);
454
455 /*
456 * We better not get a hit now, we do not want duplicates in
457 * the tree.
458 */
459 ASSERT(in_nfavl == 0);
460 }
461
462 /*
463 * Insert new node in tree.
464 */
465 if ((pnp = calloc(1, sizeof (PathNode))) != NULL) {
466 pnp->pn_name = name;
467 pnp->pn_hash = hash;
468 avl_insert(nfavl, pnp, where);
469 }
470 }
471
472 /*
473 * Insert the directory name, of a full path name, into the secure path AVL
474 * tree.
475 *
476 * This tree is used to maintain a list of directories in which the dependencies
477 * of a secure process have been found. This list provides a fall-back in the
478 * case that a $ORIGIN expansion is deemed insecure, when the expansion results
479 * in a path name that has already provided dependencies.
480 */
481 void
spavl_insert(const char * name)482 spavl_insert(const char *name)
483 {
484 char buffer[PATH_MAX], *str;
485 size_t size;
486 avl_index_t where;
487 PathNode *pnp;
488 uint_t hash;
489
490 /*
491 * Separate the directory name from the path name.
492 */
493 if ((str = strrchr(name, '/')) == name)
494 size = 1;
495 else
496 size = str - name;
497
498 (void) strncpy(buffer, name, size);
499 buffer[size] = '\0';
500 hash = sgs_str_hash(buffer);
501
502 /*
503 * Determine whether this directory name is already recorded, or if
504 * not, 'where" will provide the insertion point for the new string.
505 */
506 if (pnavl_recorded(&spavl, buffer, hash, &where))
507 return;
508
509 /*
510 * Insert new node in tree.
511 */
512 if ((pnp = calloc(1, sizeof (PathNode))) != NULL) {
513 pnp->pn_name = strdup(buffer);
514 pnp->pn_hash = hash;
515 avl_insert(spavl, pnp, where);
516 }
517 }
518
519 /*
520 * Inspect the generic string AVL tree for the given string. If the string is
521 * not present, duplicate it, and insert the string in the AVL tree. Return the
522 * duplicated string to the caller.
523 *
524 * These strings are maintained for the life of ld.so.1 and represent path
525 * names, file names, and search paths. All other AVL trees that maintain
526 * FullPathNode and not-found path names use the same string pointer
527 * established for this string.
528 */
529 static avl_tree_t *stravl = NULL;
530 static char *strbuf = NULL;
531 static PathNode *pnbuf = NULL;
532 static size_t strsize = 0, pnsize = 0;
533
534 const char *
stravl_insert(const char * name,uint_t hash,size_t nsize,int substr)535 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr)
536 {
537 char str[PATH_MAX];
538 PathNode *pnp;
539 avl_index_t where;
540
541 /*
542 * Create the avl tree if required.
543 */
544 if ((stravl == NULL) &&
545 ((stravl = pnavl_create(sizeof (PathNode))) == NULL))
546 return (NULL);
547
548 /*
549 * Determine the string size if not provided by the caller.
550 */
551 if (nsize == 0)
552 nsize = strlen(name) + 1;
553 else if (substr) {
554 /*
555 * The string passed to us may be a multiple path string for
556 * which we only need the first component. Using the provided
557 * size, strip out the required string.
558 */
559 (void) strncpy(str, name, nsize);
560 str[nsize - 1] = '\0';
561 name = str;
562 }
563
564 /*
565 * Allocate a PathNode buffer if one doesn't exist, or any existing
566 * buffer has been used up.
567 */
568 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) {
569 pnsize = syspagsz;
570 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE),
571 MAP_PRIVATE)) == MAP_FAILED)
572 return (NULL);
573 }
574 /*
575 * Determine whether this string already exists.
576 */
577 pnbuf->pn_name = name;
578 if ((pnbuf->pn_hash = hash) == 0)
579 pnbuf->pn_hash = sgs_str_hash(name);
580
581 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL)
582 return (pnp->pn_name);
583
584 /*
585 * Allocate a string buffer if one does not exist, or if there is
586 * insufficient space for the new string in any existing buffer.
587 */
588 if ((strbuf == NULL) || (nsize > strsize)) {
589 strsize = S_ROUND(nsize, syspagsz);
590
591 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE),
592 MAP_PRIVATE)) == MAP_FAILED)
593 return (NULL);
594 }
595
596 (void) memcpy(strbuf, name, nsize);
597 pnp = pnbuf;
598 pnp->pn_name = strbuf;
599 avl_insert(stravl, pnp, where);
600
601 strbuf += nsize;
602 strsize -= nsize;
603 pnbuf++;
604 pnsize -= sizeof (PathNode);
605 return (pnp->pn_name);
606 }
607
608 /*
609 * Prior to calling an object, either via a .plt or through dlsym(), make sure
610 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire
611 * init's in the correct order, however, this order is typically based on needed
612 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can
613 * still occur and result in bindings that were not captured during topological
614 * sorting. This routine compensates for this lack of binding information, and
615 * provides for dynamic .init firing.
616 */
617 void
is_dep_init(Rt_map * dlmp,Rt_map * clmp)618 is_dep_init(Rt_map *dlmp, Rt_map *clmp)
619 {
620 Rt_map **tobj;
621
622 /*
623 * If the caller is an auditor, and the destination isn't, then don't
624 * run any .inits (see comments in load_completion()).
625 */
626 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) &&
627 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0))
628 return;
629
630 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST))
631 return;
632
633 (void) rt_mutex_lock(&dlmp->rt_lock);
634 while (dlmp->rt_init_thread != rt_thr_self() && (FLAGS(dlmp) &
635 (FLG_RT_RELOCED | FLG_RT_INITCALL | FLG_RT_INITDONE)) ==
636 (FLG_RT_RELOCED | FLG_RT_INITCALL)) {
637 leave(LIST(dlmp), 0);
638 (void) _lwp_cond_wait(&dlmp->rt_cv, (mutex_t *)&dlmp->rt_lock);
639 (void) rt_mutex_unlock(&dlmp->rt_lock);
640 (void) enter(0);
641 (void) rt_mutex_lock(&dlmp->rt_lock);
642 }
643 (void) rt_mutex_unlock(&dlmp->rt_lock);
644
645 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) ==
646 (FLG_RT_RELOCED | FLG_RT_INITDONE))
647 return;
648
649 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) {
650 tobj[0] = dlmp;
651 call_init(tobj, DBG_INIT_DYN);
652 }
653 }
654
655 /*
656 * Execute .{preinit|init|fini}array sections
657 */
658 void
call_array(Addr * array,uint_t arraysz,Rt_map * lmp,Word shtype)659 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype)
660 {
661 int start, stop, incr, ndx;
662 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr));
663
664 if (array == NULL)
665 return;
666
667 /*
668 * initarray & preinitarray are walked from beginning to end - while
669 * finiarray is walked from end to beginning.
670 */
671 if (shtype == SHT_FINI_ARRAY) {
672 start = arraycnt - 1;
673 stop = incr = -1;
674 } else {
675 start = 0;
676 stop = arraycnt;
677 incr = 1;
678 }
679
680 /*
681 * Call the .*array[] entries
682 */
683 for (ndx = start; ndx != stop; ndx += incr) {
684 uint_t rtldflags;
685 void (*fptr)(void) = (void(*)())array[ndx];
686
687 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype));
688
689 APPLICATION_ENTER(rtldflags);
690 leave(LIST(lmp), 0);
691 (*fptr)();
692 (void) enter(0);
693 APPLICATION_RETURN(rtldflags);
694 }
695 }
696
697 /*
698 * Execute any .init sections. These are passed to us in an lmp array which
699 * (by default) will have been sorted.
700 */
701 void
call_init(Rt_map ** tobj,int flag)702 call_init(Rt_map **tobj, int flag)
703 {
704 Rt_map **_tobj, **_nobj;
705 static APlist *pending = NULL;
706
707 /*
708 * If we're in the middle of an INITFIRST, this must complete before
709 * any new init's are fired. In this case add the object list to the
710 * pending queue and return. We'll pick up the queue after any
711 * INITFIRST objects have their init's fired.
712 */
713 if (rtld_flags & RT_FL_INITFIRST) {
714 (void) aplist_append(&pending, tobj, AL_CNT_PENDING);
715 return;
716 }
717
718 /*
719 * Traverse the tobj array firing each objects init.
720 */
721 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) {
722 Rt_map *lmp = *_tobj;
723 void (*iptr)() = INIT(lmp);
724
725 if (FLAGS(lmp) & FLG_RT_INITCALL)
726 continue;
727
728 FLAGS(lmp) |= FLG_RT_INITCALL;
729 lmp->rt_init_thread = rt_thr_self();
730
731 /*
732 * Establish an initfirst state if necessary - no other inits
733 * will be fired (because of additional relocation bindings)
734 * when in this state.
735 */
736 if (FLAGS(lmp) & FLG_RT_INITFRST)
737 rtld_flags |= RT_FL_INITFIRST;
738
739 if (INITARRAY(lmp) || iptr)
740 DBG_CALL(Dbg_util_call_init(lmp, flag));
741
742 if (iptr) {
743 uint_t rtldflags;
744
745 APPLICATION_ENTER(rtldflags);
746 leave(LIST(lmp), 0);
747 (*iptr)();
748 (void) enter(0);
749 APPLICATION_RETURN(rtldflags);
750 }
751
752 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp,
753 SHT_INIT_ARRAY);
754
755 if (INITARRAY(lmp) || iptr)
756 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE));
757
758 /*
759 * Set the initdone flag regardless of whether this object
760 * actually contains an .init section. This flag prevents us
761 * from processing this section again for an .init and also
762 * signifies that a .fini must be called should it exist.
763 * Clear the sort field for use in later .fini processing.
764 */
765 (void) rt_mutex_lock(&lmp->rt_lock);
766 FLAGS(lmp) |= FLG_RT_INITDONE;
767 lmp->rt_init_thread = (thread_t)0;
768 (void) _lwp_cond_broadcast(&lmp->rt_cv);
769 (void) rt_mutex_unlock(&lmp->rt_lock);
770 SORTVAL(lmp) = -1;
771
772 /*
773 * If we're firing an INITFIRST object, and other objects must
774 * be fired which are not INITFIRST, make sure we grab any
775 * pending objects that might have been delayed as this
776 * INITFIRST was processed.
777 */
778 if ((rtld_flags & RT_FL_INITFIRST) &&
779 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) {
780 Aliste idx;
781 Rt_map **pobj;
782
783 rtld_flags &= ~RT_FL_INITFIRST;
784
785 for (APLIST_TRAVERSE(pending, idx, pobj)) {
786 aplist_delete(pending, &idx);
787 call_init(pobj, DBG_INIT_PEND);
788 }
789 }
790 }
791 free(tobj);
792 }
793
794 /*
795 * Call .fini sections for the topologically sorted list of objects. This
796 * routine is called from remove_hdl() for any objects being torn down as part
797 * of a dlclose() operation, and from atexit() processing for all the remaining
798 * objects within the process.
799 */
800 void
call_fini(Lm_list * lml,Rt_map ** tobj,Rt_map * clmp)801 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp)
802 {
803 Rt_map **_tobj;
804
805 for (_tobj = tobj; *_tobj != NULL; _tobj++) {
806 Rt_map *lmp = *_tobj;
807
808 /*
809 * Only fire a .fini if the objects corresponding .init has
810 * completed. We collect all .fini sections of objects that
811 * had their .init collected, but that doesn't mean that at
812 * the time of collection, that the .init had completed.
813 */
814 if (FLAGS(lmp) & FLG_RT_INITDONE) {
815 void (*fptr)(void) = FINI(lmp);
816
817 if (FINIARRAY(lmp) || fptr)
818 DBG_CALL(Dbg_util_call_fini(lmp));
819
820 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp,
821 SHT_FINI_ARRAY);
822
823 if (fptr) {
824 uint_t rtldflags;
825
826 APPLICATION_ENTER(rtldflags);
827 leave(lml, 0);
828 (*fptr)();
829 (void) enter(0);
830 APPLICATION_RETURN(rtldflags);
831 }
832 }
833
834 /*
835 * Skip main, this is explicitly called last in atexit_fini().
836 */
837 if (FLAGS(lmp) & FLG_RT_ISMAIN)
838 continue;
839
840 /*
841 * This object has exercised its last instructions (regardless
842 * of whether it will be unmapped or not). Audit this closure.
843 */
844 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0)
845 audit_objclose(lmp, clmp);
846 }
847
848 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d,
849 pltcntu32, pltcntu44, pltcntfull, pltcntfar));
850
851 free(tobj);
852 }
853
854 /*
855 * Function called by atexit(3C). Calls all .fini sections within the objects
856 * that make up the process. As .fini processing is the last opportunity for
857 * any new bindings to be established, this is also a convenient location to
858 * check for unused objects.
859 */
860 void
atexit_fini()861 atexit_fini()
862 {
863 Rt_map **tobj, *lmp;
864 Lm_list *lml;
865 Aliste idx;
866
867 (void) enter(0);
868
869 rtld_flags |= RT_FL_ATEXIT;
870
871 lml = &lml_main;
872 lml->lm_flags |= LML_FLG_ATEXIT;
873 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
874 lmp = (Rt_map *)lml->lm_head;
875
876 /*
877 * Reverse topologically sort the main link-map for .fini execution.
878 */
879 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
880 (tobj != (Rt_map **)S_ERROR))
881 call_fini(lml, tobj, NULL);
882
883 /*
884 * Now that all .fini code has been run, see what unreferenced objects
885 * remain.
886 */
887 unused(lml);
888
889 /*
890 * Traverse any alternative link-map lists, looking for non-auditors.
891 */
892 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
893 /*
894 * Ignore the base-link-map list, which has already been
895 * processed, the runtime linkers link-map list, which is
896 * processed last, and any auditors.
897 */
898 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
899 (lml->lm_tflags & LML_TFLG_AUD_MASK) ||
900 ((lmp = (Rt_map *)lml->lm_head) == NULL))
901 continue;
902
903 lml->lm_flags |= LML_FLG_ATEXIT;
904 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
905
906 /*
907 * Reverse topologically sort the link-map for .fini execution.
908 */
909 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
910 (tobj != (Rt_map **)S_ERROR))
911 call_fini(lml, tobj, NULL);
912
913 unused(lml);
914 }
915
916 /*
917 * Add an explicit close to main and ld.so.1. Although main's .fini is
918 * collected in call_fini() to provide for FINITARRAY processing, its
919 * audit_objclose is explicitly skipped. This provides for it to be
920 * called last, here. This is the reverse of the explicit calls to
921 * audit_objopen() made in setup().
922 */
923 lml = &lml_main;
924 lmp = (Rt_map *)lml->lm_head;
925
926 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) {
927 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp);
928 audit_objclose(lmp, lmp);
929 }
930
931 /*
932 * Traverse any alternative link-map lists, looking for non-auditors.
933 */
934 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
935 /*
936 * Ignore the base-link-map list, which has already been
937 * processed, the runtime linkers link-map list, which is
938 * processed last, and any non-auditors.
939 */
940 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) ||
941 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) ||
942 ((lmp = (Rt_map *)lml->lm_head) == NULL))
943 continue;
944
945 lml->lm_flags |= LML_FLG_ATEXIT;
946 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
947
948 /*
949 * Reverse topologically sort the link-map for .fini execution.
950 */
951 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
952 (tobj != (Rt_map **)S_ERROR))
953 call_fini(lml, tobj, NULL);
954
955 unused(lml);
956 }
957
958 /*
959 * Finally reverse topologically sort the runtime linkers link-map for
960 * .fini execution.
961 */
962 lml = &lml_rtld;
963 lml->lm_flags |= LML_FLG_ATEXIT;
964 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT;
965 lmp = (Rt_map *)lml->lm_head;
966
967 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) &&
968 (tobj != (Rt_map **)S_ERROR))
969 call_fini(lml, tobj, NULL);
970
971 leave(&lml_main, 0);
972 }
973
974 /*
975 * This routine is called to complete any runtime linker activity which may have
976 * resulted in objects being loaded. This is called from all user entry points
977 * and from any internal dl*() requests.
978 */
979 void
load_completion(Rt_map * nlmp)980 load_completion(Rt_map *nlmp)
981 {
982 Rt_map **tobj = NULL;
983 Lm_list *nlml;
984
985 /*
986 * Establish any .init processing. Note, in a world of lazy loading,
987 * objects may have been loaded regardless of whether the users request
988 * was fulfilled (i.e., a dlsym() request may have failed to find a
989 * symbol but objects might have been loaded during its search). Thus,
990 * any tsorting starts from the nlmp (new link-maps) pointer and not
991 * necessarily from the link-map that may have satisfied the request.
992 *
993 * Note, the primary link-map has an initialization phase where dynamic
994 * .init firing is suppressed. This provides for a simple and clean
995 * handshake with the primary link-maps libc, which is important for
996 * establishing uberdata. In addition, auditors often obtain handles
997 * to primary link-map objects as the objects are loaded, so as to
998 * inspect the link-map for symbols. This inspection is allowed without
999 * running any code on the primary link-map, as running this code may
1000 * reenter the auditor, who may not yet have finished its own
1001 * initialization.
1002 */
1003 if (nlmp)
1004 nlml = LIST(nlmp);
1005
1006 if (nlmp && nlml->lm_init && ((nlml != &lml_main) ||
1007 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1008 if ((tobj = tsort(nlmp, nlml->lm_init,
1009 RT_SORT_REV)) == (Rt_map **)S_ERROR)
1010 tobj = NULL;
1011 }
1012
1013 /*
1014 * Make sure any alternative link-map retrieves any external interfaces
1015 * and initializes threads.
1016 */
1017 if (nlmp && (nlml != &lml_main)) {
1018 (void) rt_get_extern(nlml, nlmp);
1019 rt_thr_init(nlml);
1020 }
1021
1022 /*
1023 * Traverse the list of new link-maps and register any dynamic TLS.
1024 * This storage is established for any objects not on the primary
1025 * link-map, and for any objects added to the primary link-map after
1026 * static TLS has been registered.
1027 */
1028 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) ||
1029 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) {
1030 Rt_map *lmp;
1031
1032 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) {
1033 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz)
1034 tls_modaddrem(lmp, TM_FLG_MODADD);
1035 }
1036 nlml->lm_tls = 0;
1037 }
1038
1039 /*
1040 * Fire any .init's.
1041 */
1042 if (tobj)
1043 call_init(tobj, DBG_INIT_SORT);
1044 }
1045
1046 /*
1047 * Append an item to the specified link map control list.
1048 */
1049 void
lm_append(Lm_list * lml,Aliste lmco,Rt_map * lmp)1050 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp)
1051 {
1052 Lm_cntl *lmc;
1053 int add = 1;
1054
1055 /*
1056 * Indicate that this link-map list has a new object.
1057 */
1058 (lml->lm_obj)++;
1059
1060 /*
1061 * If we're about to add a new object to the main link-map control
1062 * list, alert the debuggers. Additions of individual objects to the
1063 * main link-map control list occur during initial setup as the
1064 * applications immediate dependencies are loaded. Additional objects
1065 * are loaded on the main link-map control list after they have been
1066 * fully initialized on an alternative link-map control list. See
1067 * lm_move().
1068 */
1069 if (lmco == ALIST_OFF_DATA)
1070 rd_event(lml, RD_DLACTIVITY, RT_ADD);
1071
1072 /* LINTED */
1073 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco);
1074
1075 /*
1076 * A link-map list header points to one of more link-map control lists
1077 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is
1078 * the list of relocated objects. Other lists maintain objects that
1079 * are still being analyzed or relocated. This list provides the core
1080 * link-map list information used by all ld.so.1 routines.
1081 */
1082 if (lmc->lc_head == NULL) {
1083 /*
1084 * If this is the first link-map for the given control list,
1085 * initialize the list.
1086 */
1087 lmc->lc_head = lmc->lc_tail = lmp;
1088 add = 0;
1089
1090 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) {
1091 Rt_map *tlmp;
1092
1093 /*
1094 * If this is an interposer then append the link-map following
1095 * any other interposers (these are objects that have been
1096 * previously preloaded, or were identified with -z interpose).
1097 * Interposers can only be inserted on the first link-map
1098 * control list, as once relocation has started, interposition
1099 * from new interposers can't be guaranteed.
1100 *
1101 * NOTE: We do not interpose on the head of a list. This model
1102 * evolved because dynamic executables have already been fully
1103 * relocated within themselves and thus can't be interposed on.
1104 * Nowadays it's possible to have shared objects at the head of
1105 * a list, which conceptually means they could be interposed on.
1106 * But, shared objects can be created via dldump() and may only
1107 * be partially relocated (just relatives), in which case they
1108 * are interposable, but are marked as fixed (ET_EXEC).
1109 *
1110 * Thus we really don't have a clear method of deciding when the
1111 * head of a link-map is interposable. So, to be consistent,
1112 * for now only add interposers after the link-map lists head
1113 * object.
1114 */
1115 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp;
1116 tlmp = NEXT_RT_MAP(tlmp)) {
1117
1118 if (FLAGS(tlmp) & FLG_RT_OBJINTPO)
1119 continue;
1120
1121 /*
1122 * Insert the new link-map before this non-interposer,
1123 * and indicate an interposer is found.
1124 */
1125 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp;
1126 PREV(lmp) = PREV(tlmp);
1127
1128 NEXT(lmp) = (Link_map *)tlmp;
1129 PREV(tlmp) = (Link_map *)lmp;
1130
1131 lmc->lc_flags |= LMC_FLG_REANALYZE;
1132 add = 0;
1133 break;
1134 }
1135 }
1136
1137 /*
1138 * Fall through to appending the new link map to the tail of the list.
1139 * If we're processing the initial objects of this link-map list, add
1140 * them to the backward compatibility list.
1141 */
1142 if (add) {
1143 NEXT(lmc->lc_tail) = (Link_map *)lmp;
1144 PREV(lmp) = (Link_map *)lmc->lc_tail;
1145 lmc->lc_tail = lmp;
1146 }
1147
1148 /*
1149 * Having added this link-map to a control list, indicate which control
1150 * list the link-map belongs to. Note, control list information is
1151 * always maintained as an offset, as the Alist can be reallocated.
1152 */
1153 CNTL(lmp) = lmco;
1154
1155 /*
1156 * Indicate if an interposer is found. Note that the first object on a
1157 * link-map can be explicitly defined as an interposer so that it can
1158 * provide interposition over direct binding requests.
1159 */
1160 if (FLAGS(lmp) & MSK_RT_INTPOSE)
1161 lml->lm_flags |= LML_FLG_INTRPOSE;
1162
1163 /*
1164 * For backward compatibility with debuggers, the link-map list contains
1165 * pointers to the main control list.
1166 */
1167 if (lmco == ALIST_OFF_DATA) {
1168 lml->lm_head = lmc->lc_head;
1169 lml->lm_tail = lmc->lc_tail;
1170 }
1171 }
1172
1173 /*
1174 * Delete an item from the specified link map control list.
1175 */
1176 void
lm_delete(Lm_list * lml,Rt_map * lmp,Rt_map * clmp)1177 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp)
1178 {
1179 Lm_cntl *lmc;
1180
1181 /*
1182 * If the control list pointer hasn't been initialized, this object
1183 * never got added to a link-map list.
1184 */
1185 if (CNTL(lmp) == 0)
1186 return;
1187
1188 /*
1189 * If we're about to delete an object from the main link-map control
1190 * list, alert the debuggers.
1191 */
1192 if (CNTL(lmp) == ALIST_OFF_DATA)
1193 rd_event(lml, RD_DLACTIVITY, RT_DELETE);
1194
1195 /*
1196 * If we're being audited tell the audit library that we're
1197 * about to go deleting dependencies.
1198 */
1199 if (clmp && (aud_activity ||
1200 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY)))
1201 audit_activity(clmp, LA_ACT_DELETE);
1202
1203 /* LINTED */
1204 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp));
1205
1206 if (lmc->lc_head == lmp)
1207 lmc->lc_head = NEXT_RT_MAP(lmp);
1208 else
1209 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp);
1210
1211 if (lmc->lc_tail == lmp)
1212 lmc->lc_tail = PREV_RT_MAP(lmp);
1213 else
1214 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp);
1215
1216 /*
1217 * For backward compatibility with debuggers, the link-map list contains
1218 * pointers to the main control list.
1219 */
1220 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) {
1221 lml->lm_head = lmc->lc_head;
1222 lml->lm_tail = lmc->lc_tail;
1223 }
1224
1225 /*
1226 * Indicate we have one less object on this control list.
1227 */
1228 (lml->lm_obj)--;
1229 }
1230
1231 /*
1232 * Move a link-map control list to another. Objects that are being relocated
1233 * are maintained on secondary control lists. Once their relocation is
1234 * complete, the entire list is appended to the previous control list, as this
1235 * list must have been the trigger for generating the new control list.
1236 */
1237 void
lm_move(Lm_list * lml,Aliste nlmco,Aliste plmco,Lm_cntl * nlmc,Lm_cntl * plmc)1238 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc)
1239 {
1240 Rt_map *lmp;
1241
1242 /*
1243 * If we're about to add a new family of objects to the main link-map
1244 * control list, alert the debuggers. Additions of object families to
1245 * the main link-map control list occur during lazy loading, filtering
1246 * and dlopen().
1247 */
1248 if (plmco == ALIST_OFF_DATA)
1249 rd_event(lml, RD_DLACTIVITY, RT_ADD);
1250
1251 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco));
1252
1253 /*
1254 * Indicate each new link-map has been moved to the previous link-map
1255 * control list.
1256 */
1257 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
1258 CNTL(lmp) = plmco;
1259
1260 /*
1261 * If these objects are being added to the main link-map
1262 * control list, indicate that there are init's available
1263 * for harvesting.
1264 */
1265 if (plmco == ALIST_OFF_DATA) {
1266 lml->lm_init++;
1267 lml->lm_flags |= LML_FLG_OBJADDED;
1268 }
1269 }
1270
1271 /*
1272 * Move the new link-map control list, to the callers link-map control
1273 * list.
1274 */
1275 if (plmc->lc_head == NULL) {
1276 plmc->lc_head = nlmc->lc_head;
1277 PREV(nlmc->lc_head) = NULL;
1278 } else {
1279 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head;
1280 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail;
1281 }
1282
1283 plmc->lc_tail = nlmc->lc_tail;
1284 nlmc->lc_head = nlmc->lc_tail = NULL;
1285
1286 /*
1287 * For backward compatibility with debuggers, the link-map list contains
1288 * pointers to the main control list.
1289 */
1290 if (plmco == ALIST_OFF_DATA) {
1291 lml->lm_head = plmc->lc_head;
1292 lml->lm_tail = plmc->lc_tail;
1293 }
1294 }
1295
1296 /*
1297 * Create, or assign a link-map control list. Each link-map list contains a
1298 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the
1299 * description in include/rtld.h). During the initial construction of a
1300 * process, objects are added to this main control list. This control list is
1301 * never deleted, unless an alternate link-map list has been requested (say for
1302 * auditors), and the associated objects could not be loaded or relocated.
1303 *
1304 * Once relocation has started, any lazy loadable objects, or filtees, are
1305 * processed on a new, temporary control list. Only when these objects have
1306 * been fully relocated, are they moved to the main link-map control list.
1307 * Once the objects are moved, this temporary control list is deleted (see
1308 * remove_cntl()).
1309 *
1310 * A dlopen() always requires a new temporary link-map control list.
1311 * Typically, a dlopen() occurs on a link-map list that had already started
1312 * relocation, however, auditors can dlopen() objects on the main link-map
1313 * list while under initial construction, before any relocation has begun.
1314 * Hence, dlopen() requests are explicitly flagged.
1315 */
1316 Aliste
create_cntl(Lm_list * lml,int dlopen)1317 create_cntl(Lm_list *lml, int dlopen)
1318 {
1319 /*
1320 * If the head link-map object has already been relocated, create a
1321 * new, temporary, control list.
1322 */
1323 if (dlopen || (lml->lm_head == NULL) ||
1324 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) {
1325 Lm_cntl *lmc;
1326
1327 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl),
1328 AL_CNT_LMLISTS)) == NULL)
1329 return (0);
1330
1331 return ((Aliste)((char *)lmc - (char *)lml->lm_lists));
1332 }
1333
1334 return (ALIST_OFF_DATA);
1335 }
1336
1337 /*
1338 * Environment variables can have a variety of defined permutations, and thus
1339 * the following infrastructure exists to allow this variety and to select the
1340 * required definition.
1341 *
1342 * Environment variables can be defined as 32- or 64-bit specific, and if so
1343 * they will take precedence over any instruction set neutral form. Typically
1344 * this is only useful when the environment value is an informational string.
1345 *
1346 * Environment variables may be obtained from the standard user environment or
1347 * from a configuration file. The latter provides a fallback if no user
1348 * environment setting is found, and can take two forms:
1349 *
1350 * - a replaceable definition - this will be used if no user environment
1351 * setting has been seen, or
1352 *
1353 * - an permanent definition - this will be used no matter what user
1354 * environment setting is seen. In the case of list variables it will be
1355 * appended to any process environment setting seen.
1356 *
1357 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to
1358 * override any replaceable environment variables from a configuration file.
1359 */
1360 static u_longlong_t rplgen = 0; /* replaceable generic */
1361 /* variables */
1362 static u_longlong_t rplisa = 0; /* replaceable ISA specific */
1363 /* variables */
1364 static u_longlong_t prmgen = 0; /* permanent generic */
1365 /* variables */
1366 static u_longlong_t prmisa = 0; /* permanent ISA specific */
1367 /* variables */
1368 static u_longlong_t cmdgen = 0; /* command line (-e) generic */
1369 /* variables */
1370 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */
1371 /* specific variables */
1372
1373 /*
1374 * Classify an environment variables type.
1375 */
1376 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */
1377 /* the wrong ISA */
1378 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */
1379 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */
1380 /* config file */
1381 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */
1382 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */
1383 #define ENV_TYP_NULL 0x20 /* variable is null */
1384
1385 /*
1386 * Identify all environment variables.
1387 */
1388 #define ENV_FLG_AUDIT 0x0000000000001ULL
1389 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL
1390 #define ENV_FLG_BIND_NOW 0x0000000000004ULL
1391 #define ENV_FLG_BIND_NOT 0x0000000000008ULL
1392 #define ENV_FLG_BINDINGS 0x0000000000010ULL
1393 #define ENV_FLG_CONFGEN 0x0000000000020ULL
1394 #define ENV_FLG_CONFIG 0x0000000000040ULL
1395 #define ENV_FLG_DEBUG 0x0000000000080ULL
1396 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL
1397 #define ENV_FLG_DEMANGLE 0x0000000000200ULL
1398 #define ENV_FLG_FLAGS 0x0000000000400ULL
1399 #define ENV_FLG_INIT 0x0000000000800ULL
1400 #define ENV_FLG_LIBPATH 0x0000000001000ULL
1401 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL
1402 #define ENV_FLG_LOADFLTR 0x0000000004000ULL
1403 #define ENV_FLG_NOAUDIT 0x0000000008000ULL
1404 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL
1405 #define ENV_FLG_NOBAPLT 0x0000000020000ULL
1406 #define ENV_FLG_NOCONFIG 0x0000000040000ULL
1407 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL
1408 #define ENV_FLG_NODIRECT 0x0000000100000ULL
1409 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL
1410 #define ENV_FLG_NOLAZY 0x0000000400000ULL
1411 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL
1412 #define ENV_FLG_NOVERSION 0x0000001000000ULL
1413 #define ENV_FLG_PRELOAD 0x0000002000000ULL
1414 #define ENV_FLG_PROFILE 0x0000004000000ULL
1415 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL
1416 #define ENV_FLG_SIGNAL 0x0000010000000ULL
1417 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL
1418 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL
1419 #define ENV_FLG_UNREF 0x0000080000000ULL
1420 #define ENV_FLG_UNUSED 0x0000100000000ULL
1421 #define ENV_FLG_VERBOSE 0x0000200000000ULL
1422 #define ENV_FLG_WARN 0x0000400000000ULL
1423 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL
1424 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL
1425 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL
1426 #define ENV_FLG_NOPAREXT 0x0004000000000ULL
1427 #define ENV_FLG_HWCAP 0x0008000000000ULL
1428 #define ENV_FLG_SFCAP 0x0010000000000ULL
1429 #define ENV_FLG_MACHCAP 0x0020000000000ULL
1430 #define ENV_FLG_PLATCAP 0x0040000000000ULL
1431 #define ENV_FLG_CAP_FILES 0x0080000000000ULL
1432 #define ENV_FLG_DEFERRED 0x0100000000000ULL
1433 #define ENV_FLG_NOENVIRON 0x0200000000000ULL
1434
1435 #define SEL_REPLACE 0x0001
1436 #define SEL_PERMANT 0x0002
1437 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */
1438 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */
1439 #define SEL_ACT_STR 0x0400 /* setting string value */
1440 #define SEL_ACT_LML 0x0800 /* setting lml_flags */
1441 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */
1442 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */
1443 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */
1444
1445 /*
1446 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part
1447 * and len specifies its length (comparing a strings length before the string
1448 * itself speed things up). s2 points to the token itself which has already
1449 * had any leading white-space removed.
1450 */
1451 static void
ld_generic_env(const char * s1,size_t len,const char * s2,Word * lmflags,Word * lmtflags,uint_t env_flags)1452 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags,
1453 Word *lmtflags, uint_t env_flags)
1454 {
1455 u_longlong_t variable = 0;
1456 ushort_t select = 0;
1457 const char **str;
1458 Word val = 0;
1459
1460 /*
1461 * Determine whether we're dealing with a replaceable or permanent
1462 * string.
1463 */
1464 if (env_flags & ENV_TYP_PERMANT) {
1465 /*
1466 * If the string is from a configuration file and defined as
1467 * permanent, assign it as permanent.
1468 */
1469 select |= SEL_PERMANT;
1470 } else
1471 select |= SEL_REPLACE;
1472
1473 /*
1474 * Parse the variable given.
1475 *
1476 * The LD_AUDIT family.
1477 */
1478 if (*s1 == 'A') {
1479 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1,
1480 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) {
1481 /*
1482 * Replaceable and permanent audit objects can exist.
1483 */
1484 select |= SEL_ACT_STR;
1485 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit;
1486 variable = ENV_FLG_AUDIT;
1487 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) &&
1488 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS),
1489 MSG_LD_AUDIT_ARGS_SIZE) == 0)) {
1490 /*
1491 * A specialized variable for plt_exit() use, not
1492 * documented for general use.
1493 */
1494 select |= SEL_ACT_SPEC_2;
1495 variable = ENV_FLG_AUDIT_ARGS;
1496 }
1497 }
1498 /*
1499 * The LD_BIND family.
1500 */
1501 else if (*s1 == 'B') {
1502 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1,
1503 MSG_ORIG(MSG_LD_BIND_LAZY),
1504 MSG_LD_BIND_LAZY_SIZE) == 0)) {
1505 select |= SEL_ACT_RT2;
1506 val = RT_FL2_BINDLAZY;
1507 variable = ENV_FLG_BIND_LAZY;
1508 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1,
1509 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) {
1510 select |= SEL_ACT_RT2;
1511 val = RT_FL2_BINDNOW;
1512 variable = ENV_FLG_BIND_NOW;
1513 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1,
1514 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) {
1515 /*
1516 * Another trick, initially implemented to help debug
1517 * a.out executables under SunOS 4 binary
1518 * compatibility (now removed), not documented for
1519 * general use, but still useful for debugging around
1520 * the PLT, etc.
1521 */
1522 select |= SEL_ACT_RT;
1523 val = RT_FL_NOBIND;
1524 variable = ENV_FLG_BIND_NOT;
1525 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1,
1526 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) {
1527 /*
1528 * This variable is simply for backward compatibility.
1529 * If this and LD_DEBUG are both specified, only one of
1530 * the strings is going to get processed.
1531 */
1532 select |= SEL_ACT_SPEC_2;
1533 variable = ENV_FLG_BINDINGS;
1534 }
1535 }
1536 /*
1537 * LD_CAP_FILES and LD_CONFIG family.
1538 */
1539 else if (*s1 == 'C') {
1540 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1,
1541 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) {
1542 select |= SEL_ACT_STR;
1543 str = (select & SEL_REPLACE) ?
1544 &rpl_cap_files : &prm_cap_files;
1545 variable = ENV_FLG_CAP_FILES;
1546 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1,
1547 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) {
1548 /*
1549 * This variable is not documented for general use.
1550 * Although originaly designed for internal use with
1551 * crle(1), this variable is in use by the Studio
1552 * auditing tools. Hence, it can't be removed.
1553 */
1554 select |= SEL_ACT_SPEC_2;
1555 variable = ENV_FLG_CONFGEN;
1556 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1,
1557 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) {
1558 /*
1559 * Secure applications must use a default configuration
1560 * file. A setting from a configuration file doesn't
1561 * make sense (given we must be reading a configuration
1562 * file to have gotten this).
1563 */
1564 if ((rtld_flags & RT_FL_SECURE) ||
1565 (env_flags & ENV_TYP_CONFIG))
1566 return;
1567 select |= SEL_ACT_STR;
1568 str = &config->c_name;
1569 variable = ENV_FLG_CONFIG;
1570 }
1571 }
1572 /*
1573 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and
1574 * LD_DEMANGLE.
1575 */
1576 else if (*s1 == 'D') {
1577 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1,
1578 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) {
1579 select |= SEL_ACT_STR;
1580 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug;
1581 variable = ENV_FLG_DEBUG;
1582 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1,
1583 MSG_ORIG(MSG_LD_DEBUG_OUTPUT),
1584 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) {
1585 select |= SEL_ACT_STR;
1586 str = &dbg_file;
1587 variable = ENV_FLG_DEBUG_OUTPUT;
1588 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1,
1589 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) {
1590 select |= SEL_ACT_RT;
1591 val = RT_FL_DEFERRED;
1592 variable = ENV_FLG_DEFERRED;
1593 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1,
1594 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) {
1595 select |= SEL_ACT_RT;
1596 val = RT_FL_DEMANGLE;
1597 variable = ENV_FLG_DEMANGLE;
1598 }
1599 }
1600 /*
1601 * LD_FLAGS - collect the best variable definition. On completion of
1602 * environment variable processing pass the result to ld_flags_env()
1603 * where they'll be decomposed and passed back to this routine.
1604 */
1605 else if (*s1 == 'F') {
1606 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1,
1607 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) {
1608 select |= SEL_ACT_SPEC_1;
1609 str = (select & SEL_REPLACE) ? &rpl_ldflags :
1610 &prm_ldflags;
1611 variable = ENV_FLG_FLAGS;
1612 }
1613 }
1614 /*
1615 * LD_HWCAP.
1616 */
1617 else if (*s1 == 'H') {
1618 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1,
1619 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) {
1620 select |= SEL_ACT_STR;
1621 str = (select & SEL_REPLACE) ?
1622 &rpl_hwcap : &prm_hwcap;
1623 variable = ENV_FLG_HWCAP;
1624 }
1625 }
1626 /*
1627 * LD_INIT (internal, used by ldd(1)).
1628 */
1629 else if (*s1 == 'I') {
1630 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1,
1631 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) {
1632 select |= SEL_ACT_LML;
1633 val = LML_FLG_TRC_INIT;
1634 variable = ENV_FLG_INIT;
1635 }
1636 }
1637 /*
1638 * The LD_LIBRARY_PATH and LD_LOAD families.
1639 */
1640 else if (*s1 == 'L') {
1641 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1,
1642 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) {
1643 select |= SEL_ACT_SPEC_1;
1644 str = (select & SEL_REPLACE) ? &rpl_libpath :
1645 &prm_libpath;
1646 variable = ENV_FLG_LIBPATH;
1647 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1,
1648 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) {
1649 /*
1650 * This variable is not documented for general use.
1651 * Although originaly designed for internal use with
1652 * crle(1), this variable is in use by the Studio
1653 * auditing tools. Hence, it can't be removed.
1654 */
1655 select |= SEL_ACT_LML;
1656 val = LML_FLG_LOADAVAIL;
1657 variable = ENV_FLG_LOADAVAIL;
1658 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1,
1659 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) {
1660 select |= SEL_ACT_SPEC_2;
1661 variable = ENV_FLG_LOADFLTR;
1662 }
1663 }
1664 /*
1665 * LD_MACHCAP.
1666 */
1667 else if (*s1 == 'M') {
1668 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1,
1669 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) {
1670 select |= SEL_ACT_STR;
1671 str = (select & SEL_REPLACE) ?
1672 &rpl_machcap : &prm_machcap;
1673 variable = ENV_FLG_MACHCAP;
1674 }
1675 }
1676 /*
1677 * The LD_NO family.
1678 */
1679 else if (*s1 == 'N') {
1680 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1,
1681 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) {
1682 select |= SEL_ACT_RT;
1683 val = RT_FL_NOAUDIT;
1684 variable = ENV_FLG_NOAUDIT;
1685 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1,
1686 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) {
1687 select |= SEL_ACT_RT;
1688 val = RT_FL_NOAUXFLTR;
1689 variable = ENV_FLG_NOAUXFLTR;
1690 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1,
1691 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) {
1692 select |= SEL_ACT_RT;
1693 val = RT_FL_NOBAPLT;
1694 variable = ENV_FLG_NOBAPLT;
1695 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1,
1696 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) {
1697 select |= SEL_ACT_RT;
1698 val = RT_FL_NOCFG;
1699 variable = ENV_FLG_NOCONFIG;
1700 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1,
1701 MSG_ORIG(MSG_LD_NODIRCONFIG),
1702 MSG_LD_NODIRCONFIG_SIZE) == 0)) {
1703 select |= SEL_ACT_RT;
1704 val = RT_FL_NODIRCFG;
1705 variable = ENV_FLG_NODIRCONFIG;
1706 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1,
1707 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) {
1708 select |= SEL_ACT_LMLT;
1709 val = LML_TFLG_NODIRECT;
1710 variable = ENV_FLG_NODIRECT;
1711 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1,
1712 MSG_ORIG(MSG_LD_NOENVCONFIG),
1713 MSG_LD_NOENVCONFIG_SIZE) == 0)) {
1714 select |= SEL_ACT_RT;
1715 val = RT_FL_NOENVCFG;
1716 variable = ENV_FLG_NOENVCONFIG;
1717 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1,
1718 MSG_ORIG(MSG_LD_NOFLTCONFIG),
1719 MSG_LD_NOFLTCONFIG_SIZE) == 0)) {
1720 select |= SEL_ACT_RT2;
1721 val = RT_FL2_NOFLTCFG;
1722 variable = ENV_FLG_NOFLTCONFIG;
1723 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1,
1724 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) {
1725 select |= SEL_ACT_LMLT;
1726 val = LML_TFLG_NOLAZYLD;
1727 variable = ENV_FLG_NOLAZY;
1728 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1,
1729 MSG_ORIG(MSG_LD_NOOBJALTER),
1730 MSG_LD_NOOBJALTER_SIZE) == 0)) {
1731 select |= SEL_ACT_RT;
1732 val = RT_FL_NOOBJALT;
1733 variable = ENV_FLG_NOOBJALTER;
1734 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1,
1735 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) {
1736 select |= SEL_ACT_RT;
1737 val = RT_FL_NOVERSION;
1738 variable = ENV_FLG_NOVERSION;
1739 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1,
1740 MSG_ORIG(MSG_LD_NOUNRESWEAK),
1741 MSG_LD_NOUNRESWEAK_SIZE) == 0)) {
1742 /*
1743 * LD_NOUNRESWEAK (internal, used by ldd(1)).
1744 */
1745 select |= SEL_ACT_LML;
1746 val = LML_FLG_TRC_NOUNRESWEAK;
1747 variable = ENV_FLG_NOUNRESWEAK;
1748 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1,
1749 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) {
1750 select |= SEL_ACT_LML;
1751 val = LML_FLG_TRC_NOPAREXT;
1752 variable = ENV_FLG_NOPAREXT;
1753 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1,
1754 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) {
1755 /*
1756 * LD_NOENVIRON can only be set with ld.so.1 -e.
1757 */
1758 select |= SEL_ACT_RT;
1759 val = RT_FL_NOENVIRON;
1760 variable = ENV_FLG_NOENVIRON;
1761 }
1762 }
1763 /*
1764 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family.
1765 */
1766 else if (*s1 == 'P') {
1767 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1,
1768 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) {
1769 select |= SEL_ACT_STR;
1770 str = (select & SEL_REPLACE) ?
1771 &rpl_platcap : &prm_platcap;
1772 variable = ENV_FLG_PLATCAP;
1773 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1,
1774 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) {
1775 select |= SEL_ACT_STR;
1776 str = (select & SEL_REPLACE) ? &rpl_preload :
1777 &prm_preload;
1778 variable = ENV_FLG_PRELOAD;
1779 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1,
1780 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) {
1781 /*
1782 * Only one user library can be profiled at a time.
1783 */
1784 select |= SEL_ACT_SPEC_2;
1785 variable = ENV_FLG_PROFILE;
1786 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1,
1787 MSG_ORIG(MSG_LD_PROFILE_OUTPUT),
1788 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) {
1789 /*
1790 * Only one user library can be profiled at a time.
1791 */
1792 select |= SEL_ACT_STR;
1793 str = &profile_out;
1794 variable = ENV_FLG_PROFILE_OUTPUT;
1795 }
1796 }
1797 /*
1798 * LD_SFCAP and LD_SIGNAL.
1799 */
1800 else if (*s1 == 'S') {
1801 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1,
1802 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) {
1803 select |= SEL_ACT_STR;
1804 str = (select & SEL_REPLACE) ?
1805 &rpl_sfcap : &prm_sfcap;
1806 variable = ENV_FLG_SFCAP;
1807 } else if ((len == MSG_LD_SIGNAL_SIZE) &&
1808 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL),
1809 MSG_LD_SIGNAL_SIZE) == 0) &&
1810 ((rtld_flags & RT_FL_SECURE) == 0)) {
1811 select |= SEL_ACT_SPEC_2;
1812 variable = ENV_FLG_SIGNAL;
1813 }
1814 }
1815 /*
1816 * The LD_TRACE family (internal, used by ldd(1)). This definition is
1817 * the key to enabling all other ldd(1) specific environment variables.
1818 * In case an auditor is called, which in turn might exec(2) a
1819 * subprocess, this variable is disabled, so that any subprocess
1820 * escapes ldd(1) processing.
1821 */
1822 else if (*s1 == 'T') {
1823 if (((len == MSG_LD_TRACE_OBJS_SIZE) &&
1824 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS),
1825 MSG_LD_TRACE_OBJS_SIZE) == 0)) ||
1826 ((len == MSG_LD_TRACE_OBJS_E_SIZE) &&
1827 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E),
1828 MSG_LD_TRACE_OBJS_E_SIZE) == 0))) {
1829 char *s0 = (char *)s1;
1830
1831 select |= SEL_ACT_SPEC_2;
1832 variable = ENV_FLG_TRACE_OBJS;
1833
1834 #if defined(__sparc) || defined(__x86)
1835 /*
1836 * The simplest way to "disable" this variable is to
1837 * truncate this string to "LD_'\0'". This string is
1838 * ignored by any ld.so.1 environment processing.
1839 * Use of such interfaces as unsetenv(3c) are overkill,
1840 * and would drag too much libc implementation detail
1841 * into ld.so.1.
1842 */
1843 *s0 = '\0';
1844 #else
1845 /*
1846 * Verify that the above write is appropriate for any new platforms.
1847 */
1848 #error unsupported architecture!
1849 #endif
1850 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1,
1851 MSG_ORIG(MSG_LD_TRACE_PTHS),
1852 MSG_LD_TRACE_PTHS_SIZE) == 0)) {
1853 select |= SEL_ACT_LML;
1854 val = LML_FLG_TRC_SEARCH;
1855 variable = ENV_FLG_TRACE_PTHS;
1856 }
1857 }
1858 /*
1859 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)).
1860 */
1861 else if (*s1 == 'U') {
1862 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1,
1863 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) {
1864 select |= SEL_ACT_LML;
1865 val = LML_FLG_TRC_UNREF;
1866 variable = ENV_FLG_UNREF;
1867 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1,
1868 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) {
1869 select |= SEL_ACT_LML;
1870 val = LML_FLG_TRC_UNUSED;
1871 variable = ENV_FLG_UNUSED;
1872 }
1873 }
1874 /*
1875 * LD_VERBOSE (internal, used by ldd(1)).
1876 */
1877 else if (*s1 == 'V') {
1878 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1,
1879 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) {
1880 select |= SEL_ACT_LML;
1881 val = LML_FLG_TRC_VERBOSE;
1882 variable = ENV_FLG_VERBOSE;
1883 }
1884 }
1885 /*
1886 * LD_WARN (internal, used by ldd(1)).
1887 */
1888 else if (*s1 == 'W') {
1889 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1,
1890 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) {
1891 select |= SEL_ACT_LML;
1892 val = LML_FLG_TRC_WARN;
1893 variable = ENV_FLG_WARN;
1894 }
1895 }
1896
1897 if (variable == 0)
1898 return;
1899
1900 /*
1901 * If the variable is already processed with and ISA specific variable,
1902 * no further processing is needed.
1903 */
1904 if (((select & SEL_REPLACE) && (rplisa & variable)) ||
1905 ((select & SEL_PERMANT) && (prmisa & variable)))
1906 return;
1907
1908 /*
1909 * If this variable has already been set via the command line, then
1910 * ignore this variable. The command line, -e, takes precedence.
1911 */
1912 if (env_flags & ENV_TYP_ISA) {
1913 if (cmdisa & variable)
1914 return;
1915 if (env_flags & ENV_TYP_CMDLINE)
1916 cmdisa |= variable;
1917 } else {
1918 if (cmdgen & variable)
1919 return;
1920 if (env_flags & ENV_TYP_CMDLINE)
1921 cmdgen |= variable;
1922 }
1923
1924 /*
1925 * Mark the appropriate variables.
1926 */
1927 if (env_flags & ENV_TYP_ISA) {
1928 /*
1929 * This is an ISA setting.
1930 */
1931 if (select & SEL_REPLACE) {
1932 if (rplisa & variable)
1933 return;
1934 rplisa |= variable;
1935 } else {
1936 prmisa |= variable;
1937 }
1938 } else {
1939 /*
1940 * This is a non-ISA setting.
1941 */
1942 if (select & SEL_REPLACE) {
1943 if (rplgen & variable)
1944 return;
1945 rplgen |= variable;
1946 } else
1947 prmgen |= variable;
1948 }
1949
1950 /*
1951 * Now perform the setting.
1952 */
1953 if (select & SEL_ACT_RT) {
1954 if (s2)
1955 rtld_flags |= val;
1956 else
1957 rtld_flags &= ~val;
1958 } else if (select & SEL_ACT_RT2) {
1959 if (s2)
1960 rtld_flags2 |= val;
1961 else
1962 rtld_flags2 &= ~val;
1963 } else if (select & SEL_ACT_STR) {
1964 if (env_flags & ENV_TYP_NULL)
1965 *str = NULL;
1966 else
1967 *str = s2;
1968 } else if (select & SEL_ACT_LML) {
1969 if (s2)
1970 *lmflags |= val;
1971 else
1972 *lmflags &= ~val;
1973 } else if (select & SEL_ACT_LMLT) {
1974 if (s2)
1975 *lmtflags |= val;
1976 else
1977 *lmtflags &= ~val;
1978 } else if (select & SEL_ACT_SPEC_1) {
1979 /*
1980 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH
1981 */
1982 if (env_flags & ENV_TYP_NULL)
1983 *str = NULL;
1984 else
1985 *str = s2;
1986 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) {
1987 if (s2) {
1988 if (variable == ENV_FLG_FLAGS)
1989 env_info |= ENV_INF_FLAGCFG;
1990 else
1991 env_info |= ENV_INF_PATHCFG;
1992 } else {
1993 if (variable == ENV_FLG_FLAGS)
1994 env_info &= ~ENV_INF_FLAGCFG;
1995 else
1996 env_info &= ~ENV_INF_PATHCFG;
1997 }
1998 }
1999 } else if (select & SEL_ACT_SPEC_2) {
2000 /*
2001 * variables can be: ENV_FLG_
2002 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE,
2003 * SIGNAL, TRACE_OBJS
2004 */
2005 switch (variable) {
2006 case ENV_FLG_AUDIT_ARGS:
2007 if (s2) {
2008 audit_argcnt = atoi(s2);
2009 audit_argcnt += audit_argcnt % 2;
2010 } else
2011 audit_argcnt = 0;
2012 break;
2013 case ENV_FLG_BINDINGS:
2014 if (s2)
2015 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS);
2016 else
2017 rpl_debug = NULL;
2018 break;
2019 case ENV_FLG_CONFGEN:
2020 if (s2) {
2021 rtld_flags |= RT_FL_CONFGEN;
2022 *lmflags |= LML_FLG_IGNRELERR;
2023 } else {
2024 rtld_flags &= ~RT_FL_CONFGEN;
2025 *lmflags &= ~LML_FLG_IGNRELERR;
2026 }
2027 break;
2028 case ENV_FLG_LOADFLTR:
2029 if (s2) {
2030 *lmtflags |= LML_TFLG_LOADFLTR;
2031 if (*s2 == '2')
2032 rtld_flags |= RT_FL_WARNFLTR;
2033 } else {
2034 *lmtflags &= ~LML_TFLG_LOADFLTR;
2035 rtld_flags &= ~RT_FL_WARNFLTR;
2036 }
2037 break;
2038 case ENV_FLG_PROFILE:
2039 profile_name = s2;
2040 if (s2) {
2041 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) {
2042 return;
2043 }
2044 /* BEGIN CSTYLED */
2045 if (rtld_flags & RT_FL_SECURE) {
2046 profile_lib =
2047 #if defined(_ELF64)
2048 MSG_ORIG(MSG_PTH_LDPROFSE_64);
2049 #else
2050 MSG_ORIG(MSG_PTH_LDPROFSE);
2051 #endif
2052 } else {
2053 profile_lib =
2054 #if defined(_ELF64)
2055 MSG_ORIG(MSG_PTH_LDPROF_64);
2056 #else
2057 MSG_ORIG(MSG_PTH_LDPROF);
2058 #endif
2059 }
2060 /* END CSTYLED */
2061 } else
2062 profile_lib = NULL;
2063 break;
2064 case ENV_FLG_SIGNAL:
2065 killsig = s2 ? atoi(s2) : SIGKILL;
2066 break;
2067 case ENV_FLG_TRACE_OBJS:
2068 if (s2) {
2069 *lmflags |= LML_FLG_TRC_ENABLE;
2070 if (*s2 == '2')
2071 *lmflags |= LML_FLG_TRC_LDDSTUB;
2072 } else
2073 *lmflags &=
2074 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB);
2075 break;
2076 }
2077 }
2078 }
2079
2080 /*
2081 * Determine whether we have an architecture specific environment variable.
2082 * If we do, and we're the wrong architecture, it'll just get ignored.
2083 * Otherwise the variable is processed in it's architecture neutral form.
2084 */
2085 static int
ld_arch_env(const char * s1,size_t * len)2086 ld_arch_env(const char *s1, size_t *len)
2087 {
2088 size_t _len = *len - 3;
2089
2090 if (s1[_len++] == '_') {
2091 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) {
2092 #if defined(_ELF64)
2093 return (ENV_TYP_IGNORE);
2094 #else
2095 *len = *len - 3;
2096 return (ENV_TYP_ISA);
2097 #endif
2098 }
2099 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) {
2100 #if defined(_ELF64)
2101 *len = *len - 3;
2102 return (ENV_TYP_ISA);
2103 #else
2104 return (ENV_TYP_IGNORE);
2105 #endif
2106 }
2107 }
2108 return (0);
2109 }
2110
2111 /*
2112 * Process an LD_FLAGS environment variable. The value can be a comma
2113 * separated set of tokens, which are sent (in upper case) into the generic
2114 * LD_XXXX environment variable engine. For example:
2115 *
2116 * LD_FLAGS=bind_now= -> LD_BIND_NOW=
2117 * LD_FLAGS=bind_now -> LD_BIND_NOW=1
2118 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH=
2119 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:.
2120 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail
2121 * or
2122 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail
2123 */
2124 static int
ld_flags_env(const char * str,Word * lmflags,Word * lmtflags,uint_t env_flags)2125 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags,
2126 uint_t env_flags)
2127 {
2128 char *nstr, *sstr, *estr = NULL;
2129 size_t nlen, len;
2130
2131 if (str == NULL)
2132 return (0);
2133
2134 /*
2135 * Create a new string as we're going to transform the token(s) into
2136 * uppercase and separate tokens with nulls.
2137 */
2138 len = strlen(str);
2139 if ((nstr = malloc(len + 1)) == NULL)
2140 return (1);
2141 (void) strcpy(nstr, str);
2142
2143 for (sstr = nstr; sstr; sstr++, len--) {
2144 int flags = 0;
2145
2146 if ((*sstr != '\0') && (*sstr != ',')) {
2147 if (estr == NULL) {
2148 if (*sstr == '=')
2149 estr = sstr;
2150 else {
2151 /*
2152 * Translate token to uppercase. Don't
2153 * use toupper(3C) as including this
2154 * code doubles the size of ld.so.1.
2155 */
2156 if ((*sstr >= 'a') && (*sstr <= 'z'))
2157 *sstr = *sstr - ('a' - 'A');
2158 }
2159 }
2160 continue;
2161 }
2162
2163 *sstr = '\0';
2164
2165 /*
2166 * Have we discovered an "=" string.
2167 */
2168 if (estr) {
2169 nlen = estr - nstr;
2170
2171 /*
2172 * If this is an unqualified "=", then this variable
2173 * is intended to ensure a feature is disabled.
2174 */
2175 if ((*++estr == '\0') || (*estr == ','))
2176 estr = NULL;
2177 } else {
2178 nlen = sstr - nstr;
2179
2180 /*
2181 * If there is no "=" found, fabricate a boolean
2182 * definition for any unqualified variable. Thus,
2183 * LD_FLAGS=bind_now is represented as BIND_NOW=1.
2184 * The value "1" is sufficient to assert any boolean
2185 * variables. Setting of ENV_TYP_NULL ensures any
2186 * string usage is reset to a NULL string, thus
2187 * LD_FLAGS=library_path is equivalent to
2188 * LIBRARY_PATH='\0'.
2189 */
2190 flags |= ENV_TYP_NULL;
2191 estr = (char *)MSG_ORIG(MSG_STR_ONE);
2192 }
2193
2194 /*
2195 * Determine whether the environment variable is 32- or 64-bit
2196 * specific. The length, len, will reflect the architecture
2197 * neutral portion of the string.
2198 */
2199 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) {
2200 ld_generic_env(nstr, nlen, estr, lmflags,
2201 lmtflags, (env_flags | flags));
2202 }
2203 if (len == 0)
2204 break;
2205
2206 nstr = sstr + 1;
2207 estr = NULL;
2208 }
2209
2210 return (0);
2211 }
2212
2213 /*
2214 * Variant of getopt(), intended for use when ld.so.1 is invoked directly
2215 * from the command line. The only command line option allowed is -e followed
2216 * by a runtime linker environment variable.
2217 */
2218 int
rtld_getopt(char ** argv,char *** envp,auxv_t ** auxv,Word * lmflags,Word * lmtflags)2219 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags,
2220 Word *lmtflags)
2221 {
2222 int ndx;
2223
2224 for (ndx = 1; argv[ndx]; ndx++) {
2225 char *str;
2226
2227 if (argv[ndx][0] != '-')
2228 break;
2229
2230 if (argv[ndx][1] == '\0') {
2231 ndx++;
2232 break;
2233 }
2234
2235 if (argv[ndx][1] != 'e')
2236 return (1);
2237
2238 if (argv[ndx][2] == '\0') {
2239 ndx++;
2240 if (argv[ndx] == NULL)
2241 return (1);
2242 str = argv[ndx];
2243 } else
2244 str = &argv[ndx][2];
2245
2246 /*
2247 * If the environment variable starts with LD_, strip the LD_.
2248 * Otherwise, take things as is. Indicate that this variable
2249 * originates from the command line, as these variables take
2250 * precedence over any environment variables, or configuration
2251 * file variables.
2252 */
2253 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') &&
2254 (str[3] != '\0'))
2255 str += 3;
2256 if (ld_flags_env(str, lmflags, lmtflags,
2257 ENV_TYP_CMDLINE) == 1)
2258 return (1);
2259 }
2260
2261 /*
2262 * Make sure an object file has been specified.
2263 */
2264 if (argv[ndx] == NULL)
2265 return (1);
2266
2267 /*
2268 * Having gotten the arguments, clean ourselves off of the stack.
2269 * This results in a process that looks as if it was executed directly
2270 * from the application.
2271 */
2272 stack_cleanup(argv, envp, auxv, ndx);
2273 return (0);
2274 }
2275
2276 /*
2277 * Process a single LD_XXXX string.
2278 */
2279 static void
ld_str_env(const char * s1,Word * lmflags,Word * lmtflags,uint_t env_flags)2280 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags)
2281 {
2282 const char *s2;
2283 size_t len;
2284 int flags;
2285
2286 /*
2287 * In a branded process we must ignore all LD_XXXX variables because
2288 * they are intended for the brand's linker. To affect the native
2289 * linker, use LD_BRAND_XXXX instead.
2290 */
2291 if (rtld_flags2 & RT_FL2_BRANDED) {
2292 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX),
2293 MSG_LD_BRAND_PREFIX_SIZE) != 0)
2294 return;
2295 s1 += MSG_LD_BRAND_PREFIX_SIZE;
2296 }
2297
2298 /*
2299 * Variables with no value (ie. LD_XXXX=) turn a capability off.
2300 */
2301 if ((s2 = strchr(s1, '=')) == NULL) {
2302 len = strlen(s1);
2303 s2 = NULL;
2304 } else if (*++s2 == '\0') {
2305 len = strlen(s1) - 1;
2306 s2 = NULL;
2307 } else {
2308 len = s2 - s1 - 1;
2309 while (conv_strproc_isspace(*s2))
2310 s2++;
2311 }
2312
2313 /*
2314 * Determine whether the environment variable is 32-bit or 64-bit
2315 * specific. The length, len, will reflect the architecture neutral
2316 * portion of the string.
2317 */
2318 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE)
2319 return;
2320 env_flags |= flags;
2321
2322 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags);
2323 }
2324
2325 /*
2326 * Internal getenv routine. Called immediately after ld.so.1 initializes
2327 * itself to process any locale specific environment variables, and collect
2328 * any LD_XXXX variables for later processing.
2329 */
2330 #define LOC_LANG 1
2331 #define LOC_MESG 2
2332 #define LOC_ALL 3
2333
2334 int
readenv_user(const char ** envp,APlist ** ealpp)2335 readenv_user(const char **envp, APlist **ealpp)
2336 {
2337 char *locale;
2338 const char *s1;
2339 int loc = 0;
2340
2341 for (s1 = *envp; s1; envp++, s1 = *envp) {
2342 const char *s2;
2343
2344 if (*s1++ != 'L')
2345 continue;
2346
2347 /*
2348 * See if we have any locale environment settings. These
2349 * environment variables have a precedence, LC_ALL is higher
2350 * than LC_MESSAGES which is higher than LANG.
2351 */
2352 s2 = s1;
2353 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) {
2354 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL),
2355 MSG_LC_ALL_SIZE) == 0) {
2356 s2 += MSG_LC_ALL_SIZE;
2357 if ((*s2 != '\0') && (loc < LOC_ALL)) {
2358 glcs[CI_LCMESSAGES].lc_un.lc_ptr =
2359 (char *)s2;
2360 loc = LOC_ALL;
2361 }
2362 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES),
2363 MSG_LC_MESSAGES_SIZE) == 0) {
2364 s2 += MSG_LC_MESSAGES_SIZE;
2365 if ((*s2 != '\0') && (loc < LOC_MESG)) {
2366 glcs[CI_LCMESSAGES].lc_un.lc_ptr =
2367 (char *)s2;
2368 loc = LOC_MESG;
2369 }
2370 }
2371 continue;
2372 }
2373
2374 s2 = s1;
2375 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') &&
2376 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) {
2377 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2;
2378 loc = LOC_LANG;
2379 continue;
2380 }
2381
2382 /*
2383 * Pick off any LD_XXXX environment variables.
2384 */
2385 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) {
2386 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL)
2387 return (1);
2388 }
2389 }
2390
2391 /*
2392 * If we have a locale setting make sure it's worth processing further.
2393 * C and POSIX locales don't need any processing. In addition, to
2394 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow
2395 * the locale to contain a segment that leads upward in the file system
2396 * hierarchy (i.e. no '..' segments). Given that we'll be confined to
2397 * the /usr/lib/locale hierarchy, there is no need to extensively
2398 * validate the mode or ownership of any message file (as libc's
2399 * generic handling of message files does), or be concerned with
2400 * symbolic links that might otherwise send us elsewhere. Duplicate
2401 * the string so that new locale setting can generically cleanup any
2402 * previous locales.
2403 */
2404 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) {
2405 if (((*locale == 'C') && (*(locale + 1) == '\0')) ||
2406 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) ||
2407 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL))
2408 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL;
2409 else
2410 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale);
2411 }
2412 return (0);
2413 }
2414
2415 /*
2416 * Process any LD_XXXX environment variables collected by readenv_user().
2417 */
2418 int
procenv_user(APlist * ealp,Word * lmflags,Word * lmtflags)2419 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags)
2420 {
2421 Aliste idx;
2422 const char *s1;
2423
2424 for (APLIST_TRAVERSE(ealp, idx, s1))
2425 ld_str_env(s1, lmflags, lmtflags, 0);
2426
2427 /*
2428 * Having collected the best representation of any LD_FLAGS, process
2429 * these strings.
2430 */
2431 if (rpl_ldflags) {
2432 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0) == 1)
2433 return (1);
2434 rpl_ldflags = NULL;
2435 }
2436
2437 /*
2438 * Don't allow environment controlled auditing when tracing or if
2439 * explicitly disabled. Trigger all tracing modes from
2440 * LML_FLG_TRC_ENABLE.
2441 */
2442 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2443 rpl_audit = profile_lib = profile_name = NULL;
2444 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2445 *lmflags &= ~LML_MSK_TRC;
2446
2447 /*
2448 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins.
2449 */
2450 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) ==
2451 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY))
2452 rtld_flags2 &= ~RT_FL2_BINDLAZY;
2453
2454 /*
2455 * When using ldd(1) -r or -d against an executable, assert -p.
2456 */
2457 if ((*lmflags &
2458 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN)
2459 *lmflags |= LML_FLG_TRC_NOPAREXT;
2460
2461 return (0);
2462 }
2463
2464 /*
2465 * Configuration environment processing. Called after the executable has been
2466 * processed (as the executable can specify its own configuration file).
2467 */
2468 int
readenv_config(Rtc_env * envtbl,Addr addr)2469 readenv_config(Rtc_env * envtbl, Addr addr)
2470 {
2471 Word *lmflags = &(lml_main.lm_flags);
2472 Word *lmtflags = &(lml_main.lm_tflags);
2473
2474 if (envtbl == NULL)
2475 return (0);
2476
2477 while (envtbl->env_str) {
2478 uint_t env_flags = ENV_TYP_CONFIG;
2479 const char *s1 = (const char *)(envtbl->env_str + addr);
2480
2481 if (envtbl->env_flags & RTC_ENV_PERMANT)
2482 env_flags |= ENV_TYP_PERMANT;
2483
2484 if ((*s1++ == 'L') && (*s1++ == 'D') &&
2485 (*s1++ == '_') && (*s1 != '\0'))
2486 ld_str_env(s1, lmflags, lmtflags, env_flags);
2487
2488 envtbl++;
2489 }
2490
2491 /*
2492 * Having collected the best representation of any LD_FLAGS, process
2493 * these strings.
2494 */
2495 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0) == 1)
2496 return (1);
2497 if (ld_flags_env(prm_ldflags, lmflags, lmtflags,
2498 ENV_TYP_CONFIG) == 1)
2499 return (1);
2500
2501 /*
2502 * Don't allow environment controlled auditing when tracing or if
2503 * explicitly disabled. Trigger all tracing modes from
2504 * LML_FLG_TRC_ENABLE.
2505 */
2506 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT))
2507 prm_audit = profile_lib = profile_name = NULL;
2508 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0)
2509 *lmflags &= ~LML_MSK_TRC;
2510
2511 return (0);
2512 }
2513
2514 int
dowrite(Prfbuf * prf)2515 dowrite(Prfbuf * prf)
2516 {
2517 /*
2518 * We do not have a valid file descriptor, so we are unable
2519 * to flush the buffer.
2520 */
2521 if (prf->pr_fd == -1)
2522 return (0);
2523 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf);
2524 prf->pr_cur = prf->pr_buf;
2525 return (1);
2526 }
2527
2528 /*
2529 * Simplified printing. The following conversion specifications are supported:
2530 *
2531 * % [#] [-] [min field width] [. precision] s|d|x|c
2532 *
2533 *
2534 * dorprf takes the output buffer in the form of Prfbuf which permits
2535 * the verification of the output buffer size and the concatenation
2536 * of data to an already existing output buffer. The Prfbuf
2537 * structure contains the following:
2538 *
2539 * pr_buf pointer to the beginning of the output buffer.
2540 * pr_cur pointer to the next available byte in the output buffer. By
2541 * setting pr_cur ahead of pr_buf you can append to an already
2542 * existing buffer.
2543 * pr_len the size of the output buffer. By setting pr_len to '0' you
2544 * disable protection from overflows in the output buffer.
2545 * pr_fd a pointer to the file-descriptor the buffer will eventually be
2546 * output to. If pr_fd is set to '-1' then it's assumed there is
2547 * no output buffer, and doprf() will return with an error to
2548 * indicate an output buffer overflow. If pr_fd is > -1 then when
2549 * the output buffer is filled it will be flushed to pr_fd and will
2550 * then be available for additional data.
2551 */
2552 #define FLG_UT_MINUS 0x0001 /* - */
2553 #define FLG_UT_SHARP 0x0002 /* # */
2554 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */
2555
2556 /*
2557 * This macro is for use from within doprf only. It is to be used for checking
2558 * the output buffer size and placing characters into the buffer.
2559 */
2560 #define PUTC(c) \
2561 { \
2562 char tmpc; \
2563 \
2564 tmpc = (c); \
2565 if (bufsiz && (bp >= bufend)) { \
2566 prf->pr_cur = bp; \
2567 if (dowrite(prf) == 0) \
2568 return (0); \
2569 bp = prf->pr_cur; \
2570 } \
2571 *bp++ = tmpc; \
2572 }
2573
2574 /*
2575 * Define a local buffer size for building a numeric value - large enough to
2576 * hold a 64-bit value.
2577 */
2578 #define NUM_SIZE 22
2579
2580 size_t
doprf(const char * format,va_list args,Prfbuf * prf)2581 doprf(const char *format, va_list args, Prfbuf *prf)
2582 {
2583 char c;
2584 char *bp = prf->pr_cur;
2585 char *bufend = prf->pr_buf + prf->pr_len;
2586 size_t bufsiz = prf->pr_len;
2587
2588 while ((c = *format++) != '\0') {
2589 if (c != '%') {
2590 PUTC(c);
2591 } else {
2592 int base = 0, flag = 0, width = 0, prec = 0;
2593 size_t _i;
2594 int _c, _n;
2595 char *_s;
2596 int ls = 0;
2597 again:
2598 c = *format++;
2599 switch (c) {
2600 case '-':
2601 flag |= FLG_UT_MINUS;
2602 goto again;
2603 case '#':
2604 flag |= FLG_UT_SHARP;
2605 goto again;
2606 case '.':
2607 flag |= FLG_UT_DOTSEEN;
2608 goto again;
2609 case '0':
2610 case '1':
2611 case '2':
2612 case '3':
2613 case '4':
2614 case '5':
2615 case '6':
2616 case '7':
2617 case '8':
2618 case '9':
2619 if (flag & FLG_UT_DOTSEEN)
2620 prec = (prec * 10) + c - '0';
2621 else
2622 width = (width * 10) + c - '0';
2623 goto again;
2624 case 'x':
2625 case 'X':
2626 base = 16;
2627 break;
2628 case 'd':
2629 case 'D':
2630 case 'u':
2631 base = 10;
2632 flag &= ~FLG_UT_SHARP;
2633 break;
2634 case 'l':
2635 base = 10;
2636 ls++; /* number of l's (long or long long) */
2637 if ((*format == 'l') ||
2638 (*format == 'd') || (*format == 'D') ||
2639 (*format == 'x') || (*format == 'X') ||
2640 (*format == 'o') || (*format == 'O') ||
2641 (*format == 'u') || (*format == 'U'))
2642 goto again;
2643 break;
2644 case 'o':
2645 case 'O':
2646 base = 8;
2647 break;
2648 case 'c':
2649 _c = va_arg(args, int);
2650
2651 for (_i = 24; _i > 0; _i -= 8) {
2652 if ((c = ((_c >> _i) & 0x7f)) != 0) {
2653 PUTC(c);
2654 }
2655 }
2656 if ((c = ((_c >> _i) & 0x7f)) != 0) {
2657 PUTC(c);
2658 }
2659 break;
2660 case 's':
2661 _s = va_arg(args, char *);
2662 _i = strlen(_s);
2663 /* LINTED */
2664 _n = (int)(width - _i);
2665 if (!prec)
2666 /* LINTED */
2667 prec = (int)_i;
2668
2669 if (width && !(flag & FLG_UT_MINUS)) {
2670 while (_n-- > 0)
2671 PUTC(' ');
2672 }
2673 while (((c = *_s++) != 0) && prec--) {
2674 PUTC(c);
2675 }
2676 if (width && (flag & FLG_UT_MINUS)) {
2677 while (_n-- > 0)
2678 PUTC(' ');
2679 }
2680 break;
2681 case '%':
2682 PUTC('%');
2683 break;
2684 default:
2685 break;
2686 }
2687
2688 /*
2689 * Numeric processing
2690 */
2691 if (base) {
2692 char local[NUM_SIZE];
2693 size_t ssize = 0, psize = 0;
2694 const char *string =
2695 MSG_ORIG(MSG_STR_HEXNUM);
2696 const char *prefix =
2697 MSG_ORIG(MSG_STR_EMPTY);
2698 u_longlong_t num;
2699
2700 switch (ls) {
2701 case 0: /* int */
2702 num = (u_longlong_t)
2703 va_arg(args, uint_t);
2704 break;
2705 case 1: /* long */
2706 num = (u_longlong_t)
2707 va_arg(args, ulong_t);
2708 break;
2709 case 2: /* long long */
2710 num = va_arg(args, u_longlong_t);
2711 break;
2712 }
2713
2714 if (flag & FLG_UT_SHARP) {
2715 if (base == 16) {
2716 prefix = MSG_ORIG(MSG_STR_HEX);
2717 psize = 2;
2718 } else {
2719 prefix = MSG_ORIG(MSG_STR_ZERO);
2720 psize = 1;
2721 }
2722 }
2723 if ((base == 10) && (long)num < 0) {
2724 prefix = MSG_ORIG(MSG_STR_NEGATE);
2725 psize = MSG_STR_NEGATE_SIZE;
2726 num = (u_longlong_t)(-(longlong_t)num);
2727 }
2728
2729 /*
2730 * Convert the numeric value into a local
2731 * string (stored in reverse order).
2732 */
2733 _s = local;
2734 do {
2735 *_s++ = string[num % base];
2736 num /= base;
2737 ssize++;
2738 } while (num);
2739
2740 ASSERT(ssize < sizeof (local));
2741
2742 /*
2743 * Provide any precision or width padding.
2744 */
2745 if (prec) {
2746 /* LINTED */
2747 _n = (int)(prec - ssize);
2748 while ((_n-- > 0) &&
2749 (ssize < sizeof (local))) {
2750 *_s++ = '0';
2751 ssize++;
2752 }
2753 }
2754 if (width && !(flag & FLG_UT_MINUS)) {
2755 /* LINTED */
2756 _n = (int)(width - ssize - psize);
2757 while (_n-- > 0) {
2758 PUTC(' ');
2759 }
2760 }
2761
2762 /*
2763 * Print any prefix and the numeric string
2764 */
2765 while (*prefix)
2766 PUTC(*prefix++);
2767 do {
2768 PUTC(*--_s);
2769 } while (_s > local);
2770
2771 /*
2772 * Provide any width padding.
2773 */
2774 if (width && (flag & FLG_UT_MINUS)) {
2775 /* LINTED */
2776 _n = (int)(width - ssize - psize);
2777 while (_n-- > 0)
2778 PUTC(' ');
2779 }
2780 }
2781 }
2782 }
2783
2784 PUTC('\0');
2785 prf->pr_cur = bp;
2786 return (1);
2787 }
2788
2789 static int
doprintf(const char * format,va_list args,Prfbuf * prf)2790 doprintf(const char *format, va_list args, Prfbuf *prf)
2791 {
2792 char *ocur = prf->pr_cur;
2793
2794 if (doprf(format, args, prf) == 0)
2795 return (0);
2796 /* LINTED */
2797 return ((int)(prf->pr_cur - ocur));
2798 }
2799
2800 /* VARARGS2 */
2801 int
sprintf(char * buf,const char * format,...)2802 sprintf(char *buf, const char *format, ...)
2803 {
2804 va_list args;
2805 int len;
2806 Prfbuf prf;
2807
2808 va_start(args, format);
2809 prf.pr_buf = prf.pr_cur = buf;
2810 prf.pr_len = 0;
2811 prf.pr_fd = -1;
2812 len = doprintf(format, args, &prf);
2813 va_end(args);
2814
2815 /*
2816 * sprintf() return value excludes the terminating null byte.
2817 */
2818 return (len - 1);
2819 }
2820
2821 /* VARARGS3 */
2822 int
snprintf(char * buf,size_t n,const char * format,...)2823 snprintf(char *buf, size_t n, const char *format, ...)
2824 {
2825 va_list args;
2826 int len;
2827 Prfbuf prf;
2828
2829 va_start(args, format);
2830 prf.pr_buf = prf.pr_cur = buf;
2831 prf.pr_len = n;
2832 prf.pr_fd = -1;
2833 len = doprintf(format, args, &prf);
2834 va_end(args);
2835
2836 return (len);
2837 }
2838
2839 /* VARARGS2 */
2840 int
bufprint(Prfbuf * prf,const char * format,...)2841 bufprint(Prfbuf *prf, const char *format, ...)
2842 {
2843 va_list args;
2844 int len;
2845
2846 va_start(args, format);
2847 len = doprintf(format, args, prf);
2848 va_end(args);
2849
2850 return (len);
2851 }
2852
2853 /*PRINTFLIKE1*/
2854 int
printf(const char * format,...)2855 printf(const char *format, ...)
2856 {
2857 va_list args;
2858 char buffer[ERRSIZE];
2859 Prfbuf prf;
2860
2861 va_start(args, format);
2862 prf.pr_buf = prf.pr_cur = buffer;
2863 prf.pr_len = ERRSIZE;
2864 prf.pr_fd = 1;
2865 (void) doprf(format, args, &prf);
2866 va_end(args);
2867 /*
2868 * Trim trailing '\0' form buffer
2869 */
2870 prf.pr_cur--;
2871 return (dowrite(&prf));
2872 }
2873
2874 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL;
2875
2876 /*
2877 * All error messages go through eprintf(). During process initialization,
2878 * these messages are directed to the standard error, however once control has
2879 * been passed to the applications code these messages are stored in an internal
2880 * buffer for use with dlerror(). Note, fatal error conditions that may occur
2881 * while running the application will still cause a standard error message, see
2882 * rtldexit() in this file for details.
2883 * The RT_FL_APPLIC flag serves to indicate the transition between process
2884 * initialization and when the applications code is running.
2885 */
2886 void
veprintf(Lm_list * lml,Error error,const char * format,va_list args)2887 veprintf(Lm_list *lml, Error error, const char *format, va_list args)
2888 {
2889 int overflow = 0;
2890 static int lock = 0;
2891 Prfbuf prf;
2892
2893 if (lock || (nextptr == (errbuf + ERRSIZE)))
2894 return;
2895
2896 /*
2897 * Note: this lock is here to prevent the same thread from recursively
2898 * entering itself during a eprintf. ie: during eprintf malloc() fails
2899 * and we try and call eprintf ... and then malloc() fails ....
2900 */
2901 lock = 1;
2902
2903 /*
2904 * If we have completed startup initialization, all error messages
2905 * must be saved. These are reported through dlerror(). If we're
2906 * still in the initialization stage, output the error directly and
2907 * add a newline.
2908 */
2909 prf.pr_buf = prf.pr_cur = nextptr;
2910 prf.pr_len = ERRSIZE - (nextptr - errbuf);
2911
2912 if ((rtld_flags & RT_FL_APPLIC) == 0)
2913 prf.pr_fd = 2;
2914 else
2915 prf.pr_fd = -1;
2916
2917 if (error > ERR_NONE) {
2918 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN))
2919 error = ERR_WARNING;
2920 switch (error) {
2921 case ERR_WARNING_NF:
2922 if (err_strs[ERR_WARNING_NF] == NULL)
2923 err_strs[ERR_WARNING_NF] =
2924 MSG_INTL(MSG_ERR_WARNING);
2925 break;
2926 case ERR_WARNING:
2927 if (err_strs[ERR_WARNING] == NULL)
2928 err_strs[ERR_WARNING] =
2929 MSG_INTL(MSG_ERR_WARNING);
2930 break;
2931 case ERR_GUIDANCE:
2932 if (err_strs[ERR_GUIDANCE] == NULL)
2933 err_strs[ERR_GUIDANCE] =
2934 MSG_INTL(MSG_ERR_GUIDANCE);
2935 break;
2936 case ERR_ELF:
2937 if (err_strs[ERR_ELF] == NULL)
2938 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF);
2939 break;
2940 /* If this API is mis-used, create a fatal error */
2941 case ERR_FATAL:
2942 default:
2943 if (err_strs[ERR_FATAL] == NULL)
2944 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL);
2945 break;
2946
2947 }
2948 if (procname) {
2949 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1),
2950 rtldname, procname, err_strs[error]) == 0)
2951 overflow = 1;
2952 } else {
2953 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2954 rtldname, err_strs[error]) == 0)
2955 overflow = 1;
2956 }
2957 if (overflow == 0) {
2958 /*
2959 * Remove the terminating '\0'.
2960 */
2961 prf.pr_cur--;
2962 }
2963 }
2964
2965 if ((overflow == 0) && doprf(format, args, &prf) == 0)
2966 overflow = 1;
2967
2968 /*
2969 * If this is an ELF error, it will have been generated by a support
2970 * object that has a dependency on libelf. ld.so.1 doesn't generate any
2971 * ELF error messages as it doesn't interact with libelf. Determine the
2972 * ELF error string.
2973 */
2974 if ((overflow == 0) && (error == ERR_ELF)) {
2975 static int (*elfeno)() = 0;
2976 static const char *(*elfemg)();
2977 const char *emsg;
2978 Rt_map *dlmp, *lmp = lml_rtld.lm_head;
2979
2980 if (NEXT(lmp) && (elfeno == 0)) {
2981 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT,
2982 MSG_ORIG(MSG_SYM_ELFERRMSG),
2983 lmp, &dlmp)) == NULL) ||
2984 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT,
2985 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL))
2986 elfeno = 0;
2987 }
2988
2989 /*
2990 * Lookup the message; equivalent to elf_errmsg(elf_errno()).
2991 */
2992 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) {
2993 prf.pr_cur--;
2994 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2),
2995 emsg) == 0)
2996 overflow = 1;
2997 }
2998 }
2999
3000 /*
3001 * Push out any message that's been built. Note, in the case of an
3002 * overflow condition, this message may be incomplete, in which case
3003 * make sure any partial string is null terminated.
3004 */
3005 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) {
3006 *(prf.pr_cur - 1) = '\n';
3007 (void) dowrite(&prf);
3008 }
3009 if (overflow)
3010 *(prf.pr_cur - 1) = '\0';
3011
3012 DBG_CALL(Dbg_util_str(lml, nextptr));
3013
3014 /*
3015 * Determine if there was insufficient space left in the buffer to
3016 * complete the message. If so, we'll have printed out as much as had
3017 * been processed if we're not yet executing the application.
3018 * Otherwise, there will be some debugging diagnostic indicating
3019 * as much of the error message as possible. Write out a final buffer
3020 * overflow diagnostic - unlocalized, so we don't chance more errors.
3021 */
3022 if (overflow) {
3023 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW);
3024
3025 if ((rtld_flags & RT_FL_SILENCERR) == 0) {
3026 lasterr = str;
3027
3028 if ((rtld_flags & RT_FL_APPLIC) == 0) {
3029 (void) write(2, str, strlen(str));
3030 (void) write(2, MSG_ORIG(MSG_STR_NL),
3031 MSG_STR_NL_SIZE);
3032 }
3033 }
3034 DBG_CALL(Dbg_util_str(lml, str));
3035
3036 lock = 0;
3037 nextptr = errbuf + ERRSIZE;
3038 return;
3039 }
3040
3041 /*
3042 * If the application has started, then error messages are being saved
3043 * for retrieval by dlerror(), or possible flushing from rtldexit() in
3044 * the case of a fatal error. In this case, establish the next error
3045 * pointer. If we haven't started the application, the whole message
3046 * buffer can be reused.
3047 */
3048 if ((rtld_flags & RT_FL_SILENCERR) == 0) {
3049 lasterr = nextptr;
3050
3051 /*
3052 * Note, should we encounter an error such as ENOMEM, there may
3053 * be a number of the same error messages (ie. an operation
3054 * fails with ENOMEM, and then the attempts to construct the
3055 * error message itself, which incurs additional ENOMEM errors).
3056 * Compare any previous error message with the one we've just
3057 * created to prevent any duplication clutter.
3058 */
3059 if ((rtld_flags & RT_FL_APPLIC) &&
3060 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) {
3061 prevptr = nextptr;
3062 nextptr = prf.pr_cur;
3063 *nextptr = '\0';
3064 }
3065 }
3066 lock = 0;
3067 }
3068
3069 /*PRINTFLIKE3*/
3070 void
eprintf(Lm_list * lml,Error error,const char * format,...)3071 eprintf(Lm_list *lml, Error error, const char *format, ...)
3072 {
3073 va_list args;
3074
3075 va_start(args, format);
3076 veprintf(lml, error, format, args);
3077 va_end(args);
3078 }
3079
3080 static const char rtld_panicstr[] = "rtld assertion failure";
3081
3082 /*
3083 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further
3084 * details.
3085 */
3086 void
assfail(const char * a,const char * f,int l)3087 assfail(const char *a, const char *f, int l)
3088 {
3089 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l);
3090 (void) _lwp_kill(_lwp_self(), SIGABRT);
3091 upanic(rtld_panicstr, sizeof (rtld_panicstr));
3092 }
3093
3094 void
assfail3(const char * msg,uintmax_t a,const char * op,uintmax_t b,const char * f,int l)3095 assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b,
3096 const char *f, int l)
3097 {
3098 (void) printf("assertion failed: %s (0x%llx %s 0x%llx), "
3099 "file: %s, line: %d\n", msg, (unsigned long long)a, op,
3100 (unsigned long long)b, f, l);
3101 (void) _lwp_kill(_lwp_self(), SIGABRT);
3102 upanic(rtld_panicstr, sizeof (rtld_panicstr));
3103 }
3104
3105 /*
3106 * Exit. If we arrive here with a non zero status it's because of a fatal
3107 * error condition (most commonly a relocation error). If the application has
3108 * already had control, then the actual fatal error message will have been
3109 * recorded in the dlerror() message buffer. Print the message before really
3110 * exiting.
3111 */
3112 void
rtldexit(Lm_list * lml,int status)3113 rtldexit(Lm_list * lml, int status)
3114 {
3115 if (status) {
3116 if (rtld_flags & RT_FL_APPLIC) {
3117 /*
3118 * If the error buffer has been used, write out all
3119 * pending messages - lasterr is simply a pointer to
3120 * the last message in this buffer. However, if the
3121 * buffer couldn't be created at all, lasterr points
3122 * to a constant error message string.
3123 */
3124 if (*errbuf) {
3125 char *errptr = errbuf;
3126 char *errend = errbuf + ERRSIZE;
3127
3128 while ((errptr < errend) && *errptr) {
3129 size_t size = strlen(errptr);
3130 (void) write(2, errptr, size);
3131 (void) write(2, MSG_ORIG(MSG_STR_NL),
3132 MSG_STR_NL_SIZE);
3133 errptr += (size + 1);
3134 }
3135 }
3136 if (lasterr && ((lasterr < errbuf) ||
3137 (lasterr > (errbuf + ERRSIZE)))) {
3138 (void) write(2, lasterr, strlen(lasterr));
3139 (void) write(2, MSG_ORIG(MSG_STR_NL),
3140 MSG_STR_NL_SIZE);
3141 }
3142 }
3143 leave(lml, 0);
3144 (void) _lwp_kill(_lwp_self(), killsig);
3145 }
3146 _exit(status);
3147 }
3148
3149 /*
3150 * Map anonymous memory via MAP_ANON (added in Solaris 8).
3151 */
3152 void *
dz_map(Lm_list * lml,caddr_t addr,size_t len,int prot,int flags)3153 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3154 {
3155 caddr_t va;
3156
3157 if ((va = (caddr_t)mmap(addr, len, prot,
3158 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) {
3159 int err = errno;
3160 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON),
3161 strerror(err));
3162 return (MAP_FAILED);
3163 }
3164 return (va);
3165 }
3166
3167 static int nu_fd = FD_UNAVAIL;
3168
3169 void *
nu_map(Lm_list * lml,caddr_t addr,size_t len,int prot,int flags)3170 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags)
3171 {
3172 caddr_t va;
3173 int err;
3174
3175 if (nu_fd == FD_UNAVAIL) {
3176 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL),
3177 O_RDONLY)) == FD_UNAVAIL) {
3178 err = errno;
3179 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
3180 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3181 return (MAP_FAILED);
3182 }
3183 }
3184
3185 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) ==
3186 MAP_FAILED) {
3187 err = errno;
3188 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP),
3189 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err));
3190 }
3191 return (va);
3192 }
3193
3194 /*
3195 * Generic entry point from user code - simply grabs a lock, and bumps the
3196 * entrance count.
3197 */
3198 int
enter(int flags)3199 enter(int flags)
3200 {
3201 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) {
3202 if (!thr_flg_nolock)
3203 (void) rt_mutex_lock(&rtldlock);
3204 if (rtld_flags & RT_FL_OPERATION) {
3205 ld_entry_cnt++;
3206
3207 /*
3208 * Reset the diagnostic time information for each new
3209 * "operation". Thus timing diagnostics are relative
3210 * to entering ld.so.1.
3211 */
3212 if (DBG_ISTIME() &&
3213 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) {
3214 DBG_DELTATIME = DBG_TOTALTIME;
3215 DBG_ONRESET();
3216 }
3217 }
3218 return (1);
3219 }
3220 return (0);
3221 }
3222
3223 /*
3224 * Determine whether a search path has been used.
3225 */
3226 static void
is_path_used(Lm_list * lml,Word unref,int * nl,Alist * alp,const char * obj)3227 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj)
3228 {
3229 Pdesc *pdp;
3230 Aliste idx;
3231
3232 for (ALIST_TRAVERSE(alp, idx, pdp)) {
3233 const char *fmt, *name;
3234
3235 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED))
3236 continue;
3237
3238 /*
3239 * If this pathname originated from an expanded token, use the
3240 * original for any diagnostic output.
3241 */
3242 if ((name = pdp->pd_oname) == NULL)
3243 name = pdp->pd_pname;
3244
3245 if (unref == 0) {
3246 if ((*nl)++ == 0)
3247 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3248 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags,
3249 (pdp->pd_flags & PD_FLG_DUPLICAT), obj));
3250 continue;
3251 }
3252
3253 if (pdp->pd_flags & LA_SER_LIBPATH) {
3254 if (pdp->pd_flags & LA_SER_CONFIG) {
3255 if (pdp->pd_flags & PD_FLG_DUPLICAT)
3256 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC);
3257 else
3258 fmt = MSG_INTL(MSG_USD_LDLIBPATHC);
3259 } else {
3260 if (pdp->pd_flags & PD_FLG_DUPLICAT)
3261 fmt = MSG_INTL(MSG_DUP_LDLIBPATH);
3262 else
3263 fmt = MSG_INTL(MSG_USD_LDLIBPATH);
3264 }
3265 } else if (pdp->pd_flags & LA_SER_RUNPATH) {
3266 fmt = MSG_INTL(MSG_USD_RUNPATH);
3267 } else
3268 continue;
3269
3270 if ((*nl)++ == 0)
3271 (void) printf(MSG_ORIG(MSG_STR_NL));
3272 (void) printf(fmt, name, obj);
3273 }
3274 }
3275
3276 /*
3277 * Generate diagnostics as to whether an object has been used. A symbolic
3278 * reference that gets bound to an object marks it as used. Dependencies that
3279 * are unused when RTLD_NOW is in effect should be removed from future builds
3280 * of an object. Dependencies that are unused without RTLD_NOW in effect are
3281 * candidates for lazy-loading.
3282 *
3283 * Unreferenced objects identify objects that are defined as dependencies but
3284 * are unreferenced by the caller. These unreferenced objects may however be
3285 * referenced by other objects within the process, and therefore don't qualify
3286 * as completely unused. They are still an unnecessary overhead.
3287 *
3288 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail"
3289 * debugging.
3290 */
3291 void
unused(Lm_list * lml)3292 unused(Lm_list *lml)
3293 {
3294 Rt_map *lmp;
3295 int nl = 0;
3296 Word unref, unuse;
3297
3298 /*
3299 * If we're not tracing unused references or dependencies, or debugging
3300 * there's nothing to do.
3301 */
3302 unref = lml->lm_flags & LML_FLG_TRC_UNREF;
3303 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED;
3304
3305 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0))
3306 return;
3307
3308 /*
3309 * Detect unused global search paths.
3310 */
3311 if (rpl_libdirs)
3312 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name);
3313 if (prm_libdirs)
3314 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name);
3315
3316 nl = 0;
3317 lmp = lml->lm_head;
3318 if (RLIST(lmp))
3319 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3320
3321 /*
3322 * Traverse the link-maps looking for unreferenced or unused
3323 * dependencies. Ignore the first object on a link-map list, as this
3324 * is always used.
3325 */
3326 nl = 0;
3327 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) {
3328 /*
3329 * Determine if this object contains any runpaths that have
3330 * not been used.
3331 */
3332 if (RLIST(lmp))
3333 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp));
3334
3335 /*
3336 * If tracing unreferenced objects, or under debugging,
3337 * determine whether any of this objects callers haven't
3338 * referenced it.
3339 */
3340 if (unref || DBG_ENABLED) {
3341 Bnd_desc *bdp;
3342 Aliste idx;
3343
3344 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) {
3345 Rt_map *clmp;
3346
3347 if (bdp->b_flags & BND_REFER)
3348 continue;
3349
3350 clmp = bdp->b_caller;
3351 if (FLAGS1(clmp) & FL1_RT_LDDSTUB)
3352 continue;
3353
3354 /* BEGIN CSTYLED */
3355 if (nl++ == 0) {
3356 if (unref)
3357 (void) printf(MSG_ORIG(MSG_STR_NL));
3358 else
3359 DBG_CALL(Dbg_util_nl(lml,
3360 DBG_NL_STD));
3361 }
3362
3363 if (unref)
3364 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT),
3365 NAME(lmp), NAME(clmp));
3366 else
3367 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp)));
3368 /* END CSTYLED */
3369 }
3370 }
3371
3372 /*
3373 * If tracing unused objects simply display those objects that
3374 * haven't been referenced by anyone.
3375 */
3376 if (FLAGS1(lmp) & FL1_RT_USED)
3377 continue;
3378
3379 if (nl++ == 0) {
3380 if (unref || unuse)
3381 (void) printf(MSG_ORIG(MSG_STR_NL));
3382 else
3383 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3384 }
3385 if (CYCGROUP(lmp)) {
3386 if (unref || unuse)
3387 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT),
3388 NAME(lmp), CYCGROUP(lmp));
3389 else
3390 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0,
3391 CYCGROUP(lmp)));
3392 } else {
3393 if (unref || unuse)
3394 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT),
3395 NAME(lmp));
3396 else
3397 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0));
3398 }
3399 }
3400
3401 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD));
3402 }
3403
3404 /*
3405 * Generic cleanup routine called prior to returning control to the user.
3406 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are
3407 * released, and any locks dropped.
3408 */
3409 void
leave(Lm_list * lml,int flags)3410 leave(Lm_list *lml, int flags)
3411 {
3412 /*
3413 * Alert the debuggers that the link-maps are consistent.
3414 */
3415 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT);
3416
3417 /*
3418 * Alert any auditors that the link-maps are consistent.
3419 */
3420 if (lml->lm_flags & LML_FLG_ACTAUDIT) {
3421 audit_activity(lml->lm_head, LA_ACT_CONSISTENT);
3422 lml->lm_flags &= ~LML_FLG_ACTAUDIT;
3423 }
3424
3425 if (nu_fd != FD_UNAVAIL) {
3426 (void) close(nu_fd);
3427 nu_fd = FD_UNAVAIL;
3428 }
3429
3430 /*
3431 * Reinitialize error message pointer, and any overflow indication.
3432 */
3433 nextptr = errbuf;
3434 prevptr = NULL;
3435
3436 /*
3437 * Defragment any freed memory.
3438 */
3439 if (aplist_nitems(free_alp))
3440 defrag();
3441
3442 /*
3443 * Don't drop our lock if we are running on our link-map list as
3444 * there's little point in doing so since we are single-threaded.
3445 *
3446 * LML_FLG_HOLDLOCK is set for:
3447 * - The ld.so.1's link-map list.
3448 * - The auditor's link-map if the environment is pre-UPM.
3449 */
3450 if (lml->lm_flags & LML_FLG_HOLDLOCK)
3451 return;
3452
3453 if (rt_bind_clear(0) & THR_FLG_RTLD) {
3454 if (!thr_flg_nolock)
3455 (void) rt_mutex_unlock(&rtldlock);
3456 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags);
3457 }
3458 }
3459
3460 int
callable(Rt_map * clmp,Rt_map * dlmp,Grp_hdl * ghp,uint_t slflags)3461 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags)
3462 {
3463 APlist *calp, *dalp;
3464 Aliste idx1, idx2;
3465 Grp_hdl *ghp1, *ghp2;
3466
3467 /*
3468 * An object can always find symbols within itself.
3469 */
3470 if (clmp == dlmp)
3471 return (1);
3472
3473 /*
3474 * The search for a singleton must look in every loaded object.
3475 */
3476 if (slflags & LKUP_SINGLETON)
3477 return (1);
3478
3479 /*
3480 * Don't allow an object to bind to an object that is being deleted
3481 * unless the binder is also being deleted.
3482 */
3483 if ((FLAGS(dlmp) & FLG_RT_DELETE) &&
3484 ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
3485 return (0);
3486
3487 /*
3488 * An object with world access can always bind to an object with global
3489 * visibility.
3490 */
3491 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) &&
3492 (MODE(dlmp) & RTLD_GLOBAL))
3493 return (1);
3494
3495 /*
3496 * An object with local access can only bind to an object that is a
3497 * member of the same group.
3498 */
3499 if (((MODE(clmp) & RTLD_GROUP) == 0) ||
3500 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL))
3501 return (0);
3502
3503 /*
3504 * Traverse the list of groups the caller is a part of.
3505 */
3506 for (APLIST_TRAVERSE(calp, idx1, ghp1)) {
3507 /*
3508 * If we're testing for the ability of two objects to bind to
3509 * each other regardless of a specific group, ignore that group.
3510 */
3511 if (ghp && (ghp1 == ghp))
3512 continue;
3513
3514 /*
3515 * Traverse the list of groups the destination is a part of.
3516 */
3517 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) {
3518 Grp_desc *gdp;
3519 Aliste idx3;
3520
3521 if (ghp1 != ghp2)
3522 continue;
3523
3524 /*
3525 * Make sure the relationship between the destination
3526 * and the caller provide symbols for relocation.
3527 * Parents are maintained as callers, but unless the
3528 * destination object was opened with RTLD_PARENT, the
3529 * parent doesn't provide symbols for the destination
3530 * to relocate against.
3531 */
3532 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) {
3533 if (dlmp != gdp->gd_depend)
3534 continue;
3535
3536 if (gdp->gd_flags & GPD_RELOC)
3537 return (1);
3538 }
3539 }
3540 }
3541 return (0);
3542 }
3543
3544 /*
3545 * Initialize the environ symbol. Traditionally this is carried out by the crt
3546 * code prior to jumping to main. However, init sections get fired before this
3547 * variable is initialized, so ld.so.1 sets this directly from the AUX vector
3548 * information. In addition, a process may have multiple link-maps (ld.so.1's
3549 * debugging and preloading objects), and link auditing, and each may need an
3550 * environ variable set.
3551 *
3552 * This routine is called after a relocation() pass, and thus provides for:
3553 *
3554 * - setting environ on the main link-map after the initial application and
3555 * its dependencies have been established. Typically environ lives in the
3556 * application (provided by its crt), but in older applications it might
3557 * be in libc. Who knows what's expected of applications not built on
3558 * Solaris.
3559 *
3560 * - after loading a new shared object. We can add shared objects to various
3561 * link-maps, and any link-map dependencies requiring getopt() require
3562 * their own environ. In addition, lazy loading might bring in the
3563 * supplier of environ (libc used to be a lazy loading candidate) after
3564 * the link-map has been established and other objects are present.
3565 *
3566 * This routine handles all these scenarios, without adding unnecessary overhead
3567 * to ld.so.1.
3568 */
3569 void
set_environ(Lm_list * lml)3570 set_environ(Lm_list *lml)
3571 {
3572 Slookup sl;
3573 Sresult sr;
3574 uint_t binfo;
3575
3576 /*
3577 * Initialize the symbol lookup, and symbol result, data structures.
3578 */
3579 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head,
3580 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK);
3581 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON));
3582
3583 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) {
3584 Rt_map *dlmp = sr.sr_dmap;
3585
3586 lml->lm_environ = (char ***)sr.sr_sym->st_value;
3587
3588 if (!(FLAGS(dlmp) & FLG_RT_FIXED))
3589 lml->lm_environ =
3590 (char ***)((uintptr_t)lml->lm_environ +
3591 (uintptr_t)ADDR(dlmp));
3592 *(lml->lm_environ) = (char **)environ;
3593 lml->lm_flags |= LML_FLG_ENVIRON;
3594 }
3595 }
3596
3597 /*
3598 * Determine whether we have a secure executable. Uid and gid information
3599 * can be passed to us via the aux vector, however if these values are -1
3600 * then use the appropriate system call to obtain them.
3601 *
3602 * - If the user is the root they can do anything
3603 *
3604 * - If the real and effective uid's don't match, or the real and
3605 * effective gid's don't match then this is determined to be a `secure'
3606 * application.
3607 *
3608 * This function is called prior to any dependency processing (see _setup.c).
3609 * Any secure setting will remain in effect for the life of the process.
3610 */
3611 void
security(uid_t uid,uid_t euid,gid_t gid,gid_t egid,int auxflags)3612 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags)
3613 {
3614 if (auxflags != -1) {
3615 if ((auxflags & AF_SUN_SETUGID) != 0)
3616 rtld_flags |= RT_FL_SECURE;
3617 return;
3618 }
3619
3620 if (uid == (uid_t)-1)
3621 uid = getuid();
3622 if (uid) {
3623 if (euid == (uid_t)-1)
3624 euid = geteuid();
3625 if (uid != euid)
3626 rtld_flags |= RT_FL_SECURE;
3627 else {
3628 if (gid == (gid_t)-1)
3629 gid = getgid();
3630 if (egid == (gid_t)-1)
3631 egid = getegid();
3632 if (gid != egid)
3633 rtld_flags |= RT_FL_SECURE;
3634 }
3635 }
3636 }
3637
3638 /*
3639 * Determine whether ld.so.1 itself is owned by root and has its mode setuid.
3640 */
3641 int
is_rtld_setuid()3642 is_rtld_setuid()
3643 {
3644 rtld_stat_t status;
3645 const char *name;
3646
3647 if (rtld_flags2 & RT_FL2_SETUID)
3648 return (1);
3649
3650 if (interp && interp->i_name)
3651 name = interp->i_name;
3652 else
3653 name = NAME(lml_rtld.lm_head);
3654
3655 if (((rtld_stat(name, &status) == 0) &&
3656 (status.st_uid == 0) && (status.st_mode & S_ISUID))) {
3657 rtld_flags2 |= RT_FL2_SETUID;
3658 return (1);
3659 }
3660 return (0);
3661 }
3662
3663 /*
3664 * Determine that systems platform name. Normally, this name is provided from
3665 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a
3666 * fall back.
3667 */
3668 void
platform_name(Syscapset * scapset)3669 platform_name(Syscapset *scapset)
3670 {
3671 char info[SYS_NMLN];
3672 size_t size;
3673
3674 if ((scapset->sc_platsz = size =
3675 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1)
3676 return;
3677
3678 if ((scapset->sc_plat = malloc(size)) == NULL) {
3679 scapset->sc_platsz = (size_t)-1;
3680 return;
3681 }
3682 (void) strcpy(scapset->sc_plat, info);
3683 }
3684
3685 /*
3686 * Determine that systems machine name. Normally, this name is provided from
3687 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a
3688 * fall back.
3689 */
3690 void
machine_name(Syscapset * scapset)3691 machine_name(Syscapset *scapset)
3692 {
3693 char info[SYS_NMLN];
3694 size_t size;
3695
3696 if ((scapset->sc_machsz = size =
3697 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1)
3698 return;
3699
3700 if ((scapset->sc_mach = malloc(size)) == NULL) {
3701 scapset->sc_machsz = (size_t)-1;
3702 return;
3703 }
3704 (void) strcpy(scapset->sc_mach, info);
3705 }
3706
3707 /*
3708 * _REENTRANT code gets errno redefined to a function so provide for return
3709 * of the thread errno if applicable. This has no meaning in ld.so.1 which
3710 * is basically singled threaded. Provide the interface for our dependencies.
3711 */
3712 #undef errno
3713 int *
___errno()3714 ___errno()
3715 {
3716 extern int errno;
3717
3718 return (&errno);
3719 }
3720
3721 /*
3722 * Determine whether a symbol name should be demangled.
3723 */
3724 const char *
demangle(const char * name)3725 demangle(const char *name)
3726 {
3727 if (rtld_flags & RT_FL_DEMANGLE)
3728 return (conv_demangle_name(name));
3729 else
3730 return (name);
3731 }
3732
3733 #ifndef _LP64
3734 /*
3735 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64()
3736 * underneath while preserving the object size limits of a non-largefile
3737 * enabled 32-bit process. The purpose of this is to prevent large inode
3738 * values from causing stat() to fail.
3739 */
3740 inline static int
rtld_stat_process(int r,struct stat64 * lbuf,rtld_stat_t * restrict buf)3741 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf)
3742 {
3743 extern int errno;
3744
3745 /*
3746 * Although we used a 64-bit capable stat(), the 32-bit rtld
3747 * can only handle objects < 2GB in size. If this object is
3748 * too big, turn the success into an overflow error.
3749 */
3750 if ((lbuf->st_size & 0xffffffff80000000) != 0) {
3751 errno = EOVERFLOW;
3752 return (-1);
3753 }
3754
3755 /*
3756 * Transfer the information needed by rtld into a rtld_stat_t
3757 * structure that preserves the non-largile types for everything
3758 * except inode.
3759 */
3760 buf->st_dev = lbuf->st_dev;
3761 buf->st_ino = lbuf->st_ino;
3762 buf->st_mode = lbuf->st_mode;
3763 buf->st_uid = lbuf->st_uid;
3764 buf->st_size = (off_t)lbuf->st_size;
3765 buf->st_mtim = lbuf->st_mtim;
3766 #ifdef sparc
3767 buf->st_blksize = lbuf->st_blksize;
3768 #endif
3769
3770 return (r);
3771 }
3772
3773 int
rtld_stat(const char * restrict path,rtld_stat_t * restrict buf)3774 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf)
3775 {
3776 struct stat64 lbuf;
3777 int r;
3778
3779 r = stat64(path, &lbuf);
3780 if (r != -1)
3781 r = rtld_stat_process(r, &lbuf, buf);
3782 return (r);
3783 }
3784
3785 int
rtld_fstat(int fildes,rtld_stat_t * restrict buf)3786 rtld_fstat(int fildes, rtld_stat_t *restrict buf)
3787 {
3788 struct stat64 lbuf;
3789 int r;
3790
3791 r = fstat64(fildes, &lbuf);
3792 if (r != -1)
3793 r = rtld_stat_process(r, &lbuf, buf);
3794 return (r);
3795 }
3796 #endif
3797