xref: /linux/tools/perf/bench/numa.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 
10 #include <subcmd/parse-options.h>
11 #include "../util/cloexec.h"
12 
13 #include "bench.h"
14 
15 #include <errno.h>
16 #include <sched.h>
17 #include <stdio.h>
18 #include <assert.h>
19 #include <debug.h>
20 #include <malloc.h>
21 #include <signal.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/time.h>
27 #include <sys/resource.h>
28 #include <sys/wait.h>
29 #include <sys/prctl.h>
30 #include <sys/stat.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36 
37 #include "../util/header.h"
38 #include "../util/mutex.h"
39 #include <api/fs/fs.h>
40 #include <numa.h>
41 #include <numaif.h>
42 
43 #ifndef RUSAGE_THREAD
44 # define RUSAGE_THREAD 1
45 #endif
46 
47 /*
48  * Regular printout to the terminal, suppressed if -q is specified:
49  */
50 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
51 
52 /*
53  * Debug printf:
54  */
55 #undef dprintf
56 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
57 
58 struct thread_data {
59 	int			curr_cpu;
60 	cpu_set_t		*bind_cpumask;
61 	int			bind_node;
62 	u8			*process_data;
63 	int			process_nr;
64 	int			thread_nr;
65 	int			task_nr;
66 	unsigned int		loops_done;
67 	u64			val;
68 	u64			runtime_ns;
69 	u64			system_time_ns;
70 	u64			user_time_ns;
71 	double			speed_gbs;
72 	struct mutex		*process_lock;
73 };
74 
75 /* Parameters set by options: */
76 
77 struct params {
78 	/* Startup synchronization: */
79 	bool			serialize_startup;
80 
81 	/* Task hierarchy: */
82 	int			nr_proc;
83 	int			nr_threads;
84 
85 	/* Working set sizes: */
86 	const char		*mb_global_str;
87 	const char		*mb_proc_str;
88 	const char		*mb_proc_locked_str;
89 	const char		*mb_thread_str;
90 
91 	double			mb_global;
92 	double			mb_proc;
93 	double			mb_proc_locked;
94 	double			mb_thread;
95 
96 	/* Access patterns to the working set: */
97 	bool			data_reads;
98 	bool			data_writes;
99 	bool			data_backwards;
100 	bool			data_zero_memset;
101 	bool			data_rand_walk;
102 	u32			nr_loops;
103 	u32			nr_secs;
104 	u32			sleep_usecs;
105 
106 	/* Working set initialization: */
107 	bool			init_zero;
108 	bool			init_random;
109 	bool			init_cpu0;
110 
111 	/* Misc options: */
112 	int			show_details;
113 	int			run_all;
114 	int			thp;
115 
116 	long			bytes_global;
117 	long			bytes_process;
118 	long			bytes_process_locked;
119 	long			bytes_thread;
120 
121 	int			nr_tasks;
122 
123 	bool			show_convergence;
124 	bool			measure_convergence;
125 
126 	int			perturb_secs;
127 	int			nr_cpus;
128 	int			nr_nodes;
129 
130 	/* Affinity options -C and -N: */
131 	char			*cpu_list_str;
132 	char			*node_list_str;
133 };
134 
135 
136 /* Global, read-writable area, accessible to all processes and threads: */
137 
138 struct global_info {
139 	u8			*data;
140 
141 	struct mutex		startup_mutex;
142 	struct cond		startup_cond;
143 	int			nr_tasks_started;
144 
145 	struct mutex		start_work_mutex;
146 	struct cond		start_work_cond;
147 	int			nr_tasks_working;
148 	bool			start_work;
149 
150 	struct mutex		stop_work_mutex;
151 	u64			bytes_done;
152 
153 	struct thread_data	*threads;
154 
155 	/* Convergence latency measurement: */
156 	bool			all_converged;
157 	bool			stop_work;
158 
159 	int			print_once;
160 
161 	struct params		p;
162 };
163 
164 static struct global_info	*g = NULL;
165 
166 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
167 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
168 
169 struct params p0;
170 
171 static const struct option options[] = {
172 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
173 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
174 
175 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
176 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
177 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
178 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
179 
180 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
181 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
182 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
183 
184 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
185 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
186 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
187 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
188 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
189 
190 
191 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
192 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
193 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
194 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
195 
196 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
197 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
198 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
199 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
200 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
201 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
202 	OPT_BOOLEAN('q', "quiet"	, &quiet,
203 		    "quiet mode (do not show any warnings or messages)"),
204 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
205 
206 	/* Special option string parsing callbacks: */
207         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
208 			"bind the first N tasks to these specific cpus (the rest is unbound)",
209 			parse_cpus_opt),
210         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
211 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
212 			parse_nodes_opt),
213 	OPT_END()
214 };
215 
216 static const char * const bench_numa_usage[] = {
217 	"perf bench numa <options>",
218 	NULL
219 };
220 
221 static const char * const numa_usage[] = {
222 	"perf bench numa mem [<options>]",
223 	NULL
224 };
225 
226 /*
227  * To get number of numa nodes present.
228  */
229 static int nr_numa_nodes(void)
230 {
231 	int i, nr_nodes = 0;
232 
233 	for (i = 0; i < g->p.nr_nodes; i++) {
234 		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
235 			nr_nodes++;
236 	}
237 
238 	return nr_nodes;
239 }
240 
241 /*
242  * To check if given numa node is present.
243  */
244 static int is_node_present(int node)
245 {
246 	return numa_bitmask_isbitset(numa_nodes_ptr, node);
247 }
248 
249 /*
250  * To check given numa node has cpus.
251  */
252 static bool node_has_cpus(int node)
253 {
254 	struct bitmask *cpumask = numa_allocate_cpumask();
255 	bool ret = false; /* fall back to nocpus */
256 	int cpu;
257 
258 	BUG_ON(!cpumask);
259 	if (!numa_node_to_cpus(node, cpumask)) {
260 		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
261 			if (numa_bitmask_isbitset(cpumask, cpu)) {
262 				ret = true;
263 				break;
264 			}
265 		}
266 	}
267 	numa_free_cpumask(cpumask);
268 
269 	return ret;
270 }
271 
272 static cpu_set_t *bind_to_cpu(int target_cpu)
273 {
274 	int nrcpus = numa_num_possible_cpus();
275 	cpu_set_t *orig_mask, *mask;
276 	size_t size;
277 
278 	orig_mask = CPU_ALLOC(nrcpus);
279 	BUG_ON(!orig_mask);
280 	size = CPU_ALLOC_SIZE(nrcpus);
281 	CPU_ZERO_S(size, orig_mask);
282 
283 	if (sched_getaffinity(0, size, orig_mask))
284 		goto err_out;
285 
286 	mask = CPU_ALLOC(nrcpus);
287 	if (!mask)
288 		goto err_out;
289 
290 	CPU_ZERO_S(size, mask);
291 
292 	if (target_cpu == -1) {
293 		int cpu;
294 
295 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
296 			CPU_SET_S(cpu, size, mask);
297 	} else {
298 		if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
299 			goto err;
300 
301 		CPU_SET_S(target_cpu, size, mask);
302 	}
303 
304 	if (sched_setaffinity(0, size, mask))
305 		goto err;
306 
307 	return orig_mask;
308 
309 err:
310 	CPU_FREE(mask);
311 err_out:
312 	CPU_FREE(orig_mask);
313 
314 	/* BUG_ON due to failure in allocation of orig_mask/mask */
315 	BUG_ON(-1);
316 	return NULL;
317 }
318 
319 static cpu_set_t *bind_to_node(int target_node)
320 {
321 	int nrcpus = numa_num_possible_cpus();
322 	size_t size;
323 	cpu_set_t *orig_mask, *mask;
324 	int cpu;
325 
326 	orig_mask = CPU_ALLOC(nrcpus);
327 	BUG_ON(!orig_mask);
328 	size = CPU_ALLOC_SIZE(nrcpus);
329 	CPU_ZERO_S(size, orig_mask);
330 
331 	if (sched_getaffinity(0, size, orig_mask))
332 		goto err_out;
333 
334 	mask = CPU_ALLOC(nrcpus);
335 	if (!mask)
336 		goto err_out;
337 
338 	CPU_ZERO_S(size, mask);
339 
340 	if (target_node == NUMA_NO_NODE) {
341 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
342 			CPU_SET_S(cpu, size, mask);
343 	} else {
344 		struct bitmask *cpumask = numa_allocate_cpumask();
345 
346 		if (!cpumask)
347 			goto err;
348 
349 		if (!numa_node_to_cpus(target_node, cpumask)) {
350 			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
351 				if (numa_bitmask_isbitset(cpumask, cpu))
352 					CPU_SET_S(cpu, size, mask);
353 			}
354 		}
355 		numa_free_cpumask(cpumask);
356 	}
357 
358 	if (sched_setaffinity(0, size, mask))
359 		goto err;
360 
361 	return orig_mask;
362 
363 err:
364 	CPU_FREE(mask);
365 err_out:
366 	CPU_FREE(orig_mask);
367 
368 	/* BUG_ON due to failure in allocation of orig_mask/mask */
369 	BUG_ON(-1);
370 	return NULL;
371 }
372 
373 static void bind_to_cpumask(cpu_set_t *mask)
374 {
375 	int ret;
376 	size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
377 
378 	ret = sched_setaffinity(0, size, mask);
379 	if (ret) {
380 		CPU_FREE(mask);
381 		BUG_ON(ret);
382 	}
383 }
384 
385 static void mempol_restore(void)
386 {
387 	int ret;
388 
389 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
390 
391 	BUG_ON(ret);
392 }
393 
394 static void bind_to_memnode(int node)
395 {
396 	struct bitmask *node_mask;
397 	int ret;
398 
399 	if (node == NUMA_NO_NODE)
400 		return;
401 
402 	node_mask = numa_allocate_nodemask();
403 	BUG_ON(!node_mask);
404 
405 	numa_bitmask_clearall(node_mask);
406 	numa_bitmask_setbit(node_mask, node);
407 
408 	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
409 	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
410 
411 	numa_bitmask_free(node_mask);
412 	BUG_ON(ret);
413 }
414 
415 #define HPSIZE (2*1024*1024)
416 
417 #define set_taskname(fmt...)				\
418 do {							\
419 	char name[20];					\
420 							\
421 	snprintf(name, 20, fmt);			\
422 	prctl(PR_SET_NAME, name);			\
423 } while (0)
424 
425 static u8 *alloc_data(ssize_t bytes0, int map_flags,
426 		      int init_zero, int init_cpu0, int thp, int init_random)
427 {
428 	cpu_set_t *orig_mask = NULL;
429 	ssize_t bytes;
430 	u8 *buf;
431 	int ret;
432 
433 	if (!bytes0)
434 		return NULL;
435 
436 	/* Allocate and initialize all memory on CPU#0: */
437 	if (init_cpu0) {
438 		int node = numa_node_of_cpu(0);
439 
440 		orig_mask = bind_to_node(node);
441 		bind_to_memnode(node);
442 	}
443 
444 	bytes = bytes0 + HPSIZE;
445 
446 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
447 	BUG_ON(buf == (void *)-1);
448 
449 	if (map_flags == MAP_PRIVATE) {
450 		if (thp > 0) {
451 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
452 			if (ret && !g->print_once) {
453 				g->print_once = 1;
454 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
455 			}
456 		}
457 		if (thp < 0) {
458 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
459 			if (ret && !g->print_once) {
460 				g->print_once = 1;
461 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
462 			}
463 		}
464 	}
465 
466 	if (init_zero) {
467 		bzero(buf, bytes);
468 	} else {
469 		/* Initialize random contents, different in each word: */
470 		if (init_random) {
471 			u64 *wbuf = (void *)buf;
472 			long off = rand();
473 			long i;
474 
475 			for (i = 0; i < bytes/8; i++)
476 				wbuf[i] = i + off;
477 		}
478 	}
479 
480 	/* Align to 2MB boundary: */
481 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
482 
483 	/* Restore affinity: */
484 	if (init_cpu0) {
485 		bind_to_cpumask(orig_mask);
486 		CPU_FREE(orig_mask);
487 		mempol_restore();
488 	}
489 
490 	return buf;
491 }
492 
493 static void free_data(void *data, ssize_t bytes)
494 {
495 	int ret;
496 
497 	if (!data)
498 		return;
499 
500 	ret = munmap(data, bytes);
501 	BUG_ON(ret);
502 }
503 
504 /*
505  * Create a shared memory buffer that can be shared between processes, zeroed:
506  */
507 static void * zalloc_shared_data(ssize_t bytes)
508 {
509 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
510 }
511 
512 /*
513  * Create a shared memory buffer that can be shared between processes:
514  */
515 static void * setup_shared_data(ssize_t bytes)
516 {
517 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
518 }
519 
520 /*
521  * Allocate process-local memory - this will either be shared between
522  * threads of this process, or only be accessed by this thread:
523  */
524 static void * setup_private_data(ssize_t bytes)
525 {
526 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
527 }
528 
529 static int parse_cpu_list(const char *arg)
530 {
531 	p0.cpu_list_str = strdup(arg);
532 
533 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
534 
535 	return 0;
536 }
537 
538 /*
539  * Check whether a CPU is online
540  *
541  * Returns:
542  *     1 -> if CPU is online
543  *     0 -> if CPU is offline
544  *    -1 -> error case
545  */
546 static int is_cpu_online(unsigned int cpu)
547 {
548 	char *str;
549 	size_t strlen;
550 	char buf[256];
551 	int status = -1;
552 	struct stat statbuf;
553 
554 	snprintf(buf, sizeof(buf),
555 		"/sys/devices/system/cpu/cpu%d", cpu);
556 	if (stat(buf, &statbuf) != 0)
557 		return 0;
558 
559 	/*
560 	 * Check if /sys/devices/system/cpu/cpux/online file
561 	 * exists. Some cases cpu0 won't have online file since
562 	 * it is not expected to be turned off generally.
563 	 * In kernels without CONFIG_HOTPLUG_CPU, this
564 	 * file won't exist
565 	 */
566 	snprintf(buf, sizeof(buf),
567 		"/sys/devices/system/cpu/cpu%d/online", cpu);
568 	if (stat(buf, &statbuf) != 0)
569 		return 1;
570 
571 	/*
572 	 * Read online file using sysfs__read_str.
573 	 * If read or open fails, return -1.
574 	 * If read succeeds, return value from file
575 	 * which gets stored in "str"
576 	 */
577 	snprintf(buf, sizeof(buf),
578 		"devices/system/cpu/cpu%d/online", cpu);
579 
580 	if (sysfs__read_str(buf, &str, &strlen) < 0)
581 		return status;
582 
583 	status = atoi(str);
584 
585 	free(str);
586 	return status;
587 }
588 
589 static int parse_setup_cpu_list(void)
590 {
591 	struct thread_data *td;
592 	char *str0, *str;
593 	int t;
594 
595 	if (!g->p.cpu_list_str)
596 		return 0;
597 
598 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
599 
600 	str0 = str = strdup(g->p.cpu_list_str);
601 	t = 0;
602 
603 	BUG_ON(!str);
604 
605 	tprintf("# binding tasks to CPUs:\n");
606 	tprintf("#  ");
607 
608 	while (true) {
609 		int bind_cpu, bind_cpu_0, bind_cpu_1;
610 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
611 		int bind_len;
612 		int step;
613 		int mul;
614 
615 		tok = strsep(&str, ",");
616 		if (!tok)
617 			break;
618 
619 		tok_end = strstr(tok, "-");
620 
621 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
622 		if (!tok_end) {
623 			/* Single CPU specified: */
624 			bind_cpu_0 = bind_cpu_1 = atol(tok);
625 		} else {
626 			/* CPU range specified (for example: "5-11"): */
627 			bind_cpu_0 = atol(tok);
628 			bind_cpu_1 = atol(tok_end + 1);
629 		}
630 
631 		step = 1;
632 		tok_step = strstr(tok, "#");
633 		if (tok_step) {
634 			step = atol(tok_step + 1);
635 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
636 		}
637 
638 		/*
639 		 * Mask length.
640 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
641 		 * where the _4 means the next 4 CPUs are allowed.
642 		 */
643 		bind_len = 1;
644 		tok_len = strstr(tok, "_");
645 		if (tok_len) {
646 			bind_len = atol(tok_len + 1);
647 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
648 		}
649 
650 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
651 		mul = 1;
652 		tok_mul = strstr(tok, "x");
653 		if (tok_mul) {
654 			mul = atol(tok_mul + 1);
655 			BUG_ON(mul <= 0);
656 		}
657 
658 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
659 
660 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
661 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
662 			return -1;
663 		}
664 
665 		if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
666 			printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
667 			return -1;
668 		}
669 
670 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
671 		BUG_ON(bind_cpu_0 > bind_cpu_1);
672 
673 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
674 			size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
675 			int i;
676 
677 			for (i = 0; i < mul; i++) {
678 				int cpu;
679 
680 				if (t >= g->p.nr_tasks) {
681 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
682 					goto out;
683 				}
684 				td = g->threads + t;
685 
686 				if (t)
687 					tprintf(",");
688 				if (bind_len > 1) {
689 					tprintf("%2d/%d", bind_cpu, bind_len);
690 				} else {
691 					tprintf("%2d", bind_cpu);
692 				}
693 
694 				td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
695 				BUG_ON(!td->bind_cpumask);
696 				CPU_ZERO_S(size, td->bind_cpumask);
697 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
698 					if (cpu < 0 || cpu >= g->p.nr_cpus) {
699 						CPU_FREE(td->bind_cpumask);
700 						BUG_ON(-1);
701 					}
702 					CPU_SET_S(cpu, size, td->bind_cpumask);
703 				}
704 				t++;
705 			}
706 		}
707 	}
708 out:
709 
710 	tprintf("\n");
711 
712 	if (t < g->p.nr_tasks)
713 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
714 
715 	free(str0);
716 	return 0;
717 }
718 
719 static int parse_cpus_opt(const struct option *opt __maybe_unused,
720 			  const char *arg, int unset __maybe_unused)
721 {
722 	if (!arg)
723 		return -1;
724 
725 	return parse_cpu_list(arg);
726 }
727 
728 static int parse_node_list(const char *arg)
729 {
730 	p0.node_list_str = strdup(arg);
731 
732 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
733 
734 	return 0;
735 }
736 
737 static int parse_setup_node_list(void)
738 {
739 	struct thread_data *td;
740 	char *str0, *str;
741 	int t;
742 
743 	if (!g->p.node_list_str)
744 		return 0;
745 
746 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
747 
748 	str0 = str = strdup(g->p.node_list_str);
749 	t = 0;
750 
751 	BUG_ON(!str);
752 
753 	tprintf("# binding tasks to NODEs:\n");
754 	tprintf("# ");
755 
756 	while (true) {
757 		int bind_node, bind_node_0, bind_node_1;
758 		char *tok, *tok_end, *tok_step, *tok_mul;
759 		int step;
760 		int mul;
761 
762 		tok = strsep(&str, ",");
763 		if (!tok)
764 			break;
765 
766 		tok_end = strstr(tok, "-");
767 
768 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
769 		if (!tok_end) {
770 			/* Single NODE specified: */
771 			bind_node_0 = bind_node_1 = atol(tok);
772 		} else {
773 			/* NODE range specified (for example: "5-11"): */
774 			bind_node_0 = atol(tok);
775 			bind_node_1 = atol(tok_end + 1);
776 		}
777 
778 		step = 1;
779 		tok_step = strstr(tok, "#");
780 		if (tok_step) {
781 			step = atol(tok_step + 1);
782 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
783 		}
784 
785 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
786 		mul = 1;
787 		tok_mul = strstr(tok, "x");
788 		if (tok_mul) {
789 			mul = atol(tok_mul + 1);
790 			BUG_ON(mul <= 0);
791 		}
792 
793 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
794 
795 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
796 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
797 			return -1;
798 		}
799 
800 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
801 		BUG_ON(bind_node_0 > bind_node_1);
802 
803 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
804 			int i;
805 
806 			for (i = 0; i < mul; i++) {
807 				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
808 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
809 					goto out;
810 				}
811 				td = g->threads + t;
812 
813 				if (!t)
814 					tprintf(" %2d", bind_node);
815 				else
816 					tprintf(",%2d", bind_node);
817 
818 				td->bind_node = bind_node;
819 				t++;
820 			}
821 		}
822 	}
823 out:
824 
825 	tprintf("\n");
826 
827 	if (t < g->p.nr_tasks)
828 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
829 
830 	free(str0);
831 	return 0;
832 }
833 
834 static int parse_nodes_opt(const struct option *opt __maybe_unused,
835 			  const char *arg, int unset __maybe_unused)
836 {
837 	if (!arg)
838 		return -1;
839 
840 	return parse_node_list(arg);
841 }
842 
843 static inline uint32_t lfsr_32(uint32_t lfsr)
844 {
845 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
846 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
847 }
848 
849 /*
850  * Make sure there's real data dependency to RAM (when read
851  * accesses are enabled), so the compiler, the CPU and the
852  * kernel (KSM, zero page, etc.) cannot optimize away RAM
853  * accesses:
854  */
855 static inline u64 access_data(u64 *data, u64 val)
856 {
857 	if (g->p.data_reads)
858 		val += *data;
859 	if (g->p.data_writes)
860 		*data = val + 1;
861 	return val;
862 }
863 
864 /*
865  * The worker process does two types of work, a forwards going
866  * loop and a backwards going loop.
867  *
868  * We do this so that on multiprocessor systems we do not create
869  * a 'train' of processing, with highly synchronized processes,
870  * skewing the whole benchmark.
871  */
872 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
873 {
874 	long words = bytes/sizeof(u64);
875 	u64 *data = (void *)__data;
876 	long chunk_0, chunk_1;
877 	u64 *d0, *d, *d1;
878 	long off;
879 	long i;
880 
881 	BUG_ON(!data && words);
882 	BUG_ON(data && !words);
883 
884 	if (!data)
885 		return val;
886 
887 	/* Very simple memset() work variant: */
888 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
889 		bzero(data, bytes);
890 		return val;
891 	}
892 
893 	/* Spread out by PID/TID nr and by loop nr: */
894 	chunk_0 = words/nr_max;
895 	chunk_1 = words/g->p.nr_loops;
896 	off = nr*chunk_0 + loop*chunk_1;
897 
898 	while (off >= words)
899 		off -= words;
900 
901 	if (g->p.data_rand_walk) {
902 		u32 lfsr = nr + loop + val;
903 		long j;
904 
905 		for (i = 0; i < words/1024; i++) {
906 			long start, end;
907 
908 			lfsr = lfsr_32(lfsr);
909 
910 			start = lfsr % words;
911 			end = min(start + 1024, words-1);
912 
913 			if (g->p.data_zero_memset) {
914 				bzero(data + start, (end-start) * sizeof(u64));
915 			} else {
916 				for (j = start; j < end; j++)
917 					val = access_data(data + j, val);
918 			}
919 		}
920 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
921 		/* Process data forwards: */
922 
923 		d0 = data + off;
924 		d  = data + off + 1;
925 		d1 = data + words;
926 
927 		for (;;) {
928 			if (unlikely(d >= d1))
929 				d = data;
930 			if (unlikely(d == d0))
931 				break;
932 
933 			val = access_data(d, val);
934 
935 			d++;
936 		}
937 	} else {
938 		/* Process data backwards: */
939 
940 		d0 = data + off;
941 		d  = data + off - 1;
942 		d1 = data + words;
943 
944 		for (;;) {
945 			if (unlikely(d < data))
946 				d = data + words-1;
947 			if (unlikely(d == d0))
948 				break;
949 
950 			val = access_data(d, val);
951 
952 			d--;
953 		}
954 	}
955 
956 	return val;
957 }
958 
959 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
960 {
961 	unsigned int cpu;
962 
963 	cpu = sched_getcpu();
964 
965 	g->threads[task_nr].curr_cpu = cpu;
966 	prctl(0, bytes_worked);
967 }
968 
969 /*
970  * Count the number of nodes a process's threads
971  * are spread out on.
972  *
973  * A count of 1 means that the process is compressed
974  * to a single node. A count of g->p.nr_nodes means it's
975  * spread out on the whole system.
976  */
977 static int count_process_nodes(int process_nr)
978 {
979 	char *node_present;
980 	int nodes;
981 	int n, t;
982 
983 	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
984 	BUG_ON(!node_present);
985 	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
986 		node_present[nodes] = 0;
987 
988 	for (t = 0; t < g->p.nr_threads; t++) {
989 		struct thread_data *td;
990 		int task_nr;
991 		int node;
992 
993 		task_nr = process_nr*g->p.nr_threads + t;
994 		td = g->threads + task_nr;
995 
996 		node = numa_node_of_cpu(td->curr_cpu);
997 		if (node < 0) /* curr_cpu was likely still -1 */ {
998 			free(node_present);
999 			return 0;
1000 		}
1001 
1002 		node_present[node] = 1;
1003 	}
1004 
1005 	nodes = 0;
1006 
1007 	for (n = 0; n < g->p.nr_nodes; n++)
1008 		nodes += node_present[n];
1009 
1010 	free(node_present);
1011 	return nodes;
1012 }
1013 
1014 /*
1015  * Count the number of distinct process-threads a node contains.
1016  *
1017  * A count of 1 means that the node contains only a single
1018  * process. If all nodes on the system contain at most one
1019  * process then we are well-converged.
1020  */
1021 static int count_node_processes(int node)
1022 {
1023 	int processes = 0;
1024 	int t, p;
1025 
1026 	for (p = 0; p < g->p.nr_proc; p++) {
1027 		for (t = 0; t < g->p.nr_threads; t++) {
1028 			struct thread_data *td;
1029 			int task_nr;
1030 			int n;
1031 
1032 			task_nr = p*g->p.nr_threads + t;
1033 			td = g->threads + task_nr;
1034 
1035 			n = numa_node_of_cpu(td->curr_cpu);
1036 			if (n == node) {
1037 				processes++;
1038 				break;
1039 			}
1040 		}
1041 	}
1042 
1043 	return processes;
1044 }
1045 
1046 static void calc_convergence_compression(int *strong)
1047 {
1048 	unsigned int nodes_min, nodes_max;
1049 	int p;
1050 
1051 	nodes_min = -1;
1052 	nodes_max =  0;
1053 
1054 	for (p = 0; p < g->p.nr_proc; p++) {
1055 		unsigned int nodes = count_process_nodes(p);
1056 
1057 		if (!nodes) {
1058 			*strong = 0;
1059 			return;
1060 		}
1061 
1062 		nodes_min = min(nodes, nodes_min);
1063 		nodes_max = max(nodes, nodes_max);
1064 	}
1065 
1066 	/* Strong convergence: all threads compress on a single node: */
1067 	if (nodes_min == 1 && nodes_max == 1) {
1068 		*strong = 1;
1069 	} else {
1070 		*strong = 0;
1071 		tprintf(" {%d-%d}", nodes_min, nodes_max);
1072 	}
1073 }
1074 
1075 static void calc_convergence(double runtime_ns_max, double *convergence)
1076 {
1077 	unsigned int loops_done_min, loops_done_max;
1078 	int process_groups;
1079 	int *nodes;
1080 	int distance;
1081 	int nr_min;
1082 	int nr_max;
1083 	int strong;
1084 	int sum;
1085 	int nr;
1086 	int node;
1087 	int cpu;
1088 	int t;
1089 
1090 	if (!g->p.show_convergence && !g->p.measure_convergence)
1091 		return;
1092 
1093 	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1094 	BUG_ON(!nodes);
1095 	for (node = 0; node < g->p.nr_nodes; node++)
1096 		nodes[node] = 0;
1097 
1098 	loops_done_min = -1;
1099 	loops_done_max = 0;
1100 
1101 	for (t = 0; t < g->p.nr_tasks; t++) {
1102 		struct thread_data *td = g->threads + t;
1103 		unsigned int loops_done;
1104 
1105 		cpu = td->curr_cpu;
1106 
1107 		/* Not all threads have written it yet: */
1108 		if (cpu < 0)
1109 			continue;
1110 
1111 		node = numa_node_of_cpu(cpu);
1112 
1113 		nodes[node]++;
1114 
1115 		loops_done = td->loops_done;
1116 		loops_done_min = min(loops_done, loops_done_min);
1117 		loops_done_max = max(loops_done, loops_done_max);
1118 	}
1119 
1120 	nr_max = 0;
1121 	nr_min = g->p.nr_tasks;
1122 	sum = 0;
1123 
1124 	for (node = 0; node < g->p.nr_nodes; node++) {
1125 		if (!is_node_present(node))
1126 			continue;
1127 		nr = nodes[node];
1128 		nr_min = min(nr, nr_min);
1129 		nr_max = max(nr, nr_max);
1130 		sum += nr;
1131 	}
1132 	BUG_ON(nr_min > nr_max);
1133 
1134 	BUG_ON(sum > g->p.nr_tasks);
1135 
1136 	if (0 && (sum < g->p.nr_tasks)) {
1137 		free(nodes);
1138 		return;
1139 	}
1140 
1141 	/*
1142 	 * Count the number of distinct process groups present
1143 	 * on nodes - when we are converged this will decrease
1144 	 * to g->p.nr_proc:
1145 	 */
1146 	process_groups = 0;
1147 
1148 	for (node = 0; node < g->p.nr_nodes; node++) {
1149 		int processes;
1150 
1151 		if (!is_node_present(node))
1152 			continue;
1153 		processes = count_node_processes(node);
1154 		nr = nodes[node];
1155 		tprintf(" %2d/%-2d", nr, processes);
1156 
1157 		process_groups += processes;
1158 	}
1159 
1160 	distance = nr_max - nr_min;
1161 
1162 	tprintf(" [%2d/%-2d]", distance, process_groups);
1163 
1164 	tprintf(" l:%3d-%-3d (%3d)",
1165 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1166 
1167 	if (loops_done_min && loops_done_max) {
1168 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1169 
1170 		tprintf(" [%4.1f%%]", skew * 100.0);
1171 	}
1172 
1173 	calc_convergence_compression(&strong);
1174 
1175 	if (strong && process_groups == g->p.nr_proc) {
1176 		if (!*convergence) {
1177 			*convergence = runtime_ns_max;
1178 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1179 			if (g->p.measure_convergence) {
1180 				g->all_converged = true;
1181 				g->stop_work = true;
1182 			}
1183 		}
1184 	} else {
1185 		if (*convergence) {
1186 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1187 			*convergence = 0;
1188 		}
1189 		tprintf("\n");
1190 	}
1191 
1192 	free(nodes);
1193 }
1194 
1195 static void show_summary(double runtime_ns_max, int l, double *convergence)
1196 {
1197 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1198 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1199 
1200 	calc_convergence(runtime_ns_max, convergence);
1201 
1202 	if (g->p.show_details >= 0)
1203 		fflush(stdout);
1204 }
1205 
1206 static void *worker_thread(void *__tdata)
1207 {
1208 	struct thread_data *td = __tdata;
1209 	struct timeval start0, start, stop, diff;
1210 	int process_nr = td->process_nr;
1211 	int thread_nr = td->thread_nr;
1212 	unsigned long last_perturbance;
1213 	int task_nr = td->task_nr;
1214 	int details = g->p.show_details;
1215 	int first_task, last_task;
1216 	double convergence = 0;
1217 	u64 val = td->val;
1218 	double runtime_ns_max;
1219 	u8 *global_data;
1220 	u8 *process_data;
1221 	u8 *thread_data;
1222 	u64 bytes_done, secs;
1223 	long work_done;
1224 	u32 l;
1225 	struct rusage rusage;
1226 
1227 	bind_to_cpumask(td->bind_cpumask);
1228 	bind_to_memnode(td->bind_node);
1229 
1230 	set_taskname("thread %d/%d", process_nr, thread_nr);
1231 
1232 	global_data = g->data;
1233 	process_data = td->process_data;
1234 	thread_data = setup_private_data(g->p.bytes_thread);
1235 
1236 	bytes_done = 0;
1237 
1238 	last_task = 0;
1239 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1240 		last_task = 1;
1241 
1242 	first_task = 0;
1243 	if (process_nr == 0 && thread_nr == 0)
1244 		first_task = 1;
1245 
1246 	if (details >= 2) {
1247 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1248 			process_nr, thread_nr, global_data, process_data, thread_data);
1249 	}
1250 
1251 	if (g->p.serialize_startup) {
1252 		mutex_lock(&g->startup_mutex);
1253 		g->nr_tasks_started++;
1254 		/* The last thread wakes the main process. */
1255 		if (g->nr_tasks_started == g->p.nr_tasks)
1256 			cond_signal(&g->startup_cond);
1257 
1258 		mutex_unlock(&g->startup_mutex);
1259 
1260 		/* Here we will wait for the main process to start us all at once: */
1261 		mutex_lock(&g->start_work_mutex);
1262 		g->start_work = false;
1263 		g->nr_tasks_working++;
1264 		while (!g->start_work)
1265 			cond_wait(&g->start_work_cond, &g->start_work_mutex);
1266 
1267 		mutex_unlock(&g->start_work_mutex);
1268 	}
1269 
1270 	gettimeofday(&start0, NULL);
1271 
1272 	start = stop = start0;
1273 	last_perturbance = start.tv_sec;
1274 
1275 	for (l = 0; l < g->p.nr_loops; l++) {
1276 		start = stop;
1277 
1278 		if (g->stop_work)
1279 			break;
1280 
1281 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1282 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1283 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1284 
1285 		if (g->p.sleep_usecs) {
1286 			mutex_lock(td->process_lock);
1287 			usleep(g->p.sleep_usecs);
1288 			mutex_unlock(td->process_lock);
1289 		}
1290 		/*
1291 		 * Amount of work to be done under a process-global lock:
1292 		 */
1293 		if (g->p.bytes_process_locked) {
1294 			mutex_lock(td->process_lock);
1295 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1296 			mutex_unlock(td->process_lock);
1297 		}
1298 
1299 		work_done = g->p.bytes_global + g->p.bytes_process +
1300 			    g->p.bytes_process_locked + g->p.bytes_thread;
1301 
1302 		update_curr_cpu(task_nr, work_done);
1303 		bytes_done += work_done;
1304 
1305 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1306 			continue;
1307 
1308 		td->loops_done = l;
1309 
1310 		gettimeofday(&stop, NULL);
1311 
1312 		/* Check whether our max runtime timed out: */
1313 		if (g->p.nr_secs) {
1314 			timersub(&stop, &start0, &diff);
1315 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1316 				g->stop_work = true;
1317 				break;
1318 			}
1319 		}
1320 
1321 		/* Update the summary at most once per second: */
1322 		if (start.tv_sec == stop.tv_sec)
1323 			continue;
1324 
1325 		/*
1326 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1327 		 * by migrating to CPU#0:
1328 		 */
1329 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1330 			cpu_set_t *orig_mask;
1331 			int target_cpu;
1332 			int this_cpu;
1333 
1334 			last_perturbance = stop.tv_sec;
1335 
1336 			/*
1337 			 * Depending on where we are running, move into
1338 			 * the other half of the system, to create some
1339 			 * real disturbance:
1340 			 */
1341 			this_cpu = g->threads[task_nr].curr_cpu;
1342 			if (this_cpu < g->p.nr_cpus/2)
1343 				target_cpu = g->p.nr_cpus-1;
1344 			else
1345 				target_cpu = 0;
1346 
1347 			orig_mask = bind_to_cpu(target_cpu);
1348 
1349 			/* Here we are running on the target CPU already */
1350 			if (details >= 1)
1351 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1352 
1353 			bind_to_cpumask(orig_mask);
1354 			CPU_FREE(orig_mask);
1355 		}
1356 
1357 		if (details >= 3) {
1358 			timersub(&stop, &start, &diff);
1359 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1360 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1361 
1362 			if (details >= 0) {
1363 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1364 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1365 			}
1366 			fflush(stdout);
1367 		}
1368 		if (!last_task)
1369 			continue;
1370 
1371 		timersub(&stop, &start0, &diff);
1372 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1373 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1374 
1375 		show_summary(runtime_ns_max, l, &convergence);
1376 	}
1377 
1378 	gettimeofday(&stop, NULL);
1379 	timersub(&stop, &start0, &diff);
1380 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1381 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1382 	secs = td->runtime_ns / NSEC_PER_SEC;
1383 	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1384 
1385 	getrusage(RUSAGE_THREAD, &rusage);
1386 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1387 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1388 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1389 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1390 
1391 	free_data(thread_data, g->p.bytes_thread);
1392 
1393 	mutex_lock(&g->stop_work_mutex);
1394 	g->bytes_done += bytes_done;
1395 	mutex_unlock(&g->stop_work_mutex);
1396 
1397 	return NULL;
1398 }
1399 
1400 /*
1401  * A worker process starts a couple of threads:
1402  */
1403 static void worker_process(int process_nr)
1404 {
1405 	struct mutex process_lock;
1406 	struct thread_data *td;
1407 	pthread_t *pthreads;
1408 	u8 *process_data;
1409 	int task_nr;
1410 	int ret;
1411 	int t;
1412 
1413 	mutex_init(&process_lock);
1414 	set_taskname("process %d", process_nr);
1415 
1416 	/*
1417 	 * Pick up the memory policy and the CPU binding of our first thread,
1418 	 * so that we initialize memory accordingly:
1419 	 */
1420 	task_nr = process_nr*g->p.nr_threads;
1421 	td = g->threads + task_nr;
1422 
1423 	bind_to_memnode(td->bind_node);
1424 	bind_to_cpumask(td->bind_cpumask);
1425 
1426 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1427 	process_data = setup_private_data(g->p.bytes_process);
1428 
1429 	if (g->p.show_details >= 3) {
1430 		printf(" # process %2d global mem: %p, process mem: %p\n",
1431 			process_nr, g->data, process_data);
1432 	}
1433 
1434 	for (t = 0; t < g->p.nr_threads; t++) {
1435 		task_nr = process_nr*g->p.nr_threads + t;
1436 		td = g->threads + task_nr;
1437 
1438 		td->process_data = process_data;
1439 		td->process_nr   = process_nr;
1440 		td->thread_nr    = t;
1441 		td->task_nr	 = task_nr;
1442 		td->val          = rand();
1443 		td->curr_cpu	 = -1;
1444 		td->process_lock = &process_lock;
1445 
1446 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1447 		BUG_ON(ret);
1448 	}
1449 
1450 	for (t = 0; t < g->p.nr_threads; t++) {
1451                 ret = pthread_join(pthreads[t], NULL);
1452 		BUG_ON(ret);
1453 	}
1454 
1455 	free_data(process_data, g->p.bytes_process);
1456 	free(pthreads);
1457 }
1458 
1459 static void print_summary(void)
1460 {
1461 	if (g->p.show_details < 0)
1462 		return;
1463 
1464 	printf("\n ###\n");
1465 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1466 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1467 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1468 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1469 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1470 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1471 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1472 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1473 
1474 	printf(" ###\n");
1475 
1476 	printf("\n ###\n"); fflush(stdout);
1477 }
1478 
1479 static void init_thread_data(void)
1480 {
1481 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1482 	int t;
1483 
1484 	g->threads = zalloc_shared_data(size);
1485 
1486 	for (t = 0; t < g->p.nr_tasks; t++) {
1487 		struct thread_data *td = g->threads + t;
1488 		size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1489 		int cpu;
1490 
1491 		/* Allow all nodes by default: */
1492 		td->bind_node = NUMA_NO_NODE;
1493 
1494 		/* Allow all CPUs by default: */
1495 		td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1496 		BUG_ON(!td->bind_cpumask);
1497 		CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1498 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1499 			CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1500 	}
1501 }
1502 
1503 static void deinit_thread_data(void)
1504 {
1505 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1506 	int t;
1507 
1508 	/* Free the bind_cpumask allocated for thread_data */
1509 	for (t = 0; t < g->p.nr_tasks; t++) {
1510 		struct thread_data *td = g->threads + t;
1511 		CPU_FREE(td->bind_cpumask);
1512 	}
1513 
1514 	free_data(g->threads, size);
1515 }
1516 
1517 static int init(void)
1518 {
1519 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1520 
1521 	/* Copy over options: */
1522 	g->p = p0;
1523 
1524 	g->p.nr_cpus = numa_num_configured_cpus();
1525 
1526 	g->p.nr_nodes = numa_max_node() + 1;
1527 
1528 	/* char array in count_process_nodes(): */
1529 	BUG_ON(g->p.nr_nodes < 0);
1530 
1531 	if (quiet && !g->p.show_details)
1532 		g->p.show_details = -1;
1533 
1534 	/* Some memory should be specified: */
1535 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1536 		return -1;
1537 
1538 	if (g->p.mb_global_str) {
1539 		g->p.mb_global = atof(g->p.mb_global_str);
1540 		BUG_ON(g->p.mb_global < 0);
1541 	}
1542 
1543 	if (g->p.mb_proc_str) {
1544 		g->p.mb_proc = atof(g->p.mb_proc_str);
1545 		BUG_ON(g->p.mb_proc < 0);
1546 	}
1547 
1548 	if (g->p.mb_proc_locked_str) {
1549 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1550 		BUG_ON(g->p.mb_proc_locked < 0);
1551 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1552 	}
1553 
1554 	if (g->p.mb_thread_str) {
1555 		g->p.mb_thread = atof(g->p.mb_thread_str);
1556 		BUG_ON(g->p.mb_thread < 0);
1557 	}
1558 
1559 	BUG_ON(g->p.nr_threads <= 0);
1560 	BUG_ON(g->p.nr_proc <= 0);
1561 
1562 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1563 
1564 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1565 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1566 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1567 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1568 
1569 	g->data = setup_shared_data(g->p.bytes_global);
1570 
1571 	/* Startup serialization: */
1572 	mutex_init_pshared(&g->start_work_mutex);
1573 	cond_init_pshared(&g->start_work_cond);
1574 	mutex_init_pshared(&g->startup_mutex);
1575 	cond_init_pshared(&g->startup_cond);
1576 	mutex_init_pshared(&g->stop_work_mutex);
1577 
1578 	init_thread_data();
1579 
1580 	tprintf("#\n");
1581 	if (parse_setup_cpu_list() || parse_setup_node_list())
1582 		return -1;
1583 	tprintf("#\n");
1584 
1585 	print_summary();
1586 
1587 	return 0;
1588 }
1589 
1590 static void deinit(void)
1591 {
1592 	free_data(g->data, g->p.bytes_global);
1593 	g->data = NULL;
1594 
1595 	deinit_thread_data();
1596 
1597 	free_data(g, sizeof(*g));
1598 	g = NULL;
1599 }
1600 
1601 /*
1602  * Print a short or long result, depending on the verbosity setting:
1603  */
1604 static void print_res(const char *name, double val,
1605 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1606 {
1607 	if (!name)
1608 		name = "main,";
1609 
1610 	if (!quiet)
1611 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1612 	else
1613 		printf(" %14.3f %s\n", val, txt_long);
1614 }
1615 
1616 static int __bench_numa(const char *name)
1617 {
1618 	struct timeval start, stop, diff;
1619 	u64 runtime_ns_min, runtime_ns_sum;
1620 	pid_t *pids, pid, wpid;
1621 	double delta_runtime;
1622 	double runtime_avg;
1623 	double runtime_sec_max;
1624 	double runtime_sec_min;
1625 	int wait_stat;
1626 	double bytes;
1627 	int i, t, p;
1628 
1629 	if (init())
1630 		return -1;
1631 
1632 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1633 	pid = -1;
1634 
1635 	if (g->p.serialize_startup) {
1636 		tprintf(" #\n");
1637 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1638 	}
1639 
1640 	gettimeofday(&start, NULL);
1641 
1642 	for (i = 0; i < g->p.nr_proc; i++) {
1643 		pid = fork();
1644 		dprintf(" # process %2d: PID %d\n", i, pid);
1645 
1646 		BUG_ON(pid < 0);
1647 		if (!pid) {
1648 			/* Child process: */
1649 			worker_process(i);
1650 
1651 			exit(0);
1652 		}
1653 		pids[i] = pid;
1654 
1655 	}
1656 
1657 	if (g->p.serialize_startup) {
1658 		bool threads_ready = false;
1659 		double startup_sec;
1660 
1661 		/*
1662 		 * Wait for all the threads to start up. The last thread will
1663 		 * signal this process.
1664 		 */
1665 		mutex_lock(&g->startup_mutex);
1666 		while (g->nr_tasks_started != g->p.nr_tasks)
1667 			cond_wait(&g->startup_cond, &g->startup_mutex);
1668 
1669 		mutex_unlock(&g->startup_mutex);
1670 
1671 		/* Wait for all threads to be at the start_work_cond. */
1672 		while (!threads_ready) {
1673 			mutex_lock(&g->start_work_mutex);
1674 			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1675 			mutex_unlock(&g->start_work_mutex);
1676 			if (!threads_ready)
1677 				usleep(1);
1678 		}
1679 
1680 		gettimeofday(&stop, NULL);
1681 
1682 		timersub(&stop, &start, &diff);
1683 
1684 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1685 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1686 		startup_sec /= NSEC_PER_SEC;
1687 
1688 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1689 		tprintf(" #\n");
1690 
1691 		start = stop;
1692 		/* Start all threads running. */
1693 		mutex_lock(&g->start_work_mutex);
1694 		g->start_work = true;
1695 		mutex_unlock(&g->start_work_mutex);
1696 		cond_broadcast(&g->start_work_cond);
1697 	} else {
1698 		gettimeofday(&start, NULL);
1699 	}
1700 
1701 	/* Parent process: */
1702 
1703 
1704 	for (i = 0; i < g->p.nr_proc; i++) {
1705 		wpid = waitpid(pids[i], &wait_stat, 0);
1706 		BUG_ON(wpid < 0);
1707 		BUG_ON(!WIFEXITED(wait_stat));
1708 
1709 	}
1710 
1711 	runtime_ns_sum = 0;
1712 	runtime_ns_min = -1LL;
1713 
1714 	for (t = 0; t < g->p.nr_tasks; t++) {
1715 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1716 
1717 		runtime_ns_sum += thread_runtime_ns;
1718 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1719 	}
1720 
1721 	gettimeofday(&stop, NULL);
1722 	timersub(&stop, &start, &diff);
1723 
1724 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1725 
1726 	tprintf("\n ###\n");
1727 	tprintf("\n");
1728 
1729 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1730 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1731 	runtime_sec_max /= NSEC_PER_SEC;
1732 
1733 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1734 
1735 	bytes = g->bytes_done;
1736 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1737 
1738 	if (g->p.measure_convergence) {
1739 		print_res(name, runtime_sec_max,
1740 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1741 	}
1742 
1743 	print_res(name, runtime_sec_max,
1744 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1745 
1746 	print_res(name, runtime_sec_min,
1747 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1748 
1749 	print_res(name, runtime_avg,
1750 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1751 
1752 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1753 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1754 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1755 
1756 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1757 		"GB,", "data/thread",		"GB data processed, per thread");
1758 
1759 	print_res(name, bytes / 1e9,
1760 		"GB,", "data-total",		"GB data processed, total");
1761 
1762 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1763 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1764 
1765 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1766 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1767 
1768 	print_res(name, bytes / runtime_sec_max / 1e9,
1769 		"GB/sec,", "total-speed",	"GB/sec total speed");
1770 
1771 	if (g->p.show_details >= 2) {
1772 		char tname[14 + 2 * 11 + 1];
1773 		struct thread_data *td;
1774 		for (p = 0; p < g->p.nr_proc; p++) {
1775 			for (t = 0; t < g->p.nr_threads; t++) {
1776 				memset(tname, 0, sizeof(tname));
1777 				td = g->threads + p*g->p.nr_threads + t;
1778 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1779 				print_res(tname, td->speed_gbs,
1780 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1781 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1782 					"secs",	"thread-system-time", "system CPU time/thread");
1783 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1784 					"secs",	"thread-user-time", "user CPU time/thread");
1785 			}
1786 		}
1787 	}
1788 
1789 	free(pids);
1790 
1791 	deinit();
1792 
1793 	return 0;
1794 }
1795 
1796 #define MAX_ARGS 50
1797 
1798 static int command_size(const char **argv)
1799 {
1800 	int size = 0;
1801 
1802 	while (*argv) {
1803 		size++;
1804 		argv++;
1805 	}
1806 
1807 	BUG_ON(size >= MAX_ARGS);
1808 
1809 	return size;
1810 }
1811 
1812 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1813 {
1814 	int i;
1815 
1816 	printf("\n # Running %s \"perf bench numa", name);
1817 
1818 	for (i = 0; i < argc; i++)
1819 		printf(" %s", argv[i]);
1820 
1821 	printf("\"\n");
1822 
1823 	memset(p, 0, sizeof(*p));
1824 
1825 	/* Initialize nonzero defaults: */
1826 
1827 	p->serialize_startup		= 1;
1828 	p->data_reads			= true;
1829 	p->data_writes			= true;
1830 	p->data_backwards		= true;
1831 	p->data_rand_walk		= true;
1832 	p->nr_loops			= -1;
1833 	p->init_random			= true;
1834 	p->mb_global_str		= "1";
1835 	p->nr_proc			= 1;
1836 	p->nr_threads			= 1;
1837 	p->nr_secs			= 5;
1838 	p->run_all			= argc == 1;
1839 }
1840 
1841 static int run_bench_numa(const char *name, const char **argv)
1842 {
1843 	int argc = command_size(argv);
1844 
1845 	init_params(&p0, name, argc, argv);
1846 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1847 	if (argc)
1848 		goto err;
1849 
1850 	if (__bench_numa(name))
1851 		goto err;
1852 
1853 	return 0;
1854 
1855 err:
1856 	return -1;
1857 }
1858 
1859 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1860 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1861 
1862 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1863 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1864 
1865 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1866 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1867 
1868 /*
1869  * The built-in test-suite executed by "perf bench numa -a".
1870  *
1871  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1872  */
1873 static const char *tests[][MAX_ARGS] = {
1874    /* Basic single-stream NUMA bandwidth measurements: */
1875    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1876 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1877    { "RAM-bw-local-NOTHP,",
1878 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1879 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1880    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1881 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1882 
1883    /* 2-stream NUMA bandwidth measurements: */
1884    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1885 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1886    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1887 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1888 
1889    /* Cross-stream NUMA bandwidth measurement: */
1890    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1891 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1892 
1893    /* Convergence latency measurements: */
1894    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1895    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1896    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1897    { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1898    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1899    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1900    { " 4x4-convergence-NOTHP,",
1901 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1902    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1903    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1904    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1905    { " 8x4-convergence-NOTHP,",
1906 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1907    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1908    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1909    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1910    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1911    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1912 
1913    /* Various NUMA process/thread layout bandwidth measurements: */
1914    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1915    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1916    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1917    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1918    { " 8x1-bw-process-NOTHP,",
1919 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1920    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1921 
1922    { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1923    { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1924    { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1925    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1926 
1927    { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1928    { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1929    { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1930    { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1931    { " 4x8-bw-process-NOTHP,",
1932 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1933    { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1934    { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1935 
1936    { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1937    { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1938 
1939    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1940    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1941    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1942    { "numa01-bw-thread-NOTHP,",
1943 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1944 };
1945 
1946 static int bench_all(void)
1947 {
1948 	int nr = ARRAY_SIZE(tests);
1949 	int ret;
1950 	int i;
1951 
1952 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1953 	BUG_ON(ret < 0);
1954 
1955 	for (i = 0; i < nr; i++) {
1956 		run_bench_numa(tests[i][0], tests[i] + 1);
1957 	}
1958 
1959 	printf("\n");
1960 
1961 	return 0;
1962 }
1963 
1964 int bench_numa(int argc, const char **argv)
1965 {
1966 	init_params(&p0, "main,", argc, argv);
1967 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1968 	if (argc)
1969 		goto err;
1970 
1971 	if (p0.run_all)
1972 		return bench_all();
1973 
1974 	if (__bench_numa(NULL))
1975 		goto err;
1976 
1977 	return 0;
1978 
1979 err:
1980 	usage_with_options(numa_usage, options);
1981 	return -1;
1982 }
1983