xref: /linux/sound/soc/stm/stm32_sai_sub.c (revision 2a239ffbebb59fb5b3e95725dd1d99634180494f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 
23 #include "stm32_sai.h"
24 
25 #define SAI_FREE_PROTOCOL	0x0
26 #define SAI_SPDIF_PROTOCOL	0x1
27 
28 #define SAI_SLOT_SIZE_AUTO	0x0
29 #define SAI_SLOT_SIZE_16	0x1
30 #define SAI_SLOT_SIZE_32	0x2
31 
32 #define SAI_DATASIZE_8		0x2
33 #define SAI_DATASIZE_10		0x3
34 #define SAI_DATASIZE_16		0x4
35 #define SAI_DATASIZE_20		0x5
36 #define SAI_DATASIZE_24		0x6
37 #define SAI_DATASIZE_32		0x7
38 
39 #define STM_SAI_DAI_NAME_SIZE	15
40 
41 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43 
44 #define STM_SAI_A_ID		0x0
45 #define STM_SAI_B_ID		0x1
46 
47 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
48 
49 #define SAI_SYNC_NONE		0x0
50 #define SAI_SYNC_INTERNAL	0x1
51 #define SAI_SYNC_EXTERNAL	0x2
52 
53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
54 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
55 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4((x)->pdata))
57 
58 #define SAI_IEC60958_BLOCK_FRAMES	192
59 #define SAI_IEC60958_STATUS_BYTES	24
60 
61 #define SAI_MCLK_NAME_LEN		32
62 #define SAI_RATE_11K			11025
63 #define SAI_MAX_SAMPLE_RATE_8K		192000
64 #define SAI_MAX_SAMPLE_RATE_11K		176400
65 #define SAI_CK_RATE_TOLERANCE		1000 /* ppm */
66 
67 /**
68  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
69  * @pdev: device data pointer
70  * @regmap: SAI register map pointer
71  * @regmap_config: SAI sub block register map configuration pointer
72  * @dma_params: dma configuration data for rx or tx channel
73  * @cpu_dai_drv: DAI driver data pointer
74  * @cpu_dai: DAI runtime data pointer
75  * @substream: PCM substream data pointer
76  * @pdata: SAI block parent data pointer
77  * @np_sync_provider: synchronization provider node
78  * @sai_ck: kernel clock feeding the SAI clock generator
79  * @sai_mclk: master clock from SAI mclk provider
80  * @phys_addr: SAI registers physical base address
81  * @mclk_rate: SAI block master clock frequency (Hz). set at init
82  * @id: SAI sub block id corresponding to sub-block A or B
83  * @dir: SAI block direction (playback or capture). set at init
84  * @master: SAI block mode flag. (true=master, false=slave) set at init
85  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
86  * @sai_ck_used: flag set while exclusivity on SAI kernel clock is active
87  * @fmt: SAI block format. relevant only for custom protocols. set at init
88  * @sync: SAI block synchronization mode. (none, internal or external)
89  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
90  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
91  * @fs_length: frame synchronization length. depends on protocol settings
92  * @slots: rx or tx slot number
93  * @slot_width: rx or tx slot width in bits
94  * @slot_mask: rx or tx active slots mask. set at init or at runtime
95  * @data_size: PCM data width. corresponds to PCM substream width.
96  * @spdif_frm_cnt: S/PDIF playback frame counter
97  * @iec958: iec958 data
98  * @ctrl_lock: control lock
99  * @irq_lock: prevent race condition with IRQ
100  * @set_sai_ck_rate: set SAI kernel clock rate
101  * @put_sai_ck_rate: put SAI kernel clock rate
102  */
103 struct stm32_sai_sub_data {
104 	struct platform_device *pdev;
105 	struct regmap *regmap;
106 	const struct regmap_config *regmap_config;
107 	struct snd_dmaengine_dai_dma_data dma_params;
108 	struct snd_soc_dai_driver cpu_dai_drv;
109 	struct snd_soc_dai *cpu_dai;
110 	struct snd_pcm_substream *substream;
111 	struct stm32_sai_data *pdata;
112 	struct device_node *np_sync_provider;
113 	struct clk *sai_ck;
114 	struct clk *sai_mclk;
115 	dma_addr_t phys_addr;
116 	unsigned int mclk_rate;
117 	unsigned int id;
118 	int dir;
119 	bool master;
120 	bool spdif;
121 	bool sai_ck_used;
122 	int fmt;
123 	int sync;
124 	int synco;
125 	int synci;
126 	int fs_length;
127 	int slots;
128 	int slot_width;
129 	int slot_mask;
130 	int data_size;
131 	unsigned int spdif_frm_cnt;
132 	struct snd_aes_iec958 iec958;
133 	struct mutex ctrl_lock; /* protect resources accessed by controls */
134 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
135 	int (*set_sai_ck_rate)(struct stm32_sai_sub_data *sai, unsigned int rate);
136 	void (*put_sai_ck_rate)(struct stm32_sai_sub_data *sai);
137 };
138 
139 enum stm32_sai_fifo_th {
140 	STM_SAI_FIFO_TH_EMPTY,
141 	STM_SAI_FIFO_TH_QUARTER,
142 	STM_SAI_FIFO_TH_HALF,
143 	STM_SAI_FIFO_TH_3_QUARTER,
144 	STM_SAI_FIFO_TH_FULL,
145 };
146 
stm32_sai_sub_readable_reg(struct device * dev,unsigned int reg)147 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
148 {
149 	switch (reg) {
150 	case STM_SAI_CR1_REGX:
151 	case STM_SAI_CR2_REGX:
152 	case STM_SAI_FRCR_REGX:
153 	case STM_SAI_SLOTR_REGX:
154 	case STM_SAI_IMR_REGX:
155 	case STM_SAI_SR_REGX:
156 	case STM_SAI_CLRFR_REGX:
157 	case STM_SAI_DR_REGX:
158 	case STM_SAI_PDMCR_REGX:
159 	case STM_SAI_PDMLY_REGX:
160 		return true;
161 	default:
162 		return false;
163 	}
164 }
165 
stm32_sai_sub_volatile_reg(struct device * dev,unsigned int reg)166 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
167 {
168 	switch (reg) {
169 	case STM_SAI_DR_REGX:
170 	case STM_SAI_SR_REGX:
171 		return true;
172 	default:
173 		return false;
174 	}
175 }
176 
stm32_sai_sub_writeable_reg(struct device * dev,unsigned int reg)177 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
178 {
179 	switch (reg) {
180 	case STM_SAI_CR1_REGX:
181 	case STM_SAI_CR2_REGX:
182 	case STM_SAI_FRCR_REGX:
183 	case STM_SAI_SLOTR_REGX:
184 	case STM_SAI_IMR_REGX:
185 	case STM_SAI_CLRFR_REGX:
186 	case STM_SAI_DR_REGX:
187 	case STM_SAI_PDMCR_REGX:
188 	case STM_SAI_PDMLY_REGX:
189 		return true;
190 	default:
191 		return false;
192 	}
193 }
194 
stm32_sai_sub_reg_up(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)195 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
196 				unsigned int reg, unsigned int mask,
197 				unsigned int val)
198 {
199 	int ret;
200 
201 	ret = clk_enable(sai->pdata->pclk);
202 	if (ret < 0)
203 		return ret;
204 
205 	ret = regmap_update_bits(sai->regmap, reg, mask, val);
206 
207 	clk_disable(sai->pdata->pclk);
208 
209 	return ret;
210 }
211 
stm32_sai_sub_reg_wr(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)212 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
213 				unsigned int reg, unsigned int mask,
214 				unsigned int val)
215 {
216 	int ret;
217 
218 	ret = clk_enable(sai->pdata->pclk);
219 	if (ret < 0)
220 		return ret;
221 
222 	ret = regmap_write_bits(sai->regmap, reg, mask, val);
223 
224 	clk_disable(sai->pdata->pclk);
225 
226 	return ret;
227 }
228 
stm32_sai_sub_reg_rd(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int * val)229 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
230 				unsigned int reg, unsigned int *val)
231 {
232 	int ret;
233 
234 	ret = clk_enable(sai->pdata->pclk);
235 	if (ret < 0)
236 		return ret;
237 
238 	ret = regmap_read(sai->regmap, reg, val);
239 
240 	clk_disable(sai->pdata->pclk);
241 
242 	return ret;
243 }
244 
245 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
246 	.reg_bits = 32,
247 	.reg_stride = 4,
248 	.val_bits = 32,
249 	.max_register = STM_SAI_DR_REGX,
250 	.readable_reg = stm32_sai_sub_readable_reg,
251 	.volatile_reg = stm32_sai_sub_volatile_reg,
252 	.writeable_reg = stm32_sai_sub_writeable_reg,
253 	.fast_io = true,
254 	.cache_type = REGCACHE_FLAT,
255 };
256 
257 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
258 	.reg_bits = 32,
259 	.reg_stride = 4,
260 	.val_bits = 32,
261 	.max_register = STM_SAI_PDMLY_REGX,
262 	.readable_reg = stm32_sai_sub_readable_reg,
263 	.volatile_reg = stm32_sai_sub_volatile_reg,
264 	.writeable_reg = stm32_sai_sub_writeable_reg,
265 	.fast_io = true,
266 	.cache_type = REGCACHE_FLAT,
267 };
268 
snd_pcm_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)269 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
270 			       struct snd_ctl_elem_info *uinfo)
271 {
272 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
273 	uinfo->count = 1;
274 
275 	return 0;
276 }
277 
snd_pcm_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)278 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
279 			      struct snd_ctl_elem_value *uctl)
280 {
281 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
282 
283 	mutex_lock(&sai->ctrl_lock);
284 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
285 	mutex_unlock(&sai->ctrl_lock);
286 
287 	return 0;
288 }
289 
snd_pcm_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)290 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
291 			      struct snd_ctl_elem_value *uctl)
292 {
293 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
294 
295 	mutex_lock(&sai->ctrl_lock);
296 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
297 	mutex_unlock(&sai->ctrl_lock);
298 
299 	return 0;
300 }
301 
302 static const struct snd_kcontrol_new iec958_ctls = {
303 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
304 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
305 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
306 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
307 	.info = snd_pcm_iec958_info,
308 	.get = snd_pcm_iec958_get,
309 	.put = snd_pcm_iec958_put,
310 };
311 
312 struct stm32_sai_mclk_data {
313 	struct clk_hw hw;
314 	unsigned long freq;
315 	struct stm32_sai_sub_data *sai_data;
316 };
317 
318 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
319 #define STM32_SAI_MAX_CLKS 1
320 
stm32_sai_get_clk_div(struct stm32_sai_sub_data * sai,unsigned long input_rate,unsigned long output_rate)321 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
322 				 unsigned long input_rate,
323 				 unsigned long output_rate)
324 {
325 	int version = sai->pdata->conf.version;
326 	int div;
327 
328 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
329 	if (div > SAI_XCR1_MCKDIV_MAX(version) || div <= 0) {
330 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
331 		return -EINVAL;
332 	}
333 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
334 
335 	if (input_rate % div)
336 		dev_dbg(&sai->pdev->dev,
337 			"Rate not accurate. requested (%ld), actual (%ld)\n",
338 			output_rate, input_rate / div);
339 
340 	return div;
341 }
342 
stm32_sai_set_clk_div(struct stm32_sai_sub_data * sai,unsigned int div)343 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
344 				 unsigned int div)
345 {
346 	int version = sai->pdata->conf.version;
347 	int ret, cr1, mask;
348 
349 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
350 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
351 		return -EINVAL;
352 	}
353 
354 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
355 	cr1 = SAI_XCR1_MCKDIV_SET(div);
356 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
357 	if (ret < 0)
358 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
359 
360 	return ret;
361 }
362 
stm32_sai_rate_accurate(unsigned int max_rate,unsigned int rate)363 static bool stm32_sai_rate_accurate(unsigned int max_rate, unsigned int rate)
364 {
365 	u64 delta, dividend;
366 	int ratio;
367 
368 	ratio = DIV_ROUND_CLOSEST(max_rate, rate);
369 	if (!ratio)
370 		return false;
371 
372 	dividend = mul_u32_u32(1000000, abs(max_rate - (ratio * rate)));
373 	delta = div_u64(dividend, max_rate);
374 
375 	if (delta <= SAI_CK_RATE_TOLERANCE)
376 		return true;
377 
378 	return false;
379 }
380 
stm32_sai_set_parent_clk(struct stm32_sai_sub_data * sai,unsigned int rate)381 static int stm32_sai_set_parent_clk(struct stm32_sai_sub_data *sai,
382 				    unsigned int rate)
383 {
384 	struct platform_device *pdev = sai->pdev;
385 	struct clk *parent_clk = sai->pdata->clk_x8k;
386 	int ret;
387 
388 	if (!(rate % SAI_RATE_11K))
389 		parent_clk = sai->pdata->clk_x11k;
390 
391 	ret = clk_set_parent(sai->sai_ck, parent_clk);
392 	if (ret)
393 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
394 			ret, ret == -EBUSY ?
395 			"Active stream rates conflict\n" : "\n");
396 
397 	return ret;
398 }
399 
stm32_sai_put_parent_rate(struct stm32_sai_sub_data * sai)400 static void stm32_sai_put_parent_rate(struct stm32_sai_sub_data *sai)
401 {
402 	if (sai->sai_ck_used) {
403 		sai->sai_ck_used = false;
404 		clk_rate_exclusive_put(sai->sai_ck);
405 	}
406 }
407 
stm32_sai_set_parent_rate(struct stm32_sai_sub_data * sai,unsigned int rate)408 static int stm32_sai_set_parent_rate(struct stm32_sai_sub_data *sai,
409 				     unsigned int rate)
410 {
411 	struct platform_device *pdev = sai->pdev;
412 	unsigned int sai_ck_rate, sai_ck_max_rate, sai_ck_min_rate, sai_curr_rate, sai_new_rate;
413 	int div, ret;
414 
415 	/*
416 	 * Set minimum and maximum expected kernel clock frequency
417 	 * - mclk on or spdif:
418 	 *   f_sai_ck = MCKDIV * mclk-fs * fs
419 	 *   Here typical 256 ratio is assumed for mclk-fs
420 	 * - mclk off:
421 	 *   f_sai_ck = MCKDIV * FRL * fs
422 	 *   Where FRL=[8..256], MCKDIV=[1..n] (n depends on SAI version)
423 	 *   Set constraint MCKDIV * FRL <= 256, to ensure MCKDIV is in available range
424 	 *   f_sai_ck = sai_ck_max_rate * pow_of_two(FRL) / 256
425 	 */
426 	sai_ck_min_rate = rate * 256;
427 	if (!(rate % SAI_RATE_11K))
428 		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_11K * 256;
429 	else
430 		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_8K * 256;
431 
432 	if (!sai->sai_mclk && !STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
433 		sai_ck_min_rate = rate * sai->fs_length;
434 		sai_ck_max_rate /= DIV_ROUND_CLOSEST(256, roundup_pow_of_two(sai->fs_length));
435 	}
436 
437 	/*
438 	 * Request exclusivity, as the clock is shared by SAI sub-blocks and by
439 	 * some SAI instances. This allows to ensure that the rate cannot be
440 	 * changed while one or more SAIs are using the clock.
441 	 */
442 	clk_rate_exclusive_get(sai->sai_ck);
443 	sai->sai_ck_used = true;
444 
445 	/*
446 	 * Check current kernel clock rate. If it gives the expected accuracy
447 	 * return immediately.
448 	 */
449 	sai_curr_rate = clk_get_rate(sai->sai_ck);
450 	dev_dbg(&pdev->dev, "kernel clock rate: min [%u], max [%u], current [%u]",
451 		sai_ck_min_rate, sai_ck_max_rate, sai_curr_rate);
452 	if (stm32_sai_rate_accurate(sai_ck_max_rate, sai_curr_rate) &&
453 	    sai_curr_rate >= sai_ck_min_rate)
454 		return 0;
455 
456 	/*
457 	 * Otherwise try to set the maximum rate and check the new actual rate.
458 	 * If the new rate does not give the expected accuracy, try to set
459 	 * lower rates for the kernel clock.
460 	 */
461 	sai_ck_rate = sai_ck_max_rate;
462 	div = 1;
463 	do {
464 		/* Check new rate accuracy. Return if ok */
465 		sai_new_rate = clk_round_rate(sai->sai_ck, sai_ck_rate);
466 		if (stm32_sai_rate_accurate(sai_ck_rate, sai_new_rate)) {
467 			ret = clk_set_rate(sai->sai_ck, sai_ck_rate);
468 			if (ret) {
469 				dev_err(&pdev->dev, "Error %d setting sai_ck rate. %s",
470 					ret, ret == -EBUSY ?
471 					"Active stream rates may be in conflict\n" : "\n");
472 				goto err;
473 			}
474 
475 			return 0;
476 		}
477 
478 		/* Try a lower frequency */
479 		div++;
480 		sai_ck_rate = sai_ck_max_rate / div;
481 	} while (sai_ck_rate >= sai_ck_min_rate);
482 
483 	/* No accurate rate found */
484 	dev_err(&pdev->dev, "Failed to find an accurate rate");
485 
486 err:
487 	stm32_sai_put_parent_rate(sai);
488 
489 	return -EINVAL;
490 }
491 
stm32_sai_mclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)492 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
493 				      unsigned long *prate)
494 {
495 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
496 	struct stm32_sai_sub_data *sai = mclk->sai_data;
497 	int div;
498 
499 	div = stm32_sai_get_clk_div(sai, *prate, rate);
500 	if (div <= 0)
501 		return -EINVAL;
502 
503 	mclk->freq = *prate / div;
504 
505 	return mclk->freq;
506 }
507 
stm32_sai_mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)508 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
509 						unsigned long parent_rate)
510 {
511 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
512 
513 	return mclk->freq;
514 }
515 
stm32_sai_mclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)516 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
517 				   unsigned long parent_rate)
518 {
519 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
520 	struct stm32_sai_sub_data *sai = mclk->sai_data;
521 	int div, ret;
522 
523 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
524 	if (div < 0)
525 		return div;
526 
527 	ret = stm32_sai_set_clk_div(sai, div);
528 	if (ret)
529 		return ret;
530 
531 	mclk->freq = rate;
532 
533 	return 0;
534 }
535 
stm32_sai_mclk_enable(struct clk_hw * hw)536 static int stm32_sai_mclk_enable(struct clk_hw *hw)
537 {
538 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
539 	struct stm32_sai_sub_data *sai = mclk->sai_data;
540 
541 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
542 
543 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
544 				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
545 }
546 
stm32_sai_mclk_disable(struct clk_hw * hw)547 static void stm32_sai_mclk_disable(struct clk_hw *hw)
548 {
549 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
550 	struct stm32_sai_sub_data *sai = mclk->sai_data;
551 
552 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
553 
554 	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
555 }
556 
557 static const struct clk_ops mclk_ops = {
558 	.enable = stm32_sai_mclk_enable,
559 	.disable = stm32_sai_mclk_disable,
560 	.recalc_rate = stm32_sai_mclk_recalc_rate,
561 	.round_rate = stm32_sai_mclk_round_rate,
562 	.set_rate = stm32_sai_mclk_set_rate,
563 };
564 
stm32_sai_add_mclk_provider(struct stm32_sai_sub_data * sai)565 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
566 {
567 	struct clk_hw *hw;
568 	struct stm32_sai_mclk_data *mclk;
569 	struct device *dev = &sai->pdev->dev;
570 	const char *pname = __clk_get_name(sai->sai_ck);
571 	char *mclk_name, *p, *s = (char *)pname;
572 	int ret, i = 0;
573 
574 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
575 	if (!mclk)
576 		return -ENOMEM;
577 
578 	mclk_name = devm_kcalloc(dev, sizeof(char),
579 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
580 	if (!mclk_name)
581 		return -ENOMEM;
582 
583 	/*
584 	 * Forge mclk clock name from parent clock name and suffix.
585 	 * String after "_" char is stripped in parent name.
586 	 */
587 	p = mclk_name;
588 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
589 		*p++ = *s++;
590 		i++;
591 	}
592 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
593 
594 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
595 	mclk->sai_data = sai;
596 	hw = &mclk->hw;
597 
598 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
599 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
600 	if (ret) {
601 		dev_err(dev, "mclk register returned %d\n", ret);
602 		return ret;
603 	}
604 	sai->sai_mclk = hw->clk;
605 
606 	/* register mclk provider */
607 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
608 }
609 
stm32_sai_isr(int irq,void * devid)610 static irqreturn_t stm32_sai_isr(int irq, void *devid)
611 {
612 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
613 	struct platform_device *pdev = sai->pdev;
614 	unsigned int sr, imr, flags;
615 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
616 
617 	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
618 	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
619 
620 	flags = sr & imr;
621 	if (!flags)
622 		return IRQ_NONE;
623 
624 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
625 			     SAI_XCLRFR_MASK);
626 
627 	if (!sai->substream) {
628 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
629 		return IRQ_NONE;
630 	}
631 
632 	if (flags & SAI_XIMR_OVRUDRIE) {
633 		dev_err(&pdev->dev, "IRQ %s\n",
634 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
635 		status = SNDRV_PCM_STATE_XRUN;
636 	}
637 
638 	if (flags & SAI_XIMR_MUTEDETIE)
639 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
640 
641 	if (flags & SAI_XIMR_WCKCFGIE) {
642 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
643 		status = SNDRV_PCM_STATE_DISCONNECTED;
644 	}
645 
646 	if (flags & SAI_XIMR_CNRDYIE)
647 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
648 
649 	if (flags & SAI_XIMR_AFSDETIE) {
650 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
651 		status = SNDRV_PCM_STATE_XRUN;
652 	}
653 
654 	if (flags & SAI_XIMR_LFSDETIE) {
655 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
656 		status = SNDRV_PCM_STATE_XRUN;
657 	}
658 
659 	spin_lock(&sai->irq_lock);
660 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
661 		snd_pcm_stop_xrun(sai->substream);
662 	spin_unlock(&sai->irq_lock);
663 
664 	return IRQ_HANDLED;
665 }
666 
stm32_sai_set_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)667 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
668 				int clk_id, unsigned int freq, int dir)
669 {
670 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
671 	int ret;
672 
673 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
674 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
675 					   SAI_XCR1_NODIV,
676 					 freq ? 0 : SAI_XCR1_NODIV);
677 		if (ret < 0)
678 			return ret;
679 
680 		/* Assume shutdown if requested frequency is 0Hz */
681 		if (!freq) {
682 			/* Release mclk rate only if rate was actually set */
683 			if (sai->mclk_rate) {
684 				clk_rate_exclusive_put(sai->sai_mclk);
685 				sai->mclk_rate = 0;
686 			}
687 
688 			if (sai->put_sai_ck_rate)
689 				sai->put_sai_ck_rate(sai);
690 
691 			return 0;
692 		}
693 
694 		/* If master clock is used, configure SAI kernel clock now */
695 		ret = sai->set_sai_ck_rate(sai, freq);
696 		if (ret)
697 			return ret;
698 
699 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
700 		if (ret) {
701 			dev_err(cpu_dai->dev,
702 				ret == -EBUSY ?
703 				"Active streams have incompatible rates" :
704 				"Could not set mclk rate\n");
705 			return ret;
706 		}
707 
708 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
709 		sai->mclk_rate = freq;
710 	}
711 
712 	return 0;
713 }
714 
stm32_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)715 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
716 				      u32 rx_mask, int slots, int slot_width)
717 {
718 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
719 	int slotr, slotr_mask, slot_size;
720 
721 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
722 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
723 		return 0;
724 	}
725 
726 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
727 		tx_mask, rx_mask, slots, slot_width);
728 
729 	switch (slot_width) {
730 	case 16:
731 		slot_size = SAI_SLOT_SIZE_16;
732 		break;
733 	case 32:
734 		slot_size = SAI_SLOT_SIZE_32;
735 		break;
736 	default:
737 		slot_size = SAI_SLOT_SIZE_AUTO;
738 		break;
739 	}
740 
741 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
742 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
743 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
744 
745 	/* tx/rx mask set in machine init, if slot number defined in DT */
746 	if (STM_SAI_IS_PLAYBACK(sai)) {
747 		sai->slot_mask = tx_mask;
748 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
749 	}
750 
751 	if (STM_SAI_IS_CAPTURE(sai)) {
752 		sai->slot_mask = rx_mask;
753 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
754 	}
755 
756 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
757 
758 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
759 
760 	sai->slot_width = slot_width;
761 	sai->slots = slots;
762 
763 	return 0;
764 }
765 
stm32_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)766 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
767 {
768 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
769 	int cr1, frcr = 0;
770 	int cr1_mask, frcr_mask = 0;
771 	int ret;
772 
773 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
774 
775 	/* Do not generate master by default */
776 	cr1 = SAI_XCR1_NODIV;
777 	cr1_mask = SAI_XCR1_NODIV;
778 
779 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
780 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
781 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
782 		goto conf_update;
783 	}
784 
785 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
786 
787 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
788 	/* SCK active high for all protocols */
789 	case SND_SOC_DAIFMT_I2S:
790 		cr1 |= SAI_XCR1_CKSTR;
791 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
792 		break;
793 	/* Left justified */
794 	case SND_SOC_DAIFMT_MSB:
795 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
796 		break;
797 	/* Right justified */
798 	case SND_SOC_DAIFMT_LSB:
799 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
800 		break;
801 	case SND_SOC_DAIFMT_DSP_A:
802 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
803 		break;
804 	case SND_SOC_DAIFMT_DSP_B:
805 		frcr |= SAI_XFRCR_FSPOL;
806 		break;
807 	default:
808 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
809 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
810 		return -EINVAL;
811 	}
812 
813 	cr1_mask |= SAI_XCR1_CKSTR;
814 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
815 		     SAI_XFRCR_FSDEF;
816 
817 	/* DAI clock strobing. Invert setting previously set */
818 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
819 	case SND_SOC_DAIFMT_NB_NF:
820 		break;
821 	case SND_SOC_DAIFMT_IB_NF:
822 		cr1 ^= SAI_XCR1_CKSTR;
823 		break;
824 	case SND_SOC_DAIFMT_NB_IF:
825 		frcr ^= SAI_XFRCR_FSPOL;
826 		break;
827 	case SND_SOC_DAIFMT_IB_IF:
828 		/* Invert fs & sck */
829 		cr1 ^= SAI_XCR1_CKSTR;
830 		frcr ^= SAI_XFRCR_FSPOL;
831 		break;
832 	default:
833 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
834 			fmt & SND_SOC_DAIFMT_INV_MASK);
835 		return -EINVAL;
836 	}
837 	cr1_mask |= SAI_XCR1_CKSTR;
838 	frcr_mask |= SAI_XFRCR_FSPOL;
839 
840 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
841 
842 	/* DAI clock master masks */
843 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
844 	case SND_SOC_DAIFMT_BC_FC:
845 		/* codec is master */
846 		cr1 |= SAI_XCR1_SLAVE;
847 		sai->master = false;
848 		break;
849 	case SND_SOC_DAIFMT_BP_FP:
850 		sai->master = true;
851 		break;
852 	default:
853 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
854 			fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
855 		return -EINVAL;
856 	}
857 
858 	/* Set slave mode if sub-block is synchronized with another SAI */
859 	if (sai->sync) {
860 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
861 		cr1 |= SAI_XCR1_SLAVE;
862 		sai->master = false;
863 	}
864 
865 	cr1_mask |= SAI_XCR1_SLAVE;
866 
867 conf_update:
868 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
869 	if (ret < 0) {
870 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
871 		return ret;
872 	}
873 
874 	sai->fmt = fmt;
875 
876 	return 0;
877 }
878 
stm32_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)879 static int stm32_sai_startup(struct snd_pcm_substream *substream,
880 			     struct snd_soc_dai *cpu_dai)
881 {
882 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
883 	int imr, cr2, ret;
884 	unsigned long flags;
885 
886 	spin_lock_irqsave(&sai->irq_lock, flags);
887 	sai->substream = substream;
888 	spin_unlock_irqrestore(&sai->irq_lock, flags);
889 
890 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
891 		snd_pcm_hw_constraint_mask64(substream->runtime,
892 					     SNDRV_PCM_HW_PARAM_FORMAT,
893 					     SNDRV_PCM_FMTBIT_S32_LE);
894 		snd_pcm_hw_constraint_single(substream->runtime,
895 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
896 	}
897 
898 	ret = clk_prepare_enable(sai->sai_ck);
899 	if (ret < 0) {
900 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
901 		return ret;
902 	}
903 
904 	/* Enable ITs */
905 	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
906 			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
907 
908 	imr = SAI_XIMR_OVRUDRIE;
909 	if (STM_SAI_IS_CAPTURE(sai)) {
910 		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
911 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
912 			imr |= SAI_XIMR_MUTEDETIE;
913 	}
914 
915 	if (sai->master)
916 		imr |= SAI_XIMR_WCKCFGIE;
917 	else
918 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
919 
920 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
921 			     SAI_XIMR_MASK, imr);
922 
923 	return 0;
924 }
925 
stm32_sai_set_config(struct snd_soc_dai * cpu_dai,struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params)926 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
927 				struct snd_pcm_substream *substream,
928 				struct snd_pcm_hw_params *params)
929 {
930 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
931 	int cr1, cr1_mask, ret;
932 
933 	/*
934 	 * DMA bursts increment is set to 4 words.
935 	 * SAI fifo threshold is set to half fifo, to keep enough space
936 	 * for DMA incoming bursts.
937 	 */
938 	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
939 			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
940 			     SAI_XCR2_FFLUSH |
941 			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
942 
943 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
944 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
945 		sai->spdif_frm_cnt = 0;
946 		return 0;
947 	}
948 
949 	/* Mode, data format and channel config */
950 	cr1_mask = SAI_XCR1_DS_MASK;
951 	switch (params_format(params)) {
952 	case SNDRV_PCM_FORMAT_S8:
953 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
954 		break;
955 	case SNDRV_PCM_FORMAT_S16_LE:
956 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
957 		break;
958 	case SNDRV_PCM_FORMAT_S32_LE:
959 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
960 		break;
961 	default:
962 		dev_err(cpu_dai->dev, "Data format not supported\n");
963 		return -EINVAL;
964 	}
965 
966 	cr1_mask |= SAI_XCR1_MONO;
967 	if ((sai->slots == 2) && (params_channels(params) == 1))
968 		cr1 |= SAI_XCR1_MONO;
969 
970 	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
971 	if (ret < 0) {
972 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
973 		return ret;
974 	}
975 
976 	return 0;
977 }
978 
stm32_sai_set_slots(struct snd_soc_dai * cpu_dai)979 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
980 {
981 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
982 	int slotr, slot_sz;
983 
984 	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
985 
986 	/*
987 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
988 	 * By default slot width = data size, if not forced from DT
989 	 */
990 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
991 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
992 		sai->slot_width = sai->data_size;
993 
994 	if (sai->slot_width < sai->data_size) {
995 		dev_err(cpu_dai->dev,
996 			"Data size %d larger than slot width\n",
997 			sai->data_size);
998 		return -EINVAL;
999 	}
1000 
1001 	/* Slot number is set to 2, if not specified in DT */
1002 	if (!sai->slots)
1003 		sai->slots = 2;
1004 
1005 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
1006 	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1007 			     SAI_XSLOTR_NBSLOT_MASK,
1008 			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
1009 
1010 	/* Set default slots mask if not already set from DT */
1011 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
1012 		sai->slot_mask = (1 << sai->slots) - 1;
1013 		stm32_sai_sub_reg_up(sai,
1014 				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
1015 				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
1016 	}
1017 
1018 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
1019 		sai->slots, sai->slot_width);
1020 
1021 	return 0;
1022 }
1023 
stm32_sai_set_frame(struct snd_soc_dai * cpu_dai)1024 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
1025 {
1026 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1027 	int fs_active, offset, format;
1028 	int frcr, frcr_mask;
1029 
1030 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1031 	sai->fs_length = sai->slot_width * sai->slots;
1032 
1033 	fs_active = sai->fs_length / 2;
1034 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
1035 	    (format == SND_SOC_DAIFMT_DSP_B))
1036 		fs_active = 1;
1037 
1038 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
1039 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
1040 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
1041 
1042 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
1043 		sai->fs_length, fs_active);
1044 
1045 	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
1046 
1047 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
1048 		offset = sai->slot_width - sai->data_size;
1049 
1050 		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1051 				     SAI_XSLOTR_FBOFF_MASK,
1052 				     SAI_XSLOTR_FBOFF_SET(offset));
1053 	}
1054 }
1055 
stm32_sai_init_iec958_status(struct stm32_sai_sub_data * sai)1056 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
1057 {
1058 	unsigned char *cs = sai->iec958.status;
1059 
1060 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
1061 	cs[1] = IEC958_AES1_CON_GENERAL;
1062 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
1063 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
1064 }
1065 
stm32_sai_set_iec958_status(struct stm32_sai_sub_data * sai,struct snd_pcm_runtime * runtime)1066 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
1067 					struct snd_pcm_runtime *runtime)
1068 {
1069 	if (!runtime)
1070 		return;
1071 
1072 	/* Force the sample rate according to runtime rate */
1073 	mutex_lock(&sai->ctrl_lock);
1074 	switch (runtime->rate) {
1075 	case 22050:
1076 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
1077 		break;
1078 	case 44100:
1079 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
1080 		break;
1081 	case 88200:
1082 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
1083 		break;
1084 	case 176400:
1085 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
1086 		break;
1087 	case 24000:
1088 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
1089 		break;
1090 	case 48000:
1091 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
1092 		break;
1093 	case 96000:
1094 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
1095 		break;
1096 	case 192000:
1097 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
1098 		break;
1099 	case 32000:
1100 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
1101 		break;
1102 	default:
1103 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
1104 		break;
1105 	}
1106 	mutex_unlock(&sai->ctrl_lock);
1107 }
1108 
stm32_sai_configure_clock(struct snd_soc_dai * cpu_dai,struct snd_pcm_hw_params * params)1109 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
1110 				     struct snd_pcm_hw_params *params)
1111 {
1112 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1113 	int div = 0, cr1 = 0;
1114 	int sai_clk_rate, mclk_ratio, den;
1115 	unsigned int rate = params_rate(params);
1116 	int ret;
1117 
1118 	if (!sai->sai_mclk) {
1119 		ret = sai->set_sai_ck_rate(sai, rate);
1120 		if (ret)
1121 			return ret;
1122 	}
1123 	sai_clk_rate = clk_get_rate(sai->sai_ck);
1124 
1125 	if (STM_SAI_IS_F4(sai->pdata)) {
1126 		/* mclk on (NODIV=0)
1127 		 *   mclk_rate = 256 * fs
1128 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1129 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1130 		 * mclk off (NODIV=1)
1131 		 *   MCKDIV ignored. sck = sai_ck
1132 		 */
1133 		if (!sai->mclk_rate)
1134 			return 0;
1135 
1136 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1137 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1138 						    2 * sai->mclk_rate);
1139 			if (div < 0)
1140 				return div;
1141 		}
1142 	} else {
1143 		/*
1144 		 * TDM mode :
1145 		 *   mclk on
1146 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1147 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1148 		 *   mclk off
1149 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1150 		 * Note: NOMCK/NODIV correspond to same bit.
1151 		 */
1152 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1153 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1154 						    rate * 128);
1155 			if (div < 0)
1156 				return div;
1157 		} else {
1158 			if (sai->mclk_rate) {
1159 				mclk_ratio = sai->mclk_rate / rate;
1160 				if (mclk_ratio == 512) {
1161 					cr1 = SAI_XCR1_OSR;
1162 				} else if (mclk_ratio != 256) {
1163 					dev_err(cpu_dai->dev,
1164 						"Wrong mclk ratio %d\n",
1165 						mclk_ratio);
1166 					return -EINVAL;
1167 				}
1168 
1169 				stm32_sai_sub_reg_up(sai,
1170 						     STM_SAI_CR1_REGX,
1171 						     SAI_XCR1_OSR, cr1);
1172 
1173 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1174 							    sai->mclk_rate);
1175 				if (div < 0)
1176 					return div;
1177 			} else {
1178 				/* mclk-fs not set, master clock not active */
1179 				den = sai->fs_length * params_rate(params);
1180 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1181 							    den);
1182 				if (div < 0)
1183 					return div;
1184 			}
1185 		}
1186 	}
1187 
1188 	return stm32_sai_set_clk_div(sai, div);
1189 }
1190 
stm32_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)1191 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1192 			       struct snd_pcm_hw_params *params,
1193 			       struct snd_soc_dai *cpu_dai)
1194 {
1195 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1196 	int ret;
1197 
1198 	sai->data_size = params_width(params);
1199 
1200 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1201 		/* Rate not already set in runtime structure */
1202 		substream->runtime->rate = params_rate(params);
1203 		stm32_sai_set_iec958_status(sai, substream->runtime);
1204 	} else {
1205 		ret = stm32_sai_set_slots(cpu_dai);
1206 		if (ret < 0)
1207 			return ret;
1208 		stm32_sai_set_frame(cpu_dai);
1209 	}
1210 
1211 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1212 	if (ret)
1213 		return ret;
1214 
1215 	if (sai->master)
1216 		ret = stm32_sai_configure_clock(cpu_dai, params);
1217 
1218 	return ret;
1219 }
1220 
stm32_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)1221 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1222 			     struct snd_soc_dai *cpu_dai)
1223 {
1224 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1225 	int ret;
1226 
1227 	switch (cmd) {
1228 	case SNDRV_PCM_TRIGGER_START:
1229 	case SNDRV_PCM_TRIGGER_RESUME:
1230 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1231 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1232 
1233 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1234 				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1235 
1236 		/* Enable SAI */
1237 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1238 					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1239 		if (ret < 0)
1240 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1241 		break;
1242 	case SNDRV_PCM_TRIGGER_SUSPEND:
1243 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1244 	case SNDRV_PCM_TRIGGER_STOP:
1245 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1246 
1247 		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1248 				     SAI_XIMR_MASK, 0);
1249 
1250 		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1251 				     SAI_XCR1_SAIEN,
1252 				     (unsigned int)~SAI_XCR1_SAIEN);
1253 
1254 		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1255 					   SAI_XCR1_DMAEN,
1256 					   (unsigned int)~SAI_XCR1_DMAEN);
1257 		if (ret < 0)
1258 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1259 
1260 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1261 			sai->spdif_frm_cnt = 0;
1262 		break;
1263 	default:
1264 		return -EINVAL;
1265 	}
1266 
1267 	return ret;
1268 }
1269 
stm32_sai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)1270 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1271 			       struct snd_soc_dai *cpu_dai)
1272 {
1273 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1274 	unsigned long flags;
1275 
1276 	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1277 
1278 	clk_disable_unprepare(sai->sai_ck);
1279 
1280 	/*
1281 	 * Release kernel clock if following conditions are fulfilled
1282 	 * - Master clock is not used. Kernel clock won't be released trough sysclk
1283 	 * - Put handler is defined. Involve that clock is managed exclusively
1284 	 */
1285 	if (!sai->sai_mclk && sai->put_sai_ck_rate)
1286 		sai->put_sai_ck_rate(sai);
1287 
1288 	spin_lock_irqsave(&sai->irq_lock, flags);
1289 	sai->substream = NULL;
1290 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1291 }
1292 
stm32_sai_pcm_new(struct snd_soc_pcm_runtime * rtd,struct snd_soc_dai * cpu_dai)1293 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1294 			     struct snd_soc_dai *cpu_dai)
1295 {
1296 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1297 	struct snd_kcontrol_new knew = iec958_ctls;
1298 
1299 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1300 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1301 		knew.device = rtd->pcm->device;
1302 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1303 	}
1304 
1305 	return 0;
1306 }
1307 
stm32_sai_dai_probe(struct snd_soc_dai * cpu_dai)1308 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1309 {
1310 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1311 	int cr1 = 0, cr1_mask, ret;
1312 
1313 	sai->cpu_dai = cpu_dai;
1314 
1315 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1316 	/*
1317 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1318 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1319 	 * constraints).
1320 	 */
1321 	sai->dma_params.maxburst = 4;
1322 	if (sai->pdata->conf.fifo_size < 8 || sai->pdata->conf.no_dma_burst)
1323 		sai->dma_params.maxburst = 1;
1324 	/* Buswidth will be set by framework at runtime */
1325 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1326 
1327 	if (STM_SAI_IS_PLAYBACK(sai))
1328 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1329 	else
1330 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1331 
1332 	/* Next settings are not relevant for spdif mode */
1333 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1334 		return 0;
1335 
1336 	cr1_mask = SAI_XCR1_RX_TX;
1337 	if (STM_SAI_IS_CAPTURE(sai))
1338 		cr1 |= SAI_XCR1_RX_TX;
1339 
1340 	/* Configure synchronization */
1341 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1342 		/* Configure synchro client and provider */
1343 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1344 					   sai->synco, sai->synci);
1345 		if (ret)
1346 			return ret;
1347 	}
1348 
1349 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1350 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1351 
1352 	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1353 }
1354 
1355 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1356 	.probe		= stm32_sai_dai_probe,
1357 	.set_sysclk	= stm32_sai_set_sysclk,
1358 	.set_fmt	= stm32_sai_set_dai_fmt,
1359 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1360 	.startup	= stm32_sai_startup,
1361 	.hw_params	= stm32_sai_hw_params,
1362 	.trigger	= stm32_sai_trigger,
1363 	.shutdown	= stm32_sai_shutdown,
1364 	.pcm_new	= stm32_sai_pcm_new,
1365 };
1366 
1367 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1368 	.probe		= stm32_sai_dai_probe,
1369 	.set_sysclk	= stm32_sai_set_sysclk,
1370 	.set_fmt	= stm32_sai_set_dai_fmt,
1371 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1372 	.startup	= stm32_sai_startup,
1373 	.hw_params	= stm32_sai_hw_params,
1374 	.trigger	= stm32_sai_trigger,
1375 	.shutdown	= stm32_sai_shutdown,
1376 };
1377 
stm32_sai_pcm_process_spdif(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,unsigned long bytes)1378 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1379 				       int channel, unsigned long hwoff,
1380 				       unsigned long bytes)
1381 {
1382 	struct snd_pcm_runtime *runtime = substream->runtime;
1383 	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1384 	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1385 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1386 	int *ptr = (int *)(runtime->dma_area + hwoff +
1387 			   channel * (runtime->dma_bytes / runtime->channels));
1388 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1389 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1390 	unsigned int byte;
1391 	unsigned int mask;
1392 
1393 	do {
1394 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1395 
1396 		/* Set channel status bit */
1397 		byte = frm_cnt >> 3;
1398 		mask = 1 << (frm_cnt - (byte << 3));
1399 		if (sai->iec958.status[byte] & mask)
1400 			*ptr |= 0x04000000;
1401 		ptr++;
1402 
1403 		if (!(cnt % 2))
1404 			frm_cnt++;
1405 
1406 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1407 			frm_cnt = 0;
1408 	} while (--cnt);
1409 	sai->spdif_frm_cnt = frm_cnt;
1410 
1411 	return 0;
1412 }
1413 
1414 /* No support of mmap in S/PDIF mode */
1415 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1416 	.info = SNDRV_PCM_INFO_INTERLEAVED,
1417 	.buffer_bytes_max = 8 * PAGE_SIZE,
1418 	.period_bytes_min = 1024,
1419 	.period_bytes_max = PAGE_SIZE,
1420 	.periods_min = 2,
1421 	.periods_max = 8,
1422 };
1423 
1424 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1425 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1426 	.buffer_bytes_max = 8 * PAGE_SIZE,
1427 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1428 	.period_bytes_max = PAGE_SIZE,
1429 	.periods_min = 2,
1430 	.periods_max = 8,
1431 };
1432 
1433 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1434 		.id = 1, /* avoid call to fmt_single_name() */
1435 		.playback = {
1436 			.channels_min = 1,
1437 			.channels_max = 16,
1438 			.rate_min = 8000,
1439 			.rate_max = 192000,
1440 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1441 			/* DMA does not support 24 bits transfers */
1442 			.formats =
1443 				SNDRV_PCM_FMTBIT_S8 |
1444 				SNDRV_PCM_FMTBIT_S16_LE |
1445 				SNDRV_PCM_FMTBIT_S32_LE,
1446 		},
1447 		.ops = &stm32_sai_pcm_dai_ops,
1448 };
1449 
1450 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1451 		.id = 1, /* avoid call to fmt_single_name() */
1452 		.capture = {
1453 			.channels_min = 1,
1454 			.channels_max = 16,
1455 			.rate_min = 8000,
1456 			.rate_max = 192000,
1457 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1458 			/* DMA does not support 24 bits transfers */
1459 			.formats =
1460 				SNDRV_PCM_FMTBIT_S8 |
1461 				SNDRV_PCM_FMTBIT_S16_LE |
1462 				SNDRV_PCM_FMTBIT_S32_LE,
1463 		},
1464 		.ops = &stm32_sai_pcm_dai_ops2,
1465 };
1466 
1467 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1468 	.pcm_hardware = &stm32_sai_pcm_hw,
1469 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1470 };
1471 
1472 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1473 	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1474 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1475 	.process = stm32_sai_pcm_process_spdif,
1476 };
1477 
1478 static const struct snd_soc_component_driver stm32_component = {
1479 	.name = "stm32-sai",
1480 	.legacy_dai_naming = 1,
1481 };
1482 
1483 static const struct of_device_id stm32_sai_sub_ids[] = {
1484 	{ .compatible = "st,stm32-sai-sub-a",
1485 	  .data = (void *)STM_SAI_A_ID},
1486 	{ .compatible = "st,stm32-sai-sub-b",
1487 	  .data = (void *)STM_SAI_B_ID},
1488 	{}
1489 };
1490 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1491 
stm32_sai_sub_parse_of(struct platform_device * pdev,struct stm32_sai_sub_data * sai)1492 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1493 				  struct stm32_sai_sub_data *sai)
1494 {
1495 	struct device_node *np = pdev->dev.of_node;
1496 	struct resource *res;
1497 	void __iomem *base;
1498 	struct of_phandle_args args;
1499 	int ret;
1500 
1501 	if (!np)
1502 		return -ENODEV;
1503 
1504 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1505 	if (IS_ERR(base))
1506 		return PTR_ERR(base);
1507 
1508 	sai->phys_addr = res->start;
1509 
1510 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1511 	/* Note: PDM registers not available for sub-block B */
1512 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1513 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1514 
1515 	/*
1516 	 * Do not manage peripheral clock through regmap framework as this
1517 	 * can lead to circular locking issue with sai master clock provider.
1518 	 * Manage peripheral clock directly in driver instead.
1519 	 */
1520 	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1521 					    sai->regmap_config);
1522 	if (IS_ERR(sai->regmap))
1523 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1524 				     "Regmap init error\n");
1525 
1526 	/* Get direction property */
1527 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1528 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1529 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1530 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1531 	} else {
1532 		dev_err(&pdev->dev, "Unsupported direction\n");
1533 		return -EINVAL;
1534 	}
1535 
1536 	/* Get spdif iec60958 property */
1537 	sai->spdif = false;
1538 	if (of_property_present(np, "st,iec60958")) {
1539 		if (!STM_SAI_HAS_SPDIF(sai) ||
1540 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1541 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1542 			return -EINVAL;
1543 		}
1544 		stm32_sai_init_iec958_status(sai);
1545 		sai->spdif = true;
1546 		sai->master = true;
1547 	}
1548 
1549 	/* Get synchronization property */
1550 	args.np = NULL;
1551 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1552 	if (ret < 0  && ret != -ENOENT) {
1553 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1554 		return ret;
1555 	}
1556 
1557 	sai->sync = SAI_SYNC_NONE;
1558 	if (args.np) {
1559 		if (args.np == np) {
1560 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1561 			of_node_put(args.np);
1562 			return -EINVAL;
1563 		}
1564 
1565 		sai->np_sync_provider  = of_get_parent(args.np);
1566 		if (!sai->np_sync_provider) {
1567 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1568 				np);
1569 			of_node_put(args.np);
1570 			return -ENODEV;
1571 		}
1572 
1573 		sai->sync = SAI_SYNC_INTERNAL;
1574 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1575 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1576 				dev_err(&pdev->dev,
1577 					"External synchro not supported\n");
1578 				of_node_put(args.np);
1579 				return -EINVAL;
1580 			}
1581 			sai->sync = SAI_SYNC_EXTERNAL;
1582 
1583 			sai->synci = args.args[0];
1584 			if (sai->synci < 1 ||
1585 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1586 				dev_err(&pdev->dev, "Wrong SAI index\n");
1587 				of_node_put(args.np);
1588 				return -EINVAL;
1589 			}
1590 
1591 			if (of_property_match_string(args.np, "compatible",
1592 						     "st,stm32-sai-sub-a") >= 0)
1593 				sai->synco = STM_SAI_SYNC_OUT_A;
1594 
1595 			if (of_property_match_string(args.np, "compatible",
1596 						     "st,stm32-sai-sub-b") >= 0)
1597 				sai->synco = STM_SAI_SYNC_OUT_B;
1598 
1599 			if (!sai->synco) {
1600 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1601 				of_node_put(args.np);
1602 				return -EINVAL;
1603 			}
1604 		}
1605 
1606 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1607 			pdev->name, args.np->full_name);
1608 	}
1609 
1610 	of_node_put(args.np);
1611 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1612 	if (IS_ERR(sai->sai_ck))
1613 		return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1614 				     "Missing kernel clock sai_ck\n");
1615 
1616 	ret = clk_prepare(sai->pdata->pclk);
1617 	if (ret < 0)
1618 		return ret;
1619 
1620 	if (STM_SAI_IS_F4(sai->pdata))
1621 		return 0;
1622 
1623 	/* Register mclk provider if requested */
1624 	if (of_property_present(np, "#clock-cells")) {
1625 		ret = stm32_sai_add_mclk_provider(sai);
1626 		if (ret < 0)
1627 			return ret;
1628 	} else {
1629 		sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1630 		if (IS_ERR(sai->sai_mclk))
1631 			return PTR_ERR(sai->sai_mclk);
1632 	}
1633 
1634 	return 0;
1635 }
1636 
stm32_sai_sub_probe(struct platform_device * pdev)1637 static int stm32_sai_sub_probe(struct platform_device *pdev)
1638 {
1639 	struct stm32_sai_sub_data *sai;
1640 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1641 	int ret;
1642 
1643 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1644 	if (!sai)
1645 		return -ENOMEM;
1646 
1647 	sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
1648 
1649 	sai->pdev = pdev;
1650 	mutex_init(&sai->ctrl_lock);
1651 	spin_lock_init(&sai->irq_lock);
1652 	platform_set_drvdata(pdev, sai);
1653 
1654 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1655 	if (!sai->pdata) {
1656 		dev_err(&pdev->dev, "Parent device data not available\n");
1657 		return -EINVAL;
1658 	}
1659 
1660 	if (sai->pdata->conf.get_sai_ck_parent) {
1661 		sai->set_sai_ck_rate = stm32_sai_set_parent_clk;
1662 	} else {
1663 		sai->set_sai_ck_rate = stm32_sai_set_parent_rate;
1664 		sai->put_sai_ck_rate = stm32_sai_put_parent_rate;
1665 	}
1666 
1667 	ret = stm32_sai_sub_parse_of(pdev, sai);
1668 	if (ret)
1669 		return ret;
1670 
1671 	if (STM_SAI_IS_PLAYBACK(sai))
1672 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1673 	else
1674 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1675 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1676 
1677 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1678 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1679 	if (ret) {
1680 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1681 		return ret;
1682 	}
1683 
1684 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1685 		conf = &stm32_sai_pcm_config_spdif;
1686 
1687 	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1688 	if (ret)
1689 		return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1690 
1691 	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1692 					 &sai->cpu_dai_drv, 1);
1693 	if (ret) {
1694 		snd_dmaengine_pcm_unregister(&pdev->dev);
1695 		return ret;
1696 	}
1697 
1698 	pm_runtime_enable(&pdev->dev);
1699 
1700 	return 0;
1701 }
1702 
stm32_sai_sub_remove(struct platform_device * pdev)1703 static void stm32_sai_sub_remove(struct platform_device *pdev)
1704 {
1705 	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1706 
1707 	clk_unprepare(sai->pdata->pclk);
1708 	snd_dmaengine_pcm_unregister(&pdev->dev);
1709 	snd_soc_unregister_component(&pdev->dev);
1710 	pm_runtime_disable(&pdev->dev);
1711 }
1712 
stm32_sai_sub_suspend(struct device * dev)1713 static int stm32_sai_sub_suspend(struct device *dev)
1714 {
1715 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1716 	int ret;
1717 
1718 	ret = clk_enable(sai->pdata->pclk);
1719 	if (ret < 0)
1720 		return ret;
1721 
1722 	regcache_cache_only(sai->regmap, true);
1723 	regcache_mark_dirty(sai->regmap);
1724 
1725 	clk_disable(sai->pdata->pclk);
1726 
1727 	return 0;
1728 }
1729 
stm32_sai_sub_resume(struct device * dev)1730 static int stm32_sai_sub_resume(struct device *dev)
1731 {
1732 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1733 	int ret;
1734 
1735 	ret = clk_enable(sai->pdata->pclk);
1736 	if (ret < 0)
1737 		return ret;
1738 
1739 	regcache_cache_only(sai->regmap, false);
1740 	ret = regcache_sync(sai->regmap);
1741 
1742 	clk_disable(sai->pdata->pclk);
1743 
1744 	return ret;
1745 }
1746 
1747 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1748 	SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1749 };
1750 
1751 static struct platform_driver stm32_sai_sub_driver = {
1752 	.driver = {
1753 		.name = "st,stm32-sai-sub",
1754 		.of_match_table = stm32_sai_sub_ids,
1755 		.pm = pm_ptr(&stm32_sai_sub_pm_ops),
1756 	},
1757 	.probe = stm32_sai_sub_probe,
1758 	.remove = stm32_sai_sub_remove,
1759 };
1760 
1761 module_platform_driver(stm32_sai_sub_driver);
1762 
1763 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1764 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1765 MODULE_ALIAS("platform:st,stm32-sai-sub");
1766 MODULE_LICENSE("GPL v2");
1767