1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/debugfs.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/iio/iio.h>
15 #include <linux/iio/buffer.h>
16 #include <linux/iio/timer/stm32-lptim-trigger.h>
17 #include <linux/iio/timer/stm32-timer-trigger.h>
18 #include <linux/iio/trigger.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/iopoll.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/nvmem-consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/property.h>
30
31 #include "stm32-adc-core.h"
32
33 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
34 #define STM32H7_LINCALFACT_NUM 6
35
36 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
37 #define STM32H7_BOOST_CLKRATE 20000000UL
38
39 #define STM32_ADC_CH_MAX 20 /* max number of channels */
40 #define STM32_ADC_CH_SZ 16 /* max channel name size */
41 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
42 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
43 #define STM32_ADC_TIMEOUT_US 100000
44 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
45 #define STM32_ADC_HW_STOP_DELAY_MS 100
46 #define STM32_ADC_VREFINT_VOLTAGE 3300
47
48 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
49
50 /* External trigger enable */
51 enum stm32_adc_exten {
52 STM32_EXTEN_SWTRIG,
53 STM32_EXTEN_HWTRIG_RISING_EDGE,
54 STM32_EXTEN_HWTRIG_FALLING_EDGE,
55 STM32_EXTEN_HWTRIG_BOTH_EDGES,
56 };
57
58 /* extsel - trigger mux selection value */
59 enum stm32_adc_extsel {
60 STM32_EXT0,
61 STM32_EXT1,
62 STM32_EXT2,
63 STM32_EXT3,
64 STM32_EXT4,
65 STM32_EXT5,
66 STM32_EXT6,
67 STM32_EXT7,
68 STM32_EXT8,
69 STM32_EXT9,
70 STM32_EXT10,
71 STM32_EXT11,
72 STM32_EXT12,
73 STM32_EXT13,
74 STM32_EXT14,
75 STM32_EXT15,
76 STM32_EXT16,
77 STM32_EXT17,
78 STM32_EXT18,
79 STM32_EXT19,
80 STM32_EXT20,
81 };
82
83 enum stm32_adc_int_ch {
84 STM32_ADC_INT_CH_NONE = -1,
85 STM32_ADC_INT_CH_VDDCORE,
86 STM32_ADC_INT_CH_VDDCPU,
87 STM32_ADC_INT_CH_VDDQ_DDR,
88 STM32_ADC_INT_CH_VREFINT,
89 STM32_ADC_INT_CH_VBAT,
90 STM32_ADC_INT_CH_NB,
91 };
92
93 /**
94 * struct stm32_adc_ic - ADC internal channels
95 * @name: name of the internal channel
96 * @idx: internal channel enum index
97 */
98 struct stm32_adc_ic {
99 const char *name;
100 u32 idx;
101 };
102
103 static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
104 { "vddcore", STM32_ADC_INT_CH_VDDCORE },
105 { "vddcpu", STM32_ADC_INT_CH_VDDCPU },
106 { "vddq_ddr", STM32_ADC_INT_CH_VDDQ_DDR },
107 { "vrefint", STM32_ADC_INT_CH_VREFINT },
108 { "vbat", STM32_ADC_INT_CH_VBAT },
109 };
110
111 /**
112 * struct stm32_adc_trig_info - ADC trigger info
113 * @name: name of the trigger, corresponding to its source
114 * @extsel: trigger selection
115 */
116 struct stm32_adc_trig_info {
117 const char *name;
118 enum stm32_adc_extsel extsel;
119 };
120
121 /**
122 * struct stm32_adc_calib - optional adc calibration data
123 * @lincalfact: Linearity calibration factor
124 * @lincal_saved: Indicates that linear calibration factors are saved
125 */
126 struct stm32_adc_calib {
127 u32 lincalfact[STM32H7_LINCALFACT_NUM];
128 bool lincal_saved;
129 };
130
131 /**
132 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
133 * @reg: register offset
134 * @mask: bitfield mask
135 * @shift: left shift
136 */
137 struct stm32_adc_regs {
138 int reg;
139 int mask;
140 int shift;
141 };
142
143 /**
144 * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
145 * @vrefint_cal: vrefint calibration value from nvmem
146 * @vrefint_data: vrefint actual value
147 */
148 struct stm32_adc_vrefint {
149 u32 vrefint_cal;
150 u32 vrefint_data;
151 };
152
153 /**
154 * struct stm32_adc_regspec - stm32 registers definition
155 * @dr: data register offset
156 * @ier_eoc: interrupt enable register & eocie bitfield
157 * @ier_ovr: interrupt enable register & overrun bitfield
158 * @isr_eoc: interrupt status register & eoc bitfield
159 * @isr_ovr: interrupt status register & overrun bitfield
160 * @sqr: reference to sequence registers array
161 * @exten: trigger control register & bitfield
162 * @extsel: trigger selection register & bitfield
163 * @res: resolution selection register & bitfield
164 * @difsel: differential mode selection register & bitfield
165 * @smpr: smpr1 & smpr2 registers offset array
166 * @smp_bits: smpr1 & smpr2 index and bitfields
167 * @or_vddcore: option register & vddcore bitfield
168 * @or_vddcpu: option register & vddcpu bitfield
169 * @or_vddq_ddr: option register & vddq_ddr bitfield
170 * @ccr_vbat: common register & vbat bitfield
171 * @ccr_vref: common register & vrefint bitfield
172 */
173 struct stm32_adc_regspec {
174 const u32 dr;
175 const struct stm32_adc_regs ier_eoc;
176 const struct stm32_adc_regs ier_ovr;
177 const struct stm32_adc_regs isr_eoc;
178 const struct stm32_adc_regs isr_ovr;
179 const struct stm32_adc_regs *sqr;
180 const struct stm32_adc_regs exten;
181 const struct stm32_adc_regs extsel;
182 const struct stm32_adc_regs res;
183 const struct stm32_adc_regs difsel;
184 const u32 smpr[2];
185 const struct stm32_adc_regs *smp_bits;
186 const struct stm32_adc_regs or_vddcore;
187 const struct stm32_adc_regs or_vddcpu;
188 const struct stm32_adc_regs or_vddq_ddr;
189 const struct stm32_adc_regs ccr_vbat;
190 const struct stm32_adc_regs ccr_vref;
191 };
192
193 struct stm32_adc;
194
195 /**
196 * struct stm32_adc_cfg - stm32 compatible configuration data
197 * @regs: registers descriptions
198 * @adc_info: per instance input channels definitions
199 * @trigs: external trigger sources
200 * @clk_required: clock is required
201 * @has_vregready: vregready status flag presence
202 * @has_boostmode: boost mode support flag
203 * @has_linearcal: linear calibration support flag
204 * @has_presel: channel preselection support flag
205 * @prepare: optional prepare routine (power-up, enable)
206 * @start_conv: routine to start conversions
207 * @stop_conv: routine to stop conversions
208 * @unprepare: optional unprepare routine (disable, power-down)
209 * @irq_clear: routine to clear irqs
210 * @smp_cycles: programmable sampling time (ADC clock cycles)
211 * @ts_int_ch: pointer to array of internal channels minimum sampling time in ns
212 */
213 struct stm32_adc_cfg {
214 const struct stm32_adc_regspec *regs;
215 const struct stm32_adc_info *adc_info;
216 struct stm32_adc_trig_info *trigs;
217 bool clk_required;
218 bool has_vregready;
219 bool has_boostmode;
220 bool has_linearcal;
221 bool has_presel;
222 int (*prepare)(struct iio_dev *);
223 void (*start_conv)(struct iio_dev *, bool dma);
224 void (*stop_conv)(struct iio_dev *);
225 void (*unprepare)(struct iio_dev *);
226 void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
227 const unsigned int *smp_cycles;
228 const unsigned int *ts_int_ch;
229 };
230
231 /**
232 * struct stm32_adc - private data of each ADC IIO instance
233 * @common: reference to ADC block common data
234 * @offset: ADC instance register offset in ADC block
235 * @cfg: compatible configuration data
236 * @completion: end of single conversion completion
237 * @buffer: data buffer + 8 bytes for timestamp if enabled
238 * @clk: clock for this adc instance
239 * @irq: interrupt for this adc instance
240 * @lock: spinlock
241 * @bufi: data buffer index
242 * @num_conv: expected number of scan conversions
243 * @res: data resolution (e.g. RES bitfield value)
244 * @trigger_polarity: external trigger polarity (e.g. exten)
245 * @dma_chan: dma channel
246 * @rx_buf: dma rx buffer cpu address
247 * @rx_dma_buf: dma rx buffer bus address
248 * @rx_buf_sz: dma rx buffer size
249 * @difsel: bitmask to set single-ended/differential channel
250 * @pcsel: bitmask to preselect channels on some devices
251 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
252 * @cal: optional calibration data on some devices
253 * @vrefint: internal reference voltage data
254 * @chan_name: channel name array
255 * @num_diff: number of differential channels
256 * @int_ch: internal channel indexes array
257 * @nsmps: number of channels with optional sample time
258 */
259 struct stm32_adc {
260 struct stm32_adc_common *common;
261 u32 offset;
262 const struct stm32_adc_cfg *cfg;
263 struct completion completion;
264 u16 buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
265 struct clk *clk;
266 int irq;
267 spinlock_t lock; /* interrupt lock */
268 unsigned int bufi;
269 unsigned int num_conv;
270 u32 res;
271 u32 trigger_polarity;
272 struct dma_chan *dma_chan;
273 u8 *rx_buf;
274 dma_addr_t rx_dma_buf;
275 unsigned int rx_buf_sz;
276 u32 difsel;
277 u32 pcsel;
278 u32 smpr_val[2];
279 struct stm32_adc_calib cal;
280 struct stm32_adc_vrefint vrefint;
281 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
282 u32 num_diff;
283 int int_ch[STM32_ADC_INT_CH_NB];
284 int nsmps;
285 };
286
287 struct stm32_adc_diff_channel {
288 u32 vinp;
289 u32 vinn;
290 };
291
292 /**
293 * struct stm32_adc_info - stm32 ADC, per instance config data
294 * @max_channels: Number of channels
295 * @resolutions: available resolutions
296 * @num_res: number of available resolutions
297 */
298 struct stm32_adc_info {
299 int max_channels;
300 const unsigned int *resolutions;
301 const unsigned int num_res;
302 };
303
304 static const unsigned int stm32f4_adc_resolutions[] = {
305 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
306 12, 10, 8, 6,
307 };
308
309 /* stm32f4 can have up to 16 channels */
310 static const struct stm32_adc_info stm32f4_adc_info = {
311 .max_channels = 16,
312 .resolutions = stm32f4_adc_resolutions,
313 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
314 };
315
316 static const unsigned int stm32h7_adc_resolutions[] = {
317 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
318 16, 14, 12, 10, 8,
319 };
320
321 /* stm32h7 can have up to 20 channels */
322 static const struct stm32_adc_info stm32h7_adc_info = {
323 .max_channels = STM32_ADC_CH_MAX,
324 .resolutions = stm32h7_adc_resolutions,
325 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
326 };
327
328 /* stm32mp13 can have up to 19 channels */
329 static const struct stm32_adc_info stm32mp13_adc_info = {
330 .max_channels = 19,
331 .resolutions = stm32f4_adc_resolutions,
332 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
333 };
334
335 /*
336 * stm32f4_sq - describe regular sequence registers
337 * - L: sequence len (register & bit field)
338 * - SQ1..SQ16: sequence entries (register & bit field)
339 */
340 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
341 /* L: len bit field description to be kept as first element */
342 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
343 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
344 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
345 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
346 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
347 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
348 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
349 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
350 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
351 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
352 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
353 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
354 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
355 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
356 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
357 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
358 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
359 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
360 };
361
362 /* STM32F4 external trigger sources for all instances */
363 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
364 { TIM1_CH1, STM32_EXT0 },
365 { TIM1_CH2, STM32_EXT1 },
366 { TIM1_CH3, STM32_EXT2 },
367 { TIM2_CH2, STM32_EXT3 },
368 { TIM2_CH3, STM32_EXT4 },
369 { TIM2_CH4, STM32_EXT5 },
370 { TIM2_TRGO, STM32_EXT6 },
371 { TIM3_CH1, STM32_EXT7 },
372 { TIM3_TRGO, STM32_EXT8 },
373 { TIM4_CH4, STM32_EXT9 },
374 { TIM5_CH1, STM32_EXT10 },
375 { TIM5_CH2, STM32_EXT11 },
376 { TIM5_CH3, STM32_EXT12 },
377 { TIM8_CH1, STM32_EXT13 },
378 { TIM8_TRGO, STM32_EXT14 },
379 {}, /* sentinel */
380 };
381
382 /*
383 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
384 * Sorted so it can be indexed by channel number.
385 */
386 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
387 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
388 { 1, GENMASK(2, 0), 0 },
389 { 1, GENMASK(5, 3), 3 },
390 { 1, GENMASK(8, 6), 6 },
391 { 1, GENMASK(11, 9), 9 },
392 { 1, GENMASK(14, 12), 12 },
393 { 1, GENMASK(17, 15), 15 },
394 { 1, GENMASK(20, 18), 18 },
395 { 1, GENMASK(23, 21), 21 },
396 { 1, GENMASK(26, 24), 24 },
397 { 1, GENMASK(29, 27), 27 },
398 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
399 { 0, GENMASK(2, 0), 0 },
400 { 0, GENMASK(5, 3), 3 },
401 { 0, GENMASK(8, 6), 6 },
402 { 0, GENMASK(11, 9), 9 },
403 { 0, GENMASK(14, 12), 12 },
404 { 0, GENMASK(17, 15), 15 },
405 { 0, GENMASK(20, 18), 18 },
406 { 0, GENMASK(23, 21), 21 },
407 { 0, GENMASK(26, 24), 24 },
408 };
409
410 /* STM32F4 programmable sampling time (ADC clock cycles) */
411 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
412 3, 15, 28, 56, 84, 112, 144, 480,
413 };
414
415 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
416 .dr = STM32F4_ADC_DR,
417 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
418 .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
419 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
420 .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
421 .sqr = stm32f4_sq,
422 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
423 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
424 STM32F4_EXTSEL_SHIFT },
425 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
426 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
427 .smp_bits = stm32f4_smp_bits,
428 };
429
430 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
431 /* L: len bit field description to be kept as first element */
432 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
433 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
434 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
435 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
436 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
437 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
438 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
439 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
440 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
441 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
442 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
443 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
444 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
445 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
446 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
447 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
448 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
449 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
450 };
451
452 /* STM32H7 external trigger sources for all instances */
453 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
454 { TIM1_CH1, STM32_EXT0 },
455 { TIM1_CH2, STM32_EXT1 },
456 { TIM1_CH3, STM32_EXT2 },
457 { TIM2_CH2, STM32_EXT3 },
458 { TIM3_TRGO, STM32_EXT4 },
459 { TIM4_CH4, STM32_EXT5 },
460 { TIM8_TRGO, STM32_EXT7 },
461 { TIM8_TRGO2, STM32_EXT8 },
462 { TIM1_TRGO, STM32_EXT9 },
463 { TIM1_TRGO2, STM32_EXT10 },
464 { TIM2_TRGO, STM32_EXT11 },
465 { TIM4_TRGO, STM32_EXT12 },
466 { TIM6_TRGO, STM32_EXT13 },
467 { TIM15_TRGO, STM32_EXT14 },
468 { TIM3_CH4, STM32_EXT15 },
469 { LPTIM1_OUT, STM32_EXT18 },
470 { LPTIM2_OUT, STM32_EXT19 },
471 { LPTIM3_OUT, STM32_EXT20 },
472 {},
473 };
474
475 /*
476 * stm32h7_smp_bits - describe sampling time register index & bit fields
477 * Sorted so it can be indexed by channel number.
478 */
479 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
480 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
481 { 0, GENMASK(2, 0), 0 },
482 { 0, GENMASK(5, 3), 3 },
483 { 0, GENMASK(8, 6), 6 },
484 { 0, GENMASK(11, 9), 9 },
485 { 0, GENMASK(14, 12), 12 },
486 { 0, GENMASK(17, 15), 15 },
487 { 0, GENMASK(20, 18), 18 },
488 { 0, GENMASK(23, 21), 21 },
489 { 0, GENMASK(26, 24), 24 },
490 { 0, GENMASK(29, 27), 27 },
491 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
492 { 1, GENMASK(2, 0), 0 },
493 { 1, GENMASK(5, 3), 3 },
494 { 1, GENMASK(8, 6), 6 },
495 { 1, GENMASK(11, 9), 9 },
496 { 1, GENMASK(14, 12), 12 },
497 { 1, GENMASK(17, 15), 15 },
498 { 1, GENMASK(20, 18), 18 },
499 { 1, GENMASK(23, 21), 21 },
500 { 1, GENMASK(26, 24), 24 },
501 { 1, GENMASK(29, 27), 27 },
502 };
503
504 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
505 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
506 1, 2, 8, 16, 32, 64, 387, 810,
507 };
508
509 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
510 .dr = STM32H7_ADC_DR,
511 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
512 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
513 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
514 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
515 .sqr = stm32h7_sq,
516 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
517 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
518 STM32H7_EXTSEL_SHIFT },
519 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
520 .difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
521 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
522 .smp_bits = stm32h7_smp_bits,
523 };
524
525 /* STM32MP13 programmable sampling time (ADC clock cycles, rounded down) */
526 static const unsigned int stm32mp13_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
527 2, 6, 12, 24, 47, 92, 247, 640,
528 };
529
530 static const struct stm32_adc_regspec stm32mp13_adc_regspec = {
531 .dr = STM32H7_ADC_DR,
532 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
533 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
534 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
535 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
536 .sqr = stm32h7_sq,
537 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
538 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
539 STM32H7_EXTSEL_SHIFT },
540 .res = { STM32H7_ADC_CFGR, STM32MP13_RES_MASK, STM32MP13_RES_SHIFT },
541 .difsel = { STM32MP13_ADC_DIFSEL, STM32MP13_DIFSEL_MASK},
542 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543 .smp_bits = stm32h7_smp_bits,
544 .or_vddcore = { STM32MP13_ADC2_OR, STM32MP13_OP0 },
545 .or_vddcpu = { STM32MP13_ADC2_OR, STM32MP13_OP1 },
546 .or_vddq_ddr = { STM32MP13_ADC2_OR, STM32MP13_OP2 },
547 .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
548 .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
549 };
550
551 static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
552 .dr = STM32H7_ADC_DR,
553 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
554 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
555 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
556 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
557 .sqr = stm32h7_sq,
558 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
559 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
560 STM32H7_EXTSEL_SHIFT },
561 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
562 .difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
563 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
564 .smp_bits = stm32h7_smp_bits,
565 .or_vddcore = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
566 .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
567 .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
568 };
569
570 /*
571 * STM32 ADC registers access routines
572 * @adc: stm32 adc instance
573 * @reg: reg offset in adc instance
574 *
575 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
576 * for adc1, adc2 and adc3.
577 */
stm32_adc_readl(struct stm32_adc * adc,u32 reg)578 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
579 {
580 return readl_relaxed(adc->common->base + adc->offset + reg);
581 }
582
583 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
584
585 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
586 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
587 cond, sleep_us, timeout_us)
588
stm32_adc_readw(struct stm32_adc * adc,u32 reg)589 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
590 {
591 return readw_relaxed(adc->common->base + adc->offset + reg);
592 }
593
stm32_adc_writel(struct stm32_adc * adc,u32 reg,u32 val)594 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
595 {
596 writel_relaxed(val, adc->common->base + adc->offset + reg);
597 }
598
stm32_adc_set_bits(struct stm32_adc * adc,u32 reg,u32 bits)599 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
600 {
601 unsigned long flags;
602
603 spin_lock_irqsave(&adc->lock, flags);
604 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
605 spin_unlock_irqrestore(&adc->lock, flags);
606 }
607
stm32_adc_set_bits_common(struct stm32_adc * adc,u32 reg,u32 bits)608 static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
609 {
610 spin_lock(&adc->common->lock);
611 writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
612 adc->common->base + reg);
613 spin_unlock(&adc->common->lock);
614 }
615
stm32_adc_clr_bits(struct stm32_adc * adc,u32 reg,u32 bits)616 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
617 {
618 unsigned long flags;
619
620 spin_lock_irqsave(&adc->lock, flags);
621 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
622 spin_unlock_irqrestore(&adc->lock, flags);
623 }
624
stm32_adc_clr_bits_common(struct stm32_adc * adc,u32 reg,u32 bits)625 static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
626 {
627 spin_lock(&adc->common->lock);
628 writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
629 adc->common->base + reg);
630 spin_unlock(&adc->common->lock);
631 }
632
633 /**
634 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
635 * @adc: stm32 adc instance
636 */
stm32_adc_conv_irq_enable(struct stm32_adc * adc)637 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
638 {
639 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
640 adc->cfg->regs->ier_eoc.mask);
641 };
642
643 /**
644 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
645 * @adc: stm32 adc instance
646 */
stm32_adc_conv_irq_disable(struct stm32_adc * adc)647 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
648 {
649 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
650 adc->cfg->regs->ier_eoc.mask);
651 }
652
stm32_adc_ovr_irq_enable(struct stm32_adc * adc)653 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
654 {
655 stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
656 adc->cfg->regs->ier_ovr.mask);
657 }
658
stm32_adc_ovr_irq_disable(struct stm32_adc * adc)659 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
660 {
661 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
662 adc->cfg->regs->ier_ovr.mask);
663 }
664
stm32_adc_set_res(struct stm32_adc * adc)665 static void stm32_adc_set_res(struct stm32_adc *adc)
666 {
667 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
668 u32 val;
669
670 val = stm32_adc_readl(adc, res->reg);
671 val = (val & ~res->mask) | (adc->res << res->shift);
672 stm32_adc_writel(adc, res->reg, val);
673 }
674
stm32_adc_hw_stop(struct device * dev)675 static int stm32_adc_hw_stop(struct device *dev)
676 {
677 struct iio_dev *indio_dev = dev_get_drvdata(dev);
678 struct stm32_adc *adc = iio_priv(indio_dev);
679
680 if (adc->cfg->unprepare)
681 adc->cfg->unprepare(indio_dev);
682
683 clk_disable_unprepare(adc->clk);
684
685 return 0;
686 }
687
stm32_adc_hw_start(struct device * dev)688 static int stm32_adc_hw_start(struct device *dev)
689 {
690 struct iio_dev *indio_dev = dev_get_drvdata(dev);
691 struct stm32_adc *adc = iio_priv(indio_dev);
692 int ret;
693
694 ret = clk_prepare_enable(adc->clk);
695 if (ret)
696 return ret;
697
698 stm32_adc_set_res(adc);
699
700 if (adc->cfg->prepare) {
701 ret = adc->cfg->prepare(indio_dev);
702 if (ret)
703 goto err_clk_dis;
704 }
705
706 return 0;
707
708 err_clk_dis:
709 clk_disable_unprepare(adc->clk);
710
711 return ret;
712 }
713
stm32_adc_int_ch_enable(struct iio_dev * indio_dev)714 static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
715 {
716 struct stm32_adc *adc = iio_priv(indio_dev);
717 u32 i;
718
719 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
720 if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
721 continue;
722
723 switch (i) {
724 case STM32_ADC_INT_CH_VDDCORE:
725 dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
726 stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcore.reg,
727 adc->cfg->regs->or_vddcore.mask);
728 break;
729 case STM32_ADC_INT_CH_VDDCPU:
730 dev_dbg(&indio_dev->dev, "Enable VDDCPU\n");
731 stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcpu.reg,
732 adc->cfg->regs->or_vddcpu.mask);
733 break;
734 case STM32_ADC_INT_CH_VDDQ_DDR:
735 dev_dbg(&indio_dev->dev, "Enable VDDQ_DDR\n");
736 stm32_adc_set_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
737 adc->cfg->regs->or_vddq_ddr.mask);
738 break;
739 case STM32_ADC_INT_CH_VREFINT:
740 dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
741 stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
742 adc->cfg->regs->ccr_vref.mask);
743 break;
744 case STM32_ADC_INT_CH_VBAT:
745 dev_dbg(&indio_dev->dev, "Enable VBAT\n");
746 stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
747 adc->cfg->regs->ccr_vbat.mask);
748 break;
749 }
750 }
751 }
752
stm32_adc_int_ch_disable(struct stm32_adc * adc)753 static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
754 {
755 u32 i;
756
757 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
758 if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
759 continue;
760
761 switch (i) {
762 case STM32_ADC_INT_CH_VDDCORE:
763 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcore.reg,
764 adc->cfg->regs->or_vddcore.mask);
765 break;
766 case STM32_ADC_INT_CH_VDDCPU:
767 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcpu.reg,
768 adc->cfg->regs->or_vddcpu.mask);
769 break;
770 case STM32_ADC_INT_CH_VDDQ_DDR:
771 stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
772 adc->cfg->regs->or_vddq_ddr.mask);
773 break;
774 case STM32_ADC_INT_CH_VREFINT:
775 stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
776 adc->cfg->regs->ccr_vref.mask);
777 break;
778 case STM32_ADC_INT_CH_VBAT:
779 stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
780 adc->cfg->regs->ccr_vbat.mask);
781 break;
782 }
783 }
784 }
785
786 /**
787 * stm32f4_adc_start_conv() - Start conversions for regular channels.
788 * @indio_dev: IIO device instance
789 * @dma: use dma to transfer conversion result
790 *
791 * Start conversions for regular channels.
792 * Also take care of normal or DMA mode. Circular DMA may be used for regular
793 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
794 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
795 */
stm32f4_adc_start_conv(struct iio_dev * indio_dev,bool dma)796 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
797 {
798 struct stm32_adc *adc = iio_priv(indio_dev);
799
800 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
801
802 if (dma)
803 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
804 STM32F4_DMA | STM32F4_DDS);
805
806 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
807
808 /* Wait for Power-up time (tSTAB from datasheet) */
809 usleep_range(2, 3);
810
811 /* Software start ? (e.g. trigger detection disabled ?) */
812 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
813 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
814 }
815
stm32f4_adc_stop_conv(struct iio_dev * indio_dev)816 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
817 {
818 struct stm32_adc *adc = iio_priv(indio_dev);
819
820 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
821 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
822
823 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
824 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
825 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
826 }
827
stm32f4_adc_irq_clear(struct iio_dev * indio_dev,u32 msk)828 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
829 {
830 struct stm32_adc *adc = iio_priv(indio_dev);
831
832 stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
833 }
834
stm32h7_adc_start_conv(struct iio_dev * indio_dev,bool dma)835 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
836 {
837 struct stm32_adc *adc = iio_priv(indio_dev);
838 enum stm32h7_adc_dmngt dmngt;
839 unsigned long flags;
840 u32 val;
841
842 if (dma)
843 dmngt = STM32H7_DMNGT_DMA_CIRC;
844 else
845 dmngt = STM32H7_DMNGT_DR_ONLY;
846
847 spin_lock_irqsave(&adc->lock, flags);
848 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
849 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
850 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
851 spin_unlock_irqrestore(&adc->lock, flags);
852
853 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
854 }
855
stm32h7_adc_stop_conv(struct iio_dev * indio_dev)856 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
857 {
858 struct stm32_adc *adc = iio_priv(indio_dev);
859 int ret;
860 u32 val;
861
862 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
863
864 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
865 !(val & (STM32H7_ADSTART)),
866 100, STM32_ADC_TIMEOUT_US);
867 if (ret)
868 dev_warn(&indio_dev->dev, "stop failed\n");
869
870 /* STM32H7_DMNGT_MASK covers STM32MP13_DMAEN & STM32MP13_DMACFG */
871 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
872 }
873
stm32h7_adc_irq_clear(struct iio_dev * indio_dev,u32 msk)874 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
875 {
876 struct stm32_adc *adc = iio_priv(indio_dev);
877 /* On STM32H7 IRQs are cleared by writing 1 into ISR register */
878 stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
879 }
880
stm32mp13_adc_start_conv(struct iio_dev * indio_dev,bool dma)881 static void stm32mp13_adc_start_conv(struct iio_dev *indio_dev, bool dma)
882 {
883 struct stm32_adc *adc = iio_priv(indio_dev);
884
885 if (dma)
886 stm32_adc_set_bits(adc, STM32H7_ADC_CFGR,
887 STM32MP13_DMAEN | STM32MP13_DMACFG);
888
889 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
890 }
891
stm32h7_adc_exit_pwr_down(struct iio_dev * indio_dev)892 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
893 {
894 struct stm32_adc *adc = iio_priv(indio_dev);
895 int ret;
896 u32 val;
897
898 /* Exit deep power down, then enable ADC voltage regulator */
899 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
900 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
901
902 if (adc->cfg->has_boostmode &&
903 adc->common->rate > STM32H7_BOOST_CLKRATE)
904 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
905
906 /* Wait for startup time */
907 if (!adc->cfg->has_vregready) {
908 usleep_range(10, 20);
909 return 0;
910 }
911
912 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
913 val & STM32MP1_VREGREADY, 100,
914 STM32_ADC_TIMEOUT_US);
915 if (ret) {
916 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
917 dev_err(&indio_dev->dev, "Failed to exit power down\n");
918 }
919
920 return ret;
921 }
922
stm32h7_adc_enter_pwr_down(struct stm32_adc * adc)923 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
924 {
925 if (adc->cfg->has_boostmode)
926 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
927
928 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
929 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
930 }
931
stm32h7_adc_enable(struct iio_dev * indio_dev)932 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
933 {
934 struct stm32_adc *adc = iio_priv(indio_dev);
935 int ret;
936 u32 val;
937
938 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
939
940 /* Poll for ADRDY to be set (after adc startup time) */
941 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
942 val & STM32H7_ADRDY,
943 100, STM32_ADC_TIMEOUT_US);
944 if (ret) {
945 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
946 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
947 } else {
948 /* Clear ADRDY by writing one */
949 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
950 }
951
952 return ret;
953 }
954
stm32h7_adc_disable(struct iio_dev * indio_dev)955 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
956 {
957 struct stm32_adc *adc = iio_priv(indio_dev);
958 int ret;
959 u32 val;
960
961 if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
962 return;
963
964 /* Disable ADC and wait until it's effectively disabled */
965 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
966 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
967 !(val & STM32H7_ADEN), 100,
968 STM32_ADC_TIMEOUT_US);
969 if (ret)
970 dev_warn(&indio_dev->dev, "Failed to disable\n");
971 }
972
973 /**
974 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
975 * @indio_dev: IIO device instance
976 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
977 */
stm32h7_adc_read_selfcalib(struct iio_dev * indio_dev)978 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
979 {
980 struct stm32_adc *adc = iio_priv(indio_dev);
981 int i, ret;
982 u32 lincalrdyw_mask, val;
983
984 /* Read linearity calibration */
985 lincalrdyw_mask = STM32H7_LINCALRDYW6;
986 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
987 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
988 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
989
990 /* Poll: wait calib data to be ready in CALFACT2 register */
991 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
992 !(val & lincalrdyw_mask),
993 100, STM32_ADC_TIMEOUT_US);
994 if (ret) {
995 dev_err(&indio_dev->dev, "Failed to read calfact\n");
996 return ret;
997 }
998
999 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1000 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
1001 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
1002
1003 lincalrdyw_mask >>= 1;
1004 }
1005 adc->cal.lincal_saved = true;
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
1012 * @indio_dev: IIO device instance
1013 * Note: ADC must be enabled, with no on-going conversions.
1014 */
stm32h7_adc_restore_selfcalib(struct iio_dev * indio_dev)1015 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
1016 {
1017 struct stm32_adc *adc = iio_priv(indio_dev);
1018 int i, ret;
1019 u32 lincalrdyw_mask, val;
1020
1021 lincalrdyw_mask = STM32H7_LINCALRDYW6;
1022 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
1023 /*
1024 * Write saved calibration data to shadow registers:
1025 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
1026 * data write. Then poll to wait for complete transfer.
1027 */
1028 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
1029 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
1030 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1031 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1032 val & lincalrdyw_mask,
1033 100, STM32_ADC_TIMEOUT_US);
1034 if (ret) {
1035 dev_err(&indio_dev->dev, "Failed to write calfact\n");
1036 return ret;
1037 }
1038
1039 /*
1040 * Read back calibration data, has two effects:
1041 * - It ensures bits LINCALRDYW[6..1] are kept cleared
1042 * for next time calibration needs to be restored.
1043 * - BTW, bit clear triggers a read, then check data has been
1044 * correctly written.
1045 */
1046 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1047 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1048 !(val & lincalrdyw_mask),
1049 100, STM32_ADC_TIMEOUT_US);
1050 if (ret) {
1051 dev_err(&indio_dev->dev, "Failed to read calfact\n");
1052 return ret;
1053 }
1054 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1055 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
1056 dev_err(&indio_dev->dev, "calfact not consistent\n");
1057 return -EIO;
1058 }
1059
1060 lincalrdyw_mask >>= 1;
1061 }
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * Fixed timeout value for ADC calibration.
1068 * worst cases:
1069 * - low clock frequency
1070 * - maximum prescalers
1071 * Calibration requires:
1072 * - 131,072 ADC clock cycle for the linear calibration
1073 * - 20 ADC clock cycle for the offset calibration
1074 *
1075 * Set to 100ms for now
1076 */
1077 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
1078
1079 /**
1080 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1081 * @indio_dev: IIO device instance
1082 * @do_lincal: linear calibration request flag
1083 * Note: Must be called once ADC is out of power down.
1084 *
1085 * Run offset calibration unconditionally.
1086 * Run linear calibration if requested & supported.
1087 */
stm32h7_adc_selfcalib(struct iio_dev * indio_dev,int do_lincal)1088 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev, int do_lincal)
1089 {
1090 struct stm32_adc *adc = iio_priv(indio_dev);
1091 int ret;
1092 u32 msk = STM32H7_ADCALDIF;
1093 u32 val;
1094
1095 if (adc->cfg->has_linearcal && do_lincal)
1096 msk |= STM32H7_ADCALLIN;
1097 /* ADC must be disabled for calibration */
1098 stm32h7_adc_disable(indio_dev);
1099
1100 /*
1101 * Select calibration mode:
1102 * - Offset calibration for single ended inputs
1103 * - No linearity calibration (do it later, before reading it)
1104 */
1105 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1106
1107 /* Start calibration, then wait for completion */
1108 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1109 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1110 !(val & STM32H7_ADCAL), 100,
1111 STM32H7_ADC_CALIB_TIMEOUT_US);
1112 if (ret) {
1113 dev_err(&indio_dev->dev, "calibration (single-ended) error %d\n", ret);
1114 goto out;
1115 }
1116
1117 /*
1118 * Select calibration mode, then start calibration:
1119 * - Offset calibration for differential input
1120 * - Linearity calibration (needs to be done only once for single/diff)
1121 * will run simultaneously with offset calibration.
1122 */
1123 stm32_adc_set_bits(adc, STM32H7_ADC_CR, msk);
1124 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1125 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1126 !(val & STM32H7_ADCAL), 100,
1127 STM32H7_ADC_CALIB_TIMEOUT_US);
1128 if (ret) {
1129 dev_err(&indio_dev->dev, "calibration (diff%s) error %d\n",
1130 (msk & STM32H7_ADCALLIN) ? "+linear" : "", ret);
1131 goto out;
1132 }
1133
1134 out:
1135 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1136
1137 return ret;
1138 }
1139
1140 /**
1141 * stm32h7_adc_check_selfcalib() - Check linear calibration status
1142 * @indio_dev: IIO device instance
1143 *
1144 * Used to check if linear calibration has been done.
1145 * Return true if linear calibration factors are already saved in private data
1146 * or if a linear calibration has been done at boot stage.
1147 */
stm32h7_adc_check_selfcalib(struct iio_dev * indio_dev)1148 static int stm32h7_adc_check_selfcalib(struct iio_dev *indio_dev)
1149 {
1150 struct stm32_adc *adc = iio_priv(indio_dev);
1151 u32 val;
1152
1153 if (adc->cal.lincal_saved)
1154 return true;
1155
1156 /*
1157 * Check if linear calibration factors are available in ADC registers,
1158 * by checking that all LINCALRDYWx bits are set.
1159 */
1160 val = stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_LINCALRDYW_MASK;
1161 if (val == STM32H7_LINCALRDYW_MASK)
1162 return true;
1163
1164 return false;
1165 }
1166
1167 /**
1168 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1169 * @indio_dev: IIO device instance
1170 * Leave power down mode.
1171 * Configure channels as single ended or differential before enabling ADC.
1172 * Enable ADC.
1173 * Restore calibration data.
1174 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1175 * - Only one input is selected for single ended (e.g. 'vinp')
1176 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1177 */
stm32h7_adc_prepare(struct iio_dev * indio_dev)1178 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1179 {
1180 struct stm32_adc *adc = iio_priv(indio_dev);
1181 int lincal_done = false;
1182 int ret;
1183
1184 ret = stm32h7_adc_exit_pwr_down(indio_dev);
1185 if (ret)
1186 return ret;
1187
1188 if (adc->cfg->has_linearcal)
1189 lincal_done = stm32h7_adc_check_selfcalib(indio_dev);
1190
1191 /* Always run offset calibration. Run linear calibration only once */
1192 ret = stm32h7_adc_selfcalib(indio_dev, !lincal_done);
1193 if (ret < 0)
1194 goto pwr_dwn;
1195
1196 stm32_adc_int_ch_enable(indio_dev);
1197
1198 stm32_adc_writel(adc, adc->cfg->regs->difsel.reg, adc->difsel);
1199
1200 ret = stm32h7_adc_enable(indio_dev);
1201 if (ret)
1202 goto ch_disable;
1203
1204 if (adc->cfg->has_linearcal) {
1205 if (!adc->cal.lincal_saved)
1206 ret = stm32h7_adc_read_selfcalib(indio_dev);
1207 else
1208 ret = stm32h7_adc_restore_selfcalib(indio_dev);
1209
1210 if (ret)
1211 goto disable;
1212 }
1213
1214 if (adc->cfg->has_presel)
1215 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1216
1217 return 0;
1218
1219 disable:
1220 stm32h7_adc_disable(indio_dev);
1221 ch_disable:
1222 stm32_adc_int_ch_disable(adc);
1223 pwr_dwn:
1224 stm32h7_adc_enter_pwr_down(adc);
1225
1226 return ret;
1227 }
1228
stm32h7_adc_unprepare(struct iio_dev * indio_dev)1229 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1230 {
1231 struct stm32_adc *adc = iio_priv(indio_dev);
1232
1233 if (adc->cfg->has_presel)
1234 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1235 stm32h7_adc_disable(indio_dev);
1236 stm32_adc_int_ch_disable(adc);
1237 stm32h7_adc_enter_pwr_down(adc);
1238 }
1239
1240 /**
1241 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1242 * @indio_dev: IIO device
1243 * @scan_mask: channels to be converted
1244 *
1245 * Conversion sequence :
1246 * Apply sampling time settings for all channels.
1247 * Configure ADC scan sequence based on selected channels in scan_mask.
1248 * Add channels to SQR registers, from scan_mask LSB to MSB, then
1249 * program sequence len.
1250 */
stm32_adc_conf_scan_seq(struct iio_dev * indio_dev,const unsigned long * scan_mask)1251 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1252 const unsigned long *scan_mask)
1253 {
1254 struct stm32_adc *adc = iio_priv(indio_dev);
1255 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1256 const struct iio_chan_spec *chan;
1257 u32 val, bit;
1258 int i = 0;
1259
1260 /* Apply sampling time settings */
1261 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1262 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1263
1264 for_each_set_bit(bit, scan_mask, iio_get_masklength(indio_dev)) {
1265 chan = indio_dev->channels + bit;
1266 /*
1267 * Assign one channel per SQ entry in regular
1268 * sequence, starting with SQ1.
1269 */
1270 i++;
1271 if (i > STM32_ADC_MAX_SQ)
1272 return -EINVAL;
1273
1274 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1275 __func__, chan->channel, i);
1276
1277 val = stm32_adc_readl(adc, sqr[i].reg);
1278 val &= ~sqr[i].mask;
1279 val |= chan->channel << sqr[i].shift;
1280 stm32_adc_writel(adc, sqr[i].reg, val);
1281 }
1282
1283 if (!i)
1284 return -EINVAL;
1285
1286 /* Sequence len */
1287 val = stm32_adc_readl(adc, sqr[0].reg);
1288 val &= ~sqr[0].mask;
1289 val |= ((i - 1) << sqr[0].shift);
1290 stm32_adc_writel(adc, sqr[0].reg, val);
1291
1292 return 0;
1293 }
1294
1295 /**
1296 * stm32_adc_get_trig_extsel() - Get external trigger selection
1297 * @indio_dev: IIO device structure
1298 * @trig: trigger
1299 *
1300 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1301 */
stm32_adc_get_trig_extsel(struct iio_dev * indio_dev,struct iio_trigger * trig)1302 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1303 struct iio_trigger *trig)
1304 {
1305 struct stm32_adc *adc = iio_priv(indio_dev);
1306 int i;
1307
1308 /* lookup triggers registered by stm32 timer trigger driver */
1309 for (i = 0; adc->cfg->trigs[i].name; i++) {
1310 /**
1311 * Checking both stm32 timer trigger type and trig name
1312 * should be safe against arbitrary trigger names.
1313 */
1314 if ((is_stm32_timer_trigger(trig) ||
1315 is_stm32_lptim_trigger(trig)) &&
1316 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1317 return adc->cfg->trigs[i].extsel;
1318 }
1319 }
1320
1321 return -EINVAL;
1322 }
1323
1324 /**
1325 * stm32_adc_set_trig() - Set a regular trigger
1326 * @indio_dev: IIO device
1327 * @trig: IIO trigger
1328 *
1329 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1330 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1331 * - if HW trigger enabled, set source & polarity
1332 */
stm32_adc_set_trig(struct iio_dev * indio_dev,struct iio_trigger * trig)1333 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1334 struct iio_trigger *trig)
1335 {
1336 struct stm32_adc *adc = iio_priv(indio_dev);
1337 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1338 unsigned long flags;
1339 int ret;
1340
1341 if (trig) {
1342 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1343 if (ret < 0)
1344 return ret;
1345
1346 /* set trigger source and polarity (default to rising edge) */
1347 extsel = ret;
1348 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1349 }
1350
1351 spin_lock_irqsave(&adc->lock, flags);
1352 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1353 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1354 val |= exten << adc->cfg->regs->exten.shift;
1355 val |= extsel << adc->cfg->regs->extsel.shift;
1356 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1357 spin_unlock_irqrestore(&adc->lock, flags);
1358
1359 return 0;
1360 }
1361
stm32_adc_set_trig_pol(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,unsigned int type)1362 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1363 const struct iio_chan_spec *chan,
1364 unsigned int type)
1365 {
1366 struct stm32_adc *adc = iio_priv(indio_dev);
1367
1368 adc->trigger_polarity = type;
1369
1370 return 0;
1371 }
1372
stm32_adc_get_trig_pol(struct iio_dev * indio_dev,const struct iio_chan_spec * chan)1373 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1374 const struct iio_chan_spec *chan)
1375 {
1376 struct stm32_adc *adc = iio_priv(indio_dev);
1377
1378 return adc->trigger_polarity;
1379 }
1380
1381 static const char * const stm32_trig_pol_items[] = {
1382 "rising-edge", "falling-edge", "both-edges",
1383 };
1384
1385 static const struct iio_enum stm32_adc_trig_pol = {
1386 .items = stm32_trig_pol_items,
1387 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1388 .get = stm32_adc_get_trig_pol,
1389 .set = stm32_adc_set_trig_pol,
1390 };
1391
1392 /**
1393 * stm32_adc_single_conv() - Performs a single conversion
1394 * @indio_dev: IIO device
1395 * @chan: IIO channel
1396 * @res: conversion result
1397 *
1398 * The function performs a single conversion on a given channel:
1399 * - Apply sampling time settings
1400 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1401 * - Use SW trigger
1402 * - Start conversion, then wait for interrupt completion.
1403 */
stm32_adc_single_conv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * res)1404 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1405 const struct iio_chan_spec *chan,
1406 int *res)
1407 {
1408 struct stm32_adc *adc = iio_priv(indio_dev);
1409 struct device *dev = indio_dev->dev.parent;
1410 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1411 long time_left;
1412 u32 val;
1413 int ret;
1414
1415 reinit_completion(&adc->completion);
1416
1417 adc->bufi = 0;
1418
1419 ret = pm_runtime_resume_and_get(dev);
1420 if (ret < 0)
1421 return ret;
1422
1423 /* Apply sampling time settings */
1424 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1425 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1426
1427 /* Program chan number in regular sequence (SQ1) */
1428 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1429 val &= ~regs->sqr[1].mask;
1430 val |= chan->channel << regs->sqr[1].shift;
1431 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1432
1433 /* Set regular sequence len (0 for 1 conversion) */
1434 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1435
1436 /* Trigger detection disabled (conversion can be launched in SW) */
1437 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1438
1439 stm32_adc_conv_irq_enable(adc);
1440
1441 adc->cfg->start_conv(indio_dev, false);
1442
1443 time_left = wait_for_completion_interruptible_timeout(
1444 &adc->completion, STM32_ADC_TIMEOUT);
1445 if (time_left == 0) {
1446 ret = -ETIMEDOUT;
1447 } else if (time_left < 0) {
1448 ret = time_left;
1449 } else {
1450 *res = adc->buffer[0];
1451 ret = IIO_VAL_INT;
1452 }
1453
1454 adc->cfg->stop_conv(indio_dev);
1455
1456 stm32_adc_conv_irq_disable(adc);
1457
1458 pm_runtime_mark_last_busy(dev);
1459 pm_runtime_put_autosuspend(dev);
1460
1461 return ret;
1462 }
1463
stm32_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)1464 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1465 struct iio_chan_spec const *chan,
1466 int *val, int *val2, long mask)
1467 {
1468 struct stm32_adc *adc = iio_priv(indio_dev);
1469 int ret;
1470
1471 switch (mask) {
1472 case IIO_CHAN_INFO_RAW:
1473 case IIO_CHAN_INFO_PROCESSED:
1474 ret = iio_device_claim_direct_mode(indio_dev);
1475 if (ret)
1476 return ret;
1477 if (chan->type == IIO_VOLTAGE)
1478 ret = stm32_adc_single_conv(indio_dev, chan, val);
1479 else
1480 ret = -EINVAL;
1481
1482 if (mask == IIO_CHAN_INFO_PROCESSED)
1483 *val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1484
1485 iio_device_release_direct_mode(indio_dev);
1486 return ret;
1487
1488 case IIO_CHAN_INFO_SCALE:
1489 if (chan->differential) {
1490 *val = adc->common->vref_mv * 2;
1491 *val2 = chan->scan_type.realbits;
1492 } else {
1493 *val = adc->common->vref_mv;
1494 *val2 = chan->scan_type.realbits;
1495 }
1496 return IIO_VAL_FRACTIONAL_LOG2;
1497
1498 case IIO_CHAN_INFO_OFFSET:
1499 if (chan->differential)
1500 /* ADC_full_scale / 2 */
1501 *val = -((1 << chan->scan_type.realbits) / 2);
1502 else
1503 *val = 0;
1504 return IIO_VAL_INT;
1505
1506 default:
1507 return -EINVAL;
1508 }
1509 }
1510
stm32_adc_irq_clear(struct iio_dev * indio_dev,u32 msk)1511 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1512 {
1513 struct stm32_adc *adc = iio_priv(indio_dev);
1514
1515 adc->cfg->irq_clear(indio_dev, msk);
1516 }
1517
stm32_adc_threaded_isr(int irq,void * data)1518 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1519 {
1520 struct iio_dev *indio_dev = data;
1521 struct stm32_adc *adc = iio_priv(indio_dev);
1522 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1523 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1524
1525 /* Check ovr status right now, as ovr mask should be already disabled */
1526 if (status & regs->isr_ovr.mask) {
1527 /*
1528 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1529 * This requires to stop ADC first. OVR bit state in ISR,
1530 * is propaged to CSR register by hardware.
1531 */
1532 adc->cfg->stop_conv(indio_dev);
1533 stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1534 dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1535 return IRQ_HANDLED;
1536 }
1537
1538 return IRQ_NONE;
1539 }
1540
stm32_adc_isr(int irq,void * data)1541 static irqreturn_t stm32_adc_isr(int irq, void *data)
1542 {
1543 struct iio_dev *indio_dev = data;
1544 struct stm32_adc *adc = iio_priv(indio_dev);
1545 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1546 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1547
1548 if (status & regs->isr_ovr.mask) {
1549 /*
1550 * Overrun occurred on regular conversions: data for wrong
1551 * channel may be read. Unconditionally disable interrupts
1552 * to stop processing data and print error message.
1553 * Restarting the capture can be done by disabling, then
1554 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1555 */
1556 stm32_adc_ovr_irq_disable(adc);
1557 stm32_adc_conv_irq_disable(adc);
1558 return IRQ_WAKE_THREAD;
1559 }
1560
1561 if (status & regs->isr_eoc.mask) {
1562 /* Reading DR also clears EOC status flag */
1563 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1564 if (iio_buffer_enabled(indio_dev)) {
1565 adc->bufi++;
1566 if (adc->bufi >= adc->num_conv) {
1567 stm32_adc_conv_irq_disable(adc);
1568 iio_trigger_poll(indio_dev->trig);
1569 }
1570 } else {
1571 complete(&adc->completion);
1572 }
1573 return IRQ_HANDLED;
1574 }
1575
1576 return IRQ_NONE;
1577 }
1578
1579 /**
1580 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1581 * @indio_dev: IIO device
1582 * @trig: new trigger
1583 *
1584 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1585 * driver, -EINVAL otherwise.
1586 */
stm32_adc_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1587 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1588 struct iio_trigger *trig)
1589 {
1590 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1591 }
1592
stm32_adc_set_watermark(struct iio_dev * indio_dev,unsigned int val)1593 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1594 {
1595 struct stm32_adc *adc = iio_priv(indio_dev);
1596 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1597 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1598
1599 /*
1600 * dma cyclic transfers are used, buffer is split into two periods.
1601 * There should be :
1602 * - always one buffer (period) dma is working on
1603 * - one buffer (period) driver can push data.
1604 */
1605 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1606 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1607
1608 return 0;
1609 }
1610
stm32_adc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1611 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1612 const unsigned long *scan_mask)
1613 {
1614 struct stm32_adc *adc = iio_priv(indio_dev);
1615 struct device *dev = indio_dev->dev.parent;
1616 int ret;
1617
1618 ret = pm_runtime_resume_and_get(dev);
1619 if (ret < 0)
1620 return ret;
1621
1622 adc->num_conv = bitmap_weight(scan_mask, iio_get_masklength(indio_dev));
1623
1624 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1625 pm_runtime_mark_last_busy(dev);
1626 pm_runtime_put_autosuspend(dev);
1627
1628 return ret;
1629 }
1630
stm32_adc_fwnode_xlate(struct iio_dev * indio_dev,const struct fwnode_reference_args * iiospec)1631 static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev,
1632 const struct fwnode_reference_args *iiospec)
1633 {
1634 int i;
1635
1636 for (i = 0; i < indio_dev->num_channels; i++)
1637 if (indio_dev->channels[i].channel == iiospec->args[0])
1638 return i;
1639
1640 return -EINVAL;
1641 }
1642
1643 /**
1644 * stm32_adc_debugfs_reg_access - read or write register value
1645 * @indio_dev: IIO device structure
1646 * @reg: register offset
1647 * @writeval: value to write
1648 * @readval: value to read
1649 *
1650 * To read a value from an ADC register:
1651 * echo [ADC reg offset] > direct_reg_access
1652 * cat direct_reg_access
1653 *
1654 * To write a value in a ADC register:
1655 * echo [ADC_reg_offset] [value] > direct_reg_access
1656 */
stm32_adc_debugfs_reg_access(struct iio_dev * indio_dev,unsigned reg,unsigned writeval,unsigned * readval)1657 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1658 unsigned reg, unsigned writeval,
1659 unsigned *readval)
1660 {
1661 struct stm32_adc *adc = iio_priv(indio_dev);
1662 struct device *dev = indio_dev->dev.parent;
1663 int ret;
1664
1665 ret = pm_runtime_resume_and_get(dev);
1666 if (ret < 0)
1667 return ret;
1668
1669 if (!readval)
1670 stm32_adc_writel(adc, reg, writeval);
1671 else
1672 *readval = stm32_adc_readl(adc, reg);
1673
1674 pm_runtime_mark_last_busy(dev);
1675 pm_runtime_put_autosuspend(dev);
1676
1677 return 0;
1678 }
1679
1680 static const struct iio_info stm32_adc_iio_info = {
1681 .read_raw = stm32_adc_read_raw,
1682 .validate_trigger = stm32_adc_validate_trigger,
1683 .hwfifo_set_watermark = stm32_adc_set_watermark,
1684 .update_scan_mode = stm32_adc_update_scan_mode,
1685 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1686 .fwnode_xlate = stm32_adc_fwnode_xlate,
1687 };
1688
stm32_adc_dma_residue(struct stm32_adc * adc)1689 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1690 {
1691 struct dma_tx_state state;
1692 enum dma_status status;
1693
1694 status = dmaengine_tx_status(adc->dma_chan,
1695 adc->dma_chan->cookie,
1696 &state);
1697 if (status == DMA_IN_PROGRESS) {
1698 /* Residue is size in bytes from end of buffer */
1699 unsigned int i = adc->rx_buf_sz - state.residue;
1700 unsigned int size;
1701
1702 /* Return available bytes */
1703 if (i >= adc->bufi)
1704 size = i - adc->bufi;
1705 else
1706 size = adc->rx_buf_sz + i - adc->bufi;
1707
1708 return size;
1709 }
1710
1711 return 0;
1712 }
1713
stm32_adc_dma_buffer_done(void * data)1714 static void stm32_adc_dma_buffer_done(void *data)
1715 {
1716 struct iio_dev *indio_dev = data;
1717 struct stm32_adc *adc = iio_priv(indio_dev);
1718 int residue = stm32_adc_dma_residue(adc);
1719
1720 /*
1721 * In DMA mode the trigger services of IIO are not used
1722 * (e.g. no call to iio_trigger_poll).
1723 * Calling irq handler associated to the hardware trigger is not
1724 * relevant as the conversions have already been done. Data
1725 * transfers are performed directly in DMA callback instead.
1726 * This implementation avoids to call trigger irq handler that
1727 * may sleep, in an atomic context (DMA irq handler context).
1728 */
1729 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1730
1731 while (residue >= indio_dev->scan_bytes) {
1732 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1733
1734 iio_push_to_buffers(indio_dev, buffer);
1735
1736 residue -= indio_dev->scan_bytes;
1737 adc->bufi += indio_dev->scan_bytes;
1738 if (adc->bufi >= adc->rx_buf_sz)
1739 adc->bufi = 0;
1740 }
1741 }
1742
stm32_adc_dma_start(struct iio_dev * indio_dev)1743 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1744 {
1745 struct stm32_adc *adc = iio_priv(indio_dev);
1746 struct dma_async_tx_descriptor *desc;
1747 dma_cookie_t cookie;
1748 int ret;
1749
1750 if (!adc->dma_chan)
1751 return 0;
1752
1753 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1754 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1755
1756 /* Prepare a DMA cyclic transaction */
1757 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1758 adc->rx_dma_buf,
1759 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1760 DMA_DEV_TO_MEM,
1761 DMA_PREP_INTERRUPT);
1762 if (!desc)
1763 return -EBUSY;
1764
1765 desc->callback = stm32_adc_dma_buffer_done;
1766 desc->callback_param = indio_dev;
1767
1768 cookie = dmaengine_submit(desc);
1769 ret = dma_submit_error(cookie);
1770 if (ret) {
1771 dmaengine_terminate_sync(adc->dma_chan);
1772 return ret;
1773 }
1774
1775 /* Issue pending DMA requests */
1776 dma_async_issue_pending(adc->dma_chan);
1777
1778 return 0;
1779 }
1780
stm32_adc_buffer_postenable(struct iio_dev * indio_dev)1781 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1782 {
1783 struct stm32_adc *adc = iio_priv(indio_dev);
1784 struct device *dev = indio_dev->dev.parent;
1785 int ret;
1786
1787 ret = pm_runtime_resume_and_get(dev);
1788 if (ret < 0)
1789 return ret;
1790
1791 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1792 if (ret) {
1793 dev_err(&indio_dev->dev, "Can't set trigger\n");
1794 goto err_pm_put;
1795 }
1796
1797 ret = stm32_adc_dma_start(indio_dev);
1798 if (ret) {
1799 dev_err(&indio_dev->dev, "Can't start dma\n");
1800 goto err_clr_trig;
1801 }
1802
1803 /* Reset adc buffer index */
1804 adc->bufi = 0;
1805
1806 stm32_adc_ovr_irq_enable(adc);
1807
1808 if (!adc->dma_chan)
1809 stm32_adc_conv_irq_enable(adc);
1810
1811 adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1812
1813 return 0;
1814
1815 err_clr_trig:
1816 stm32_adc_set_trig(indio_dev, NULL);
1817 err_pm_put:
1818 pm_runtime_mark_last_busy(dev);
1819 pm_runtime_put_autosuspend(dev);
1820
1821 return ret;
1822 }
1823
stm32_adc_buffer_predisable(struct iio_dev * indio_dev)1824 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1825 {
1826 struct stm32_adc *adc = iio_priv(indio_dev);
1827 struct device *dev = indio_dev->dev.parent;
1828
1829 adc->cfg->stop_conv(indio_dev);
1830 if (!adc->dma_chan)
1831 stm32_adc_conv_irq_disable(adc);
1832
1833 stm32_adc_ovr_irq_disable(adc);
1834
1835 if (adc->dma_chan)
1836 dmaengine_terminate_sync(adc->dma_chan);
1837
1838 if (stm32_adc_set_trig(indio_dev, NULL))
1839 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1840
1841 pm_runtime_mark_last_busy(dev);
1842 pm_runtime_put_autosuspend(dev);
1843
1844 return 0;
1845 }
1846
1847 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1848 .postenable = &stm32_adc_buffer_postenable,
1849 .predisable = &stm32_adc_buffer_predisable,
1850 };
1851
stm32_adc_trigger_handler(int irq,void * p)1852 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1853 {
1854 struct iio_poll_func *pf = p;
1855 struct iio_dev *indio_dev = pf->indio_dev;
1856 struct stm32_adc *adc = iio_priv(indio_dev);
1857
1858 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1859
1860 /* reset buffer index */
1861 adc->bufi = 0;
1862 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1863 pf->timestamp);
1864 iio_trigger_notify_done(indio_dev->trig);
1865
1866 /* re-enable eoc irq */
1867 stm32_adc_conv_irq_enable(adc);
1868
1869 return IRQ_HANDLED;
1870 }
1871
1872 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1873 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1874 {
1875 .name = "trigger_polarity_available",
1876 .shared = IIO_SHARED_BY_ALL,
1877 .read = iio_enum_available_read,
1878 .private = (uintptr_t)&stm32_adc_trig_pol,
1879 },
1880 {},
1881 };
1882
stm32_adc_debugfs_init(struct iio_dev * indio_dev)1883 static void stm32_adc_debugfs_init(struct iio_dev *indio_dev)
1884 {
1885 struct stm32_adc *adc = iio_priv(indio_dev);
1886 struct dentry *d = iio_get_debugfs_dentry(indio_dev);
1887 struct stm32_adc_calib *cal = &adc->cal;
1888 char buf[16];
1889 unsigned int i;
1890
1891 if (!adc->cfg->has_linearcal)
1892 return;
1893
1894 for (i = 0; i < STM32H7_LINCALFACT_NUM; i++) {
1895 snprintf(buf, sizeof(buf), "lincalfact%d", i + 1);
1896 debugfs_create_u32(buf, 0444, d, &cal->lincalfact[i]);
1897 }
1898 }
1899
stm32_adc_fw_get_resolution(struct iio_dev * indio_dev)1900 static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev)
1901 {
1902 struct device *dev = &indio_dev->dev;
1903 struct stm32_adc *adc = iio_priv(indio_dev);
1904 unsigned int i;
1905 u32 res;
1906
1907 if (device_property_read_u32(dev, "assigned-resolution-bits", &res))
1908 res = adc->cfg->adc_info->resolutions[0];
1909
1910 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1911 if (res == adc->cfg->adc_info->resolutions[i])
1912 break;
1913 if (i >= adc->cfg->adc_info->num_res) {
1914 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1915 return -EINVAL;
1916 }
1917
1918 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1919 adc->res = i;
1920
1921 return 0;
1922 }
1923
stm32_adc_smpr_init(struct stm32_adc * adc,int channel,u32 smp_ns)1924 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1925 {
1926 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1927 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1928 unsigned int i, smp, r = smpr->reg;
1929
1930 /*
1931 * For internal channels, ensure that the sampling time cannot
1932 * be lower than the one specified in the datasheet
1933 */
1934 for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
1935 if (channel == adc->int_ch[i] && adc->int_ch[i] != STM32_ADC_INT_CH_NONE)
1936 smp_ns = max(smp_ns, adc->cfg->ts_int_ch[i]);
1937
1938 /* Determine sampling time (ADC clock cycles) */
1939 period_ns = NSEC_PER_SEC / adc->common->rate;
1940 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1941 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1942 break;
1943 if (smp > STM32_ADC_MAX_SMP)
1944 smp = STM32_ADC_MAX_SMP;
1945
1946 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1947 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1948 }
1949
stm32_adc_chan_init_one(struct iio_dev * indio_dev,struct iio_chan_spec * chan,u32 vinp,u32 vinn,int scan_index,bool differential)1950 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1951 struct iio_chan_spec *chan, u32 vinp,
1952 u32 vinn, int scan_index, bool differential)
1953 {
1954 struct stm32_adc *adc = iio_priv(indio_dev);
1955 char *name = adc->chan_name[vinp];
1956
1957 chan->type = IIO_VOLTAGE;
1958 chan->channel = vinp;
1959 if (differential) {
1960 chan->differential = 1;
1961 chan->channel2 = vinn;
1962 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1963 } else {
1964 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1965 }
1966 chan->datasheet_name = name;
1967 chan->scan_index = scan_index;
1968 chan->indexed = 1;
1969 if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1970 chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1971 else
1972 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1973 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1974 BIT(IIO_CHAN_INFO_OFFSET);
1975 chan->scan_type.sign = 'u';
1976 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1977 chan->scan_type.storagebits = 16;
1978 chan->ext_info = stm32_adc_ext_info;
1979
1980 /* pre-build selected channels mask */
1981 adc->pcsel |= BIT(chan->channel);
1982 if (differential) {
1983 /* pre-build diff channels mask */
1984 adc->difsel |= BIT(chan->channel) & adc->cfg->regs->difsel.mask;
1985 /* Also add negative input to pre-selected channels */
1986 adc->pcsel |= BIT(chan->channel2);
1987 }
1988 }
1989
stm32_adc_get_legacy_chan_count(struct iio_dev * indio_dev,struct stm32_adc * adc)1990 static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1991 {
1992 struct device *dev = &indio_dev->dev;
1993 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1994 int num_channels = 0, ret;
1995
1996 dev_dbg(&indio_dev->dev, "using legacy channel config\n");
1997
1998 ret = device_property_count_u32(dev, "st,adc-channels");
1999 if (ret > adc_info->max_channels) {
2000 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
2001 return -EINVAL;
2002 } else if (ret > 0) {
2003 num_channels += ret;
2004 }
2005
2006 /*
2007 * each st,adc-diff-channels is a group of 2 u32 so we divide @ret
2008 * to get the *real* number of channels.
2009 */
2010 ret = device_property_count_u32(dev, "st,adc-diff-channels");
2011 if (ret > 0) {
2012 ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32));
2013 if (ret > adc_info->max_channels) {
2014 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
2015 return -EINVAL;
2016 } else if (ret > 0) {
2017 adc->num_diff = ret;
2018 num_channels += ret;
2019 }
2020 }
2021
2022 /* Optional sample time is provided either for each, or all channels */
2023 adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs");
2024 if (adc->nsmps > 1 && adc->nsmps != num_channels) {
2025 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
2026 return -EINVAL;
2027 }
2028
2029 return num_channels;
2030 }
2031
stm32_adc_legacy_chan_init(struct iio_dev * indio_dev,struct stm32_adc * adc,struct iio_chan_spec * channels,int nchans)2032 static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
2033 struct stm32_adc *adc,
2034 struct iio_chan_spec *channels,
2035 int nchans)
2036 {
2037 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2038 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
2039 struct device *dev = &indio_dev->dev;
2040 u32 num_diff = adc->num_diff;
2041 int num_se = nchans - num_diff;
2042 int size = num_diff * sizeof(*diff) / sizeof(u32);
2043 int scan_index = 0, ret, i, c;
2044 u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX];
2045
2046 if (num_diff) {
2047 ret = device_property_read_u32_array(dev, "st,adc-diff-channels",
2048 (u32 *)diff, size);
2049 if (ret) {
2050 dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
2051 return ret;
2052 }
2053
2054 for (i = 0; i < num_diff; i++) {
2055 if (diff[i].vinp >= adc_info->max_channels ||
2056 diff[i].vinn >= adc_info->max_channels) {
2057 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2058 diff[i].vinp, diff[i].vinn);
2059 return -EINVAL;
2060 }
2061
2062 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2063 diff[i].vinp, diff[i].vinn,
2064 scan_index, true);
2065 scan_index++;
2066 }
2067 }
2068 if (num_se > 0) {
2069 ret = device_property_read_u32_array(dev, "st,adc-channels", chans, num_se);
2070 if (ret) {
2071 dev_err(&indio_dev->dev, "Failed to get st,adc-channels %d\n", ret);
2072 return ret;
2073 }
2074
2075 for (c = 0; c < num_se; c++) {
2076 if (chans[c] >= adc_info->max_channels) {
2077 dev_err(&indio_dev->dev, "Invalid channel %d\n",
2078 chans[c]);
2079 return -EINVAL;
2080 }
2081
2082 /* Channel can't be configured both as single-ended & diff */
2083 for (i = 0; i < num_diff; i++) {
2084 if (chans[c] == diff[i].vinp) {
2085 dev_err(&indio_dev->dev, "channel %d misconfigured\n",
2086 chans[c]);
2087 return -EINVAL;
2088 }
2089 }
2090 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2091 chans[c], 0, scan_index, false);
2092 scan_index++;
2093 }
2094 }
2095
2096 if (adc->nsmps > 0) {
2097 ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs",
2098 smps, adc->nsmps);
2099 if (ret)
2100 return ret;
2101 }
2102
2103 for (i = 0; i < scan_index; i++) {
2104 /*
2105 * This check is used with the above logic so that smp value
2106 * will only be modified if valid u32 value can be decoded. This
2107 * allows to get either no value, 1 shared value for all indexes,
2108 * or one value per channel. The point is to have the same
2109 * behavior as 'of_property_read_u32_index()'.
2110 */
2111 if (i < adc->nsmps)
2112 smp = smps[i];
2113
2114 /* Prepare sampling time settings */
2115 stm32_adc_smpr_init(adc, channels[i].channel, smp);
2116 }
2117
2118 return scan_index;
2119 }
2120
stm32_adc_populate_int_ch(struct iio_dev * indio_dev,const char * ch_name,int chan)2121 static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
2122 int chan)
2123 {
2124 struct stm32_adc *adc = iio_priv(indio_dev);
2125 u16 vrefint;
2126 int i, ret;
2127
2128 for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
2129 if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
2130 /* Check internal channel availability */
2131 switch (i) {
2132 case STM32_ADC_INT_CH_VDDCORE:
2133 if (!adc->cfg->regs->or_vddcore.reg)
2134 dev_warn(&indio_dev->dev,
2135 "%s channel not available\n", ch_name);
2136 break;
2137 case STM32_ADC_INT_CH_VDDCPU:
2138 if (!adc->cfg->regs->or_vddcpu.reg)
2139 dev_warn(&indio_dev->dev,
2140 "%s channel not available\n", ch_name);
2141 break;
2142 case STM32_ADC_INT_CH_VDDQ_DDR:
2143 if (!adc->cfg->regs->or_vddq_ddr.reg)
2144 dev_warn(&indio_dev->dev,
2145 "%s channel not available\n", ch_name);
2146 break;
2147 case STM32_ADC_INT_CH_VREFINT:
2148 if (!adc->cfg->regs->ccr_vref.reg)
2149 dev_warn(&indio_dev->dev,
2150 "%s channel not available\n", ch_name);
2151 break;
2152 case STM32_ADC_INT_CH_VBAT:
2153 if (!adc->cfg->regs->ccr_vbat.reg)
2154 dev_warn(&indio_dev->dev,
2155 "%s channel not available\n", ch_name);
2156 break;
2157 }
2158
2159 if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
2160 adc->int_ch[i] = chan;
2161 break;
2162 }
2163
2164 /* Get calibration data for vrefint channel */
2165 ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
2166 if (ret && ret != -ENOENT) {
2167 return dev_err_probe(indio_dev->dev.parent, ret,
2168 "nvmem access error\n");
2169 }
2170 if (ret == -ENOENT) {
2171 dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
2172 return ret;
2173 } else if (!vrefint) {
2174 dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
2175 return -ENOENT;
2176 }
2177 adc->int_ch[i] = chan;
2178 adc->vrefint.vrefint_cal = vrefint;
2179 }
2180 }
2181
2182 return 0;
2183 }
2184
stm32_adc_generic_chan_init(struct iio_dev * indio_dev,struct stm32_adc * adc,struct iio_chan_spec * channels)2185 static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2186 struct stm32_adc *adc,
2187 struct iio_chan_spec *channels)
2188 {
2189 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2190 struct device *dev = &indio_dev->dev;
2191 const char *name;
2192 int val, scan_index = 0, ret;
2193 bool differential;
2194 u32 vin[2];
2195
2196 device_for_each_child_node_scoped(dev, child) {
2197 ret = fwnode_property_read_u32(child, "reg", &val);
2198 if (ret)
2199 return dev_err_probe(dev, ret,
2200 "Missing channel index\n");
2201
2202 ret = fwnode_property_read_string(child, "label", &name);
2203 /* label is optional */
2204 if (!ret) {
2205 if (strlen(name) >= STM32_ADC_CH_SZ)
2206 return dev_err_probe(dev, -EINVAL,
2207 "Label %s exceeds %d characters\n",
2208 name, STM32_ADC_CH_SZ);
2209
2210 strscpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2211 ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2212 if (ret == -ENOENT)
2213 continue;
2214 else if (ret)
2215 return ret;
2216 } else if (ret != -EINVAL) {
2217 return dev_err_probe(dev, ret, "Invalid label\n");
2218 }
2219
2220 if (val >= adc_info->max_channels)
2221 return dev_err_probe(dev, -EINVAL,
2222 "Invalid channel %d\n", val);
2223
2224 differential = false;
2225 ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2);
2226 /* diff-channels is optional */
2227 if (!ret) {
2228 differential = true;
2229 if (vin[0] != val || vin[1] >= adc_info->max_channels)
2230 return dev_err_probe(dev, -EINVAL,
2231 "Invalid channel in%d-in%d\n",
2232 vin[0], vin[1]);
2233 } else if (ret != -EINVAL) {
2234 return dev_err_probe(dev, ret,
2235 "Invalid diff-channels property\n");
2236 }
2237
2238 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2239 vin[1], scan_index, differential);
2240
2241 val = 0;
2242 ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val);
2243 /* st,min-sample-time-ns is optional */
2244 if (ret && ret != -EINVAL)
2245 return dev_err_probe(dev, ret,
2246 "Invalid st,min-sample-time-ns property\n");
2247
2248 stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2249 if (differential)
2250 stm32_adc_smpr_init(adc, vin[1], val);
2251
2252 scan_index++;
2253 }
2254
2255 return scan_index;
2256 }
2257
stm32_adc_chan_fw_init(struct iio_dev * indio_dev,bool timestamping)2258 static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping)
2259 {
2260 struct stm32_adc *adc = iio_priv(indio_dev);
2261 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2262 struct iio_chan_spec *channels;
2263 int scan_index = 0, num_channels = 0, ret, i;
2264 bool legacy = false;
2265
2266 for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2267 adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2268
2269 num_channels = device_get_child_node_count(&indio_dev->dev);
2270 /* If no channels have been found, fallback to channels legacy properties. */
2271 if (!num_channels) {
2272 legacy = true;
2273
2274 ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2275 if (!ret) {
2276 dev_err(indio_dev->dev.parent, "No channel found\n");
2277 return -ENODATA;
2278 } else if (ret < 0) {
2279 return ret;
2280 }
2281
2282 num_channels = ret;
2283 }
2284
2285 if (num_channels > adc_info->max_channels) {
2286 dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2287 num_channels, adc_info->max_channels);
2288 return -EINVAL;
2289 }
2290
2291 if (timestamping)
2292 num_channels++;
2293
2294 channels = devm_kcalloc(&indio_dev->dev, num_channels,
2295 sizeof(struct iio_chan_spec), GFP_KERNEL);
2296 if (!channels)
2297 return -ENOMEM;
2298
2299 if (legacy)
2300 ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels,
2301 timestamping ? num_channels - 1 : num_channels);
2302 else
2303 ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2304 if (ret < 0)
2305 return ret;
2306 scan_index = ret;
2307
2308 if (timestamping) {
2309 struct iio_chan_spec *timestamp = &channels[scan_index];
2310
2311 timestamp->type = IIO_TIMESTAMP;
2312 timestamp->channel = -1;
2313 timestamp->scan_index = scan_index;
2314 timestamp->scan_type.sign = 's';
2315 timestamp->scan_type.realbits = 64;
2316 timestamp->scan_type.storagebits = 64;
2317
2318 scan_index++;
2319 }
2320
2321 indio_dev->num_channels = scan_index;
2322 indio_dev->channels = channels;
2323
2324 return 0;
2325 }
2326
stm32_adc_dma_request(struct device * dev,struct iio_dev * indio_dev)2327 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2328 {
2329 struct stm32_adc *adc = iio_priv(indio_dev);
2330 struct dma_slave_config config;
2331 int ret;
2332
2333 adc->dma_chan = dma_request_chan(dev, "rx");
2334 if (IS_ERR(adc->dma_chan)) {
2335 ret = PTR_ERR(adc->dma_chan);
2336 if (ret != -ENODEV)
2337 return dev_err_probe(dev, ret,
2338 "DMA channel request failed with\n");
2339
2340 /* DMA is optional: fall back to IRQ mode */
2341 adc->dma_chan = NULL;
2342 return 0;
2343 }
2344
2345 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2346 STM32_DMA_BUFFER_SIZE,
2347 &adc->rx_dma_buf, GFP_KERNEL);
2348 if (!adc->rx_buf) {
2349 ret = -ENOMEM;
2350 goto err_release;
2351 }
2352
2353 /* Configure DMA channel to read data register */
2354 memset(&config, 0, sizeof(config));
2355 config.src_addr = (dma_addr_t)adc->common->phys_base;
2356 config.src_addr += adc->offset + adc->cfg->regs->dr;
2357 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2358
2359 ret = dmaengine_slave_config(adc->dma_chan, &config);
2360 if (ret)
2361 goto err_free;
2362
2363 return 0;
2364
2365 err_free:
2366 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2367 adc->rx_buf, adc->rx_dma_buf);
2368 err_release:
2369 dma_release_channel(adc->dma_chan);
2370
2371 return ret;
2372 }
2373
stm32_adc_probe(struct platform_device * pdev)2374 static int stm32_adc_probe(struct platform_device *pdev)
2375 {
2376 struct iio_dev *indio_dev;
2377 struct device *dev = &pdev->dev;
2378 irqreturn_t (*handler)(int irq, void *p) = NULL;
2379 struct stm32_adc *adc;
2380 bool timestamping = false;
2381 int ret;
2382
2383 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2384 if (!indio_dev)
2385 return -ENOMEM;
2386
2387 adc = iio_priv(indio_dev);
2388 adc->common = dev_get_drvdata(pdev->dev.parent);
2389 spin_lock_init(&adc->lock);
2390 init_completion(&adc->completion);
2391 adc->cfg = device_get_match_data(dev);
2392
2393 indio_dev->name = dev_name(&pdev->dev);
2394 device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev));
2395 indio_dev->info = &stm32_adc_iio_info;
2396 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2397
2398 platform_set_drvdata(pdev, indio_dev);
2399
2400 ret = device_property_read_u32(dev, "reg", &adc->offset);
2401 if (ret != 0) {
2402 dev_err(&pdev->dev, "missing reg property\n");
2403 return -EINVAL;
2404 }
2405
2406 adc->irq = platform_get_irq(pdev, 0);
2407 if (adc->irq < 0)
2408 return adc->irq;
2409
2410 ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2411 stm32_adc_threaded_isr,
2412 0, pdev->name, indio_dev);
2413 if (ret) {
2414 dev_err(&pdev->dev, "failed to request IRQ\n");
2415 return ret;
2416 }
2417
2418 adc->clk = devm_clk_get(&pdev->dev, NULL);
2419 if (IS_ERR(adc->clk)) {
2420 ret = PTR_ERR(adc->clk);
2421 if (ret == -ENOENT && !adc->cfg->clk_required) {
2422 adc->clk = NULL;
2423 } else {
2424 dev_err(&pdev->dev, "Can't get clock\n");
2425 return ret;
2426 }
2427 }
2428
2429 ret = stm32_adc_fw_get_resolution(indio_dev);
2430 if (ret < 0)
2431 return ret;
2432
2433 ret = stm32_adc_dma_request(dev, indio_dev);
2434 if (ret < 0)
2435 return ret;
2436
2437 if (!adc->dma_chan) {
2438 /* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2439 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2440 * runs in the IRQ thread to push out buffer along with timestamp.
2441 */
2442 handler = &stm32_adc_trigger_handler;
2443 timestamping = true;
2444 }
2445
2446 ret = stm32_adc_chan_fw_init(indio_dev, timestamping);
2447 if (ret < 0)
2448 goto err_dma_disable;
2449
2450 ret = iio_triggered_buffer_setup(indio_dev,
2451 &iio_pollfunc_store_time, handler,
2452 &stm32_adc_buffer_setup_ops);
2453 if (ret) {
2454 dev_err(&pdev->dev, "buffer setup failed\n");
2455 goto err_dma_disable;
2456 }
2457
2458 /* Get stm32-adc-core PM online */
2459 pm_runtime_get_noresume(dev);
2460 pm_runtime_set_active(dev);
2461 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2462 pm_runtime_use_autosuspend(dev);
2463 pm_runtime_enable(dev);
2464
2465 ret = stm32_adc_hw_start(dev);
2466 if (ret)
2467 goto err_buffer_cleanup;
2468
2469 ret = iio_device_register(indio_dev);
2470 if (ret) {
2471 dev_err(&pdev->dev, "iio dev register failed\n");
2472 goto err_hw_stop;
2473 }
2474
2475 pm_runtime_mark_last_busy(dev);
2476 pm_runtime_put_autosuspend(dev);
2477
2478 if (IS_ENABLED(CONFIG_DEBUG_FS))
2479 stm32_adc_debugfs_init(indio_dev);
2480
2481 return 0;
2482
2483 err_hw_stop:
2484 stm32_adc_hw_stop(dev);
2485
2486 err_buffer_cleanup:
2487 pm_runtime_disable(dev);
2488 pm_runtime_set_suspended(dev);
2489 pm_runtime_put_noidle(dev);
2490 iio_triggered_buffer_cleanup(indio_dev);
2491
2492 err_dma_disable:
2493 if (adc->dma_chan) {
2494 dma_free_coherent(adc->dma_chan->device->dev,
2495 STM32_DMA_BUFFER_SIZE,
2496 adc->rx_buf, adc->rx_dma_buf);
2497 dma_release_channel(adc->dma_chan);
2498 }
2499
2500 return ret;
2501 }
2502
stm32_adc_remove(struct platform_device * pdev)2503 static void stm32_adc_remove(struct platform_device *pdev)
2504 {
2505 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2506 struct stm32_adc *adc = iio_priv(indio_dev);
2507
2508 pm_runtime_get_sync(&pdev->dev);
2509 /* iio_device_unregister() also removes debugfs entries */
2510 iio_device_unregister(indio_dev);
2511 stm32_adc_hw_stop(&pdev->dev);
2512 pm_runtime_disable(&pdev->dev);
2513 pm_runtime_set_suspended(&pdev->dev);
2514 pm_runtime_put_noidle(&pdev->dev);
2515 iio_triggered_buffer_cleanup(indio_dev);
2516 if (adc->dma_chan) {
2517 dma_free_coherent(adc->dma_chan->device->dev,
2518 STM32_DMA_BUFFER_SIZE,
2519 adc->rx_buf, adc->rx_dma_buf);
2520 dma_release_channel(adc->dma_chan);
2521 }
2522 }
2523
stm32_adc_suspend(struct device * dev)2524 static int stm32_adc_suspend(struct device *dev)
2525 {
2526 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2527
2528 if (iio_buffer_enabled(indio_dev))
2529 stm32_adc_buffer_predisable(indio_dev);
2530
2531 return pm_runtime_force_suspend(dev);
2532 }
2533
stm32_adc_resume(struct device * dev)2534 static int stm32_adc_resume(struct device *dev)
2535 {
2536 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2537 int ret;
2538
2539 ret = pm_runtime_force_resume(dev);
2540 if (ret < 0)
2541 return ret;
2542
2543 if (!iio_buffer_enabled(indio_dev))
2544 return 0;
2545
2546 ret = stm32_adc_update_scan_mode(indio_dev,
2547 indio_dev->active_scan_mask);
2548 if (ret < 0)
2549 return ret;
2550
2551 return stm32_adc_buffer_postenable(indio_dev);
2552 }
2553
stm32_adc_runtime_suspend(struct device * dev)2554 static int stm32_adc_runtime_suspend(struct device *dev)
2555 {
2556 return stm32_adc_hw_stop(dev);
2557 }
2558
stm32_adc_runtime_resume(struct device * dev)2559 static int stm32_adc_runtime_resume(struct device *dev)
2560 {
2561 return stm32_adc_hw_start(dev);
2562 }
2563
2564 static const struct dev_pm_ops stm32_adc_pm_ops = {
2565 SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2566 RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2567 NULL)
2568 };
2569
2570 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2571 .regs = &stm32f4_adc_regspec,
2572 .adc_info = &stm32f4_adc_info,
2573 .trigs = stm32f4_adc_trigs,
2574 .clk_required = true,
2575 .start_conv = stm32f4_adc_start_conv,
2576 .stop_conv = stm32f4_adc_stop_conv,
2577 .smp_cycles = stm32f4_adc_smp_cycles,
2578 .irq_clear = stm32f4_adc_irq_clear,
2579 };
2580
2581 static const unsigned int stm32_adc_min_ts_h7[] = { 0, 0, 0, 4300, 9000 };
2582 static_assert(ARRAY_SIZE(stm32_adc_min_ts_h7) == STM32_ADC_INT_CH_NB);
2583
2584 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2585 .regs = &stm32h7_adc_regspec,
2586 .adc_info = &stm32h7_adc_info,
2587 .trigs = stm32h7_adc_trigs,
2588 .has_boostmode = true,
2589 .has_linearcal = true,
2590 .has_presel = true,
2591 .start_conv = stm32h7_adc_start_conv,
2592 .stop_conv = stm32h7_adc_stop_conv,
2593 .prepare = stm32h7_adc_prepare,
2594 .unprepare = stm32h7_adc_unprepare,
2595 .smp_cycles = stm32h7_adc_smp_cycles,
2596 .irq_clear = stm32h7_adc_irq_clear,
2597 .ts_int_ch = stm32_adc_min_ts_h7,
2598 };
2599
2600 static const unsigned int stm32_adc_min_ts_mp1[] = { 100, 100, 100, 4300, 9800 };
2601 static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp1) == STM32_ADC_INT_CH_NB);
2602
2603 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2604 .regs = &stm32mp1_adc_regspec,
2605 .adc_info = &stm32h7_adc_info,
2606 .trigs = stm32h7_adc_trigs,
2607 .has_vregready = true,
2608 .has_boostmode = true,
2609 .has_linearcal = true,
2610 .has_presel = true,
2611 .start_conv = stm32h7_adc_start_conv,
2612 .stop_conv = stm32h7_adc_stop_conv,
2613 .prepare = stm32h7_adc_prepare,
2614 .unprepare = stm32h7_adc_unprepare,
2615 .smp_cycles = stm32h7_adc_smp_cycles,
2616 .irq_clear = stm32h7_adc_irq_clear,
2617 .ts_int_ch = stm32_adc_min_ts_mp1,
2618 };
2619
2620 static const unsigned int stm32_adc_min_ts_mp13[] = { 100, 0, 0, 4300, 9800 };
2621 static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp13) == STM32_ADC_INT_CH_NB);
2622
2623 static const struct stm32_adc_cfg stm32mp13_adc_cfg = {
2624 .regs = &stm32mp13_adc_regspec,
2625 .adc_info = &stm32mp13_adc_info,
2626 .trigs = stm32h7_adc_trigs,
2627 .start_conv = stm32mp13_adc_start_conv,
2628 .stop_conv = stm32h7_adc_stop_conv,
2629 .prepare = stm32h7_adc_prepare,
2630 .unprepare = stm32h7_adc_unprepare,
2631 .smp_cycles = stm32mp13_adc_smp_cycles,
2632 .irq_clear = stm32h7_adc_irq_clear,
2633 .ts_int_ch = stm32_adc_min_ts_mp13,
2634 };
2635
2636 static const struct of_device_id stm32_adc_of_match[] = {
2637 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2638 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2639 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2640 { .compatible = "st,stm32mp13-adc", .data = (void *)&stm32mp13_adc_cfg },
2641 { }
2642 };
2643 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2644
2645 static struct platform_driver stm32_adc_driver = {
2646 .probe = stm32_adc_probe,
2647 .remove_new = stm32_adc_remove,
2648 .driver = {
2649 .name = "stm32-adc",
2650 .of_match_table = stm32_adc_of_match,
2651 .pm = pm_ptr(&stm32_adc_pm_ops),
2652 },
2653 };
2654 module_platform_driver(stm32_adc_driver);
2655
2656 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2657 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2658 MODULE_LICENSE("GPL v2");
2659 MODULE_ALIAS("platform:stm32-adc");
2660