1 /*
2 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * AES low level APIs are deprecated for public use, but still ok for internal
12 * use where we're using them to implement the higher level EVP interface, as is
13 * the case here.
14 */
15 #include "internal/deprecated.h"
16
17 #include <stdio.h>
18 #include <string.h>
19 #include <openssl/opensslconf.h>
20 #include <openssl/evp.h>
21 #include <openssl/objects.h>
22 #include <openssl/aes.h>
23 #include <openssl/sha.h>
24 #include <openssl/rand.h>
25 #include "internal/cryptlib.h"
26 #include "crypto/modes.h"
27 #include "crypto/evp.h"
28 #include "internal/constant_time.h"
29 #include "evp_local.h"
30
31 typedef struct {
32 AES_KEY ks;
33 SHA_CTX head, tail, md;
34 size_t payload_length; /* AAD length in decrypt case */
35 union {
36 unsigned int tls_ver;
37 unsigned char tls_aad[16]; /* 13 used */
38 } aux;
39 } EVP_AES_HMAC_SHA1;
40
41 #define NO_PAYLOAD_LENGTH ((size_t)-1)
42
43 #if defined(AES_ASM) && ( \
44 defined(__x86_64) || defined(__x86_64__) || \
45 defined(_M_AMD64) || defined(_M_X64) )
46
47 # define AESNI_CAPABLE (1<<(57-32))
48
49 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
50 AES_KEY *key);
51 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
52 AES_KEY *key);
53
54 void aesni_cbc_encrypt(const unsigned char *in,
55 unsigned char *out,
56 size_t length,
57 const AES_KEY *key, unsigned char *ivec, int enc);
58
59 void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
60 const AES_KEY *key, unsigned char iv[16],
61 SHA_CTX *ctx, const void *in0);
62
63 void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
64 const AES_KEY *key, unsigned char iv[16],
65 SHA_CTX *ctx, const void *in0);
66
67 # define data(ctx) ((EVP_AES_HMAC_SHA1 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
68
aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX * ctx,const unsigned char * inkey,const unsigned char * iv,int enc)69 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
70 const unsigned char *inkey,
71 const unsigned char *iv, int enc)
72 {
73 EVP_AES_HMAC_SHA1 *key = data(ctx);
74 int ret;
75
76 if (enc)
77 ret = aesni_set_encrypt_key(inkey,
78 EVP_CIPHER_CTX_get_key_length(ctx) * 8,
79 &key->ks);
80 else
81 ret = aesni_set_decrypt_key(inkey,
82 EVP_CIPHER_CTX_get_key_length(ctx) * 8,
83 &key->ks);
84
85 SHA1_Init(&key->head); /* handy when benchmarking */
86 key->tail = key->head;
87 key->md = key->head;
88
89 key->payload_length = NO_PAYLOAD_LENGTH;
90
91 return ret < 0 ? 0 : 1;
92 }
93
94 # define STITCHED_CALL
95 # undef STITCHED_DECRYPT_CALL
96
97 # if !defined(STITCHED_CALL)
98 # define aes_off 0
99 # endif
100
101 void sha1_block_data_order(void *c, const void *p, size_t len);
102
sha1_update(SHA_CTX * c,const void * data,size_t len)103 static void sha1_update(SHA_CTX *c, const void *data, size_t len)
104 {
105 const unsigned char *ptr = data;
106 size_t res;
107
108 if ((res = c->num)) {
109 res = SHA_CBLOCK - res;
110 if (len < res)
111 res = len;
112 SHA1_Update(c, ptr, res);
113 ptr += res;
114 len -= res;
115 }
116
117 res = len % SHA_CBLOCK;
118 len -= res;
119
120 if (len) {
121 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
122
123 ptr += len;
124 c->Nh += len >> 29;
125 c->Nl += len <<= 3;
126 if (c->Nl < (unsigned int)len)
127 c->Nh++;
128 }
129
130 if (res)
131 SHA1_Update(c, ptr, res);
132 }
133
134 # ifdef SHA1_Update
135 # undef SHA1_Update
136 # endif
137 # define SHA1_Update sha1_update
138
139 # if !defined(OPENSSL_NO_MULTIBLOCK)
140
141 typedef struct {
142 unsigned int A[8], B[8], C[8], D[8], E[8];
143 } SHA1_MB_CTX;
144 typedef struct {
145 const unsigned char *ptr;
146 int blocks;
147 } HASH_DESC;
148
149 void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
150
151 typedef struct {
152 const unsigned char *inp;
153 unsigned char *out;
154 int blocks;
155 u64 iv[2];
156 } CIPH_DESC;
157
158 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
159
tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 * key,unsigned char * out,const unsigned char * inp,size_t inp_len,int n4x)160 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
161 unsigned char *out,
162 const unsigned char *inp,
163 size_t inp_len, int n4x)
164 { /* n4x is 1 or 2 */
165 HASH_DESC hash_d[8], edges[8];
166 CIPH_DESC ciph_d[8];
167 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
168 union {
169 u64 q[16];
170 u32 d[32];
171 u8 c[128];
172 } blocks[8];
173 SHA1_MB_CTX *ctx;
174 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
175 0;
176 size_t ret = 0;
177 u8 *IVs;
178 # if defined(BSWAP8)
179 u64 seqnum;
180 # endif
181
182 /* ask for IVs in bulk */
183 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
184 return 0;
185
186 ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
187
188 frag = (unsigned int)inp_len >> (1 + n4x);
189 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
190 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
191 frag++;
192 last -= x4 - 1;
193 }
194
195 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
196
197 /* populate descriptors with pointers and IVs */
198 hash_d[0].ptr = inp;
199 ciph_d[0].inp = inp;
200 /* 5+16 is place for header and explicit IV */
201 ciph_d[0].out = out + 5 + 16;
202 memcpy(ciph_d[0].out - 16, IVs, 16);
203 memcpy(ciph_d[0].iv, IVs, 16);
204 IVs += 16;
205
206 for (i = 1; i < x4; i++) {
207 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
208 ciph_d[i].out = ciph_d[i - 1].out + packlen;
209 memcpy(ciph_d[i].out - 16, IVs, 16);
210 memcpy(ciph_d[i].iv, IVs, 16);
211 IVs += 16;
212 }
213
214 # if defined(BSWAP8)
215 memcpy(blocks[0].c, key->md.data, 8);
216 seqnum = BSWAP8(blocks[0].q[0]);
217 # endif
218 for (i = 0; i < x4; i++) {
219 unsigned int len = (i == (x4 - 1) ? last : frag);
220 # if !defined(BSWAP8)
221 unsigned int carry, j;
222 # endif
223
224 ctx->A[i] = key->md.h0;
225 ctx->B[i] = key->md.h1;
226 ctx->C[i] = key->md.h2;
227 ctx->D[i] = key->md.h3;
228 ctx->E[i] = key->md.h4;
229
230 /* fix seqnum */
231 # if defined(BSWAP8)
232 blocks[i].q[0] = BSWAP8(seqnum + i);
233 # else
234 for (carry = i, j = 8; j--;) {
235 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
236 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
237 }
238 # endif
239 blocks[i].c[8] = ((u8 *)key->md.data)[8];
240 blocks[i].c[9] = ((u8 *)key->md.data)[9];
241 blocks[i].c[10] = ((u8 *)key->md.data)[10];
242 /* fix length */
243 blocks[i].c[11] = (u8)(len >> 8);
244 blocks[i].c[12] = (u8)(len);
245
246 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
247 hash_d[i].ptr += 64 - 13;
248 hash_d[i].blocks = (len - (64 - 13)) / 64;
249
250 edges[i].ptr = blocks[i].c;
251 edges[i].blocks = 1;
252 }
253
254 /* hash 13-byte headers and first 64-13 bytes of inputs */
255 sha1_multi_block(ctx, edges, n4x);
256 /* hash bulk inputs */
257 # define MAXCHUNKSIZE 2048
258 # if MAXCHUNKSIZE%64
259 # error "MAXCHUNKSIZE is not divisible by 64"
260 # elif MAXCHUNKSIZE
261 /*
262 * goal is to minimize pressure on L1 cache by moving in shorter steps,
263 * so that hashed data is still in the cache by the time we encrypt it
264 */
265 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
266 if (minblocks > MAXCHUNKSIZE / 64) {
267 for (i = 0; i < x4; i++) {
268 edges[i].ptr = hash_d[i].ptr;
269 edges[i].blocks = MAXCHUNKSIZE / 64;
270 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
271 }
272 do {
273 sha1_multi_block(ctx, edges, n4x);
274 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
275
276 for (i = 0; i < x4; i++) {
277 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
278 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
279 edges[i].blocks = MAXCHUNKSIZE / 64;
280 ciph_d[i].inp += MAXCHUNKSIZE;
281 ciph_d[i].out += MAXCHUNKSIZE;
282 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
283 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
284 }
285 processed += MAXCHUNKSIZE;
286 minblocks -= MAXCHUNKSIZE / 64;
287 } while (minblocks > MAXCHUNKSIZE / 64);
288 }
289 # endif
290 # undef MAXCHUNKSIZE
291 sha1_multi_block(ctx, hash_d, n4x);
292
293 memset(blocks, 0, sizeof(blocks));
294 for (i = 0; i < x4; i++) {
295 unsigned int len = (i == (x4 - 1) ? last : frag),
296 off = hash_d[i].blocks * 64;
297 const unsigned char *ptr = hash_d[i].ptr + off;
298
299 off = (len - processed) - (64 - 13) - off; /* remainder actually */
300 memcpy(blocks[i].c, ptr, off);
301 blocks[i].c[off] = 0x80;
302 len += 64 + 13; /* 64 is HMAC header */
303 len *= 8; /* convert to bits */
304 if (off < (64 - 8)) {
305 # ifdef BSWAP4
306 blocks[i].d[15] = BSWAP4(len);
307 # else
308 PUTU32(blocks[i].c + 60, len);
309 # endif
310 edges[i].blocks = 1;
311 } else {
312 # ifdef BSWAP4
313 blocks[i].d[31] = BSWAP4(len);
314 # else
315 PUTU32(blocks[i].c + 124, len);
316 # endif
317 edges[i].blocks = 2;
318 }
319 edges[i].ptr = blocks[i].c;
320 }
321
322 /* hash input tails and finalize */
323 sha1_multi_block(ctx, edges, n4x);
324
325 memset(blocks, 0, sizeof(blocks));
326 for (i = 0; i < x4; i++) {
327 # ifdef BSWAP4
328 blocks[i].d[0] = BSWAP4(ctx->A[i]);
329 ctx->A[i] = key->tail.h0;
330 blocks[i].d[1] = BSWAP4(ctx->B[i]);
331 ctx->B[i] = key->tail.h1;
332 blocks[i].d[2] = BSWAP4(ctx->C[i]);
333 ctx->C[i] = key->tail.h2;
334 blocks[i].d[3] = BSWAP4(ctx->D[i]);
335 ctx->D[i] = key->tail.h3;
336 blocks[i].d[4] = BSWAP4(ctx->E[i]);
337 ctx->E[i] = key->tail.h4;
338 blocks[i].c[20] = 0x80;
339 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
340 # else
341 PUTU32(blocks[i].c + 0, ctx->A[i]);
342 ctx->A[i] = key->tail.h0;
343 PUTU32(blocks[i].c + 4, ctx->B[i]);
344 ctx->B[i] = key->tail.h1;
345 PUTU32(blocks[i].c + 8, ctx->C[i]);
346 ctx->C[i] = key->tail.h2;
347 PUTU32(blocks[i].c + 12, ctx->D[i]);
348 ctx->D[i] = key->tail.h3;
349 PUTU32(blocks[i].c + 16, ctx->E[i]);
350 ctx->E[i] = key->tail.h4;
351 blocks[i].c[20] = 0x80;
352 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
353 # endif
354 edges[i].ptr = blocks[i].c;
355 edges[i].blocks = 1;
356 }
357
358 /* finalize MACs */
359 sha1_multi_block(ctx, edges, n4x);
360
361 for (i = 0; i < x4; i++) {
362 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
363 unsigned char *out0 = out;
364
365 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
366 ciph_d[i].inp = ciph_d[i].out;
367
368 out += 5 + 16 + len;
369
370 /* write MAC */
371 PUTU32(out + 0, ctx->A[i]);
372 PUTU32(out + 4, ctx->B[i]);
373 PUTU32(out + 8, ctx->C[i]);
374 PUTU32(out + 12, ctx->D[i]);
375 PUTU32(out + 16, ctx->E[i]);
376 out += 20;
377 len += 20;
378
379 /* pad */
380 pad = 15 - len % 16;
381 for (j = 0; j <= pad; j++)
382 *(out++) = pad;
383 len += pad + 1;
384
385 ciph_d[i].blocks = (len - processed) / 16;
386 len += 16; /* account for explicit iv */
387
388 /* arrange header */
389 out0[0] = ((u8 *)key->md.data)[8];
390 out0[1] = ((u8 *)key->md.data)[9];
391 out0[2] = ((u8 *)key->md.data)[10];
392 out0[3] = (u8)(len >> 8);
393 out0[4] = (u8)(len);
394
395 ret += len + 5;
396 inp += frag;
397 }
398
399 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
400
401 OPENSSL_cleanse(blocks, sizeof(blocks));
402 OPENSSL_cleanse(ctx, sizeof(*ctx));
403
404 return ret;
405 }
406 # endif
407
aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t len)408 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
409 const unsigned char *in, size_t len)
410 {
411 EVP_AES_HMAC_SHA1 *key = data(ctx);
412 unsigned int l;
413 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
414 * later */
415 sha_off = 0;
416 # if defined(STITCHED_CALL)
417 size_t aes_off = 0, blocks;
418
419 sha_off = SHA_CBLOCK - key->md.num;
420 # endif
421
422 key->payload_length = NO_PAYLOAD_LENGTH;
423
424 if (len % AES_BLOCK_SIZE)
425 return 0;
426
427 if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
428 if (plen == NO_PAYLOAD_LENGTH)
429 plen = len;
430 else if (len !=
431 ((plen + SHA_DIGEST_LENGTH +
432 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
433 return 0;
434 else if (key->aux.tls_ver >= TLS1_1_VERSION)
435 iv = AES_BLOCK_SIZE;
436
437 # if defined(STITCHED_CALL)
438 if (plen > (sha_off + iv)
439 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
440 SHA1_Update(&key->md, in + iv, sha_off);
441
442 aesni_cbc_sha1_enc(in, out, blocks, &key->ks, ctx->iv,
443 &key->md, in + iv + sha_off);
444 blocks *= SHA_CBLOCK;
445 aes_off += blocks;
446 sha_off += blocks;
447 key->md.Nh += blocks >> 29;
448 key->md.Nl += blocks <<= 3;
449 if (key->md.Nl < (unsigned int)blocks)
450 key->md.Nh++;
451 } else {
452 sha_off = 0;
453 }
454 # endif
455 sha_off += iv;
456 SHA1_Update(&key->md, in + sha_off, plen - sha_off);
457
458 if (plen != len) { /* "TLS" mode of operation */
459 if (in != out)
460 memcpy(out + aes_off, in + aes_off, plen - aes_off);
461
462 /* calculate HMAC and append it to payload */
463 SHA1_Final(out + plen, &key->md);
464 key->md = key->tail;
465 SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
466 SHA1_Final(out + plen, &key->md);
467
468 /* pad the payload|hmac */
469 plen += SHA_DIGEST_LENGTH;
470 for (l = len - plen - 1; plen < len; plen++)
471 out[plen] = l;
472 /* encrypt HMAC|padding at once */
473 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
474 &key->ks, ctx->iv, 1);
475 } else {
476 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
477 &key->ks, ctx->iv, 1);
478 }
479 } else {
480 union {
481 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
482 unsigned char c[32 + SHA_DIGEST_LENGTH];
483 } mac, *pmac;
484
485 /* arrange cache line alignment */
486 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
487
488 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
489 size_t inp_len, mask, j, i;
490 unsigned int res, maxpad, pad, bitlen;
491 int ret = 1;
492 union {
493 unsigned int u[SHA_LBLOCK];
494 unsigned char c[SHA_CBLOCK];
495 } *data = (void *)key->md.data;
496 # if defined(STITCHED_DECRYPT_CALL)
497 unsigned char tail_iv[AES_BLOCK_SIZE];
498 int stitch = 0;
499 # endif
500
501 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
502 >= TLS1_1_VERSION) {
503 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
504 return 0;
505
506 /* omit explicit iv */
507 memcpy(ctx->iv, in, AES_BLOCK_SIZE);
508
509 in += AES_BLOCK_SIZE;
510 out += AES_BLOCK_SIZE;
511 len -= AES_BLOCK_SIZE;
512 } else if (len < (SHA_DIGEST_LENGTH + 1))
513 return 0;
514
515 # if defined(STITCHED_DECRYPT_CALL)
516 if (len >= 1024 && ctx->key_len == 32) {
517 /* decrypt last block */
518 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
519 AES_BLOCK_SIZE);
520 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
521 out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
522 &key->ks, tail_iv, 0);
523 stitch = 1;
524 } else
525 # endif
526 /* decrypt HMAC|padding at once */
527 aesni_cbc_encrypt(in, out, len, &key->ks,
528 ctx->iv, 0);
529
530 /* figure out payload length */
531 pad = out[len - 1];
532 maxpad = len - (SHA_DIGEST_LENGTH + 1);
533 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
534 maxpad &= 255;
535
536 mask = constant_time_ge(maxpad, pad);
537 ret &= mask;
538 /*
539 * If pad is invalid then we will fail the above test but we must
540 * continue anyway because we are in constant time code. However,
541 * we'll use the maxpad value instead of the supplied pad to make
542 * sure we perform well defined pointer arithmetic.
543 */
544 pad = constant_time_select(mask, pad, maxpad);
545
546 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
547
548 key->aux.tls_aad[plen - 2] = inp_len >> 8;
549 key->aux.tls_aad[plen - 1] = inp_len;
550
551 /* calculate HMAC */
552 key->md = key->head;
553 SHA1_Update(&key->md, key->aux.tls_aad, plen);
554
555 # if defined(STITCHED_DECRYPT_CALL)
556 if (stitch) {
557 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
558 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
559 sha_off = SHA_CBLOCK - plen;
560
561 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
562
563 SHA1_Update(&key->md, out, sha_off);
564 aesni256_cbc_sha1_dec(in + aes_off,
565 out + aes_off, blocks, &key->ks,
566 ctx->iv, &key->md, out + sha_off);
567
568 sha_off += blocks *= SHA_CBLOCK;
569 out += sha_off;
570 len -= sha_off;
571 inp_len -= sha_off;
572
573 key->md.Nl += (blocks << 3); /* at most 18 bits */
574 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
575 }
576 # endif
577
578 # if 1 /* see original reference version in #else */
579 len -= SHA_DIGEST_LENGTH; /* amend mac */
580 if (len >= (256 + SHA_CBLOCK)) {
581 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
582 j += SHA_CBLOCK - key->md.num;
583 SHA1_Update(&key->md, out, j);
584 out += j;
585 len -= j;
586 inp_len -= j;
587 }
588
589 /* but pretend as if we hashed padded payload */
590 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
591 # ifdef BSWAP4
592 bitlen = BSWAP4(bitlen);
593 # else
594 mac.c[0] = 0;
595 mac.c[1] = (unsigned char)(bitlen >> 16);
596 mac.c[2] = (unsigned char)(bitlen >> 8);
597 mac.c[3] = (unsigned char)bitlen;
598 bitlen = mac.u[0];
599 # endif
600
601 pmac->u[0] = 0;
602 pmac->u[1] = 0;
603 pmac->u[2] = 0;
604 pmac->u[3] = 0;
605 pmac->u[4] = 0;
606
607 for (res = key->md.num, j = 0; j < len; j++) {
608 size_t c = out[j];
609 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
610 c &= mask;
611 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
612 data->c[res++] = (unsigned char)c;
613
614 if (res != SHA_CBLOCK)
615 continue;
616
617 /* j is not incremented yet */
618 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
619 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
620 sha1_block_data_order(&key->md, data, 1);
621 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
622 pmac->u[0] |= key->md.h0 & mask;
623 pmac->u[1] |= key->md.h1 & mask;
624 pmac->u[2] |= key->md.h2 & mask;
625 pmac->u[3] |= key->md.h3 & mask;
626 pmac->u[4] |= key->md.h4 & mask;
627 res = 0;
628 }
629
630 for (i = res; i < SHA_CBLOCK; i++, j++)
631 data->c[i] = 0;
632
633 if (res > SHA_CBLOCK - 8) {
634 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
635 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
636 sha1_block_data_order(&key->md, data, 1);
637 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
638 pmac->u[0] |= key->md.h0 & mask;
639 pmac->u[1] |= key->md.h1 & mask;
640 pmac->u[2] |= key->md.h2 & mask;
641 pmac->u[3] |= key->md.h3 & mask;
642 pmac->u[4] |= key->md.h4 & mask;
643
644 memset(data, 0, SHA_CBLOCK);
645 j += 64;
646 }
647 data->u[SHA_LBLOCK - 1] = bitlen;
648 sha1_block_data_order(&key->md, data, 1);
649 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
650 pmac->u[0] |= key->md.h0 & mask;
651 pmac->u[1] |= key->md.h1 & mask;
652 pmac->u[2] |= key->md.h2 & mask;
653 pmac->u[3] |= key->md.h3 & mask;
654 pmac->u[4] |= key->md.h4 & mask;
655
656 # ifdef BSWAP4
657 pmac->u[0] = BSWAP4(pmac->u[0]);
658 pmac->u[1] = BSWAP4(pmac->u[1]);
659 pmac->u[2] = BSWAP4(pmac->u[2]);
660 pmac->u[3] = BSWAP4(pmac->u[3]);
661 pmac->u[4] = BSWAP4(pmac->u[4]);
662 # else
663 for (i = 0; i < 5; i++) {
664 res = pmac->u[i];
665 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
666 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
667 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
668 pmac->c[4 * i + 3] = (unsigned char)res;
669 }
670 # endif
671 len += SHA_DIGEST_LENGTH;
672 # else /* pre-lucky-13 reference version of above */
673 SHA1_Update(&key->md, out, inp_len);
674 res = key->md.num;
675 SHA1_Final(pmac->c, &key->md);
676
677 {
678 unsigned int inp_blocks, pad_blocks;
679
680 /* but pretend as if we hashed padded payload */
681 inp_blocks =
682 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
683 res += (unsigned int)(len - inp_len);
684 pad_blocks = res / SHA_CBLOCK;
685 res %= SHA_CBLOCK;
686 pad_blocks +=
687 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
688 for (; inp_blocks < pad_blocks; inp_blocks++)
689 sha1_block_data_order(&key->md, data, 1);
690 }
691 # endif
692 key->md = key->tail;
693 SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
694 SHA1_Final(pmac->c, &key->md);
695
696 /* verify HMAC */
697 out += inp_len;
698 len -= inp_len;
699 # if 1 /* see original reference version in #else */
700 {
701 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
702 size_t off = out - p;
703 unsigned int c, cmask;
704
705 for (res = 0, i = 0, j = 0; j < maxpad + SHA_DIGEST_LENGTH; j++) {
706 c = p[j];
707 cmask =
708 ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
709 8 - 1);
710 res |= (c ^ pad) & ~cmask; /* ... and padding */
711 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
712 res |= (c ^ pmac->c[i]) & cmask;
713 i += 1 & cmask;
714 }
715
716 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
717 ret &= (int)~res;
718 }
719 # else /* pre-lucky-13 reference version of above */
720 for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
721 res |= out[i] ^ pmac->c[i];
722 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
723 ret &= (int)~res;
724
725 /* verify padding */
726 pad = (pad & ~res) | (maxpad & res);
727 out = out + len - 1 - pad;
728 for (res = 0, i = 0; i < pad; i++)
729 res |= out[i] ^ pad;
730
731 res = (0 - res) >> (sizeof(res) * 8 - 1);
732 ret &= (int)~res;
733 # endif
734 return ret;
735 } else {
736 # if defined(STITCHED_DECRYPT_CALL)
737 if (len >= 1024 && ctx->key_len == 32) {
738 if (sha_off %= SHA_CBLOCK)
739 blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
740 else
741 blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
742 aes_off = len - blocks * SHA_CBLOCK;
743
744 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
745 SHA1_Update(&key->md, out, sha_off);
746 aesni256_cbc_sha1_dec(in + aes_off,
747 out + aes_off, blocks, &key->ks,
748 ctx->iv, &key->md, out + sha_off);
749
750 sha_off += blocks *= SHA_CBLOCK;
751 out += sha_off;
752 len -= sha_off;
753
754 key->md.Nh += blocks >> 29;
755 key->md.Nl += blocks <<= 3;
756 if (key->md.Nl < (unsigned int)blocks)
757 key->md.Nh++;
758 } else
759 # endif
760 /* decrypt HMAC|padding at once */
761 aesni_cbc_encrypt(in, out, len, &key->ks,
762 ctx->iv, 0);
763
764 SHA1_Update(&key->md, out, len);
765 }
766 }
767
768 return 1;
769 }
770
aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr)771 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
772 void *ptr)
773 {
774 EVP_AES_HMAC_SHA1 *key = data(ctx);
775
776 switch (type) {
777 case EVP_CTRL_AEAD_SET_MAC_KEY:
778 {
779 unsigned int i;
780 unsigned char hmac_key[64];
781
782 memset(hmac_key, 0, sizeof(hmac_key));
783
784 if (arg > (int)sizeof(hmac_key)) {
785 SHA1_Init(&key->head);
786 SHA1_Update(&key->head, ptr, arg);
787 SHA1_Final(hmac_key, &key->head);
788 } else {
789 memcpy(hmac_key, ptr, arg);
790 }
791
792 for (i = 0; i < sizeof(hmac_key); i++)
793 hmac_key[i] ^= 0x36; /* ipad */
794 SHA1_Init(&key->head);
795 SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
796
797 for (i = 0; i < sizeof(hmac_key); i++)
798 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
799 SHA1_Init(&key->tail);
800 SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
801
802 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
803
804 return 1;
805 }
806 case EVP_CTRL_AEAD_TLS1_AAD:
807 {
808 unsigned char *p = ptr;
809 unsigned int len;
810
811 if (arg != EVP_AEAD_TLS1_AAD_LEN)
812 return -1;
813
814 len = p[arg - 2] << 8 | p[arg - 1];
815
816 if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
817 key->payload_length = len;
818 if ((key->aux.tls_ver =
819 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
820 if (len < AES_BLOCK_SIZE)
821 return 0;
822 len -= AES_BLOCK_SIZE;
823 p[arg - 2] = len >> 8;
824 p[arg - 1] = len;
825 }
826 key->md = key->head;
827 SHA1_Update(&key->md, p, arg);
828
829 return (int)(((len + SHA_DIGEST_LENGTH +
830 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
831 - len);
832 } else {
833 memcpy(key->aux.tls_aad, ptr, arg);
834 key->payload_length = arg;
835
836 return SHA_DIGEST_LENGTH;
837 }
838 }
839 # if !defined(OPENSSL_NO_MULTIBLOCK)
840 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
841 return (int)(5 + 16 + ((arg + 20 + 16) & -16));
842 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
843 {
844 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
845 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
846 unsigned int n4x = 1, x4;
847 unsigned int frag, last, packlen, inp_len;
848
849 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
850 return -1;
851
852 inp_len = param->inp[11] << 8 | param->inp[12];
853
854 if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
855 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
856 return -1;
857
858 if (inp_len) {
859 if (inp_len < 4096)
860 return 0; /* too short */
861
862 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
863 n4x = 2; /* AVX2 */
864 } else if ((n4x = param->interleave / 4) && n4x <= 2)
865 inp_len = param->len;
866 else
867 return -1;
868
869 key->md = key->head;
870 SHA1_Update(&key->md, param->inp, 13);
871
872 x4 = 4 * n4x;
873 n4x += 1;
874
875 frag = inp_len >> n4x;
876 last = inp_len + frag - (frag << n4x);
877 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
878 frag++;
879 last -= x4 - 1;
880 }
881
882 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
883 packlen = (packlen << n4x) - packlen;
884 packlen += 5 + 16 + ((last + 20 + 16) & -16);
885
886 param->interleave = x4;
887
888 return (int)packlen;
889 } else
890 return -1; /* not yet */
891 }
892 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
893 {
894 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
895 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
896
897 return (int)tls1_1_multi_block_encrypt(key, param->out,
898 param->inp, param->len,
899 param->interleave / 4);
900 }
901 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
902 # endif
903 default:
904 return -1;
905 }
906 }
907
908 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
909 # ifdef NID_aes_128_cbc_hmac_sha1
910 NID_aes_128_cbc_hmac_sha1,
911 # else
912 NID_undef,
913 # endif
914 AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
915 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
916 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
917 EVP_ORIG_GLOBAL,
918 aesni_cbc_hmac_sha1_init_key,
919 aesni_cbc_hmac_sha1_cipher,
920 NULL,
921 sizeof(EVP_AES_HMAC_SHA1),
922 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
923 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
924 aesni_cbc_hmac_sha1_ctrl,
925 NULL
926 };
927
928 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
929 # ifdef NID_aes_256_cbc_hmac_sha1
930 NID_aes_256_cbc_hmac_sha1,
931 # else
932 NID_undef,
933 # endif
934 AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
935 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
936 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
937 EVP_ORIG_GLOBAL,
938 aesni_cbc_hmac_sha1_init_key,
939 aesni_cbc_hmac_sha1_cipher,
940 NULL,
941 sizeof(EVP_AES_HMAC_SHA1),
942 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
943 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
944 aesni_cbc_hmac_sha1_ctrl,
945 NULL
946 };
947
EVP_aes_128_cbc_hmac_sha1(void)948 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
949 {
950 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
951 &aesni_128_cbc_hmac_sha1_cipher : NULL);
952 }
953
EVP_aes_256_cbc_hmac_sha1(void)954 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
955 {
956 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
957 &aesni_256_cbc_hmac_sha1_cipher : NULL);
958 }
959 #else
EVP_aes_128_cbc_hmac_sha1(void)960 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
961 {
962 return NULL;
963 }
964
EVP_aes_256_cbc_hmac_sha1(void)965 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
966 {
967 return NULL;
968 }
969 #endif
970