xref: /linux/drivers/clocksource/timer-stm32.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) Maxime Coquelin 2015
4   * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
5   *
6   * Inspired by time-efm32.c from Uwe Kleine-Koenig
7   */
8  
9  #include <linux/kernel.h>
10  #include <linux/clocksource.h>
11  #include <linux/clockchips.h>
12  #include <linux/delay.h>
13  #include <linux/irq.h>
14  #include <linux/interrupt.h>
15  #include <linux/of.h>
16  #include <linux/of_address.h>
17  #include <linux/of_irq.h>
18  #include <linux/clk.h>
19  #include <linux/reset.h>
20  #include <linux/sched_clock.h>
21  #include <linux/slab.h>
22  
23  #include "timer-of.h"
24  
25  #define TIM_CR1		0x00
26  #define TIM_DIER	0x0c
27  #define TIM_SR		0x10
28  #define TIM_EGR		0x14
29  #define TIM_CNT		0x24
30  #define TIM_PSC		0x28
31  #define TIM_ARR		0x2c
32  #define TIM_CCR1	0x34
33  
34  #define TIM_CR1_CEN	BIT(0)
35  #define TIM_CR1_UDIS	BIT(1)
36  #define TIM_CR1_OPM	BIT(3)
37  #define TIM_CR1_ARPE	BIT(7)
38  
39  #define TIM_DIER_UIE	BIT(0)
40  #define TIM_DIER_CC1IE	BIT(1)
41  
42  #define TIM_SR_UIF	BIT(0)
43  
44  #define TIM_EGR_UG	BIT(0)
45  
46  #define TIM_PSC_MAX	USHRT_MAX
47  #define TIM_PSC_CLKRATE	10000
48  
49  struct stm32_timer_private {
50  	int bits;
51  };
52  
53  /**
54   * stm32_timer_of_bits_set - set accessor helper
55   * @to: a timer_of structure pointer
56   * @bits: the number of bits (16 or 32)
57   *
58   * Accessor helper to set the number of bits in the timer-of private
59   * structure.
60   *
61   */
stm32_timer_of_bits_set(struct timer_of * to,int bits)62  static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
63  {
64  	struct stm32_timer_private *pd = to->private_data;
65  
66  	pd->bits = bits;
67  }
68  
69  /**
70   * stm32_timer_of_bits_get - get accessor helper
71   * @to: a timer_of structure pointer
72   *
73   * Accessor helper to get the number of bits in the timer-of private
74   * structure.
75   *
76   * Returns: an integer corresponding to the number of bits.
77   */
stm32_timer_of_bits_get(struct timer_of * to)78  static int stm32_timer_of_bits_get(struct timer_of *to)
79  {
80  	struct stm32_timer_private *pd = to->private_data;
81  
82  	return pd->bits;
83  }
84  
85  static void __iomem *stm32_timer_cnt __read_mostly;
86  
stm32_read_sched_clock(void)87  static u64 notrace stm32_read_sched_clock(void)
88  {
89  	return readl_relaxed(stm32_timer_cnt);
90  }
91  
92  static struct delay_timer stm32_timer_delay;
93  
stm32_read_delay(void)94  static unsigned long stm32_read_delay(void)
95  {
96  	return readl_relaxed(stm32_timer_cnt);
97  }
98  
stm32_clock_event_disable(struct timer_of * to)99  static void stm32_clock_event_disable(struct timer_of *to)
100  {
101  	writel_relaxed(0, timer_of_base(to) + TIM_DIER);
102  }
103  
104  /**
105   * stm32_timer_start - Start the counter without event
106   * @to: a timer_of structure pointer
107   *
108   * Start the timer in order to have the counter reset and start
109   * incrementing but disable interrupt event when there is a counter
110   * overflow. By default, the counter direction is used as upcounter.
111   */
stm32_timer_start(struct timer_of * to)112  static void stm32_timer_start(struct timer_of *to)
113  {
114  	writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
115  }
116  
stm32_clock_event_shutdown(struct clock_event_device * clkevt)117  static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
118  {
119  	struct timer_of *to = to_timer_of(clkevt);
120  
121  	stm32_clock_event_disable(to);
122  
123  	return 0;
124  }
125  
stm32_clock_event_set_next_event(unsigned long evt,struct clock_event_device * clkevt)126  static int stm32_clock_event_set_next_event(unsigned long evt,
127  					    struct clock_event_device *clkevt)
128  {
129  	struct timer_of *to = to_timer_of(clkevt);
130  	unsigned long now, next;
131  
132  	next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
133  	writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
134  	now = readl_relaxed(timer_of_base(to) + TIM_CNT);
135  
136  	if ((next - now) > evt)
137  		return -ETIME;
138  
139  	writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
140  
141  	return 0;
142  }
143  
stm32_clock_event_set_periodic(struct clock_event_device * clkevt)144  static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
145  {
146  	struct timer_of *to = to_timer_of(clkevt);
147  
148  	stm32_timer_start(to);
149  
150  	return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
151  }
152  
stm32_clock_event_set_oneshot(struct clock_event_device * clkevt)153  static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
154  {
155  	struct timer_of *to = to_timer_of(clkevt);
156  
157  	stm32_timer_start(to);
158  
159  	return 0;
160  }
161  
stm32_clock_event_handler(int irq,void * dev_id)162  static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
163  {
164  	struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
165  	struct timer_of *to = to_timer_of(clkevt);
166  
167  	writel_relaxed(0, timer_of_base(to) + TIM_SR);
168  
169  	if (clockevent_state_periodic(clkevt))
170  		stm32_clock_event_set_periodic(clkevt);
171  	else
172  		stm32_clock_event_shutdown(clkevt);
173  
174  	clkevt->event_handler(clkevt);
175  
176  	return IRQ_HANDLED;
177  }
178  
179  /**
180   * stm32_timer_set_width - Sort out the timer width (32/16)
181   * @to: a pointer to a timer-of structure
182   *
183   * Write the 32-bit max value and read/return the result. If the timer
184   * is 32 bits wide, the result will be UINT_MAX, otherwise it will
185   * be truncated by the 16-bit register to USHRT_MAX.
186   *
187   */
stm32_timer_set_width(struct timer_of * to)188  static void __init stm32_timer_set_width(struct timer_of *to)
189  {
190  	u32 width;
191  
192  	writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
193  
194  	width = readl_relaxed(timer_of_base(to) + TIM_ARR);
195  
196  	stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
197  }
198  
199  /**
200   * stm32_timer_set_prescaler - Compute and set the prescaler register
201   * @to: a pointer to a timer-of structure
202   *
203   * Depending on the timer width, compute the prescaler to always
204   * target a 10MHz timer rate for 16 bits. 32-bit timers are
205   * considered precise and long enough to not use the prescaler.
206   */
stm32_timer_set_prescaler(struct timer_of * to)207  static void __init stm32_timer_set_prescaler(struct timer_of *to)
208  {
209  	int prescaler = 1;
210  
211  	if (stm32_timer_of_bits_get(to) != 32) {
212  		prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
213  					      TIM_PSC_CLKRATE);
214  		/*
215  		 * The prescaler register is an u16, the variable
216  		 * can't be greater than TIM_PSC_MAX, let's cap it in
217  		 * this case.
218  		 */
219  		prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
220  	}
221  
222  	writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
223  	writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
224  	writel_relaxed(0, timer_of_base(to) + TIM_SR);
225  
226  	/* Adjust rate and period given the prescaler value */
227  	to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
228  	to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
229  }
230  
stm32_clocksource_init(struct timer_of * to)231  static int __init stm32_clocksource_init(struct timer_of *to)
232  {
233          u32 bits = stm32_timer_of_bits_get(to);
234  	const char *name = to->np->full_name;
235  
236  	/*
237  	 * This driver allows to register several timers and relies on
238  	 * the generic time framework to select the right one.
239  	 * However, nothing allows to do the same for the
240  	 * sched_clock. We are not interested in a sched_clock for the
241  	 * 16-bit timers but only for the 32-bit one, so if no 32-bit
242  	 * timer is registered yet, we select this 32-bit timer as a
243  	 * sched_clock.
244  	 */
245  	if (bits == 32 && !stm32_timer_cnt) {
246  
247  		/*
248  		 * Start immediately the counter as we will be using
249  		 * it right after.
250  		 */
251  		stm32_timer_start(to);
252  
253  		stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
254  		sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
255  		pr_info("%s: STM32 sched_clock registered\n", name);
256  
257  		stm32_timer_delay.read_current_timer = stm32_read_delay;
258  		stm32_timer_delay.freq = timer_of_rate(to);
259  		register_current_timer_delay(&stm32_timer_delay);
260  		pr_info("%s: STM32 delay timer registered\n", name);
261  	}
262  
263  	return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
264  				     timer_of_rate(to), bits == 32 ? 250 : 100,
265  				     bits, clocksource_mmio_readl_up);
266  }
267  
stm32_clockevent_init(struct timer_of * to)268  static void __init stm32_clockevent_init(struct timer_of *to)
269  {
270  	u32 bits = stm32_timer_of_bits_get(to);
271  
272  	to->clkevt.name = to->np->full_name;
273  	to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
274  	to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
275  	to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
276  	to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
277  	to->clkevt.tick_resume = stm32_clock_event_shutdown;
278  	to->clkevt.set_next_event = stm32_clock_event_set_next_event;
279  	to->clkevt.rating = bits == 32 ? 250 : 100;
280  
281  	clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
282  					(1 <<  bits) - 1);
283  
284  	pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
285  		to->np, bits);
286  }
287  
stm32_timer_init(struct device_node * node)288  static int __init stm32_timer_init(struct device_node *node)
289  {
290  	struct reset_control *rstc;
291  	struct timer_of *to;
292  	int ret;
293  
294  	to = kzalloc(sizeof(*to), GFP_KERNEL);
295  	if (!to)
296  		return -ENOMEM;
297  
298  	to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
299  	to->of_irq.handler = stm32_clock_event_handler;
300  
301  	ret = timer_of_init(node, to);
302  	if (ret)
303  		goto err;
304  
305  	to->private_data = kzalloc(sizeof(struct stm32_timer_private),
306  				   GFP_KERNEL);
307  	if (!to->private_data) {
308  		ret = -ENOMEM;
309  		goto deinit;
310  	}
311  
312  	rstc = of_reset_control_get(node, NULL);
313  	if (!IS_ERR(rstc)) {
314  		reset_control_assert(rstc);
315  		reset_control_deassert(rstc);
316  	}
317  
318  	stm32_timer_set_width(to);
319  
320  	stm32_timer_set_prescaler(to);
321  
322  	ret = stm32_clocksource_init(to);
323  	if (ret)
324  		goto deinit;
325  
326  	stm32_clockevent_init(to);
327  	return 0;
328  
329  deinit:
330  	timer_of_cleanup(to);
331  err:
332  	kfree(to);
333  	return ret;
334  }
335  
336  TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);
337