1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 DEVMETHOD(device_probe, t4_probe),
107 DEVMETHOD(device_attach, t4_attach),
108 DEVMETHOD(device_detach, t4_detach),
109 DEVMETHOD(device_suspend, t4_suspend),
110 DEVMETHOD(device_resume, t4_resume),
111
112 DEVMETHOD(bus_child_location, t4_child_location),
113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
114 DEVMETHOD(bus_reset_post, t4_reset_post),
115
116 DEVMETHOD(t4_is_main_ready, t4_ready),
117 DEVMETHOD(t4_read_port_device, t4_read_port_device),
118
119 DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 "t4nex",
123 t4_methods,
124 sizeof(struct adapter)
125 };
126
127
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 DEVMETHOD(device_probe, cxgbe_probe),
134 DEVMETHOD(device_attach, cxgbe_attach),
135 DEVMETHOD(device_detach, cxgbe_detach),
136 { 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 "cxgbe",
140 cxgbe_methods,
141 sizeof(struct port_info)
142 };
143
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 DEVMETHOD(device_probe, vcxgbe_probe),
150 DEVMETHOD(device_attach, vcxgbe_attach),
151 DEVMETHOD(device_detach, vcxgbe_detach),
152 { 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 "vcxgbe",
156 vcxgbe_methods,
157 sizeof(struct vi_info)
158 };
159
160 static d_ioctl_t t4_ioctl;
161
162 static struct cdevsw t4_cdevsw = {
163 .d_version = D_VERSION,
164 .d_ioctl = t4_ioctl,
165 .d_name = "t4nex",
166 };
167
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 DEVMETHOD(device_probe, t5_probe),
172 DEVMETHOD(device_attach, t4_attach),
173 DEVMETHOD(device_detach, t4_detach),
174 DEVMETHOD(device_suspend, t4_suspend),
175 DEVMETHOD(device_resume, t4_resume),
176
177 DEVMETHOD(bus_child_location, t4_child_location),
178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
179 DEVMETHOD(bus_reset_post, t4_reset_post),
180
181 DEVMETHOD(t4_is_main_ready, t4_ready),
182 DEVMETHOD(t4_read_port_device, t4_read_port_device),
183
184 DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 "t5nex",
188 t5_methods,
189 sizeof(struct adapter)
190 };
191
192
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 "cxl",
196 cxgbe_methods,
197 sizeof(struct port_info)
198 };
199
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 "vcxl",
203 vcxgbe_methods,
204 sizeof(struct vi_info)
205 };
206
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 DEVMETHOD(device_probe, t6_probe),
211 DEVMETHOD(device_attach, t4_attach),
212 DEVMETHOD(device_detach, t4_detach),
213 DEVMETHOD(device_suspend, t4_suspend),
214 DEVMETHOD(device_resume, t4_resume),
215
216 DEVMETHOD(bus_child_location, t4_child_location),
217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
218 DEVMETHOD(bus_reset_post, t4_reset_post),
219
220 DEVMETHOD(t4_is_main_ready, t4_ready),
221 DEVMETHOD(t4_read_port_device, t4_read_port_device),
222
223 DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 "t6nex",
227 t6_methods,
228 sizeof(struct adapter)
229 };
230
231
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 "cc",
235 cxgbe_methods,
236 sizeof(struct port_info)
237 };
238
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 "vcc",
242 vcxgbe_methods,
243 sizeof(struct vi_info)
244 };
245
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253 struct m_snd_tag **);
254 #endif
255
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257
258 /*
259 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260 * then ADAPTER_LOCK, then t4_uld_list_lock.
261 */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 struct uld_info *t4_uld_list[ULD_MAX + 1];
267 #endif
268
269 /*
270 * Tunables. See tweak_tunables() too.
271 *
272 * Each tunable is set to a default value here if it's known at compile-time.
273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274 * provide a reasonable default (upto n) when the driver is loaded.
275 *
276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
277 * T5 are under hw.cxl.
278 */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280 "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282 "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284 "cxgbe(4) TOE parameters");
285
286 /*
287 * Number of queues for tx and rx, NIC and offload.
288 */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292 "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
294
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298 "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
300
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304 "Number of TX queues per VI");
305
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309 "Number of RX queues per VI");
310
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313 0, "Reserve TX queue 0 of each VI for non-flowid packets");
314
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319 "Number of offload TX queues per port");
320
321 #define NOFLDRXQ 2
322 static int t4_nofldrxq = -NOFLDRXQ;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
324 "Number of offload RX queues per port");
325
326 #define NOFLDTXQ_VI 1
327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
329 "Number of offload TX queues per VI");
330
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334 "Number of offload RX queues per VI");
335
336 #define TMR_IDX_OFLD 1
337 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340
341 #define PKTC_IDX_OFLD (-1)
342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382 "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384 &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386 &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388 &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390 &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392 &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394 &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396 &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398 &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402 &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404 &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406 &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408 &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412 &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414 &t4_toe_rexmt_backoff[15], 0, "");
415
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422 &t4_ddp_rcvbuf_cache, 0,
423 "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
432
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436 "Number of netmap TX queues");
437
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441 "Number of netmap RX queues");
442
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446 "Number of netmap TX queues per VI");
447
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451 "Number of netmap RX queues per VI");
452 #endif
453
454 /*
455 * Holdoff parameters for ports.
456 */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460 0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
462
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466 0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
468
469 /*
470 * Size (# of entries) of each tx and rx queue.
471 */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474 "Number of descriptors in each TX queue");
475
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478 "Number of descriptors in each RX queue");
479
480 /*
481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482 */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486
487 /*
488 * Configuration file. All the _CF names here are special.
489 */
490 #define DEFAULT_CF "default"
491 #define BUILTIN_CF "built-in"
492 #define FLASH_CF "flash"
493 #define UWIRE_CF "uwire"
494 #define FPGA_CF "fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497 sizeof(t4_cfg_file), "Firmware configuration file");
498
499 /*
500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503 * mark or when signalled to do so, 0 to never emit PAUSE.
504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505 * negotiated settings will override rx_pause/tx_pause.
506 * Otherwise rx_pause/tx_pause are applied forcibly.
507 */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510 &t4_pause_settings, 0,
511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512
513 /*
514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
516 * 0 to disable FEC.
517 */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521
522 /*
523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
525 * driver runs as if this is set to 0.
526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528 * transceiver. Multiple FEC bits may not be okay but will be passed on to
529 * the firmware anyway (may result in l1cfg errors with old firmwares).
530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531 * means set all FEC bits that are valid for the speed.
532 */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535 "Controls the use of FORCE_FEC bit in L1 configuration.");
536
537 /*
538 * Link autonegotiation.
539 * -1 to run with the firmware default.
540 * 0 to disable.
541 * 1 to enable.
542 */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545 "Link autonegotiation");
546
547 /*
548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549 * encouraged respectively). '-n' is the same as 'n' except the firmware
550 * version used in the checks is read from the firmware bundled with the driver.
551 */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555
556 /*
557 * ASIC features that will be used. Disable the ones you don't want so that the
558 * chip resources aren't wasted on features that will not be used.
559 */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563
564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566 &t4_linkcaps_allowed, 0, "Default link capabilities");
567
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569 FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571 &t4_switchcaps_allowed, 0, "Default switch capabilities");
572
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581 &t4_niccaps_allowed, 0, "Default NIC capabilities");
582
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605 0, "Use WC instead of UC for BAR2");
606
607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
608 static int t4_doorbells_allowed = 0xf;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
611
612 static int t4_num_vis = 1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
614 "Number of VIs per port");
615
616 /*
617 * PCIe Relaxed Ordering.
618 * -1: driver should figure out a good value.
619 * 0: disable RO.
620 * 1: enable RO.
621 * 2: leave RO alone.
622 */
623 static int pcie_relaxed_ordering = -1;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
625 &pcie_relaxed_ordering, 0,
626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
627
628 static int t4_panic_on_fatal_err = 0;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
630 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
631
632 static int t4_reset_on_fatal_err = 0;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
635
636 static int t4_clock_gate_on_suspend = 0;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
638 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
639
640 static int t4_tx_vm_wr = 0;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
642 "Use VM work requests to transmit packets.");
643
644 /*
645 * Set to non-zero to enable the attack filter. A packet that matches any of
646 * these conditions will get dropped on ingress:
647 * 1) IP && source address == destination address.
648 * 2) TCP/IP && source address is not a unicast address.
649 * 3) TCP/IP && destination address is not a unicast address.
650 * 4) IP && source address is loopback (127.x.y.z).
651 * 5) IP && destination address is loopback (127.x.y.z).
652 * 6) IPv6 && source address == destination address.
653 * 7) IPv6 && source address is not a unicast address.
654 * 8) IPv6 && source address is loopback (::1/128).
655 * 9) IPv6 && destination address is loopback (::1/128).
656 * 10) IPv6 && source address is unspecified (::/128).
657 * 11) IPv6 && destination address is unspecified (::/128).
658 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
659 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
660 */
661 static int t4_attack_filter = 0;
662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
663 &t4_attack_filter, 0, "Drop suspicious traffic");
664
665 static int t4_drop_ip_fragments = 0;
666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
667 &t4_drop_ip_fragments, 0, "Drop IP fragments");
668
669 static int t4_drop_pkts_with_l2_errors = 1;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
671 &t4_drop_pkts_with_l2_errors, 0,
672 "Drop all frames with Layer 2 length or checksum errors");
673
674 static int t4_drop_pkts_with_l3_errors = 0;
675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
676 &t4_drop_pkts_with_l3_errors, 0,
677 "Drop all frames with IP version, length, or checksum errors");
678
679 static int t4_drop_pkts_with_l4_errors = 0;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
681 &t4_drop_pkts_with_l4_errors, 0,
682 "Drop all frames with Layer 4 length, checksum, or other errors");
683
684 #ifdef TCP_OFFLOAD
685 /*
686 * TOE tunables.
687 */
688 static int t4_cop_managed_offloading = 0;
689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
690 &t4_cop_managed_offloading, 0,
691 "COP (Connection Offload Policy) controls all TOE offload");
692 #endif
693
694 #ifdef KERN_TLS
695 /*
696 * This enables KERN_TLS for all adapters if set.
697 */
698 static int t4_kern_tls = 0;
699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
700 "Enable KERN_TLS mode for T6 adapters");
701
702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
703 "cxgbe(4) KERN_TLS parameters");
704
705 static int t4_tls_inline_keys = 0;
706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
707 &t4_tls_inline_keys, 0,
708 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
709 "in card memory.");
710
711 static int t4_tls_combo_wrs = 0;
712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
713 0, "Attempt to combine TCB field updates with TLS record work requests.");
714 #endif
715
716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
717 static int vi_mac_funcs[] = {
718 FW_VI_FUNC_ETH,
719 FW_VI_FUNC_OFLD,
720 FW_VI_FUNC_IWARP,
721 FW_VI_FUNC_OPENISCSI,
722 FW_VI_FUNC_OPENFCOE,
723 FW_VI_FUNC_FOISCSI,
724 FW_VI_FUNC_FOFCOE,
725 };
726
727 struct intrs_and_queues {
728 uint16_t intr_type; /* INTx, MSI, or MSI-X */
729 uint16_t num_vis; /* number of VIs for each port */
730 uint16_t nirq; /* Total # of vectors */
731 uint16_t ntxq; /* # of NIC txq's for each port */
732 uint16_t nrxq; /* # of NIC rxq's for each port */
733 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
734 uint16_t nofldrxq; /* # of TOE rxq's for each port */
735 uint16_t nnmtxq; /* # of netmap txq's */
736 uint16_t nnmrxq; /* # of netmap rxq's */
737
738 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
739 uint16_t ntxq_vi; /* # of NIC txq's */
740 uint16_t nrxq_vi; /* # of NIC rxq's */
741 uint16_t nofldtxq_vi; /* # of TOE txq's */
742 uint16_t nofldrxq_vi; /* # of TOE rxq's */
743 uint16_t nnmtxq_vi; /* # of netmap txq's */
744 uint16_t nnmrxq_vi; /* # of netmap rxq's */
745 };
746
747 static void setup_memwin(struct adapter *);
748 static void position_memwin(struct adapter *, int, uint32_t);
749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
750 static int fwmtype_to_hwmtype(int);
751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
752 uint32_t *);
753 static int fixup_devlog_params(struct adapter *);
754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
755 static int contact_firmware(struct adapter *);
756 static int partition_resources(struct adapter *);
757 static int get_params__pre_init(struct adapter *);
758 static int set_params__pre_init(struct adapter *);
759 static int get_params__post_init(struct adapter *);
760 static int set_params__post_init(struct adapter *);
761 static void t4_set_desc(struct adapter *);
762 static bool fixed_ifmedia(struct port_info *);
763 static void build_medialist(struct port_info *);
764 static void init_link_config(struct port_info *);
765 static int fixup_link_config(struct port_info *);
766 static int apply_link_config(struct port_info *);
767 static int cxgbe_init_synchronized(struct vi_info *);
768 static int cxgbe_uninit_synchronized(struct vi_info *);
769 static int adapter_full_init(struct adapter *);
770 static void adapter_full_uninit(struct adapter *);
771 static int vi_full_init(struct vi_info *);
772 static void vi_full_uninit(struct vi_info *);
773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
774 static void quiesce_txq(struct sge_txq *);
775 static void quiesce_wrq(struct sge_wrq *);
776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
777 static void quiesce_vi(struct vi_info *);
778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
779 driver_intr_t *, void *, char *);
780 static int t4_free_irq(struct adapter *, struct irq *);
781 static void t4_init_atid_table(struct adapter *);
782 static void t4_free_atid_table(struct adapter *);
783 static void stop_atid_allocator(struct adapter *);
784 static void restart_atid_allocator(struct adapter *);
785 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
786 static void vi_refresh_stats(struct vi_info *);
787 static void cxgbe_refresh_stats(struct vi_info *);
788 static void cxgbe_tick(void *);
789 static void vi_tick(void *);
790 static void cxgbe_sysctls(struct port_info *);
791 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
792 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
793 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
794 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
795 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
796 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
797 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
798 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
799 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
800 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
802 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
803 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
804 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
805 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
806 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
807 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
808 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
809 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
810 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
811 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
812 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
813 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
814 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
819 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
820 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
821 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
822 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
823 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
824 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
825 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
826 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
827 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
828 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
829 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
830 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
831 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
832 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
839 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
840 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
841 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
842 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
843 #ifdef TCP_OFFLOAD
844 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
845 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
846 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
847 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
848 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
849 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
850 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
851 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
852 #endif
853 static int get_sge_context(struct adapter *, struct t4_sge_context *);
854 static int load_fw(struct adapter *, struct t4_data *);
855 static int load_cfg(struct adapter *, struct t4_data *);
856 static int load_boot(struct adapter *, struct t4_bootrom *);
857 static int load_bootcfg(struct adapter *, struct t4_data *);
858 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
859 static void free_offload_policy(struct t4_offload_policy *);
860 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
861 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
862 static int read_i2c(struct adapter *, struct t4_i2c_data *);
863 static int clear_stats(struct adapter *, u_int);
864 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
865 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
866 static inline int stop_adapter(struct adapter *);
867 static inline void set_adapter_hwstatus(struct adapter *, const bool);
868 static int stop_lld(struct adapter *);
869 static inline int restart_adapter(struct adapter *);
870 static int restart_lld(struct adapter *);
871 #ifdef TCP_OFFLOAD
872 static int deactivate_all_uld(struct adapter *);
873 static void stop_all_uld(struct adapter *);
874 static void restart_all_uld(struct adapter *);
875 #endif
876 #ifdef KERN_TLS
877 static int ktls_capability(struct adapter *, bool);
878 #endif
879 static int mod_event(module_t, int, void *);
880 static int notify_siblings(device_t, int);
881 static uint64_t vi_get_counter(if_t, ift_counter);
882 static uint64_t cxgbe_get_counter(if_t, ift_counter);
883 static void enable_vxlan_rx(struct adapter *);
884 static void reset_adapter_task(void *, int);
885 static void fatal_error_task(void *, int);
886 static void dump_devlog(struct adapter *);
887 static void dump_cim_regs(struct adapter *);
888 static void dump_cimla(struct adapter *);
889
890 struct {
891 uint16_t device;
892 char *desc;
893 } t4_pciids[] = {
894 {0xa000, "Chelsio Terminator 4 FPGA"},
895 {0x4400, "Chelsio T440-dbg"},
896 {0x4401, "Chelsio T420-CR"},
897 {0x4402, "Chelsio T422-CR"},
898 {0x4403, "Chelsio T440-CR"},
899 {0x4404, "Chelsio T420-BCH"},
900 {0x4405, "Chelsio T440-BCH"},
901 {0x4406, "Chelsio T440-CH"},
902 {0x4407, "Chelsio T420-SO"},
903 {0x4408, "Chelsio T420-CX"},
904 {0x4409, "Chelsio T420-BT"},
905 {0x440a, "Chelsio T404-BT"},
906 {0x440e, "Chelsio T440-LP-CR"},
907 }, t5_pciids[] = {
908 {0xb000, "Chelsio Terminator 5 FPGA"},
909 {0x5400, "Chelsio T580-dbg"},
910 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
911 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
912 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
913 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
914 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
915 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
916 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
917 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
918 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
919 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
920 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
921 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
922 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
923 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
924 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
925 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
926 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
927
928 /* Custom */
929 {0x5483, "Custom T540-CR"},
930 {0x5484, "Custom T540-BT"},
931 }, t6_pciids[] = {
932 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
933 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
934 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
935 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
936 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
937 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
938 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
939 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
940 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
941 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
942 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
943 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
944 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
945 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
946 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
947 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
948
949 /* Custom */
950 {0x6480, "Custom T6225-CR"},
951 {0x6481, "Custom T62100-CR"},
952 {0x6482, "Custom T6225-CR"},
953 {0x6483, "Custom T62100-CR"},
954 {0x6484, "Custom T64100-CR"},
955 {0x6485, "Custom T6240-SO"},
956 {0x6486, "Custom T6225-SO-CR"},
957 {0x6487, "Custom T6225-CR"},
958 };
959
960 #ifdef TCP_OFFLOAD
961 /*
962 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
963 * be exactly the same for both rxq and ofld_rxq.
964 */
965 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
966 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
967 #endif
968 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
969
970 static int
t4_probe(device_t dev)971 t4_probe(device_t dev)
972 {
973 int i;
974 uint16_t v = pci_get_vendor(dev);
975 uint16_t d = pci_get_device(dev);
976 uint8_t f = pci_get_function(dev);
977
978 if (v != PCI_VENDOR_ID_CHELSIO)
979 return (ENXIO);
980
981 /* Attach only to PF0 of the FPGA */
982 if (d == 0xa000 && f != 0)
983 return (ENXIO);
984
985 for (i = 0; i < nitems(t4_pciids); i++) {
986 if (d == t4_pciids[i].device) {
987 device_set_desc(dev, t4_pciids[i].desc);
988 return (BUS_PROBE_DEFAULT);
989 }
990 }
991
992 return (ENXIO);
993 }
994
995 static int
t5_probe(device_t dev)996 t5_probe(device_t dev)
997 {
998 int i;
999 uint16_t v = pci_get_vendor(dev);
1000 uint16_t d = pci_get_device(dev);
1001 uint8_t f = pci_get_function(dev);
1002
1003 if (v != PCI_VENDOR_ID_CHELSIO)
1004 return (ENXIO);
1005
1006 /* Attach only to PF0 of the FPGA */
1007 if (d == 0xb000 && f != 0)
1008 return (ENXIO);
1009
1010 for (i = 0; i < nitems(t5_pciids); i++) {
1011 if (d == t5_pciids[i].device) {
1012 device_set_desc(dev, t5_pciids[i].desc);
1013 return (BUS_PROBE_DEFAULT);
1014 }
1015 }
1016
1017 return (ENXIO);
1018 }
1019
1020 static int
t6_probe(device_t dev)1021 t6_probe(device_t dev)
1022 {
1023 int i;
1024 uint16_t v = pci_get_vendor(dev);
1025 uint16_t d = pci_get_device(dev);
1026
1027 if (v != PCI_VENDOR_ID_CHELSIO)
1028 return (ENXIO);
1029
1030 for (i = 0; i < nitems(t6_pciids); i++) {
1031 if (d == t6_pciids[i].device) {
1032 device_set_desc(dev, t6_pciids[i].desc);
1033 return (BUS_PROBE_DEFAULT);
1034 }
1035 }
1036
1037 return (ENXIO);
1038 }
1039
1040 static void
t5_attribute_workaround(device_t dev)1041 t5_attribute_workaround(device_t dev)
1042 {
1043 device_t root_port;
1044 uint32_t v;
1045
1046 /*
1047 * The T5 chips do not properly echo the No Snoop and Relaxed
1048 * Ordering attributes when replying to a TLP from a Root
1049 * Port. As a workaround, find the parent Root Port and
1050 * disable No Snoop and Relaxed Ordering. Note that this
1051 * affects all devices under this root port.
1052 */
1053 root_port = pci_find_pcie_root_port(dev);
1054 if (root_port == NULL) {
1055 device_printf(dev, "Unable to find parent root port\n");
1056 return;
1057 }
1058
1059 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1060 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1061 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1062 0)
1063 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1064 device_get_nameunit(root_port));
1065 }
1066
1067 static const struct devnames devnames[] = {
1068 {
1069 .nexus_name = "t4nex",
1070 .ifnet_name = "cxgbe",
1071 .vi_ifnet_name = "vcxgbe",
1072 .pf03_drv_name = "t4iov",
1073 .vf_nexus_name = "t4vf",
1074 .vf_ifnet_name = "cxgbev"
1075 }, {
1076 .nexus_name = "t5nex",
1077 .ifnet_name = "cxl",
1078 .vi_ifnet_name = "vcxl",
1079 .pf03_drv_name = "t5iov",
1080 .vf_nexus_name = "t5vf",
1081 .vf_ifnet_name = "cxlv"
1082 }, {
1083 .nexus_name = "t6nex",
1084 .ifnet_name = "cc",
1085 .vi_ifnet_name = "vcc",
1086 .pf03_drv_name = "t6iov",
1087 .vf_nexus_name = "t6vf",
1088 .vf_ifnet_name = "ccv"
1089 }
1090 };
1091
1092 void
t4_init_devnames(struct adapter * sc)1093 t4_init_devnames(struct adapter *sc)
1094 {
1095 int id;
1096
1097 id = chip_id(sc);
1098 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1099 sc->names = &devnames[id - CHELSIO_T4];
1100 else {
1101 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1102 sc->names = NULL;
1103 }
1104 }
1105
1106 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1107 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1108 {
1109 const char *parent, *name;
1110 long value;
1111 int line, unit;
1112
1113 line = 0;
1114 parent = device_get_nameunit(sc->dev);
1115 name = sc->names->ifnet_name;
1116 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1117 if (resource_long_value(name, unit, "port", &value) == 0 &&
1118 value == pi->port_id)
1119 return (unit);
1120 }
1121 return (-1);
1122 }
1123
1124 static void
t4_calibration(void * arg)1125 t4_calibration(void *arg)
1126 {
1127 struct adapter *sc;
1128 struct clock_sync *cur, *nex;
1129 uint64_t hw;
1130 sbintime_t sbt;
1131 int next_up;
1132
1133 sc = (struct adapter *)arg;
1134
1135 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1136 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1137 sbt = sbinuptime();
1138
1139 cur = &sc->cal_info[sc->cal_current];
1140 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1141 nex = &sc->cal_info[next_up];
1142 if (__predict_false(sc->cal_count == 0)) {
1143 /* First time in, just get the values in */
1144 cur->hw_cur = hw;
1145 cur->sbt_cur = sbt;
1146 sc->cal_count++;
1147 goto done;
1148 }
1149
1150 if (cur->hw_cur == hw) {
1151 /* The clock is not advancing? */
1152 sc->cal_count = 0;
1153 atomic_store_rel_int(&cur->gen, 0);
1154 goto done;
1155 }
1156
1157 seqc_write_begin(&nex->gen);
1158 nex->hw_prev = cur->hw_cur;
1159 nex->sbt_prev = cur->sbt_cur;
1160 nex->hw_cur = hw;
1161 nex->sbt_cur = sbt;
1162 seqc_write_end(&nex->gen);
1163 sc->cal_current = next_up;
1164 done:
1165 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1166 sc, C_DIRECT_EXEC);
1167 }
1168
1169 static void
t4_calibration_start(struct adapter * sc)1170 t4_calibration_start(struct adapter *sc)
1171 {
1172 /*
1173 * Here if we have not done a calibration
1174 * then do so otherwise start the appropriate
1175 * timer.
1176 */
1177 int i;
1178
1179 for (i = 0; i < CNT_CAL_INFO; i++) {
1180 sc->cal_info[i].gen = 0;
1181 }
1182 sc->cal_current = 0;
1183 sc->cal_count = 0;
1184 sc->cal_gen = 0;
1185 t4_calibration(sc);
1186 }
1187
1188 static int
t4_attach(device_t dev)1189 t4_attach(device_t dev)
1190 {
1191 struct adapter *sc;
1192 int rc = 0, i, j, rqidx, tqidx, nports;
1193 struct make_dev_args mda;
1194 struct intrs_and_queues iaq;
1195 struct sge *s;
1196 uint32_t *buf;
1197 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1198 int ofld_tqidx;
1199 #endif
1200 #ifdef TCP_OFFLOAD
1201 int ofld_rqidx;
1202 #endif
1203 #ifdef DEV_NETMAP
1204 int nm_rqidx, nm_tqidx;
1205 #endif
1206 int num_vis;
1207
1208 sc = device_get_softc(dev);
1209 sc->dev = dev;
1210 sysctl_ctx_init(&sc->ctx);
1211 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1212
1213 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1214 t5_attribute_workaround(dev);
1215 pci_enable_busmaster(dev);
1216 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1217 uint32_t v;
1218
1219 pci_set_max_read_req(dev, 4096);
1220 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1221 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1222 if (pcie_relaxed_ordering == 0 &&
1223 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1224 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1225 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1226 } else if (pcie_relaxed_ordering == 1 &&
1227 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1228 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1229 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1230 }
1231 }
1232
1233 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1234 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1235 sc->traceq = -1;
1236 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1237 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1238 device_get_nameunit(dev));
1239
1240 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1241 device_get_nameunit(dev));
1242 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1243 t4_add_adapter(sc);
1244
1245 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1246 TAILQ_INIT(&sc->sfl);
1247 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1248
1249 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1250
1251 sc->policy = NULL;
1252 rw_init(&sc->policy_lock, "connection offload policy");
1253
1254 callout_init(&sc->ktls_tick, 1);
1255
1256 callout_init(&sc->cal_callout, 1);
1257
1258 refcount_init(&sc->vxlan_refcount, 0);
1259
1260 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1261 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1262
1263 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1264 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1265 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1266 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1267 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1268 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1269
1270 rc = t4_map_bars_0_and_4(sc);
1271 if (rc != 0)
1272 goto done; /* error message displayed already */
1273
1274 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1275
1276 /* Prepare the adapter for operation. */
1277 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1278 rc = -t4_prep_adapter(sc, buf);
1279 free(buf, M_CXGBE);
1280 if (rc != 0) {
1281 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1282 goto done;
1283 }
1284
1285 /*
1286 * This is the real PF# to which we're attaching. Works from within PCI
1287 * passthrough environments too, where pci_get_function() could return a
1288 * different PF# depending on the passthrough configuration. We need to
1289 * use the real PF# in all our communication with the firmware.
1290 */
1291 j = t4_read_reg(sc, A_PL_WHOAMI);
1292 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1293 sc->mbox = sc->pf;
1294
1295 t4_init_devnames(sc);
1296 if (sc->names == NULL) {
1297 rc = ENOTSUP;
1298 goto done; /* error message displayed already */
1299 }
1300
1301 /*
1302 * Do this really early, with the memory windows set up even before the
1303 * character device. The userland tool's register i/o and mem read
1304 * will work even in "recovery mode".
1305 */
1306 setup_memwin(sc);
1307 if (t4_init_devlog_params(sc, 0) == 0)
1308 fixup_devlog_params(sc);
1309 make_dev_args_init(&mda);
1310 mda.mda_devsw = &t4_cdevsw;
1311 mda.mda_uid = UID_ROOT;
1312 mda.mda_gid = GID_WHEEL;
1313 mda.mda_mode = 0600;
1314 mda.mda_si_drv1 = sc;
1315 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1316 if (rc != 0)
1317 device_printf(dev, "failed to create nexus char device: %d.\n",
1318 rc);
1319
1320 /* Go no further if recovery mode has been requested. */
1321 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1322 device_printf(dev, "recovery mode.\n");
1323 goto done;
1324 }
1325
1326 #if defined(__i386__)
1327 if ((cpu_feature & CPUID_CX8) == 0) {
1328 device_printf(dev, "64 bit atomics not available.\n");
1329 rc = ENOTSUP;
1330 goto done;
1331 }
1332 #endif
1333
1334 /* Contact the firmware and try to become the master driver. */
1335 rc = contact_firmware(sc);
1336 if (rc != 0)
1337 goto done; /* error message displayed already */
1338 MPASS(sc->flags & FW_OK);
1339
1340 rc = get_params__pre_init(sc);
1341 if (rc != 0)
1342 goto done; /* error message displayed already */
1343
1344 if (sc->flags & MASTER_PF) {
1345 rc = partition_resources(sc);
1346 if (rc != 0)
1347 goto done; /* error message displayed already */
1348 }
1349
1350 rc = get_params__post_init(sc);
1351 if (rc != 0)
1352 goto done; /* error message displayed already */
1353
1354 rc = set_params__post_init(sc);
1355 if (rc != 0)
1356 goto done; /* error message displayed already */
1357
1358 rc = t4_map_bar_2(sc);
1359 if (rc != 0)
1360 goto done; /* error message displayed already */
1361
1362 rc = t4_adj_doorbells(sc);
1363 if (rc != 0)
1364 goto done; /* error message displayed already */
1365
1366 rc = t4_create_dma_tag(sc);
1367 if (rc != 0)
1368 goto done; /* error message displayed already */
1369
1370 /*
1371 * First pass over all the ports - allocate VIs and initialize some
1372 * basic parameters like mac address, port type, etc.
1373 */
1374 for_each_port(sc, i) {
1375 struct port_info *pi;
1376
1377 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1378 sc->port[i] = pi;
1379
1380 /* These must be set before t4_port_init */
1381 pi->adapter = sc;
1382 pi->port_id = i;
1383 /*
1384 * XXX: vi[0] is special so we can't delay this allocation until
1385 * pi->nvi's final value is known.
1386 */
1387 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1388 M_ZERO | M_WAITOK);
1389
1390 /*
1391 * Allocate the "main" VI and initialize parameters
1392 * like mac addr.
1393 */
1394 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1395 if (rc != 0) {
1396 device_printf(dev, "unable to initialize port %d: %d\n",
1397 i, rc);
1398 free(pi->vi, M_CXGBE);
1399 free(pi, M_CXGBE);
1400 sc->port[i] = NULL;
1401 goto done;
1402 }
1403
1404 if (is_bt(pi->port_type))
1405 setbit(&sc->bt_map, pi->tx_chan);
1406 else
1407 MPASS(!isset(&sc->bt_map, pi->tx_chan));
1408
1409 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1410 device_get_nameunit(dev), i);
1411 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1412 sc->chan_map[pi->tx_chan] = i;
1413
1414 /*
1415 * The MPS counter for FCS errors doesn't work correctly on the
1416 * T6 so we use the MAC counter here. Which MAC is in use
1417 * depends on the link settings which will be known when the
1418 * link comes up.
1419 */
1420 if (is_t6(sc))
1421 pi->fcs_reg = -1;
1422 else {
1423 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1424 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1425 }
1426 pi->fcs_base = 0;
1427
1428 /* All VIs on this port share this media. */
1429 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1430 cxgbe_media_status);
1431
1432 PORT_LOCK(pi);
1433 init_link_config(pi);
1434 fixup_link_config(pi);
1435 build_medialist(pi);
1436 if (fixed_ifmedia(pi))
1437 pi->flags |= FIXED_IFMEDIA;
1438 PORT_UNLOCK(pi);
1439
1440 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1441 t4_ifnet_unit(sc, pi));
1442 if (pi->dev == NULL) {
1443 device_printf(dev,
1444 "failed to add device for port %d.\n", i);
1445 rc = ENXIO;
1446 goto done;
1447 }
1448 pi->vi[0].dev = pi->dev;
1449 device_set_softc(pi->dev, pi);
1450 }
1451
1452 /*
1453 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1454 */
1455 nports = sc->params.nports;
1456 rc = cfg_itype_and_nqueues(sc, &iaq);
1457 if (rc != 0)
1458 goto done; /* error message displayed already */
1459
1460 num_vis = iaq.num_vis;
1461 sc->intr_type = iaq.intr_type;
1462 sc->intr_count = iaq.nirq;
1463
1464 s = &sc->sge;
1465 s->nrxq = nports * iaq.nrxq;
1466 s->ntxq = nports * iaq.ntxq;
1467 if (num_vis > 1) {
1468 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1469 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1470 }
1471 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1472 s->neq += nports; /* ctrl queues: 1 per port */
1473 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1474 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1475 if (is_offload(sc) || is_ethoffload(sc)) {
1476 s->nofldtxq = nports * iaq.nofldtxq;
1477 if (num_vis > 1)
1478 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1479 s->neq += s->nofldtxq;
1480
1481 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1482 M_CXGBE, M_ZERO | M_WAITOK);
1483 }
1484 #endif
1485 #ifdef TCP_OFFLOAD
1486 if (is_offload(sc)) {
1487 s->nofldrxq = nports * iaq.nofldrxq;
1488 if (num_vis > 1)
1489 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1490 s->neq += s->nofldrxq; /* free list */
1491 s->niq += s->nofldrxq;
1492
1493 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1494 M_CXGBE, M_ZERO | M_WAITOK);
1495 }
1496 #endif
1497 #ifdef DEV_NETMAP
1498 s->nnmrxq = 0;
1499 s->nnmtxq = 0;
1500 if (t4_native_netmap & NN_MAIN_VI) {
1501 s->nnmrxq += nports * iaq.nnmrxq;
1502 s->nnmtxq += nports * iaq.nnmtxq;
1503 }
1504 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1505 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1506 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1507 }
1508 s->neq += s->nnmtxq + s->nnmrxq;
1509 s->niq += s->nnmrxq;
1510
1511 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1512 M_CXGBE, M_ZERO | M_WAITOK);
1513 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1514 M_CXGBE, M_ZERO | M_WAITOK);
1515 #endif
1516 MPASS(s->niq <= s->iqmap_sz);
1517 MPASS(s->neq <= s->eqmap_sz);
1518
1519 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1520 M_ZERO | M_WAITOK);
1521 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1522 M_ZERO | M_WAITOK);
1523 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1524 M_ZERO | M_WAITOK);
1525 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1526 M_ZERO | M_WAITOK);
1527 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1528 M_ZERO | M_WAITOK);
1529
1530 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1531 M_ZERO | M_WAITOK);
1532
1533 t4_init_l2t(sc, M_WAITOK);
1534 t4_init_smt(sc, M_WAITOK);
1535 t4_init_tx_sched(sc);
1536 t4_init_atid_table(sc);
1537 #ifdef RATELIMIT
1538 t4_init_etid_table(sc);
1539 #endif
1540 #ifdef INET6
1541 t4_init_clip_table(sc);
1542 #endif
1543 if (sc->vres.key.size != 0)
1544 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1545 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1546
1547 /*
1548 * Second pass over the ports. This time we know the number of rx and
1549 * tx queues that each port should get.
1550 */
1551 rqidx = tqidx = 0;
1552 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1553 ofld_tqidx = 0;
1554 #endif
1555 #ifdef TCP_OFFLOAD
1556 ofld_rqidx = 0;
1557 #endif
1558 #ifdef DEV_NETMAP
1559 nm_rqidx = nm_tqidx = 0;
1560 #endif
1561 for_each_port(sc, i) {
1562 struct port_info *pi = sc->port[i];
1563 struct vi_info *vi;
1564
1565 if (pi == NULL)
1566 continue;
1567
1568 pi->nvi = num_vis;
1569 for_each_vi(pi, j, vi) {
1570 vi->pi = pi;
1571 vi->adapter = sc;
1572 vi->first_intr = -1;
1573 vi->qsize_rxq = t4_qsize_rxq;
1574 vi->qsize_txq = t4_qsize_txq;
1575
1576 vi->first_rxq = rqidx;
1577 vi->first_txq = tqidx;
1578 vi->tmr_idx = t4_tmr_idx;
1579 vi->pktc_idx = t4_pktc_idx;
1580 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1581 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1582
1583 rqidx += vi->nrxq;
1584 tqidx += vi->ntxq;
1585
1586 if (j == 0 && vi->ntxq > 1)
1587 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1588 else
1589 vi->rsrv_noflowq = 0;
1590
1591 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1592 vi->first_ofld_txq = ofld_tqidx;
1593 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1594 ofld_tqidx += vi->nofldtxq;
1595 #endif
1596 #ifdef TCP_OFFLOAD
1597 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1598 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1599 vi->first_ofld_rxq = ofld_rqidx;
1600 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1601
1602 ofld_rqidx += vi->nofldrxq;
1603 #endif
1604 #ifdef DEV_NETMAP
1605 vi->first_nm_rxq = nm_rqidx;
1606 vi->first_nm_txq = nm_tqidx;
1607 if (j == 0) {
1608 vi->nnmrxq = iaq.nnmrxq;
1609 vi->nnmtxq = iaq.nnmtxq;
1610 } else {
1611 vi->nnmrxq = iaq.nnmrxq_vi;
1612 vi->nnmtxq = iaq.nnmtxq_vi;
1613 }
1614 nm_rqidx += vi->nnmrxq;
1615 nm_tqidx += vi->nnmtxq;
1616 #endif
1617 }
1618 }
1619
1620 rc = t4_setup_intr_handlers(sc);
1621 if (rc != 0) {
1622 device_printf(dev,
1623 "failed to setup interrupt handlers: %d\n", rc);
1624 goto done;
1625 }
1626
1627 rc = bus_generic_probe(dev);
1628 if (rc != 0) {
1629 device_printf(dev, "failed to probe child drivers: %d\n", rc);
1630 goto done;
1631 }
1632
1633 /*
1634 * Ensure thread-safe mailbox access (in debug builds).
1635 *
1636 * So far this was the only thread accessing the mailbox but various
1637 * ifnets and sysctls are about to be created and their handlers/ioctls
1638 * will access the mailbox from different threads.
1639 */
1640 sc->flags |= CHK_MBOX_ACCESS;
1641
1642 rc = bus_generic_attach(dev);
1643 if (rc != 0) {
1644 device_printf(dev,
1645 "failed to attach all child ports: %d\n", rc);
1646 goto done;
1647 }
1648 t4_calibration_start(sc);
1649
1650 device_printf(dev,
1651 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1652 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1653 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1654 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1655 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1656
1657 t4_set_desc(sc);
1658
1659 notify_siblings(dev, 0);
1660
1661 done:
1662 if (rc != 0 && sc->cdev) {
1663 /* cdev was created and so cxgbetool works; recover that way. */
1664 device_printf(dev,
1665 "error during attach, adapter is now in recovery mode.\n");
1666 rc = 0;
1667 }
1668
1669 if (rc != 0)
1670 t4_detach_common(dev);
1671 else
1672 t4_sysctls(sc);
1673
1674 return (rc);
1675 }
1676
1677 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1678 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1679 {
1680 struct adapter *sc;
1681 struct port_info *pi;
1682 int i;
1683
1684 sc = device_get_softc(bus);
1685 for_each_port(sc, i) {
1686 pi = sc->port[i];
1687 if (pi != NULL && pi->dev == dev) {
1688 sbuf_printf(sb, "port=%d", pi->port_id);
1689 break;
1690 }
1691 }
1692 return (0);
1693 }
1694
1695 static int
t4_ready(device_t dev)1696 t4_ready(device_t dev)
1697 {
1698 struct adapter *sc;
1699
1700 sc = device_get_softc(dev);
1701 if (sc->flags & FW_OK)
1702 return (0);
1703 return (ENXIO);
1704 }
1705
1706 static int
t4_read_port_device(device_t dev,int port,device_t * child)1707 t4_read_port_device(device_t dev, int port, device_t *child)
1708 {
1709 struct adapter *sc;
1710 struct port_info *pi;
1711
1712 sc = device_get_softc(dev);
1713 if (port < 0 || port >= MAX_NPORTS)
1714 return (EINVAL);
1715 pi = sc->port[port];
1716 if (pi == NULL || pi->dev == NULL)
1717 return (ENXIO);
1718 *child = pi->dev;
1719 return (0);
1720 }
1721
1722 static int
notify_siblings(device_t dev,int detaching)1723 notify_siblings(device_t dev, int detaching)
1724 {
1725 device_t sibling;
1726 int error, i;
1727
1728 error = 0;
1729 for (i = 0; i < PCI_FUNCMAX; i++) {
1730 if (i == pci_get_function(dev))
1731 continue;
1732 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1733 pci_get_slot(dev), i);
1734 if (sibling == NULL || !device_is_attached(sibling))
1735 continue;
1736 if (detaching)
1737 error = T4_DETACH_CHILD(sibling);
1738 else
1739 (void)T4_ATTACH_CHILD(sibling);
1740 if (error)
1741 break;
1742 }
1743 return (error);
1744 }
1745
1746 /*
1747 * Idempotent
1748 */
1749 static int
t4_detach(device_t dev)1750 t4_detach(device_t dev)
1751 {
1752 int rc;
1753
1754 rc = notify_siblings(dev, 1);
1755 if (rc) {
1756 device_printf(dev,
1757 "failed to detach sibling devices: %d\n", rc);
1758 return (rc);
1759 }
1760
1761 return (t4_detach_common(dev));
1762 }
1763
1764 int
t4_detach_common(device_t dev)1765 t4_detach_common(device_t dev)
1766 {
1767 struct adapter *sc;
1768 struct port_info *pi;
1769 int i, rc;
1770
1771 sc = device_get_softc(dev);
1772
1773 #ifdef TCP_OFFLOAD
1774 rc = deactivate_all_uld(sc);
1775 if (rc) {
1776 device_printf(dev,
1777 "failed to detach upper layer drivers: %d\n", rc);
1778 return (rc);
1779 }
1780 #endif
1781
1782 if (sc->cdev) {
1783 destroy_dev(sc->cdev);
1784 sc->cdev = NULL;
1785 }
1786
1787 sx_xlock(&t4_list_lock);
1788 SLIST_REMOVE(&t4_list, sc, adapter, link);
1789 sx_xunlock(&t4_list_lock);
1790
1791 sc->flags &= ~CHK_MBOX_ACCESS;
1792 if (sc->flags & FULL_INIT_DONE) {
1793 if (!(sc->flags & IS_VF))
1794 t4_intr_disable(sc);
1795 }
1796
1797 if (device_is_attached(dev)) {
1798 rc = bus_generic_detach(dev);
1799 if (rc) {
1800 device_printf(dev,
1801 "failed to detach child devices: %d\n", rc);
1802 return (rc);
1803 }
1804 }
1805
1806 for (i = 0; i < sc->intr_count; i++)
1807 t4_free_irq(sc, &sc->irq[i]);
1808
1809 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1810 t4_free_tx_sched(sc);
1811
1812 for (i = 0; i < MAX_NPORTS; i++) {
1813 pi = sc->port[i];
1814 if (pi) {
1815 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1816 if (pi->dev)
1817 device_delete_child(dev, pi->dev);
1818
1819 mtx_destroy(&pi->pi_lock);
1820 free(pi->vi, M_CXGBE);
1821 free(pi, M_CXGBE);
1822 }
1823 }
1824 callout_stop(&sc->cal_callout);
1825 callout_drain(&sc->cal_callout);
1826 device_delete_children(dev);
1827 sysctl_ctx_free(&sc->ctx);
1828 adapter_full_uninit(sc);
1829
1830 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1831 t4_fw_bye(sc, sc->mbox);
1832
1833 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1834 pci_release_msi(dev);
1835
1836 if (sc->regs_res)
1837 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1838 sc->regs_res);
1839
1840 if (sc->udbs_res)
1841 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1842 sc->udbs_res);
1843
1844 if (sc->msix_res)
1845 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1846 sc->msix_res);
1847
1848 if (sc->l2t)
1849 t4_free_l2t(sc);
1850 if (sc->smt)
1851 t4_free_smt(sc->smt);
1852 t4_free_atid_table(sc);
1853 #ifdef RATELIMIT
1854 t4_free_etid_table(sc);
1855 #endif
1856 if (sc->key_map)
1857 vmem_destroy(sc->key_map);
1858 #ifdef INET6
1859 t4_destroy_clip_table(sc);
1860 #endif
1861
1862 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1863 free(sc->sge.ofld_txq, M_CXGBE);
1864 #endif
1865 #ifdef TCP_OFFLOAD
1866 free(sc->sge.ofld_rxq, M_CXGBE);
1867 #endif
1868 #ifdef DEV_NETMAP
1869 free(sc->sge.nm_rxq, M_CXGBE);
1870 free(sc->sge.nm_txq, M_CXGBE);
1871 #endif
1872 free(sc->irq, M_CXGBE);
1873 free(sc->sge.rxq, M_CXGBE);
1874 free(sc->sge.txq, M_CXGBE);
1875 free(sc->sge.ctrlq, M_CXGBE);
1876 free(sc->sge.iqmap, M_CXGBE);
1877 free(sc->sge.eqmap, M_CXGBE);
1878 free(sc->tids.ftid_tab, M_CXGBE);
1879 free(sc->tids.hpftid_tab, M_CXGBE);
1880 free_hftid_hash(&sc->tids);
1881 free(sc->tids.tid_tab, M_CXGBE);
1882 t4_destroy_dma_tag(sc);
1883
1884 callout_drain(&sc->ktls_tick);
1885 callout_drain(&sc->sfl_callout);
1886 if (mtx_initialized(&sc->tids.ftid_lock)) {
1887 mtx_destroy(&sc->tids.ftid_lock);
1888 cv_destroy(&sc->tids.ftid_cv);
1889 }
1890 if (mtx_initialized(&sc->tids.atid_lock))
1891 mtx_destroy(&sc->tids.atid_lock);
1892 if (mtx_initialized(&sc->ifp_lock))
1893 mtx_destroy(&sc->ifp_lock);
1894
1895 if (rw_initialized(&sc->policy_lock)) {
1896 rw_destroy(&sc->policy_lock);
1897 #ifdef TCP_OFFLOAD
1898 if (sc->policy != NULL)
1899 free_offload_policy(sc->policy);
1900 #endif
1901 }
1902
1903 for (i = 0; i < NUM_MEMWIN; i++) {
1904 struct memwin *mw = &sc->memwin[i];
1905
1906 if (rw_initialized(&mw->mw_lock))
1907 rw_destroy(&mw->mw_lock);
1908 }
1909
1910 mtx_destroy(&sc->sfl_lock);
1911 mtx_destroy(&sc->reg_lock);
1912 mtx_destroy(&sc->sc_lock);
1913
1914 bzero(sc, sizeof(*sc));
1915
1916 return (0);
1917 }
1918
1919 static inline int
stop_adapter(struct adapter * sc)1920 stop_adapter(struct adapter *sc)
1921 {
1922 struct port_info *pi;
1923 int i;
1924
1925 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1926 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1927 __func__, curthread, sc->flags, sc->error_flags);
1928 return (EALREADY);
1929 }
1930 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1931 sc->flags, sc->error_flags);
1932 t4_shutdown_adapter(sc);
1933 for_each_port(sc, i) {
1934 pi = sc->port[i];
1935 PORT_LOCK(pi);
1936 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1937 /*
1938 * t4_shutdown_adapter has already shut down all the
1939 * PHYs but it also disables interrupts and DMA so there
1940 * won't be a link interrupt. Update the state manually
1941 * if the link was up previously and inform the kernel.
1942 */
1943 pi->link_cfg.link_ok = false;
1944 t4_os_link_changed(pi);
1945 }
1946 PORT_UNLOCK(pi);
1947 }
1948
1949 return (0);
1950 }
1951
1952 static inline int
restart_adapter(struct adapter * sc)1953 restart_adapter(struct adapter *sc)
1954 {
1955 uint32_t val;
1956
1957 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1958 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1959 __func__, curthread, sc->flags, sc->error_flags);
1960 return (EALREADY);
1961 }
1962 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1963 sc->flags, sc->error_flags);
1964
1965 MPASS(hw_off_limits(sc));
1966 MPASS((sc->flags & FW_OK) == 0);
1967 MPASS((sc->flags & MASTER_PF) == 0);
1968 MPASS(sc->reset_thread == NULL);
1969
1970 /*
1971 * The adapter is supposed to be back on PCIE with its config space and
1972 * BARs restored to their state before reset. Register access via
1973 * t4_read_reg BAR0 should just work.
1974 */
1975 sc->reset_thread = curthread;
1976 val = t4_read_reg(sc, A_PL_WHOAMI);
1977 if (val == 0xffffffff || val == 0xeeeeeeee) {
1978 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1979 sc->reset_thread = NULL;
1980 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1981 return (ENXIO);
1982 }
1983 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1984 atomic_add_int(&sc->incarnation, 1);
1985 atomic_add_int(&sc->num_resets, 1);
1986
1987 return (0);
1988 }
1989
1990 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)1991 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1992 {
1993 if (usable) {
1994 /* Must be marked reusable by the designated thread. */
1995 ASSERT_SYNCHRONIZED_OP(sc);
1996 MPASS(sc->reset_thread == curthread);
1997 mtx_lock(&sc->reg_lock);
1998 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1999 mtx_unlock(&sc->reg_lock);
2000 } else {
2001 /* Mark the adapter totally off limits. */
2002 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2003 mtx_lock(&sc->reg_lock);
2004 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2005 mtx_unlock(&sc->reg_lock);
2006 sc->flags &= ~(FW_OK | MASTER_PF);
2007 sc->reset_thread = NULL;
2008 end_synchronized_op(sc, 0);
2009 }
2010 }
2011
2012 static int
stop_lld(struct adapter * sc)2013 stop_lld(struct adapter *sc)
2014 {
2015 struct port_info *pi;
2016 struct vi_info *vi;
2017 if_t ifp;
2018 struct sge_rxq *rxq;
2019 struct sge_txq *txq;
2020 struct sge_wrq *wrq;
2021 #ifdef TCP_OFFLOAD
2022 struct sge_ofld_rxq *ofld_rxq;
2023 #endif
2024 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2025 struct sge_ofld_txq *ofld_txq;
2026 #endif
2027 int rc, i, j, k;
2028
2029 /*
2030 * XXX: Can there be a synch_op in progress that will hang because
2031 * hardware has been stopped? We'll hang too and the solution will be
2032 * to use a version of begin_synch_op that wakes up existing synch_op
2033 * with errors. Maybe stop_adapter should do this wakeup?
2034 *
2035 * I don't think any synch_op could get stranded waiting for DMA or
2036 * interrupt so I think we're okay here. Remove this comment block
2037 * after testing.
2038 */
2039 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2040 if (rc != 0)
2041 return (ENXIO);
2042
2043 /* Quiesce all activity. */
2044 for_each_port(sc, i) {
2045 pi = sc->port[i];
2046 pi->vxlan_tcam_entry = false;
2047 for_each_vi(pi, j, vi) {
2048 vi->xact_addr_filt = -1;
2049 mtx_lock(&vi->tick_mtx);
2050 vi->flags |= VI_SKIP_STATS;
2051 mtx_unlock(&vi->tick_mtx);
2052 if (!(vi->flags & VI_INIT_DONE))
2053 continue;
2054
2055 ifp = vi->ifp;
2056 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2057 mtx_lock(&vi->tick_mtx);
2058 callout_stop(&vi->tick);
2059 mtx_unlock(&vi->tick_mtx);
2060 callout_drain(&vi->tick);
2061 }
2062
2063 /*
2064 * Note that the HW is not available.
2065 */
2066 for_each_txq(vi, k, txq) {
2067 TXQ_LOCK(txq);
2068 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2069 TXQ_UNLOCK(txq);
2070 }
2071 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2072 for_each_ofld_txq(vi, k, ofld_txq) {
2073 TXQ_LOCK(&ofld_txq->wrq);
2074 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2075 TXQ_UNLOCK(&ofld_txq->wrq);
2076 }
2077 #endif
2078 for_each_rxq(vi, k, rxq) {
2079 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2080 }
2081 #if defined(TCP_OFFLOAD)
2082 for_each_ofld_rxq(vi, k, ofld_rxq) {
2083 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2084 }
2085 #endif
2086
2087 quiesce_vi(vi);
2088 }
2089
2090 if (sc->flags & FULL_INIT_DONE) {
2091 /* Control queue */
2092 wrq = &sc->sge.ctrlq[i];
2093 TXQ_LOCK(wrq);
2094 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2095 TXQ_UNLOCK(wrq);
2096 quiesce_wrq(wrq);
2097 }
2098
2099 if (pi->flags & HAS_TRACEQ) {
2100 pi->flags &= ~HAS_TRACEQ;
2101 sc->traceq = -1;
2102 sc->tracer_valid = 0;
2103 sc->tracer_enabled = 0;
2104 }
2105 }
2106 if (sc->flags & FULL_INIT_DONE) {
2107 /* Firmware event queue */
2108 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2109 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2110 }
2111
2112 /* Stop calibration */
2113 callout_stop(&sc->cal_callout);
2114 callout_drain(&sc->cal_callout);
2115
2116 if (t4_clock_gate_on_suspend) {
2117 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2118 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2119 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2120 }
2121
2122 end_synchronized_op(sc, 0);
2123
2124 stop_atid_allocator(sc);
2125 t4_stop_l2t(sc);
2126
2127 return (rc);
2128 }
2129
2130 int
suspend_adapter(struct adapter * sc)2131 suspend_adapter(struct adapter *sc)
2132 {
2133 stop_adapter(sc);
2134 stop_lld(sc);
2135 #ifdef TCP_OFFLOAD
2136 stop_all_uld(sc);
2137 #endif
2138 set_adapter_hwstatus(sc, false);
2139
2140 return (0);
2141 }
2142
2143 static int
t4_suspend(device_t dev)2144 t4_suspend(device_t dev)
2145 {
2146 struct adapter *sc = device_get_softc(dev);
2147 int rc;
2148
2149 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2150 rc = suspend_adapter(sc);
2151 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2152
2153 return (rc);
2154 }
2155
2156 struct adapter_pre_reset_state {
2157 u_int flags;
2158 uint16_t nbmcaps;
2159 uint16_t linkcaps;
2160 uint16_t switchcaps;
2161 uint16_t niccaps;
2162 uint16_t toecaps;
2163 uint16_t rdmacaps;
2164 uint16_t cryptocaps;
2165 uint16_t iscsicaps;
2166 uint16_t fcoecaps;
2167
2168 u_int cfcsum;
2169 char cfg_file[32];
2170
2171 struct adapter_params params;
2172 struct t4_virt_res vres;
2173 struct tid_info tids;
2174 struct sge sge;
2175
2176 int rawf_base;
2177 int nrawf;
2178
2179 };
2180
2181 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2182 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2183 {
2184
2185 ASSERT_SYNCHRONIZED_OP(sc);
2186
2187 o->flags = sc->flags;
2188
2189 o->nbmcaps = sc->nbmcaps;
2190 o->linkcaps = sc->linkcaps;
2191 o->switchcaps = sc->switchcaps;
2192 o->niccaps = sc->niccaps;
2193 o->toecaps = sc->toecaps;
2194 o->rdmacaps = sc->rdmacaps;
2195 o->cryptocaps = sc->cryptocaps;
2196 o->iscsicaps = sc->iscsicaps;
2197 o->fcoecaps = sc->fcoecaps;
2198
2199 o->cfcsum = sc->cfcsum;
2200 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2201 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2202
2203 o->params = sc->params;
2204 o->vres = sc->vres;
2205 o->tids = sc->tids;
2206 o->sge = sc->sge;
2207
2208 o->rawf_base = sc->rawf_base;
2209 o->nrawf = sc->nrawf;
2210 }
2211
2212 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2213 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2214 {
2215 int rc = 0;
2216
2217 ASSERT_SYNCHRONIZED_OP(sc);
2218
2219 /* Capabilities */
2220 #define COMPARE_CAPS(c) do { \
2221 if (o->c##caps != sc->c##caps) { \
2222 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2223 sc->c##caps); \
2224 rc = EINVAL; \
2225 } \
2226 } while (0)
2227 COMPARE_CAPS(nbm);
2228 COMPARE_CAPS(link);
2229 COMPARE_CAPS(switch);
2230 COMPARE_CAPS(nic);
2231 COMPARE_CAPS(toe);
2232 COMPARE_CAPS(rdma);
2233 COMPARE_CAPS(crypto);
2234 COMPARE_CAPS(iscsi);
2235 COMPARE_CAPS(fcoe);
2236 #undef COMPARE_CAPS
2237
2238 /* Firmware config file */
2239 if (o->cfcsum != sc->cfcsum) {
2240 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2241 o->cfcsum, sc->cfg_file, sc->cfcsum);
2242 rc = EINVAL;
2243 }
2244
2245 #define COMPARE_PARAM(p, name) do { \
2246 if (o->p != sc->p) { \
2247 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2248 rc = EINVAL; \
2249 } \
2250 } while (0)
2251 COMPARE_PARAM(sge.iq_start, iq_start);
2252 COMPARE_PARAM(sge.eq_start, eq_start);
2253 COMPARE_PARAM(tids.ftid_base, ftid_base);
2254 COMPARE_PARAM(tids.ftid_end, ftid_end);
2255 COMPARE_PARAM(tids.nftids, nftids);
2256 COMPARE_PARAM(vres.l2t.start, l2t_start);
2257 COMPARE_PARAM(vres.l2t.size, l2t_size);
2258 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2259 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2260 COMPARE_PARAM(tids.tid_base, tid_base);
2261 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2262 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2263 COMPARE_PARAM(tids.nhpftids, nhpftids);
2264 COMPARE_PARAM(rawf_base, rawf_base);
2265 COMPARE_PARAM(nrawf, nrawf);
2266 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2267 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2268 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2269 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2270 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2271 COMPARE_PARAM(tids.ntids, ntids);
2272 COMPARE_PARAM(tids.etid_base, etid_base);
2273 COMPARE_PARAM(tids.etid_end, etid_end);
2274 COMPARE_PARAM(tids.netids, netids);
2275 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2276 COMPARE_PARAM(params.ethoffload, ethoffload);
2277 COMPARE_PARAM(tids.natids, natids);
2278 COMPARE_PARAM(tids.stid_base, stid_base);
2279 COMPARE_PARAM(vres.ddp.start, ddp_start);
2280 COMPARE_PARAM(vres.ddp.size, ddp_size);
2281 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2282 COMPARE_PARAM(vres.stag.start, stag_start);
2283 COMPARE_PARAM(vres.stag.size, stag_size);
2284 COMPARE_PARAM(vres.rq.start, rq_start);
2285 COMPARE_PARAM(vres.rq.size, rq_size);
2286 COMPARE_PARAM(vres.pbl.start, pbl_start);
2287 COMPARE_PARAM(vres.pbl.size, pbl_size);
2288 COMPARE_PARAM(vres.qp.start, qp_start);
2289 COMPARE_PARAM(vres.qp.size, qp_size);
2290 COMPARE_PARAM(vres.cq.start, cq_start);
2291 COMPARE_PARAM(vres.cq.size, cq_size);
2292 COMPARE_PARAM(vres.ocq.start, ocq_start);
2293 COMPARE_PARAM(vres.ocq.size, ocq_size);
2294 COMPARE_PARAM(vres.srq.start, srq_start);
2295 COMPARE_PARAM(vres.srq.size, srq_size);
2296 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2297 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2298 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2299 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2300 COMPARE_PARAM(vres.key.start, key_start);
2301 COMPARE_PARAM(vres.key.size, key_size);
2302 #undef COMPARE_PARAM
2303
2304 return (rc);
2305 }
2306
2307 static int
restart_lld(struct adapter * sc)2308 restart_lld(struct adapter *sc)
2309 {
2310 struct adapter_pre_reset_state *old_state = NULL;
2311 struct port_info *pi;
2312 struct vi_info *vi;
2313 if_t ifp;
2314 struct sge_txq *txq;
2315 int rc, i, j, k;
2316
2317 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2318 if (rc != 0)
2319 return (ENXIO);
2320
2321 /* Restore memory window. */
2322 setup_memwin(sc);
2323
2324 /* Go no further if recovery mode has been requested. */
2325 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2326 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2327 rc = 0;
2328 set_adapter_hwstatus(sc, true);
2329 goto done;
2330 }
2331
2332 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2333 save_caps_and_params(sc, old_state);
2334
2335 /* Reestablish contact with firmware and become the primary PF. */
2336 rc = contact_firmware(sc);
2337 if (rc != 0)
2338 goto done; /* error message displayed already */
2339 MPASS(sc->flags & FW_OK);
2340
2341 if (sc->flags & MASTER_PF) {
2342 rc = partition_resources(sc);
2343 if (rc != 0)
2344 goto done; /* error message displayed already */
2345 }
2346
2347 rc = get_params__post_init(sc);
2348 if (rc != 0)
2349 goto done; /* error message displayed already */
2350
2351 rc = set_params__post_init(sc);
2352 if (rc != 0)
2353 goto done; /* error message displayed already */
2354
2355 rc = compare_caps_and_params(sc, old_state);
2356 if (rc != 0)
2357 goto done; /* error message displayed already */
2358
2359 for_each_port(sc, i) {
2360 pi = sc->port[i];
2361 MPASS(pi != NULL);
2362 MPASS(pi->vi != NULL);
2363 MPASS(pi->vi[0].dev == pi->dev);
2364
2365 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2366 if (rc != 0) {
2367 CH_ERR(sc,
2368 "failed to re-initialize port %d: %d\n", i, rc);
2369 goto done;
2370 }
2371 MPASS(sc->chan_map[pi->tx_chan] == i);
2372
2373 PORT_LOCK(pi);
2374 fixup_link_config(pi);
2375 build_medialist(pi);
2376 PORT_UNLOCK(pi);
2377 for_each_vi(pi, j, vi) {
2378 if (IS_MAIN_VI(vi))
2379 continue;
2380 rc = alloc_extra_vi(sc, pi, vi);
2381 if (rc != 0) {
2382 CH_ERR(vi,
2383 "failed to re-allocate extra VI: %d\n", rc);
2384 goto done;
2385 }
2386 }
2387 }
2388
2389 /*
2390 * Interrupts and queues are about to be enabled and other threads will
2391 * want to access the hardware too. It is safe to do so. Note that
2392 * this thread is still in the middle of a synchronized_op.
2393 */
2394 set_adapter_hwstatus(sc, true);
2395
2396 if (sc->flags & FULL_INIT_DONE) {
2397 rc = adapter_full_init(sc);
2398 if (rc != 0) {
2399 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2400 goto done;
2401 }
2402
2403 if (sc->vxlan_refcount > 0)
2404 enable_vxlan_rx(sc);
2405
2406 for_each_port(sc, i) {
2407 pi = sc->port[i];
2408 for_each_vi(pi, j, vi) {
2409 mtx_lock(&vi->tick_mtx);
2410 vi->flags &= ~VI_SKIP_STATS;
2411 mtx_unlock(&vi->tick_mtx);
2412 if (!(vi->flags & VI_INIT_DONE))
2413 continue;
2414 rc = vi_full_init(vi);
2415 if (rc != 0) {
2416 CH_ERR(vi, "failed to re-initialize "
2417 "interface: %d\n", rc);
2418 goto done;
2419 }
2420 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2421 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2422 t4_write_reg(sc, is_t4(sc) ?
2423 A_MPS_TRC_RSS_CONTROL :
2424 A_MPS_T5_TRC_RSS_CONTROL,
2425 V_RSSCONTROL(pi->tx_chan) |
2426 V_QUEUENUMBER(sc->traceq));
2427 pi->flags |= HAS_TRACEQ;
2428 }
2429
2430 ifp = vi->ifp;
2431 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2432 continue;
2433 /*
2434 * Note that we do not setup multicast addresses
2435 * in the first pass. This ensures that the
2436 * unicast DMACs for all VIs on all ports get an
2437 * MPS TCAM entry.
2438 */
2439 rc = update_mac_settings(ifp, XGMAC_ALL &
2440 ~XGMAC_MCADDRS);
2441 if (rc != 0) {
2442 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2443 goto done;
2444 }
2445 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2446 true);
2447 if (rc != 0) {
2448 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2449 goto done;
2450 }
2451 for_each_txq(vi, k, txq) {
2452 TXQ_LOCK(txq);
2453 txq->eq.flags |= EQ_ENABLED;
2454 TXQ_UNLOCK(txq);
2455 }
2456 mtx_lock(&vi->tick_mtx);
2457 callout_schedule(&vi->tick, hz);
2458 mtx_unlock(&vi->tick_mtx);
2459 }
2460 PORT_LOCK(pi);
2461 if (pi->up_vis > 0) {
2462 t4_update_port_info(pi);
2463 fixup_link_config(pi);
2464 build_medialist(pi);
2465 apply_link_config(pi);
2466 if (pi->link_cfg.link_ok)
2467 t4_os_link_changed(pi);
2468 }
2469 PORT_UNLOCK(pi);
2470 }
2471
2472 /* Now reprogram the L2 multicast addresses. */
2473 for_each_port(sc, i) {
2474 pi = sc->port[i];
2475 for_each_vi(pi, j, vi) {
2476 if (!(vi->flags & VI_INIT_DONE))
2477 continue;
2478 ifp = vi->ifp;
2479 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2480 continue;
2481 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2482 if (rc != 0) {
2483 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2484 rc = 0; /* carry on */
2485 }
2486 }
2487 }
2488 }
2489
2490 /* Reset all calibration */
2491 t4_calibration_start(sc);
2492 done:
2493 end_synchronized_op(sc, 0);
2494 free(old_state, M_CXGBE);
2495
2496 restart_atid_allocator(sc);
2497 t4_restart_l2t(sc);
2498
2499 return (rc);
2500 }
2501
2502 int
resume_adapter(struct adapter * sc)2503 resume_adapter(struct adapter *sc)
2504 {
2505 restart_adapter(sc);
2506 restart_lld(sc);
2507 #ifdef TCP_OFFLOAD
2508 restart_all_uld(sc);
2509 #endif
2510 return (0);
2511 }
2512
2513 static int
t4_resume(device_t dev)2514 t4_resume(device_t dev)
2515 {
2516 struct adapter *sc = device_get_softc(dev);
2517 int rc;
2518
2519 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2520 rc = resume_adapter(sc);
2521 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2522
2523 return (rc);
2524 }
2525
2526 static int
t4_reset_prepare(device_t dev,device_t child)2527 t4_reset_prepare(device_t dev, device_t child)
2528 {
2529 struct adapter *sc = device_get_softc(dev);
2530
2531 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2532 return (0);
2533 }
2534
2535 static int
t4_reset_post(device_t dev,device_t child)2536 t4_reset_post(device_t dev, device_t child)
2537 {
2538 struct adapter *sc = device_get_softc(dev);
2539
2540 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2541 return (0);
2542 }
2543
2544 static int
reset_adapter_with_pci_bus_reset(struct adapter * sc)2545 reset_adapter_with_pci_bus_reset(struct adapter *sc)
2546 {
2547 int rc;
2548
2549 mtx_lock(&Giant);
2550 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2551 mtx_unlock(&Giant);
2552 return (rc);
2553 }
2554
2555 static int
reset_adapter_with_pl_rst(struct adapter * sc)2556 reset_adapter_with_pl_rst(struct adapter *sc)
2557 {
2558 suspend_adapter(sc);
2559
2560 /* This is a t4_write_reg without the hw_off_limits check. */
2561 MPASS(sc->error_flags & HW_OFF_LIMITS);
2562 bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2563 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2564 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2565
2566 resume_adapter(sc);
2567
2568 return (0);
2569 }
2570
2571 static inline int
reset_adapter(struct adapter * sc)2572 reset_adapter(struct adapter *sc)
2573 {
2574 if (vm_guest == 0)
2575 return (reset_adapter_with_pci_bus_reset(sc));
2576 else
2577 return (reset_adapter_with_pl_rst(sc));
2578 }
2579
2580 static void
reset_adapter_task(void * arg,int pending)2581 reset_adapter_task(void *arg, int pending)
2582 {
2583 struct adapter *sc = arg;
2584 const int flags = sc->flags;
2585 const int eflags = sc->error_flags;
2586 int rc;
2587
2588 if (pending > 1)
2589 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2590 rc = reset_adapter(sc);
2591 if (rc != 0) {
2592 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2593 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2594 rc, flags, sc->flags, eflags, sc->error_flags);
2595 }
2596 }
2597
2598 static int
cxgbe_probe(device_t dev)2599 cxgbe_probe(device_t dev)
2600 {
2601 struct port_info *pi = device_get_softc(dev);
2602
2603 device_set_descf(dev, "port %d", pi->port_id);
2604
2605 return (BUS_PROBE_DEFAULT);
2606 }
2607
2608 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2609 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2610 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2611 IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2612 #define T4_CAP_ENABLE (T4_CAP)
2613
2614 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2615 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2616 {
2617 if_t ifp;
2618 struct sbuf *sb;
2619 struct sysctl_ctx_list *ctx = &vi->ctx;
2620 struct sysctl_oid_list *children;
2621 struct pfil_head_args pa;
2622 struct adapter *sc = vi->adapter;
2623
2624 sysctl_ctx_init(ctx);
2625 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2626 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2627 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2628 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2629 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2630 #ifdef DEV_NETMAP
2631 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2632 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2633 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2634 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2635 #endif
2636 #ifdef TCP_OFFLOAD
2637 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2638 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2639 #endif
2640 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2641 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2642 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2643 #endif
2644
2645 vi->xact_addr_filt = -1;
2646 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2647 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2648 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2649 vi->flags |= TX_USES_VM_WR;
2650
2651 /* Allocate an ifnet and set it up */
2652 ifp = if_alloc_dev(IFT_ETHER, dev);
2653 vi->ifp = ifp;
2654 if_setsoftc(ifp, vi);
2655
2656 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2657 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2658
2659 if_setinitfn(ifp, cxgbe_init);
2660 if_setioctlfn(ifp, cxgbe_ioctl);
2661 if_settransmitfn(ifp, cxgbe_transmit);
2662 if_setqflushfn(ifp, cxgbe_qflush);
2663 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2664 if_setgetcounterfn(ifp, vi_get_counter);
2665 else
2666 if_setgetcounterfn(ifp, cxgbe_get_counter);
2667 #if defined(KERN_TLS) || defined(RATELIMIT)
2668 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2669 #endif
2670 #ifdef RATELIMIT
2671 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2672 #endif
2673
2674 if_setcapabilities(ifp, T4_CAP);
2675 if_setcapenable(ifp, T4_CAP_ENABLE);
2676 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2677 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2678 if (chip_id(sc) >= CHELSIO_T6) {
2679 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2680 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2681 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2682 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2683 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2684 }
2685
2686 #ifdef TCP_OFFLOAD
2687 if (vi->nofldrxq != 0)
2688 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2689 #endif
2690 #ifdef RATELIMIT
2691 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2692 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2693 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2694 }
2695 #endif
2696
2697 if_sethwtsomax(ifp, IP_MAXPACKET);
2698 if (vi->flags & TX_USES_VM_WR)
2699 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2700 else
2701 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2702 #ifdef RATELIMIT
2703 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2704 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2705 #endif
2706 if_sethwtsomaxsegsize(ifp, 65536);
2707 #ifdef KERN_TLS
2708 if (is_ktls(sc)) {
2709 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2710 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2711 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2712 }
2713 #endif
2714
2715 ether_ifattach(ifp, vi->hw_addr);
2716 #ifdef DEV_NETMAP
2717 if (vi->nnmrxq != 0)
2718 cxgbe_nm_attach(vi);
2719 #endif
2720 sb = sbuf_new_auto();
2721 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2722 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2723 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2724 case IFCAP_TOE:
2725 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2726 break;
2727 case IFCAP_TOE | IFCAP_TXRTLMT:
2728 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2729 break;
2730 case IFCAP_TXRTLMT:
2731 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2732 break;
2733 }
2734 #endif
2735 #ifdef TCP_OFFLOAD
2736 if (if_getcapabilities(ifp) & IFCAP_TOE)
2737 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2738 #endif
2739 #ifdef DEV_NETMAP
2740 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2741 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2742 vi->nnmtxq, vi->nnmrxq);
2743 #endif
2744 sbuf_finish(sb);
2745 device_printf(dev, "%s\n", sbuf_data(sb));
2746 sbuf_delete(sb);
2747
2748 vi_sysctls(vi);
2749
2750 pa.pa_version = PFIL_VERSION;
2751 pa.pa_flags = PFIL_IN;
2752 pa.pa_type = PFIL_TYPE_ETHERNET;
2753 pa.pa_headname = if_name(ifp);
2754 vi->pfil = pfil_head_register(&pa);
2755 }
2756
2757 static int
cxgbe_attach(device_t dev)2758 cxgbe_attach(device_t dev)
2759 {
2760 struct port_info *pi = device_get_softc(dev);
2761 struct adapter *sc = pi->adapter;
2762 struct vi_info *vi;
2763 int i;
2764
2765 sysctl_ctx_init(&pi->ctx);
2766
2767 cxgbe_vi_attach(dev, &pi->vi[0]);
2768
2769 for_each_vi(pi, i, vi) {
2770 if (i == 0)
2771 continue;
2772 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2773 if (vi->dev == NULL) {
2774 device_printf(dev, "failed to add VI %d\n", i);
2775 continue;
2776 }
2777 device_set_softc(vi->dev, vi);
2778 }
2779
2780 cxgbe_sysctls(pi);
2781
2782 bus_generic_attach(dev);
2783
2784 return (0);
2785 }
2786
2787 static void
cxgbe_vi_detach(struct vi_info * vi)2788 cxgbe_vi_detach(struct vi_info *vi)
2789 {
2790 if_t ifp = vi->ifp;
2791
2792 if (vi->pfil != NULL) {
2793 pfil_head_unregister(vi->pfil);
2794 vi->pfil = NULL;
2795 }
2796
2797 ether_ifdetach(ifp);
2798
2799 /* Let detach proceed even if these fail. */
2800 #ifdef DEV_NETMAP
2801 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2802 cxgbe_nm_detach(vi);
2803 #endif
2804 cxgbe_uninit_synchronized(vi);
2805 callout_drain(&vi->tick);
2806 mtx_destroy(&vi->tick_mtx);
2807 sysctl_ctx_free(&vi->ctx);
2808 vi_full_uninit(vi);
2809
2810 if_free(vi->ifp);
2811 vi->ifp = NULL;
2812 }
2813
2814 static int
cxgbe_detach(device_t dev)2815 cxgbe_detach(device_t dev)
2816 {
2817 struct port_info *pi = device_get_softc(dev);
2818 struct adapter *sc = pi->adapter;
2819 int rc;
2820
2821 /* Detach the extra VIs first. */
2822 rc = bus_generic_detach(dev);
2823 if (rc)
2824 return (rc);
2825 device_delete_children(dev);
2826
2827 sysctl_ctx_free(&pi->ctx);
2828 begin_vi_detach(sc, &pi->vi[0]);
2829 if (pi->flags & HAS_TRACEQ) {
2830 sc->traceq = -1; /* cloner should not create ifnet */
2831 t4_tracer_port_detach(sc);
2832 }
2833 cxgbe_vi_detach(&pi->vi[0]);
2834 ifmedia_removeall(&pi->media);
2835 end_vi_detach(sc, &pi->vi[0]);
2836
2837 return (0);
2838 }
2839
2840 static void
cxgbe_init(void * arg)2841 cxgbe_init(void *arg)
2842 {
2843 struct vi_info *vi = arg;
2844 struct adapter *sc = vi->adapter;
2845
2846 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2847 return;
2848 cxgbe_init_synchronized(vi);
2849 end_synchronized_op(sc, 0);
2850 }
2851
2852 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)2853 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2854 {
2855 int rc = 0, mtu, flags;
2856 struct vi_info *vi = if_getsoftc(ifp);
2857 struct port_info *pi = vi->pi;
2858 struct adapter *sc = pi->adapter;
2859 struct ifreq *ifr = (struct ifreq *)data;
2860 uint32_t mask;
2861
2862 switch (cmd) {
2863 case SIOCSIFMTU:
2864 mtu = ifr->ifr_mtu;
2865 if (mtu < ETHERMIN || mtu > MAX_MTU)
2866 return (EINVAL);
2867
2868 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2869 if (rc)
2870 return (rc);
2871 if_setmtu(ifp, mtu);
2872 if (vi->flags & VI_INIT_DONE) {
2873 t4_update_fl_bufsize(ifp);
2874 if (!hw_off_limits(sc) &&
2875 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2876 rc = update_mac_settings(ifp, XGMAC_MTU);
2877 }
2878 end_synchronized_op(sc, 0);
2879 break;
2880
2881 case SIOCSIFFLAGS:
2882 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2883 if (rc)
2884 return (rc);
2885
2886 if (hw_off_limits(sc)) {
2887 rc = ENXIO;
2888 goto fail;
2889 }
2890
2891 if (if_getflags(ifp) & IFF_UP) {
2892 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2893 flags = vi->if_flags;
2894 if ((if_getflags(ifp) ^ flags) &
2895 (IFF_PROMISC | IFF_ALLMULTI)) {
2896 rc = update_mac_settings(ifp,
2897 XGMAC_PROMISC | XGMAC_ALLMULTI);
2898 }
2899 } else {
2900 rc = cxgbe_init_synchronized(vi);
2901 }
2902 vi->if_flags = if_getflags(ifp);
2903 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2904 rc = cxgbe_uninit_synchronized(vi);
2905 }
2906 end_synchronized_op(sc, 0);
2907 break;
2908
2909 case SIOCADDMULTI:
2910 case SIOCDELMULTI:
2911 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2912 if (rc)
2913 return (rc);
2914 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2915 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2916 end_synchronized_op(sc, 0);
2917 break;
2918
2919 case SIOCSIFCAP:
2920 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2921 if (rc)
2922 return (rc);
2923
2924 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2925 if (mask & IFCAP_TXCSUM) {
2926 if_togglecapenable(ifp, IFCAP_TXCSUM);
2927 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2928
2929 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2930 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2931 mask &= ~IFCAP_TSO4;
2932 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2933 if_printf(ifp,
2934 "tso4 disabled due to -txcsum.\n");
2935 }
2936 }
2937 if (mask & IFCAP_TXCSUM_IPV6) {
2938 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2939 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2940
2941 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2942 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2943 mask &= ~IFCAP_TSO6;
2944 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2945 if_printf(ifp,
2946 "tso6 disabled due to -txcsum6.\n");
2947 }
2948 }
2949 if (mask & IFCAP_RXCSUM)
2950 if_togglecapenable(ifp, IFCAP_RXCSUM);
2951 if (mask & IFCAP_RXCSUM_IPV6)
2952 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2953
2954 /*
2955 * Note that we leave CSUM_TSO alone (it is always set). The
2956 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2957 * sending a TSO request our way, so it's sufficient to toggle
2958 * IFCAP_TSOx only.
2959 */
2960 if (mask & IFCAP_TSO4) {
2961 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2962 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2963 if_printf(ifp, "enable txcsum first.\n");
2964 rc = EAGAIN;
2965 goto fail;
2966 }
2967 if_togglecapenable(ifp, IFCAP_TSO4);
2968 }
2969 if (mask & IFCAP_TSO6) {
2970 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2971 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2972 if_printf(ifp, "enable txcsum6 first.\n");
2973 rc = EAGAIN;
2974 goto fail;
2975 }
2976 if_togglecapenable(ifp, IFCAP_TSO6);
2977 }
2978 if (mask & IFCAP_LRO) {
2979 #if defined(INET) || defined(INET6)
2980 int i;
2981 struct sge_rxq *rxq;
2982
2983 if_togglecapenable(ifp, IFCAP_LRO);
2984 for_each_rxq(vi, i, rxq) {
2985 if (if_getcapenable(ifp) & IFCAP_LRO)
2986 rxq->iq.flags |= IQ_LRO_ENABLED;
2987 else
2988 rxq->iq.flags &= ~IQ_LRO_ENABLED;
2989 }
2990 #endif
2991 }
2992 #ifdef TCP_OFFLOAD
2993 if (mask & IFCAP_TOE) {
2994 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2995
2996 rc = toe_capability(vi, enable);
2997 if (rc != 0)
2998 goto fail;
2999
3000 if_togglecapenable(ifp, mask);
3001 }
3002 #endif
3003 if (mask & IFCAP_VLAN_HWTAGGING) {
3004 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3005 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3006 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3007 }
3008 if (mask & IFCAP_VLAN_MTU) {
3009 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3010
3011 /* Need to find out how to disable auto-mtu-inflation */
3012 }
3013 if (mask & IFCAP_VLAN_HWTSO)
3014 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3015 if (mask & IFCAP_VLAN_HWCSUM)
3016 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3017 #ifdef RATELIMIT
3018 if (mask & IFCAP_TXRTLMT)
3019 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3020 #endif
3021 if (mask & IFCAP_HWRXTSTMP) {
3022 int i;
3023 struct sge_rxq *rxq;
3024
3025 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3026 for_each_rxq(vi, i, rxq) {
3027 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3028 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3029 else
3030 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3031 }
3032 }
3033 if (mask & IFCAP_MEXTPG)
3034 if_togglecapenable(ifp, IFCAP_MEXTPG);
3035
3036 #ifdef KERN_TLS
3037 if (mask & IFCAP_TXTLS) {
3038 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3039
3040 rc = ktls_capability(sc, enable);
3041 if (rc != 0)
3042 goto fail;
3043
3044 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3045 }
3046 #endif
3047 if (mask & IFCAP_VXLAN_HWCSUM) {
3048 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3049 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3050 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3051 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3052 }
3053 if (mask & IFCAP_VXLAN_HWTSO) {
3054 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3055 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3056 CSUM_INNER_IP_TSO);
3057 }
3058
3059 #ifdef VLAN_CAPABILITIES
3060 VLAN_CAPABILITIES(ifp);
3061 #endif
3062 fail:
3063 end_synchronized_op(sc, 0);
3064 break;
3065
3066 case SIOCSIFMEDIA:
3067 case SIOCGIFMEDIA:
3068 case SIOCGIFXMEDIA:
3069 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3070 break;
3071
3072 case SIOCGI2C: {
3073 struct ifi2creq i2c;
3074
3075 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3076 if (rc != 0)
3077 break;
3078 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3079 rc = EPERM;
3080 break;
3081 }
3082 if (i2c.len > sizeof(i2c.data)) {
3083 rc = EINVAL;
3084 break;
3085 }
3086 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3087 if (rc)
3088 return (rc);
3089 if (hw_off_limits(sc))
3090 rc = ENXIO;
3091 else
3092 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3093 i2c.offset, i2c.len, &i2c.data[0]);
3094 end_synchronized_op(sc, 0);
3095 if (rc == 0)
3096 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3097 break;
3098 }
3099
3100 default:
3101 rc = ether_ioctl(ifp, cmd, data);
3102 }
3103
3104 return (rc);
3105 }
3106
3107 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3108 cxgbe_transmit(if_t ifp, struct mbuf *m)
3109 {
3110 struct vi_info *vi = if_getsoftc(ifp);
3111 struct port_info *pi = vi->pi;
3112 struct adapter *sc;
3113 struct sge_txq *txq;
3114 void *items[1];
3115 int rc;
3116
3117 M_ASSERTPKTHDR(m);
3118 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3119 #if defined(KERN_TLS) || defined(RATELIMIT)
3120 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3121 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3122 #endif
3123
3124 if (__predict_false(pi->link_cfg.link_ok == false)) {
3125 m_freem(m);
3126 return (ENETDOWN);
3127 }
3128
3129 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3130 if (__predict_false(rc != 0)) {
3131 if (__predict_true(rc == EINPROGRESS)) {
3132 /* queued by parse_pkt */
3133 MPASS(m != NULL);
3134 return (0);
3135 }
3136
3137 MPASS(m == NULL); /* was freed already */
3138 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3139 return (rc);
3140 }
3141
3142 /* Select a txq. */
3143 sc = vi->adapter;
3144 txq = &sc->sge.txq[vi->first_txq];
3145 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3146 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3147 vi->rsrv_noflowq);
3148
3149 items[0] = m;
3150 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3151 if (__predict_false(rc != 0))
3152 m_freem(m);
3153
3154 return (rc);
3155 }
3156
3157 static void
cxgbe_qflush(if_t ifp)3158 cxgbe_qflush(if_t ifp)
3159 {
3160 struct vi_info *vi = if_getsoftc(ifp);
3161 struct sge_txq *txq;
3162 int i;
3163
3164 /* queues do not exist if !VI_INIT_DONE. */
3165 if (vi->flags & VI_INIT_DONE) {
3166 for_each_txq(vi, i, txq) {
3167 TXQ_LOCK(txq);
3168 txq->eq.flags |= EQ_QFLUSH;
3169 TXQ_UNLOCK(txq);
3170 while (!mp_ring_is_idle(txq->r)) {
3171 mp_ring_check_drainage(txq->r, 4096);
3172 pause("qflush", 1);
3173 }
3174 TXQ_LOCK(txq);
3175 txq->eq.flags &= ~EQ_QFLUSH;
3176 TXQ_UNLOCK(txq);
3177 }
3178 }
3179 if_qflush(ifp);
3180 }
3181
3182 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3183 vi_get_counter(if_t ifp, ift_counter c)
3184 {
3185 struct vi_info *vi = if_getsoftc(ifp);
3186 struct fw_vi_stats_vf *s = &vi->stats;
3187
3188 mtx_lock(&vi->tick_mtx);
3189 vi_refresh_stats(vi);
3190 mtx_unlock(&vi->tick_mtx);
3191
3192 switch (c) {
3193 case IFCOUNTER_IPACKETS:
3194 return (s->rx_bcast_frames + s->rx_mcast_frames +
3195 s->rx_ucast_frames);
3196 case IFCOUNTER_IERRORS:
3197 return (s->rx_err_frames);
3198 case IFCOUNTER_OPACKETS:
3199 return (s->tx_bcast_frames + s->tx_mcast_frames +
3200 s->tx_ucast_frames + s->tx_offload_frames);
3201 case IFCOUNTER_OERRORS:
3202 return (s->tx_drop_frames);
3203 case IFCOUNTER_IBYTES:
3204 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3205 s->rx_ucast_bytes);
3206 case IFCOUNTER_OBYTES:
3207 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3208 s->tx_ucast_bytes + s->tx_offload_bytes);
3209 case IFCOUNTER_IMCASTS:
3210 return (s->rx_mcast_frames);
3211 case IFCOUNTER_OMCASTS:
3212 return (s->tx_mcast_frames);
3213 case IFCOUNTER_OQDROPS: {
3214 uint64_t drops;
3215
3216 drops = 0;
3217 if (vi->flags & VI_INIT_DONE) {
3218 int i;
3219 struct sge_txq *txq;
3220
3221 for_each_txq(vi, i, txq)
3222 drops += counter_u64_fetch(txq->r->dropped);
3223 }
3224
3225 return (drops);
3226
3227 }
3228
3229 default:
3230 return (if_get_counter_default(ifp, c));
3231 }
3232 }
3233
3234 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3235 cxgbe_get_counter(if_t ifp, ift_counter c)
3236 {
3237 struct vi_info *vi = if_getsoftc(ifp);
3238 struct port_info *pi = vi->pi;
3239 struct port_stats *s = &pi->stats;
3240
3241 mtx_lock(&vi->tick_mtx);
3242 cxgbe_refresh_stats(vi);
3243 mtx_unlock(&vi->tick_mtx);
3244
3245 switch (c) {
3246 case IFCOUNTER_IPACKETS:
3247 return (s->rx_frames);
3248
3249 case IFCOUNTER_IERRORS:
3250 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3251 s->rx_fcs_err + s->rx_len_err);
3252
3253 case IFCOUNTER_OPACKETS:
3254 return (s->tx_frames);
3255
3256 case IFCOUNTER_OERRORS:
3257 return (s->tx_error_frames);
3258
3259 case IFCOUNTER_IBYTES:
3260 return (s->rx_octets);
3261
3262 case IFCOUNTER_OBYTES:
3263 return (s->tx_octets);
3264
3265 case IFCOUNTER_IMCASTS:
3266 return (s->rx_mcast_frames);
3267
3268 case IFCOUNTER_OMCASTS:
3269 return (s->tx_mcast_frames);
3270
3271 case IFCOUNTER_IQDROPS:
3272 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3273 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3274 s->rx_trunc3 + pi->tnl_cong_drops);
3275
3276 case IFCOUNTER_OQDROPS: {
3277 uint64_t drops;
3278
3279 drops = s->tx_drop;
3280 if (vi->flags & VI_INIT_DONE) {
3281 int i;
3282 struct sge_txq *txq;
3283
3284 for_each_txq(vi, i, txq)
3285 drops += counter_u64_fetch(txq->r->dropped);
3286 }
3287
3288 return (drops);
3289
3290 }
3291
3292 default:
3293 return (if_get_counter_default(ifp, c));
3294 }
3295 }
3296
3297 #if defined(KERN_TLS) || defined(RATELIMIT)
3298 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3299 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3300 struct m_snd_tag **pt)
3301 {
3302 int error;
3303
3304 switch (params->hdr.type) {
3305 #ifdef RATELIMIT
3306 case IF_SND_TAG_TYPE_RATE_LIMIT:
3307 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3308 break;
3309 #endif
3310 #ifdef KERN_TLS
3311 case IF_SND_TAG_TYPE_TLS:
3312 {
3313 struct vi_info *vi = if_getsoftc(ifp);
3314
3315 if (is_t6(vi->pi->adapter))
3316 error = t6_tls_tag_alloc(ifp, params, pt);
3317 else
3318 error = EOPNOTSUPP;
3319 break;
3320 }
3321 #endif
3322 default:
3323 error = EOPNOTSUPP;
3324 }
3325 return (error);
3326 }
3327 #endif
3328
3329 /*
3330 * The kernel picks a media from the list we had provided but we still validate
3331 * the requeste.
3332 */
3333 int
cxgbe_media_change(if_t ifp)3334 cxgbe_media_change(if_t ifp)
3335 {
3336 struct vi_info *vi = if_getsoftc(ifp);
3337 struct port_info *pi = vi->pi;
3338 struct ifmedia *ifm = &pi->media;
3339 struct link_config *lc = &pi->link_cfg;
3340 struct adapter *sc = pi->adapter;
3341 int rc;
3342
3343 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3344 if (rc != 0)
3345 return (rc);
3346 PORT_LOCK(pi);
3347 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3348 /* ifconfig .. media autoselect */
3349 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3350 rc = ENOTSUP; /* AN not supported by transceiver */
3351 goto done;
3352 }
3353 lc->requested_aneg = AUTONEG_ENABLE;
3354 lc->requested_speed = 0;
3355 lc->requested_fc |= PAUSE_AUTONEG;
3356 } else {
3357 lc->requested_aneg = AUTONEG_DISABLE;
3358 lc->requested_speed =
3359 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3360 lc->requested_fc = 0;
3361 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3362 lc->requested_fc |= PAUSE_RX;
3363 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3364 lc->requested_fc |= PAUSE_TX;
3365 }
3366 if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3367 fixup_link_config(pi);
3368 rc = apply_link_config(pi);
3369 }
3370 done:
3371 PORT_UNLOCK(pi);
3372 end_synchronized_op(sc, 0);
3373 return (rc);
3374 }
3375
3376 /*
3377 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3378 * given speed.
3379 */
3380 static int
port_mword(struct port_info * pi,uint32_t speed)3381 port_mword(struct port_info *pi, uint32_t speed)
3382 {
3383
3384 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3385 MPASS(powerof2(speed));
3386
3387 switch(pi->port_type) {
3388 case FW_PORT_TYPE_BT_SGMII:
3389 case FW_PORT_TYPE_BT_XFI:
3390 case FW_PORT_TYPE_BT_XAUI:
3391 /* BaseT */
3392 switch (speed) {
3393 case FW_PORT_CAP32_SPEED_100M:
3394 return (IFM_100_T);
3395 case FW_PORT_CAP32_SPEED_1G:
3396 return (IFM_1000_T);
3397 case FW_PORT_CAP32_SPEED_10G:
3398 return (IFM_10G_T);
3399 }
3400 break;
3401 case FW_PORT_TYPE_KX4:
3402 if (speed == FW_PORT_CAP32_SPEED_10G)
3403 return (IFM_10G_KX4);
3404 break;
3405 case FW_PORT_TYPE_CX4:
3406 if (speed == FW_PORT_CAP32_SPEED_10G)
3407 return (IFM_10G_CX4);
3408 break;
3409 case FW_PORT_TYPE_KX:
3410 if (speed == FW_PORT_CAP32_SPEED_1G)
3411 return (IFM_1000_KX);
3412 break;
3413 case FW_PORT_TYPE_KR:
3414 case FW_PORT_TYPE_BP_AP:
3415 case FW_PORT_TYPE_BP4_AP:
3416 case FW_PORT_TYPE_BP40_BA:
3417 case FW_PORT_TYPE_KR4_100G:
3418 case FW_PORT_TYPE_KR_SFP28:
3419 case FW_PORT_TYPE_KR_XLAUI:
3420 switch (speed) {
3421 case FW_PORT_CAP32_SPEED_1G:
3422 return (IFM_1000_KX);
3423 case FW_PORT_CAP32_SPEED_10G:
3424 return (IFM_10G_KR);
3425 case FW_PORT_CAP32_SPEED_25G:
3426 return (IFM_25G_KR);
3427 case FW_PORT_CAP32_SPEED_40G:
3428 return (IFM_40G_KR4);
3429 case FW_PORT_CAP32_SPEED_50G:
3430 return (IFM_50G_KR2);
3431 case FW_PORT_CAP32_SPEED_100G:
3432 return (IFM_100G_KR4);
3433 }
3434 break;
3435 case FW_PORT_TYPE_FIBER_XFI:
3436 case FW_PORT_TYPE_FIBER_XAUI:
3437 case FW_PORT_TYPE_SFP:
3438 case FW_PORT_TYPE_QSFP_10G:
3439 case FW_PORT_TYPE_QSA:
3440 case FW_PORT_TYPE_QSFP:
3441 case FW_PORT_TYPE_CR4_QSFP:
3442 case FW_PORT_TYPE_CR_QSFP:
3443 case FW_PORT_TYPE_CR2_QSFP:
3444 case FW_PORT_TYPE_SFP28:
3445 /* Pluggable transceiver */
3446 switch (pi->mod_type) {
3447 case FW_PORT_MOD_TYPE_LR:
3448 switch (speed) {
3449 case FW_PORT_CAP32_SPEED_1G:
3450 return (IFM_1000_LX);
3451 case FW_PORT_CAP32_SPEED_10G:
3452 return (IFM_10G_LR);
3453 case FW_PORT_CAP32_SPEED_25G:
3454 return (IFM_25G_LR);
3455 case FW_PORT_CAP32_SPEED_40G:
3456 return (IFM_40G_LR4);
3457 case FW_PORT_CAP32_SPEED_50G:
3458 return (IFM_50G_LR2);
3459 case FW_PORT_CAP32_SPEED_100G:
3460 return (IFM_100G_LR4);
3461 }
3462 break;
3463 case FW_PORT_MOD_TYPE_SR:
3464 switch (speed) {
3465 case FW_PORT_CAP32_SPEED_1G:
3466 return (IFM_1000_SX);
3467 case FW_PORT_CAP32_SPEED_10G:
3468 return (IFM_10G_SR);
3469 case FW_PORT_CAP32_SPEED_25G:
3470 return (IFM_25G_SR);
3471 case FW_PORT_CAP32_SPEED_40G:
3472 return (IFM_40G_SR4);
3473 case FW_PORT_CAP32_SPEED_50G:
3474 return (IFM_50G_SR2);
3475 case FW_PORT_CAP32_SPEED_100G:
3476 return (IFM_100G_SR4);
3477 }
3478 break;
3479 case FW_PORT_MOD_TYPE_ER:
3480 if (speed == FW_PORT_CAP32_SPEED_10G)
3481 return (IFM_10G_ER);
3482 break;
3483 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3484 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3485 switch (speed) {
3486 case FW_PORT_CAP32_SPEED_1G:
3487 return (IFM_1000_CX);
3488 case FW_PORT_CAP32_SPEED_10G:
3489 return (IFM_10G_TWINAX);
3490 case FW_PORT_CAP32_SPEED_25G:
3491 return (IFM_25G_CR);
3492 case FW_PORT_CAP32_SPEED_40G:
3493 return (IFM_40G_CR4);
3494 case FW_PORT_CAP32_SPEED_50G:
3495 return (IFM_50G_CR2);
3496 case FW_PORT_CAP32_SPEED_100G:
3497 return (IFM_100G_CR4);
3498 }
3499 break;
3500 case FW_PORT_MOD_TYPE_LRM:
3501 if (speed == FW_PORT_CAP32_SPEED_10G)
3502 return (IFM_10G_LRM);
3503 break;
3504 case FW_PORT_MOD_TYPE_NA:
3505 MPASS(0); /* Not pluggable? */
3506 /* fall throough */
3507 case FW_PORT_MOD_TYPE_ERROR:
3508 case FW_PORT_MOD_TYPE_UNKNOWN:
3509 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3510 break;
3511 case FW_PORT_MOD_TYPE_NONE:
3512 return (IFM_NONE);
3513 }
3514 break;
3515 case FW_PORT_TYPE_NONE:
3516 return (IFM_NONE);
3517 }
3518
3519 return (IFM_UNKNOWN);
3520 }
3521
3522 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3523 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3524 {
3525 struct vi_info *vi = if_getsoftc(ifp);
3526 struct port_info *pi = vi->pi;
3527 struct adapter *sc = pi->adapter;
3528 struct link_config *lc = &pi->link_cfg;
3529
3530 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3531 return;
3532 PORT_LOCK(pi);
3533
3534 if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3535 /*
3536 * If all the interfaces are administratively down the firmware
3537 * does not report transceiver changes. Refresh port info here
3538 * so that ifconfig displays accurate ifmedia at all times.
3539 * This is the only reason we have a synchronized op in this
3540 * function. Just PORT_LOCK would have been enough otherwise.
3541 */
3542 t4_update_port_info(pi);
3543 build_medialist(pi);
3544 }
3545
3546 /* ifm_status */
3547 ifmr->ifm_status = IFM_AVALID;
3548 if (lc->link_ok == false)
3549 goto done;
3550 ifmr->ifm_status |= IFM_ACTIVE;
3551
3552 /* ifm_active */
3553 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3554 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3555 if (lc->fc & PAUSE_RX)
3556 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3557 if (lc->fc & PAUSE_TX)
3558 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3559 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3560 done:
3561 PORT_UNLOCK(pi);
3562 end_synchronized_op(sc, 0);
3563 }
3564
3565 static int
vcxgbe_probe(device_t dev)3566 vcxgbe_probe(device_t dev)
3567 {
3568 struct vi_info *vi = device_get_softc(dev);
3569
3570 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3571 vi - vi->pi->vi);
3572
3573 return (BUS_PROBE_DEFAULT);
3574 }
3575
3576 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3577 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3578 {
3579 int func, index, rc;
3580 uint32_t param, val;
3581
3582 ASSERT_SYNCHRONIZED_OP(sc);
3583
3584 index = vi - pi->vi;
3585 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3586 KASSERT(index < nitems(vi_mac_funcs),
3587 ("%s: VI %s doesn't have a MAC func", __func__,
3588 device_get_nameunit(vi->dev)));
3589 func = vi_mac_funcs[index];
3590 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3591 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3592 if (rc < 0) {
3593 CH_ERR(vi, "failed to allocate virtual interface %d"
3594 "for port %d: %d\n", index, pi->port_id, -rc);
3595 return (-rc);
3596 }
3597 vi->viid = rc;
3598
3599 if (vi->rss_size == 1) {
3600 /*
3601 * This VI didn't get a slice of the RSS table. Reduce the
3602 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3603 * configuration file (nvi, rssnvi for this PF) if this is a
3604 * problem.
3605 */
3606 device_printf(vi->dev, "RSS table not available.\n");
3607 vi->rss_base = 0xffff;
3608
3609 return (0);
3610 }
3611
3612 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3613 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3614 V_FW_PARAMS_PARAM_YZ(vi->viid);
3615 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3616 if (rc)
3617 vi->rss_base = 0xffff;
3618 else {
3619 MPASS((val >> 16) == vi->rss_size);
3620 vi->rss_base = val & 0xffff;
3621 }
3622
3623 return (0);
3624 }
3625
3626 static int
vcxgbe_attach(device_t dev)3627 vcxgbe_attach(device_t dev)
3628 {
3629 struct vi_info *vi;
3630 struct port_info *pi;
3631 struct adapter *sc;
3632 int rc;
3633
3634 vi = device_get_softc(dev);
3635 pi = vi->pi;
3636 sc = pi->adapter;
3637
3638 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3639 if (rc)
3640 return (rc);
3641 rc = alloc_extra_vi(sc, pi, vi);
3642 end_synchronized_op(sc, 0);
3643 if (rc)
3644 return (rc);
3645
3646 cxgbe_vi_attach(dev, vi);
3647
3648 return (0);
3649 }
3650
3651 static int
vcxgbe_detach(device_t dev)3652 vcxgbe_detach(device_t dev)
3653 {
3654 struct vi_info *vi;
3655 struct adapter *sc;
3656
3657 vi = device_get_softc(dev);
3658 sc = vi->adapter;
3659
3660 begin_vi_detach(sc, vi);
3661 cxgbe_vi_detach(vi);
3662 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3663 end_vi_detach(sc, vi);
3664
3665 return (0);
3666 }
3667
3668 static struct callout fatal_callout;
3669 static struct taskqueue *reset_tq;
3670
3671 static void
delayed_panic(void * arg)3672 delayed_panic(void *arg)
3673 {
3674 struct adapter *sc = arg;
3675
3676 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3677 }
3678
3679 static void
fatal_error_task(void * arg,int pending)3680 fatal_error_task(void *arg, int pending)
3681 {
3682 struct adapter *sc = arg;
3683 int rc;
3684
3685 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3686 dump_cim_regs(sc);
3687 dump_cimla(sc);
3688 dump_devlog(sc);
3689 }
3690
3691 if (t4_reset_on_fatal_err) {
3692 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3693 rc = reset_adapter(sc);
3694 if (rc == 0 && t4_panic_on_fatal_err) {
3695 CH_ALERT(sc, "reset was successful, "
3696 "system will NOT panic.\n");
3697 return;
3698 }
3699 }
3700
3701 if (t4_panic_on_fatal_err) {
3702 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3703 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3704 }
3705 }
3706
3707 void
t4_fatal_err(struct adapter * sc,bool fw_error)3708 t4_fatal_err(struct adapter *sc, bool fw_error)
3709 {
3710 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3711
3712 stop_adapter(sc);
3713 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3714 return;
3715 if (fw_error) {
3716 /*
3717 * We are here because of a firmware error/timeout and not
3718 * because of a hardware interrupt. It is possible (although
3719 * not very likely) that an error interrupt was also raised but
3720 * this thread ran first and inhibited t4_intr_err. We walk the
3721 * main INT_CAUSE registers here to make sure we haven't missed
3722 * anything interesting.
3723 */
3724 t4_slow_intr_handler(sc, verbose);
3725 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3726 }
3727 t4_report_fw_error(sc);
3728 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3729 device_get_nameunit(sc->dev), fw_error);
3730 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3731 }
3732
3733 void
t4_add_adapter(struct adapter * sc)3734 t4_add_adapter(struct adapter *sc)
3735 {
3736 sx_xlock(&t4_list_lock);
3737 SLIST_INSERT_HEAD(&t4_list, sc, link);
3738 sx_xunlock(&t4_list_lock);
3739 }
3740
3741 int
t4_map_bars_0_and_4(struct adapter * sc)3742 t4_map_bars_0_and_4(struct adapter *sc)
3743 {
3744 sc->regs_rid = PCIR_BAR(0);
3745 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3746 &sc->regs_rid, RF_ACTIVE);
3747 if (sc->regs_res == NULL) {
3748 device_printf(sc->dev, "cannot map registers.\n");
3749 return (ENXIO);
3750 }
3751 sc->bt = rman_get_bustag(sc->regs_res);
3752 sc->bh = rman_get_bushandle(sc->regs_res);
3753 sc->mmio_len = rman_get_size(sc->regs_res);
3754 setbit(&sc->doorbells, DOORBELL_KDB);
3755
3756 sc->msix_rid = PCIR_BAR(4);
3757 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3758 &sc->msix_rid, RF_ACTIVE);
3759 if (sc->msix_res == NULL) {
3760 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3761 return (ENXIO);
3762 }
3763
3764 return (0);
3765 }
3766
3767 int
t4_map_bar_2(struct adapter * sc)3768 t4_map_bar_2(struct adapter *sc)
3769 {
3770
3771 /*
3772 * T4: only iWARP driver uses the userspace doorbells. There is no need
3773 * to map it if RDMA is disabled.
3774 */
3775 if (is_t4(sc) && sc->rdmacaps == 0)
3776 return (0);
3777
3778 sc->udbs_rid = PCIR_BAR(2);
3779 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3780 &sc->udbs_rid, RF_ACTIVE);
3781 if (sc->udbs_res == NULL) {
3782 device_printf(sc->dev, "cannot map doorbell BAR.\n");
3783 return (ENXIO);
3784 }
3785 sc->udbs_base = rman_get_virtual(sc->udbs_res);
3786
3787 if (chip_id(sc) >= CHELSIO_T5) {
3788 setbit(&sc->doorbells, DOORBELL_UDB);
3789 #if defined(__i386__) || defined(__amd64__)
3790 if (t5_write_combine) {
3791 int rc, mode;
3792
3793 /*
3794 * Enable write combining on BAR2. This is the
3795 * userspace doorbell BAR and is split into 128B
3796 * (UDBS_SEG_SIZE) doorbell regions, each associated
3797 * with an egress queue. The first 64B has the doorbell
3798 * and the second 64B can be used to submit a tx work
3799 * request with an implicit doorbell.
3800 */
3801
3802 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3803 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3804 if (rc == 0) {
3805 clrbit(&sc->doorbells, DOORBELL_UDB);
3806 setbit(&sc->doorbells, DOORBELL_WCWR);
3807 setbit(&sc->doorbells, DOORBELL_UDBWC);
3808 } else {
3809 device_printf(sc->dev,
3810 "couldn't enable write combining: %d\n",
3811 rc);
3812 }
3813
3814 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3815 t4_write_reg(sc, A_SGE_STAT_CFG,
3816 V_STATSOURCE_T5(7) | mode);
3817 }
3818 #endif
3819 }
3820 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3821
3822 return (0);
3823 }
3824
3825 int
t4_adj_doorbells(struct adapter * sc)3826 t4_adj_doorbells(struct adapter *sc)
3827 {
3828 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3829 sc->doorbells &= t4_doorbells_allowed;
3830 return (0);
3831 }
3832 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3833 sc->doorbells, t4_doorbells_allowed);
3834 return (EINVAL);
3835 }
3836
3837 struct memwin_init {
3838 uint32_t base;
3839 uint32_t aperture;
3840 };
3841
3842 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3843 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3844 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3845 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3846 };
3847
3848 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3849 { MEMWIN0_BASE, MEMWIN0_APERTURE },
3850 { MEMWIN1_BASE, MEMWIN1_APERTURE },
3851 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3852 };
3853
3854 static void
setup_memwin(struct adapter * sc)3855 setup_memwin(struct adapter *sc)
3856 {
3857 const struct memwin_init *mw_init;
3858 struct memwin *mw;
3859 int i;
3860 uint32_t bar0;
3861
3862 if (is_t4(sc)) {
3863 /*
3864 * Read low 32b of bar0 indirectly via the hardware backdoor
3865 * mechanism. Works from within PCI passthrough environments
3866 * too, where rman_get_start() can return a different value. We
3867 * need to program the T4 memory window decoders with the actual
3868 * addresses that will be coming across the PCIe link.
3869 */
3870 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3871 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3872
3873 mw_init = &t4_memwin[0];
3874 } else {
3875 /* T5+ use the relative offset inside the PCIe BAR */
3876 bar0 = 0;
3877
3878 mw_init = &t5_memwin[0];
3879 }
3880
3881 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3882 if (!rw_initialized(&mw->mw_lock)) {
3883 rw_init(&mw->mw_lock, "memory window access");
3884 mw->mw_base = mw_init->base;
3885 mw->mw_aperture = mw_init->aperture;
3886 mw->mw_curpos = 0;
3887 }
3888 t4_write_reg(sc,
3889 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3890 (mw->mw_base + bar0) | V_BIR(0) |
3891 V_WINDOW(ilog2(mw->mw_aperture) - 10));
3892 rw_wlock(&mw->mw_lock);
3893 position_memwin(sc, i, mw->mw_curpos);
3894 rw_wunlock(&mw->mw_lock);
3895 }
3896
3897 /* flush */
3898 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3899 }
3900
3901 /*
3902 * Positions the memory window at the given address in the card's address space.
3903 * There are some alignment requirements and the actual position may be at an
3904 * address prior to the requested address. mw->mw_curpos always has the actual
3905 * position of the window.
3906 */
3907 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)3908 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3909 {
3910 struct memwin *mw;
3911 uint32_t pf;
3912 uint32_t reg;
3913
3914 MPASS(idx >= 0 && idx < NUM_MEMWIN);
3915 mw = &sc->memwin[idx];
3916 rw_assert(&mw->mw_lock, RA_WLOCKED);
3917
3918 if (is_t4(sc)) {
3919 pf = 0;
3920 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
3921 } else {
3922 pf = V_PFNUM(sc->pf);
3923 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
3924 }
3925 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3926 t4_write_reg(sc, reg, mw->mw_curpos | pf);
3927 t4_read_reg(sc, reg); /* flush */
3928 }
3929
3930 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)3931 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3932 int len, int rw)
3933 {
3934 struct memwin *mw;
3935 uint32_t mw_end, v;
3936
3937 MPASS(idx >= 0 && idx < NUM_MEMWIN);
3938
3939 /* Memory can only be accessed in naturally aligned 4 byte units */
3940 if (addr & 3 || len & 3 || len <= 0)
3941 return (EINVAL);
3942
3943 mw = &sc->memwin[idx];
3944 while (len > 0) {
3945 rw_rlock(&mw->mw_lock);
3946 mw_end = mw->mw_curpos + mw->mw_aperture;
3947 if (addr >= mw_end || addr < mw->mw_curpos) {
3948 /* Will need to reposition the window */
3949 if (!rw_try_upgrade(&mw->mw_lock)) {
3950 rw_runlock(&mw->mw_lock);
3951 rw_wlock(&mw->mw_lock);
3952 }
3953 rw_assert(&mw->mw_lock, RA_WLOCKED);
3954 position_memwin(sc, idx, addr);
3955 rw_downgrade(&mw->mw_lock);
3956 mw_end = mw->mw_curpos + mw->mw_aperture;
3957 }
3958 rw_assert(&mw->mw_lock, RA_RLOCKED);
3959 while (addr < mw_end && len > 0) {
3960 if (rw == 0) {
3961 v = t4_read_reg(sc, mw->mw_base + addr -
3962 mw->mw_curpos);
3963 *val++ = le32toh(v);
3964 } else {
3965 v = *val++;
3966 t4_write_reg(sc, mw->mw_base + addr -
3967 mw->mw_curpos, htole32(v));
3968 }
3969 addr += 4;
3970 len -= 4;
3971 }
3972 rw_runlock(&mw->mw_lock);
3973 }
3974
3975 return (0);
3976 }
3977
3978 CTASSERT(M_TID_COOKIE == M_COOKIE);
3979 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3980
3981 static void
t4_init_atid_table(struct adapter * sc)3982 t4_init_atid_table(struct adapter *sc)
3983 {
3984 struct tid_info *t;
3985 int i;
3986
3987 t = &sc->tids;
3988 if (t->natids == 0)
3989 return;
3990
3991 MPASS(t->atid_tab == NULL);
3992
3993 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3994 M_ZERO | M_WAITOK);
3995 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3996 t->afree = t->atid_tab;
3997 t->atids_in_use = 0;
3998 t->atid_alloc_stopped = false;
3999 for (i = 1; i < t->natids; i++)
4000 t->atid_tab[i - 1].next = &t->atid_tab[i];
4001 t->atid_tab[t->natids - 1].next = NULL;
4002 }
4003
4004 static void
t4_free_atid_table(struct adapter * sc)4005 t4_free_atid_table(struct adapter *sc)
4006 {
4007 struct tid_info *t;
4008
4009 t = &sc->tids;
4010
4011 KASSERT(t->atids_in_use == 0,
4012 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4013
4014 if (mtx_initialized(&t->atid_lock))
4015 mtx_destroy(&t->atid_lock);
4016 free(t->atid_tab, M_CXGBE);
4017 t->atid_tab = NULL;
4018 }
4019
4020 static void
stop_atid_allocator(struct adapter * sc)4021 stop_atid_allocator(struct adapter *sc)
4022 {
4023 struct tid_info *t = &sc->tids;
4024
4025 mtx_lock(&t->atid_lock);
4026 t->atid_alloc_stopped = true;
4027 mtx_unlock(&t->atid_lock);
4028 }
4029
4030 static void
restart_atid_allocator(struct adapter * sc)4031 restart_atid_allocator(struct adapter *sc)
4032 {
4033 struct tid_info *t = &sc->tids;
4034
4035 mtx_lock(&t->atid_lock);
4036 KASSERT(t->atids_in_use == 0,
4037 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4038 t->atid_alloc_stopped = false;
4039 mtx_unlock(&t->atid_lock);
4040 }
4041
4042 int
alloc_atid(struct adapter * sc,void * ctx)4043 alloc_atid(struct adapter *sc, void *ctx)
4044 {
4045 struct tid_info *t = &sc->tids;
4046 int atid = -1;
4047
4048 mtx_lock(&t->atid_lock);
4049 if (t->afree && !t->atid_alloc_stopped) {
4050 union aopen_entry *p = t->afree;
4051
4052 atid = p - t->atid_tab;
4053 MPASS(atid <= M_TID_TID);
4054 t->afree = p->next;
4055 p->data = ctx;
4056 t->atids_in_use++;
4057 }
4058 mtx_unlock(&t->atid_lock);
4059 return (atid);
4060 }
4061
4062 void *
lookup_atid(struct adapter * sc,int atid)4063 lookup_atid(struct adapter *sc, int atid)
4064 {
4065 struct tid_info *t = &sc->tids;
4066
4067 return (t->atid_tab[atid].data);
4068 }
4069
4070 void
free_atid(struct adapter * sc,int atid)4071 free_atid(struct adapter *sc, int atid)
4072 {
4073 struct tid_info *t = &sc->tids;
4074 union aopen_entry *p = &t->atid_tab[atid];
4075
4076 mtx_lock(&t->atid_lock);
4077 p->next = t->afree;
4078 t->afree = p;
4079 t->atids_in_use--;
4080 mtx_unlock(&t->atid_lock);
4081 }
4082
4083 static void
queue_tid_release(struct adapter * sc,int tid)4084 queue_tid_release(struct adapter *sc, int tid)
4085 {
4086
4087 CXGBE_UNIMPLEMENTED("deferred tid release");
4088 }
4089
4090 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4091 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4092 {
4093 struct wrqe *wr;
4094 struct cpl_tid_release *req;
4095
4096 wr = alloc_wrqe(sizeof(*req), ctrlq);
4097 if (wr == NULL) {
4098 queue_tid_release(sc, tid); /* defer */
4099 return;
4100 }
4101 req = wrtod(wr);
4102
4103 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4104
4105 t4_wrq_tx(sc, wr);
4106 }
4107
4108 static int
t4_range_cmp(const void * a,const void * b)4109 t4_range_cmp(const void *a, const void *b)
4110 {
4111 return ((const struct t4_range *)a)->start -
4112 ((const struct t4_range *)b)->start;
4113 }
4114
4115 /*
4116 * Verify that the memory range specified by the addr/len pair is valid within
4117 * the card's address space.
4118 */
4119 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4120 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4121 {
4122 struct t4_range mem_ranges[4], *r, *next;
4123 uint32_t em, addr_len;
4124 int i, n, remaining;
4125
4126 /* Memory can only be accessed in naturally aligned 4 byte units */
4127 if (addr & 3 || len & 3 || len == 0)
4128 return (EINVAL);
4129
4130 /* Enabled memories */
4131 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4132
4133 r = &mem_ranges[0];
4134 n = 0;
4135 bzero(r, sizeof(mem_ranges));
4136 if (em & F_EDRAM0_ENABLE) {
4137 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4138 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4139 if (r->size > 0) {
4140 r->start = G_EDRAM0_BASE(addr_len) << 20;
4141 if (addr >= r->start &&
4142 addr + len <= r->start + r->size)
4143 return (0);
4144 r++;
4145 n++;
4146 }
4147 }
4148 if (em & F_EDRAM1_ENABLE) {
4149 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4150 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4151 if (r->size > 0) {
4152 r->start = G_EDRAM1_BASE(addr_len) << 20;
4153 if (addr >= r->start &&
4154 addr + len <= r->start + r->size)
4155 return (0);
4156 r++;
4157 n++;
4158 }
4159 }
4160 if (em & F_EXT_MEM_ENABLE) {
4161 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4162 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4163 if (r->size > 0) {
4164 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4165 if (addr >= r->start &&
4166 addr + len <= r->start + r->size)
4167 return (0);
4168 r++;
4169 n++;
4170 }
4171 }
4172 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4173 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4174 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4175 if (r->size > 0) {
4176 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4177 if (addr >= r->start &&
4178 addr + len <= r->start + r->size)
4179 return (0);
4180 r++;
4181 n++;
4182 }
4183 }
4184 MPASS(n <= nitems(mem_ranges));
4185
4186 if (n > 1) {
4187 /* Sort and merge the ranges. */
4188 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4189
4190 /* Start from index 0 and examine the next n - 1 entries. */
4191 r = &mem_ranges[0];
4192 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4193
4194 MPASS(r->size > 0); /* r is a valid entry. */
4195 next = r + 1;
4196 MPASS(next->size > 0); /* and so is the next one. */
4197
4198 while (r->start + r->size >= next->start) {
4199 /* Merge the next one into the current entry. */
4200 r->size = max(r->start + r->size,
4201 next->start + next->size) - r->start;
4202 n--; /* One fewer entry in total. */
4203 if (--remaining == 0)
4204 goto done; /* short circuit */
4205 next++;
4206 }
4207 if (next != r + 1) {
4208 /*
4209 * Some entries were merged into r and next
4210 * points to the first valid entry that couldn't
4211 * be merged.
4212 */
4213 MPASS(next->size > 0); /* must be valid */
4214 memcpy(r + 1, next, remaining * sizeof(*r));
4215 #ifdef INVARIANTS
4216 /*
4217 * This so that the foo->size assertion in the
4218 * next iteration of the loop do the right
4219 * thing for entries that were pulled up and are
4220 * no longer valid.
4221 */
4222 MPASS(n < nitems(mem_ranges));
4223 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4224 sizeof(struct t4_range));
4225 #endif
4226 }
4227 }
4228 done:
4229 /* Done merging the ranges. */
4230 MPASS(n > 0);
4231 r = &mem_ranges[0];
4232 for (i = 0; i < n; i++, r++) {
4233 if (addr >= r->start &&
4234 addr + len <= r->start + r->size)
4235 return (0);
4236 }
4237 }
4238
4239 return (EFAULT);
4240 }
4241
4242 static int
fwmtype_to_hwmtype(int mtype)4243 fwmtype_to_hwmtype(int mtype)
4244 {
4245
4246 switch (mtype) {
4247 case FW_MEMTYPE_EDC0:
4248 return (MEM_EDC0);
4249 case FW_MEMTYPE_EDC1:
4250 return (MEM_EDC1);
4251 case FW_MEMTYPE_EXTMEM:
4252 return (MEM_MC0);
4253 case FW_MEMTYPE_EXTMEM1:
4254 return (MEM_MC1);
4255 default:
4256 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4257 }
4258 }
4259
4260 /*
4261 * Verify that the memory range specified by the memtype/offset/len pair is
4262 * valid and lies entirely within the memtype specified. The global address of
4263 * the start of the range is returned in addr.
4264 */
4265 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4266 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4267 uint32_t *addr)
4268 {
4269 uint32_t em, addr_len, maddr;
4270
4271 /* Memory can only be accessed in naturally aligned 4 byte units */
4272 if (off & 3 || len & 3 || len == 0)
4273 return (EINVAL);
4274
4275 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4276 switch (fwmtype_to_hwmtype(mtype)) {
4277 case MEM_EDC0:
4278 if (!(em & F_EDRAM0_ENABLE))
4279 return (EINVAL);
4280 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4281 maddr = G_EDRAM0_BASE(addr_len) << 20;
4282 break;
4283 case MEM_EDC1:
4284 if (!(em & F_EDRAM1_ENABLE))
4285 return (EINVAL);
4286 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4287 maddr = G_EDRAM1_BASE(addr_len) << 20;
4288 break;
4289 case MEM_MC:
4290 if (!(em & F_EXT_MEM_ENABLE))
4291 return (EINVAL);
4292 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4293 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4294 break;
4295 case MEM_MC1:
4296 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4297 return (EINVAL);
4298 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4299 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4300 break;
4301 default:
4302 return (EINVAL);
4303 }
4304
4305 *addr = maddr + off; /* global address */
4306 return (validate_mem_range(sc, *addr, len));
4307 }
4308
4309 static int
fixup_devlog_params(struct adapter * sc)4310 fixup_devlog_params(struct adapter *sc)
4311 {
4312 struct devlog_params *dparams = &sc->params.devlog;
4313 int rc;
4314
4315 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4316 dparams->size, &dparams->addr);
4317
4318 return (rc);
4319 }
4320
4321 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4322 update_nirq(struct intrs_and_queues *iaq, int nports)
4323 {
4324
4325 iaq->nirq = T4_EXTRA_INTR;
4326 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4327 iaq->nirq += nports * iaq->nofldrxq;
4328 iaq->nirq += nports * (iaq->num_vis - 1) *
4329 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4330 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4331 }
4332
4333 /*
4334 * Adjust requirements to fit the number of interrupts available.
4335 */
4336 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4337 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4338 int navail)
4339 {
4340 int old_nirq;
4341 const int nports = sc->params.nports;
4342
4343 MPASS(nports > 0);
4344 MPASS(navail > 0);
4345
4346 bzero(iaq, sizeof(*iaq));
4347 iaq->intr_type = itype;
4348 iaq->num_vis = t4_num_vis;
4349 iaq->ntxq = t4_ntxq;
4350 iaq->ntxq_vi = t4_ntxq_vi;
4351 iaq->nrxq = t4_nrxq;
4352 iaq->nrxq_vi = t4_nrxq_vi;
4353 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4354 if (is_offload(sc) || is_ethoffload(sc)) {
4355 iaq->nofldtxq = t4_nofldtxq;
4356 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4357 }
4358 #endif
4359 #ifdef TCP_OFFLOAD
4360 if (is_offload(sc)) {
4361 iaq->nofldrxq = t4_nofldrxq;
4362 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4363 }
4364 #endif
4365 #ifdef DEV_NETMAP
4366 if (t4_native_netmap & NN_MAIN_VI) {
4367 iaq->nnmtxq = t4_nnmtxq;
4368 iaq->nnmrxq = t4_nnmrxq;
4369 }
4370 if (t4_native_netmap & NN_EXTRA_VI) {
4371 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4372 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4373 }
4374 #endif
4375
4376 update_nirq(iaq, nports);
4377 if (iaq->nirq <= navail &&
4378 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4379 /*
4380 * This is the normal case -- there are enough interrupts for
4381 * everything.
4382 */
4383 goto done;
4384 }
4385
4386 /*
4387 * If extra VIs have been configured try reducing their count and see if
4388 * that works.
4389 */
4390 while (iaq->num_vis > 1) {
4391 iaq->num_vis--;
4392 update_nirq(iaq, nports);
4393 if (iaq->nirq <= navail &&
4394 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4395 device_printf(sc->dev, "virtual interfaces per port "
4396 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4397 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4398 "itype %d, navail %u, nirq %d.\n",
4399 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4400 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4401 itype, navail, iaq->nirq);
4402 goto done;
4403 }
4404 }
4405
4406 /*
4407 * Extra VIs will not be created. Log a message if they were requested.
4408 */
4409 MPASS(iaq->num_vis == 1);
4410 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4411 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4412 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4413 if (iaq->num_vis != t4_num_vis) {
4414 device_printf(sc->dev, "extra virtual interfaces disabled. "
4415 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4416 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4417 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4418 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4419 }
4420
4421 /*
4422 * Keep reducing the number of NIC rx queues to the next lower power of
4423 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4424 * if that works.
4425 */
4426 do {
4427 if (iaq->nrxq > 1) {
4428 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4429 if (iaq->nnmrxq > iaq->nrxq)
4430 iaq->nnmrxq = iaq->nrxq;
4431 }
4432 if (iaq->nofldrxq > 1)
4433 iaq->nofldrxq >>= 1;
4434
4435 old_nirq = iaq->nirq;
4436 update_nirq(iaq, nports);
4437 if (iaq->nirq <= navail &&
4438 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4439 device_printf(sc->dev, "running with reduced number of "
4440 "rx queues because of shortage of interrupts. "
4441 "nrxq=%u, nofldrxq=%u. "
4442 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4443 iaq->nofldrxq, itype, navail, iaq->nirq);
4444 goto done;
4445 }
4446 } while (old_nirq != iaq->nirq);
4447
4448 /* One interrupt for everything. Ugh. */
4449 device_printf(sc->dev, "running with minimal number of queues. "
4450 "itype %d, navail %u.\n", itype, navail);
4451 iaq->nirq = 1;
4452 iaq->nrxq = 1;
4453 iaq->ntxq = 1;
4454 if (iaq->nofldrxq > 0) {
4455 iaq->nofldrxq = 1;
4456 iaq->nofldtxq = 1;
4457 }
4458 iaq->nnmtxq = 0;
4459 iaq->nnmrxq = 0;
4460 done:
4461 MPASS(iaq->num_vis > 0);
4462 if (iaq->num_vis > 1) {
4463 MPASS(iaq->nrxq_vi > 0);
4464 MPASS(iaq->ntxq_vi > 0);
4465 }
4466 MPASS(iaq->nirq > 0);
4467 MPASS(iaq->nrxq > 0);
4468 MPASS(iaq->ntxq > 0);
4469 if (itype == INTR_MSI) {
4470 MPASS(powerof2(iaq->nirq));
4471 }
4472 }
4473
4474 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4475 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4476 {
4477 int rc, itype, navail, nalloc;
4478
4479 for (itype = INTR_MSIX; itype; itype >>= 1) {
4480
4481 if ((itype & t4_intr_types) == 0)
4482 continue; /* not allowed */
4483
4484 if (itype == INTR_MSIX)
4485 navail = pci_msix_count(sc->dev);
4486 else if (itype == INTR_MSI)
4487 navail = pci_msi_count(sc->dev);
4488 else
4489 navail = 1;
4490 restart:
4491 if (navail == 0)
4492 continue;
4493
4494 calculate_iaq(sc, iaq, itype, navail);
4495 nalloc = iaq->nirq;
4496 rc = 0;
4497 if (itype == INTR_MSIX)
4498 rc = pci_alloc_msix(sc->dev, &nalloc);
4499 else if (itype == INTR_MSI)
4500 rc = pci_alloc_msi(sc->dev, &nalloc);
4501
4502 if (rc == 0 && nalloc > 0) {
4503 if (nalloc == iaq->nirq)
4504 return (0);
4505
4506 /*
4507 * Didn't get the number requested. Use whatever number
4508 * the kernel is willing to allocate.
4509 */
4510 device_printf(sc->dev, "fewer vectors than requested, "
4511 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4512 itype, iaq->nirq, nalloc);
4513 pci_release_msi(sc->dev);
4514 navail = nalloc;
4515 goto restart;
4516 }
4517
4518 device_printf(sc->dev,
4519 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4520 itype, rc, iaq->nirq, nalloc);
4521 }
4522
4523 device_printf(sc->dev,
4524 "failed to find a usable interrupt type. "
4525 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4526 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4527
4528 return (ENXIO);
4529 }
4530
4531 #define FW_VERSION(chip) ( \
4532 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4533 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4534 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4535 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4536 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4537
4538 /* Just enough of fw_hdr to cover all version info. */
4539 struct fw_h {
4540 __u8 ver;
4541 __u8 chip;
4542 __be16 len512;
4543 __be32 fw_ver;
4544 __be32 tp_microcode_ver;
4545 __u8 intfver_nic;
4546 __u8 intfver_vnic;
4547 __u8 intfver_ofld;
4548 __u8 intfver_ri;
4549 __u8 intfver_iscsipdu;
4550 __u8 intfver_iscsi;
4551 __u8 intfver_fcoepdu;
4552 __u8 intfver_fcoe;
4553 };
4554 /* Spot check a couple of fields. */
4555 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4556 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4557 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4558
4559 struct fw_info {
4560 uint8_t chip;
4561 char *kld_name;
4562 char *fw_mod_name;
4563 struct fw_h fw_h;
4564 } fw_info[] = {
4565 {
4566 .chip = CHELSIO_T4,
4567 .kld_name = "t4fw_cfg",
4568 .fw_mod_name = "t4fw",
4569 .fw_h = {
4570 .chip = FW_HDR_CHIP_T4,
4571 .fw_ver = htobe32(FW_VERSION(T4)),
4572 .intfver_nic = FW_INTFVER(T4, NIC),
4573 .intfver_vnic = FW_INTFVER(T4, VNIC),
4574 .intfver_ofld = FW_INTFVER(T4, OFLD),
4575 .intfver_ri = FW_INTFVER(T4, RI),
4576 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4577 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4578 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4579 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4580 },
4581 }, {
4582 .chip = CHELSIO_T5,
4583 .kld_name = "t5fw_cfg",
4584 .fw_mod_name = "t5fw",
4585 .fw_h = {
4586 .chip = FW_HDR_CHIP_T5,
4587 .fw_ver = htobe32(FW_VERSION(T5)),
4588 .intfver_nic = FW_INTFVER(T5, NIC),
4589 .intfver_vnic = FW_INTFVER(T5, VNIC),
4590 .intfver_ofld = FW_INTFVER(T5, OFLD),
4591 .intfver_ri = FW_INTFVER(T5, RI),
4592 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4593 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4594 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4595 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4596 },
4597 }, {
4598 .chip = CHELSIO_T6,
4599 .kld_name = "t6fw_cfg",
4600 .fw_mod_name = "t6fw",
4601 .fw_h = {
4602 .chip = FW_HDR_CHIP_T6,
4603 .fw_ver = htobe32(FW_VERSION(T6)),
4604 .intfver_nic = FW_INTFVER(T6, NIC),
4605 .intfver_vnic = FW_INTFVER(T6, VNIC),
4606 .intfver_ofld = FW_INTFVER(T6, OFLD),
4607 .intfver_ri = FW_INTFVER(T6, RI),
4608 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4609 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4610 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4611 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4612 },
4613 }
4614 };
4615
4616 static struct fw_info *
find_fw_info(int chip)4617 find_fw_info(int chip)
4618 {
4619 int i;
4620
4621 for (i = 0; i < nitems(fw_info); i++) {
4622 if (fw_info[i].chip == chip)
4623 return (&fw_info[i]);
4624 }
4625 return (NULL);
4626 }
4627
4628 /*
4629 * Is the given firmware API compatible with the one the driver was compiled
4630 * with?
4631 */
4632 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4633 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4634 {
4635
4636 /* short circuit if it's the exact same firmware version */
4637 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4638 return (1);
4639
4640 /*
4641 * XXX: Is this too conservative? Perhaps I should limit this to the
4642 * features that are supported in the driver.
4643 */
4644 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4645 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4646 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4647 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4648 return (1);
4649 #undef SAME_INTF
4650
4651 return (0);
4652 }
4653
4654 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4655 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4656 const struct firmware **fw)
4657 {
4658 struct fw_info *fw_info;
4659
4660 *dcfg = NULL;
4661 if (fw != NULL)
4662 *fw = NULL;
4663
4664 fw_info = find_fw_info(chip_id(sc));
4665 if (fw_info == NULL) {
4666 device_printf(sc->dev,
4667 "unable to look up firmware information for chip %d.\n",
4668 chip_id(sc));
4669 return (EINVAL);
4670 }
4671
4672 *dcfg = firmware_get(fw_info->kld_name);
4673 if (*dcfg != NULL) {
4674 if (fw != NULL)
4675 *fw = firmware_get(fw_info->fw_mod_name);
4676 return (0);
4677 }
4678
4679 return (ENOENT);
4680 }
4681
4682 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4683 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4684 const struct firmware *fw)
4685 {
4686
4687 if (fw != NULL)
4688 firmware_put(fw, FIRMWARE_UNLOAD);
4689 if (dcfg != NULL)
4690 firmware_put(dcfg, FIRMWARE_UNLOAD);
4691 }
4692
4693 /*
4694 * Return values:
4695 * 0 means no firmware install attempted.
4696 * ERESTART means a firmware install was attempted and was successful.
4697 * +ve errno means a firmware install was attempted but failed.
4698 */
4699 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4700 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4701 const struct fw_h *drv_fw, const char *reason, int *already)
4702 {
4703 const struct firmware *cfg, *fw;
4704 const uint32_t c = be32toh(card_fw->fw_ver);
4705 uint32_t d, k;
4706 int rc, fw_install;
4707 struct fw_h bundled_fw;
4708 bool load_attempted;
4709
4710 cfg = fw = NULL;
4711 load_attempted = false;
4712 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4713
4714 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4715 if (t4_fw_install < 0) {
4716 rc = load_fw_module(sc, &cfg, &fw);
4717 if (rc != 0 || fw == NULL) {
4718 device_printf(sc->dev,
4719 "failed to load firmware module: %d. cfg %p, fw %p;"
4720 " will use compiled-in firmware version for"
4721 "hw.cxgbe.fw_install checks.\n",
4722 rc, cfg, fw);
4723 } else {
4724 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4725 }
4726 load_attempted = true;
4727 }
4728 d = be32toh(bundled_fw.fw_ver);
4729
4730 if (reason != NULL)
4731 goto install;
4732
4733 if ((sc->flags & FW_OK) == 0) {
4734
4735 if (c == 0xffffffff) {
4736 reason = "missing";
4737 goto install;
4738 }
4739
4740 rc = 0;
4741 goto done;
4742 }
4743
4744 if (!fw_compatible(card_fw, &bundled_fw)) {
4745 reason = "incompatible or unusable";
4746 goto install;
4747 }
4748
4749 if (d > c) {
4750 reason = "older than the version bundled with this driver";
4751 goto install;
4752 }
4753
4754 if (fw_install == 2 && d != c) {
4755 reason = "different than the version bundled with this driver";
4756 goto install;
4757 }
4758
4759 /* No reason to do anything to the firmware already on the card. */
4760 rc = 0;
4761 goto done;
4762
4763 install:
4764 rc = 0;
4765 if ((*already)++)
4766 goto done;
4767
4768 if (fw_install == 0) {
4769 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4770 "but the driver is prohibited from installing a firmware "
4771 "on the card.\n",
4772 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4773 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4774
4775 goto done;
4776 }
4777
4778 /*
4779 * We'll attempt to install a firmware. Load the module first (if it
4780 * hasn't been loaded already).
4781 */
4782 if (!load_attempted) {
4783 rc = load_fw_module(sc, &cfg, &fw);
4784 if (rc != 0 || fw == NULL) {
4785 device_printf(sc->dev,
4786 "failed to load firmware module: %d. cfg %p, fw %p\n",
4787 rc, cfg, fw);
4788 /* carry on */
4789 }
4790 }
4791 if (fw == NULL) {
4792 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4793 "but the driver cannot take corrective action because it "
4794 "is unable to load the firmware module.\n",
4795 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4796 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4797 rc = sc->flags & FW_OK ? 0 : ENOENT;
4798 goto done;
4799 }
4800 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4801 if (k != d) {
4802 MPASS(t4_fw_install > 0);
4803 device_printf(sc->dev,
4804 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4805 "expecting (%u.%u.%u.%u) and will not be used.\n",
4806 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4807 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4808 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4809 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4810 rc = sc->flags & FW_OK ? 0 : EINVAL;
4811 goto done;
4812 }
4813
4814 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4815 "installing firmware %u.%u.%u.%u on card.\n",
4816 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4817 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4818 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4819 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4820
4821 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4822 if (rc != 0) {
4823 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4824 } else {
4825 /* Installed successfully, update the cached header too. */
4826 rc = ERESTART;
4827 memcpy(card_fw, fw->data, sizeof(*card_fw));
4828 }
4829 done:
4830 unload_fw_module(sc, cfg, fw);
4831
4832 return (rc);
4833 }
4834
4835 /*
4836 * Establish contact with the firmware and attempt to become the master driver.
4837 *
4838 * A firmware will be installed to the card if needed (if the driver is allowed
4839 * to do so).
4840 */
4841 static int
contact_firmware(struct adapter * sc)4842 contact_firmware(struct adapter *sc)
4843 {
4844 int rc, already = 0;
4845 enum dev_state state;
4846 struct fw_info *fw_info;
4847 struct fw_hdr *card_fw; /* fw on the card */
4848 const struct fw_h *drv_fw;
4849
4850 fw_info = find_fw_info(chip_id(sc));
4851 if (fw_info == NULL) {
4852 device_printf(sc->dev,
4853 "unable to look up firmware information for chip %d.\n",
4854 chip_id(sc));
4855 return (EINVAL);
4856 }
4857 drv_fw = &fw_info->fw_h;
4858
4859 /* Read the header of the firmware on the card */
4860 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4861 restart:
4862 rc = -t4_get_fw_hdr(sc, card_fw);
4863 if (rc != 0) {
4864 device_printf(sc->dev,
4865 "unable to read firmware header from card's flash: %d\n",
4866 rc);
4867 goto done;
4868 }
4869
4870 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4871 &already);
4872 if (rc == ERESTART)
4873 goto restart;
4874 if (rc != 0)
4875 goto done;
4876
4877 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4878 if (rc < 0 || state == DEV_STATE_ERR) {
4879 rc = -rc;
4880 device_printf(sc->dev,
4881 "failed to connect to the firmware: %d, %d. "
4882 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4883 #if 0
4884 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4885 "not responding properly to HELLO", &already) == ERESTART)
4886 goto restart;
4887 #endif
4888 goto done;
4889 }
4890 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4891 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
4892
4893 if (rc == sc->pf) {
4894 sc->flags |= MASTER_PF;
4895 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4896 NULL, &already);
4897 if (rc == ERESTART)
4898 rc = 0;
4899 else if (rc != 0)
4900 goto done;
4901 } else if (state == DEV_STATE_UNINIT) {
4902 /*
4903 * We didn't get to be the master so we definitely won't be
4904 * configuring the chip. It's a bug if someone else hasn't
4905 * configured it already.
4906 */
4907 device_printf(sc->dev, "couldn't be master(%d), "
4908 "device not already initialized either(%d). "
4909 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4910 rc = EPROTO;
4911 goto done;
4912 } else {
4913 /*
4914 * Some other PF is the master and has configured the chip.
4915 * This is allowed but untested.
4916 */
4917 device_printf(sc->dev, "PF%d is master, device state %d. "
4918 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4919 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4920 sc->cfcsum = 0;
4921 rc = 0;
4922 }
4923 done:
4924 if (rc != 0 && sc->flags & FW_OK) {
4925 t4_fw_bye(sc, sc->mbox);
4926 sc->flags &= ~FW_OK;
4927 }
4928 free(card_fw, M_CXGBE);
4929 return (rc);
4930 }
4931
4932 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff)4933 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4934 uint32_t mtype, uint32_t moff)
4935 {
4936 struct fw_info *fw_info;
4937 const struct firmware *dcfg, *rcfg = NULL;
4938 const uint32_t *cfdata;
4939 uint32_t cflen, addr;
4940 int rc;
4941
4942 load_fw_module(sc, &dcfg, NULL);
4943
4944 /* Card specific interpretation of "default". */
4945 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4946 if (pci_get_device(sc->dev) == 0x440a)
4947 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4948 if (is_fpga(sc))
4949 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4950 }
4951
4952 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4953 if (dcfg == NULL) {
4954 device_printf(sc->dev,
4955 "KLD with default config is not available.\n");
4956 rc = ENOENT;
4957 goto done;
4958 }
4959 cfdata = dcfg->data;
4960 cflen = dcfg->datasize & ~3;
4961 } else {
4962 char s[32];
4963
4964 fw_info = find_fw_info(chip_id(sc));
4965 if (fw_info == NULL) {
4966 device_printf(sc->dev,
4967 "unable to look up firmware information for chip %d.\n",
4968 chip_id(sc));
4969 rc = EINVAL;
4970 goto done;
4971 }
4972 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4973
4974 rcfg = firmware_get(s);
4975 if (rcfg == NULL) {
4976 device_printf(sc->dev,
4977 "unable to load module \"%s\" for configuration "
4978 "profile \"%s\".\n", s, cfg_file);
4979 rc = ENOENT;
4980 goto done;
4981 }
4982 cfdata = rcfg->data;
4983 cflen = rcfg->datasize & ~3;
4984 }
4985
4986 if (cflen > FLASH_CFG_MAX_SIZE) {
4987 device_printf(sc->dev,
4988 "config file too long (%d, max allowed is %d).\n",
4989 cflen, FLASH_CFG_MAX_SIZE);
4990 rc = EINVAL;
4991 goto done;
4992 }
4993
4994 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4995 if (rc != 0) {
4996 device_printf(sc->dev,
4997 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4998 __func__, mtype, moff, cflen, rc);
4999 rc = EINVAL;
5000 goto done;
5001 }
5002 write_via_memwin(sc, 2, addr, cfdata, cflen);
5003 done:
5004 if (rcfg != NULL)
5005 firmware_put(rcfg, FIRMWARE_UNLOAD);
5006 unload_fw_module(sc, dcfg, NULL);
5007 return (rc);
5008 }
5009
5010 struct caps_allowed {
5011 uint16_t nbmcaps;
5012 uint16_t linkcaps;
5013 uint16_t switchcaps;
5014 uint16_t niccaps;
5015 uint16_t toecaps;
5016 uint16_t rdmacaps;
5017 uint16_t cryptocaps;
5018 uint16_t iscsicaps;
5019 uint16_t fcoecaps;
5020 };
5021
5022 #define FW_PARAM_DEV(param) \
5023 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5024 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5025 #define FW_PARAM_PFVF(param) \
5026 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5027 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5028
5029 /*
5030 * Provide a configuration profile to the firmware and have it initialize the
5031 * chip accordingly. This may involve uploading a configuration file to the
5032 * card.
5033 */
5034 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5035 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5036 const struct caps_allowed *caps_allowed)
5037 {
5038 int rc;
5039 struct fw_caps_config_cmd caps;
5040 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5041
5042 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5043 if (rc != 0) {
5044 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5045 return (rc);
5046 }
5047
5048 bzero(&caps, sizeof(caps));
5049 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5050 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5051 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5052 mtype = 0;
5053 moff = 0;
5054 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5055 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5056 mtype = FW_MEMTYPE_FLASH;
5057 moff = t4_flash_cfg_addr(sc);
5058 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5059 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5060 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5061 FW_LEN16(caps));
5062 } else {
5063 /*
5064 * Ask the firmware where it wants us to upload the config file.
5065 */
5066 param = FW_PARAM_DEV(CF);
5067 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5068 if (rc != 0) {
5069 /* No support for config file? Shouldn't happen. */
5070 device_printf(sc->dev,
5071 "failed to query config file location: %d.\n", rc);
5072 goto done;
5073 }
5074 mtype = G_FW_PARAMS_PARAM_Y(val);
5075 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5076 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5077 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5078 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5079 FW_LEN16(caps));
5080
5081 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5082 if (rc != 0) {
5083 device_printf(sc->dev,
5084 "failed to upload config file to card: %d.\n", rc);
5085 goto done;
5086 }
5087 }
5088 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5089 if (rc != 0) {
5090 device_printf(sc->dev, "failed to pre-process config file: %d "
5091 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5092 goto done;
5093 }
5094
5095 finicsum = be32toh(caps.finicsum);
5096 cfcsum = be32toh(caps.cfcsum); /* actual */
5097 if (finicsum != cfcsum) {
5098 device_printf(sc->dev,
5099 "WARNING: config file checksum mismatch: %08x %08x\n",
5100 finicsum, cfcsum);
5101 }
5102 sc->cfcsum = cfcsum;
5103 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5104
5105 /*
5106 * Let the firmware know what features will (not) be used so it can tune
5107 * things accordingly.
5108 */
5109 #define LIMIT_CAPS(x) do { \
5110 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5111 } while (0)
5112 LIMIT_CAPS(nbm);
5113 LIMIT_CAPS(link);
5114 LIMIT_CAPS(switch);
5115 LIMIT_CAPS(nic);
5116 LIMIT_CAPS(toe);
5117 LIMIT_CAPS(rdma);
5118 LIMIT_CAPS(crypto);
5119 LIMIT_CAPS(iscsi);
5120 LIMIT_CAPS(fcoe);
5121 #undef LIMIT_CAPS
5122 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5123 /*
5124 * TOE and hashfilters are mutually exclusive. It is a config
5125 * file or firmware bug if both are reported as available. Try
5126 * to cope with the situation in non-debug builds by disabling
5127 * TOE.
5128 */
5129 MPASS(caps.toecaps == 0);
5130
5131 caps.toecaps = 0;
5132 caps.rdmacaps = 0;
5133 caps.iscsicaps = 0;
5134 }
5135
5136 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5137 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5138 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5139 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5140 if (rc != 0) {
5141 device_printf(sc->dev,
5142 "failed to process config file: %d.\n", rc);
5143 goto done;
5144 }
5145
5146 t4_tweak_chip_settings(sc);
5147 set_params__pre_init(sc);
5148
5149 /* get basic stuff going */
5150 rc = -t4_fw_initialize(sc, sc->mbox);
5151 if (rc != 0) {
5152 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5153 goto done;
5154 }
5155 done:
5156 return (rc);
5157 }
5158
5159 /*
5160 * Partition chip resources for use between various PFs, VFs, etc.
5161 */
5162 static int
partition_resources(struct adapter * sc)5163 partition_resources(struct adapter *sc)
5164 {
5165 char cfg_file[sizeof(t4_cfg_file)];
5166 struct caps_allowed caps_allowed;
5167 int rc;
5168 bool fallback;
5169
5170 /* Only the master driver gets to configure the chip resources. */
5171 MPASS(sc->flags & MASTER_PF);
5172
5173 #define COPY_CAPS(x) do { \
5174 caps_allowed.x##caps = t4_##x##caps_allowed; \
5175 } while (0)
5176 bzero(&caps_allowed, sizeof(caps_allowed));
5177 COPY_CAPS(nbm);
5178 COPY_CAPS(link);
5179 COPY_CAPS(switch);
5180 COPY_CAPS(nic);
5181 COPY_CAPS(toe);
5182 COPY_CAPS(rdma);
5183 COPY_CAPS(crypto);
5184 COPY_CAPS(iscsi);
5185 COPY_CAPS(fcoe);
5186 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5187 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5188 retry:
5189 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5190 if (rc != 0 && fallback) {
5191 dump_devlog(sc);
5192 device_printf(sc->dev,
5193 "failed (%d) to configure card with \"%s\" profile, "
5194 "will fall back to a basic configuration and retry.\n",
5195 rc, cfg_file);
5196 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5197 bzero(&caps_allowed, sizeof(caps_allowed));
5198 COPY_CAPS(switch);
5199 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5200 fallback = false;
5201 goto retry;
5202 }
5203 #undef COPY_CAPS
5204 return (rc);
5205 }
5206
5207 /*
5208 * Retrieve parameters that are needed (or nice to have) very early.
5209 */
5210 static int
get_params__pre_init(struct adapter * sc)5211 get_params__pre_init(struct adapter *sc)
5212 {
5213 int rc;
5214 uint32_t param[2], val[2];
5215
5216 t4_get_version_info(sc);
5217
5218 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5219 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5220 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5221 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5222 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5223
5224 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5225 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5226 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5227 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5228 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5229
5230 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5231 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5232 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5233 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5234 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5235
5236 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5237 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5238 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5239 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5240 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5241
5242 param[0] = FW_PARAM_DEV(PORTVEC);
5243 param[1] = FW_PARAM_DEV(CCLK);
5244 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5245 if (rc != 0) {
5246 device_printf(sc->dev,
5247 "failed to query parameters (pre_init): %d.\n", rc);
5248 return (rc);
5249 }
5250
5251 sc->params.portvec = val[0];
5252 sc->params.nports = bitcount32(val[0]);
5253 sc->params.vpd.cclk = val[1];
5254
5255 /* Read device log parameters. */
5256 rc = -t4_init_devlog_params(sc, 1);
5257 if (rc == 0)
5258 fixup_devlog_params(sc);
5259 else {
5260 device_printf(sc->dev,
5261 "failed to get devlog parameters: %d.\n", rc);
5262 rc = 0; /* devlog isn't critical for device operation */
5263 }
5264
5265 return (rc);
5266 }
5267
5268 /*
5269 * Any params that need to be set before FW_INITIALIZE.
5270 */
5271 static int
set_params__pre_init(struct adapter * sc)5272 set_params__pre_init(struct adapter *sc)
5273 {
5274 int rc = 0;
5275 uint32_t param, val;
5276
5277 if (chip_id(sc) >= CHELSIO_T6) {
5278 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5279 val = 1;
5280 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5281 /* firmwares < 1.20.1.0 do not have this param. */
5282 if (rc == FW_EINVAL &&
5283 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5284 rc = 0;
5285 }
5286 if (rc != 0) {
5287 device_printf(sc->dev,
5288 "failed to enable high priority filters :%d.\n",
5289 rc);
5290 }
5291
5292 param = FW_PARAM_DEV(PPOD_EDRAM);
5293 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5294 if (rc == 0 && val == 1) {
5295 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5296 &val);
5297 if (rc != 0) {
5298 device_printf(sc->dev,
5299 "failed to set PPOD_EDRAM: %d.\n", rc);
5300 }
5301 }
5302 }
5303
5304 /* Enable opaque VIIDs with firmwares that support it. */
5305 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5306 val = 1;
5307 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5308 if (rc == 0 && val == 1)
5309 sc->params.viid_smt_extn_support = true;
5310 else
5311 sc->params.viid_smt_extn_support = false;
5312
5313 return (rc);
5314 }
5315
5316 /*
5317 * Retrieve various parameters that are of interest to the driver. The device
5318 * has been initialized by the firmware at this point.
5319 */
5320 static int
get_params__post_init(struct adapter * sc)5321 get_params__post_init(struct adapter *sc)
5322 {
5323 int rc;
5324 uint32_t param[7], val[7];
5325 struct fw_caps_config_cmd caps;
5326
5327 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5328 param[1] = FW_PARAM_PFVF(EQ_START);
5329 param[2] = FW_PARAM_PFVF(FILTER_START);
5330 param[3] = FW_PARAM_PFVF(FILTER_END);
5331 param[4] = FW_PARAM_PFVF(L2T_START);
5332 param[5] = FW_PARAM_PFVF(L2T_END);
5333 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5334 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5335 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5336 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5337 if (rc != 0) {
5338 device_printf(sc->dev,
5339 "failed to query parameters (post_init): %d.\n", rc);
5340 return (rc);
5341 }
5342
5343 sc->sge.iq_start = val[0];
5344 sc->sge.eq_start = val[1];
5345 if ((int)val[3] > (int)val[2]) {
5346 sc->tids.ftid_base = val[2];
5347 sc->tids.ftid_end = val[3];
5348 sc->tids.nftids = val[3] - val[2] + 1;
5349 }
5350 sc->vres.l2t.start = val[4];
5351 sc->vres.l2t.size = val[5] - val[4] + 1;
5352 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5353 if (sc->vres.l2t.size > 0)
5354 MPASS(fls(val[5]) <= S_SYNC_WR);
5355 sc->params.core_vdd = val[6];
5356
5357 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5358 param[1] = FW_PARAM_PFVF(EQ_END);
5359 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5360 if (rc != 0) {
5361 device_printf(sc->dev,
5362 "failed to query parameters (post_init2): %d.\n", rc);
5363 return (rc);
5364 }
5365 MPASS((int)val[0] >= sc->sge.iq_start);
5366 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5367 MPASS((int)val[1] >= sc->sge.eq_start);
5368 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5369
5370 if (chip_id(sc) >= CHELSIO_T6) {
5371
5372 sc->tids.tid_base = t4_read_reg(sc,
5373 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5374
5375 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5376 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5377 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5378 if (rc != 0) {
5379 device_printf(sc->dev,
5380 "failed to query hpfilter parameters: %d.\n", rc);
5381 return (rc);
5382 }
5383 if ((int)val[1] > (int)val[0]) {
5384 sc->tids.hpftid_base = val[0];
5385 sc->tids.hpftid_end = val[1];
5386 sc->tids.nhpftids = val[1] - val[0] + 1;
5387
5388 /*
5389 * These should go off if the layout changes and the
5390 * driver needs to catch up.
5391 */
5392 MPASS(sc->tids.hpftid_base == 0);
5393 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5394 }
5395
5396 param[0] = FW_PARAM_PFVF(RAWF_START);
5397 param[1] = FW_PARAM_PFVF(RAWF_END);
5398 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5399 if (rc != 0) {
5400 device_printf(sc->dev,
5401 "failed to query rawf parameters: %d.\n", rc);
5402 return (rc);
5403 }
5404 if ((int)val[1] > (int)val[0]) {
5405 sc->rawf_base = val[0];
5406 sc->nrawf = val[1] - val[0] + 1;
5407 }
5408 }
5409
5410 /*
5411 * The parameters that follow may not be available on all firmwares. We
5412 * query them individually rather than in a compound query because old
5413 * firmwares fail the entire query if an unknown parameter is queried.
5414 */
5415
5416 /*
5417 * MPS buffer group configuration.
5418 */
5419 param[0] = FW_PARAM_DEV(MPSBGMAP);
5420 val[0] = 0;
5421 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5422 if (rc == 0)
5423 sc->params.mps_bg_map = val[0];
5424 else
5425 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5426
5427 param[0] = FW_PARAM_DEV(TPCHMAP);
5428 val[0] = 0;
5429 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5430 if (rc == 0)
5431 sc->params.tp_ch_map = val[0];
5432 else
5433 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5434
5435 /*
5436 * Determine whether the firmware supports the filter2 work request.
5437 */
5438 param[0] = FW_PARAM_DEV(FILTER2_WR);
5439 val[0] = 0;
5440 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5441 if (rc == 0)
5442 sc->params.filter2_wr_support = val[0] != 0;
5443 else
5444 sc->params.filter2_wr_support = 0;
5445
5446 /*
5447 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5448 */
5449 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5450 val[0] = 0;
5451 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5452 if (rc == 0)
5453 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5454 else
5455 sc->params.ulptx_memwrite_dsgl = false;
5456
5457 /* FW_RI_FR_NSMR_TPTE_WR support */
5458 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5459 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5460 if (rc == 0)
5461 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5462 else
5463 sc->params.fr_nsmr_tpte_wr_support = false;
5464
5465 /* Support for 512 SGL entries per FR MR. */
5466 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5467 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5468 if (rc == 0)
5469 sc->params.dev_512sgl_mr = val[0] != 0;
5470 else
5471 sc->params.dev_512sgl_mr = false;
5472
5473 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5474 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5475 if (rc == 0)
5476 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5477 else
5478 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5479
5480 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5481 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5482 if (rc == 0) {
5483 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5484 sc->params.nsched_cls = val[0];
5485 } else
5486 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5487
5488 /* get capabilites */
5489 bzero(&caps, sizeof(caps));
5490 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5491 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5492 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5493 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5494 if (rc != 0) {
5495 device_printf(sc->dev,
5496 "failed to get card capabilities: %d.\n", rc);
5497 return (rc);
5498 }
5499
5500 #define READ_CAPS(x) do { \
5501 sc->x = htobe16(caps.x); \
5502 } while (0)
5503 READ_CAPS(nbmcaps);
5504 READ_CAPS(linkcaps);
5505 READ_CAPS(switchcaps);
5506 READ_CAPS(niccaps);
5507 READ_CAPS(toecaps);
5508 READ_CAPS(rdmacaps);
5509 READ_CAPS(cryptocaps);
5510 READ_CAPS(iscsicaps);
5511 READ_CAPS(fcoecaps);
5512
5513 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5514 MPASS(chip_id(sc) > CHELSIO_T4);
5515 MPASS(sc->toecaps == 0);
5516 sc->toecaps = 0;
5517
5518 param[0] = FW_PARAM_DEV(NTID);
5519 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5520 if (rc != 0) {
5521 device_printf(sc->dev,
5522 "failed to query HASHFILTER parameters: %d.\n", rc);
5523 return (rc);
5524 }
5525 sc->tids.ntids = val[0];
5526 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5527 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5528 sc->tids.ntids -= sc->tids.nhpftids;
5529 }
5530 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5531 sc->params.hash_filter = 1;
5532 }
5533 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5534 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5535 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5536 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5537 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5538 if (rc != 0) {
5539 device_printf(sc->dev,
5540 "failed to query NIC parameters: %d.\n", rc);
5541 return (rc);
5542 }
5543 if ((int)val[1] > (int)val[0]) {
5544 sc->tids.etid_base = val[0];
5545 sc->tids.etid_end = val[1];
5546 sc->tids.netids = val[1] - val[0] + 1;
5547 sc->params.eo_wr_cred = val[2];
5548 sc->params.ethoffload = 1;
5549 }
5550 }
5551 if (sc->toecaps) {
5552 /* query offload-related parameters */
5553 param[0] = FW_PARAM_DEV(NTID);
5554 param[1] = FW_PARAM_PFVF(SERVER_START);
5555 param[2] = FW_PARAM_PFVF(SERVER_END);
5556 param[3] = FW_PARAM_PFVF(TDDP_START);
5557 param[4] = FW_PARAM_PFVF(TDDP_END);
5558 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5559 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5560 if (rc != 0) {
5561 device_printf(sc->dev,
5562 "failed to query TOE parameters: %d.\n", rc);
5563 return (rc);
5564 }
5565 sc->tids.ntids = val[0];
5566 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5567 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5568 sc->tids.ntids -= sc->tids.nhpftids;
5569 }
5570 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5571 if ((int)val[2] > (int)val[1]) {
5572 sc->tids.stid_base = val[1];
5573 sc->tids.nstids = val[2] - val[1] + 1;
5574 }
5575 sc->vres.ddp.start = val[3];
5576 sc->vres.ddp.size = val[4] - val[3] + 1;
5577 sc->params.ofldq_wr_cred = val[5];
5578 sc->params.offload = 1;
5579 } else {
5580 /*
5581 * The firmware attempts memfree TOE configuration for -SO cards
5582 * and will report toecaps=0 if it runs out of resources (this
5583 * depends on the config file). It may not report 0 for other
5584 * capabilities dependent on the TOE in this case. Set them to
5585 * 0 here so that the driver doesn't bother tracking resources
5586 * that will never be used.
5587 */
5588 sc->iscsicaps = 0;
5589 sc->rdmacaps = 0;
5590 }
5591 if (sc->rdmacaps) {
5592 param[0] = FW_PARAM_PFVF(STAG_START);
5593 param[1] = FW_PARAM_PFVF(STAG_END);
5594 param[2] = FW_PARAM_PFVF(RQ_START);
5595 param[3] = FW_PARAM_PFVF(RQ_END);
5596 param[4] = FW_PARAM_PFVF(PBL_START);
5597 param[5] = FW_PARAM_PFVF(PBL_END);
5598 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5599 if (rc != 0) {
5600 device_printf(sc->dev,
5601 "failed to query RDMA parameters(1): %d.\n", rc);
5602 return (rc);
5603 }
5604 sc->vres.stag.start = val[0];
5605 sc->vres.stag.size = val[1] - val[0] + 1;
5606 sc->vres.rq.start = val[2];
5607 sc->vres.rq.size = val[3] - val[2] + 1;
5608 sc->vres.pbl.start = val[4];
5609 sc->vres.pbl.size = val[5] - val[4] + 1;
5610
5611 param[0] = FW_PARAM_PFVF(SQRQ_START);
5612 param[1] = FW_PARAM_PFVF(SQRQ_END);
5613 param[2] = FW_PARAM_PFVF(CQ_START);
5614 param[3] = FW_PARAM_PFVF(CQ_END);
5615 param[4] = FW_PARAM_PFVF(OCQ_START);
5616 param[5] = FW_PARAM_PFVF(OCQ_END);
5617 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5618 if (rc != 0) {
5619 device_printf(sc->dev,
5620 "failed to query RDMA parameters(2): %d.\n", rc);
5621 return (rc);
5622 }
5623 sc->vres.qp.start = val[0];
5624 sc->vres.qp.size = val[1] - val[0] + 1;
5625 sc->vres.cq.start = val[2];
5626 sc->vres.cq.size = val[3] - val[2] + 1;
5627 sc->vres.ocq.start = val[4];
5628 sc->vres.ocq.size = val[5] - val[4] + 1;
5629
5630 param[0] = FW_PARAM_PFVF(SRQ_START);
5631 param[1] = FW_PARAM_PFVF(SRQ_END);
5632 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5633 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5634 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5635 if (rc != 0) {
5636 device_printf(sc->dev,
5637 "failed to query RDMA parameters(3): %d.\n", rc);
5638 return (rc);
5639 }
5640 sc->vres.srq.start = val[0];
5641 sc->vres.srq.size = val[1] - val[0] + 1;
5642 sc->params.max_ordird_qp = val[2];
5643 sc->params.max_ird_adapter = val[3];
5644 }
5645 if (sc->iscsicaps) {
5646 param[0] = FW_PARAM_PFVF(ISCSI_START);
5647 param[1] = FW_PARAM_PFVF(ISCSI_END);
5648 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5649 if (rc != 0) {
5650 device_printf(sc->dev,
5651 "failed to query iSCSI parameters: %d.\n", rc);
5652 return (rc);
5653 }
5654 sc->vres.iscsi.start = val[0];
5655 sc->vres.iscsi.size = val[1] - val[0] + 1;
5656 }
5657 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5658 param[0] = FW_PARAM_PFVF(TLS_START);
5659 param[1] = FW_PARAM_PFVF(TLS_END);
5660 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5661 if (rc != 0) {
5662 device_printf(sc->dev,
5663 "failed to query TLS parameters: %d.\n", rc);
5664 return (rc);
5665 }
5666 sc->vres.key.start = val[0];
5667 sc->vres.key.size = val[1] - val[0] + 1;
5668 }
5669
5670 /*
5671 * We've got the params we wanted to query directly from the firmware.
5672 * Grab some others via other means.
5673 */
5674 t4_init_sge_params(sc);
5675 t4_init_tp_params(sc);
5676 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5677 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5678
5679 rc = t4_verify_chip_settings(sc);
5680 if (rc != 0)
5681 return (rc);
5682 t4_init_rx_buf_info(sc);
5683
5684 return (rc);
5685 }
5686
5687 #ifdef KERN_TLS
5688 static void
ktls_tick(void * arg)5689 ktls_tick(void *arg)
5690 {
5691 struct adapter *sc;
5692 uint32_t tstamp;
5693
5694 sc = arg;
5695 tstamp = tcp_ts_getticks();
5696 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5697 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5698 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5699 }
5700
5701 static int
t6_config_kern_tls(struct adapter * sc,bool enable)5702 t6_config_kern_tls(struct adapter *sc, bool enable)
5703 {
5704 int rc;
5705 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5706 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5707 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5708 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5709
5710 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
5711 if (rc != 0) {
5712 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5713 enable ? "enable" : "disable", rc);
5714 return (rc);
5715 }
5716
5717 if (enable) {
5718 sc->flags |= KERN_TLS_ON;
5719 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5720 C_HARDCLOCK);
5721 } else {
5722 sc->flags &= ~KERN_TLS_ON;
5723 callout_stop(&sc->ktls_tick);
5724 }
5725
5726 return (rc);
5727 }
5728 #endif
5729
5730 static int
set_params__post_init(struct adapter * sc)5731 set_params__post_init(struct adapter *sc)
5732 {
5733 uint32_t mask, param, val;
5734 #ifdef TCP_OFFLOAD
5735 int i, v, shift;
5736 #endif
5737
5738 /* ask for encapsulated CPLs */
5739 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5740 val = 1;
5741 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5742
5743 /* Enable 32b port caps if the firmware supports it. */
5744 param = FW_PARAM_PFVF(PORT_CAPS32);
5745 val = 1;
5746 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
5747 sc->params.port_caps32 = 1;
5748
5749 /* Let filter + maskhash steer to a part of the VI's RSS region. */
5750 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5751 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5752 V_MASKFILTER(val - 1));
5753
5754 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5755 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5756 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5757 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5758 val = 0;
5759 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5760 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5761 F_ATTACKFILTERENABLE);
5762 val |= F_DROPERRORATTACK;
5763 }
5764 if (t4_drop_ip_fragments != 0) {
5765 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5766 F_FRAGMENTDROP);
5767 val |= F_DROPERRORFRAG;
5768 }
5769 if (t4_drop_pkts_with_l2_errors != 0)
5770 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5771 if (t4_drop_pkts_with_l3_errors != 0) {
5772 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5773 F_DROPERRORCSUMIP;
5774 }
5775 if (t4_drop_pkts_with_l4_errors != 0) {
5776 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5777 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5778 }
5779 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5780
5781 #ifdef TCP_OFFLOAD
5782 /*
5783 * Override the TOE timers with user provided tunables. This is not the
5784 * recommended way to change the timers (the firmware config file is) so
5785 * these tunables are not documented.
5786 *
5787 * All the timer tunables are in microseconds.
5788 */
5789 if (t4_toe_keepalive_idle != 0) {
5790 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5791 v &= M_KEEPALIVEIDLE;
5792 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5793 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5794 }
5795 if (t4_toe_keepalive_interval != 0) {
5796 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5797 v &= M_KEEPALIVEINTVL;
5798 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5799 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5800 }
5801 if (t4_toe_keepalive_count != 0) {
5802 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5803 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5804 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5805 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5806 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5807 }
5808 if (t4_toe_rexmt_min != 0) {
5809 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5810 v &= M_RXTMIN;
5811 t4_set_reg_field(sc, A_TP_RXT_MIN,
5812 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5813 }
5814 if (t4_toe_rexmt_max != 0) {
5815 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5816 v &= M_RXTMAX;
5817 t4_set_reg_field(sc, A_TP_RXT_MAX,
5818 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5819 }
5820 if (t4_toe_rexmt_count != 0) {
5821 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5822 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5823 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5824 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5825 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5826 }
5827 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5828 if (t4_toe_rexmt_backoff[i] != -1) {
5829 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5830 shift = (i & 3) << 3;
5831 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5832 M_TIMERBACKOFFINDEX0 << shift, v << shift);
5833 }
5834 }
5835 #endif
5836
5837 /*
5838 * Limit TOE connections to 2 reassembly "islands". This is
5839 * required to permit migrating TOE connections to either
5840 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5841 */
5842 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5843 V_PASSMODE(2));
5844
5845 #ifdef KERN_TLS
5846 if (is_ktls(sc)) {
5847 sc->tlst.inline_keys = t4_tls_inline_keys;
5848 sc->tlst.combo_wrs = t4_tls_combo_wrs;
5849 if (t4_kern_tls != 0 && is_t6(sc))
5850 t6_config_kern_tls(sc, true);
5851 }
5852 #endif
5853 return (0);
5854 }
5855
5856 #undef FW_PARAM_PFVF
5857 #undef FW_PARAM_DEV
5858
5859 static void
t4_set_desc(struct adapter * sc)5860 t4_set_desc(struct adapter *sc)
5861 {
5862 struct adapter_params *p = &sc->params;
5863
5864 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5865 }
5866
5867 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)5868 ifmedia_add4(struct ifmedia *ifm, int m)
5869 {
5870
5871 ifmedia_add(ifm, m, 0, NULL);
5872 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5873 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5874 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5875 }
5876
5877 /*
5878 * This is the selected media, which is not quite the same as the active media.
5879 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5880 * and active are not the same, and "media: Ethernet selected" otherwise.
5881 */
5882 static void
set_current_media(struct port_info * pi)5883 set_current_media(struct port_info *pi)
5884 {
5885 struct link_config *lc;
5886 struct ifmedia *ifm;
5887 int mword;
5888 u_int speed;
5889
5890 PORT_LOCK_ASSERT_OWNED(pi);
5891
5892 /* Leave current media alone if it's already set to IFM_NONE. */
5893 ifm = &pi->media;
5894 if (ifm->ifm_cur != NULL &&
5895 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5896 return;
5897
5898 lc = &pi->link_cfg;
5899 if (lc->requested_aneg != AUTONEG_DISABLE &&
5900 lc->pcaps & FW_PORT_CAP32_ANEG) {
5901 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5902 return;
5903 }
5904 mword = IFM_ETHER | IFM_FDX;
5905 if (lc->requested_fc & PAUSE_TX)
5906 mword |= IFM_ETH_TXPAUSE;
5907 if (lc->requested_fc & PAUSE_RX)
5908 mword |= IFM_ETH_RXPAUSE;
5909 if (lc->requested_speed == 0)
5910 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
5911 else
5912 speed = lc->requested_speed;
5913 mword |= port_mword(pi, speed_to_fwcap(speed));
5914 ifmedia_set(ifm, mword);
5915 }
5916
5917 /*
5918 * Returns true if the ifmedia list for the port cannot change.
5919 */
5920 static bool
fixed_ifmedia(struct port_info * pi)5921 fixed_ifmedia(struct port_info *pi)
5922 {
5923
5924 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5925 pi->port_type == FW_PORT_TYPE_BT_XFI ||
5926 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5927 pi->port_type == FW_PORT_TYPE_KX4 ||
5928 pi->port_type == FW_PORT_TYPE_KX ||
5929 pi->port_type == FW_PORT_TYPE_KR ||
5930 pi->port_type == FW_PORT_TYPE_BP_AP ||
5931 pi->port_type == FW_PORT_TYPE_BP4_AP ||
5932 pi->port_type == FW_PORT_TYPE_BP40_BA ||
5933 pi->port_type == FW_PORT_TYPE_KR4_100G ||
5934 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5935 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5936 }
5937
5938 static void
build_medialist(struct port_info * pi)5939 build_medialist(struct port_info *pi)
5940 {
5941 uint32_t ss, speed;
5942 int unknown, mword, bit;
5943 struct link_config *lc;
5944 struct ifmedia *ifm;
5945
5946 PORT_LOCK_ASSERT_OWNED(pi);
5947
5948 if (pi->flags & FIXED_IFMEDIA)
5949 return;
5950
5951 /*
5952 * Rebuild the ifmedia list.
5953 */
5954 ifm = &pi->media;
5955 ifmedia_removeall(ifm);
5956 lc = &pi->link_cfg;
5957 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5958 if (__predict_false(ss == 0)) { /* not supposed to happen. */
5959 MPASS(ss != 0);
5960 no_media:
5961 MPASS(LIST_EMPTY(&ifm->ifm_list));
5962 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5963 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5964 return;
5965 }
5966
5967 unknown = 0;
5968 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5969 speed = 1 << bit;
5970 MPASS(speed & M_FW_PORT_CAP32_SPEED);
5971 if (ss & speed) {
5972 mword = port_mword(pi, speed);
5973 if (mword == IFM_NONE) {
5974 goto no_media;
5975 } else if (mword == IFM_UNKNOWN)
5976 unknown++;
5977 else
5978 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5979 }
5980 }
5981 if (unknown > 0) /* Add one unknown for all unknown media types. */
5982 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5983 if (lc->pcaps & FW_PORT_CAP32_ANEG)
5984 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5985
5986 set_current_media(pi);
5987 }
5988
5989 /*
5990 * Initialize the requested fields in the link config based on driver tunables.
5991 */
5992 static void
init_link_config(struct port_info * pi)5993 init_link_config(struct port_info *pi)
5994 {
5995 struct link_config *lc = &pi->link_cfg;
5996
5997 PORT_LOCK_ASSERT_OWNED(pi);
5998
5999 lc->requested_caps = 0;
6000 lc->requested_speed = 0;
6001
6002 if (t4_autoneg == 0)
6003 lc->requested_aneg = AUTONEG_DISABLE;
6004 else if (t4_autoneg == 1)
6005 lc->requested_aneg = AUTONEG_ENABLE;
6006 else
6007 lc->requested_aneg = AUTONEG_AUTO;
6008
6009 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6010 PAUSE_AUTONEG);
6011
6012 if (t4_fec & FEC_AUTO)
6013 lc->requested_fec = FEC_AUTO;
6014 else if (t4_fec == 0)
6015 lc->requested_fec = FEC_NONE;
6016 else {
6017 /* -1 is handled by the FEC_AUTO block above and not here. */
6018 lc->requested_fec = t4_fec &
6019 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6020 if (lc->requested_fec == 0)
6021 lc->requested_fec = FEC_AUTO;
6022 }
6023 if (t4_force_fec < 0)
6024 lc->force_fec = -1;
6025 else if (t4_force_fec > 0)
6026 lc->force_fec = 1;
6027 else
6028 lc->force_fec = 0;
6029 }
6030
6031 /*
6032 * Makes sure that all requested settings comply with what's supported by the
6033 * port. Returns the number of settings that were invalid and had to be fixed.
6034 */
6035 static int
fixup_link_config(struct port_info * pi)6036 fixup_link_config(struct port_info *pi)
6037 {
6038 int n = 0;
6039 struct link_config *lc = &pi->link_cfg;
6040 uint32_t fwspeed;
6041
6042 PORT_LOCK_ASSERT_OWNED(pi);
6043
6044 /* Speed (when not autonegotiating) */
6045 if (lc->requested_speed != 0) {
6046 fwspeed = speed_to_fwcap(lc->requested_speed);
6047 if ((fwspeed & lc->pcaps) == 0) {
6048 n++;
6049 lc->requested_speed = 0;
6050 }
6051 }
6052
6053 /* Link autonegotiation */
6054 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6055 lc->requested_aneg == AUTONEG_DISABLE ||
6056 lc->requested_aneg == AUTONEG_AUTO);
6057 if (lc->requested_aneg == AUTONEG_ENABLE &&
6058 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6059 n++;
6060 lc->requested_aneg = AUTONEG_AUTO;
6061 }
6062
6063 /* Flow control */
6064 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6065 if (lc->requested_fc & PAUSE_TX &&
6066 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6067 n++;
6068 lc->requested_fc &= ~PAUSE_TX;
6069 }
6070 if (lc->requested_fc & PAUSE_RX &&
6071 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6072 n++;
6073 lc->requested_fc &= ~PAUSE_RX;
6074 }
6075 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6076 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6077 n++;
6078 lc->requested_fc |= PAUSE_AUTONEG;
6079 }
6080
6081 /* FEC */
6082 if ((lc->requested_fec & FEC_RS &&
6083 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6084 (lc->requested_fec & FEC_BASER_RS &&
6085 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6086 n++;
6087 lc->requested_fec = FEC_AUTO;
6088 }
6089
6090 return (n);
6091 }
6092
6093 /*
6094 * Apply the requested L1 settings, which are expected to be valid, to the
6095 * hardware.
6096 */
6097 static int
apply_link_config(struct port_info * pi)6098 apply_link_config(struct port_info *pi)
6099 {
6100 struct adapter *sc = pi->adapter;
6101 struct link_config *lc = &pi->link_cfg;
6102 int rc;
6103
6104 #ifdef INVARIANTS
6105 ASSERT_SYNCHRONIZED_OP(sc);
6106 PORT_LOCK_ASSERT_OWNED(pi);
6107
6108 if (lc->requested_aneg == AUTONEG_ENABLE)
6109 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6110 if (!(lc->requested_fc & PAUSE_AUTONEG))
6111 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6112 if (lc->requested_fc & PAUSE_TX)
6113 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6114 if (lc->requested_fc & PAUSE_RX)
6115 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6116 if (lc->requested_fec & FEC_RS)
6117 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6118 if (lc->requested_fec & FEC_BASER_RS)
6119 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6120 #endif
6121 if (!(sc->flags & IS_VF)) {
6122 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6123 if (rc != 0) {
6124 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6125 return (rc);
6126 }
6127 }
6128
6129 /*
6130 * An L1_CFG will almost always result in a link-change event if the
6131 * link is up, and the driver will refresh the actual fec/fc/etc. when
6132 * the notification is processed. If the link is down then the actual
6133 * settings are meaningless.
6134 *
6135 * This takes care of the case where a change in the L1 settings may not
6136 * result in a notification.
6137 */
6138 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6139 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6140
6141 return (0);
6142 }
6143
6144 #define FW_MAC_EXACT_CHUNK 7
6145 struct mcaddr_ctx {
6146 if_t ifp;
6147 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6148 uint64_t hash;
6149 int i;
6150 int del;
6151 int rc;
6152 };
6153
6154 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6155 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6156 {
6157 struct mcaddr_ctx *ctx = arg;
6158 struct vi_info *vi = if_getsoftc(ctx->ifp);
6159 struct port_info *pi = vi->pi;
6160 struct adapter *sc = pi->adapter;
6161
6162 if (ctx->rc < 0)
6163 return (0);
6164
6165 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6166 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6167 ctx->i++;
6168
6169 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6170 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6171 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6172 if (ctx->rc < 0) {
6173 int j;
6174
6175 for (j = 0; j < ctx->i; j++) {
6176 if_printf(ctx->ifp,
6177 "failed to add mc address"
6178 " %02x:%02x:%02x:"
6179 "%02x:%02x:%02x rc=%d\n",
6180 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6181 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6182 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6183 -ctx->rc);
6184 }
6185 return (0);
6186 }
6187 ctx->del = 0;
6188 ctx->i = 0;
6189 }
6190
6191 return (1);
6192 }
6193
6194 /*
6195 * Program the port's XGMAC based on parameters in ifnet. The caller also
6196 * indicates which parameters should be programmed (the rest are left alone).
6197 */
6198 int
update_mac_settings(if_t ifp,int flags)6199 update_mac_settings(if_t ifp, int flags)
6200 {
6201 int rc = 0;
6202 struct vi_info *vi = if_getsoftc(ifp);
6203 struct port_info *pi = vi->pi;
6204 struct adapter *sc = pi->adapter;
6205 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6206 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6207
6208 ASSERT_SYNCHRONIZED_OP(sc);
6209 KASSERT(flags, ("%s: not told what to update.", __func__));
6210
6211 if (flags & XGMAC_MTU)
6212 mtu = if_getmtu(ifp);
6213
6214 if (flags & XGMAC_PROMISC)
6215 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6216
6217 if (flags & XGMAC_ALLMULTI)
6218 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6219
6220 if (flags & XGMAC_VLANEX)
6221 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6222
6223 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6224 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6225 allmulti, 1, vlanex, false);
6226 if (rc) {
6227 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6228 rc);
6229 return (rc);
6230 }
6231 }
6232
6233 if (flags & XGMAC_UCADDR) {
6234 uint8_t ucaddr[ETHER_ADDR_LEN];
6235
6236 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6237 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6238 ucaddr, true, &vi->smt_idx);
6239 if (rc < 0) {
6240 rc = -rc;
6241 if_printf(ifp, "change_mac failed: %d\n", rc);
6242 return (rc);
6243 } else {
6244 vi->xact_addr_filt = rc;
6245 rc = 0;
6246 }
6247 }
6248
6249 if (flags & XGMAC_MCADDRS) {
6250 struct epoch_tracker et;
6251 struct mcaddr_ctx ctx;
6252 int j;
6253
6254 ctx.ifp = ifp;
6255 ctx.hash = 0;
6256 ctx.i = 0;
6257 ctx.del = 1;
6258 ctx.rc = 0;
6259 /*
6260 * Unlike other drivers, we accumulate list of pointers into
6261 * interface address lists and we need to keep it safe even
6262 * after if_foreach_llmaddr() returns, thus we must enter the
6263 * network epoch.
6264 */
6265 NET_EPOCH_ENTER(et);
6266 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6267 if (ctx.rc < 0) {
6268 NET_EPOCH_EXIT(et);
6269 rc = -ctx.rc;
6270 return (rc);
6271 }
6272 if (ctx.i > 0) {
6273 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6274 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6275 NET_EPOCH_EXIT(et);
6276 if (rc < 0) {
6277 rc = -rc;
6278 for (j = 0; j < ctx.i; j++) {
6279 if_printf(ifp,
6280 "failed to add mcast address"
6281 " %02x:%02x:%02x:"
6282 "%02x:%02x:%02x rc=%d\n",
6283 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6284 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6285 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6286 rc);
6287 }
6288 return (rc);
6289 }
6290 ctx.del = 0;
6291 } else
6292 NET_EPOCH_EXIT(et);
6293
6294 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6295 if (rc != 0)
6296 if_printf(ifp, "failed to set mcast address hash: %d\n",
6297 rc);
6298 if (ctx.del == 0) {
6299 /* We clobbered the VXLAN entry if there was one. */
6300 pi->vxlan_tcam_entry = false;
6301 }
6302 }
6303
6304 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6305 pi->vxlan_tcam_entry == false) {
6306 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6307 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6308 true);
6309 if (rc < 0) {
6310 rc = -rc;
6311 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6312 rc);
6313 } else {
6314 MPASS(rc == sc->rawf_base + pi->port_id);
6315 rc = 0;
6316 pi->vxlan_tcam_entry = true;
6317 }
6318 }
6319
6320 return (rc);
6321 }
6322
6323 /*
6324 * {begin|end}_synchronized_op must be called from the same thread.
6325 */
6326 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6327 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6328 char *wmesg)
6329 {
6330 int rc, pri;
6331
6332 #ifdef WITNESS
6333 /* the caller thinks it's ok to sleep, but is it really? */
6334 if (flags & SLEEP_OK)
6335 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6336 "begin_synchronized_op");
6337 #endif
6338
6339 if (INTR_OK)
6340 pri = PCATCH;
6341 else
6342 pri = 0;
6343
6344 ADAPTER_LOCK(sc);
6345 for (;;) {
6346
6347 if (vi && IS_DETACHING(vi)) {
6348 rc = ENXIO;
6349 goto done;
6350 }
6351
6352 if (!IS_BUSY(sc)) {
6353 rc = 0;
6354 break;
6355 }
6356
6357 if (!(flags & SLEEP_OK)) {
6358 rc = EBUSY;
6359 goto done;
6360 }
6361
6362 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6363 rc = EINTR;
6364 goto done;
6365 }
6366 }
6367
6368 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6369 SET_BUSY(sc);
6370 #ifdef INVARIANTS
6371 sc->last_op = wmesg;
6372 sc->last_op_thr = curthread;
6373 sc->last_op_flags = flags;
6374 #endif
6375
6376 done:
6377 if (!(flags & HOLD_LOCK) || rc)
6378 ADAPTER_UNLOCK(sc);
6379
6380 return (rc);
6381 }
6382
6383 /*
6384 * Tell if_ioctl and if_init that the VI is going away. This is
6385 * special variant of begin_synchronized_op and must be paired with a
6386 * call to end_vi_detach.
6387 */
6388 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6389 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6390 {
6391 ADAPTER_LOCK(sc);
6392 SET_DETACHING(vi);
6393 wakeup(&sc->flags);
6394 while (IS_BUSY(sc))
6395 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6396 SET_BUSY(sc);
6397 #ifdef INVARIANTS
6398 sc->last_op = "t4detach";
6399 sc->last_op_thr = curthread;
6400 sc->last_op_flags = 0;
6401 #endif
6402 ADAPTER_UNLOCK(sc);
6403 }
6404
6405 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6406 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6407 {
6408 ADAPTER_LOCK(sc);
6409 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6410 CLR_BUSY(sc);
6411 CLR_DETACHING(vi);
6412 wakeup(&sc->flags);
6413 ADAPTER_UNLOCK(sc);
6414 }
6415
6416 /*
6417 * {begin|end}_synchronized_op must be called from the same thread.
6418 */
6419 void
end_synchronized_op(struct adapter * sc,int flags)6420 end_synchronized_op(struct adapter *sc, int flags)
6421 {
6422
6423 if (flags & LOCK_HELD)
6424 ADAPTER_LOCK_ASSERT_OWNED(sc);
6425 else
6426 ADAPTER_LOCK(sc);
6427
6428 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6429 CLR_BUSY(sc);
6430 wakeup(&sc->flags);
6431 ADAPTER_UNLOCK(sc);
6432 }
6433
6434 static int
cxgbe_init_synchronized(struct vi_info * vi)6435 cxgbe_init_synchronized(struct vi_info *vi)
6436 {
6437 struct port_info *pi = vi->pi;
6438 struct adapter *sc = pi->adapter;
6439 if_t ifp = vi->ifp;
6440 int rc = 0, i;
6441 struct sge_txq *txq;
6442
6443 ASSERT_SYNCHRONIZED_OP(sc);
6444
6445 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6446 return (0); /* already running */
6447
6448 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6449 return (rc); /* error message displayed already */
6450
6451 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6452 return (rc); /* error message displayed already */
6453
6454 rc = update_mac_settings(ifp, XGMAC_ALL);
6455 if (rc)
6456 goto done; /* error message displayed already */
6457
6458 PORT_LOCK(pi);
6459 if (pi->up_vis == 0) {
6460 t4_update_port_info(pi);
6461 fixup_link_config(pi);
6462 build_medialist(pi);
6463 apply_link_config(pi);
6464 }
6465
6466 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6467 if (rc != 0) {
6468 if_printf(ifp, "enable_vi failed: %d\n", rc);
6469 PORT_UNLOCK(pi);
6470 goto done;
6471 }
6472
6473 /*
6474 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6475 * if this changes.
6476 */
6477
6478 for_each_txq(vi, i, txq) {
6479 TXQ_LOCK(txq);
6480 txq->eq.flags |= EQ_ENABLED;
6481 TXQ_UNLOCK(txq);
6482 }
6483
6484 /*
6485 * The first iq of the first port to come up is used for tracing.
6486 */
6487 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6488 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6489 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL :
6490 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6491 V_QUEUENUMBER(sc->traceq));
6492 pi->flags |= HAS_TRACEQ;
6493 }
6494
6495 /* all ok */
6496 pi->up_vis++;
6497 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6498 if (pi->link_cfg.link_ok)
6499 t4_os_link_changed(pi);
6500 PORT_UNLOCK(pi);
6501
6502 mtx_lock(&vi->tick_mtx);
6503 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6504 callout_reset(&vi->tick, hz, vi_tick, vi);
6505 else
6506 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6507 mtx_unlock(&vi->tick_mtx);
6508 done:
6509 if (rc != 0)
6510 cxgbe_uninit_synchronized(vi);
6511
6512 return (rc);
6513 }
6514
6515 /*
6516 * Idempotent.
6517 */
6518 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6519 cxgbe_uninit_synchronized(struct vi_info *vi)
6520 {
6521 struct port_info *pi = vi->pi;
6522 struct adapter *sc = pi->adapter;
6523 if_t ifp = vi->ifp;
6524 int rc, i;
6525 struct sge_txq *txq;
6526
6527 ASSERT_SYNCHRONIZED_OP(sc);
6528
6529 if (!(vi->flags & VI_INIT_DONE)) {
6530 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6531 KASSERT(0, ("uninited VI is running"));
6532 if_printf(ifp, "uninited VI with running ifnet. "
6533 "vi->flags 0x%016lx, if_flags 0x%08x, "
6534 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6535 if_getdrvflags(ifp));
6536 }
6537 return (0);
6538 }
6539
6540 /*
6541 * Disable the VI so that all its data in either direction is discarded
6542 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6543 * tick) intact as the TP can deliver negative advice or data that it's
6544 * holding in its RAM (for an offloaded connection) even after the VI is
6545 * disabled.
6546 */
6547 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6548 if (rc) {
6549 if_printf(ifp, "disable_vi failed: %d\n", rc);
6550 return (rc);
6551 }
6552
6553 for_each_txq(vi, i, txq) {
6554 TXQ_LOCK(txq);
6555 txq->eq.flags &= ~EQ_ENABLED;
6556 TXQ_UNLOCK(txq);
6557 }
6558
6559 mtx_lock(&vi->tick_mtx);
6560 callout_stop(&vi->tick);
6561 mtx_unlock(&vi->tick_mtx);
6562
6563 PORT_LOCK(pi);
6564 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6565 PORT_UNLOCK(pi);
6566 return (0);
6567 }
6568 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6569 pi->up_vis--;
6570 if (pi->up_vis > 0) {
6571 PORT_UNLOCK(pi);
6572 return (0);
6573 }
6574
6575 pi->link_cfg.link_ok = false;
6576 pi->link_cfg.speed = 0;
6577 pi->link_cfg.link_down_rc = 255;
6578 t4_os_link_changed(pi);
6579 PORT_UNLOCK(pi);
6580
6581 return (0);
6582 }
6583
6584 /*
6585 * It is ok for this function to fail midway and return right away. t4_detach
6586 * will walk the entire sc->irq list and clean up whatever is valid.
6587 */
6588 int
t4_setup_intr_handlers(struct adapter * sc)6589 t4_setup_intr_handlers(struct adapter *sc)
6590 {
6591 int rc, rid, p, q, v;
6592 char s[8];
6593 struct irq *irq;
6594 struct port_info *pi;
6595 struct vi_info *vi;
6596 struct sge *sge = &sc->sge;
6597 struct sge_rxq *rxq;
6598 #ifdef TCP_OFFLOAD
6599 struct sge_ofld_rxq *ofld_rxq;
6600 #endif
6601 #ifdef DEV_NETMAP
6602 struct sge_nm_rxq *nm_rxq;
6603 #endif
6604 #ifdef RSS
6605 int nbuckets = rss_getnumbuckets();
6606 #endif
6607
6608 /*
6609 * Setup interrupts.
6610 */
6611 irq = &sc->irq[0];
6612 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6613 if (forwarding_intr_to_fwq(sc))
6614 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6615
6616 /* Multiple interrupts. */
6617 if (sc->flags & IS_VF)
6618 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6619 ("%s: too few intr.", __func__));
6620 else
6621 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6622 ("%s: too few intr.", __func__));
6623
6624 /* The first one is always error intr on PFs */
6625 if (!(sc->flags & IS_VF)) {
6626 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6627 if (rc != 0)
6628 return (rc);
6629 irq++;
6630 rid++;
6631 }
6632
6633 /* The second one is always the firmware event queue (first on VFs) */
6634 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6635 if (rc != 0)
6636 return (rc);
6637 irq++;
6638 rid++;
6639
6640 for_each_port(sc, p) {
6641 pi = sc->port[p];
6642 for_each_vi(pi, v, vi) {
6643 vi->first_intr = rid - 1;
6644
6645 if (vi->nnmrxq > 0) {
6646 int n = max(vi->nrxq, vi->nnmrxq);
6647
6648 rxq = &sge->rxq[vi->first_rxq];
6649 #ifdef DEV_NETMAP
6650 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6651 #endif
6652 for (q = 0; q < n; q++) {
6653 snprintf(s, sizeof(s), "%x%c%x", p,
6654 'a' + v, q);
6655 if (q < vi->nrxq)
6656 irq->rxq = rxq++;
6657 #ifdef DEV_NETMAP
6658 if (q < vi->nnmrxq)
6659 irq->nm_rxq = nm_rxq++;
6660
6661 if (irq->nm_rxq != NULL &&
6662 irq->rxq == NULL) {
6663 /* Netmap rx only */
6664 rc = t4_alloc_irq(sc, irq, rid,
6665 t4_nm_intr, irq->nm_rxq, s);
6666 }
6667 if (irq->nm_rxq != NULL &&
6668 irq->rxq != NULL) {
6669 /* NIC and Netmap rx */
6670 rc = t4_alloc_irq(sc, irq, rid,
6671 t4_vi_intr, irq, s);
6672 }
6673 #endif
6674 if (irq->rxq != NULL &&
6675 irq->nm_rxq == NULL) {
6676 /* NIC rx only */
6677 rc = t4_alloc_irq(sc, irq, rid,
6678 t4_intr, irq->rxq, s);
6679 }
6680 if (rc != 0)
6681 return (rc);
6682 #ifdef RSS
6683 if (q < vi->nrxq) {
6684 bus_bind_intr(sc->dev, irq->res,
6685 rss_getcpu(q % nbuckets));
6686 }
6687 #endif
6688 irq++;
6689 rid++;
6690 vi->nintr++;
6691 }
6692 } else {
6693 for_each_rxq(vi, q, rxq) {
6694 snprintf(s, sizeof(s), "%x%c%x", p,
6695 'a' + v, q);
6696 rc = t4_alloc_irq(sc, irq, rid,
6697 t4_intr, rxq, s);
6698 if (rc != 0)
6699 return (rc);
6700 #ifdef RSS
6701 bus_bind_intr(sc->dev, irq->res,
6702 rss_getcpu(q % nbuckets));
6703 #endif
6704 irq++;
6705 rid++;
6706 vi->nintr++;
6707 }
6708 }
6709 #ifdef TCP_OFFLOAD
6710 for_each_ofld_rxq(vi, q, ofld_rxq) {
6711 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6712 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6713 ofld_rxq, s);
6714 if (rc != 0)
6715 return (rc);
6716 irq++;
6717 rid++;
6718 vi->nintr++;
6719 }
6720 #endif
6721 }
6722 }
6723 MPASS(irq == &sc->irq[sc->intr_count]);
6724
6725 return (0);
6726 }
6727
6728 static void
write_global_rss_key(struct adapter * sc)6729 write_global_rss_key(struct adapter *sc)
6730 {
6731 #ifdef RSS
6732 int i;
6733 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6734 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6735
6736 CTASSERT(RSS_KEYSIZE == 40);
6737
6738 rss_getkey((void *)&raw_rss_key[0]);
6739 for (i = 0; i < nitems(rss_key); i++) {
6740 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6741 }
6742 t4_write_rss_key(sc, &rss_key[0], -1, 1);
6743 #endif
6744 }
6745
6746 /*
6747 * Idempotent.
6748 */
6749 static int
adapter_full_init(struct adapter * sc)6750 adapter_full_init(struct adapter *sc)
6751 {
6752 int rc, i;
6753
6754 ASSERT_SYNCHRONIZED_OP(sc);
6755
6756 /*
6757 * queues that belong to the adapter (not any particular port).
6758 */
6759 rc = t4_setup_adapter_queues(sc);
6760 if (rc != 0)
6761 return (rc);
6762
6763 MPASS(sc->params.nports <= nitems(sc->tq));
6764 for (i = 0; i < sc->params.nports; i++) {
6765 if (sc->tq[i] != NULL)
6766 continue;
6767 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6768 taskqueue_thread_enqueue, &sc->tq[i]);
6769 if (sc->tq[i] == NULL) {
6770 CH_ERR(sc, "failed to allocate task queue %d\n", i);
6771 return (ENOMEM);
6772 }
6773 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6774 device_get_nameunit(sc->dev), i);
6775 }
6776
6777 if (!(sc->flags & IS_VF)) {
6778 write_global_rss_key(sc);
6779 t4_intr_enable(sc);
6780 }
6781 return (0);
6782 }
6783
6784 int
adapter_init(struct adapter * sc)6785 adapter_init(struct adapter *sc)
6786 {
6787 int rc;
6788
6789 ASSERT_SYNCHRONIZED_OP(sc);
6790 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6791 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6792 ("%s: FULL_INIT_DONE already", __func__));
6793
6794 rc = adapter_full_init(sc);
6795 if (rc != 0)
6796 adapter_full_uninit(sc);
6797 else
6798 sc->flags |= FULL_INIT_DONE;
6799
6800 return (rc);
6801 }
6802
6803 /*
6804 * Idempotent.
6805 */
6806 static void
adapter_full_uninit(struct adapter * sc)6807 adapter_full_uninit(struct adapter *sc)
6808 {
6809 int i;
6810
6811 t4_teardown_adapter_queues(sc);
6812
6813 for (i = 0; i < nitems(sc->tq); i++) {
6814 if (sc->tq[i] == NULL)
6815 continue;
6816 taskqueue_free(sc->tq[i]);
6817 sc->tq[i] = NULL;
6818 }
6819
6820 sc->flags &= ~FULL_INIT_DONE;
6821 }
6822
6823 #ifdef RSS
6824 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6825 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6826 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6827 RSS_HASHTYPE_RSS_UDP_IPV6)
6828
6829 /* Translates kernel hash types to hardware. */
6830 static int
hashconfig_to_hashen(int hashconfig)6831 hashconfig_to_hashen(int hashconfig)
6832 {
6833 int hashen = 0;
6834
6835 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6836 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6837 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6838 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6839 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6840 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6841 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6842 }
6843 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6844 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6845 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6846 }
6847 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6848 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6849 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6850 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6851
6852 return (hashen);
6853 }
6854
6855 /* Translates hardware hash types to kernel. */
6856 static int
hashen_to_hashconfig(int hashen)6857 hashen_to_hashconfig(int hashen)
6858 {
6859 int hashconfig = 0;
6860
6861 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6862 /*
6863 * If UDP hashing was enabled it must have been enabled for
6864 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
6865 * enabling any 4-tuple hash is nonsense configuration.
6866 */
6867 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6868 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6869
6870 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6871 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6872 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6873 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6874 }
6875 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6876 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6877 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6878 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6879 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6880 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6881 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6882 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6883
6884 return (hashconfig);
6885 }
6886 #endif
6887
6888 /*
6889 * Idempotent.
6890 */
6891 static int
vi_full_init(struct vi_info * vi)6892 vi_full_init(struct vi_info *vi)
6893 {
6894 struct adapter *sc = vi->adapter;
6895 struct sge_rxq *rxq;
6896 int rc, i, j;
6897 #ifdef RSS
6898 int nbuckets = rss_getnumbuckets();
6899 int hashconfig = rss_gethashconfig();
6900 int extra;
6901 #endif
6902
6903 ASSERT_SYNCHRONIZED_OP(sc);
6904
6905 /*
6906 * Allocate tx/rx/fl queues for this VI.
6907 */
6908 rc = t4_setup_vi_queues(vi);
6909 if (rc != 0)
6910 return (rc);
6911
6912 /*
6913 * Setup RSS for this VI. Save a copy of the RSS table for later use.
6914 */
6915 if (vi->nrxq > vi->rss_size) {
6916 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6917 "some queues will never receive traffic.\n", vi->nrxq,
6918 vi->rss_size);
6919 } else if (vi->rss_size % vi->nrxq) {
6920 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6921 "expect uneven traffic distribution.\n", vi->nrxq,
6922 vi->rss_size);
6923 }
6924 #ifdef RSS
6925 if (vi->nrxq != nbuckets) {
6926 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6927 "performance will be impacted.\n", vi->nrxq, nbuckets);
6928 }
6929 #endif
6930 if (vi->rss == NULL)
6931 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6932 M_ZERO | M_WAITOK);
6933 for (i = 0; i < vi->rss_size;) {
6934 #ifdef RSS
6935 j = rss_get_indirection_to_bucket(i);
6936 j %= vi->nrxq;
6937 rxq = &sc->sge.rxq[vi->first_rxq + j];
6938 vi->rss[i++] = rxq->iq.abs_id;
6939 #else
6940 for_each_rxq(vi, j, rxq) {
6941 vi->rss[i++] = rxq->iq.abs_id;
6942 if (i == vi->rss_size)
6943 break;
6944 }
6945 #endif
6946 }
6947
6948 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6949 vi->rss, vi->rss_size);
6950 if (rc != 0) {
6951 CH_ERR(vi, "rss_config failed: %d\n", rc);
6952 return (rc);
6953 }
6954
6955 #ifdef RSS
6956 vi->hashen = hashconfig_to_hashen(hashconfig);
6957
6958 /*
6959 * We may have had to enable some hashes even though the global config
6960 * wants them disabled. This is a potential problem that must be
6961 * reported to the user.
6962 */
6963 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6964
6965 /*
6966 * If we consider only the supported hash types, then the enabled hashes
6967 * are a superset of the requested hashes. In other words, there cannot
6968 * be any supported hash that was requested but not enabled, but there
6969 * can be hashes that were not requested but had to be enabled.
6970 */
6971 extra &= SUPPORTED_RSS_HASHTYPES;
6972 MPASS((extra & hashconfig) == 0);
6973
6974 if (extra) {
6975 CH_ALERT(vi,
6976 "global RSS config (0x%x) cannot be accommodated.\n",
6977 hashconfig);
6978 }
6979 if (extra & RSS_HASHTYPE_RSS_IPV4)
6980 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6981 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6982 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6983 if (extra & RSS_HASHTYPE_RSS_IPV6)
6984 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6985 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6986 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6987 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6988 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6989 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6990 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6991 #else
6992 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6993 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6994 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6995 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6996 #endif
6997 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6998 0, 0);
6999 if (rc != 0) {
7000 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7001 return (rc);
7002 }
7003
7004 return (0);
7005 }
7006
7007 int
vi_init(struct vi_info * vi)7008 vi_init(struct vi_info *vi)
7009 {
7010 int rc;
7011
7012 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7013 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7014 ("%s: VI_INIT_DONE already", __func__));
7015
7016 rc = vi_full_init(vi);
7017 if (rc != 0)
7018 vi_full_uninit(vi);
7019 else
7020 vi->flags |= VI_INIT_DONE;
7021
7022 return (rc);
7023 }
7024
7025 /*
7026 * Idempotent.
7027 */
7028 static void
vi_full_uninit(struct vi_info * vi)7029 vi_full_uninit(struct vi_info *vi)
7030 {
7031
7032 if (vi->flags & VI_INIT_DONE) {
7033 quiesce_vi(vi);
7034 free(vi->rss, M_CXGBE);
7035 free(vi->nm_rss, M_CXGBE);
7036 }
7037
7038 t4_teardown_vi_queues(vi);
7039 vi->flags &= ~VI_INIT_DONE;
7040 }
7041
7042 static void
quiesce_txq(struct sge_txq * txq)7043 quiesce_txq(struct sge_txq *txq)
7044 {
7045 struct sge_eq *eq = &txq->eq;
7046 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7047
7048 MPASS(eq->flags & EQ_SW_ALLOCATED);
7049 MPASS(!(eq->flags & EQ_ENABLED));
7050
7051 /* Wait for the mp_ring to empty. */
7052 while (!mp_ring_is_idle(txq->r)) {
7053 mp_ring_check_drainage(txq->r, 4096);
7054 pause("rquiesce", 1);
7055 }
7056 MPASS(txq->txp.npkt == 0);
7057
7058 if (eq->flags & EQ_HW_ALLOCATED) {
7059 /*
7060 * Hardware is alive and working normally. Wait for it to
7061 * finish and then wait for the driver to catch up and reclaim
7062 * all descriptors.
7063 */
7064 while (spg->cidx != htobe16(eq->pidx))
7065 pause("equiesce", 1);
7066 while (eq->cidx != eq->pidx)
7067 pause("dquiesce", 1);
7068 } else {
7069 /*
7070 * Hardware is unavailable. Discard all pending tx and reclaim
7071 * descriptors directly.
7072 */
7073 TXQ_LOCK(txq);
7074 while (eq->cidx != eq->pidx) {
7075 struct mbuf *m, *nextpkt;
7076 struct tx_sdesc *txsd;
7077
7078 txsd = &txq->sdesc[eq->cidx];
7079 for (m = txsd->m; m != NULL; m = nextpkt) {
7080 nextpkt = m->m_nextpkt;
7081 m->m_nextpkt = NULL;
7082 m_freem(m);
7083 }
7084 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7085 }
7086 spg->pidx = spg->cidx = htobe16(eq->cidx);
7087 TXQ_UNLOCK(txq);
7088 }
7089 }
7090
7091 static void
quiesce_wrq(struct sge_wrq * wrq)7092 quiesce_wrq(struct sge_wrq *wrq)
7093 {
7094 struct wrqe *wr;
7095
7096 TXQ_LOCK(wrq);
7097 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7098 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7099 #ifdef INVARIANTS
7100 wrq->nwr_pending--;
7101 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7102 #endif
7103 free(wr, M_CXGBE);
7104 }
7105 MPASS(wrq->nwr_pending == 0);
7106 MPASS(wrq->ndesc_needed == 0);
7107 wrq->nwr_pending = 0;
7108 wrq->ndesc_needed = 0;
7109 TXQ_UNLOCK(wrq);
7110 }
7111
7112 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7113 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7114 {
7115 /* Synchronize with the interrupt handler */
7116 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7117 pause("iqfree", 1);
7118
7119 if (fl != NULL) {
7120 MPASS(iq->flags & IQ_HAS_FL);
7121
7122 mtx_lock(&sc->sfl_lock);
7123 FL_LOCK(fl);
7124 fl->flags |= FL_DOOMED;
7125 FL_UNLOCK(fl);
7126 callout_stop(&sc->sfl_callout);
7127 mtx_unlock(&sc->sfl_lock);
7128
7129 KASSERT((fl->flags & FL_STARVING) == 0,
7130 ("%s: still starving", __func__));
7131
7132 /* Release all buffers if hardware is no longer available. */
7133 if (!(iq->flags & IQ_HW_ALLOCATED))
7134 free_fl_buffers(sc, fl);
7135 }
7136 }
7137
7138 /*
7139 * Wait for all activity on all the queues of the VI to complete. It is assumed
7140 * that no new work is being enqueued by the hardware or the driver. That part
7141 * should be arranged before calling this function.
7142 */
7143 static void
quiesce_vi(struct vi_info * vi)7144 quiesce_vi(struct vi_info *vi)
7145 {
7146 int i;
7147 struct adapter *sc = vi->adapter;
7148 struct sge_rxq *rxq;
7149 struct sge_txq *txq;
7150 #ifdef TCP_OFFLOAD
7151 struct sge_ofld_rxq *ofld_rxq;
7152 #endif
7153 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7154 struct sge_ofld_txq *ofld_txq;
7155 #endif
7156
7157 if (!(vi->flags & VI_INIT_DONE))
7158 return;
7159
7160 for_each_txq(vi, i, txq) {
7161 quiesce_txq(txq);
7162 }
7163
7164 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7165 for_each_ofld_txq(vi, i, ofld_txq) {
7166 quiesce_wrq(&ofld_txq->wrq);
7167 }
7168 #endif
7169
7170 for_each_rxq(vi, i, rxq) {
7171 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7172 }
7173
7174 #ifdef TCP_OFFLOAD
7175 for_each_ofld_rxq(vi, i, ofld_rxq) {
7176 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7177 }
7178 #endif
7179 }
7180
7181 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7182 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7183 driver_intr_t *handler, void *arg, char *name)
7184 {
7185 int rc;
7186
7187 irq->rid = rid;
7188 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7189 RF_SHAREABLE | RF_ACTIVE);
7190 if (irq->res == NULL) {
7191 device_printf(sc->dev,
7192 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7193 return (ENOMEM);
7194 }
7195
7196 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7197 NULL, handler, arg, &irq->tag);
7198 if (rc != 0) {
7199 device_printf(sc->dev,
7200 "failed to setup interrupt for rid %d, name %s: %d\n",
7201 rid, name, rc);
7202 } else if (name)
7203 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7204
7205 return (rc);
7206 }
7207
7208 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7209 t4_free_irq(struct adapter *sc, struct irq *irq)
7210 {
7211 if (irq->tag)
7212 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7213 if (irq->res)
7214 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7215
7216 bzero(irq, sizeof(*irq));
7217
7218 return (0);
7219 }
7220
7221 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7222 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7223 {
7224
7225 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7226 t4_get_regs(sc, buf, regs->len);
7227 }
7228
7229 #define A_PL_INDIR_CMD 0x1f8
7230
7231 #define S_PL_AUTOINC 31
7232 #define M_PL_AUTOINC 0x1U
7233 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7234 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7235
7236 #define S_PL_VFID 20
7237 #define M_PL_VFID 0xffU
7238 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7239 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7240
7241 #define S_PL_ADDR 0
7242 #define M_PL_ADDR 0xfffffU
7243 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7244 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7245
7246 #define A_PL_INDIR_DATA 0x1fc
7247
7248 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7249 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7250 {
7251 u32 stats[2];
7252
7253 if (sc->flags & IS_VF) {
7254 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7255 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7256 } else {
7257 mtx_assert(&sc->reg_lock, MA_OWNED);
7258 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7259 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7260 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7261 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7262 }
7263 return (((uint64_t)stats[1]) << 32 | stats[0]);
7264 }
7265
7266 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7267 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7268 {
7269
7270 #define GET_STAT(name) \
7271 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7272
7273 if (!(sc->flags & IS_VF))
7274 mtx_lock(&sc->reg_lock);
7275 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7276 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7277 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7278 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7279 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7280 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7281 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7282 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7283 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7284 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7285 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7286 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7287 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7288 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7289 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7290 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7291 if (!(sc->flags & IS_VF))
7292 mtx_unlock(&sc->reg_lock);
7293
7294 #undef GET_STAT
7295 }
7296
7297 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7298 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7299 {
7300 int reg;
7301
7302 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7303 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7304 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7305 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7306 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7307 }
7308
7309 static void
vi_refresh_stats(struct vi_info * vi)7310 vi_refresh_stats(struct vi_info *vi)
7311 {
7312 struct timeval tv;
7313 const struct timeval interval = {0, 250000}; /* 250ms */
7314
7315 mtx_assert(&vi->tick_mtx, MA_OWNED);
7316
7317 if (vi->flags & VI_SKIP_STATS)
7318 return;
7319
7320 getmicrotime(&tv);
7321 timevalsub(&tv, &interval);
7322 if (timevalcmp(&tv, &vi->last_refreshed, <))
7323 return;
7324
7325 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7326 getmicrotime(&vi->last_refreshed);
7327 }
7328
7329 static void
cxgbe_refresh_stats(struct vi_info * vi)7330 cxgbe_refresh_stats(struct vi_info *vi)
7331 {
7332 u_int i, v, tnl_cong_drops, chan_map;
7333 struct timeval tv;
7334 const struct timeval interval = {0, 250000}; /* 250ms */
7335 struct port_info *pi;
7336 struct adapter *sc;
7337
7338 mtx_assert(&vi->tick_mtx, MA_OWNED);
7339
7340 if (vi->flags & VI_SKIP_STATS)
7341 return;
7342
7343 getmicrotime(&tv);
7344 timevalsub(&tv, &interval);
7345 if (timevalcmp(&tv, &vi->last_refreshed, <))
7346 return;
7347
7348 pi = vi->pi;
7349 sc = vi->adapter;
7350 tnl_cong_drops = 0;
7351 t4_get_port_stats(sc, pi->port_id, &pi->stats);
7352 chan_map = pi->rx_e_chan_map;
7353 while (chan_map) {
7354 i = ffs(chan_map) - 1;
7355 mtx_lock(&sc->reg_lock);
7356 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7357 A_TP_MIB_TNL_CNG_DROP_0 + i);
7358 mtx_unlock(&sc->reg_lock);
7359 tnl_cong_drops += v;
7360 chan_map &= ~(1 << i);
7361 }
7362 pi->tnl_cong_drops = tnl_cong_drops;
7363 getmicrotime(&vi->last_refreshed);
7364 }
7365
7366 static void
cxgbe_tick(void * arg)7367 cxgbe_tick(void *arg)
7368 {
7369 struct vi_info *vi = arg;
7370
7371 MPASS(IS_MAIN_VI(vi));
7372 mtx_assert(&vi->tick_mtx, MA_OWNED);
7373
7374 cxgbe_refresh_stats(vi);
7375 callout_schedule(&vi->tick, hz);
7376 }
7377
7378 static void
vi_tick(void * arg)7379 vi_tick(void *arg)
7380 {
7381 struct vi_info *vi = arg;
7382
7383 mtx_assert(&vi->tick_mtx, MA_OWNED);
7384
7385 vi_refresh_stats(vi);
7386 callout_schedule(&vi->tick, hz);
7387 }
7388
7389 /*
7390 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7391 */
7392 static char *caps_decoder[] = {
7393 "\20\001IPMI\002NCSI", /* 0: NBM */
7394 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7395 "\20\001INGRESS\002EGRESS", /* 2: switch */
7396 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7397 "\006HASHFILTER\007ETHOFLD",
7398 "\20\001TOE", /* 4: TOE */
7399 "\20\001RDDP\002RDMAC", /* 5: RDMA */
7400 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7401 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7402 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7403 "\007T10DIF"
7404 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7405 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7406 "\004TLS_HW",
7407 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7408 "\004PO_INITIATOR\005PO_TARGET",
7409 };
7410
7411 void
t4_sysctls(struct adapter * sc)7412 t4_sysctls(struct adapter *sc)
7413 {
7414 struct sysctl_ctx_list *ctx = &sc->ctx;
7415 struct sysctl_oid *oid;
7416 struct sysctl_oid_list *children, *c0;
7417 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7418
7419 /*
7420 * dev.t4nex.X.
7421 */
7422 oid = device_get_sysctl_tree(sc->dev);
7423 c0 = children = SYSCTL_CHILDREN(oid);
7424
7425 sc->sc_do_rxcopy = 1;
7426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7427 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7428
7429 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7430 sc->params.nports, "# of ports");
7431
7432 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7433 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7434 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7435 "available doorbells");
7436
7437 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7438 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7439
7440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7441 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7442 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7443 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7444
7445 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7446 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7447 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7448 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7449
7450 t4_sge_sysctls(sc, ctx, children);
7451
7452 sc->lro_timeout = 100;
7453 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7454 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7455
7456 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7457 &sc->debug_flags, 0, "flags to enable runtime debugging");
7458
7459 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7460 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7461
7462 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7463 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7464
7465 if (sc->flags & IS_VF)
7466 return;
7467
7468 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7469 NULL, chip_rev(sc), "chip hardware revision");
7470
7471 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7472 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7473
7474 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7475 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7476
7477 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7478 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7479
7480 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7481 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7482
7483 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7484 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7485
7486 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7487 sc->er_version, 0, "expansion ROM version");
7488
7489 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7490 sc->bs_version, 0, "bootstrap firmware version");
7491
7492 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7493 NULL, sc->params.scfg_vers, "serial config version");
7494
7495 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7496 NULL, sc->params.vpd_vers, "VPD version");
7497
7498 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7499 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7500
7501 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7502 sc->cfcsum, "config file checksum");
7503
7504 #define SYSCTL_CAP(name, n, text) \
7505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7507 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7508 "available " text " capabilities")
7509
7510 SYSCTL_CAP(nbmcaps, 0, "NBM");
7511 SYSCTL_CAP(linkcaps, 1, "link");
7512 SYSCTL_CAP(switchcaps, 2, "switch");
7513 SYSCTL_CAP(niccaps, 3, "NIC");
7514 SYSCTL_CAP(toecaps, 4, "TCP offload");
7515 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7516 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7517 SYSCTL_CAP(cryptocaps, 7, "crypto");
7518 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7519 #undef SYSCTL_CAP
7520
7521 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7522 NULL, sc->tids.nftids, "number of filters");
7523
7524 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7525 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7526 sysctl_temperature, "I", "chip temperature (in Celsius)");
7527 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7528 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7529 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7530
7531 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7532 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7533 sysctl_loadavg, "A",
7534 "microprocessor load averages (debug firmwares only)");
7535
7536 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7537 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7538 "I", "core Vdd (in mV)");
7539
7540 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7541 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7542 sysctl_cpus, "A", "local CPUs");
7543
7544 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7545 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7546 sysctl_cpus, "A", "preferred CPUs for interrupts");
7547
7548 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7549 &sc->swintr, 0, "software triggered interrupts");
7550
7551 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7552 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7553 "1 = reset adapter, 0 = zero reset counter");
7554
7555 /*
7556 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
7557 */
7558 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7559 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7560 "logs and miscellaneous information");
7561 children = SYSCTL_CHILDREN(oid);
7562
7563 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7564 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7565 sysctl_cctrl, "A", "congestion control");
7566
7567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7568 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7569 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7570
7571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7573 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7574
7575 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7576 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7577 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7578
7579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7581 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7582
7583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7584 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7585 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7586
7587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7588 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7589 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7590
7591 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7592 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7593 sysctl_cim_la, "A", "CIM logic analyzer");
7594
7595 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7596 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7597 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7598
7599 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7600 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7601 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7602
7603 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7604 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7605 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7606
7607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7608 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7609 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7610
7611 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7612 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7613 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7614
7615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7616 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7617 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7618
7619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7620 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7621 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7622
7623 if (chip_id(sc) > CHELSIO_T4) {
7624 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7625 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7626 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7627 "CIM OBQ 6 (SGE0-RX)");
7628
7629 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7630 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7631 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7632 "CIM OBQ 7 (SGE1-RX)");
7633 }
7634
7635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7636 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7637 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7638
7639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7640 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7641 sysctl_cim_qcfg, "A", "CIM queue configuration");
7642
7643 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7644 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7645 sysctl_cpl_stats, "A", "CPL statistics");
7646
7647 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7648 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7649 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7650
7651 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7652 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7653 sysctl_tid_stats, "A", "tid stats");
7654
7655 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7656 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7657 sysctl_devlog, "A", "firmware's device log");
7658
7659 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7660 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7661 sysctl_fcoe_stats, "A", "FCoE statistics");
7662
7663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7664 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7665 sysctl_hw_sched, "A", "hardware scheduler ");
7666
7667 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7668 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7669 sysctl_l2t, "A", "hardware L2 table");
7670
7671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7672 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7673 sysctl_smt, "A", "hardware source MAC table");
7674
7675 #ifdef INET6
7676 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7677 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7678 sysctl_clip, "A", "active CLIP table entries");
7679 #endif
7680
7681 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7682 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7683 sysctl_lb_stats, "A", "loopback statistics");
7684
7685 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7686 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7687 sysctl_meminfo, "A", "memory regions");
7688
7689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7690 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7691 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7692 "A", "MPS TCAM entries");
7693
7694 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7695 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7696 sysctl_path_mtus, "A", "path MTUs");
7697
7698 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7699 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7700 sysctl_pm_stats, "A", "PM statistics");
7701
7702 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7703 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7704 sysctl_rdma_stats, "A", "RDMA statistics");
7705
7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7707 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7708 sysctl_tcp_stats, "A", "TCP statistics");
7709
7710 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7711 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7712 sysctl_tids, "A", "TID information");
7713
7714 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7715 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7716 sysctl_tp_err_stats, "A", "TP error statistics");
7717
7718 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7719 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7720 sysctl_tnl_stats, "A", "TP tunnel statistics");
7721
7722 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7723 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7724 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7725
7726 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7727 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7728 sysctl_tp_la, "A", "TP logic analyzer");
7729
7730 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7731 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7732 sysctl_tx_rate, "A", "Tx rate");
7733
7734 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7735 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7736 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7737
7738 if (chip_id(sc) >= CHELSIO_T5) {
7739 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7740 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7741 sysctl_wcwr_stats, "A", "write combined work requests");
7742 }
7743
7744 #ifdef KERN_TLS
7745 if (is_ktls(sc)) {
7746 /*
7747 * dev.t4nex.0.tls.
7748 */
7749 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7750 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7751 children = SYSCTL_CHILDREN(oid);
7752
7753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7754 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7755 "keys in work requests (1) or attempt to store TLS keys "
7756 "in card memory.");
7757
7758 if (is_t6(sc))
7759 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7760 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7761 "combine TCB field updates with TLS record work "
7762 "requests.");
7763 }
7764 #endif
7765
7766 #ifdef TCP_OFFLOAD
7767 if (is_offload(sc)) {
7768 int i;
7769 char s[4];
7770
7771 /*
7772 * dev.t4nex.X.toe.
7773 */
7774 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7775 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7776 children = SYSCTL_CHILDREN(oid);
7777
7778 sc->tt.cong_algorithm = -1;
7779 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7780 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7781 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7782 "3 = highspeed)");
7783
7784 sc->tt.sndbuf = -1;
7785 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7786 &sc->tt.sndbuf, 0, "hardware send buffer");
7787
7788 sc->tt.ddp = 0;
7789 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7790 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7791 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7792 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7793
7794 sc->tt.rx_coalesce = -1;
7795 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7796 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7797
7798 sc->tt.tls = 0;
7799 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7800 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7801 "Inline TLS allowed");
7802
7803 sc->tt.tx_align = -1;
7804 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7805 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7806
7807 sc->tt.tx_zcopy = 0;
7808 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7809 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7810 "Enable zero-copy aio_write(2)");
7811
7812 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7813 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7814 "cop_managed_offloading", CTLFLAG_RW,
7815 &sc->tt.cop_managed_offloading, 0,
7816 "COP (Connection Offload Policy) controls all TOE offload");
7817
7818 sc->tt.autorcvbuf_inc = 16 * 1024;
7819 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7820 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7821 "autorcvbuf increment");
7822
7823 sc->tt.update_hc_on_pmtu_change = 1;
7824 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7825 "update_hc_on_pmtu_change", CTLFLAG_RW,
7826 &sc->tt.update_hc_on_pmtu_change, 0,
7827 "Update hostcache entry if the PMTU changes");
7828
7829 sc->tt.iso = 1;
7830 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7831 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7832
7833 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7835 sysctl_tp_tick, "A", "TP timer tick (us)");
7836
7837 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7838 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7839 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7840
7841 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7842 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7843 sysctl_tp_tick, "A", "DACK tick (us)");
7844
7845 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7846 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7847 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7848
7849 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7850 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7851 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7852 "Minimum retransmit interval (us)");
7853
7854 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7855 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7856 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7857 "Maximum retransmit interval (us)");
7858
7859 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7860 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7861 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7862 "Persist timer min (us)");
7863
7864 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7865 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7866 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7867 "Persist timer max (us)");
7868
7869 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7870 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7871 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7872 "Keepalive idle timer (us)");
7873
7874 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7875 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7876 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7877 "Keepalive interval timer (us)");
7878
7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7880 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7881 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7882
7883 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7884 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7885 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7886 "FINWAIT2 timer (us)");
7887
7888 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7889 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7890 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7891 "Number of SYN retransmissions before abort");
7892
7893 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7894 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7895 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7896 "Number of retransmissions before abort");
7897
7898 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7899 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7900 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7901 "Number of keepalive probes before abort");
7902
7903 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7904 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7905 "TOE retransmit backoffs");
7906 children = SYSCTL_CHILDREN(oid);
7907 for (i = 0; i < 16; i++) {
7908 snprintf(s, sizeof(s), "%u", i);
7909 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7910 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7911 i, sysctl_tp_backoff, "IU",
7912 "TOE retransmit backoff");
7913 }
7914 }
7915 #endif
7916 }
7917
7918 void
vi_sysctls(struct vi_info * vi)7919 vi_sysctls(struct vi_info *vi)
7920 {
7921 struct sysctl_ctx_list *ctx = &vi->ctx;
7922 struct sysctl_oid *oid;
7923 struct sysctl_oid_list *children;
7924
7925 /*
7926 * dev.v?(cxgbe|cxl).X.
7927 */
7928 oid = device_get_sysctl_tree(vi->dev);
7929 children = SYSCTL_CHILDREN(oid);
7930
7931 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7932 vi->viid, "VI identifer");
7933 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7934 &vi->nrxq, 0, "# of rx queues");
7935 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7936 &vi->ntxq, 0, "# of tx queues");
7937 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7938 &vi->first_rxq, 0, "index of first rx queue");
7939 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7940 &vi->first_txq, 0, "index of first tx queue");
7941 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7942 vi->rss_base, "start of RSS indirection table");
7943 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7944 vi->rss_size, "size of RSS indirection table");
7945
7946 if (IS_MAIN_VI(vi)) {
7947 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7948 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7949 sysctl_noflowq, "IU",
7950 "Reserve queue 0 for non-flowid packets");
7951 }
7952
7953 if (vi->adapter->flags & IS_VF) {
7954 MPASS(vi->flags & TX_USES_VM_WR);
7955 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7956 NULL, 1, "use VM work requests for transmit");
7957 } else {
7958 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7959 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7960 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7961 }
7962
7963 #ifdef TCP_OFFLOAD
7964 if (vi->nofldrxq != 0) {
7965 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7966 &vi->nofldrxq, 0,
7967 "# of rx queues for offloaded TCP connections");
7968 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7969 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7970 "index of first TOE rx queue");
7971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7972 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7973 sysctl_holdoff_tmr_idx_ofld, "I",
7974 "holdoff timer index for TOE queues");
7975 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7976 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7977 sysctl_holdoff_pktc_idx_ofld, "I",
7978 "holdoff packet counter index for TOE queues");
7979 }
7980 #endif
7981 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7982 if (vi->nofldtxq != 0) {
7983 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7984 &vi->nofldtxq, 0,
7985 "# of tx queues for TOE/ETHOFLD");
7986 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7987 CTLFLAG_RD, &vi->first_ofld_txq, 0,
7988 "index of first TOE/ETHOFLD tx queue");
7989 }
7990 #endif
7991 #ifdef DEV_NETMAP
7992 if (vi->nnmrxq != 0) {
7993 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7994 &vi->nnmrxq, 0, "# of netmap rx queues");
7995 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7996 &vi->nnmtxq, 0, "# of netmap tx queues");
7997 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7998 CTLFLAG_RD, &vi->first_nm_rxq, 0,
7999 "index of first netmap rx queue");
8000 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8001 CTLFLAG_RD, &vi->first_nm_txq, 0,
8002 "index of first netmap tx queue");
8003 }
8004 #endif
8005
8006 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8007 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8008 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8009 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8010 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8011 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8012
8013 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8014 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8015 sysctl_qsize_rxq, "I", "rx queue size");
8016 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8017 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8018 sysctl_qsize_txq, "I", "tx queue size");
8019 }
8020
8021 static void
cxgbe_sysctls(struct port_info * pi)8022 cxgbe_sysctls(struct port_info *pi)
8023 {
8024 struct sysctl_ctx_list *ctx = &pi->ctx;
8025 struct sysctl_oid *oid;
8026 struct sysctl_oid_list *children, *children2;
8027 struct adapter *sc = pi->adapter;
8028 int i;
8029 char name[16];
8030 static char *tc_flags = {"\20\1USER"};
8031
8032 /*
8033 * dev.cxgbe.X.
8034 */
8035 oid = device_get_sysctl_tree(pi->dev);
8036 children = SYSCTL_CHILDREN(oid);
8037
8038 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8039 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8040 sysctl_linkdnrc, "A", "reason why link is down");
8041 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8043 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8044 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8046 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8047 sysctl_btphy, "I", "PHY firmware version");
8048 }
8049
8050 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8051 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8052 sysctl_pause_settings, "A",
8053 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8054 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8055 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8056 "FEC in use on the link");
8057 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8058 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8059 sysctl_requested_fec, "A",
8060 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8061 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8062 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8063 "FEC recommended by the cable/transceiver");
8064 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8065 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8066 sysctl_autoneg, "I",
8067 "autonegotiation (-1 = not supported)");
8068 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8069 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8070 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8071
8072 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8073 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8074 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8075 &pi->link_cfg.pcaps, 0, "port capabilities");
8076 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8077 &pi->link_cfg.acaps, 0, "advertised capabilities");
8078 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8079 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8080
8081 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8082 port_top_speed(pi), "max speed (in Gbps)");
8083 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8084 pi->mps_bg_map, "MPS buffer group map");
8085 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8086 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8087 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8088 pi->tx_chan, "TP tx c-channel");
8089 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8090 pi->rx_chan, "TP rx c-channel");
8091
8092 if (sc->flags & IS_VF)
8093 return;
8094
8095 /*
8096 * dev.(cxgbe|cxl).X.tc.
8097 */
8098 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8099 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8100 "Tx scheduler traffic classes (cl_rl)");
8101 children2 = SYSCTL_CHILDREN(oid);
8102 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8103 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8104 "pktsize for per-flow cl-rl (0 means up to the driver )");
8105 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8106 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8107 "burstsize for per-flow cl-rl (0 means up to the driver)");
8108 for (i = 0; i < sc->params.nsched_cls; i++) {
8109 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8110
8111 snprintf(name, sizeof(name), "%d", i);
8112 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8113 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8114 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8115 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8116 CTLFLAG_RD, &tc->state, 0, "current state");
8117 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8118 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8119 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8120 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8121 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8122 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8123 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8124 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8125 "traffic class parameters");
8126 }
8127
8128 /*
8129 * dev.cxgbe.X.stats.
8130 */
8131 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8132 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8133 children = SYSCTL_CHILDREN(oid);
8134 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8135 &pi->tx_parse_error, 0,
8136 "# of tx packets with invalid length or # of segments");
8137
8138 #define T4_REGSTAT(name, stat, desc) \
8139 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8140 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8141 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8142 sysctl_handle_t4_reg64, "QU", desc)
8143
8144 /* We get these from port_stats and they may be stale by up to 1s */
8145 #define T4_PORTSTAT(name, desc) \
8146 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8147 &pi->stats.name, desc)
8148
8149 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8150 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8151 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8152 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8153 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8154 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8155 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8156 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8157 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8158 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8159 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8160 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8161 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8162 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8163 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8164 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8165 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8166 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8167 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8168 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8169 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8170 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8171 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8172
8173 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8174 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8175 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8176 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8177 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8178 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8179 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8180 if (is_t6(sc)) {
8181 T4_PORTSTAT(rx_fcs_err,
8182 "# of frames received with bad FCS since last link up");
8183 } else {
8184 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8185 "# of frames received with bad FCS");
8186 }
8187 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8188 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8189 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8190 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8191 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8192 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8193 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8194 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8195 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8196 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8197 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8198 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8199 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8200 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8201 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8202 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8203 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8204 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8205 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8206
8207 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8208 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8209 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8210 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8211 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8212 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8213 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8214 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8215
8216 #undef T4_REGSTAT
8217 #undef T4_PORTSTAT
8218 }
8219
8220 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8221 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8222 {
8223 int rc, *i, space = 0;
8224 struct sbuf sb;
8225
8226 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8227 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8228 if (space)
8229 sbuf_printf(&sb, " ");
8230 sbuf_printf(&sb, "%d", *i);
8231 space = 1;
8232 }
8233 rc = sbuf_finish(&sb);
8234 sbuf_delete(&sb);
8235 return (rc);
8236 }
8237
8238 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8239 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8240 {
8241 int rc;
8242 struct sbuf *sb;
8243
8244 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8245 if (sb == NULL)
8246 return (ENOMEM);
8247
8248 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8249 rc = sbuf_finish(sb);
8250 sbuf_delete(sb);
8251
8252 return (rc);
8253 }
8254
8255 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8256 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8257 {
8258 int rc;
8259 struct sbuf *sb;
8260
8261 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8262 if (sb == NULL)
8263 return (ENOMEM);
8264
8265 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8266 rc = sbuf_finish(sb);
8267 sbuf_delete(sb);
8268
8269 return (rc);
8270 }
8271
8272 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8273 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8274 {
8275 struct port_info *pi = arg1;
8276 int op = arg2;
8277 struct adapter *sc = pi->adapter;
8278 u_int v;
8279 int rc;
8280
8281 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8282 if (rc)
8283 return (rc);
8284 if (hw_off_limits(sc))
8285 rc = ENXIO;
8286 else {
8287 /* XXX: magic numbers */
8288 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8289 op ? 0x20 : 0xc820, &v);
8290 }
8291 end_synchronized_op(sc, 0);
8292 if (rc)
8293 return (rc);
8294 if (op == 0)
8295 v /= 256;
8296
8297 rc = sysctl_handle_int(oidp, &v, 0, req);
8298 return (rc);
8299 }
8300
8301 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8302 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8303 {
8304 struct vi_info *vi = arg1;
8305 int rc, val;
8306
8307 val = vi->rsrv_noflowq;
8308 rc = sysctl_handle_int(oidp, &val, 0, req);
8309 if (rc != 0 || req->newptr == NULL)
8310 return (rc);
8311
8312 if ((val >= 1) && (vi->ntxq > 1))
8313 vi->rsrv_noflowq = 1;
8314 else
8315 vi->rsrv_noflowq = 0;
8316
8317 return (rc);
8318 }
8319
8320 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8321 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8322 {
8323 struct vi_info *vi = arg1;
8324 struct adapter *sc = vi->adapter;
8325 int rc, val, i;
8326
8327 MPASS(!(sc->flags & IS_VF));
8328
8329 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8330 rc = sysctl_handle_int(oidp, &val, 0, req);
8331 if (rc != 0 || req->newptr == NULL)
8332 return (rc);
8333
8334 if (val != 0 && val != 1)
8335 return (EINVAL);
8336
8337 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8338 "t4txvm");
8339 if (rc)
8340 return (rc);
8341 if (hw_off_limits(sc))
8342 rc = ENXIO;
8343 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8344 /*
8345 * We don't want parse_pkt to run with one setting (VF or PF)
8346 * and then eth_tx to see a different setting but still use
8347 * stale information calculated by parse_pkt.
8348 */
8349 rc = EBUSY;
8350 } else {
8351 struct port_info *pi = vi->pi;
8352 struct sge_txq *txq;
8353 uint32_t ctrl0;
8354 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8355
8356 if (val) {
8357 vi->flags |= TX_USES_VM_WR;
8358 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8359 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8360 V_TXPKT_INTF(pi->tx_chan));
8361 if (!(sc->flags & IS_VF))
8362 npkt--;
8363 } else {
8364 vi->flags &= ~TX_USES_VM_WR;
8365 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8366 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8367 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8368 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8369 }
8370 for_each_txq(vi, i, txq) {
8371 txq->cpl_ctrl0 = ctrl0;
8372 txq->txp.max_npkt = npkt;
8373 }
8374 }
8375 end_synchronized_op(sc, LOCK_HELD);
8376 return (rc);
8377 }
8378
8379 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8380 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8381 {
8382 struct vi_info *vi = arg1;
8383 struct adapter *sc = vi->adapter;
8384 int idx, rc, i;
8385 struct sge_rxq *rxq;
8386 uint8_t v;
8387
8388 idx = vi->tmr_idx;
8389
8390 rc = sysctl_handle_int(oidp, &idx, 0, req);
8391 if (rc != 0 || req->newptr == NULL)
8392 return (rc);
8393
8394 if (idx < 0 || idx >= SGE_NTIMERS)
8395 return (EINVAL);
8396
8397 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8398 "t4tmr");
8399 if (rc)
8400 return (rc);
8401
8402 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8403 for_each_rxq(vi, i, rxq) {
8404 #ifdef atomic_store_rel_8
8405 atomic_store_rel_8(&rxq->iq.intr_params, v);
8406 #else
8407 rxq->iq.intr_params = v;
8408 #endif
8409 }
8410 vi->tmr_idx = idx;
8411
8412 end_synchronized_op(sc, LOCK_HELD);
8413 return (0);
8414 }
8415
8416 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8417 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8418 {
8419 struct vi_info *vi = arg1;
8420 struct adapter *sc = vi->adapter;
8421 int idx, rc;
8422
8423 idx = vi->pktc_idx;
8424
8425 rc = sysctl_handle_int(oidp, &idx, 0, req);
8426 if (rc != 0 || req->newptr == NULL)
8427 return (rc);
8428
8429 if (idx < -1 || idx >= SGE_NCOUNTERS)
8430 return (EINVAL);
8431
8432 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8433 "t4pktc");
8434 if (rc)
8435 return (rc);
8436
8437 if (vi->flags & VI_INIT_DONE)
8438 rc = EBUSY; /* cannot be changed once the queues are created */
8439 else
8440 vi->pktc_idx = idx;
8441
8442 end_synchronized_op(sc, LOCK_HELD);
8443 return (rc);
8444 }
8445
8446 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8447 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8448 {
8449 struct vi_info *vi = arg1;
8450 struct adapter *sc = vi->adapter;
8451 int qsize, rc;
8452
8453 qsize = vi->qsize_rxq;
8454
8455 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8456 if (rc != 0 || req->newptr == NULL)
8457 return (rc);
8458
8459 if (qsize < 128 || (qsize & 7))
8460 return (EINVAL);
8461
8462 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8463 "t4rxqs");
8464 if (rc)
8465 return (rc);
8466
8467 if (vi->flags & VI_INIT_DONE)
8468 rc = EBUSY; /* cannot be changed once the queues are created */
8469 else
8470 vi->qsize_rxq = qsize;
8471
8472 end_synchronized_op(sc, LOCK_HELD);
8473 return (rc);
8474 }
8475
8476 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8477 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8478 {
8479 struct vi_info *vi = arg1;
8480 struct adapter *sc = vi->adapter;
8481 int qsize, rc;
8482
8483 qsize = vi->qsize_txq;
8484
8485 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8486 if (rc != 0 || req->newptr == NULL)
8487 return (rc);
8488
8489 if (qsize < 128 || qsize > 65536)
8490 return (EINVAL);
8491
8492 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8493 "t4txqs");
8494 if (rc)
8495 return (rc);
8496
8497 if (vi->flags & VI_INIT_DONE)
8498 rc = EBUSY; /* cannot be changed once the queues are created */
8499 else
8500 vi->qsize_txq = qsize;
8501
8502 end_synchronized_op(sc, LOCK_HELD);
8503 return (rc);
8504 }
8505
8506 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8507 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8508 {
8509 struct port_info *pi = arg1;
8510 struct adapter *sc = pi->adapter;
8511 struct link_config *lc = &pi->link_cfg;
8512 int rc;
8513
8514 if (req->newptr == NULL) {
8515 struct sbuf *sb;
8516 static char *bits = "\20\1RX\2TX\3AUTO";
8517
8518 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8519 if (sb == NULL)
8520 return (ENOMEM);
8521
8522 if (lc->link_ok) {
8523 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8524 (lc->requested_fc & PAUSE_AUTONEG), bits);
8525 } else {
8526 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8527 PAUSE_RX | PAUSE_AUTONEG), bits);
8528 }
8529 rc = sbuf_finish(sb);
8530 sbuf_delete(sb);
8531 } else {
8532 char s[2];
8533 int n;
8534
8535 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8536 PAUSE_AUTONEG));
8537 s[1] = 0;
8538
8539 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8540 if (rc != 0)
8541 return(rc);
8542
8543 if (s[1] != 0)
8544 return (EINVAL);
8545 if (s[0] < '0' || s[0] > '9')
8546 return (EINVAL); /* not a number */
8547 n = s[0] - '0';
8548 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8549 return (EINVAL); /* some other bit is set too */
8550
8551 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8552 "t4PAUSE");
8553 if (rc)
8554 return (rc);
8555 if (!hw_off_limits(sc)) {
8556 PORT_LOCK(pi);
8557 lc->requested_fc = n;
8558 fixup_link_config(pi);
8559 if (pi->up_vis > 0)
8560 rc = apply_link_config(pi);
8561 set_current_media(pi);
8562 PORT_UNLOCK(pi);
8563 }
8564 end_synchronized_op(sc, 0);
8565 }
8566
8567 return (rc);
8568 }
8569
8570 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8571 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8572 {
8573 struct port_info *pi = arg1;
8574 struct link_config *lc = &pi->link_cfg;
8575 int rc;
8576 struct sbuf *sb;
8577 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8578
8579 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8580 if (sb == NULL)
8581 return (ENOMEM);
8582 if (lc->link_ok)
8583 sbuf_printf(sb, "%b", lc->fec, bits);
8584 else
8585 sbuf_printf(sb, "no link");
8586 rc = sbuf_finish(sb);
8587 sbuf_delete(sb);
8588
8589 return (rc);
8590 }
8591
8592 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8593 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8594 {
8595 struct port_info *pi = arg1;
8596 struct adapter *sc = pi->adapter;
8597 struct link_config *lc = &pi->link_cfg;
8598 int rc;
8599 int8_t old;
8600
8601 if (req->newptr == NULL) {
8602 struct sbuf *sb;
8603 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8604 "\5RSVD3\6auto\7module";
8605
8606 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8607 if (sb == NULL)
8608 return (ENOMEM);
8609
8610 sbuf_printf(sb, "%b", lc->requested_fec, bits);
8611 rc = sbuf_finish(sb);
8612 sbuf_delete(sb);
8613 } else {
8614 char s[8];
8615 int n;
8616
8617 snprintf(s, sizeof(s), "%d",
8618 lc->requested_fec == FEC_AUTO ? -1 :
8619 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8620
8621 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8622 if (rc != 0)
8623 return(rc);
8624
8625 n = strtol(&s[0], NULL, 0);
8626 if (n < 0 || n & FEC_AUTO)
8627 n = FEC_AUTO;
8628 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8629 return (EINVAL);/* some other bit is set too */
8630
8631 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8632 "t4reqf");
8633 if (rc)
8634 return (rc);
8635 PORT_LOCK(pi);
8636 old = lc->requested_fec;
8637 if (n == FEC_AUTO)
8638 lc->requested_fec = FEC_AUTO;
8639 else if (n == 0 || n == FEC_NONE)
8640 lc->requested_fec = FEC_NONE;
8641 else {
8642 if ((lc->pcaps |
8643 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8644 lc->pcaps) {
8645 rc = ENOTSUP;
8646 goto done;
8647 }
8648 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8649 FEC_MODULE);
8650 }
8651 if (!hw_off_limits(sc)) {
8652 fixup_link_config(pi);
8653 if (pi->up_vis > 0) {
8654 rc = apply_link_config(pi);
8655 if (rc != 0) {
8656 lc->requested_fec = old;
8657 if (rc == FW_EPROTO)
8658 rc = ENOTSUP;
8659 }
8660 }
8661 }
8662 done:
8663 PORT_UNLOCK(pi);
8664 end_synchronized_op(sc, 0);
8665 }
8666
8667 return (rc);
8668 }
8669
8670 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)8671 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8672 {
8673 struct port_info *pi = arg1;
8674 struct adapter *sc = pi->adapter;
8675 struct link_config *lc = &pi->link_cfg;
8676 int rc;
8677 int8_t fec;
8678 struct sbuf *sb;
8679 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8680
8681 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8682 if (sb == NULL)
8683 return (ENOMEM);
8684
8685 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8686 rc = EBUSY;
8687 goto done;
8688 }
8689 if (hw_off_limits(sc)) {
8690 rc = ENXIO;
8691 goto done;
8692 }
8693 PORT_LOCK(pi);
8694 if (pi->up_vis == 0) {
8695 /*
8696 * If all the interfaces are administratively down the firmware
8697 * does not report transceiver changes. Refresh port info here.
8698 * This is the only reason we have a synchronized op in this
8699 * function. Just PORT_LOCK would have been enough otherwise.
8700 */
8701 t4_update_port_info(pi);
8702 }
8703
8704 fec = lc->fec_hint;
8705 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8706 !fec_supported(lc->pcaps)) {
8707 PORT_UNLOCK(pi);
8708 sbuf_printf(sb, "n/a");
8709 } else {
8710 if (fec == 0)
8711 fec = FEC_NONE;
8712 PORT_UNLOCK(pi);
8713 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8714 }
8715 rc = sbuf_finish(sb);
8716 done:
8717 sbuf_delete(sb);
8718 end_synchronized_op(sc, 0);
8719
8720 return (rc);
8721 }
8722
8723 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)8724 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8725 {
8726 struct port_info *pi = arg1;
8727 struct adapter *sc = pi->adapter;
8728 struct link_config *lc = &pi->link_cfg;
8729 int rc, val;
8730
8731 if (lc->pcaps & FW_PORT_CAP32_ANEG)
8732 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8733 else
8734 val = -1;
8735 rc = sysctl_handle_int(oidp, &val, 0, req);
8736 if (rc != 0 || req->newptr == NULL)
8737 return (rc);
8738 if (val == 0)
8739 val = AUTONEG_DISABLE;
8740 else if (val == 1)
8741 val = AUTONEG_ENABLE;
8742 else
8743 val = AUTONEG_AUTO;
8744
8745 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8746 "t4aneg");
8747 if (rc)
8748 return (rc);
8749 PORT_LOCK(pi);
8750 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8751 rc = ENOTSUP;
8752 goto done;
8753 }
8754 lc->requested_aneg = val;
8755 if (!hw_off_limits(sc)) {
8756 fixup_link_config(pi);
8757 if (pi->up_vis > 0)
8758 rc = apply_link_config(pi);
8759 set_current_media(pi);
8760 }
8761 done:
8762 PORT_UNLOCK(pi);
8763 end_synchronized_op(sc, 0);
8764 return (rc);
8765 }
8766
8767 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)8768 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8769 {
8770 struct port_info *pi = arg1;
8771 struct adapter *sc = pi->adapter;
8772 struct link_config *lc = &pi->link_cfg;
8773 int rc, val;
8774
8775 val = lc->force_fec;
8776 MPASS(val >= -1 && val <= 1);
8777 rc = sysctl_handle_int(oidp, &val, 0, req);
8778 if (rc != 0 || req->newptr == NULL)
8779 return (rc);
8780 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8781 return (ENOTSUP);
8782 if (val < -1 || val > 1)
8783 return (EINVAL);
8784
8785 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8786 if (rc)
8787 return (rc);
8788 PORT_LOCK(pi);
8789 lc->force_fec = val;
8790 if (!hw_off_limits(sc)) {
8791 fixup_link_config(pi);
8792 if (pi->up_vis > 0)
8793 rc = apply_link_config(pi);
8794 }
8795 PORT_UNLOCK(pi);
8796 end_synchronized_op(sc, 0);
8797 return (rc);
8798 }
8799
8800 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)8801 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8802 {
8803 struct adapter *sc = arg1;
8804 int rc, reg = arg2;
8805 uint64_t val;
8806
8807 mtx_lock(&sc->reg_lock);
8808 if (hw_off_limits(sc))
8809 rc = ENXIO;
8810 else {
8811 rc = 0;
8812 val = t4_read_reg64(sc, reg);
8813 }
8814 mtx_unlock(&sc->reg_lock);
8815 if (rc == 0)
8816 rc = sysctl_handle_64(oidp, &val, 0, req);
8817 return (rc);
8818 }
8819
8820 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)8821 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8822 {
8823 struct adapter *sc = arg1;
8824 int rc, t;
8825 uint32_t param, val;
8826
8827 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8828 if (rc)
8829 return (rc);
8830 if (hw_off_limits(sc))
8831 rc = ENXIO;
8832 else {
8833 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8834 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8835 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8836 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8837 }
8838 end_synchronized_op(sc, 0);
8839 if (rc)
8840 return (rc);
8841
8842 /* unknown is returned as 0 but we display -1 in that case */
8843 t = val == 0 ? -1 : val;
8844
8845 rc = sysctl_handle_int(oidp, &t, 0, req);
8846 return (rc);
8847 }
8848
8849 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)8850 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8851 {
8852 struct adapter *sc = arg1;
8853 int rc;
8854 uint32_t param, val;
8855
8856 if (sc->params.core_vdd == 0) {
8857 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8858 "t4vdd");
8859 if (rc)
8860 return (rc);
8861 if (hw_off_limits(sc))
8862 rc = ENXIO;
8863 else {
8864 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8865 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8866 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8867 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8868 ¶m, &val);
8869 }
8870 end_synchronized_op(sc, 0);
8871 if (rc)
8872 return (rc);
8873 sc->params.core_vdd = val;
8874 }
8875
8876 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8877 }
8878
8879 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)8880 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8881 {
8882 struct adapter *sc = arg1;
8883 int rc, v;
8884 uint32_t param, val;
8885
8886 v = sc->sensor_resets;
8887 rc = sysctl_handle_int(oidp, &v, 0, req);
8888 if (rc != 0 || req->newptr == NULL || v <= 0)
8889 return (rc);
8890
8891 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8892 chip_id(sc) < CHELSIO_T5)
8893 return (ENOTSUP);
8894
8895 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8896 if (rc)
8897 return (rc);
8898 if (hw_off_limits(sc))
8899 rc = ENXIO;
8900 else {
8901 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8902 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8903 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8904 val = 1;
8905 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8906 }
8907 end_synchronized_op(sc, 0);
8908 if (rc == 0)
8909 sc->sensor_resets++;
8910 return (rc);
8911 }
8912
8913 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)8914 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8915 {
8916 struct adapter *sc = arg1;
8917 struct sbuf *sb;
8918 int rc;
8919 uint32_t param, val;
8920
8921 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8922 if (rc)
8923 return (rc);
8924 if (hw_off_limits(sc))
8925 rc = ENXIO;
8926 else {
8927 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8928 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8929 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
8930 }
8931 end_synchronized_op(sc, 0);
8932 if (rc)
8933 return (rc);
8934
8935 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8936 if (sb == NULL)
8937 return (ENOMEM);
8938
8939 if (val == 0xffffffff) {
8940 /* Only debug and custom firmwares report load averages. */
8941 sbuf_printf(sb, "not available");
8942 } else {
8943 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8944 (val >> 16) & 0xff);
8945 }
8946 rc = sbuf_finish(sb);
8947 sbuf_delete(sb);
8948
8949 return (rc);
8950 }
8951
8952 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)8953 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8954 {
8955 struct adapter *sc = arg1;
8956 struct sbuf *sb;
8957 int rc, i;
8958 uint16_t incr[NMTUS][NCCTRL_WIN];
8959 static const char *dec_fac[] = {
8960 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8961 "0.9375"
8962 };
8963
8964 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8965 if (sb == NULL)
8966 return (ENOMEM);
8967
8968 rc = 0;
8969 mtx_lock(&sc->reg_lock);
8970 if (hw_off_limits(sc))
8971 rc = ENXIO;
8972 else
8973 t4_read_cong_tbl(sc, incr);
8974 mtx_unlock(&sc->reg_lock);
8975 if (rc)
8976 goto done;
8977
8978 for (i = 0; i < NCCTRL_WIN; ++i) {
8979 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8980 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8981 incr[5][i], incr[6][i], incr[7][i]);
8982 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8983 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8984 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8985 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8986 }
8987
8988 rc = sbuf_finish(sb);
8989 done:
8990 sbuf_delete(sb);
8991 return (rc);
8992 }
8993
8994 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8995 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
8996 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
8997 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
8998 };
8999
9000 static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)9001 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
9002 {
9003 struct adapter *sc = arg1;
9004 struct sbuf *sb;
9005 int rc, i, n, qid = arg2;
9006 uint32_t *buf, *p;
9007 char *qtype;
9008 u_int cim_num_obq = sc->chip_params->cim_num_obq;
9009
9010 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
9011 ("%s: bad qid %d\n", __func__, qid));
9012
9013 if (qid < CIM_NUM_IBQ) {
9014 /* inbound queue */
9015 qtype = "IBQ";
9016 n = 4 * CIM_IBQ_SIZE;
9017 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9018 mtx_lock(&sc->reg_lock);
9019 if (hw_off_limits(sc))
9020 rc = -ENXIO;
9021 else
9022 rc = t4_read_cim_ibq(sc, qid, buf, n);
9023 mtx_unlock(&sc->reg_lock);
9024 } else {
9025 /* outbound queue */
9026 qtype = "OBQ";
9027 qid -= CIM_NUM_IBQ;
9028 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9029 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9030 mtx_lock(&sc->reg_lock);
9031 if (hw_off_limits(sc))
9032 rc = -ENXIO;
9033 else
9034 rc = t4_read_cim_obq(sc, qid, buf, n);
9035 mtx_unlock(&sc->reg_lock);
9036 }
9037
9038 if (rc < 0) {
9039 rc = -rc;
9040 goto done;
9041 }
9042 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9043
9044 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9045 if (sb == NULL) {
9046 rc = ENOMEM;
9047 goto done;
9048 }
9049
9050 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9051 for (i = 0, p = buf; i < n; i += 16, p += 4)
9052 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9053 p[2], p[3]);
9054
9055 rc = sbuf_finish(sb);
9056 sbuf_delete(sb);
9057 done:
9058 free(buf, M_CXGBE);
9059 return (rc);
9060 }
9061
9062 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9063 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9064 {
9065 uint32_t *p;
9066
9067 sbuf_printf(sb, "Status Data PC%s",
9068 cfg & F_UPDBGLACAPTPCONLY ? "" :
9069 " LS0Stat LS0Addr LS0Data");
9070
9071 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9072 if (cfg & F_UPDBGLACAPTPCONLY) {
9073 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9074 p[6], p[7]);
9075 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9076 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9077 p[4] & 0xff, p[5] >> 8);
9078 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9079 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9080 p[1] & 0xf, p[2] >> 4);
9081 } else {
9082 sbuf_printf(sb,
9083 "\n %02x %x%07x %x%07x %08x %08x "
9084 "%08x%08x%08x%08x",
9085 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9086 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9087 p[6], p[7]);
9088 }
9089 }
9090 }
9091
9092 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9093 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9094 {
9095 uint32_t *p;
9096
9097 sbuf_printf(sb, "Status Inst Data PC%s",
9098 cfg & F_UPDBGLACAPTPCONLY ? "" :
9099 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9100
9101 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9102 if (cfg & F_UPDBGLACAPTPCONLY) {
9103 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9104 p[3] & 0xff, p[2], p[1], p[0]);
9105 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9106 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9107 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9108 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9109 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9110 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9111 p[6] >> 16);
9112 } else {
9113 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9114 "%08x %08x %08x %08x %08x %08x",
9115 (p[9] >> 16) & 0xff,
9116 p[9] & 0xffff, p[8] >> 16,
9117 p[8] & 0xffff, p[7] >> 16,
9118 p[7] & 0xffff, p[6] >> 16,
9119 p[2], p[1], p[0], p[5], p[4], p[3]);
9120 }
9121 }
9122 }
9123
9124 static int
sbuf_cim_la(struct adapter * sc,struct sbuf * sb,int flags)9125 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9126 {
9127 uint32_t cfg, *buf;
9128 int rc;
9129
9130 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9131 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9132 M_ZERO | flags);
9133 if (buf == NULL)
9134 return (ENOMEM);
9135
9136 mtx_lock(&sc->reg_lock);
9137 if (hw_off_limits(sc))
9138 rc = ENXIO;
9139 else {
9140 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9141 if (rc == 0)
9142 rc = -t4_cim_read_la(sc, buf, NULL);
9143 }
9144 mtx_unlock(&sc->reg_lock);
9145 if (rc == 0) {
9146 if (chip_id(sc) < CHELSIO_T6)
9147 sbuf_cim_la4(sc, sb, buf, cfg);
9148 else
9149 sbuf_cim_la6(sc, sb, buf, cfg);
9150 }
9151 free(buf, M_CXGBE);
9152 return (rc);
9153 }
9154
9155 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9156 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9157 {
9158 struct adapter *sc = arg1;
9159 struct sbuf *sb;
9160 int rc;
9161
9162 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9163 if (sb == NULL)
9164 return (ENOMEM);
9165
9166 rc = sbuf_cim_la(sc, sb, M_WAITOK);
9167 if (rc == 0)
9168 rc = sbuf_finish(sb);
9169 sbuf_delete(sb);
9170 return (rc);
9171 }
9172
9173 static void
dump_cim_regs(struct adapter * sc)9174 dump_cim_regs(struct adapter *sc)
9175 {
9176 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9177 device_get_nameunit(sc->dev),
9178 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9179 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9180 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9181 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9182 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9183 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9184 device_get_nameunit(sc->dev),
9185 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9186 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9187 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9188 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9189 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9190 }
9191
9192 static void
dump_cimla(struct adapter * sc)9193 dump_cimla(struct adapter *sc)
9194 {
9195 struct sbuf sb;
9196 int rc;
9197
9198 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9199 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9200 device_get_nameunit(sc->dev));
9201 return;
9202 }
9203 rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9204 if (rc == 0) {
9205 rc = sbuf_finish(&sb);
9206 if (rc == 0) {
9207 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9208 device_get_nameunit(sc->dev), sbuf_data(&sb));
9209 }
9210 }
9211 sbuf_delete(&sb);
9212 }
9213
9214 void
t4_os_cim_err(struct adapter * sc)9215 t4_os_cim_err(struct adapter *sc)
9216 {
9217 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9218 }
9219
9220 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9221 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9222 {
9223 struct adapter *sc = arg1;
9224 u_int i;
9225 struct sbuf *sb;
9226 uint32_t *buf, *p;
9227 int rc;
9228
9229 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9230 if (sb == NULL)
9231 return (ENOMEM);
9232
9233 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9234 M_ZERO | M_WAITOK);
9235
9236 rc = 0;
9237 mtx_lock(&sc->reg_lock);
9238 if (hw_off_limits(sc))
9239 rc = ENXIO;
9240 else
9241 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9242 mtx_unlock(&sc->reg_lock);
9243 if (rc)
9244 goto done;
9245
9246 p = buf;
9247 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9248 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9249 p[1], p[0]);
9250 }
9251
9252 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9253 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9254 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9255 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9256 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9257 (p[1] >> 2) | ((p[2] & 3) << 30),
9258 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9259 p[0] & 1);
9260 }
9261 rc = sbuf_finish(sb);
9262 done:
9263 sbuf_delete(sb);
9264 free(buf, M_CXGBE);
9265 return (rc);
9266 }
9267
9268 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9269 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9270 {
9271 struct adapter *sc = arg1;
9272 u_int i;
9273 struct sbuf *sb;
9274 uint32_t *buf, *p;
9275 int rc;
9276
9277 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9278 if (sb == NULL)
9279 return (ENOMEM);
9280
9281 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9282 M_ZERO | M_WAITOK);
9283
9284 rc = 0;
9285 mtx_lock(&sc->reg_lock);
9286 if (hw_off_limits(sc))
9287 rc = ENXIO;
9288 else
9289 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9290 mtx_unlock(&sc->reg_lock);
9291 if (rc)
9292 goto done;
9293
9294 p = buf;
9295 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9296 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9297 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9298 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9299 p[4], p[3], p[2], p[1], p[0]);
9300 }
9301
9302 sbuf_printf(sb, "\n\nCntl ID Data");
9303 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9304 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9305 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9306 }
9307
9308 rc = sbuf_finish(sb);
9309 done:
9310 sbuf_delete(sb);
9311 free(buf, M_CXGBE);
9312 return (rc);
9313 }
9314
9315 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9316 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9317 {
9318 struct adapter *sc = arg1;
9319 struct sbuf *sb;
9320 int rc, i;
9321 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9322 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9323 uint16_t thres[CIM_NUM_IBQ];
9324 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9325 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9326 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9327
9328 cim_num_obq = sc->chip_params->cim_num_obq;
9329 if (is_t4(sc)) {
9330 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9331 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9332 } else {
9333 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9334 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9335 }
9336 nq = CIM_NUM_IBQ + cim_num_obq;
9337
9338 mtx_lock(&sc->reg_lock);
9339 if (hw_off_limits(sc))
9340 rc = ENXIO;
9341 else {
9342 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9343 if (rc == 0) {
9344 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9345 obq_wr);
9346 if (rc == 0)
9347 t4_read_cimq_cfg(sc, base, size, thres);
9348 }
9349 }
9350 mtx_unlock(&sc->reg_lock);
9351 if (rc)
9352 return (rc);
9353
9354 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9355 if (sb == NULL)
9356 return (ENOMEM);
9357
9358 sbuf_printf(sb,
9359 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9360
9361 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9362 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9363 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9364 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9365 G_QUEREMFLITS(p[2]) * 16);
9366 for ( ; i < nq; i++, p += 4, wr += 2)
9367 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9368 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9369 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9370 G_QUEREMFLITS(p[2]) * 16);
9371
9372 rc = sbuf_finish(sb);
9373 sbuf_delete(sb);
9374
9375 return (rc);
9376 }
9377
9378 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9379 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9380 {
9381 struct adapter *sc = arg1;
9382 struct sbuf *sb;
9383 int rc;
9384 struct tp_cpl_stats stats;
9385
9386 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9387 if (sb == NULL)
9388 return (ENOMEM);
9389
9390 rc = 0;
9391 mtx_lock(&sc->reg_lock);
9392 if (hw_off_limits(sc))
9393 rc = ENXIO;
9394 else
9395 t4_tp_get_cpl_stats(sc, &stats, 0);
9396 mtx_unlock(&sc->reg_lock);
9397 if (rc)
9398 goto done;
9399
9400 if (sc->chip_params->nchan > 2) {
9401 sbuf_printf(sb, " channel 0 channel 1"
9402 " channel 2 channel 3");
9403 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9404 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9405 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9406 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9407 } else {
9408 sbuf_printf(sb, " channel 0 channel 1");
9409 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9410 stats.req[0], stats.req[1]);
9411 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9412 stats.rsp[0], stats.rsp[1]);
9413 }
9414
9415 rc = sbuf_finish(sb);
9416 done:
9417 sbuf_delete(sb);
9418 return (rc);
9419 }
9420
9421 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9422 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9423 {
9424 struct adapter *sc = arg1;
9425 struct sbuf *sb;
9426 int rc;
9427 struct tp_usm_stats stats;
9428
9429 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9430 if (sb == NULL)
9431 return (ENOMEM);
9432
9433 rc = 0;
9434 mtx_lock(&sc->reg_lock);
9435 if (hw_off_limits(sc))
9436 rc = ENXIO;
9437 else
9438 t4_get_usm_stats(sc, &stats, 1);
9439 mtx_unlock(&sc->reg_lock);
9440 if (rc == 0) {
9441 sbuf_printf(sb, "Frames: %u\n", stats.frames);
9442 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9443 sbuf_printf(sb, "Drops: %u", stats.drops);
9444 rc = sbuf_finish(sb);
9445 }
9446 sbuf_delete(sb);
9447
9448 return (rc);
9449 }
9450
9451 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)9452 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9453 {
9454 struct adapter *sc = arg1;
9455 struct sbuf *sb;
9456 int rc;
9457 struct tp_tid_stats stats;
9458
9459 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9460 if (sb == NULL)
9461 return (ENOMEM);
9462
9463 rc = 0;
9464 mtx_lock(&sc->reg_lock);
9465 if (hw_off_limits(sc))
9466 rc = ENXIO;
9467 else
9468 t4_tp_get_tid_stats(sc, &stats, 1);
9469 mtx_unlock(&sc->reg_lock);
9470 if (rc == 0) {
9471 sbuf_printf(sb, "Delete: %u\n", stats.del);
9472 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9473 sbuf_printf(sb, "Active: %u\n", stats.act);
9474 sbuf_printf(sb, "Passive: %u", stats.pas);
9475 rc = sbuf_finish(sb);
9476 }
9477 sbuf_delete(sb);
9478
9479 return (rc);
9480 }
9481
9482 static const char * const devlog_level_strings[] = {
9483 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
9484 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
9485 [FW_DEVLOG_LEVEL_ERR] = "ERR",
9486 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
9487 [FW_DEVLOG_LEVEL_INFO] = "INFO",
9488 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
9489 };
9490
9491 static const char * const devlog_facility_strings[] = {
9492 [FW_DEVLOG_FACILITY_CORE] = "CORE",
9493 [FW_DEVLOG_FACILITY_CF] = "CF",
9494 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
9495 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
9496 [FW_DEVLOG_FACILITY_RES] = "RES",
9497 [FW_DEVLOG_FACILITY_HW] = "HW",
9498 [FW_DEVLOG_FACILITY_FLR] = "FLR",
9499 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
9500 [FW_DEVLOG_FACILITY_PHY] = "PHY",
9501 [FW_DEVLOG_FACILITY_MAC] = "MAC",
9502 [FW_DEVLOG_FACILITY_PORT] = "PORT",
9503 [FW_DEVLOG_FACILITY_VI] = "VI",
9504 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
9505 [FW_DEVLOG_FACILITY_ACL] = "ACL",
9506 [FW_DEVLOG_FACILITY_TM] = "TM",
9507 [FW_DEVLOG_FACILITY_QFC] = "QFC",
9508 [FW_DEVLOG_FACILITY_DCB] = "DCB",
9509 [FW_DEVLOG_FACILITY_ETH] = "ETH",
9510 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
9511 [FW_DEVLOG_FACILITY_RI] = "RI",
9512 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
9513 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
9514 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
9515 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
9516 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
9517 };
9518
9519 static int
sbuf_devlog(struct adapter * sc,struct sbuf * sb,int flags)9520 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9521 {
9522 int i, j, rc, nentries, first = 0;
9523 struct devlog_params *dparams = &sc->params.devlog;
9524 struct fw_devlog_e *buf, *e;
9525 uint64_t ftstamp = UINT64_MAX;
9526
9527 if (dparams->addr == 0)
9528 return (ENXIO);
9529
9530 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9531 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9532 if (buf == NULL)
9533 return (ENOMEM);
9534
9535 mtx_lock(&sc->reg_lock);
9536 if (hw_off_limits(sc))
9537 rc = ENXIO;
9538 else
9539 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9540 dparams->size);
9541 mtx_unlock(&sc->reg_lock);
9542 if (rc != 0)
9543 goto done;
9544
9545 nentries = dparams->size / sizeof(struct fw_devlog_e);
9546 for (i = 0; i < nentries; i++) {
9547 e = &buf[i];
9548
9549 if (e->timestamp == 0)
9550 break; /* end */
9551
9552 e->timestamp = be64toh(e->timestamp);
9553 e->seqno = be32toh(e->seqno);
9554 for (j = 0; j < 8; j++)
9555 e->params[j] = be32toh(e->params[j]);
9556
9557 if (e->timestamp < ftstamp) {
9558 ftstamp = e->timestamp;
9559 first = i;
9560 }
9561 }
9562
9563 if (buf[first].timestamp == 0)
9564 goto done; /* nothing in the log */
9565
9566 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
9567 "Seq#", "Tstamp", "Level", "Facility", "Message");
9568
9569 i = first;
9570 do {
9571 e = &buf[i];
9572 if (e->timestamp == 0)
9573 break; /* end */
9574
9575 sbuf_printf(sb, "%10d %15ju %8s %8s ",
9576 e->seqno, e->timestamp,
9577 (e->level < nitems(devlog_level_strings) ?
9578 devlog_level_strings[e->level] : "UNKNOWN"),
9579 (e->facility < nitems(devlog_facility_strings) ?
9580 devlog_facility_strings[e->facility] : "UNKNOWN"));
9581 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9582 e->params[2], e->params[3], e->params[4],
9583 e->params[5], e->params[6], e->params[7]);
9584
9585 if (++i == nentries)
9586 i = 0;
9587 } while (i != first);
9588 done:
9589 free(buf, M_CXGBE);
9590 return (rc);
9591 }
9592
9593 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)9594 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9595 {
9596 struct adapter *sc = arg1;
9597 int rc;
9598 struct sbuf *sb;
9599
9600 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9601 if (sb == NULL)
9602 return (ENOMEM);
9603
9604 rc = sbuf_devlog(sc, sb, M_WAITOK);
9605 if (rc == 0)
9606 rc = sbuf_finish(sb);
9607 sbuf_delete(sb);
9608 return (rc);
9609 }
9610
9611 static void
dump_devlog(struct adapter * sc)9612 dump_devlog(struct adapter *sc)
9613 {
9614 int rc;
9615 struct sbuf sb;
9616
9617 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9618 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9619 device_get_nameunit(sc->dev));
9620 return;
9621 }
9622 rc = sbuf_devlog(sc, &sb, M_WAITOK);
9623 if (rc == 0) {
9624 rc = sbuf_finish(&sb);
9625 if (rc == 0) {
9626 log(LOG_DEBUG, "%s: device log follows.\n%s",
9627 device_get_nameunit(sc->dev), sbuf_data(&sb));
9628 }
9629 }
9630 sbuf_delete(&sb);
9631 }
9632
9633 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)9634 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9635 {
9636 struct adapter *sc = arg1;
9637 struct sbuf *sb;
9638 int rc;
9639 struct tp_fcoe_stats stats[MAX_NCHAN];
9640 int i, nchan = sc->chip_params->nchan;
9641
9642 rc = 0;
9643 mtx_lock(&sc->reg_lock);
9644 if (hw_off_limits(sc))
9645 rc = ENXIO;
9646 else {
9647 for (i = 0; i < nchan; i++)
9648 t4_get_fcoe_stats(sc, i, &stats[i], 1);
9649 }
9650 mtx_unlock(&sc->reg_lock);
9651 if (rc != 0)
9652 return (rc);
9653
9654 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9655 if (sb == NULL)
9656 return (ENOMEM);
9657
9658 if (nchan > 2) {
9659 sbuf_printf(sb, " channel 0 channel 1"
9660 " channel 2 channel 3");
9661 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
9662 stats[0].octets_ddp, stats[1].octets_ddp,
9663 stats[2].octets_ddp, stats[3].octets_ddp);
9664 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
9665 stats[0].frames_ddp, stats[1].frames_ddp,
9666 stats[2].frames_ddp, stats[3].frames_ddp);
9667 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9668 stats[0].frames_drop, stats[1].frames_drop,
9669 stats[2].frames_drop, stats[3].frames_drop);
9670 } else {
9671 sbuf_printf(sb, " channel 0 channel 1");
9672 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
9673 stats[0].octets_ddp, stats[1].octets_ddp);
9674 sbuf_printf(sb, "\nframesDDP: %16u %16u",
9675 stats[0].frames_ddp, stats[1].frames_ddp);
9676 sbuf_printf(sb, "\nframesDrop: %16u %16u",
9677 stats[0].frames_drop, stats[1].frames_drop);
9678 }
9679
9680 rc = sbuf_finish(sb);
9681 sbuf_delete(sb);
9682
9683 return (rc);
9684 }
9685
9686 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)9687 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9688 {
9689 struct adapter *sc = arg1;
9690 struct sbuf *sb;
9691 int rc, i;
9692 unsigned int map, kbps, ipg, mode;
9693 unsigned int pace_tab[NTX_SCHED];
9694
9695 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9696 if (sb == NULL)
9697 return (ENOMEM);
9698
9699 mtx_lock(&sc->reg_lock);
9700 if (hw_off_limits(sc)) {
9701 mtx_unlock(&sc->reg_lock);
9702 rc = ENXIO;
9703 goto done;
9704 }
9705
9706 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9707 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9708 t4_read_pace_tbl(sc, pace_tab);
9709 mtx_unlock(&sc->reg_lock);
9710
9711 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
9712 "Class IPG (0.1 ns) Flow IPG (us)");
9713
9714 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9715 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9716 sbuf_printf(sb, "\n %u %-5s %u ", i,
9717 (mode & (1 << i)) ? "flow" : "class", map & 3);
9718 if (kbps)
9719 sbuf_printf(sb, "%9u ", kbps);
9720 else
9721 sbuf_printf(sb, " disabled ");
9722
9723 if (ipg)
9724 sbuf_printf(sb, "%13u ", ipg);
9725 else
9726 sbuf_printf(sb, " disabled ");
9727
9728 if (pace_tab[i])
9729 sbuf_printf(sb, "%10u", pace_tab[i]);
9730 else
9731 sbuf_printf(sb, " disabled");
9732 }
9733 rc = sbuf_finish(sb);
9734 done:
9735 sbuf_delete(sb);
9736 return (rc);
9737 }
9738
9739 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)9740 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9741 {
9742 struct adapter *sc = arg1;
9743 struct sbuf *sb;
9744 int rc, i, j;
9745 uint64_t *p0, *p1;
9746 struct lb_port_stats s[2];
9747 static const char *stat_name[] = {
9748 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9749 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9750 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
9751 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9752 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9753 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9754 "BG2FramesTrunc:", "BG3FramesTrunc:"
9755 };
9756
9757 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9758 if (sb == NULL)
9759 return (ENOMEM);
9760
9761 memset(s, 0, sizeof(s));
9762
9763 rc = 0;
9764 for (i = 0; i < sc->chip_params->nchan; i += 2) {
9765 mtx_lock(&sc->reg_lock);
9766 if (hw_off_limits(sc))
9767 rc = ENXIO;
9768 else {
9769 t4_get_lb_stats(sc, i, &s[0]);
9770 t4_get_lb_stats(sc, i + 1, &s[1]);
9771 }
9772 mtx_unlock(&sc->reg_lock);
9773 if (rc != 0)
9774 break;
9775
9776 p0 = &s[0].octets;
9777 p1 = &s[1].octets;
9778 sbuf_printf(sb, "%s Loopback %u"
9779 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9780
9781 for (j = 0; j < nitems(stat_name); j++)
9782 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9783 *p0++, *p1++);
9784 }
9785
9786 if (rc == 0)
9787 rc = sbuf_finish(sb);
9788 sbuf_delete(sb);
9789
9790 return (rc);
9791 }
9792
9793 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)9794 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9795 {
9796 int rc = 0;
9797 struct port_info *pi = arg1;
9798 struct link_config *lc = &pi->link_cfg;
9799 struct sbuf *sb;
9800
9801 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9802 if (sb == NULL)
9803 return (ENOMEM);
9804
9805 if (lc->link_ok || lc->link_down_rc == 255)
9806 sbuf_printf(sb, "n/a");
9807 else
9808 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9809
9810 rc = sbuf_finish(sb);
9811 sbuf_delete(sb);
9812
9813 return (rc);
9814 }
9815
9816 struct mem_desc {
9817 u_int base;
9818 u_int limit;
9819 u_int idx;
9820 };
9821
9822 static int
mem_desc_cmp(const void * a,const void * b)9823 mem_desc_cmp(const void *a, const void *b)
9824 {
9825 const u_int v1 = ((const struct mem_desc *)a)->base;
9826 const u_int v2 = ((const struct mem_desc *)b)->base;
9827
9828 if (v1 < v2)
9829 return (-1);
9830 else if (v1 > v2)
9831 return (1);
9832
9833 return (0);
9834 }
9835
9836 static void
mem_region_show(struct sbuf * sb,const char * name,unsigned int from,unsigned int to)9837 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9838 unsigned int to)
9839 {
9840 unsigned int size;
9841
9842 if (from == to)
9843 return;
9844
9845 size = to - from + 1;
9846 if (size == 0)
9847 return;
9848
9849 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9850 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9851 }
9852
9853 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)9854 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9855 {
9856 struct adapter *sc = arg1;
9857 struct sbuf *sb;
9858 int rc, i, n;
9859 uint32_t lo, hi, used, free, alloc;
9860 static const char *memory[] = {
9861 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9862 };
9863 static const char *region[] = {
9864 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9865 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9866 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9867 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9868 "RQUDP region:", "PBL region:", "TXPBL region:",
9869 "TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9870 "ULPTX state:", "On-chip queues:",
9871 };
9872 struct mem_desc avail[4];
9873 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
9874 struct mem_desc *md = mem;
9875
9876 rc = sysctl_wire_old_buffer(req, 0);
9877 if (rc != 0)
9878 return (rc);
9879
9880 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9881 if (sb == NULL)
9882 return (ENOMEM);
9883
9884 for (i = 0; i < nitems(mem); i++) {
9885 mem[i].limit = 0;
9886 mem[i].idx = i;
9887 }
9888
9889 mtx_lock(&sc->reg_lock);
9890 if (hw_off_limits(sc)) {
9891 rc = ENXIO;
9892 goto done;
9893 }
9894
9895 /* Find and sort the populated memory ranges */
9896 i = 0;
9897 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9898 if (lo & F_EDRAM0_ENABLE) {
9899 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9900 avail[i].base = G_EDRAM0_BASE(hi) << 20;
9901 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9902 avail[i].idx = 0;
9903 i++;
9904 }
9905 if (lo & F_EDRAM1_ENABLE) {
9906 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9907 avail[i].base = G_EDRAM1_BASE(hi) << 20;
9908 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9909 avail[i].idx = 1;
9910 i++;
9911 }
9912 if (lo & F_EXT_MEM_ENABLE) {
9913 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9914 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9915 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9916 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */
9917 i++;
9918 }
9919 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9920 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9921 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9922 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9923 avail[i].idx = 4;
9924 i++;
9925 }
9926 if (is_t6(sc) && lo & F_HMA_MUX) {
9927 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9928 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9929 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9930 avail[i].idx = 5;
9931 i++;
9932 }
9933 MPASS(i <= nitems(avail));
9934 if (!i) /* no memory available */
9935 goto done;
9936 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9937
9938 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9939 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9940 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9941 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9942 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9943 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9944 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9945 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9946 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9947
9948 /* the next few have explicit upper bounds */
9949 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9950 md->limit = md->base - 1 +
9951 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9952 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9953 md++;
9954
9955 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9956 md->limit = md->base - 1 +
9957 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9958 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9959 md++;
9960
9961 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9962 if (chip_id(sc) <= CHELSIO_T5)
9963 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9964 else
9965 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9966 md->limit = 0;
9967 } else {
9968 md->base = 0;
9969 md->idx = nitems(region); /* hide it */
9970 }
9971 md++;
9972
9973 #define ulp_region(reg) \
9974 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9975 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9976
9977 ulp_region(RX_ISCSI);
9978 ulp_region(RX_TDDP);
9979 ulp_region(TX_TPT);
9980 ulp_region(RX_STAG);
9981 ulp_region(RX_RQ);
9982 ulp_region(RX_RQUDP);
9983 ulp_region(RX_PBL);
9984 ulp_region(TX_PBL);
9985 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9986 ulp_region(RX_TLS_KEY);
9987 }
9988 #undef ulp_region
9989
9990 md->base = 0;
9991 if (is_t4(sc))
9992 md->idx = nitems(region);
9993 else {
9994 uint32_t size = 0;
9995 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9996 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9997
9998 if (is_t5(sc)) {
9999 if (sge_ctrl & F_VFIFO_ENABLE)
10000 size = fifo_size << 2;
10001 } else
10002 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10003
10004 if (size) {
10005 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10006 md->limit = md->base + size - 1;
10007 } else
10008 md->idx = nitems(region);
10009 }
10010 md++;
10011
10012 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10013 md->limit = 0;
10014 md++;
10015 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10016 md->limit = 0;
10017 md++;
10018
10019 md->base = sc->vres.ocq.start;
10020 if (sc->vres.ocq.size)
10021 md->limit = md->base + sc->vres.ocq.size - 1;
10022 else
10023 md->idx = nitems(region); /* hide it */
10024 md++;
10025
10026 /* add any address-space holes, there can be up to 3 */
10027 for (n = 0; n < i - 1; n++)
10028 if (avail[n].limit < avail[n + 1].base)
10029 (md++)->base = avail[n].limit;
10030 if (avail[n].limit)
10031 (md++)->base = avail[n].limit;
10032
10033 n = md - mem;
10034 MPASS(n <= nitems(mem));
10035 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10036
10037 for (lo = 0; lo < i; lo++)
10038 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10039 avail[lo].limit - 1);
10040
10041 sbuf_printf(sb, "\n");
10042 for (i = 0; i < n; i++) {
10043 if (mem[i].idx >= nitems(region))
10044 continue; /* skip holes */
10045 if (!mem[i].limit)
10046 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10047 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10048 mem[i].limit);
10049 }
10050
10051 sbuf_printf(sb, "\n");
10052 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10053 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10054 mem_region_show(sb, "uP RAM:", lo, hi);
10055
10056 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10057 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10058 mem_region_show(sb, "uP Extmem2:", lo, hi);
10059
10060 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10061 for (i = 0, free = 0; i < 2; i++)
10062 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10063 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10064 G_PMRXMAXPAGE(lo), free,
10065 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10066 (lo & F_PMRXNUMCHN) ? 2 : 1);
10067
10068 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10069 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10070 for (i = 0, free = 0; i < 4; i++)
10071 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10072 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10073 G_PMTXMAXPAGE(lo), free,
10074 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10075 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10076 sbuf_printf(sb, "%u p-structs (%u free)\n",
10077 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10078 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10079
10080 for (i = 0; i < 4; i++) {
10081 if (chip_id(sc) > CHELSIO_T5)
10082 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10083 else
10084 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10085 if (is_t5(sc)) {
10086 used = G_T5_USED(lo);
10087 alloc = G_T5_ALLOC(lo);
10088 } else {
10089 used = G_USED(lo);
10090 alloc = G_ALLOC(lo);
10091 }
10092 /* For T6 these are MAC buffer groups */
10093 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10094 i, used, alloc);
10095 }
10096 for (i = 0; i < sc->chip_params->nchan; i++) {
10097 if (chip_id(sc) > CHELSIO_T5)
10098 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10099 else
10100 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10101 if (is_t5(sc)) {
10102 used = G_T5_USED(lo);
10103 alloc = G_T5_ALLOC(lo);
10104 } else {
10105 used = G_USED(lo);
10106 alloc = G_ALLOC(lo);
10107 }
10108 /* For T6 these are MAC buffer groups */
10109 sbuf_printf(sb,
10110 "\nLoopback %d using %u pages out of %u allocated",
10111 i, used, alloc);
10112 }
10113 done:
10114 mtx_unlock(&sc->reg_lock);
10115 if (rc == 0)
10116 rc = sbuf_finish(sb);
10117 sbuf_delete(sb);
10118 return (rc);
10119 }
10120
10121 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10122 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10123 {
10124 *mask = x | y;
10125 y = htobe64(y);
10126 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10127 }
10128
10129 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10130 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10131 {
10132 struct adapter *sc = arg1;
10133 struct sbuf *sb;
10134 int rc, i;
10135
10136 MPASS(chip_id(sc) <= CHELSIO_T5);
10137
10138 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10139 if (sb == NULL)
10140 return (ENOMEM);
10141
10142 sbuf_printf(sb,
10143 "Idx Ethernet address Mask Vld Ports PF"
10144 " VF Replication P0 P1 P2 P3 ML");
10145 rc = 0;
10146 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10147 uint64_t tcamx, tcamy, mask;
10148 uint32_t cls_lo, cls_hi;
10149 uint8_t addr[ETHER_ADDR_LEN];
10150
10151 mtx_lock(&sc->reg_lock);
10152 if (hw_off_limits(sc))
10153 rc = ENXIO;
10154 else {
10155 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10156 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10157 }
10158 mtx_unlock(&sc->reg_lock);
10159 if (rc != 0)
10160 break;
10161 if (tcamx & tcamy)
10162 continue;
10163 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10164 mtx_lock(&sc->reg_lock);
10165 if (hw_off_limits(sc))
10166 rc = ENXIO;
10167 else {
10168 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10169 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10170 }
10171 mtx_unlock(&sc->reg_lock);
10172 if (rc != 0)
10173 break;
10174 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10175 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10176 addr[3], addr[4], addr[5], (uintmax_t)mask,
10177 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10178 G_PORTMAP(cls_hi), G_PF(cls_lo),
10179 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10180
10181 if (cls_lo & F_REPLICATE) {
10182 struct fw_ldst_cmd ldst_cmd;
10183
10184 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10185 ldst_cmd.op_to_addrspace =
10186 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10187 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10188 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10189 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10190 ldst_cmd.u.mps.rplc.fid_idx =
10191 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10192 V_FW_LDST_CMD_IDX(i));
10193
10194 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10195 "t4mps");
10196 if (rc)
10197 break;
10198 if (hw_off_limits(sc))
10199 rc = ENXIO;
10200 else
10201 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10202 sizeof(ldst_cmd), &ldst_cmd);
10203 end_synchronized_op(sc, 0);
10204 if (rc != 0)
10205 break;
10206 else {
10207 sbuf_printf(sb, " %08x %08x %08x %08x",
10208 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10209 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10210 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10211 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10212 }
10213 } else
10214 sbuf_printf(sb, "%36s", "");
10215
10216 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10217 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10218 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10219 }
10220
10221 if (rc)
10222 (void) sbuf_finish(sb);
10223 else
10224 rc = sbuf_finish(sb);
10225 sbuf_delete(sb);
10226
10227 return (rc);
10228 }
10229
10230 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10231 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10232 {
10233 struct adapter *sc = arg1;
10234 struct sbuf *sb;
10235 int rc, i;
10236
10237 MPASS(chip_id(sc) > CHELSIO_T5);
10238
10239 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10240 if (sb == NULL)
10241 return (ENOMEM);
10242
10243 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10244 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10245 " Replication"
10246 " P0 P1 P2 P3 ML\n");
10247
10248 rc = 0;
10249 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10250 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10251 uint16_t ivlan;
10252 uint64_t tcamx, tcamy, val, mask;
10253 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10254 uint8_t addr[ETHER_ADDR_LEN];
10255
10256 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10257 if (i < 256)
10258 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10259 else
10260 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10261 mtx_lock(&sc->reg_lock);
10262 if (hw_off_limits(sc))
10263 rc = ENXIO;
10264 else {
10265 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10266 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10267 tcamy = G_DMACH(val) << 32;
10268 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10269 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10270 }
10271 mtx_unlock(&sc->reg_lock);
10272 if (rc != 0)
10273 break;
10274
10275 lookup_type = G_DATALKPTYPE(data2);
10276 port_num = G_DATAPORTNUM(data2);
10277 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10278 /* Inner header VNI */
10279 vniy = ((data2 & F_DATAVIDH2) << 23) |
10280 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10281 dip_hit = data2 & F_DATADIPHIT;
10282 vlan_vld = 0;
10283 } else {
10284 vniy = 0;
10285 dip_hit = 0;
10286 vlan_vld = data2 & F_DATAVIDH2;
10287 ivlan = G_VIDL(val);
10288 }
10289
10290 ctl |= V_CTLXYBITSEL(1);
10291 mtx_lock(&sc->reg_lock);
10292 if (hw_off_limits(sc))
10293 rc = ENXIO;
10294 else {
10295 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10296 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10297 tcamx = G_DMACH(val) << 32;
10298 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10299 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10300 }
10301 mtx_unlock(&sc->reg_lock);
10302 if (rc != 0)
10303 break;
10304
10305 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10306 /* Inner header VNI mask */
10307 vnix = ((data2 & F_DATAVIDH2) << 23) |
10308 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10309 } else
10310 vnix = 0;
10311
10312 if (tcamx & tcamy)
10313 continue;
10314 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10315
10316 mtx_lock(&sc->reg_lock);
10317 if (hw_off_limits(sc))
10318 rc = ENXIO;
10319 else {
10320 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10321 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10322 }
10323 mtx_unlock(&sc->reg_lock);
10324 if (rc != 0)
10325 break;
10326
10327 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10328 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10329 "%012jx %06x %06x - - %3c"
10330 " I %4x %3c %#x%4u%4d", i, addr[0],
10331 addr[1], addr[2], addr[3], addr[4], addr[5],
10332 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10333 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10334 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10335 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10336 } else {
10337 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10338 "%012jx - - ", i, addr[0], addr[1],
10339 addr[2], addr[3], addr[4], addr[5],
10340 (uintmax_t)mask);
10341
10342 if (vlan_vld)
10343 sbuf_printf(sb, "%4u Y ", ivlan);
10344 else
10345 sbuf_printf(sb, " - N ");
10346
10347 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
10348 lookup_type ? 'I' : 'O', port_num,
10349 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10350 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10351 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10352 }
10353
10354
10355 if (cls_lo & F_T6_REPLICATE) {
10356 struct fw_ldst_cmd ldst_cmd;
10357
10358 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10359 ldst_cmd.op_to_addrspace =
10360 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10361 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10362 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10363 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10364 ldst_cmd.u.mps.rplc.fid_idx =
10365 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10366 V_FW_LDST_CMD_IDX(i));
10367
10368 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10369 "t6mps");
10370 if (rc)
10371 break;
10372 if (hw_off_limits(sc))
10373 rc = ENXIO;
10374 else
10375 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10376 sizeof(ldst_cmd), &ldst_cmd);
10377 end_synchronized_op(sc, 0);
10378 if (rc != 0)
10379 break;
10380 else {
10381 sbuf_printf(sb, " %08x %08x %08x %08x"
10382 " %08x %08x %08x %08x",
10383 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10384 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10385 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10386 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10387 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10388 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10389 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10390 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10391 }
10392 } else
10393 sbuf_printf(sb, "%72s", "");
10394
10395 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10396 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10397 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10398 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10399 }
10400
10401 if (rc)
10402 (void) sbuf_finish(sb);
10403 else
10404 rc = sbuf_finish(sb);
10405 sbuf_delete(sb);
10406
10407 return (rc);
10408 }
10409
10410 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)10411 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10412 {
10413 struct adapter *sc = arg1;
10414 struct sbuf *sb;
10415 int rc;
10416 uint16_t mtus[NMTUS];
10417
10418 rc = 0;
10419 mtx_lock(&sc->reg_lock);
10420 if (hw_off_limits(sc))
10421 rc = ENXIO;
10422 else
10423 t4_read_mtu_tbl(sc, mtus, NULL);
10424 mtx_unlock(&sc->reg_lock);
10425 if (rc != 0)
10426 return (rc);
10427
10428 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10429 if (sb == NULL)
10430 return (ENOMEM);
10431
10432 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10433 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10434 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10435 mtus[14], mtus[15]);
10436
10437 rc = sbuf_finish(sb);
10438 sbuf_delete(sb);
10439
10440 return (rc);
10441 }
10442
10443 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)10444 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10445 {
10446 struct adapter *sc = arg1;
10447 struct sbuf *sb;
10448 int rc, i;
10449 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10450 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10451 static const char *tx_stats[MAX_PM_NSTATS] = {
10452 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10453 "Tx FIFO wait", NULL, "Tx latency"
10454 };
10455 static const char *rx_stats[MAX_PM_NSTATS] = {
10456 "Read:", "Write bypass:", "Write mem:", "Flush:",
10457 "Rx FIFO wait", NULL, "Rx latency"
10458 };
10459
10460 rc = 0;
10461 mtx_lock(&sc->reg_lock);
10462 if (hw_off_limits(sc))
10463 rc = ENXIO;
10464 else {
10465 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10466 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10467 }
10468 mtx_unlock(&sc->reg_lock);
10469 if (rc != 0)
10470 return (rc);
10471
10472 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10473 if (sb == NULL)
10474 return (ENOMEM);
10475
10476 sbuf_printf(sb, " Tx pcmds Tx bytes");
10477 for (i = 0; i < 4; i++) {
10478 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10479 tx_cyc[i]);
10480 }
10481
10482 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
10483 for (i = 0; i < 4; i++) {
10484 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10485 rx_cyc[i]);
10486 }
10487
10488 if (chip_id(sc) > CHELSIO_T5) {
10489 sbuf_printf(sb,
10490 "\n Total wait Total occupancy");
10491 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10492 tx_cyc[i]);
10493 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10494 rx_cyc[i]);
10495
10496 i += 2;
10497 MPASS(i < nitems(tx_stats));
10498
10499 sbuf_printf(sb,
10500 "\n Reads Total wait");
10501 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10502 tx_cyc[i]);
10503 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10504 rx_cyc[i]);
10505 }
10506
10507 rc = sbuf_finish(sb);
10508 sbuf_delete(sb);
10509
10510 return (rc);
10511 }
10512
10513 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)10514 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10515 {
10516 struct adapter *sc = arg1;
10517 struct sbuf *sb;
10518 int rc;
10519 struct tp_rdma_stats stats;
10520
10521 rc = 0;
10522 mtx_lock(&sc->reg_lock);
10523 if (hw_off_limits(sc))
10524 rc = ENXIO;
10525 else
10526 t4_tp_get_rdma_stats(sc, &stats, 0);
10527 mtx_unlock(&sc->reg_lock);
10528 if (rc != 0)
10529 return (rc);
10530
10531 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10532 if (sb == NULL)
10533 return (ENOMEM);
10534
10535 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10536 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10537
10538 rc = sbuf_finish(sb);
10539 sbuf_delete(sb);
10540
10541 return (rc);
10542 }
10543
10544 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)10545 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10546 {
10547 struct adapter *sc = arg1;
10548 struct sbuf *sb;
10549 int rc;
10550 struct tp_tcp_stats v4, v6;
10551
10552 rc = 0;
10553 mtx_lock(&sc->reg_lock);
10554 if (hw_off_limits(sc))
10555 rc = ENXIO;
10556 else
10557 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10558 mtx_unlock(&sc->reg_lock);
10559 if (rc != 0)
10560 return (rc);
10561
10562 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10563 if (sb == NULL)
10564 return (ENOMEM);
10565
10566 sbuf_printf(sb,
10567 " IP IPv6\n");
10568 sbuf_printf(sb, "OutRsts: %20u %20u\n",
10569 v4.tcp_out_rsts, v6.tcp_out_rsts);
10570 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
10571 v4.tcp_in_segs, v6.tcp_in_segs);
10572 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
10573 v4.tcp_out_segs, v6.tcp_out_segs);
10574 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
10575 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10576
10577 rc = sbuf_finish(sb);
10578 sbuf_delete(sb);
10579
10580 return (rc);
10581 }
10582
10583 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)10584 sysctl_tids(SYSCTL_HANDLER_ARGS)
10585 {
10586 struct adapter *sc = arg1;
10587 struct sbuf *sb;
10588 int rc;
10589 uint32_t x, y;
10590 struct tid_info *t = &sc->tids;
10591
10592 rc = 0;
10593 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10594 if (sb == NULL)
10595 return (ENOMEM);
10596
10597 if (t->natids) {
10598 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10599 t->atids_in_use);
10600 }
10601
10602 if (t->nhpftids) {
10603 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10604 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10605 }
10606
10607 if (t->ntids) {
10608 bool hashen = false;
10609
10610 mtx_lock(&sc->reg_lock);
10611 if (hw_off_limits(sc))
10612 rc = ENXIO;
10613 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10614 hashen = true;
10615 if (chip_id(sc) <= CHELSIO_T5) {
10616 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10617 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10618 } else {
10619 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10620 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10621 }
10622 }
10623 mtx_unlock(&sc->reg_lock);
10624 if (rc != 0)
10625 goto done;
10626
10627 sbuf_printf(sb, "TID range: ");
10628 if (hashen) {
10629 if (x)
10630 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10631 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10632 } else {
10633 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10634 t->ntids - 1);
10635 }
10636 sbuf_printf(sb, ", in use: %u\n",
10637 atomic_load_acq_int(&t->tids_in_use));
10638 }
10639
10640 if (t->nstids) {
10641 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10642 t->stid_base + t->nstids - 1, t->stids_in_use);
10643 }
10644
10645 if (t->nftids) {
10646 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10647 t->ftid_end, t->ftids_in_use);
10648 }
10649
10650 if (t->netids) {
10651 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10652 t->etid_base + t->netids - 1, t->etids_in_use);
10653 }
10654
10655 mtx_lock(&sc->reg_lock);
10656 if (hw_off_limits(sc))
10657 rc = ENXIO;
10658 else {
10659 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10660 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10661 }
10662 mtx_unlock(&sc->reg_lock);
10663 if (rc != 0)
10664 goto done;
10665 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10666 done:
10667 if (rc == 0)
10668 rc = sbuf_finish(sb);
10669 else
10670 (void)sbuf_finish(sb);
10671 sbuf_delete(sb);
10672
10673 return (rc);
10674 }
10675
10676 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)10677 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10678 {
10679 struct adapter *sc = arg1;
10680 struct sbuf *sb;
10681 int rc;
10682 struct tp_err_stats stats;
10683
10684 rc = 0;
10685 mtx_lock(&sc->reg_lock);
10686 if (hw_off_limits(sc))
10687 rc = ENXIO;
10688 else
10689 t4_tp_get_err_stats(sc, &stats, 0);
10690 mtx_unlock(&sc->reg_lock);
10691 if (rc != 0)
10692 return (rc);
10693
10694 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10695 if (sb == NULL)
10696 return (ENOMEM);
10697
10698 if (sc->chip_params->nchan > 2) {
10699 sbuf_printf(sb, " channel 0 channel 1"
10700 " channel 2 channel 3\n");
10701 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
10702 stats.mac_in_errs[0], stats.mac_in_errs[1],
10703 stats.mac_in_errs[2], stats.mac_in_errs[3]);
10704 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
10705 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10706 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10707 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
10708 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10709 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10710 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
10711 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10712 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10713 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
10714 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10715 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10716 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
10717 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10718 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10719 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
10720 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10721 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10722 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
10723 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10724 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10725 } else {
10726 sbuf_printf(sb, " channel 0 channel 1\n");
10727 sbuf_printf(sb, "macInErrs: %10u %10u\n",
10728 stats.mac_in_errs[0], stats.mac_in_errs[1]);
10729 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
10730 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10731 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
10732 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10733 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
10734 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10735 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
10736 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10737 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
10738 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10739 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
10740 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10741 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
10742 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10743 }
10744
10745 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
10746 stats.ofld_no_neigh, stats.ofld_cong_defer);
10747
10748 rc = sbuf_finish(sb);
10749 sbuf_delete(sb);
10750
10751 return (rc);
10752 }
10753
10754 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)10755 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10756 {
10757 struct adapter *sc = arg1;
10758 struct sbuf *sb;
10759 int rc;
10760 struct tp_tnl_stats stats;
10761
10762 rc = 0;
10763 mtx_lock(&sc->reg_lock);
10764 if (hw_off_limits(sc))
10765 rc = ENXIO;
10766 else
10767 t4_tp_get_tnl_stats(sc, &stats, 1);
10768 mtx_unlock(&sc->reg_lock);
10769 if (rc != 0)
10770 return (rc);
10771
10772 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10773 if (sb == NULL)
10774 return (ENOMEM);
10775
10776 if (sc->chip_params->nchan > 2) {
10777 sbuf_printf(sb, " channel 0 channel 1"
10778 " channel 2 channel 3\n");
10779 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
10780 stats.out_pkt[0], stats.out_pkt[1],
10781 stats.out_pkt[2], stats.out_pkt[3]);
10782 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
10783 stats.in_pkt[0], stats.in_pkt[1],
10784 stats.in_pkt[2], stats.in_pkt[3]);
10785 } else {
10786 sbuf_printf(sb, " channel 0 channel 1\n");
10787 sbuf_printf(sb, "OutPkts: %10u %10u\n",
10788 stats.out_pkt[0], stats.out_pkt[1]);
10789 sbuf_printf(sb, "InPkts: %10u %10u",
10790 stats.in_pkt[0], stats.in_pkt[1]);
10791 }
10792
10793 rc = sbuf_finish(sb);
10794 sbuf_delete(sb);
10795
10796 return (rc);
10797 }
10798
10799 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)10800 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10801 {
10802 struct adapter *sc = arg1;
10803 struct tp_params *tpp = &sc->params.tp;
10804 u_int mask;
10805 int rc;
10806
10807 mask = tpp->la_mask >> 16;
10808 rc = sysctl_handle_int(oidp, &mask, 0, req);
10809 if (rc != 0 || req->newptr == NULL)
10810 return (rc);
10811 if (mask > 0xffff)
10812 return (EINVAL);
10813 mtx_lock(&sc->reg_lock);
10814 if (hw_off_limits(sc))
10815 rc = ENXIO;
10816 else {
10817 tpp->la_mask = mask << 16;
10818 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10819 tpp->la_mask);
10820 }
10821 mtx_unlock(&sc->reg_lock);
10822
10823 return (rc);
10824 }
10825
10826 struct field_desc {
10827 const char *name;
10828 u_int start;
10829 u_int width;
10830 };
10831
10832 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)10833 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10834 {
10835 char buf[32];
10836 int line_size = 0;
10837
10838 while (f->name) {
10839 uint64_t mask = (1ULL << f->width) - 1;
10840 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10841 ((uintmax_t)v >> f->start) & mask);
10842
10843 if (line_size + len >= 79) {
10844 line_size = 8;
10845 sbuf_printf(sb, "\n ");
10846 }
10847 sbuf_printf(sb, "%s ", buf);
10848 line_size += len + 1;
10849 f++;
10850 }
10851 sbuf_printf(sb, "\n");
10852 }
10853
10854 static const struct field_desc tp_la0[] = {
10855 { "RcfOpCodeOut", 60, 4 },
10856 { "State", 56, 4 },
10857 { "WcfState", 52, 4 },
10858 { "RcfOpcSrcOut", 50, 2 },
10859 { "CRxError", 49, 1 },
10860 { "ERxError", 48, 1 },
10861 { "SanityFailed", 47, 1 },
10862 { "SpuriousMsg", 46, 1 },
10863 { "FlushInputMsg", 45, 1 },
10864 { "FlushInputCpl", 44, 1 },
10865 { "RssUpBit", 43, 1 },
10866 { "RssFilterHit", 42, 1 },
10867 { "Tid", 32, 10 },
10868 { "InitTcb", 31, 1 },
10869 { "LineNumber", 24, 7 },
10870 { "Emsg", 23, 1 },
10871 { "EdataOut", 22, 1 },
10872 { "Cmsg", 21, 1 },
10873 { "CdataOut", 20, 1 },
10874 { "EreadPdu", 19, 1 },
10875 { "CreadPdu", 18, 1 },
10876 { "TunnelPkt", 17, 1 },
10877 { "RcfPeerFin", 16, 1 },
10878 { "RcfReasonOut", 12, 4 },
10879 { "TxCchannel", 10, 2 },
10880 { "RcfTxChannel", 8, 2 },
10881 { "RxEchannel", 6, 2 },
10882 { "RcfRxChannel", 5, 1 },
10883 { "RcfDataOutSrdy", 4, 1 },
10884 { "RxDvld", 3, 1 },
10885 { "RxOoDvld", 2, 1 },
10886 { "RxCongestion", 1, 1 },
10887 { "TxCongestion", 0, 1 },
10888 { NULL }
10889 };
10890
10891 static const struct field_desc tp_la1[] = {
10892 { "CplCmdIn", 56, 8 },
10893 { "CplCmdOut", 48, 8 },
10894 { "ESynOut", 47, 1 },
10895 { "EAckOut", 46, 1 },
10896 { "EFinOut", 45, 1 },
10897 { "ERstOut", 44, 1 },
10898 { "SynIn", 43, 1 },
10899 { "AckIn", 42, 1 },
10900 { "FinIn", 41, 1 },
10901 { "RstIn", 40, 1 },
10902 { "DataIn", 39, 1 },
10903 { "DataInVld", 38, 1 },
10904 { "PadIn", 37, 1 },
10905 { "RxBufEmpty", 36, 1 },
10906 { "RxDdp", 35, 1 },
10907 { "RxFbCongestion", 34, 1 },
10908 { "TxFbCongestion", 33, 1 },
10909 { "TxPktSumSrdy", 32, 1 },
10910 { "RcfUlpType", 28, 4 },
10911 { "Eread", 27, 1 },
10912 { "Ebypass", 26, 1 },
10913 { "Esave", 25, 1 },
10914 { "Static0", 24, 1 },
10915 { "Cread", 23, 1 },
10916 { "Cbypass", 22, 1 },
10917 { "Csave", 21, 1 },
10918 { "CPktOut", 20, 1 },
10919 { "RxPagePoolFull", 18, 2 },
10920 { "RxLpbkPkt", 17, 1 },
10921 { "TxLpbkPkt", 16, 1 },
10922 { "RxVfValid", 15, 1 },
10923 { "SynLearned", 14, 1 },
10924 { "SetDelEntry", 13, 1 },
10925 { "SetInvEntry", 12, 1 },
10926 { "CpcmdDvld", 11, 1 },
10927 { "CpcmdSave", 10, 1 },
10928 { "RxPstructsFull", 8, 2 },
10929 { "EpcmdDvld", 7, 1 },
10930 { "EpcmdFlush", 6, 1 },
10931 { "EpcmdTrimPrefix", 5, 1 },
10932 { "EpcmdTrimPostfix", 4, 1 },
10933 { "ERssIp4Pkt", 3, 1 },
10934 { "ERssIp6Pkt", 2, 1 },
10935 { "ERssTcpUdpPkt", 1, 1 },
10936 { "ERssFceFipPkt", 0, 1 },
10937 { NULL }
10938 };
10939
10940 static const struct field_desc tp_la2[] = {
10941 { "CplCmdIn", 56, 8 },
10942 { "MpsVfVld", 55, 1 },
10943 { "MpsPf", 52, 3 },
10944 { "MpsVf", 44, 8 },
10945 { "SynIn", 43, 1 },
10946 { "AckIn", 42, 1 },
10947 { "FinIn", 41, 1 },
10948 { "RstIn", 40, 1 },
10949 { "DataIn", 39, 1 },
10950 { "DataInVld", 38, 1 },
10951 { "PadIn", 37, 1 },
10952 { "RxBufEmpty", 36, 1 },
10953 { "RxDdp", 35, 1 },
10954 { "RxFbCongestion", 34, 1 },
10955 { "TxFbCongestion", 33, 1 },
10956 { "TxPktSumSrdy", 32, 1 },
10957 { "RcfUlpType", 28, 4 },
10958 { "Eread", 27, 1 },
10959 { "Ebypass", 26, 1 },
10960 { "Esave", 25, 1 },
10961 { "Static0", 24, 1 },
10962 { "Cread", 23, 1 },
10963 { "Cbypass", 22, 1 },
10964 { "Csave", 21, 1 },
10965 { "CPktOut", 20, 1 },
10966 { "RxPagePoolFull", 18, 2 },
10967 { "RxLpbkPkt", 17, 1 },
10968 { "TxLpbkPkt", 16, 1 },
10969 { "RxVfValid", 15, 1 },
10970 { "SynLearned", 14, 1 },
10971 { "SetDelEntry", 13, 1 },
10972 { "SetInvEntry", 12, 1 },
10973 { "CpcmdDvld", 11, 1 },
10974 { "CpcmdSave", 10, 1 },
10975 { "RxPstructsFull", 8, 2 },
10976 { "EpcmdDvld", 7, 1 },
10977 { "EpcmdFlush", 6, 1 },
10978 { "EpcmdTrimPrefix", 5, 1 },
10979 { "EpcmdTrimPostfix", 4, 1 },
10980 { "ERssIp4Pkt", 3, 1 },
10981 { "ERssIp6Pkt", 2, 1 },
10982 { "ERssTcpUdpPkt", 1, 1 },
10983 { "ERssFceFipPkt", 0, 1 },
10984 { NULL }
10985 };
10986
10987 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)10988 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10989 {
10990
10991 field_desc_show(sb, *p, tp_la0);
10992 }
10993
10994 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)10995 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10996 {
10997
10998 if (idx)
10999 sbuf_printf(sb, "\n");
11000 field_desc_show(sb, p[0], tp_la0);
11001 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11002 field_desc_show(sb, p[1], tp_la0);
11003 }
11004
11005 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11006 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11007 {
11008
11009 if (idx)
11010 sbuf_printf(sb, "\n");
11011 field_desc_show(sb, p[0], tp_la0);
11012 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11013 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11014 }
11015
11016 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11017 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11018 {
11019 struct adapter *sc = arg1;
11020 struct sbuf *sb;
11021 uint64_t *buf, *p;
11022 int rc;
11023 u_int i, inc;
11024 void (*show_func)(struct sbuf *, uint64_t *, int);
11025
11026 rc = 0;
11027 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11028 if (sb == NULL)
11029 return (ENOMEM);
11030
11031 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11032
11033 mtx_lock(&sc->reg_lock);
11034 if (hw_off_limits(sc))
11035 rc = ENXIO;
11036 else {
11037 t4_tp_read_la(sc, buf, NULL);
11038 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11039 case 2:
11040 inc = 2;
11041 show_func = tp_la_show2;
11042 break;
11043 case 3:
11044 inc = 2;
11045 show_func = tp_la_show3;
11046 break;
11047 default:
11048 inc = 1;
11049 show_func = tp_la_show;
11050 }
11051 }
11052 mtx_unlock(&sc->reg_lock);
11053 if (rc != 0)
11054 goto done;
11055
11056 p = buf;
11057 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11058 (*show_func)(sb, p, i);
11059 rc = sbuf_finish(sb);
11060 done:
11061 sbuf_delete(sb);
11062 free(buf, M_CXGBE);
11063 return (rc);
11064 }
11065
11066 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)11067 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11068 {
11069 struct adapter *sc = arg1;
11070 struct sbuf *sb;
11071 int rc;
11072 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11073
11074 rc = 0;
11075 mtx_lock(&sc->reg_lock);
11076 if (hw_off_limits(sc))
11077 rc = ENXIO;
11078 else
11079 t4_get_chan_txrate(sc, nrate, orate);
11080 mtx_unlock(&sc->reg_lock);
11081 if (rc != 0)
11082 return (rc);
11083
11084 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11085 if (sb == NULL)
11086 return (ENOMEM);
11087
11088 if (sc->chip_params->nchan > 2) {
11089 sbuf_printf(sb, " channel 0 channel 1"
11090 " channel 2 channel 3\n");
11091 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
11092 nrate[0], nrate[1], nrate[2], nrate[3]);
11093 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
11094 orate[0], orate[1], orate[2], orate[3]);
11095 } else {
11096 sbuf_printf(sb, " channel 0 channel 1\n");
11097 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
11098 nrate[0], nrate[1]);
11099 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
11100 orate[0], orate[1]);
11101 }
11102
11103 rc = sbuf_finish(sb);
11104 sbuf_delete(sb);
11105
11106 return (rc);
11107 }
11108
11109 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)11110 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11111 {
11112 struct adapter *sc = arg1;
11113 struct sbuf *sb;
11114 uint32_t *buf, *p;
11115 int rc, i;
11116
11117 rc = 0;
11118 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11119 if (sb == NULL)
11120 return (ENOMEM);
11121
11122 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11123 M_ZERO | M_WAITOK);
11124
11125 mtx_lock(&sc->reg_lock);
11126 if (hw_off_limits(sc))
11127 rc = ENXIO;
11128 else
11129 t4_ulprx_read_la(sc, buf);
11130 mtx_unlock(&sc->reg_lock);
11131 if (rc != 0)
11132 goto done;
11133
11134 p = buf;
11135 sbuf_printf(sb, " Pcmd Type Message"
11136 " Data");
11137 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11138 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
11139 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11140 }
11141 rc = sbuf_finish(sb);
11142 done:
11143 sbuf_delete(sb);
11144 free(buf, M_CXGBE);
11145 return (rc);
11146 }
11147
11148 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)11149 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11150 {
11151 struct adapter *sc = arg1;
11152 struct sbuf *sb;
11153 int rc;
11154 uint32_t cfg, s1, s2;
11155
11156 MPASS(chip_id(sc) >= CHELSIO_T5);
11157
11158 rc = 0;
11159 mtx_lock(&sc->reg_lock);
11160 if (hw_off_limits(sc))
11161 rc = ENXIO;
11162 else {
11163 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11164 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11165 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11166 }
11167 mtx_unlock(&sc->reg_lock);
11168 if (rc != 0)
11169 return (rc);
11170
11171 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11172 if (sb == NULL)
11173 return (ENOMEM);
11174
11175 if (G_STATSOURCE_T5(cfg) == 7) {
11176 int mode;
11177
11178 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11179 if (mode == 0)
11180 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11181 else if (mode == 1)
11182 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11183 else
11184 sbuf_printf(sb, "unknown mode %d", mode);
11185 }
11186 rc = sbuf_finish(sb);
11187 sbuf_delete(sb);
11188
11189 return (rc);
11190 }
11191
11192 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)11193 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11194 {
11195 struct adapter *sc = arg1;
11196 enum cpu_sets op = arg2;
11197 cpuset_t cpuset;
11198 struct sbuf *sb;
11199 int i, rc;
11200
11201 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11202
11203 CPU_ZERO(&cpuset);
11204 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11205 if (rc != 0)
11206 return (rc);
11207
11208 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11209 if (sb == NULL)
11210 return (ENOMEM);
11211
11212 CPU_FOREACH(i)
11213 sbuf_printf(sb, "%d ", i);
11214 rc = sbuf_finish(sb);
11215 sbuf_delete(sb);
11216
11217 return (rc);
11218 }
11219
11220 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)11221 sysctl_reset(SYSCTL_HANDLER_ARGS)
11222 {
11223 struct adapter *sc = arg1;
11224 u_int val;
11225 int rc;
11226
11227 val = atomic_load_int(&sc->num_resets);
11228 rc = sysctl_handle_int(oidp, &val, 0, req);
11229 if (rc != 0 || req->newptr == NULL)
11230 return (rc);
11231
11232 if (val == 0) {
11233 /* Zero out the counter that tracks reset. */
11234 atomic_store_int(&sc->num_resets, 0);
11235 return (0);
11236 }
11237
11238 if (val != 1)
11239 return (EINVAL); /* 0 or 1 are the only legal values */
11240
11241 if (hw_off_limits(sc)) /* harmless race */
11242 return (EALREADY);
11243
11244 taskqueue_enqueue(reset_tq, &sc->reset_task);
11245 return (0);
11246 }
11247
11248 #ifdef TCP_OFFLOAD
11249 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)11250 sysctl_tls(SYSCTL_HANDLER_ARGS)
11251 {
11252 struct adapter *sc = arg1;
11253 int i, j, v, rc;
11254 struct vi_info *vi;
11255
11256 v = sc->tt.tls;
11257 rc = sysctl_handle_int(oidp, &v, 0, req);
11258 if (rc != 0 || req->newptr == NULL)
11259 return (rc);
11260
11261 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11262 return (ENOTSUP);
11263
11264 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11265 if (rc)
11266 return (rc);
11267 if (hw_off_limits(sc))
11268 rc = ENXIO;
11269 else {
11270 sc->tt.tls = !!v;
11271 for_each_port(sc, i) {
11272 for_each_vi(sc->port[i], j, vi) {
11273 if (vi->flags & VI_INIT_DONE)
11274 t4_update_fl_bufsize(vi->ifp);
11275 }
11276 }
11277 }
11278 end_synchronized_op(sc, 0);
11279
11280 return (rc);
11281
11282 }
11283
11284 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)11285 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11286 {
11287 u_int rem = val % factor;
11288
11289 if (rem == 0)
11290 snprintf(buf, len, "%u", val / factor);
11291 else {
11292 while (rem % 10 == 0)
11293 rem /= 10;
11294 snprintf(buf, len, "%u.%u", val / factor, rem);
11295 }
11296 }
11297
11298 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)11299 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11300 {
11301 struct adapter *sc = arg1;
11302 char buf[16];
11303 u_int res, re;
11304 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11305
11306 mtx_lock(&sc->reg_lock);
11307 if (hw_off_limits(sc))
11308 res = (u_int)-1;
11309 else
11310 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11311 mtx_unlock(&sc->reg_lock);
11312 if (res == (u_int)-1)
11313 return (ENXIO);
11314
11315 switch (arg2) {
11316 case 0:
11317 /* timer_tick */
11318 re = G_TIMERRESOLUTION(res);
11319 break;
11320 case 1:
11321 /* TCP timestamp tick */
11322 re = G_TIMESTAMPRESOLUTION(res);
11323 break;
11324 case 2:
11325 /* DACK tick */
11326 re = G_DELAYEDACKRESOLUTION(res);
11327 break;
11328 default:
11329 return (EDOOFUS);
11330 }
11331
11332 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11333
11334 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11335 }
11336
11337 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)11338 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11339 {
11340 struct adapter *sc = arg1;
11341 int rc;
11342 u_int dack_tmr, dack_re, v;
11343 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11344
11345 mtx_lock(&sc->reg_lock);
11346 if (hw_off_limits(sc))
11347 rc = ENXIO;
11348 else {
11349 rc = 0;
11350 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11351 A_TP_TIMER_RESOLUTION));
11352 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11353 }
11354 mtx_unlock(&sc->reg_lock);
11355 if (rc != 0)
11356 return (rc);
11357
11358 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11359
11360 return (sysctl_handle_int(oidp, &v, 0, req));
11361 }
11362
11363 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)11364 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11365 {
11366 struct adapter *sc = arg1;
11367 int rc, reg = arg2;
11368 u_int tre;
11369 u_long tp_tick_us, v;
11370 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11371
11372 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11373 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
11374 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11375 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11376
11377 mtx_lock(&sc->reg_lock);
11378 if (hw_off_limits(sc))
11379 rc = ENXIO;
11380 else {
11381 rc = 0;
11382 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11383 tp_tick_us = (cclk_ps << tre) / 1000000;
11384 if (reg == A_TP_INIT_SRTT)
11385 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11386 else
11387 v = tp_tick_us * t4_read_reg(sc, reg);
11388 }
11389 mtx_unlock(&sc->reg_lock);
11390 if (rc != 0)
11391 return (rc);
11392 else
11393 return (sysctl_handle_long(oidp, &v, 0, req));
11394 }
11395
11396 /*
11397 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11398 * passed to this function.
11399 */
11400 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)11401 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11402 {
11403 struct adapter *sc = arg1;
11404 int rc, idx = arg2;
11405 u_int v;
11406
11407 MPASS(idx >= 0 && idx <= 24);
11408
11409 mtx_lock(&sc->reg_lock);
11410 if (hw_off_limits(sc))
11411 rc = ENXIO;
11412 else {
11413 rc = 0;
11414 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11415 }
11416 mtx_unlock(&sc->reg_lock);
11417 if (rc != 0)
11418 return (rc);
11419 else
11420 return (sysctl_handle_int(oidp, &v, 0, req));
11421 }
11422
11423 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)11424 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11425 {
11426 struct adapter *sc = arg1;
11427 int rc, idx = arg2;
11428 u_int shift, v, r;
11429
11430 MPASS(idx >= 0 && idx < 16);
11431
11432 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11433 shift = (idx & 3) << 3;
11434 mtx_lock(&sc->reg_lock);
11435 if (hw_off_limits(sc))
11436 rc = ENXIO;
11437 else {
11438 rc = 0;
11439 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11440 }
11441 mtx_unlock(&sc->reg_lock);
11442 if (rc != 0)
11443 return (rc);
11444 else
11445 return (sysctl_handle_int(oidp, &v, 0, req));
11446 }
11447
11448 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)11449 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11450 {
11451 struct vi_info *vi = arg1;
11452 struct adapter *sc = vi->adapter;
11453 int idx, rc, i;
11454 struct sge_ofld_rxq *ofld_rxq;
11455 uint8_t v;
11456
11457 idx = vi->ofld_tmr_idx;
11458
11459 rc = sysctl_handle_int(oidp, &idx, 0, req);
11460 if (rc != 0 || req->newptr == NULL)
11461 return (rc);
11462
11463 if (idx < 0 || idx >= SGE_NTIMERS)
11464 return (EINVAL);
11465
11466 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11467 "t4otmr");
11468 if (rc)
11469 return (rc);
11470
11471 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11472 for_each_ofld_rxq(vi, i, ofld_rxq) {
11473 #ifdef atomic_store_rel_8
11474 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11475 #else
11476 ofld_rxq->iq.intr_params = v;
11477 #endif
11478 }
11479 vi->ofld_tmr_idx = idx;
11480
11481 end_synchronized_op(sc, LOCK_HELD);
11482 return (0);
11483 }
11484
11485 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)11486 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11487 {
11488 struct vi_info *vi = arg1;
11489 struct adapter *sc = vi->adapter;
11490 int idx, rc;
11491
11492 idx = vi->ofld_pktc_idx;
11493
11494 rc = sysctl_handle_int(oidp, &idx, 0, req);
11495 if (rc != 0 || req->newptr == NULL)
11496 return (rc);
11497
11498 if (idx < -1 || idx >= SGE_NCOUNTERS)
11499 return (EINVAL);
11500
11501 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11502 "t4opktc");
11503 if (rc)
11504 return (rc);
11505
11506 if (vi->flags & VI_INIT_DONE)
11507 rc = EBUSY; /* cannot be changed once the queues are created */
11508 else
11509 vi->ofld_pktc_idx = idx;
11510
11511 end_synchronized_op(sc, LOCK_HELD);
11512 return (rc);
11513 }
11514 #endif
11515
11516 static int
get_sge_context(struct adapter * sc,struct t4_sge_context * cntxt)11517 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11518 {
11519 int rc;
11520
11521 if (cntxt->cid > M_CTXTQID)
11522 return (EINVAL);
11523
11524 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11525 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11526 return (EINVAL);
11527
11528 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11529 if (rc)
11530 return (rc);
11531
11532 if (hw_off_limits(sc)) {
11533 rc = ENXIO;
11534 goto done;
11535 }
11536
11537 if (sc->flags & FW_OK) {
11538 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11539 &cntxt->data[0]);
11540 if (rc == 0)
11541 goto done;
11542 }
11543
11544 /*
11545 * Read via firmware failed or wasn't even attempted. Read directly via
11546 * the backdoor.
11547 */
11548 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11549 done:
11550 end_synchronized_op(sc, 0);
11551 return (rc);
11552 }
11553
11554 static int
load_fw(struct adapter * sc,struct t4_data * fw)11555 load_fw(struct adapter *sc, struct t4_data *fw)
11556 {
11557 int rc;
11558 uint8_t *fw_data;
11559
11560 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11561 if (rc)
11562 return (rc);
11563
11564 if (hw_off_limits(sc)) {
11565 rc = ENXIO;
11566 goto done;
11567 }
11568
11569 /*
11570 * The firmware, with the sole exception of the memory parity error
11571 * handler, runs from memory and not flash. It is almost always safe to
11572 * install a new firmware on a running system. Just set bit 1 in
11573 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11574 */
11575 if (sc->flags & FULL_INIT_DONE &&
11576 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11577 rc = EBUSY;
11578 goto done;
11579 }
11580
11581 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11582
11583 rc = copyin(fw->data, fw_data, fw->len);
11584 if (rc == 0)
11585 rc = -t4_load_fw(sc, fw_data, fw->len);
11586
11587 free(fw_data, M_CXGBE);
11588 done:
11589 end_synchronized_op(sc, 0);
11590 return (rc);
11591 }
11592
11593 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)11594 load_cfg(struct adapter *sc, struct t4_data *cfg)
11595 {
11596 int rc;
11597 uint8_t *cfg_data = NULL;
11598
11599 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11600 if (rc)
11601 return (rc);
11602
11603 if (hw_off_limits(sc)) {
11604 rc = ENXIO;
11605 goto done;
11606 }
11607
11608 if (cfg->len == 0) {
11609 /* clear */
11610 rc = -t4_load_cfg(sc, NULL, 0);
11611 goto done;
11612 }
11613
11614 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11615
11616 rc = copyin(cfg->data, cfg_data, cfg->len);
11617 if (rc == 0)
11618 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11619
11620 free(cfg_data, M_CXGBE);
11621 done:
11622 end_synchronized_op(sc, 0);
11623 return (rc);
11624 }
11625
11626 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)11627 load_boot(struct adapter *sc, struct t4_bootrom *br)
11628 {
11629 int rc;
11630 uint8_t *br_data = NULL;
11631 u_int offset;
11632
11633 if (br->len > 1024 * 1024)
11634 return (EFBIG);
11635
11636 if (br->pf_offset == 0) {
11637 /* pfidx */
11638 if (br->pfidx_addr > 7)
11639 return (EINVAL);
11640 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11641 A_PCIE_PF_EXPROM_OFST)));
11642 } else if (br->pf_offset == 1) {
11643 /* offset */
11644 offset = G_OFFSET(br->pfidx_addr);
11645 } else {
11646 return (EINVAL);
11647 }
11648
11649 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11650 if (rc)
11651 return (rc);
11652
11653 if (hw_off_limits(sc)) {
11654 rc = ENXIO;
11655 goto done;
11656 }
11657
11658 if (br->len == 0) {
11659 /* clear */
11660 rc = -t4_load_boot(sc, NULL, offset, 0);
11661 goto done;
11662 }
11663
11664 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11665
11666 rc = copyin(br->data, br_data, br->len);
11667 if (rc == 0)
11668 rc = -t4_load_boot(sc, br_data, offset, br->len);
11669
11670 free(br_data, M_CXGBE);
11671 done:
11672 end_synchronized_op(sc, 0);
11673 return (rc);
11674 }
11675
11676 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)11677 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11678 {
11679 int rc;
11680 uint8_t *bc_data = NULL;
11681
11682 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11683 if (rc)
11684 return (rc);
11685
11686 if (hw_off_limits(sc)) {
11687 rc = ENXIO;
11688 goto done;
11689 }
11690
11691 if (bc->len == 0) {
11692 /* clear */
11693 rc = -t4_load_bootcfg(sc, NULL, 0);
11694 goto done;
11695 }
11696
11697 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11698
11699 rc = copyin(bc->data, bc_data, bc->len);
11700 if (rc == 0)
11701 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11702
11703 free(bc_data, M_CXGBE);
11704 done:
11705 end_synchronized_op(sc, 0);
11706 return (rc);
11707 }
11708
11709 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)11710 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11711 {
11712 int rc;
11713 struct cudbg_init *cudbg;
11714 void *handle, *buf;
11715
11716 /* buf is large, don't block if no memory is available */
11717 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11718 if (buf == NULL)
11719 return (ENOMEM);
11720
11721 handle = cudbg_alloc_handle();
11722 if (handle == NULL) {
11723 rc = ENOMEM;
11724 goto done;
11725 }
11726
11727 cudbg = cudbg_get_init(handle);
11728 cudbg->adap = sc;
11729 cudbg->print = (cudbg_print_cb)printf;
11730
11731 #ifndef notyet
11732 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11733 __func__, dump->wr_flash, dump->len, dump->data);
11734 #endif
11735
11736 if (dump->wr_flash)
11737 cudbg->use_flash = 1;
11738 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11739 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11740
11741 rc = cudbg_collect(handle, buf, &dump->len);
11742 if (rc != 0)
11743 goto done;
11744
11745 rc = copyout(buf, dump->data, dump->len);
11746 done:
11747 cudbg_free_handle(handle);
11748 free(buf, M_CXGBE);
11749 return (rc);
11750 }
11751
11752 static void
free_offload_policy(struct t4_offload_policy * op)11753 free_offload_policy(struct t4_offload_policy *op)
11754 {
11755 struct offload_rule *r;
11756 int i;
11757
11758 if (op == NULL)
11759 return;
11760
11761 r = &op->rule[0];
11762 for (i = 0; i < op->nrules; i++, r++) {
11763 free(r->bpf_prog.bf_insns, M_CXGBE);
11764 }
11765 free(op->rule, M_CXGBE);
11766 free(op, M_CXGBE);
11767 }
11768
11769 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)11770 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11771 {
11772 int i, rc, len;
11773 struct t4_offload_policy *op, *old;
11774 struct bpf_program *bf;
11775 const struct offload_settings *s;
11776 struct offload_rule *r;
11777 void *u;
11778
11779 if (!is_offload(sc))
11780 return (ENODEV);
11781
11782 if (uop->nrules == 0) {
11783 /* Delete installed policies. */
11784 op = NULL;
11785 goto set_policy;
11786 } else if (uop->nrules > 256) { /* arbitrary */
11787 return (E2BIG);
11788 }
11789
11790 /* Copy userspace offload policy to kernel */
11791 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11792 op->nrules = uop->nrules;
11793 len = op->nrules * sizeof(struct offload_rule);
11794 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11795 rc = copyin(uop->rule, op->rule, len);
11796 if (rc) {
11797 free(op->rule, M_CXGBE);
11798 free(op, M_CXGBE);
11799 return (rc);
11800 }
11801
11802 r = &op->rule[0];
11803 for (i = 0; i < op->nrules; i++, r++) {
11804
11805 /* Validate open_type */
11806 if (r->open_type != OPEN_TYPE_LISTEN &&
11807 r->open_type != OPEN_TYPE_ACTIVE &&
11808 r->open_type != OPEN_TYPE_PASSIVE &&
11809 r->open_type != OPEN_TYPE_DONTCARE) {
11810 error:
11811 /*
11812 * Rules 0 to i have malloc'd filters that need to be
11813 * freed. Rules i+1 to nrules have userspace pointers
11814 * and should be left alone.
11815 */
11816 op->nrules = i;
11817 free_offload_policy(op);
11818 return (rc);
11819 }
11820
11821 /* Validate settings */
11822 s = &r->settings;
11823 if ((s->offload != 0 && s->offload != 1) ||
11824 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11825 s->sched_class < -1 ||
11826 s->sched_class >= sc->params.nsched_cls) {
11827 rc = EINVAL;
11828 goto error;
11829 }
11830
11831 bf = &r->bpf_prog;
11832 u = bf->bf_insns; /* userspace ptr */
11833 bf->bf_insns = NULL;
11834 if (bf->bf_len == 0) {
11835 /* legal, matches everything */
11836 continue;
11837 }
11838 len = bf->bf_len * sizeof(*bf->bf_insns);
11839 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11840 rc = copyin(u, bf->bf_insns, len);
11841 if (rc != 0)
11842 goto error;
11843
11844 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11845 rc = EINVAL;
11846 goto error;
11847 }
11848 }
11849 set_policy:
11850 rw_wlock(&sc->policy_lock);
11851 old = sc->policy;
11852 sc->policy = op;
11853 rw_wunlock(&sc->policy_lock);
11854 free_offload_policy(old);
11855
11856 return (0);
11857 }
11858
11859 #define MAX_READ_BUF_SIZE (128 * 1024)
11860 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)11861 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11862 {
11863 uint32_t addr, remaining, n;
11864 uint32_t *buf;
11865 int rc;
11866 uint8_t *dst;
11867
11868 mtx_lock(&sc->reg_lock);
11869 if (hw_off_limits(sc))
11870 rc = ENXIO;
11871 else
11872 rc = validate_mem_range(sc, mr->addr, mr->len);
11873 mtx_unlock(&sc->reg_lock);
11874 if (rc != 0)
11875 return (rc);
11876
11877 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11878 addr = mr->addr;
11879 remaining = mr->len;
11880 dst = (void *)mr->data;
11881
11882 while (remaining) {
11883 n = min(remaining, MAX_READ_BUF_SIZE);
11884 mtx_lock(&sc->reg_lock);
11885 if (hw_off_limits(sc))
11886 rc = ENXIO;
11887 else
11888 read_via_memwin(sc, 2, addr, buf, n);
11889 mtx_unlock(&sc->reg_lock);
11890 if (rc != 0)
11891 break;
11892
11893 rc = copyout(buf, dst, n);
11894 if (rc != 0)
11895 break;
11896
11897 dst += n;
11898 remaining -= n;
11899 addr += n;
11900 }
11901
11902 free(buf, M_CXGBE);
11903 return (rc);
11904 }
11905 #undef MAX_READ_BUF_SIZE
11906
11907 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)11908 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11909 {
11910 int rc;
11911
11912 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11913 return (EINVAL);
11914
11915 if (i2cd->len > sizeof(i2cd->data))
11916 return (EFBIG);
11917
11918 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11919 if (rc)
11920 return (rc);
11921 if (hw_off_limits(sc))
11922 rc = ENXIO;
11923 else
11924 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11925 i2cd->offset, i2cd->len, &i2cd->data[0]);
11926 end_synchronized_op(sc, 0);
11927
11928 return (rc);
11929 }
11930
11931 static int
clear_stats(struct adapter * sc,u_int port_id)11932 clear_stats(struct adapter *sc, u_int port_id)
11933 {
11934 int i, v, chan_map;
11935 struct port_info *pi;
11936 struct vi_info *vi;
11937 struct sge_rxq *rxq;
11938 struct sge_txq *txq;
11939 struct sge_wrq *wrq;
11940 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11941 struct sge_ofld_txq *ofld_txq;
11942 #endif
11943 #ifdef TCP_OFFLOAD
11944 struct sge_ofld_rxq *ofld_rxq;
11945 #endif
11946
11947 if (port_id >= sc->params.nports)
11948 return (EINVAL);
11949 pi = sc->port[port_id];
11950 if (pi == NULL)
11951 return (EIO);
11952
11953 mtx_lock(&sc->reg_lock);
11954 if (!hw_off_limits(sc)) {
11955 /* MAC stats */
11956 t4_clr_port_stats(sc, pi->tx_chan);
11957 if (is_t6(sc)) {
11958 if (pi->fcs_reg != -1)
11959 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11960 else
11961 pi->stats.rx_fcs_err = 0;
11962 }
11963 for_each_vi(pi, v, vi) {
11964 if (vi->flags & VI_INIT_DONE)
11965 t4_clr_vi_stats(sc, vi->vin);
11966 }
11967 chan_map = pi->rx_e_chan_map;
11968 v = 0; /* reuse */
11969 while (chan_map) {
11970 i = ffs(chan_map) - 1;
11971 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11972 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11973 chan_map &= ~(1 << i);
11974 }
11975 }
11976 mtx_unlock(&sc->reg_lock);
11977 pi->tx_parse_error = 0;
11978 pi->tnl_cong_drops = 0;
11979
11980 /*
11981 * Since this command accepts a port, clear stats for
11982 * all VIs on this port.
11983 */
11984 for_each_vi(pi, v, vi) {
11985 if (vi->flags & VI_INIT_DONE) {
11986
11987 for_each_rxq(vi, i, rxq) {
11988 #if defined(INET) || defined(INET6)
11989 rxq->lro.lro_queued = 0;
11990 rxq->lro.lro_flushed = 0;
11991 #endif
11992 rxq->rxcsum = 0;
11993 rxq->vlan_extraction = 0;
11994 rxq->vxlan_rxcsum = 0;
11995
11996 rxq->fl.cl_allocated = 0;
11997 rxq->fl.cl_recycled = 0;
11998 rxq->fl.cl_fast_recycled = 0;
11999 }
12000
12001 for_each_txq(vi, i, txq) {
12002 txq->txcsum = 0;
12003 txq->tso_wrs = 0;
12004 txq->vlan_insertion = 0;
12005 txq->imm_wrs = 0;
12006 txq->sgl_wrs = 0;
12007 txq->txpkt_wrs = 0;
12008 txq->txpkts0_wrs = 0;
12009 txq->txpkts1_wrs = 0;
12010 txq->txpkts0_pkts = 0;
12011 txq->txpkts1_pkts = 0;
12012 txq->txpkts_flush = 0;
12013 txq->raw_wrs = 0;
12014 txq->vxlan_tso_wrs = 0;
12015 txq->vxlan_txcsum = 0;
12016 txq->kern_tls_records = 0;
12017 txq->kern_tls_short = 0;
12018 txq->kern_tls_partial = 0;
12019 txq->kern_tls_full = 0;
12020 txq->kern_tls_octets = 0;
12021 txq->kern_tls_waste = 0;
12022 txq->kern_tls_options = 0;
12023 txq->kern_tls_header = 0;
12024 txq->kern_tls_fin = 0;
12025 txq->kern_tls_fin_short = 0;
12026 txq->kern_tls_cbc = 0;
12027 txq->kern_tls_gcm = 0;
12028 mp_ring_reset_stats(txq->r);
12029 }
12030
12031 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12032 for_each_ofld_txq(vi, i, ofld_txq) {
12033 ofld_txq->wrq.tx_wrs_direct = 0;
12034 ofld_txq->wrq.tx_wrs_copied = 0;
12035 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12036 counter_u64_zero(ofld_txq->tx_iscsi_octets);
12037 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12038 counter_u64_zero(ofld_txq->tx_aio_jobs);
12039 counter_u64_zero(ofld_txq->tx_aio_octets);
12040 counter_u64_zero(ofld_txq->tx_toe_tls_records);
12041 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12042 }
12043 #endif
12044 #ifdef TCP_OFFLOAD
12045 for_each_ofld_rxq(vi, i, ofld_rxq) {
12046 ofld_rxq->fl.cl_allocated = 0;
12047 ofld_rxq->fl.cl_recycled = 0;
12048 ofld_rxq->fl.cl_fast_recycled = 0;
12049 counter_u64_zero(
12050 ofld_rxq->rx_iscsi_ddp_setup_ok);
12051 counter_u64_zero(
12052 ofld_rxq->rx_iscsi_ddp_setup_error);
12053 ofld_rxq->rx_iscsi_ddp_pdus = 0;
12054 ofld_rxq->rx_iscsi_ddp_octets = 0;
12055 ofld_rxq->rx_iscsi_fl_pdus = 0;
12056 ofld_rxq->rx_iscsi_fl_octets = 0;
12057 ofld_rxq->rx_aio_ddp_jobs = 0;
12058 ofld_rxq->rx_aio_ddp_octets = 0;
12059 ofld_rxq->rx_toe_tls_records = 0;
12060 ofld_rxq->rx_toe_tls_octets = 0;
12061 ofld_rxq->rx_toe_ddp_octets = 0;
12062 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12063 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12064 counter_u64_zero(ofld_rxq->ddp_buffer_free);
12065 }
12066 #endif
12067
12068 if (IS_MAIN_VI(vi)) {
12069 wrq = &sc->sge.ctrlq[pi->port_id];
12070 wrq->tx_wrs_direct = 0;
12071 wrq->tx_wrs_copied = 0;
12072 }
12073 }
12074 }
12075
12076 return (0);
12077 }
12078
12079 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12080 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12081 {
12082 #ifdef INET6
12083 struct in6_addr in6;
12084
12085 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12086 if (t4_get_clip_entry(sc, &in6, true) != NULL)
12087 return (0);
12088 else
12089 return (EIO);
12090 #else
12091 return (ENOTSUP);
12092 #endif
12093 }
12094
12095 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12096 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12097 {
12098 #ifdef INET6
12099 struct in6_addr in6;
12100
12101 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12102 return (t4_release_clip_addr(sc, &in6));
12103 #else
12104 return (ENOTSUP);
12105 #endif
12106 }
12107
12108 int
t4_os_find_pci_capability(struct adapter * sc,int cap)12109 t4_os_find_pci_capability(struct adapter *sc, int cap)
12110 {
12111 int i;
12112
12113 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12114 }
12115
12116 int
t4_os_pci_save_state(struct adapter * sc)12117 t4_os_pci_save_state(struct adapter *sc)
12118 {
12119 device_t dev;
12120 struct pci_devinfo *dinfo;
12121
12122 dev = sc->dev;
12123 dinfo = device_get_ivars(dev);
12124
12125 pci_cfg_save(dev, dinfo, 0);
12126 return (0);
12127 }
12128
12129 int
t4_os_pci_restore_state(struct adapter * sc)12130 t4_os_pci_restore_state(struct adapter *sc)
12131 {
12132 device_t dev;
12133 struct pci_devinfo *dinfo;
12134
12135 dev = sc->dev;
12136 dinfo = device_get_ivars(dev);
12137
12138 pci_cfg_restore(dev, dinfo);
12139 return (0);
12140 }
12141
12142 void
t4_os_portmod_changed(struct port_info * pi)12143 t4_os_portmod_changed(struct port_info *pi)
12144 {
12145 struct adapter *sc = pi->adapter;
12146 struct vi_info *vi;
12147 if_t ifp;
12148 static const char *mod_str[] = {
12149 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12150 };
12151
12152 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12153 ("%s: port_type %u", __func__, pi->port_type));
12154
12155 vi = &pi->vi[0];
12156 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12157 PORT_LOCK(pi);
12158 build_medialist(pi);
12159 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12160 fixup_link_config(pi);
12161 apply_link_config(pi);
12162 }
12163 PORT_UNLOCK(pi);
12164 end_synchronized_op(sc, LOCK_HELD);
12165 }
12166
12167 ifp = vi->ifp;
12168 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12169 if_printf(ifp, "transceiver unplugged.\n");
12170 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12171 if_printf(ifp, "unknown transceiver inserted.\n");
12172 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12173 if_printf(ifp, "unsupported transceiver inserted.\n");
12174 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12175 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12176 port_top_speed(pi), mod_str[pi->mod_type]);
12177 } else {
12178 if_printf(ifp, "transceiver (type %d) inserted.\n",
12179 pi->mod_type);
12180 }
12181 }
12182
12183 void
t4_os_link_changed(struct port_info * pi)12184 t4_os_link_changed(struct port_info *pi)
12185 {
12186 struct vi_info *vi;
12187 if_t ifp;
12188 struct link_config *lc = &pi->link_cfg;
12189 struct adapter *sc = pi->adapter;
12190 int v;
12191
12192 PORT_LOCK_ASSERT_OWNED(pi);
12193
12194 if (is_t6(sc)) {
12195 if (lc->link_ok) {
12196 if (lc->speed > 25000 ||
12197 (lc->speed == 25000 && lc->fec == FEC_RS)) {
12198 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12199 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12200 } else {
12201 pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12202 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12203 }
12204 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12205 pi->stats.rx_fcs_err = 0;
12206 } else {
12207 pi->fcs_reg = -1;
12208 }
12209 } else {
12210 MPASS(pi->fcs_reg != -1);
12211 MPASS(pi->fcs_base == 0);
12212 }
12213
12214 for_each_vi(pi, v, vi) {
12215 ifp = vi->ifp;
12216 if (ifp == NULL || IS_DETACHING(vi))
12217 continue;
12218
12219 if (lc->link_ok) {
12220 if_setbaudrate(ifp, IF_Mbps(lc->speed));
12221 if_link_state_change(ifp, LINK_STATE_UP);
12222 } else {
12223 if_link_state_change(ifp, LINK_STATE_DOWN);
12224 }
12225 }
12226 }
12227
12228 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)12229 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12230 {
12231 struct adapter *sc;
12232
12233 sx_slock(&t4_list_lock);
12234 SLIST_FOREACH(sc, &t4_list, link) {
12235 /*
12236 * func should not make any assumptions about what state sc is
12237 * in - the only guarantee is that sc->sc_lock is a valid lock.
12238 */
12239 func(sc, arg);
12240 }
12241 sx_sunlock(&t4_list_lock);
12242 }
12243
12244 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)12245 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12246 struct thread *td)
12247 {
12248 int rc;
12249 struct adapter *sc = dev->si_drv1;
12250
12251 rc = priv_check(td, PRIV_DRIVER);
12252 if (rc != 0)
12253 return (rc);
12254
12255 switch (cmd) {
12256 case CHELSIO_T4_GETREG: {
12257 struct t4_reg *edata = (struct t4_reg *)data;
12258
12259 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12260 return (EFAULT);
12261
12262 mtx_lock(&sc->reg_lock);
12263 if (hw_off_limits(sc))
12264 rc = ENXIO;
12265 else if (edata->size == 4)
12266 edata->val = t4_read_reg(sc, edata->addr);
12267 else if (edata->size == 8)
12268 edata->val = t4_read_reg64(sc, edata->addr);
12269 else
12270 rc = EINVAL;
12271 mtx_unlock(&sc->reg_lock);
12272
12273 break;
12274 }
12275 case CHELSIO_T4_SETREG: {
12276 struct t4_reg *edata = (struct t4_reg *)data;
12277
12278 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12279 return (EFAULT);
12280
12281 mtx_lock(&sc->reg_lock);
12282 if (hw_off_limits(sc))
12283 rc = ENXIO;
12284 else if (edata->size == 4) {
12285 if (edata->val & 0xffffffff00000000)
12286 rc = EINVAL;
12287 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12288 } else if (edata->size == 8)
12289 t4_write_reg64(sc, edata->addr, edata->val);
12290 else
12291 rc = EINVAL;
12292 mtx_unlock(&sc->reg_lock);
12293
12294 break;
12295 }
12296 case CHELSIO_T4_REGDUMP: {
12297 struct t4_regdump *regs = (struct t4_regdump *)data;
12298 int reglen = t4_get_regs_len(sc);
12299 uint8_t *buf;
12300
12301 if (regs->len < reglen) {
12302 regs->len = reglen; /* hint to the caller */
12303 return (ENOBUFS);
12304 }
12305
12306 regs->len = reglen;
12307 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12308 mtx_lock(&sc->reg_lock);
12309 if (hw_off_limits(sc))
12310 rc = ENXIO;
12311 else
12312 get_regs(sc, regs, buf);
12313 mtx_unlock(&sc->reg_lock);
12314 if (rc == 0)
12315 rc = copyout(buf, regs->data, reglen);
12316 free(buf, M_CXGBE);
12317 break;
12318 }
12319 case CHELSIO_T4_GET_FILTER_MODE:
12320 rc = get_filter_mode(sc, (uint32_t *)data);
12321 break;
12322 case CHELSIO_T4_SET_FILTER_MODE:
12323 rc = set_filter_mode(sc, *(uint32_t *)data);
12324 break;
12325 case CHELSIO_T4_SET_FILTER_MASK:
12326 rc = set_filter_mask(sc, *(uint32_t *)data);
12327 break;
12328 case CHELSIO_T4_GET_FILTER:
12329 rc = get_filter(sc, (struct t4_filter *)data);
12330 break;
12331 case CHELSIO_T4_SET_FILTER:
12332 rc = set_filter(sc, (struct t4_filter *)data);
12333 break;
12334 case CHELSIO_T4_DEL_FILTER:
12335 rc = del_filter(sc, (struct t4_filter *)data);
12336 break;
12337 case CHELSIO_T4_GET_SGE_CONTEXT:
12338 rc = get_sge_context(sc, (struct t4_sge_context *)data);
12339 break;
12340 case CHELSIO_T4_LOAD_FW:
12341 rc = load_fw(sc, (struct t4_data *)data);
12342 break;
12343 case CHELSIO_T4_GET_MEM:
12344 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12345 break;
12346 case CHELSIO_T4_GET_I2C:
12347 rc = read_i2c(sc, (struct t4_i2c_data *)data);
12348 break;
12349 case CHELSIO_T4_CLEAR_STATS:
12350 rc = clear_stats(sc, *(uint32_t *)data);
12351 break;
12352 case CHELSIO_T4_SCHED_CLASS:
12353 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12354 break;
12355 case CHELSIO_T4_SCHED_QUEUE:
12356 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12357 break;
12358 case CHELSIO_T4_GET_TRACER:
12359 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12360 break;
12361 case CHELSIO_T4_SET_TRACER:
12362 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12363 break;
12364 case CHELSIO_T4_LOAD_CFG:
12365 rc = load_cfg(sc, (struct t4_data *)data);
12366 break;
12367 case CHELSIO_T4_LOAD_BOOT:
12368 rc = load_boot(sc, (struct t4_bootrom *)data);
12369 break;
12370 case CHELSIO_T4_LOAD_BOOTCFG:
12371 rc = load_bootcfg(sc, (struct t4_data *)data);
12372 break;
12373 case CHELSIO_T4_CUDBG_DUMP:
12374 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12375 break;
12376 case CHELSIO_T4_SET_OFLD_POLICY:
12377 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12378 break;
12379 case CHELSIO_T4_HOLD_CLIP_ADDR:
12380 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12381 break;
12382 case CHELSIO_T4_RELEASE_CLIP_ADDR:
12383 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12384 break;
12385 default:
12386 rc = ENOTTY;
12387 }
12388
12389 return (rc);
12390 }
12391
12392 #ifdef TCP_OFFLOAD
12393 int
toe_capability(struct vi_info * vi,bool enable)12394 toe_capability(struct vi_info *vi, bool enable)
12395 {
12396 int rc;
12397 struct port_info *pi = vi->pi;
12398 struct adapter *sc = pi->adapter;
12399
12400 ASSERT_SYNCHRONIZED_OP(sc);
12401
12402 if (!is_offload(sc))
12403 return (ENODEV);
12404 if (hw_off_limits(sc))
12405 return (ENXIO);
12406
12407 if (enable) {
12408 #ifdef KERN_TLS
12409 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12410 int i, j, n;
12411 struct port_info *p;
12412 struct vi_info *v;
12413
12414 /*
12415 * Reconfigure hardware for TOE if TXTLS is not enabled
12416 * on any ifnet.
12417 */
12418 n = 0;
12419 for_each_port(sc, i) {
12420 p = sc->port[i];
12421 for_each_vi(p, j, v) {
12422 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12423 CH_WARN(sc,
12424 "%s has NIC TLS enabled.\n",
12425 device_get_nameunit(v->dev));
12426 n++;
12427 }
12428 }
12429 }
12430 if (n > 0) {
12431 CH_WARN(sc, "Disable NIC TLS on all interfaces "
12432 "associated with this adapter before "
12433 "trying to enable TOE.\n");
12434 return (EAGAIN);
12435 }
12436 rc = t6_config_kern_tls(sc, false);
12437 if (rc)
12438 return (rc);
12439 }
12440 #endif
12441 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12442 /* TOE is already enabled. */
12443 return (0);
12444 }
12445
12446 /*
12447 * We need the port's queues around so that we're able to send
12448 * and receive CPLs to/from the TOE even if the ifnet for this
12449 * port has never been UP'd administratively.
12450 */
12451 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12452 return (rc);
12453 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12454 ((rc = vi_init(&pi->vi[0])) != 0))
12455 return (rc);
12456
12457 if (isset(&sc->offload_map, pi->port_id)) {
12458 /* TOE is enabled on another VI of this port. */
12459 MPASS(pi->uld_vis > 0);
12460 pi->uld_vis++;
12461 return (0);
12462 }
12463
12464 if (!uld_active(sc, ULD_TOM)) {
12465 rc = t4_activate_uld(sc, ULD_TOM);
12466 if (rc == EAGAIN) {
12467 log(LOG_WARNING,
12468 "You must kldload t4_tom.ko before trying "
12469 "to enable TOE on a cxgbe interface.\n");
12470 }
12471 if (rc != 0)
12472 return (rc);
12473 KASSERT(sc->tom_softc != NULL,
12474 ("%s: TOM activated but softc NULL", __func__));
12475 KASSERT(uld_active(sc, ULD_TOM),
12476 ("%s: TOM activated but flag not set", __func__));
12477 }
12478
12479 /* Activate iWARP and iSCSI too, if the modules are loaded. */
12480 if (!uld_active(sc, ULD_IWARP))
12481 (void) t4_activate_uld(sc, ULD_IWARP);
12482 if (!uld_active(sc, ULD_ISCSI))
12483 (void) t4_activate_uld(sc, ULD_ISCSI);
12484
12485 if (pi->uld_vis++ == 0)
12486 setbit(&sc->offload_map, pi->port_id);
12487 } else {
12488 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
12489 /* TOE is already disabled. */
12490 return (0);
12491 }
12492 MPASS(isset(&sc->offload_map, pi->port_id));
12493 MPASS(pi->uld_vis > 0);
12494 if (--pi->uld_vis == 0)
12495 clrbit(&sc->offload_map, pi->port_id);
12496 }
12497
12498 return (0);
12499 }
12500
12501 /*
12502 * Add an upper layer driver to the global list.
12503 */
12504 int
t4_register_uld(struct uld_info * ui,int id)12505 t4_register_uld(struct uld_info *ui, int id)
12506 {
12507 int rc;
12508
12509 if (id < 0 || id > ULD_MAX)
12510 return (EINVAL);
12511 sx_xlock(&t4_uld_list_lock);
12512 if (t4_uld_list[id] != NULL)
12513 rc = EEXIST;
12514 else {
12515 t4_uld_list[id] = ui;
12516 rc = 0;
12517 }
12518 sx_xunlock(&t4_uld_list_lock);
12519 return (rc);
12520 }
12521
12522 int
t4_unregister_uld(struct uld_info * ui,int id)12523 t4_unregister_uld(struct uld_info *ui, int id)
12524 {
12525
12526 if (id < 0 || id > ULD_MAX)
12527 return (EINVAL);
12528 sx_xlock(&t4_uld_list_lock);
12529 MPASS(t4_uld_list[id] == ui);
12530 t4_uld_list[id] = NULL;
12531 sx_xunlock(&t4_uld_list_lock);
12532 return (0);
12533 }
12534
12535 int
t4_activate_uld(struct adapter * sc,int id)12536 t4_activate_uld(struct adapter *sc, int id)
12537 {
12538 int rc;
12539
12540 ASSERT_SYNCHRONIZED_OP(sc);
12541
12542 if (id < 0 || id > ULD_MAX)
12543 return (EINVAL);
12544
12545 /* Adapter needs to be initialized before any ULD can be activated. */
12546 if (!(sc->flags & FULL_INIT_DONE)) {
12547 rc = adapter_init(sc);
12548 if (rc != 0)
12549 return (rc);
12550 }
12551
12552 sx_slock(&t4_uld_list_lock);
12553 if (t4_uld_list[id] == NULL)
12554 rc = EAGAIN; /* load the KLD with this ULD and try again. */
12555 else {
12556 rc = t4_uld_list[id]->uld_activate(sc);
12557 if (rc == 0)
12558 setbit(&sc->active_ulds, id);
12559 }
12560 sx_sunlock(&t4_uld_list_lock);
12561
12562 return (rc);
12563 }
12564
12565 int
t4_deactivate_uld(struct adapter * sc,int id)12566 t4_deactivate_uld(struct adapter *sc, int id)
12567 {
12568 int rc;
12569
12570 ASSERT_SYNCHRONIZED_OP(sc);
12571
12572 if (id < 0 || id > ULD_MAX)
12573 return (EINVAL);
12574
12575 sx_slock(&t4_uld_list_lock);
12576 if (t4_uld_list[id] == NULL)
12577 rc = ENXIO;
12578 else {
12579 rc = t4_uld_list[id]->uld_deactivate(sc);
12580 if (rc == 0)
12581 clrbit(&sc->active_ulds, id);
12582 }
12583 sx_sunlock(&t4_uld_list_lock);
12584
12585 return (rc);
12586 }
12587
12588 static int
deactivate_all_uld(struct adapter * sc)12589 deactivate_all_uld(struct adapter *sc)
12590 {
12591 int i, rc;
12592
12593 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12594 if (rc != 0)
12595 return (ENXIO);
12596 sx_slock(&t4_uld_list_lock);
12597 for (i = 0; i <= ULD_MAX; i++) {
12598 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12599 continue;
12600 rc = t4_uld_list[i]->uld_deactivate(sc);
12601 if (rc != 0)
12602 break;
12603 clrbit(&sc->active_ulds, i);
12604 }
12605 sx_sunlock(&t4_uld_list_lock);
12606 end_synchronized_op(sc, 0);
12607
12608 return (rc);
12609 }
12610
12611 static void
stop_all_uld(struct adapter * sc)12612 stop_all_uld(struct adapter *sc)
12613 {
12614 int i;
12615
12616 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12617 return;
12618 sx_slock(&t4_uld_list_lock);
12619 for (i = 0; i <= ULD_MAX; i++) {
12620 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12621 t4_uld_list[i]->uld_stop == NULL)
12622 continue;
12623 (void) t4_uld_list[i]->uld_stop(sc);
12624 }
12625 sx_sunlock(&t4_uld_list_lock);
12626 end_synchronized_op(sc, 0);
12627 }
12628
12629 static void
restart_all_uld(struct adapter * sc)12630 restart_all_uld(struct adapter *sc)
12631 {
12632 int i;
12633
12634 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12635 return;
12636 sx_slock(&t4_uld_list_lock);
12637 for (i = 0; i <= ULD_MAX; i++) {
12638 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12639 t4_uld_list[i]->uld_restart == NULL)
12640 continue;
12641 (void) t4_uld_list[i]->uld_restart(sc);
12642 }
12643 sx_sunlock(&t4_uld_list_lock);
12644 end_synchronized_op(sc, 0);
12645 }
12646
12647 int
uld_active(struct adapter * sc,int id)12648 uld_active(struct adapter *sc, int id)
12649 {
12650
12651 MPASS(id >= 0 && id <= ULD_MAX);
12652
12653 return (isset(&sc->active_ulds, id));
12654 }
12655 #endif
12656
12657 #ifdef KERN_TLS
12658 static int
ktls_capability(struct adapter * sc,bool enable)12659 ktls_capability(struct adapter *sc, bool enable)
12660 {
12661 ASSERT_SYNCHRONIZED_OP(sc);
12662
12663 if (!is_ktls(sc))
12664 return (ENODEV);
12665 if (!is_t6(sc))
12666 return (0);
12667 if (hw_off_limits(sc))
12668 return (ENXIO);
12669
12670 if (enable) {
12671 if (sc->flags & KERN_TLS_ON)
12672 return (0); /* already on */
12673 if (sc->offload_map != 0) {
12674 CH_WARN(sc,
12675 "Disable TOE on all interfaces associated with "
12676 "this adapter before trying to enable NIC TLS.\n");
12677 return (EAGAIN);
12678 }
12679 return (t6_config_kern_tls(sc, true));
12680 } else {
12681 /*
12682 * Nothing to do for disable. If TOE is enabled sometime later
12683 * then toe_capability will reconfigure the hardware.
12684 */
12685 return (0);
12686 }
12687 }
12688 #endif
12689
12690 /*
12691 * t = ptr to tunable.
12692 * nc = number of CPUs.
12693 * c = compiled in default for that tunable.
12694 */
12695 static void
calculate_nqueues(int * t,int nc,const int c)12696 calculate_nqueues(int *t, int nc, const int c)
12697 {
12698 int nq;
12699
12700 if (*t > 0)
12701 return;
12702 nq = *t < 0 ? -*t : c;
12703 *t = min(nc, nq);
12704 }
12705
12706 /*
12707 * Come up with reasonable defaults for some of the tunables, provided they're
12708 * not set by the user (in which case we'll use the values as is).
12709 */
12710 static void
tweak_tunables(void)12711 tweak_tunables(void)
12712 {
12713 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
12714
12715 if (t4_ntxq < 1) {
12716 #ifdef RSS
12717 t4_ntxq = rss_getnumbuckets();
12718 #else
12719 calculate_nqueues(&t4_ntxq, nc, NTXQ);
12720 #endif
12721 }
12722
12723 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12724
12725 if (t4_nrxq < 1) {
12726 #ifdef RSS
12727 t4_nrxq = rss_getnumbuckets();
12728 #else
12729 calculate_nqueues(&t4_nrxq, nc, NRXQ);
12730 #endif
12731 }
12732
12733 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12734
12735 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12736 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12737 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12738 #endif
12739 #ifdef TCP_OFFLOAD
12740 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12741 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12742 #endif
12743
12744 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12745 if (t4_toecaps_allowed == -1)
12746 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12747 #else
12748 if (t4_toecaps_allowed == -1)
12749 t4_toecaps_allowed = 0;
12750 #endif
12751
12752 #ifdef TCP_OFFLOAD
12753 if (t4_rdmacaps_allowed == -1) {
12754 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12755 FW_CAPS_CONFIG_RDMA_RDMAC;
12756 }
12757
12758 if (t4_iscsicaps_allowed == -1) {
12759 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12760 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12761 FW_CAPS_CONFIG_ISCSI_T10DIF;
12762 }
12763
12764 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12765 t4_tmr_idx_ofld = TMR_IDX_OFLD;
12766
12767 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12768 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12769 #else
12770 if (t4_rdmacaps_allowed == -1)
12771 t4_rdmacaps_allowed = 0;
12772
12773 if (t4_iscsicaps_allowed == -1)
12774 t4_iscsicaps_allowed = 0;
12775 #endif
12776
12777 #ifdef DEV_NETMAP
12778 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12779 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12780 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12781 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12782 #endif
12783
12784 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12785 t4_tmr_idx = TMR_IDX;
12786
12787 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12788 t4_pktc_idx = PKTC_IDX;
12789
12790 if (t4_qsize_txq < 128)
12791 t4_qsize_txq = 128;
12792
12793 if (t4_qsize_rxq < 128)
12794 t4_qsize_rxq = 128;
12795 while (t4_qsize_rxq & 7)
12796 t4_qsize_rxq++;
12797
12798 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12799
12800 /*
12801 * Number of VIs to create per-port. The first VI is the "main" regular
12802 * VI for the port. The rest are additional virtual interfaces on the
12803 * same physical port. Note that the main VI does not have native
12804 * netmap support but the extra VIs do.
12805 *
12806 * Limit the number of VIs per port to the number of available
12807 * MAC addresses per port.
12808 */
12809 if (t4_num_vis < 1)
12810 t4_num_vis = 1;
12811 if (t4_num_vis > nitems(vi_mac_funcs)) {
12812 t4_num_vis = nitems(vi_mac_funcs);
12813 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12814 }
12815
12816 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12817 pcie_relaxed_ordering = 1;
12818 #if defined(__i386__) || defined(__amd64__)
12819 if (cpu_vendor_id == CPU_VENDOR_INTEL)
12820 pcie_relaxed_ordering = 0;
12821 #endif
12822 }
12823 }
12824
12825 #ifdef DDB
12826 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)12827 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12828 {
12829 uint32_t base, j, off, pf, reg, save, win_pos;
12830
12831 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12832 save = t4_read_reg(sc, reg);
12833 base = sc->memwin[2].mw_base;
12834
12835 if (is_t4(sc)) {
12836 pf = 0;
12837 win_pos = addr & ~0xf; /* start must be 16B aligned */
12838 } else {
12839 pf = V_PFNUM(sc->pf);
12840 win_pos = addr & ~0x7f; /* start must be 128B aligned */
12841 }
12842 off = addr - win_pos;
12843 t4_write_reg(sc, reg, win_pos | pf);
12844 t4_read_reg(sc, reg);
12845
12846 while (len > 0 && !db_pager_quit) {
12847 uint32_t buf[8];
12848 for (j = 0; j < 8; j++, off += 4)
12849 buf[j] = htonl(t4_read_reg(sc, base + off));
12850
12851 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12852 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12853 buf[7]);
12854 if (len <= sizeof(buf))
12855 len = 0;
12856 else
12857 len -= sizeof(buf);
12858 }
12859
12860 t4_write_reg(sc, reg, save);
12861 t4_read_reg(sc, reg);
12862 }
12863
12864 static void
t4_dump_tcb(struct adapter * sc,int tid)12865 t4_dump_tcb(struct adapter *sc, int tid)
12866 {
12867 uint32_t tcb_addr;
12868
12869 /* Dump TCB for the tid */
12870 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12871 tcb_addr += tid * TCB_SIZE;
12872 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12873 }
12874
12875 static void
t4_dump_devlog(struct adapter * sc)12876 t4_dump_devlog(struct adapter *sc)
12877 {
12878 struct devlog_params *dparams = &sc->params.devlog;
12879 struct fw_devlog_e e;
12880 int i, first, j, m, nentries, rc;
12881 uint64_t ftstamp = UINT64_MAX;
12882
12883 if (dparams->start == 0) {
12884 db_printf("devlog params not valid\n");
12885 return;
12886 }
12887
12888 nentries = dparams->size / sizeof(struct fw_devlog_e);
12889 m = fwmtype_to_hwmtype(dparams->memtype);
12890
12891 /* Find the first entry. */
12892 first = -1;
12893 for (i = 0; i < nentries && !db_pager_quit; i++) {
12894 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12895 sizeof(e), (void *)&e);
12896 if (rc != 0)
12897 break;
12898
12899 if (e.timestamp == 0)
12900 break;
12901
12902 e.timestamp = be64toh(e.timestamp);
12903 if (e.timestamp < ftstamp) {
12904 ftstamp = e.timestamp;
12905 first = i;
12906 }
12907 }
12908
12909 if (first == -1)
12910 return;
12911
12912 i = first;
12913 do {
12914 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12915 sizeof(e), (void *)&e);
12916 if (rc != 0)
12917 return;
12918
12919 if (e.timestamp == 0)
12920 return;
12921
12922 e.timestamp = be64toh(e.timestamp);
12923 e.seqno = be32toh(e.seqno);
12924 for (j = 0; j < 8; j++)
12925 e.params[j] = be32toh(e.params[j]);
12926
12927 db_printf("%10d %15ju %8s %8s ",
12928 e.seqno, e.timestamp,
12929 (e.level < nitems(devlog_level_strings) ?
12930 devlog_level_strings[e.level] : "UNKNOWN"),
12931 (e.facility < nitems(devlog_facility_strings) ?
12932 devlog_facility_strings[e.facility] : "UNKNOWN"));
12933 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12934 e.params[3], e.params[4], e.params[5], e.params[6],
12935 e.params[7]);
12936
12937 if (++i == nentries)
12938 i = 0;
12939 } while (i != first && !db_pager_quit);
12940 }
12941
12942 static DB_DEFINE_TABLE(show, t4, show_t4);
12943
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)12944 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12945 {
12946 device_t dev;
12947 int t;
12948 bool valid;
12949
12950 valid = false;
12951 t = db_read_token();
12952 if (t == tIDENT) {
12953 dev = device_lookup_by_name(db_tok_string);
12954 valid = true;
12955 }
12956 db_skip_to_eol();
12957 if (!valid) {
12958 db_printf("usage: show t4 devlog <nexus>\n");
12959 return;
12960 }
12961
12962 if (dev == NULL) {
12963 db_printf("device not found\n");
12964 return;
12965 }
12966
12967 t4_dump_devlog(device_get_softc(dev));
12968 }
12969
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)12970 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12971 {
12972 device_t dev;
12973 int radix, tid, t;
12974 bool valid;
12975
12976 valid = false;
12977 radix = db_radix;
12978 db_radix = 10;
12979 t = db_read_token();
12980 if (t == tIDENT) {
12981 dev = device_lookup_by_name(db_tok_string);
12982 t = db_read_token();
12983 if (t == tNUMBER) {
12984 tid = db_tok_number;
12985 valid = true;
12986 }
12987 }
12988 db_radix = radix;
12989 db_skip_to_eol();
12990 if (!valid) {
12991 db_printf("usage: show t4 tcb <nexus> <tid>\n");
12992 return;
12993 }
12994
12995 if (dev == NULL) {
12996 db_printf("device not found\n");
12997 return;
12998 }
12999 if (tid < 0) {
13000 db_printf("invalid tid\n");
13001 return;
13002 }
13003
13004 t4_dump_tcb(device_get_softc(dev), tid);
13005 }
13006
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)13007 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
13008 {
13009 device_t dev;
13010 int radix, t;
13011 bool valid;
13012
13013 valid = false;
13014 radix = db_radix;
13015 db_radix = 10;
13016 t = db_read_token();
13017 if (t == tIDENT) {
13018 dev = device_lookup_by_name(db_tok_string);
13019 t = db_read_token();
13020 if (t == tNUMBER) {
13021 addr = db_tok_number;
13022 t = db_read_token();
13023 if (t == tNUMBER) {
13024 count = db_tok_number;
13025 valid = true;
13026 }
13027 }
13028 }
13029 db_radix = radix;
13030 db_skip_to_eol();
13031 if (!valid) {
13032 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
13033 return;
13034 }
13035
13036 if (dev == NULL) {
13037 db_printf("device not found\n");
13038 return;
13039 }
13040 if (addr < 0) {
13041 db_printf("invalid address\n");
13042 return;
13043 }
13044 if (count <= 0) {
13045 db_printf("invalid length\n");
13046 return;
13047 }
13048
13049 t4_dump_mem(device_get_softc(dev), addr, count);
13050 }
13051 #endif
13052
13053 static eventhandler_tag vxlan_start_evtag;
13054 static eventhandler_tag vxlan_stop_evtag;
13055
13056 struct vxlan_evargs {
13057 if_t ifp;
13058 uint16_t port;
13059 };
13060
13061 static void
enable_vxlan_rx(struct adapter * sc)13062 enable_vxlan_rx(struct adapter *sc)
13063 {
13064 int i, rc;
13065 struct port_info *pi;
13066 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13067
13068 ASSERT_SYNCHRONIZED_OP(sc);
13069
13070 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13071 F_VXLAN_EN);
13072 for_each_port(sc, i) {
13073 pi = sc->port[i];
13074 if (pi->vxlan_tcam_entry == true)
13075 continue;
13076 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13077 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13078 true);
13079 if (rc < 0) {
13080 rc = -rc;
13081 CH_ERR(&pi->vi[0],
13082 "failed to add VXLAN TCAM entry: %d.\n", rc);
13083 } else {
13084 MPASS(rc == sc->rawf_base + pi->port_id);
13085 pi->vxlan_tcam_entry = true;
13086 }
13087 }
13088 }
13089
13090 static void
t4_vxlan_start(struct adapter * sc,void * arg)13091 t4_vxlan_start(struct adapter *sc, void *arg)
13092 {
13093 struct vxlan_evargs *v = arg;
13094
13095 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13096 return;
13097 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13098 return;
13099
13100 if (sc->vxlan_refcount == 0) {
13101 sc->vxlan_port = v->port;
13102 sc->vxlan_refcount = 1;
13103 if (!hw_off_limits(sc))
13104 enable_vxlan_rx(sc);
13105 } else if (sc->vxlan_port == v->port) {
13106 sc->vxlan_refcount++;
13107 } else {
13108 CH_ERR(sc, "VXLAN already configured on port %d; "
13109 "ignoring attempt to configure it on port %d\n",
13110 sc->vxlan_port, v->port);
13111 }
13112 end_synchronized_op(sc, 0);
13113 }
13114
13115 static void
t4_vxlan_stop(struct adapter * sc,void * arg)13116 t4_vxlan_stop(struct adapter *sc, void *arg)
13117 {
13118 struct vxlan_evargs *v = arg;
13119
13120 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13121 return;
13122 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13123 return;
13124
13125 /*
13126 * VXLANs may have been configured before the driver was loaded so we
13127 * may see more stops than starts. This is not handled cleanly but at
13128 * least we keep the refcount sane.
13129 */
13130 if (sc->vxlan_port != v->port)
13131 goto done;
13132 if (sc->vxlan_refcount == 0) {
13133 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13134 "ignoring attempt to stop it again.\n", sc->vxlan_port);
13135 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13136 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13137 done:
13138 end_synchronized_op(sc, 0);
13139 }
13140
13141 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13142 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13143 sa_family_t family, u_int port)
13144 {
13145 struct vxlan_evargs v;
13146
13147 MPASS(family == AF_INET || family == AF_INET6);
13148 v.ifp = ifp;
13149 v.port = port;
13150
13151 t4_iterate(t4_vxlan_start, &v);
13152 }
13153
13154 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13155 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13156 u_int port)
13157 {
13158 struct vxlan_evargs v;
13159
13160 MPASS(family == AF_INET || family == AF_INET6);
13161 v.ifp = ifp;
13162 v.port = port;
13163
13164 t4_iterate(t4_vxlan_stop, &v);
13165 }
13166
13167
13168 static struct sx mlu; /* mod load unload */
13169 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13170
13171 static int
mod_event(module_t mod,int cmd,void * arg)13172 mod_event(module_t mod, int cmd, void *arg)
13173 {
13174 int rc = 0;
13175 static int loaded = 0;
13176
13177 switch (cmd) {
13178 case MOD_LOAD:
13179 sx_xlock(&mlu);
13180 if (loaded++ == 0) {
13181 t4_sge_modload();
13182 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13183 t4_filter_rpl, CPL_COOKIE_FILTER);
13184 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13185 do_l2t_write_rpl, CPL_COOKIE_FILTER);
13186 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13187 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13188 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13189 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13190 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13191 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13192 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13193 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13194 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13195 do_smt_write_rpl);
13196 sx_init(&t4_list_lock, "T4/T5 adapters");
13197 SLIST_INIT(&t4_list);
13198 callout_init(&fatal_callout, 1);
13199 #ifdef TCP_OFFLOAD
13200 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13201 #endif
13202 #ifdef INET6
13203 t4_clip_modload();
13204 #endif
13205 #ifdef KERN_TLS
13206 t6_ktls_modload();
13207 #endif
13208 t4_tracer_modload();
13209 tweak_tunables();
13210 vxlan_start_evtag =
13211 EVENTHANDLER_REGISTER(vxlan_start,
13212 t4_vxlan_start_handler, NULL,
13213 EVENTHANDLER_PRI_ANY);
13214 vxlan_stop_evtag =
13215 EVENTHANDLER_REGISTER(vxlan_stop,
13216 t4_vxlan_stop_handler, NULL,
13217 EVENTHANDLER_PRI_ANY);
13218 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13219 taskqueue_thread_enqueue, &reset_tq);
13220 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13221 "t4_rst_thr");
13222 }
13223 sx_xunlock(&mlu);
13224 break;
13225
13226 case MOD_UNLOAD:
13227 sx_xlock(&mlu);
13228 if (--loaded == 0) {
13229 #ifdef TCP_OFFLOAD
13230 int i;
13231 #endif
13232 int tries;
13233
13234 taskqueue_free(reset_tq);
13235
13236 tries = 0;
13237 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13238 uprintf("%ju clusters with custom free routine "
13239 "still is use.\n", t4_sge_extfree_refs());
13240 pause("t4unload", 2 * hz);
13241 }
13242
13243 sx_slock(&t4_list_lock);
13244 if (!SLIST_EMPTY(&t4_list)) {
13245 rc = EBUSY;
13246 sx_sunlock(&t4_list_lock);
13247 goto done_unload;
13248 }
13249 #ifdef TCP_OFFLOAD
13250 sx_slock(&t4_uld_list_lock);
13251 for (i = 0; i <= ULD_MAX; i++) {
13252 if (t4_uld_list[i] != NULL) {
13253 rc = EBUSY;
13254 sx_sunlock(&t4_uld_list_lock);
13255 sx_sunlock(&t4_list_lock);
13256 goto done_unload;
13257 }
13258 }
13259 sx_sunlock(&t4_uld_list_lock);
13260 #endif
13261 sx_sunlock(&t4_list_lock);
13262
13263 if (t4_sge_extfree_refs() == 0) {
13264 EVENTHANDLER_DEREGISTER(vxlan_start,
13265 vxlan_start_evtag);
13266 EVENTHANDLER_DEREGISTER(vxlan_stop,
13267 vxlan_stop_evtag);
13268 t4_tracer_modunload();
13269 #ifdef KERN_TLS
13270 t6_ktls_modunload();
13271 #endif
13272 #ifdef INET6
13273 t4_clip_modunload();
13274 #endif
13275 #ifdef TCP_OFFLOAD
13276 sx_destroy(&t4_uld_list_lock);
13277 #endif
13278 sx_destroy(&t4_list_lock);
13279 t4_sge_modunload();
13280 loaded = 0;
13281 } else {
13282 rc = EBUSY;
13283 loaded++; /* undo earlier decrement */
13284 }
13285 }
13286 done_unload:
13287 sx_xunlock(&mlu);
13288 break;
13289 }
13290
13291 return (rc);
13292 }
13293
13294 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13295 MODULE_VERSION(t4nex, 1);
13296 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13297 #ifdef DEV_NETMAP
13298 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13299 #endif /* DEV_NETMAP */
13300
13301 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13302 MODULE_VERSION(t5nex, 1);
13303 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13304 #ifdef DEV_NETMAP
13305 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13306 #endif /* DEV_NETMAP */
13307
13308 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13309 MODULE_VERSION(t6nex, 1);
13310 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13311 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13312 #ifdef DEV_NETMAP
13313 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13314 #endif /* DEV_NETMAP */
13315
13316 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13317 MODULE_VERSION(cxgbe, 1);
13318
13319 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13320 MODULE_VERSION(cxl, 1);
13321
13322 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13323 MODULE_VERSION(cc, 1);
13324
13325 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13326 MODULE_VERSION(vcxgbe, 1);
13327
13328 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13329 MODULE_VERSION(vcxl, 1);
13330
13331 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13332 MODULE_VERSION(vcc, 1);
13333