1 /*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24
25 /* NB: make sure indices in these tables match values above */
26
27 typedef struct {
28 uint32_t mask;
29 int nid;
30 } ssl_cipher_table;
31
32 /* Table of NIDs for each cipher */
33 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
34 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
35 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
36 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
37 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
38 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
39 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
40 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
41 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
42 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
43 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
44 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
45 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
46 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
47 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
48 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
49 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
50 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
51 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
52 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
53 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
54 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
55 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
56 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
57 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
58 };
59
60 #define SSL_COMP_NULL_IDX 0
61 #define SSL_COMP_ZLIB_IDX 1
62 #define SSL_COMP_NUM_IDX 2
63
64 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
65
66 #ifndef OPENSSL_NO_COMP
67 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
68 #endif
69
70 /* NB: make sure indices in this table matches values above */
71 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
72 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
73 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
74 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
75 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
76 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
77 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
78 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
79 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
80 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
81 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
82 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
83 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
84 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
85 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
86 };
87
88 /* *INDENT-OFF* */
89 static const ssl_cipher_table ssl_cipher_table_kx[] = {
90 {SSL_kRSA, NID_kx_rsa},
91 {SSL_kECDHE, NID_kx_ecdhe},
92 {SSL_kDHE, NID_kx_dhe},
93 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
94 {SSL_kDHEPSK, NID_kx_dhe_psk},
95 {SSL_kRSAPSK, NID_kx_rsa_psk},
96 {SSL_kPSK, NID_kx_psk},
97 {SSL_kSRP, NID_kx_srp},
98 {SSL_kGOST, NID_kx_gost},
99 {SSL_kGOST18, NID_kx_gost18},
100 {SSL_kANY, NID_kx_any}
101 };
102
103 static const ssl_cipher_table ssl_cipher_table_auth[] = {
104 {SSL_aRSA, NID_auth_rsa},
105 {SSL_aECDSA, NID_auth_ecdsa},
106 {SSL_aPSK, NID_auth_psk},
107 {SSL_aDSS, NID_auth_dss},
108 {SSL_aGOST01, NID_auth_gost01},
109 {SSL_aGOST12, NID_auth_gost12},
110 {SSL_aSRP, NID_auth_srp},
111 {SSL_aNULL, NID_auth_null},
112 {SSL_aANY, NID_auth_any}
113 };
114 /* *INDENT-ON* */
115
116 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)117 static int ssl_cipher_info_find(const ssl_cipher_table * table,
118 size_t table_cnt, uint32_t mask)
119 {
120 size_t i;
121 for (i = 0; i < table_cnt; i++, table++) {
122 if (table->mask == mask)
123 return (int)i;
124 }
125 return -1;
126 }
127
128 #define ssl_cipher_info_lookup(table, x) \
129 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
130
131 /*
132 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
133 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
134 * found
135 */
136 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
137 /* MD5, SHA, GOST94, MAC89 */
138 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
139 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
140 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
141 /* GOST2012_512 */
142 EVP_PKEY_HMAC,
143 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
144 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
145 };
146
147 #define CIPHER_ADD 1
148 #define CIPHER_KILL 2
149 #define CIPHER_DEL 3
150 #define CIPHER_ORD 4
151 #define CIPHER_SPECIAL 5
152 /*
153 * Bump the ciphers to the top of the list.
154 * This rule isn't currently supported by the public cipherstring API.
155 */
156 #define CIPHER_BUMP 6
157
158 typedef struct cipher_order_st {
159 const SSL_CIPHER *cipher;
160 int active;
161 int dead;
162 struct cipher_order_st *next, *prev;
163 } CIPHER_ORDER;
164
165 static const SSL_CIPHER cipher_aliases[] = {
166 /* "ALL" doesn't include eNULL (must be specifically enabled) */
167 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
168 /* "COMPLEMENTOFALL" */
169 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
170
171 /*
172 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
173 * ALL!)
174 */
175 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
176
177 /*
178 * key exchange aliases (some of those using only a single bit here
179 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
180 * combines DHE_DSS and DHE_RSA)
181 */
182 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
183
184 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
185 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
186 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
187
188 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
189 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
190 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
191
192 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
193 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
194 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
195 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
196 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
197 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
198 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
199
200 /* server authentication aliases */
201 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
202 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
203 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
204 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
205 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
206 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
207 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
208 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
209 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
210 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
211 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
212
213 /* aliases combining key exchange and server authentication */
214 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
215 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
216 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
217 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
218 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
219 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
220 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
221 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
222 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
223 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
224
225 /* symmetric encryption aliases */
226 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
227 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
228 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
229 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
230 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
231 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
232 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
233 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
234 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
235 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
236 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
237 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
238 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
239 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
240 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
241 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
242 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
243 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
244 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
245 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
246 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
247 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
248
249 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
250 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
251 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
252 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
253 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
254
255 /* MAC aliases */
256 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
257 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
258 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
259 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
260 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
261 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
262 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
263 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
264
265 /* protocol version aliases */
266 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
267 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
268 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
269 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
270
271 /* strength classes */
272 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
273 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
274 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
275 /* FIPS 140-2 approved ciphersuite */
276 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
277
278 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
279 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
280 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
281 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
282 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283
284 };
285
286 /*
287 * Search for public key algorithm with given name and return its pkey_id if
288 * it is available. Otherwise return 0
289 */
290 #ifdef OPENSSL_NO_ENGINE
291
get_optional_pkey_id(const char * pkey_name)292 static int get_optional_pkey_id(const char *pkey_name)
293 {
294 const EVP_PKEY_ASN1_METHOD *ameth;
295 int pkey_id = 0;
296 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
297 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
298 ameth) > 0)
299 return pkey_id;
300 return 0;
301 }
302
303 #else
304
get_optional_pkey_id(const char * pkey_name)305 static int get_optional_pkey_id(const char *pkey_name)
306 {
307 const EVP_PKEY_ASN1_METHOD *ameth;
308 ENGINE *tmpeng = NULL;
309 int pkey_id = 0;
310 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
311 if (ameth) {
312 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
313 ameth) <= 0)
314 pkey_id = 0;
315 }
316 tls_engine_finish(tmpeng);
317 return pkey_id;
318 }
319
320 #endif
321
ssl_load_ciphers(SSL_CTX * ctx)322 int ssl_load_ciphers(SSL_CTX *ctx)
323 {
324 size_t i;
325 const ssl_cipher_table *t;
326 EVP_KEYEXCH *kex = NULL;
327 EVP_SIGNATURE *sig = NULL;
328
329 ctx->disabled_enc_mask = 0;
330 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
331 if (t->nid != NID_undef) {
332 const EVP_CIPHER *cipher
333 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
334
335 ctx->ssl_cipher_methods[i] = cipher;
336 if (cipher == NULL)
337 ctx->disabled_enc_mask |= t->mask;
338 }
339 }
340 ctx->disabled_mac_mask = 0;
341 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
342 const EVP_MD *md
343 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
344
345 ctx->ssl_digest_methods[i] = md;
346 if (md == NULL) {
347 ctx->disabled_mac_mask |= t->mask;
348 } else {
349 int tmpsize = EVP_MD_get_size(md);
350 if (!ossl_assert(tmpsize >= 0))
351 return 0;
352 ctx->ssl_mac_secret_size[i] = tmpsize;
353 }
354 }
355
356 ctx->disabled_mkey_mask = 0;
357 ctx->disabled_auth_mask = 0;
358
359 /*
360 * We ignore any errors from the fetches below. They are expected to fail
361 * if theose algorithms are not available.
362 */
363 ERR_set_mark();
364 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
365 if (sig == NULL)
366 ctx->disabled_auth_mask |= SSL_aDSS;
367 else
368 EVP_SIGNATURE_free(sig);
369 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
370 if (kex == NULL)
371 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
372 else
373 EVP_KEYEXCH_free(kex);
374 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
375 if (kex == NULL)
376 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377 else
378 EVP_KEYEXCH_free(kex);
379 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
380 if (sig == NULL)
381 ctx->disabled_auth_mask |= SSL_aECDSA;
382 else
383 EVP_SIGNATURE_free(sig);
384 ERR_pop_to_mark();
385
386 #ifdef OPENSSL_NO_PSK
387 ctx->disabled_mkey_mask |= SSL_PSK;
388 ctx->disabled_auth_mask |= SSL_aPSK;
389 #endif
390 #ifdef OPENSSL_NO_SRP
391 ctx->disabled_mkey_mask |= SSL_kSRP;
392 #endif
393
394 /*
395 * Check for presence of GOST 34.10 algorithms, and if they are not
396 * present, disable appropriate auth and key exchange
397 */
398 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
399 sizeof(ctx->ssl_mac_pkey_id));
400
401 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
402 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
403 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
404 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
405 else
406 ctx->disabled_mac_mask |= SSL_GOST89MAC;
407
408 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
409 get_optional_pkey_id(SN_gost_mac_12);
410 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
411 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
412 else
413 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
414
415 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
416 get_optional_pkey_id(SN_magma_mac);
417 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
418 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
419 else
420 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
421
422 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
423 get_optional_pkey_id(SN_kuznyechik_mac);
424 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
425 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
426 else
427 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
428
429 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
430 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
431 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
432 ctx->disabled_auth_mask |= SSL_aGOST12;
433 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
434 ctx->disabled_auth_mask |= SSL_aGOST12;
435 /*
436 * Disable GOST key exchange if no GOST signature algs are available *
437 */
438 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
439 (SSL_aGOST01 | SSL_aGOST12))
440 ctx->disabled_mkey_mask |= SSL_kGOST;
441
442 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
443 ctx->disabled_mkey_mask |= SSL_kGOST18;
444
445 return 1;
446 }
447
448 #ifndef OPENSSL_NO_COMP
449
sk_comp_cmp(const SSL_COMP * const * a,const SSL_COMP * const * b)450 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
451 {
452 return ((*a)->id - (*b)->id);
453 }
454
DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)455 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
456 {
457 SSL_COMP *comp = NULL;
458 COMP_METHOD *method = COMP_zlib();
459
460 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
461
462 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
463 comp = OPENSSL_malloc(sizeof(*comp));
464 if (comp != NULL) {
465 comp->method = method;
466 comp->id = SSL_COMP_ZLIB_IDX;
467 comp->name = COMP_get_name(method);
468 if (!sk_SSL_COMP_push(ssl_comp_methods, comp))
469 OPENSSL_free(comp);
470 sk_SSL_COMP_sort(ssl_comp_methods);
471 }
472 }
473 return 1;
474 }
475
load_builtin_compressions(void)476 static int load_builtin_compressions(void)
477 {
478 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
479 }
480 #endif
481
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)482 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
483 const EVP_CIPHER **enc)
484 {
485 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, sslc->algorithm_enc);
486
487 if (i == -1) {
488 *enc = NULL;
489 } else {
490 if (i == SSL_ENC_NULL_IDX) {
491 /*
492 * We assume we don't care about this coming from an ENGINE so
493 * just do a normal EVP_CIPHER_fetch instead of
494 * ssl_evp_cipher_fetch()
495 */
496 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
497 if (*enc == NULL)
498 return 0;
499 } else {
500 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
501
502 if (cipher == NULL
503 || !ssl_evp_cipher_up_ref(cipher))
504 return 0;
505 *enc = ctx->ssl_cipher_methods[i];
506 }
507 }
508 return 1;
509 }
510
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)511 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
512 const EVP_CIPHER **enc, const EVP_MD **md,
513 int *mac_pkey_type, size_t *mac_secret_size,
514 SSL_COMP **comp, int use_etm)
515 {
516 int i;
517 const SSL_CIPHER *c;
518
519 c = s->cipher;
520 if (c == NULL)
521 return 0;
522 if (comp != NULL) {
523 SSL_COMP ctmp;
524 #ifndef OPENSSL_NO_COMP
525 if (!load_builtin_compressions()) {
526 /*
527 * Currently don't care, since a failure only means that
528 * ssl_comp_methods is NULL, which is perfectly OK
529 */
530 }
531 #endif
532 *comp = NULL;
533 ctmp.id = s->compress_meth;
534 if (ssl_comp_methods != NULL) {
535 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
536 if (i >= 0)
537 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
538 }
539 /* If were only interested in comp then return success */
540 if ((enc == NULL) && (md == NULL))
541 return 1;
542 }
543
544 if ((enc == NULL) || (md == NULL))
545 return 0;
546
547 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
548 return 0;
549
550 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
551 if (i == -1) {
552 *md = NULL;
553 if (mac_pkey_type != NULL)
554 *mac_pkey_type = NID_undef;
555 if (mac_secret_size != NULL)
556 *mac_secret_size = 0;
557 if (c->algorithm_mac == SSL_AEAD)
558 mac_pkey_type = NULL;
559 } else {
560 const EVP_MD *digest = ctx->ssl_digest_methods[i];
561
562 if (digest == NULL
563 || !ssl_evp_md_up_ref(digest)) {
564 ssl_evp_cipher_free(*enc);
565 return 0;
566 }
567 *md = digest;
568 if (mac_pkey_type != NULL)
569 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
570 if (mac_secret_size != NULL)
571 *mac_secret_size = ctx->ssl_mac_secret_size[i];
572 }
573
574 if ((*enc != NULL)
575 && (*md != NULL
576 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
577 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
578 const EVP_CIPHER *evp = NULL;
579
580 if (use_etm
581 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
582 || s->ssl_version < TLS1_VERSION)
583 return 1;
584
585 if (c->algorithm_enc == SSL_RC4
586 && c->algorithm_mac == SSL_MD5)
587 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
588 ctx->propq);
589 else if (c->algorithm_enc == SSL_AES128
590 && c->algorithm_mac == SSL_SHA1)
591 evp = ssl_evp_cipher_fetch(ctx->libctx,
592 NID_aes_128_cbc_hmac_sha1,
593 ctx->propq);
594 else if (c->algorithm_enc == SSL_AES256
595 && c->algorithm_mac == SSL_SHA1)
596 evp = ssl_evp_cipher_fetch(ctx->libctx,
597 NID_aes_256_cbc_hmac_sha1,
598 ctx->propq);
599 else if (c->algorithm_enc == SSL_AES128
600 && c->algorithm_mac == SSL_SHA256)
601 evp = ssl_evp_cipher_fetch(ctx->libctx,
602 NID_aes_128_cbc_hmac_sha256,
603 ctx->propq);
604 else if (c->algorithm_enc == SSL_AES256
605 && c->algorithm_mac == SSL_SHA256)
606 evp = ssl_evp_cipher_fetch(ctx->libctx,
607 NID_aes_256_cbc_hmac_sha256,
608 ctx->propq);
609
610 if (evp != NULL) {
611 ssl_evp_cipher_free(*enc);
612 ssl_evp_md_free(*md);
613 *enc = evp;
614 *md = NULL;
615 }
616 return 1;
617 }
618
619 return 0;
620 }
621
ssl_md(SSL_CTX * ctx,int idx)622 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
623 {
624 idx &= SSL_HANDSHAKE_MAC_MASK;
625 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
626 return NULL;
627 return ctx->ssl_digest_methods[idx];
628 }
629
ssl_handshake_md(SSL * s)630 const EVP_MD *ssl_handshake_md(SSL *s)
631 {
632 return ssl_md(s->ctx, ssl_get_algorithm2(s));
633 }
634
ssl_prf_md(SSL * s)635 const EVP_MD *ssl_prf_md(SSL *s)
636 {
637 return ssl_md(s->ctx, ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
638 }
639
640 #define ITEM_SEP(a) \
641 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
642
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)643 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
644 CIPHER_ORDER **tail)
645 {
646 if (curr == *tail)
647 return;
648 if (curr == *head)
649 *head = curr->next;
650 if (curr->prev != NULL)
651 curr->prev->next = curr->next;
652 if (curr->next != NULL)
653 curr->next->prev = curr->prev;
654 (*tail)->next = curr;
655 curr->prev = *tail;
656 curr->next = NULL;
657 *tail = curr;
658 }
659
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)660 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
661 CIPHER_ORDER **tail)
662 {
663 if (curr == *head)
664 return;
665 if (curr == *tail)
666 *tail = curr->prev;
667 if (curr->next != NULL)
668 curr->next->prev = curr->prev;
669 if (curr->prev != NULL)
670 curr->prev->next = curr->next;
671 (*head)->prev = curr;
672 curr->next = *head;
673 curr->prev = NULL;
674 *head = curr;
675 }
676
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)677 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
678 int num_of_ciphers,
679 uint32_t disabled_mkey,
680 uint32_t disabled_auth,
681 uint32_t disabled_enc,
682 uint32_t disabled_mac,
683 CIPHER_ORDER *co_list,
684 CIPHER_ORDER **head_p,
685 CIPHER_ORDER **tail_p)
686 {
687 int i, co_list_num;
688 const SSL_CIPHER *c;
689
690 /*
691 * We have num_of_ciphers descriptions compiled in, depending on the
692 * method selected (SSLv3, TLSv1 etc).
693 * These will later be sorted in a linked list with at most num
694 * entries.
695 */
696
697 /* Get the initial list of ciphers */
698 co_list_num = 0; /* actual count of ciphers */
699 for (i = 0; i < num_of_ciphers; i++) {
700 c = ssl_method->get_cipher(i);
701 /* drop those that use any of that is not available */
702 if (c == NULL || !c->valid)
703 continue;
704 if ((c->algorithm_mkey & disabled_mkey) ||
705 (c->algorithm_auth & disabled_auth) ||
706 (c->algorithm_enc & disabled_enc) ||
707 (c->algorithm_mac & disabled_mac))
708 continue;
709 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
710 c->min_tls == 0)
711 continue;
712 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
713 c->min_dtls == 0)
714 continue;
715
716 co_list[co_list_num].cipher = c;
717 co_list[co_list_num].next = NULL;
718 co_list[co_list_num].prev = NULL;
719 co_list[co_list_num].active = 0;
720 co_list_num++;
721 }
722
723 /*
724 * Prepare linked list from list entries
725 */
726 if (co_list_num > 0) {
727 co_list[0].prev = NULL;
728
729 if (co_list_num > 1) {
730 co_list[0].next = &co_list[1];
731
732 for (i = 1; i < co_list_num - 1; i++) {
733 co_list[i].prev = &co_list[i - 1];
734 co_list[i].next = &co_list[i + 1];
735 }
736
737 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
738 }
739
740 co_list[co_list_num - 1].next = NULL;
741
742 *head_p = &co_list[0];
743 *tail_p = &co_list[co_list_num - 1];
744 }
745 }
746
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)747 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
748 int num_of_group_aliases,
749 uint32_t disabled_mkey,
750 uint32_t disabled_auth,
751 uint32_t disabled_enc,
752 uint32_t disabled_mac,
753 CIPHER_ORDER *head)
754 {
755 CIPHER_ORDER *ciph_curr;
756 const SSL_CIPHER **ca_curr;
757 int i;
758 uint32_t mask_mkey = ~disabled_mkey;
759 uint32_t mask_auth = ~disabled_auth;
760 uint32_t mask_enc = ~disabled_enc;
761 uint32_t mask_mac = ~disabled_mac;
762
763 /*
764 * First, add the real ciphers as already collected
765 */
766 ciph_curr = head;
767 ca_curr = ca_list;
768 while (ciph_curr != NULL) {
769 *ca_curr = ciph_curr->cipher;
770 ca_curr++;
771 ciph_curr = ciph_curr->next;
772 }
773
774 /*
775 * Now we add the available ones from the cipher_aliases[] table.
776 * They represent either one or more algorithms, some of which
777 * in any affected category must be supported (set in enabled_mask),
778 * or represent a cipher strength value (will be added in any case because algorithms=0).
779 */
780 for (i = 0; i < num_of_group_aliases; i++) {
781 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
782 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
783 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
784 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
785
786 if (algorithm_mkey)
787 if ((algorithm_mkey & mask_mkey) == 0)
788 continue;
789
790 if (algorithm_auth)
791 if ((algorithm_auth & mask_auth) == 0)
792 continue;
793
794 if (algorithm_enc)
795 if ((algorithm_enc & mask_enc) == 0)
796 continue;
797
798 if (algorithm_mac)
799 if ((algorithm_mac & mask_mac) == 0)
800 continue;
801
802 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
803 ca_curr++;
804 }
805
806 *ca_curr = NULL; /* end of list */
807 }
808
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)809 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
810 uint32_t alg_auth, uint32_t alg_enc,
811 uint32_t alg_mac, int min_tls,
812 uint32_t algo_strength, int rule,
813 int32_t strength_bits, CIPHER_ORDER **head_p,
814 CIPHER_ORDER **tail_p)
815 {
816 CIPHER_ORDER *head, *tail, *curr, *next, *last;
817 const SSL_CIPHER *cp;
818 int reverse = 0;
819
820 OSSL_TRACE_BEGIN(TLS_CIPHER){
821 BIO_printf(trc_out,
822 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
823 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
824 algo_strength, strength_bits);
825 }
826
827 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
828 reverse = 1; /* needed to maintain sorting between currently
829 * deleted ciphers */
830
831 head = *head_p;
832 tail = *tail_p;
833
834 if (reverse) {
835 next = tail;
836 last = head;
837 } else {
838 next = head;
839 last = tail;
840 }
841
842 curr = NULL;
843 for (;;) {
844 if (curr == last)
845 break;
846
847 curr = next;
848
849 if (curr == NULL)
850 break;
851
852 next = reverse ? curr->prev : curr->next;
853
854 cp = curr->cipher;
855
856 /*
857 * Selection criteria is either the value of strength_bits
858 * or the algorithms used.
859 */
860 if (strength_bits >= 0) {
861 if (strength_bits != cp->strength_bits)
862 continue;
863 } else {
864 if (trc_out != NULL) {
865 BIO_printf(trc_out,
866 "\nName: %s:"
867 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
868 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
869 cp->algorithm_enc, cp->algorithm_mac, cp->min_tls,
870 cp->algo_strength);
871 }
872 if (cipher_id != 0 && (cipher_id != cp->id))
873 continue;
874 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
875 continue;
876 if (alg_auth && !(alg_auth & cp->algorithm_auth))
877 continue;
878 if (alg_enc && !(alg_enc & cp->algorithm_enc))
879 continue;
880 if (alg_mac && !(alg_mac & cp->algorithm_mac))
881 continue;
882 if (min_tls && (min_tls != cp->min_tls))
883 continue;
884 if ((algo_strength & SSL_STRONG_MASK)
885 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
886 continue;
887 if ((algo_strength & SSL_DEFAULT_MASK)
888 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
889 continue;
890 }
891
892 if (trc_out != NULL)
893 BIO_printf(trc_out, "Action = %d\n", rule);
894
895 /* add the cipher if it has not been added yet. */
896 if (rule == CIPHER_ADD) {
897 /* reverse == 0 */
898 if (!curr->active) {
899 ll_append_tail(&head, curr, &tail);
900 curr->active = 1;
901 }
902 }
903 /* Move the added cipher to this location */
904 else if (rule == CIPHER_ORD) {
905 /* reverse == 0 */
906 if (curr->active) {
907 ll_append_tail(&head, curr, &tail);
908 }
909 } else if (rule == CIPHER_DEL) {
910 /* reverse == 1 */
911 if (curr->active) {
912 /*
913 * most recently deleted ciphersuites get best positions for
914 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
915 * in reverse to maintain the order)
916 */
917 ll_append_head(&head, curr, &tail);
918 curr->active = 0;
919 }
920 } else if (rule == CIPHER_BUMP) {
921 if (curr->active)
922 ll_append_head(&head, curr, &tail);
923 } else if (rule == CIPHER_KILL) {
924 /* reverse == 0 */
925 if (head == curr)
926 head = curr->next;
927 else
928 curr->prev->next = curr->next;
929 if (tail == curr)
930 tail = curr->prev;
931 curr->active = 0;
932 if (curr->next != NULL)
933 curr->next->prev = curr->prev;
934 if (curr->prev != NULL)
935 curr->prev->next = curr->next;
936 curr->next = NULL;
937 curr->prev = NULL;
938 }
939 }
940
941 *head_p = head;
942 *tail_p = tail;
943
944 OSSL_TRACE_END(TLS_CIPHER);
945 }
946
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)947 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
948 CIPHER_ORDER **tail_p)
949 {
950 int32_t max_strength_bits;
951 int i, *number_uses;
952 CIPHER_ORDER *curr;
953
954 /*
955 * This routine sorts the ciphers with descending strength. The sorting
956 * must keep the pre-sorted sequence, so we apply the normal sorting
957 * routine as '+' movement to the end of the list.
958 */
959 max_strength_bits = 0;
960 curr = *head_p;
961 while (curr != NULL) {
962 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
963 max_strength_bits = curr->cipher->strength_bits;
964 curr = curr->next;
965 }
966
967 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
968 if (number_uses == NULL) {
969 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
970 return 0;
971 }
972
973 /*
974 * Now find the strength_bits values actually used
975 */
976 curr = *head_p;
977 while (curr != NULL) {
978 if (curr->active)
979 number_uses[curr->cipher->strength_bits]++;
980 curr = curr->next;
981 }
982 /*
983 * Go through the list of used strength_bits values in descending
984 * order.
985 */
986 for (i = max_strength_bits; i >= 0; i--)
987 if (number_uses[i] > 0)
988 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
989 tail_p);
990
991 OPENSSL_free(number_uses);
992 return 1;
993 }
994
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)995 static int ssl_cipher_process_rulestr(const char *rule_str,
996 CIPHER_ORDER **head_p,
997 CIPHER_ORDER **tail_p,
998 const SSL_CIPHER **ca_list, CERT *c)
999 {
1000 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
1001 int min_tls;
1002 const char *l, *buf;
1003 int j, multi, found, rule, retval, ok, buflen;
1004 uint32_t cipher_id = 0;
1005 char ch;
1006
1007 retval = 1;
1008 l = rule_str;
1009 for ( ; ; ) {
1010 ch = *l;
1011
1012 if (ch == '\0')
1013 break; /* done */
1014 if (ch == '-') {
1015 rule = CIPHER_DEL;
1016 l++;
1017 } else if (ch == '+') {
1018 rule = CIPHER_ORD;
1019 l++;
1020 } else if (ch == '!') {
1021 rule = CIPHER_KILL;
1022 l++;
1023 } else if (ch == '@') {
1024 rule = CIPHER_SPECIAL;
1025 l++;
1026 } else {
1027 rule = CIPHER_ADD;
1028 }
1029
1030 if (ITEM_SEP(ch)) {
1031 l++;
1032 continue;
1033 }
1034
1035 alg_mkey = 0;
1036 alg_auth = 0;
1037 alg_enc = 0;
1038 alg_mac = 0;
1039 min_tls = 0;
1040 algo_strength = 0;
1041
1042 for (;;) {
1043 ch = *l;
1044 buf = l;
1045 buflen = 0;
1046 #ifndef CHARSET_EBCDIC
1047 while (((ch >= 'A') && (ch <= 'Z')) ||
1048 ((ch >= '0') && (ch <= '9')) ||
1049 ((ch >= 'a') && (ch <= 'z')) ||
1050 (ch == '-') || (ch == '.') || (ch == '='))
1051 #else
1052 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '.')
1053 || (ch == '='))
1054 #endif
1055 {
1056 ch = *(++l);
1057 buflen++;
1058 }
1059
1060 if (buflen == 0) {
1061 /*
1062 * We hit something we cannot deal with,
1063 * it is no command or separator nor
1064 * alphanumeric, so we call this an error.
1065 */
1066 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1067 return 0;
1068 }
1069
1070 if (rule == CIPHER_SPECIAL) {
1071 found = 0; /* unused -- avoid compiler warning */
1072 break; /* special treatment */
1073 }
1074
1075 /* check for multi-part specification */
1076 if (ch == '+') {
1077 multi = 1;
1078 l++;
1079 } else {
1080 multi = 0;
1081 }
1082
1083 /*
1084 * Now search for the cipher alias in the ca_list. Be careful
1085 * with the strncmp, because the "buflen" limitation
1086 * will make the rule "ADH:SOME" and the cipher
1087 * "ADH-MY-CIPHER" look like a match for buflen=3.
1088 * So additionally check whether the cipher name found
1089 * has the correct length. We can save a strlen() call:
1090 * just checking for the '\0' at the right place is
1091 * sufficient, we have to strncmp() anyway. (We cannot
1092 * use strcmp(), because buf is not '\0' terminated.)
1093 */
1094 j = found = 0;
1095 cipher_id = 0;
1096 while (ca_list[j]) {
1097 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1098 && (ca_list[j]->name[buflen] == '\0')) {
1099 found = 1;
1100 break;
1101 } else
1102 j++;
1103 }
1104
1105 if (!found)
1106 break; /* ignore this entry */
1107
1108 if (ca_list[j]->algorithm_mkey) {
1109 if (alg_mkey) {
1110 alg_mkey &= ca_list[j]->algorithm_mkey;
1111 if (!alg_mkey) {
1112 found = 0;
1113 break;
1114 }
1115 } else {
1116 alg_mkey = ca_list[j]->algorithm_mkey;
1117 }
1118 }
1119
1120 if (ca_list[j]->algorithm_auth) {
1121 if (alg_auth) {
1122 alg_auth &= ca_list[j]->algorithm_auth;
1123 if (!alg_auth) {
1124 found = 0;
1125 break;
1126 }
1127 } else {
1128 alg_auth = ca_list[j]->algorithm_auth;
1129 }
1130 }
1131
1132 if (ca_list[j]->algorithm_enc) {
1133 if (alg_enc) {
1134 alg_enc &= ca_list[j]->algorithm_enc;
1135 if (!alg_enc) {
1136 found = 0;
1137 break;
1138 }
1139 } else {
1140 alg_enc = ca_list[j]->algorithm_enc;
1141 }
1142 }
1143
1144 if (ca_list[j]->algorithm_mac) {
1145 if (alg_mac) {
1146 alg_mac &= ca_list[j]->algorithm_mac;
1147 if (!alg_mac) {
1148 found = 0;
1149 break;
1150 }
1151 } else {
1152 alg_mac = ca_list[j]->algorithm_mac;
1153 }
1154 }
1155
1156 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1157 if (algo_strength & SSL_STRONG_MASK) {
1158 algo_strength &=
1159 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1160 ~SSL_STRONG_MASK;
1161 if (!(algo_strength & SSL_STRONG_MASK)) {
1162 found = 0;
1163 break;
1164 }
1165 } else {
1166 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1167 }
1168 }
1169
1170 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1171 if (algo_strength & SSL_DEFAULT_MASK) {
1172 algo_strength &=
1173 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1174 ~SSL_DEFAULT_MASK;
1175 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1176 found = 0;
1177 break;
1178 }
1179 } else {
1180 algo_strength |=
1181 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1182 }
1183 }
1184
1185 if (ca_list[j]->valid) {
1186 /*
1187 * explicit ciphersuite found; its protocol version does not
1188 * become part of the search pattern!
1189 */
1190
1191 cipher_id = ca_list[j]->id;
1192 } else {
1193 /*
1194 * not an explicit ciphersuite; only in this case, the
1195 * protocol version is considered part of the search pattern
1196 */
1197
1198 if (ca_list[j]->min_tls) {
1199 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1200 found = 0;
1201 break;
1202 } else {
1203 min_tls = ca_list[j]->min_tls;
1204 }
1205 }
1206 }
1207
1208 if (!multi)
1209 break;
1210 }
1211
1212 /*
1213 * Ok, we have the rule, now apply it
1214 */
1215 if (rule == CIPHER_SPECIAL) { /* special command */
1216 ok = 0;
1217 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0) {
1218 ok = ssl_cipher_strength_sort(head_p, tail_p);
1219 } else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1220 int level = buf[9] - '0';
1221 if (level < 0 || level > 5) {
1222 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1223 } else {
1224 c->sec_level = level;
1225 ok = 1;
1226 }
1227 } else {
1228 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1229 }
1230 if (ok == 0)
1231 retval = 0;
1232 /*
1233 * We do not support any "multi" options
1234 * together with "@", so throw away the
1235 * rest of the command, if any left, until
1236 * end or ':' is found.
1237 */
1238 while ((*l != '\0') && !ITEM_SEP(*l))
1239 l++;
1240 } else if (found) {
1241 ssl_cipher_apply_rule(cipher_id,
1242 alg_mkey, alg_auth, alg_enc, alg_mac,
1243 min_tls, algo_strength, rule, -1, head_p,
1244 tail_p);
1245 } else {
1246 while ((*l != '\0') && !ITEM_SEP(*l))
1247 l++;
1248 }
1249 if (*l == '\0')
1250 break; /* done */
1251 }
1252
1253 return retval;
1254 }
1255
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1256 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1257 const char **prule_str)
1258 {
1259 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1260 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1261 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1262 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1263 suiteb_comb2 = 1;
1264 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1265 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1266 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1267 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1268 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1269 }
1270
1271 if (suiteb_flags) {
1272 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1273 c->cert_flags |= suiteb_flags;
1274 } else {
1275 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1276 }
1277
1278 if (!suiteb_flags)
1279 return 1;
1280 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1281
1282 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1283 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1284 return 0;
1285 }
1286
1287 switch (suiteb_flags) {
1288 case SSL_CERT_FLAG_SUITEB_128_LOS:
1289 if (suiteb_comb2)
1290 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1291 else
1292 *prule_str =
1293 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1294 break;
1295 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1296 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1297 break;
1298 case SSL_CERT_FLAG_SUITEB_192_LOS:
1299 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1300 break;
1301 }
1302 return 1;
1303 }
1304
ciphersuite_cb(const char * elem,int len,void * arg)1305 static int ciphersuite_cb(const char *elem, int len, void *arg)
1306 {
1307 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1308 const SSL_CIPHER *cipher;
1309 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1310 char name[80];
1311
1312 if (len > (int)(sizeof(name) - 1))
1313 /* Anyway return 1 so we can parse rest of the list */
1314 return 1;
1315
1316 memcpy(name, elem, len);
1317 name[len] = '\0';
1318
1319 cipher = ssl3_get_cipher_by_std_name(name);
1320 if (cipher == NULL)
1321 /* Ciphersuite not found but return 1 to parse rest of the list */
1322 return 1;
1323
1324 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1325 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1326 return 0;
1327 }
1328
1329 return 1;
1330 }
1331
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1332 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1333 {
1334 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1335
1336 if (newciphers == NULL)
1337 return 0;
1338
1339 /* Parse the list. We explicitly allow an empty list */
1340 if (*str != '\0'
1341 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1342 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1343 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1344 sk_SSL_CIPHER_free(newciphers);
1345 return 0;
1346 }
1347 sk_SSL_CIPHER_free(*currciphers);
1348 *currciphers = newciphers;
1349
1350 return 1;
1351 }
1352
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1353 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1354 STACK_OF(SSL_CIPHER) *cipherstack)
1355 {
1356 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1357
1358 if (tmp_cipher_list == NULL) {
1359 return 0;
1360 }
1361
1362 sk_SSL_CIPHER_free(*cipher_list_by_id);
1363 *cipher_list_by_id = tmp_cipher_list;
1364
1365 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1366 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1367
1368 return 1;
1369 }
1370
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1371 static int update_cipher_list(SSL_CTX *ctx,
1372 STACK_OF(SSL_CIPHER) **cipher_list,
1373 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1374 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1375 {
1376 int i;
1377 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1378
1379 if (tmp_cipher_list == NULL)
1380 return 0;
1381
1382 /*
1383 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1384 * list.
1385 */
1386 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1387 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1388 == TLS1_3_VERSION)
1389 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1390
1391 /* Insert the new TLSv1.3 ciphersuites */
1392 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1393 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1394
1395 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1396 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1397 && (ssl_cipher_table_mac[sslc->algorithm2
1398 & SSL_HANDSHAKE_MAC_MASK].mask
1399 & ctx->disabled_mac_mask) == 0) {
1400 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1401 }
1402 }
1403
1404 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1405 sk_SSL_CIPHER_free(tmp_cipher_list);
1406 return 0;
1407 }
1408
1409 sk_SSL_CIPHER_free(*cipher_list);
1410 *cipher_list = tmp_cipher_list;
1411
1412 return 1;
1413 }
1414
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1415 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1416 {
1417 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1418
1419 if (ret && ctx->cipher_list != NULL)
1420 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1421 ctx->tls13_ciphersuites);
1422
1423 return ret;
1424 }
1425
SSL_set_ciphersuites(SSL * s,const char * str)1426 int SSL_set_ciphersuites(SSL *s, const char *str)
1427 {
1428 STACK_OF(SSL_CIPHER) *cipher_list;
1429 int ret = set_ciphersuites(&(s->tls13_ciphersuites), str);
1430
1431 if (s->cipher_list == NULL) {
1432 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1433 s->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1434 }
1435 if (ret && s->cipher_list != NULL)
1436 return update_cipher_list(s->ctx, &s->cipher_list, &s->cipher_list_by_id,
1437 s->tls13_ciphersuites);
1438
1439 return ret;
1440 }
1441
STACK_OF(SSL_CIPHER)1442 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1443 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1444 STACK_OF(SSL_CIPHER) **cipher_list,
1445 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1446 const char *rule_str,
1447 CERT *c)
1448 {
1449 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1450 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1451 STACK_OF(SSL_CIPHER) *cipherstack;
1452 const char *rule_p;
1453 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1454 const SSL_CIPHER **ca_list = NULL;
1455 const SSL_METHOD *ssl_method = ctx->method;
1456
1457 /*
1458 * Return with error if nothing to do.
1459 */
1460 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1461 return NULL;
1462
1463 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1464 return NULL;
1465
1466 /*
1467 * To reduce the work to do we only want to process the compiled
1468 * in algorithms, so we first get the mask of disabled ciphers.
1469 */
1470
1471 disabled_mkey = ctx->disabled_mkey_mask;
1472 disabled_auth = ctx->disabled_auth_mask;
1473 disabled_enc = ctx->disabled_enc_mask;
1474 disabled_mac = ctx->disabled_mac_mask;
1475
1476 /*
1477 * Now we have to collect the available ciphers from the compiled
1478 * in ciphers. We cannot get more than the number compiled in, so
1479 * it is used for allocation.
1480 */
1481 num_of_ciphers = ssl_method->num_ciphers();
1482
1483 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1484 if (co_list == NULL) {
1485 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1486 return NULL; /* Failure */
1487 }
1488
1489 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1490 disabled_mkey, disabled_auth, disabled_enc,
1491 disabled_mac, co_list, &head, &tail);
1492
1493 /* Now arrange all ciphers by preference. */
1494
1495 /*
1496 * Everything else being equal, prefer ephemeral ECDH over other key
1497 * exchange mechanisms.
1498 * For consistency, prefer ECDSA over RSA (though this only matters if the
1499 * server has both certificates, and is using the DEFAULT, or a client
1500 * preference).
1501 */
1502 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1503 -1, &head, &tail);
1504 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1505 &tail);
1506 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1507 &tail);
1508
1509 /* Within each strength group, we prefer GCM over CHACHA... */
1510 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1511 &head, &tail);
1512 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1513 &head, &tail);
1514
1515 /*
1516 * ...and generally, our preferred cipher is AES.
1517 * Note that AEADs will be bumped to take preference after sorting by
1518 * strength.
1519 */
1520 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1521 -1, &head, &tail);
1522
1523 /* Temporarily enable everything else for sorting */
1524 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1525
1526 /* Low priority for MD5 */
1527 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1528 &tail);
1529
1530 /*
1531 * Move anonymous ciphers to the end. Usually, these will remain
1532 * disabled. (For applications that allow them, they aren't too bad, but
1533 * we prefer authenticated ciphers.)
1534 */
1535 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1536 &tail);
1537
1538 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1539 &tail);
1540 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1541 &tail);
1542
1543 /* RC4 is sort-of broken -- move to the end */
1544 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1545 &tail);
1546
1547 /*
1548 * Now sort by symmetric encryption strength. The above ordering remains
1549 * in force within each class
1550 */
1551 if (!ssl_cipher_strength_sort(&head, &tail)) {
1552 OPENSSL_free(co_list);
1553 return NULL;
1554 }
1555
1556 /*
1557 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1558 */
1559 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1560 &head, &tail);
1561
1562 /*
1563 * Irrespective of strength, enforce the following order:
1564 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1565 * Within each group, ciphers remain sorted by strength and previous
1566 * preference, i.e.,
1567 * 1) ECDHE > DHE
1568 * 2) GCM > CHACHA
1569 * 3) AES > rest
1570 * 4) TLS 1.2 > legacy
1571 *
1572 * Because we now bump ciphers to the top of the list, we proceed in
1573 * reverse order of preference.
1574 */
1575 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1576 &head, &tail);
1577 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1578 CIPHER_BUMP, -1, &head, &tail);
1579 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1580 CIPHER_BUMP, -1, &head, &tail);
1581
1582 /* Now disable everything (maintaining the ordering!) */
1583 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1584
1585 /*
1586 * We also need cipher aliases for selecting based on the rule_str.
1587 * There might be two types of entries in the rule_str: 1) names
1588 * of ciphers themselves 2) aliases for groups of ciphers.
1589 * For 1) we need the available ciphers and for 2) the cipher
1590 * groups of cipher_aliases added together in one list (otherwise
1591 * we would be happy with just the cipher_aliases table).
1592 */
1593 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1594 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1595 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1596 if (ca_list == NULL) {
1597 OPENSSL_free(co_list);
1598 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1599 return NULL; /* Failure */
1600 }
1601 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1602 disabled_mkey, disabled_auth, disabled_enc,
1603 disabled_mac, head);
1604
1605 /*
1606 * If the rule_string begins with DEFAULT, apply the default rule
1607 * before using the (possibly available) additional rules.
1608 */
1609 ok = 1;
1610 rule_p = rule_str;
1611 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1612 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1613 &head, &tail, ca_list, c);
1614 rule_p += 7;
1615 if (*rule_p == ':')
1616 rule_p++;
1617 }
1618
1619 if (ok && (rule_p[0] != '\0'))
1620 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1621
1622 OPENSSL_free(ca_list); /* Not needed anymore */
1623
1624 if (!ok) { /* Rule processing failure */
1625 OPENSSL_free(co_list);
1626 return NULL;
1627 }
1628
1629 /*
1630 * Allocate new "cipherstack" for the result, return with error
1631 * if we cannot get one.
1632 */
1633 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1634 OPENSSL_free(co_list);
1635 return NULL;
1636 }
1637
1638 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1639 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1640 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1641
1642 /* Don't include any TLSv1.3 ciphers that are disabled */
1643 if ((sslc->algorithm_enc & disabled_enc) != 0
1644 || (ssl_cipher_table_mac[sslc->algorithm2
1645 & SSL_HANDSHAKE_MAC_MASK].mask
1646 & ctx->disabled_mac_mask) != 0) {
1647 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1648 i--;
1649 continue;
1650 }
1651
1652 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1653 OPENSSL_free(co_list);
1654 sk_SSL_CIPHER_free(cipherstack);
1655 return NULL;
1656 }
1657 }
1658
1659 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1660 BIO_printf(trc_out, "cipher selection:\n");
1661 }
1662 /*
1663 * The cipher selection for the list is done. The ciphers are added
1664 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1665 */
1666 for (curr = head; curr != NULL; curr = curr->next) {
1667 if (curr->active) {
1668 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1669 OPENSSL_free(co_list);
1670 sk_SSL_CIPHER_free(cipherstack);
1671 OSSL_TRACE_CANCEL(TLS_CIPHER);
1672 return NULL;
1673 }
1674 if (trc_out != NULL)
1675 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1676 }
1677 }
1678 OPENSSL_free(co_list); /* Not needed any longer */
1679 OSSL_TRACE_END(TLS_CIPHER);
1680
1681 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1682 sk_SSL_CIPHER_free(cipherstack);
1683 return NULL;
1684 }
1685 sk_SSL_CIPHER_free(*cipher_list);
1686 *cipher_list = cipherstack;
1687
1688 return cipherstack;
1689 }
1690
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1691 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1692 {
1693 const char *ver;
1694 const char *kx, *au, *enc, *mac;
1695 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1696 static const char *format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1697
1698 if (buf == NULL) {
1699 len = 128;
1700 if ((buf = OPENSSL_malloc(len)) == NULL) {
1701 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
1702 return NULL;
1703 }
1704 } else if (len < 128) {
1705 return NULL;
1706 }
1707
1708 alg_mkey = cipher->algorithm_mkey;
1709 alg_auth = cipher->algorithm_auth;
1710 alg_enc = cipher->algorithm_enc;
1711 alg_mac = cipher->algorithm_mac;
1712
1713 ver = ssl_protocol_to_string(cipher->min_tls);
1714
1715 switch (alg_mkey) {
1716 case SSL_kRSA:
1717 kx = "RSA";
1718 break;
1719 case SSL_kDHE:
1720 kx = "DH";
1721 break;
1722 case SSL_kECDHE:
1723 kx = "ECDH";
1724 break;
1725 case SSL_kPSK:
1726 kx = "PSK";
1727 break;
1728 case SSL_kRSAPSK:
1729 kx = "RSAPSK";
1730 break;
1731 case SSL_kECDHEPSK:
1732 kx = "ECDHEPSK";
1733 break;
1734 case SSL_kDHEPSK:
1735 kx = "DHEPSK";
1736 break;
1737 case SSL_kSRP:
1738 kx = "SRP";
1739 break;
1740 case SSL_kGOST:
1741 kx = "GOST";
1742 break;
1743 case SSL_kGOST18:
1744 kx = "GOST18";
1745 break;
1746 case SSL_kANY:
1747 kx = "any";
1748 break;
1749 default:
1750 kx = "unknown";
1751 }
1752
1753 switch (alg_auth) {
1754 case SSL_aRSA:
1755 au = "RSA";
1756 break;
1757 case SSL_aDSS:
1758 au = "DSS";
1759 break;
1760 case SSL_aNULL:
1761 au = "None";
1762 break;
1763 case SSL_aECDSA:
1764 au = "ECDSA";
1765 break;
1766 case SSL_aPSK:
1767 au = "PSK";
1768 break;
1769 case SSL_aSRP:
1770 au = "SRP";
1771 break;
1772 case SSL_aGOST01:
1773 au = "GOST01";
1774 break;
1775 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1776 case (SSL_aGOST12 | SSL_aGOST01):
1777 au = "GOST12";
1778 break;
1779 case SSL_aANY:
1780 au = "any";
1781 break;
1782 default:
1783 au = "unknown";
1784 break;
1785 }
1786
1787 switch (alg_enc) {
1788 case SSL_DES:
1789 enc = "DES(56)";
1790 break;
1791 case SSL_3DES:
1792 enc = "3DES(168)";
1793 break;
1794 case SSL_RC4:
1795 enc = "RC4(128)";
1796 break;
1797 case SSL_RC2:
1798 enc = "RC2(128)";
1799 break;
1800 case SSL_IDEA:
1801 enc = "IDEA(128)";
1802 break;
1803 case SSL_eNULL:
1804 enc = "None";
1805 break;
1806 case SSL_AES128:
1807 enc = "AES(128)";
1808 break;
1809 case SSL_AES256:
1810 enc = "AES(256)";
1811 break;
1812 case SSL_AES128GCM:
1813 enc = "AESGCM(128)";
1814 break;
1815 case SSL_AES256GCM:
1816 enc = "AESGCM(256)";
1817 break;
1818 case SSL_AES128CCM:
1819 enc = "AESCCM(128)";
1820 break;
1821 case SSL_AES256CCM:
1822 enc = "AESCCM(256)";
1823 break;
1824 case SSL_AES128CCM8:
1825 enc = "AESCCM8(128)";
1826 break;
1827 case SSL_AES256CCM8:
1828 enc = "AESCCM8(256)";
1829 break;
1830 case SSL_CAMELLIA128:
1831 enc = "Camellia(128)";
1832 break;
1833 case SSL_CAMELLIA256:
1834 enc = "Camellia(256)";
1835 break;
1836 case SSL_ARIA128GCM:
1837 enc = "ARIAGCM(128)";
1838 break;
1839 case SSL_ARIA256GCM:
1840 enc = "ARIAGCM(256)";
1841 break;
1842 case SSL_SEED:
1843 enc = "SEED(128)";
1844 break;
1845 case SSL_eGOST2814789CNT:
1846 case SSL_eGOST2814789CNT12:
1847 enc = "GOST89(256)";
1848 break;
1849 case SSL_MAGMA:
1850 enc = "MAGMA";
1851 break;
1852 case SSL_KUZNYECHIK:
1853 enc = "KUZNYECHIK";
1854 break;
1855 case SSL_CHACHA20POLY1305:
1856 enc = "CHACHA20/POLY1305(256)";
1857 break;
1858 default:
1859 enc = "unknown";
1860 break;
1861 }
1862
1863 switch (alg_mac) {
1864 case SSL_MD5:
1865 mac = "MD5";
1866 break;
1867 case SSL_SHA1:
1868 mac = "SHA1";
1869 break;
1870 case SSL_SHA256:
1871 mac = "SHA256";
1872 break;
1873 case SSL_SHA384:
1874 mac = "SHA384";
1875 break;
1876 case SSL_AEAD:
1877 mac = "AEAD";
1878 break;
1879 case SSL_GOST89MAC:
1880 case SSL_GOST89MAC12:
1881 mac = "GOST89";
1882 break;
1883 case SSL_GOST94:
1884 mac = "GOST94";
1885 break;
1886 case SSL_GOST12_256:
1887 case SSL_GOST12_512:
1888 mac = "GOST2012";
1889 break;
1890 default:
1891 mac = "unknown";
1892 break;
1893 }
1894
1895 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1896
1897 return buf;
1898 }
1899
SSL_CIPHER_get_version(const SSL_CIPHER * c)1900 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1901 {
1902 if (c == NULL)
1903 return "(NONE)";
1904
1905 /*
1906 * Backwards-compatibility crutch. In almost all contexts we report TLS
1907 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1908 */
1909 if (c->min_tls == TLS1_VERSION)
1910 return "TLSv1.0";
1911 return ssl_protocol_to_string(c->min_tls);
1912 }
1913
1914 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1915 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1916 {
1917 if (c != NULL)
1918 return c->name;
1919 return "(NONE)";
1920 }
1921
1922 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1923 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1924 {
1925 if (c != NULL)
1926 return c->stdname;
1927 return "(NONE)";
1928 }
1929
1930 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1931 const char *OPENSSL_cipher_name(const char *stdname)
1932 {
1933 const SSL_CIPHER *c;
1934
1935 if (stdname == NULL)
1936 return "(NONE)";
1937 c = ssl3_get_cipher_by_std_name(stdname);
1938 return SSL_CIPHER_get_name(c);
1939 }
1940
1941 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1942 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1943 {
1944 int ret = 0;
1945
1946 if (c != NULL) {
1947 if (alg_bits != NULL)
1948 *alg_bits = (int)c->alg_bits;
1949 ret = (int)c->strength_bits;
1950 }
1951 return ret;
1952 }
1953
SSL_CIPHER_get_id(const SSL_CIPHER * c)1954 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1955 {
1956 return c->id;
1957 }
1958
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1959 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1960 {
1961 return c->id & 0xFFFF;
1962 }
1963
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1964 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1965 {
1966 SSL_COMP *ctmp;
1967 int i, nn;
1968
1969 if ((n == 0) || (sk == NULL))
1970 return NULL;
1971 nn = sk_SSL_COMP_num(sk);
1972 for (i = 0; i < nn; i++) {
1973 ctmp = sk_SSL_COMP_value(sk, i);
1974 if (ctmp->id == n)
1975 return ctmp;
1976 }
1977 return NULL;
1978 }
1979
1980 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1981 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1982 {
1983 return NULL;
1984 }
1985
STACK_OF(SSL_COMP)1986 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1987 *meths)
1988 {
1989 return meths;
1990 }
1991
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1992 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1993 {
1994 return 1;
1995 }
1996
1997 #else
STACK_OF(SSL_COMP)1998 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1999 {
2000 load_builtin_compressions();
2001 return ssl_comp_methods;
2002 }
2003
STACK_OF(SSL_COMP)2004 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2005 *meths)
2006 {
2007 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2008 ssl_comp_methods = meths;
2009 return old_meths;
2010 }
2011
cmeth_free(SSL_COMP * cm)2012 static void cmeth_free(SSL_COMP *cm)
2013 {
2014 OPENSSL_free(cm);
2015 }
2016
ssl_comp_free_compression_methods_int(void)2017 void ssl_comp_free_compression_methods_int(void)
2018 {
2019 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2020 ssl_comp_methods = NULL;
2021 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2022 }
2023
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)2024 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2025 {
2026 SSL_COMP *comp;
2027
2028 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2029 return 1;
2030
2031 /*-
2032 * According to draft-ietf-tls-compression-04.txt, the
2033 * compression number ranges should be the following:
2034 *
2035 * 0 to 63: methods defined by the IETF
2036 * 64 to 192: external party methods assigned by IANA
2037 * 193 to 255: reserved for private use
2038 */
2039 if (id < 193 || id > 255) {
2040 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2041 return 1;
2042 }
2043
2044 comp = OPENSSL_malloc(sizeof(*comp));
2045 if (comp == NULL) {
2046 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2047 return 1;
2048 }
2049
2050 comp->id = id;
2051 comp->method = cm;
2052 load_builtin_compressions();
2053 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2054 OPENSSL_free(comp);
2055 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2056 return 1;
2057 }
2058 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2059 OPENSSL_free(comp);
2060 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2061 return 1;
2062 }
2063 return 0;
2064 }
2065 #endif
2066
SSL_COMP_get_name(const COMP_METHOD * comp)2067 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2068 {
2069 #ifndef OPENSSL_NO_COMP
2070 return comp ? COMP_get_name(comp) : NULL;
2071 #else
2072 return NULL;
2073 #endif
2074 }
2075
SSL_COMP_get0_name(const SSL_COMP * comp)2076 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2077 {
2078 #ifndef OPENSSL_NO_COMP
2079 return comp->name;
2080 #else
2081 return NULL;
2082 #endif
2083 }
2084
SSL_COMP_get_id(const SSL_COMP * comp)2085 int SSL_COMP_get_id(const SSL_COMP *comp)
2086 {
2087 #ifndef OPENSSL_NO_COMP
2088 return comp->id;
2089 #else
2090 return -1;
2091 #endif
2092 }
2093
ssl_get_cipher_by_char(SSL * ssl,const unsigned char * ptr,int all)2094 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr,
2095 int all)
2096 {
2097 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
2098
2099 if (c == NULL || (!all && c->valid == 0))
2100 return NULL;
2101 return c;
2102 }
2103
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2104 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2105 {
2106 return ssl->method->get_cipher_by_char(ptr);
2107 }
2108
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2109 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2110 {
2111 int i;
2112 if (c == NULL)
2113 return NID_undef;
2114 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2115 if (i == -1)
2116 return NID_undef;
2117 return ssl_cipher_table_cipher[i].nid;
2118 }
2119
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2120 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2121 {
2122 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2123
2124 if (i == -1)
2125 return NID_undef;
2126 return ssl_cipher_table_mac[i].nid;
2127 }
2128
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2129 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2130 {
2131 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2132
2133 if (i == -1)
2134 return NID_undef;
2135 return ssl_cipher_table_kx[i].nid;
2136 }
2137
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2138 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2139 {
2140 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2141
2142 if (i == -1)
2143 return NID_undef;
2144 return ssl_cipher_table_auth[i].nid;
2145 }
2146
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2147 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2148 {
2149 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2150
2151 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2152 return NULL;
2153 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2154 }
2155
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2156 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2157 {
2158 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2159 }
2160
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2161 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2162 size_t *int_overhead, size_t *blocksize,
2163 size_t *ext_overhead)
2164 {
2165 size_t mac = 0, in = 0, blk = 0, out = 0;
2166
2167 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2168 * because there are no handy #defines for those. */
2169 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2170 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2171 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2172 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2173 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2174 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2175 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2176 out = 16;
2177 } else if (c->algorithm_mac & SSL_AEAD) {
2178 /* We're supposed to have handled all the AEAD modes above */
2179 return 0;
2180 } else {
2181 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2182 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2183 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2184
2185 if (e_md == NULL)
2186 return 0;
2187
2188 mac = EVP_MD_get_size(e_md);
2189 if (c->algorithm_enc != SSL_eNULL) {
2190 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2191 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2192
2193 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2194 known CBC cipher. */
2195 if (e_ciph == NULL ||
2196 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2197 return 0;
2198
2199 in = 1; /* padding length byte */
2200 out = EVP_CIPHER_get_iv_length(e_ciph);
2201 blk = EVP_CIPHER_get_block_size(e_ciph);
2202 }
2203 }
2204
2205 *mac_overhead = mac;
2206 *int_overhead = in;
2207 *blocksize = blk;
2208 *ext_overhead = out;
2209
2210 return 1;
2211 }
2212
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2213 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2214 {
2215 const SSL_CERT_LOOKUP *cl = ssl_cert_lookup_by_idx(idx);
2216
2217 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2218 return 1;
2219 return 0;
2220 }
2221
2222 /*
2223 * Default list of TLSv1.2 (and earlier) ciphers
2224 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2225 * Update both macro and function simultaneously
2226 */
OSSL_default_cipher_list(void)2227 const char *OSSL_default_cipher_list(void)
2228 {
2229 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2230 }
2231
2232 /*
2233 * Default list of TLSv1.3 (and later) ciphers
2234 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2235 * Update both macro and function simultaneously
2236 */
OSSL_default_ciphersuites(void)2237 const char *OSSL_default_ciphersuites(void)
2238 {
2239 return "TLS_AES_256_GCM_SHA384:"
2240 "TLS_CHACHA20_POLY1305_SHA256:"
2241 "TLS_AES_128_GCM_SHA256";
2242 }
2243