xref: /titanic_50/usr/src/lib/libsqlite/src/os.c (revision c5c4113dfcabb1eed3d4bdf7609de5170027a794)
1 
2 #pragma ident	"%Z%%M%	%I%	%E% SMI"
3 
4 /*
5 ** 2001 September 16
6 **
7 ** The author disclaims copyright to this source code.  In place of
8 ** a legal notice, here is a blessing:
9 **
10 **    May you do good and not evil.
11 **    May you find forgiveness for yourself and forgive others.
12 **    May you share freely, never taking more than you give.
13 **
14 ******************************************************************************
15 **
16 ** This file contains code that is specific to particular operating
17 ** systems.  The purpose of this file is to provide a uniform abstraction
18 ** on which the rest of SQLite can operate.
19 */
20 #include "os.h"          /* Must be first to enable large file support */
21 #include "sqliteInt.h"
22 
23 #if OS_UNIX
24 # include <time.h>
25 # include <errno.h>
26 # include <unistd.h>
27 # ifndef O_LARGEFILE
28 #  define O_LARGEFILE 0
29 # endif
30 # ifdef SQLITE_DISABLE_LFS
31 #  undef O_LARGEFILE
32 #  define O_LARGEFILE 0
33 # endif
34 # ifndef O_NOFOLLOW
35 #  define O_NOFOLLOW 0
36 # endif
37 # ifndef O_BINARY
38 #  define O_BINARY 0
39 # endif
40 #endif
41 
42 
43 #if OS_WIN
44 # include <winbase.h>
45 #endif
46 
47 #if OS_MAC
48 # include <extras.h>
49 # include <path2fss.h>
50 # include <TextUtils.h>
51 # include <FinderRegistry.h>
52 # include <Folders.h>
53 # include <Timer.h>
54 # include <OSUtils.h>
55 #endif
56 
57 /*
58 ** The DJGPP compiler environment looks mostly like Unix, but it
59 ** lacks the fcntl() system call.  So redefine fcntl() to be something
60 ** that always succeeds.  This means that locking does not occur under
61 ** DJGPP.  But its DOS - what did you expect?
62 */
63 #ifdef __DJGPP__
64 # define fcntl(A,B,C) 0
65 #endif
66 
67 /*
68 ** Macros used to determine whether or not to use threads.  The
69 ** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
70 ** Posix threads and SQLITE_W32_THREADS is defined if we are
71 ** synchronizing using Win32 threads.
72 */
73 #if OS_UNIX && defined(THREADSAFE) && THREADSAFE
74 # include <pthread.h>
75 # define SQLITE_UNIX_THREADS 1
76 #endif
77 #if OS_WIN && defined(THREADSAFE) && THREADSAFE
78 # define SQLITE_W32_THREADS 1
79 #endif
80 #if OS_MAC && defined(THREADSAFE) && THREADSAFE
81 # include <Multiprocessing.h>
82 # define SQLITE_MACOS_MULTITASKING 1
83 #endif
84 
85 /*
86 ** Macros for performance tracing.  Normally turned off
87 */
88 #if 0
89 static int last_page = 0;
90 __inline__ unsigned long long int hwtime(void){
91   unsigned long long int x;
92   __asm__("rdtsc\n\t"
93           "mov %%edx, %%ecx\n\t"
94           :"=A" (x));
95   return x;
96 }
97 static unsigned long long int g_start;
98 static unsigned int elapse;
99 #define TIMER_START       g_start=hwtime()
100 #define TIMER_END         elapse=hwtime()-g_start
101 #define SEEK(X)           last_page=(X)
102 #define TRACE1(X)         fprintf(stderr,X)
103 #define TRACE2(X,Y)       fprintf(stderr,X,Y)
104 #define TRACE3(X,Y,Z)     fprintf(stderr,X,Y,Z)
105 #define TRACE4(X,Y,Z,A)   fprintf(stderr,X,Y,Z,A)
106 #define TRACE5(X,Y,Z,A,B) fprintf(stderr,X,Y,Z,A,B)
107 #else
108 #define TIMER_START
109 #define TIMER_END
110 #define SEEK(X)
111 #define TRACE1(X)
112 #define TRACE2(X,Y)
113 #define TRACE3(X,Y,Z)
114 #define TRACE4(X,Y,Z,A)
115 #define TRACE5(X,Y,Z,A,B)
116 #endif
117 
118 
119 #if OS_UNIX
120 /*
121 ** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
122 ** section 6.5.2.2 lines 483 through 490 specify that when a process
123 ** sets or clears a lock, that operation overrides any prior locks set
124 ** by the same process.  It does not explicitly say so, but this implies
125 ** that it overrides locks set by the same process using a different
126 ** file descriptor.  Consider this test case:
127 **
128 **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
129 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
130 **
131 ** Suppose ./file1 and ./file2 are really the same file (because
132 ** one is a hard or symbolic link to the other) then if you set
133 ** an exclusive lock on fd1, then try to get an exclusive lock
134 ** on fd2, it works.  I would have expected the second lock to
135 ** fail since there was already a lock on the file due to fd1.
136 ** But not so.  Since both locks came from the same process, the
137 ** second overrides the first, even though they were on different
138 ** file descriptors opened on different file names.
139 **
140 ** Bummer.  If you ask me, this is broken.  Badly broken.  It means
141 ** that we cannot use POSIX locks to synchronize file access among
142 ** competing threads of the same process.  POSIX locks will work fine
143 ** to synchronize access for threads in separate processes, but not
144 ** threads within the same process.
145 **
146 ** To work around the problem, SQLite has to manage file locks internally
147 ** on its own.  Whenever a new database is opened, we have to find the
148 ** specific inode of the database file (the inode is determined by the
149 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
150 ** and check for locks already existing on that inode.  When locks are
151 ** created or removed, we have to look at our own internal record of the
152 ** locks to see if another thread has previously set a lock on that same
153 ** inode.
154 **
155 ** The OsFile structure for POSIX is no longer just an integer file
156 ** descriptor.  It is now a structure that holds the integer file
157 ** descriptor and a pointer to a structure that describes the internal
158 ** locks on the corresponding inode.  There is one locking structure
159 ** per inode, so if the same inode is opened twice, both OsFile structures
160 ** point to the same locking structure.  The locking structure keeps
161 ** a reference count (so we will know when to delete it) and a "cnt"
162 ** field that tells us its internal lock status.  cnt==0 means the
163 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
164 ** cnt>0 means there are cnt shared locks on the file.
165 **
166 ** Any attempt to lock or unlock a file first checks the locking
167 ** structure.  The fcntl() system call is only invoked to set a
168 ** POSIX lock if the internal lock structure transitions between
169 ** a locked and an unlocked state.
170 **
171 ** 2004-Jan-11:
172 ** More recent discoveries about POSIX advisory locks.  (The more
173 ** I discover, the more I realize the a POSIX advisory locks are
174 ** an abomination.)
175 **
176 ** If you close a file descriptor that points to a file that has locks,
177 ** all locks on that file that are owned by the current process are
178 ** released.  To work around this problem, each OsFile structure contains
179 ** a pointer to an openCnt structure.  There is one openCnt structure
180 ** per open inode, which means that multiple OsFiles can point to a single
181 ** openCnt.  When an attempt is made to close an OsFile, if there are
182 ** other OsFiles open on the same inode that are holding locks, the call
183 ** to close() the file descriptor is deferred until all of the locks clear.
184 ** The openCnt structure keeps a list of file descriptors that need to
185 ** be closed and that list is walked (and cleared) when the last lock
186 ** clears.
187 **
188 ** First, under Linux threads, because each thread has a separate
189 ** process ID, lock operations in one thread do not override locks
190 ** to the same file in other threads.  Linux threads behave like
191 ** separate processes in this respect.  But, if you close a file
192 ** descriptor in linux threads, all locks are cleared, even locks
193 ** on other threads and even though the other threads have different
194 ** process IDs.  Linux threads is inconsistent in this respect.
195 ** (I'm beginning to think that linux threads is an abomination too.)
196 ** The consequence of this all is that the hash table for the lockInfo
197 ** structure has to include the process id as part of its key because
198 ** locks in different threads are treated as distinct.  But the
199 ** openCnt structure should not include the process id in its
200 ** key because close() clears lock on all threads, not just the current
201 ** thread.  Were it not for this goofiness in linux threads, we could
202 ** combine the lockInfo and openCnt structures into a single structure.
203 */
204 
205 /*
206 ** An instance of the following structure serves as the key used
207 ** to locate a particular lockInfo structure given its inode.  Note
208 ** that we have to include the process ID as part of the key.  On some
209 ** threading implementations (ex: linux), each thread has a separate
210 ** process ID.
211 */
212 struct lockKey {
213   dev_t dev;   /* Device number */
214   ino_t ino;   /* Inode number */
215   pid_t pid;   /* Process ID */
216 };
217 
218 /*
219 ** An instance of the following structure is allocated for each open
220 ** inode on each thread with a different process ID.  (Threads have
221 ** different process IDs on linux, but not on most other unixes.)
222 **
223 ** A single inode can have multiple file descriptors, so each OsFile
224 ** structure contains a pointer to an instance of this object and this
225 ** object keeps a count of the number of OsFiles pointing to it.
226 */
227 struct lockInfo {
228   struct lockKey key;  /* The lookup key */
229   int cnt;             /* 0: unlocked.  -1: write lock.  1...: read lock. */
230   int nRef;            /* Number of pointers to this structure */
231 };
232 
233 /*
234 ** An instance of the following structure serves as the key used
235 ** to locate a particular openCnt structure given its inode.  This
236 ** is the same as the lockKey except that the process ID is omitted.
237 */
238 struct openKey {
239   dev_t dev;   /* Device number */
240   ino_t ino;   /* Inode number */
241 };
242 
243 /*
244 ** An instance of the following structure is allocated for each open
245 ** inode.  This structure keeps track of the number of locks on that
246 ** inode.  If a close is attempted against an inode that is holding
247 ** locks, the close is deferred until all locks clear by adding the
248 ** file descriptor to be closed to the pending list.
249 */
250 struct openCnt {
251   struct openKey key;   /* The lookup key */
252   int nRef;             /* Number of pointers to this structure */
253   int nLock;            /* Number of outstanding locks */
254   int nPending;         /* Number of pending close() operations */
255   int *aPending;        /* Malloced space holding fd's awaiting a close() */
256 };
257 
258 /*
259 ** These hash table maps inodes and process IDs into lockInfo and openCnt
260 ** structures.  Access to these hash tables must be protected by a mutex.
261 */
262 static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
263 static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
264 
265 /*
266 ** Release a lockInfo structure previously allocated by findLockInfo().
267 */
releaseLockInfo(struct lockInfo * pLock)268 static void releaseLockInfo(struct lockInfo *pLock){
269   pLock->nRef--;
270   if( pLock->nRef==0 ){
271     sqliteHashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
272     sqliteFree(pLock);
273   }
274 }
275 
276 /*
277 ** Release a openCnt structure previously allocated by findLockInfo().
278 */
releaseOpenCnt(struct openCnt * pOpen)279 static void releaseOpenCnt(struct openCnt *pOpen){
280   pOpen->nRef--;
281   if( pOpen->nRef==0 ){
282     sqliteHashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
283     sqliteFree(pOpen->aPending);
284     sqliteFree(pOpen);
285   }
286 }
287 
288 /*
289 ** Given a file descriptor, locate lockInfo and openCnt structures that
290 ** describes that file descriptor.  Create a new ones if necessary.  The
291 ** return values might be unset if an error occurs.
292 **
293 ** Return the number of errors.
294 */
findLockInfo(int fd,struct lockInfo ** ppLock,struct openCnt ** ppOpen)295 int findLockInfo(
296   int fd,                      /* The file descriptor used in the key */
297   struct lockInfo **ppLock,    /* Return the lockInfo structure here */
298   struct openCnt **ppOpen   /* Return the openCnt structure here */
299 ){
300   int rc;
301   struct lockKey key1;
302   struct openKey key2;
303   struct stat statbuf;
304   struct lockInfo *pLock;
305   struct openCnt *pOpen;
306   rc = fstat(fd, &statbuf);
307   if( rc!=0 ) return 1;
308   memset(&key1, 0, sizeof(key1));
309   key1.dev = statbuf.st_dev;
310   key1.ino = statbuf.st_ino;
311   key1.pid = getpid();
312   memset(&key2, 0, sizeof(key2));
313   key2.dev = statbuf.st_dev;
314   key2.ino = statbuf.st_ino;
315   pLock = (struct lockInfo*)sqliteHashFind(&lockHash, &key1, sizeof(key1));
316   if( pLock==0 ){
317     struct lockInfo *pOld;
318     pLock = sqliteMallocRaw( sizeof(*pLock) );
319     if( pLock==0 ) return 1;
320     pLock->key = key1;
321     pLock->nRef = 1;
322     pLock->cnt = 0;
323     pOld = sqliteHashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
324     if( pOld!=0 ){
325       assert( pOld==pLock );
326       sqliteFree(pLock);
327       return 1;
328     }
329   }else{
330     pLock->nRef++;
331   }
332   *ppLock = pLock;
333   pOpen = (struct openCnt*)sqliteHashFind(&openHash, &key2, sizeof(key2));
334   if( pOpen==0 ){
335     struct openCnt *pOld;
336     pOpen = sqliteMallocRaw( sizeof(*pOpen) );
337     if( pOpen==0 ){
338       releaseLockInfo(pLock);
339       return 1;
340     }
341     pOpen->key = key2;
342     pOpen->nRef = 1;
343     pOpen->nLock = 0;
344     pOpen->nPending = 0;
345     pOpen->aPending = 0;
346     pOld = sqliteHashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
347     if( pOld!=0 ){
348       assert( pOld==pOpen );
349       sqliteFree(pOpen);
350       releaseLockInfo(pLock);
351       return 1;
352     }
353   }else{
354     pOpen->nRef++;
355   }
356   *ppOpen = pOpen;
357   return 0;
358 }
359 
360 #endif  /** POSIX advisory lock work-around **/
361 
362 /*
363 ** If we compile with the SQLITE_TEST macro set, then the following block
364 ** of code will give us the ability to simulate a disk I/O error.  This
365 ** is used for testing the I/O recovery logic.
366 */
367 #ifdef SQLITE_TEST
368 int sqlite_io_error_pending = 0;
369 #define SimulateIOError(A)  \
370    if( sqlite_io_error_pending ) \
371      if( sqlite_io_error_pending-- == 1 ){ local_ioerr(); return A; }
local_ioerr()372 static void local_ioerr(){
373   sqlite_io_error_pending = 0;  /* Really just a place to set a breakpoint */
374 }
375 #else
376 #define SimulateIOError(A)
377 #endif
378 
379 /*
380 ** When testing, keep a count of the number of open files.
381 */
382 #ifdef SQLITE_TEST
383 int sqlite_open_file_count = 0;
384 #define OpenCounter(X)  sqlite_open_file_count+=(X)
385 #else
386 #define OpenCounter(X)
387 #endif
388 
389 
390 /*
391 ** Delete the named file
392 */
sqliteOsDelete(const char * zFilename)393 int sqliteOsDelete(const char *zFilename){
394 #if OS_UNIX
395   unlink(zFilename);
396 #endif
397 #if OS_WIN
398   DeleteFile(zFilename);
399 #endif
400 #if OS_MAC
401   unlink(zFilename);
402 #endif
403   return SQLITE_OK;
404 }
405 
406 /*
407 ** Return TRUE if the named file exists.
408 */
sqliteOsFileExists(const char * zFilename)409 int sqliteOsFileExists(const char *zFilename){
410 #if OS_UNIX
411   return access(zFilename, 0)==0;
412 #endif
413 #if OS_WIN
414   return GetFileAttributes(zFilename) != 0xffffffff;
415 #endif
416 #if OS_MAC
417   return access(zFilename, 0)==0;
418 #endif
419 }
420 
421 
422 #if 0 /* NOT USED */
423 /*
424 ** Change the name of an existing file.
425 */
426 int sqliteOsFileRename(const char *zOldName, const char *zNewName){
427 #if OS_UNIX
428   if( link(zOldName, zNewName) ){
429     return SQLITE_ERROR;
430   }
431   unlink(zOldName);
432   return SQLITE_OK;
433 #endif
434 #if OS_WIN
435   if( !MoveFile(zOldName, zNewName) ){
436     return SQLITE_ERROR;
437   }
438   return SQLITE_OK;
439 #endif
440 #if OS_MAC
441   /**** FIX ME ***/
442   return SQLITE_ERROR;
443 #endif
444 }
445 #endif /* NOT USED */
446 
447 /*
448 ** Attempt to open a file for both reading and writing.  If that
449 ** fails, try opening it read-only.  If the file does not exist,
450 ** try to create it.
451 **
452 ** On success, a handle for the open file is written to *id
453 ** and *pReadonly is set to 0 if the file was opened for reading and
454 ** writing or 1 if the file was opened read-only.  The function returns
455 ** SQLITE_OK.
456 **
457 ** On failure, the function returns SQLITE_CANTOPEN and leaves
458 ** *id and *pReadonly unchanged.
459 */
sqliteOsOpenReadWrite(const char * zFilename,OsFile * id,int * pReadonly)460 int sqliteOsOpenReadWrite(
461   const char *zFilename,
462   OsFile *id,
463   int *pReadonly
464 ){
465 #if OS_UNIX
466   int rc;
467   id->dirfd = -1;
468   id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
469   if( id->fd<0 ){
470 #ifdef EISDIR
471     if( errno==EISDIR ){
472       return SQLITE_CANTOPEN;
473     }
474 #endif
475     id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
476     if( id->fd<0 ){
477       return SQLITE_CANTOPEN;
478     }
479     *pReadonly = 1;
480   }else{
481     *pReadonly = 0;
482   }
483   sqliteOsEnterMutex();
484   rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
485   sqliteOsLeaveMutex();
486   if( rc ){
487     close(id->fd);
488     return SQLITE_NOMEM;
489   }
490   id->locked = 0;
491   TRACE3("OPEN    %-3d %s\n", id->fd, zFilename);
492   OpenCounter(+1);
493   return SQLITE_OK;
494 #endif
495 #if OS_WIN
496   HANDLE h = CreateFile(zFilename,
497      GENERIC_READ | GENERIC_WRITE,
498      FILE_SHARE_READ | FILE_SHARE_WRITE,
499      NULL,
500      OPEN_ALWAYS,
501      FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
502      NULL
503   );
504   if( h==INVALID_HANDLE_VALUE ){
505     h = CreateFile(zFilename,
506        GENERIC_READ,
507        FILE_SHARE_READ,
508        NULL,
509        OPEN_ALWAYS,
510        FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
511        NULL
512     );
513     if( h==INVALID_HANDLE_VALUE ){
514       return SQLITE_CANTOPEN;
515     }
516     *pReadonly = 1;
517   }else{
518     *pReadonly = 0;
519   }
520   id->h = h;
521   id->locked = 0;
522   OpenCounter(+1);
523   return SQLITE_OK;
524 #endif
525 #if OS_MAC
526   FSSpec fsSpec;
527 # ifdef _LARGE_FILE
528   HFSUniStr255 dfName;
529   FSRef fsRef;
530   if( __path2fss(zFilename, &fsSpec) != noErr ){
531     if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
532       return SQLITE_CANTOPEN;
533   }
534   if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
535     return SQLITE_CANTOPEN;
536   FSGetDataForkName(&dfName);
537   if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
538                  fsRdWrShPerm, &(id->refNum)) != noErr ){
539     if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
540                    fsRdWrPerm, &(id->refNum)) != noErr ){
541       if (FSOpenFork(&fsRef, dfName.length, dfName.unicode,
542                    fsRdPerm, &(id->refNum)) != noErr )
543         return SQLITE_CANTOPEN;
544       else
545         *pReadonly = 1;
546     } else
547       *pReadonly = 0;
548   } else
549     *pReadonly = 0;
550 # else
551   __path2fss(zFilename, &fsSpec);
552   if( !sqliteOsFileExists(zFilename) ){
553     if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
554       return SQLITE_CANTOPEN;
555   }
556   if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){
557     if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){
558       if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
559         return SQLITE_CANTOPEN;
560       else
561         *pReadonly = 1;
562     } else
563       *pReadonly = 0;
564   } else
565     *pReadonly = 0;
566 # endif
567   if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
568     id->refNumRF = -1;
569   }
570   id->locked = 0;
571   id->delOnClose = 0;
572   OpenCounter(+1);
573   return SQLITE_OK;
574 #endif
575 }
576 
577 
578 /*
579 ** Attempt to open a new file for exclusive access by this process.
580 ** The file will be opened for both reading and writing.  To avoid
581 ** a potential security problem, we do not allow the file to have
582 ** previously existed.  Nor do we allow the file to be a symbolic
583 ** link.
584 **
585 ** If delFlag is true, then make arrangements to automatically delete
586 ** the file when it is closed.
587 **
588 ** On success, write the file handle into *id and return SQLITE_OK.
589 **
590 ** On failure, return SQLITE_CANTOPEN.
591 */
sqliteOsOpenExclusive(const char * zFilename,OsFile * id,int delFlag)592 int sqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
593 #if OS_UNIX
594   int rc;
595   if( access(zFilename, 0)==0 ){
596     return SQLITE_CANTOPEN;
597   }
598   id->dirfd = -1;
599   id->fd = open(zFilename,
600                 O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
601   if( id->fd<0 ){
602     return SQLITE_CANTOPEN;
603   }
604   sqliteOsEnterMutex();
605   rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
606   sqliteOsLeaveMutex();
607   if( rc ){
608     close(id->fd);
609     unlink(zFilename);
610     return SQLITE_NOMEM;
611   }
612   id->locked = 0;
613   if( delFlag ){
614     unlink(zFilename);
615   }
616   TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
617   OpenCounter(+1);
618   return SQLITE_OK;
619 #endif
620 #if OS_WIN
621   HANDLE h;
622   int fileflags;
623   if( delFlag ){
624     fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS
625                      | FILE_FLAG_DELETE_ON_CLOSE;
626   }else{
627     fileflags = FILE_FLAG_RANDOM_ACCESS;
628   }
629   h = CreateFile(zFilename,
630      GENERIC_READ | GENERIC_WRITE,
631      0,
632      NULL,
633      CREATE_ALWAYS,
634      fileflags,
635      NULL
636   );
637   if( h==INVALID_HANDLE_VALUE ){
638     return SQLITE_CANTOPEN;
639   }
640   id->h = h;
641   id->locked = 0;
642   OpenCounter(+1);
643   return SQLITE_OK;
644 #endif
645 #if OS_MAC
646   FSSpec fsSpec;
647 # ifdef _LARGE_FILE
648   HFSUniStr255 dfName;
649   FSRef fsRef;
650   __path2fss(zFilename, &fsSpec);
651   if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
652     return SQLITE_CANTOPEN;
653   if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
654     return SQLITE_CANTOPEN;
655   FSGetDataForkName(&dfName);
656   if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
657                  fsRdWrPerm, &(id->refNum)) != noErr )
658     return SQLITE_CANTOPEN;
659 # else
660   __path2fss(zFilename, &fsSpec);
661   if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
662     return SQLITE_CANTOPEN;
663   if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr )
664     return SQLITE_CANTOPEN;
665 # endif
666   id->refNumRF = -1;
667   id->locked = 0;
668   id->delOnClose = delFlag;
669   if (delFlag)
670     id->pathToDel = sqliteOsFullPathname(zFilename);
671   OpenCounter(+1);
672   return SQLITE_OK;
673 #endif
674 }
675 
676 /*
677 ** Attempt to open a new file for read-only access.
678 **
679 ** On success, write the file handle into *id and return SQLITE_OK.
680 **
681 ** On failure, return SQLITE_CANTOPEN.
682 */
sqliteOsOpenReadOnly(const char * zFilename,OsFile * id)683 int sqliteOsOpenReadOnly(const char *zFilename, OsFile *id){
684 #if OS_UNIX
685   int rc;
686   id->dirfd = -1;
687   id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
688   if( id->fd<0 ){
689     return SQLITE_CANTOPEN;
690   }
691   sqliteOsEnterMutex();
692   rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
693   sqliteOsLeaveMutex();
694   if( rc ){
695     close(id->fd);
696     return SQLITE_NOMEM;
697   }
698   id->locked = 0;
699   TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
700   OpenCounter(+1);
701   return SQLITE_OK;
702 #endif
703 #if OS_WIN
704   HANDLE h = CreateFile(zFilename,
705      GENERIC_READ,
706      0,
707      NULL,
708      OPEN_EXISTING,
709      FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
710      NULL
711   );
712   if( h==INVALID_HANDLE_VALUE ){
713     return SQLITE_CANTOPEN;
714   }
715   id->h = h;
716   id->locked = 0;
717   OpenCounter(+1);
718   return SQLITE_OK;
719 #endif
720 #if OS_MAC
721   FSSpec fsSpec;
722 # ifdef _LARGE_FILE
723   HFSUniStr255 dfName;
724   FSRef fsRef;
725   if( __path2fss(zFilename, &fsSpec) != noErr )
726     return SQLITE_CANTOPEN;
727   if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
728     return SQLITE_CANTOPEN;
729   FSGetDataForkName(&dfName);
730   if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
731                  fsRdPerm, &(id->refNum)) != noErr )
732     return SQLITE_CANTOPEN;
733 # else
734   __path2fss(zFilename, &fsSpec);
735   if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
736     return SQLITE_CANTOPEN;
737 # endif
738   if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
739     id->refNumRF = -1;
740   }
741   id->locked = 0;
742   id->delOnClose = 0;
743   OpenCounter(+1);
744   return SQLITE_OK;
745 #endif
746 }
747 
748 /*
749 ** Attempt to open a file descriptor for the directory that contains a
750 ** file.  This file descriptor can be used to fsync() the directory
751 ** in order to make sure the creation of a new file is actually written
752 ** to disk.
753 **
754 ** This routine is only meaningful for Unix.  It is a no-op under
755 ** windows since windows does not support hard links.
756 **
757 ** On success, a handle for a previously open file is at *id is
758 ** updated with the new directory file descriptor and SQLITE_OK is
759 ** returned.
760 **
761 ** On failure, the function returns SQLITE_CANTOPEN and leaves
762 ** *id unchanged.
763 */
sqliteOsOpenDirectory(const char * zDirname,OsFile * id)764 int sqliteOsOpenDirectory(
765   const char *zDirname,
766   OsFile *id
767 ){
768 #if OS_UNIX
769   if( id->fd<0 ){
770     /* Do not open the directory if the corresponding file is not already
771     ** open. */
772     return SQLITE_CANTOPEN;
773   }
774   assert( id->dirfd<0 );
775   id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
776   if( id->dirfd<0 ){
777     return SQLITE_CANTOPEN;
778   }
779   TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
780 #endif
781   return SQLITE_OK;
782 }
783 
784 /*
785 ** If the following global variable points to a string which is the
786 ** name of a directory, then that directory will be used to store
787 ** temporary files.
788 */
789 const char *sqlite_temp_directory = 0;
790 
791 /*
792 ** Create a temporary file name in zBuf.  zBuf must be big enough to
793 ** hold at least SQLITE_TEMPNAME_SIZE characters.
794 */
sqliteOsTempFileName(char * zBuf)795 int sqliteOsTempFileName(char *zBuf){
796 #if OS_UNIX
797   static const char *azDirs[] = {
798      0,
799      "/var/tmp",
800      "/usr/tmp",
801      "/tmp",
802      ".",
803   };
804   static unsigned char zChars[] =
805     "abcdefghijklmnopqrstuvwxyz"
806     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
807     "0123456789";
808   int i, j;
809   struct stat buf;
810   const char *zDir = ".";
811   azDirs[0] = sqlite_temp_directory;
812   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
813     if( azDirs[i]==0 ) continue;
814     if( stat(azDirs[i], &buf) ) continue;
815     if( !S_ISDIR(buf.st_mode) ) continue;
816     if( access(azDirs[i], 07) ) continue;
817     zDir = azDirs[i];
818     break;
819   }
820   do{
821     sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
822     j = strlen(zBuf);
823     sqliteRandomness(15, &zBuf[j]);
824     for(i=0; i<15; i++, j++){
825       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
826     }
827     zBuf[j] = 0;
828   }while( access(zBuf,0)==0 );
829 #endif
830 #if OS_WIN
831   static char zChars[] =
832     "abcdefghijklmnopqrstuvwxyz"
833     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
834     "0123456789";
835   int i, j;
836   const char *zDir;
837   char zTempPath[SQLITE_TEMPNAME_SIZE];
838   if( sqlite_temp_directory==0 ){
839     GetTempPath(SQLITE_TEMPNAME_SIZE-30, zTempPath);
840     for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
841     zTempPath[i] = 0;
842     zDir = zTempPath;
843   }else{
844     zDir = sqlite_temp_directory;
845   }
846   for(;;){
847     sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zDir);
848     j = strlen(zBuf);
849     sqliteRandomness(15, &zBuf[j]);
850     for(i=0; i<15; i++, j++){
851       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
852     }
853     zBuf[j] = 0;
854     if( !sqliteOsFileExists(zBuf) ) break;
855   }
856 #endif
857 #if OS_MAC
858   static char zChars[] =
859     "abcdefghijklmnopqrstuvwxyz"
860     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
861     "0123456789";
862   int i, j;
863   char *zDir;
864   char zTempPath[SQLITE_TEMPNAME_SIZE];
865   char zdirName[32];
866   CInfoPBRec infoRec;
867   Str31 dirName;
868   memset(&infoRec, 0, sizeof(infoRec));
869   memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE);
870   if( sqlite_temp_directory!=0 ){
871     zDir = sqlite_temp_directory;
872   }else if( FindFolder(kOnSystemDisk, kTemporaryFolderType,  kCreateFolder,
873        &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){
874     infoRec.dirInfo.ioNamePtr = dirName;
875     do{
876       infoRec.dirInfo.ioFDirIndex = -1;
877       infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID;
878       if( PBGetCatInfoSync(&infoRec) == noErr ){
879         CopyPascalStringToC(dirName, zdirName);
880         i = strlen(zdirName);
881         memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath));
882         strcpy(zTempPath, zdirName);
883         zTempPath[i] = ':';
884       }else{
885         *zTempPath = 0;
886         break;
887       }
888     } while( infoRec.dirInfo.ioDrDirID != fsRtDirID );
889     zDir = zTempPath;
890   }
891   if( zDir[0]==0 ){
892     getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24);
893     zDir = zTempPath;
894   }
895   for(;;){
896     sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zDir);
897     j = strlen(zBuf);
898     sqliteRandomness(15, &zBuf[j]);
899     for(i=0; i<15; i++, j++){
900       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
901     }
902     zBuf[j] = 0;
903     if( !sqliteOsFileExists(zBuf) ) break;
904   }
905 #endif
906   return SQLITE_OK;
907 }
908 
909 /*
910 ** Close a file.
911 */
sqliteOsClose(OsFile * id)912 int sqliteOsClose(OsFile *id){
913 #if OS_UNIX
914   sqliteOsUnlock(id);
915   if( id->dirfd>=0 ) close(id->dirfd);
916   id->dirfd = -1;
917   sqliteOsEnterMutex();
918   if( id->pOpen->nLock ){
919     /* If there are outstanding locks, do not actually close the file just
920     ** yet because that would clear those locks.  Instead, add the file
921     ** descriptor to pOpen->aPending.  It will be automatically closed when
922     ** the last lock is cleared.
923     */
924     int *aNew;
925     struct openCnt *pOpen = id->pOpen;
926     pOpen->nPending++;
927     aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
928     if( aNew==0 ){
929       /* If a malloc fails, just leak the file descriptor */
930     }else{
931       pOpen->aPending = aNew;
932       pOpen->aPending[pOpen->nPending-1] = id->fd;
933     }
934   }else{
935     /* There are no outstanding locks so we can close the file immediately */
936     close(id->fd);
937   }
938   releaseLockInfo(id->pLock);
939   releaseOpenCnt(id->pOpen);
940   sqliteOsLeaveMutex();
941   TRACE2("CLOSE   %-3d\n", id->fd);
942   OpenCounter(-1);
943   return SQLITE_OK;
944 #endif
945 #if OS_WIN
946   CloseHandle(id->h);
947   OpenCounter(-1);
948   return SQLITE_OK;
949 #endif
950 #if OS_MAC
951   if( id->refNumRF!=-1 )
952     FSClose(id->refNumRF);
953 # ifdef _LARGE_FILE
954   FSCloseFork(id->refNum);
955 # else
956   FSClose(id->refNum);
957 # endif
958   if( id->delOnClose ){
959     unlink(id->pathToDel);
960     sqliteFree(id->pathToDel);
961   }
962   OpenCounter(-1);
963   return SQLITE_OK;
964 #endif
965 }
966 
967 /*
968 ** Read data from a file into a buffer.  Return SQLITE_OK if all
969 ** bytes were read successfully and SQLITE_IOERR if anything goes
970 ** wrong.
971 */
sqliteOsRead(OsFile * id,void * pBuf,int amt)972 int sqliteOsRead(OsFile *id, void *pBuf, int amt){
973 #if OS_UNIX
974   int got;
975   SimulateIOError(SQLITE_IOERR);
976   TIMER_START;
977   got = read(id->fd, pBuf, amt);
978   TIMER_END;
979   TRACE4("READ    %-3d %7d %d\n", id->fd, last_page, elapse);
980   SEEK(0);
981   /* if( got<0 ) got = 0; */
982   if( got==amt ){
983     return SQLITE_OK;
984   }else{
985     return SQLITE_IOERR;
986   }
987 #endif
988 #if OS_WIN
989   DWORD got;
990   SimulateIOError(SQLITE_IOERR);
991   TRACE2("READ %d\n", last_page);
992   if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
993     got = 0;
994   }
995   if( got==(DWORD)amt ){
996     return SQLITE_OK;
997   }else{
998     return SQLITE_IOERR;
999   }
1000 #endif
1001 #if OS_MAC
1002   int got;
1003   SimulateIOError(SQLITE_IOERR);
1004   TRACE2("READ %d\n", last_page);
1005 # ifdef _LARGE_FILE
1006   FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got);
1007 # else
1008   got = amt;
1009   FSRead(id->refNum, &got, pBuf);
1010 # endif
1011   if( got==amt ){
1012     return SQLITE_OK;
1013   }else{
1014     return SQLITE_IOERR;
1015   }
1016 #endif
1017 }
1018 
1019 /*
1020 ** Write data from a buffer into a file.  Return SQLITE_OK on success
1021 ** or some other error code on failure.
1022 */
sqliteOsWrite(OsFile * id,const void * pBuf,int amt)1023 int sqliteOsWrite(OsFile *id, const void *pBuf, int amt){
1024 #if OS_UNIX
1025   int wrote = 0;
1026   SimulateIOError(SQLITE_IOERR);
1027   TIMER_START;
1028   while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
1029     amt -= wrote;
1030     pBuf = &((char*)pBuf)[wrote];
1031   }
1032   TIMER_END;
1033   TRACE4("WRITE   %-3d %7d %d\n", id->fd, last_page, elapse);
1034   SEEK(0);
1035   if( amt>0 ){
1036     return SQLITE_FULL;
1037   }
1038   return SQLITE_OK;
1039 #endif
1040 #if OS_WIN
1041   int rc;
1042   DWORD wrote;
1043   SimulateIOError(SQLITE_IOERR);
1044   TRACE2("WRITE %d\n", last_page);
1045   while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
1046     amt -= wrote;
1047     pBuf = &((char*)pBuf)[wrote];
1048   }
1049   if( !rc || amt>(int)wrote ){
1050     return SQLITE_FULL;
1051   }
1052   return SQLITE_OK;
1053 #endif
1054 #if OS_MAC
1055   OSErr oserr;
1056   int wrote = 0;
1057   SimulateIOError(SQLITE_IOERR);
1058   TRACE2("WRITE %d\n", last_page);
1059   while( amt>0 ){
1060 # ifdef _LARGE_FILE
1061     oserr = FSWriteFork(id->refNum, fsAtMark, 0,
1062                         (ByteCount)amt, pBuf, (ByteCount*)&wrote);
1063 # else
1064     wrote = amt;
1065     oserr = FSWrite(id->refNum, &wrote, pBuf);
1066 # endif
1067     if( wrote == 0 || oserr != noErr)
1068       break;
1069     amt -= wrote;
1070     pBuf = &((char*)pBuf)[wrote];
1071   }
1072   if( oserr != noErr || amt>wrote ){
1073     return SQLITE_FULL;
1074   }
1075   return SQLITE_OK;
1076 #endif
1077 }
1078 
1079 /*
1080 ** Move the read/write pointer in a file.
1081 */
sqliteOsSeek(OsFile * id,off_t offset)1082 int sqliteOsSeek(OsFile *id, off_t offset){
1083   SEEK(offset/1024 + 1);
1084 #if OS_UNIX
1085   lseek(id->fd, offset, SEEK_SET);
1086   return SQLITE_OK;
1087 #endif
1088 #if OS_WIN
1089   {
1090     LONG upperBits = offset>>32;
1091     LONG lowerBits = offset & 0xffffffff;
1092     DWORD rc;
1093     rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
1094     /* TRACE3("SEEK rc=0x%x upper=0x%x\n", rc, upperBits); */
1095   }
1096   return SQLITE_OK;
1097 #endif
1098 #if OS_MAC
1099   {
1100     off_t curSize;
1101     if( sqliteOsFileSize(id, &curSize) != SQLITE_OK ){
1102       return SQLITE_IOERR;
1103     }
1104     if( offset >= curSize ){
1105       if( sqliteOsTruncate(id, offset+1) != SQLITE_OK ){
1106         return SQLITE_IOERR;
1107       }
1108     }
1109 # ifdef _LARGE_FILE
1110     if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){
1111 # else
1112     if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){
1113 # endif
1114       return SQLITE_IOERR;
1115     }else{
1116       return SQLITE_OK;
1117     }
1118   }
1119 #endif
1120 }
1121 
1122 /*
1123 ** Make sure all writes to a particular file are committed to disk.
1124 **
1125 ** Under Unix, also make sure that the directory entry for the file
1126 ** has been created by fsync-ing the directory that contains the file.
1127 ** If we do not do this and we encounter a power failure, the directory
1128 ** entry for the journal might not exist after we reboot.  The next
1129 ** SQLite to access the file will not know that the journal exists (because
1130 ** the directory entry for the journal was never created) and the transaction
1131 ** will not roll back - possibly leading to database corruption.
1132 */
1133 int sqliteOsSync(OsFile *id){
1134 #if OS_UNIX
1135   SimulateIOError(SQLITE_IOERR);
1136   TRACE2("SYNC    %-3d\n", id->fd);
1137   if( fsync(id->fd) ){
1138     return SQLITE_IOERR;
1139   }else{
1140     if( id->dirfd>=0 ){
1141       TRACE2("DIRSYNC %-3d\n", id->dirfd);
1142       fsync(id->dirfd);
1143       close(id->dirfd);  /* Only need to sync once, so close the directory */
1144       id->dirfd = -1;    /* when we are done. */
1145     }
1146     return SQLITE_OK;
1147   }
1148 #endif
1149 #if OS_WIN
1150   if( FlushFileBuffers(id->h) ){
1151     return SQLITE_OK;
1152   }else{
1153     return SQLITE_IOERR;
1154   }
1155 #endif
1156 #if OS_MAC
1157 # ifdef _LARGE_FILE
1158   if( FSFlushFork(id->refNum) != noErr ){
1159 # else
1160   ParamBlockRec params;
1161   memset(&params, 0, sizeof(ParamBlockRec));
1162   params.ioParam.ioRefNum = id->refNum;
1163   if( PBFlushFileSync(&params) != noErr ){
1164 # endif
1165     return SQLITE_IOERR;
1166   }else{
1167     return SQLITE_OK;
1168   }
1169 #endif
1170 }
1171 
1172 /*
1173 ** Truncate an open file to a specified size
1174 */
1175 int sqliteOsTruncate(OsFile *id, off_t nByte){
1176   SimulateIOError(SQLITE_IOERR);
1177 #if OS_UNIX
1178   return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
1179 #endif
1180 #if OS_WIN
1181   {
1182     LONG upperBits = nByte>>32;
1183     SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
1184     SetEndOfFile(id->h);
1185   }
1186   return SQLITE_OK;
1187 #endif
1188 #if OS_MAC
1189 # ifdef _LARGE_FILE
1190   if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){
1191 # else
1192   if( SetEOF(id->refNum, nByte) != noErr ){
1193 # endif
1194     return SQLITE_IOERR;
1195   }else{
1196     return SQLITE_OK;
1197   }
1198 #endif
1199 }
1200 
1201 /*
1202 ** Determine the current size of a file in bytes
1203 */
1204 int sqliteOsFileSize(OsFile *id, off_t *pSize){
1205 #if OS_UNIX
1206   struct stat buf;
1207   SimulateIOError(SQLITE_IOERR);
1208   if( fstat(id->fd, &buf)!=0 ){
1209     return SQLITE_IOERR;
1210   }
1211   *pSize = buf.st_size;
1212   return SQLITE_OK;
1213 #endif
1214 #if OS_WIN
1215   DWORD upperBits, lowerBits;
1216   SimulateIOError(SQLITE_IOERR);
1217   lowerBits = GetFileSize(id->h, &upperBits);
1218   *pSize = (((off_t)upperBits)<<32) + lowerBits;
1219   return SQLITE_OK;
1220 #endif
1221 #if OS_MAC
1222 # ifdef _LARGE_FILE
1223   if( FSGetForkSize(id->refNum, pSize) != noErr){
1224 # else
1225   if( GetEOF(id->refNum, pSize) != noErr ){
1226 # endif
1227     return SQLITE_IOERR;
1228   }else{
1229     return SQLITE_OK;
1230   }
1231 #endif
1232 }
1233 
1234 #if OS_WIN
1235 /*
1236 ** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
1237 ** Return false (zero) for Win95, Win98, or WinME.
1238 **
1239 ** Here is an interesting observation:  Win95, Win98, and WinME lack
1240 ** the LockFileEx() API.  But we can still statically link against that
1241 ** API as long as we don't call it win running Win95/98/ME.  A call to
1242 ** this routine is used to determine if the host is Win95/98/ME or
1243 ** WinNT/2K/XP so that we will know whether or not we can safely call
1244 ** the LockFileEx() API.
1245 */
1246 int isNT(void){
1247   static int osType = 0;   /* 0=unknown 1=win95 2=winNT */
1248   if( osType==0 ){
1249     OSVERSIONINFO sInfo;
1250     sInfo.dwOSVersionInfoSize = sizeof(sInfo);
1251     GetVersionEx(&sInfo);
1252     osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
1253   }
1254   return osType==2;
1255 }
1256 #endif
1257 
1258 /*
1259 ** Windows file locking notes:  [similar issues apply to MacOS]
1260 **
1261 ** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
1262 ** those functions are not available.  So we use only LockFile() and
1263 ** UnlockFile().
1264 **
1265 ** LockFile() prevents not just writing but also reading by other processes.
1266 ** (This is a design error on the part of Windows, but there is nothing
1267 ** we can do about that.)  So the region used for locking is at the
1268 ** end of the file where it is unlikely to ever interfere with an
1269 ** actual read attempt.
1270 **
1271 ** A database read lock is obtained by locking a single randomly-chosen
1272 ** byte out of a specific range of bytes. The lock byte is obtained at
1273 ** random so two separate readers can probably access the file at the
1274 ** same time, unless they are unlucky and choose the same lock byte.
1275 ** A database write lock is obtained by locking all bytes in the range.
1276 ** There can only be one writer.
1277 **
1278 ** A lock is obtained on the first byte of the lock range before acquiring
1279 ** either a read lock or a write lock.  This prevents two processes from
1280 ** attempting to get a lock at a same time.  The semantics of
1281 ** sqliteOsReadLock() require that if there is already a write lock, that
1282 ** lock is converted into a read lock atomically.  The lock on the first
1283 ** byte allows us to drop the old write lock and get the read lock without
1284 ** another process jumping into the middle and messing us up.  The same
1285 ** argument applies to sqliteOsWriteLock().
1286 **
1287 ** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
1288 ** which means we can use reader/writer locks.  When reader writer locks
1289 ** are used, the lock is placed on the same range of bytes that is used
1290 ** for probabilistic locking in Win95/98/ME.  Hence, the locking scheme
1291 ** will support two or more Win95 readers or two or more WinNT readers.
1292 ** But a single Win95 reader will lock out all WinNT readers and a single
1293 ** WinNT reader will lock out all other Win95 readers.
1294 **
1295 ** Note: On MacOS we use the resource fork for locking.
1296 **
1297 ** The following #defines specify the range of bytes used for locking.
1298 ** N_LOCKBYTE is the number of bytes available for doing the locking.
1299 ** The first byte used to hold the lock while the lock is changing does
1300 ** not count toward this number.  FIRST_LOCKBYTE is the address of
1301 ** the first byte in the range of bytes used for locking.
1302 */
1303 #define N_LOCKBYTE       10239
1304 #if OS_MAC
1305 # define FIRST_LOCKBYTE   (0x000fffff - N_LOCKBYTE)
1306 #else
1307 # define FIRST_LOCKBYTE   (0xffffffff - N_LOCKBYTE)
1308 #endif
1309 
1310 /*
1311 ** Change the status of the lock on the file "id" to be a readlock.
1312 ** If the file was write locked, then this reduces the lock to a read.
1313 ** If the file was read locked, then this acquires a new read lock.
1314 **
1315 ** Return SQLITE_OK on success and SQLITE_BUSY on failure.  If this
1316 ** library was compiled with large file support (LFS) but LFS is not
1317 ** available on the host, then an SQLITE_NOLFS is returned.
1318 */
1319 int sqliteOsReadLock(OsFile *id){
1320 #if OS_UNIX
1321   int rc;
1322   sqliteOsEnterMutex();
1323   if( id->pLock->cnt>0 ){
1324     if( !id->locked ){
1325       id->pLock->cnt++;
1326       id->locked = 1;
1327       id->pOpen->nLock++;
1328     }
1329     rc = SQLITE_OK;
1330   }else if( id->locked || id->pLock->cnt==0 ){
1331     struct flock lock;
1332     int s;
1333     lock.l_type = F_RDLCK;
1334     lock.l_whence = SEEK_SET;
1335     lock.l_start = lock.l_len = 0L;
1336     s = fcntl(id->fd, F_SETLK, &lock);
1337     if( s!=0 ){
1338       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1339     }else{
1340       rc = SQLITE_OK;
1341       if( !id->locked ){
1342         id->pOpen->nLock++;
1343         id->locked = 1;
1344       }
1345       id->pLock->cnt = 1;
1346     }
1347   }else{
1348     rc = SQLITE_BUSY;
1349   }
1350   sqliteOsLeaveMutex();
1351   return rc;
1352 #endif
1353 #if OS_WIN
1354   int rc;
1355   if( id->locked>0 ){
1356     rc = SQLITE_OK;
1357   }else{
1358     int lk;
1359     int res;
1360     int cnt = 100;
1361     sqliteRandomness(sizeof(lk), &lk);
1362     lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
1363     while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
1364       Sleep(1);
1365     }
1366     if( res ){
1367       UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
1368       if( isNT() ){
1369         OVERLAPPED ovlp;
1370         ovlp.Offset = FIRST_LOCKBYTE+1;
1371         ovlp.OffsetHigh = 0;
1372         ovlp.hEvent = 0;
1373         res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY,
1374                           0, N_LOCKBYTE, 0, &ovlp);
1375       }else{
1376         res = LockFile(id->h, FIRST_LOCKBYTE+lk, 0, 1, 0);
1377       }
1378       UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
1379     }
1380     if( res ){
1381       id->locked = lk;
1382       rc = SQLITE_OK;
1383     }else{
1384       rc = SQLITE_BUSY;
1385     }
1386   }
1387   return rc;
1388 #endif
1389 #if OS_MAC
1390   int rc;
1391   if( id->locked>0 || id->refNumRF == -1 ){
1392     rc = SQLITE_OK;
1393   }else{
1394     int lk;
1395     OSErr res;
1396     int cnt = 5;
1397     ParamBlockRec params;
1398     sqliteRandomness(sizeof(lk), &lk);
1399     lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
1400     memset(&params, 0, sizeof(params));
1401     params.ioParam.ioRefNum = id->refNumRF;
1402     params.ioParam.ioPosMode = fsFromStart;
1403     params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
1404     params.ioParam.ioReqCount = 1;
1405     while( cnt-->0 && (res = PBLockRangeSync(&params))!=noErr ){
1406       UInt32 finalTicks;
1407       Delay(1, &finalTicks); /* 1/60 sec */
1408     }
1409     if( res == noErr ){
1410       params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
1411       params.ioParam.ioReqCount = N_LOCKBYTE;
1412       PBUnlockRangeSync(&params);
1413       params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk;
1414       params.ioParam.ioReqCount = 1;
1415       res = PBLockRangeSync(&params);
1416       params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
1417       params.ioParam.ioReqCount = 1;
1418       PBUnlockRangeSync(&params);
1419     }
1420     if( res == noErr ){
1421       id->locked = lk;
1422       rc = SQLITE_OK;
1423     }else{
1424       rc = SQLITE_BUSY;
1425     }
1426   }
1427   return rc;
1428 #endif
1429 }
1430 
1431 /*
1432 ** Change the lock status to be an exclusive or write lock.  Return
1433 ** SQLITE_OK on success and SQLITE_BUSY on a failure.  If this
1434 ** library was compiled with large file support (LFS) but LFS is not
1435 ** available on the host, then an SQLITE_NOLFS is returned.
1436 */
1437 int sqliteOsWriteLock(OsFile *id){
1438 #if OS_UNIX
1439   int rc;
1440   sqliteOsEnterMutex();
1441   if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
1442     struct flock lock;
1443     int s;
1444     lock.l_type = F_WRLCK;
1445     lock.l_whence = SEEK_SET;
1446     lock.l_start = lock.l_len = 0L;
1447     s = fcntl(id->fd, F_SETLK, &lock);
1448     if( s!=0 ){
1449       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1450     }else{
1451       rc = SQLITE_OK;
1452       if( !id->locked ){
1453         id->pOpen->nLock++;
1454         id->locked = 1;
1455       }
1456       id->pLock->cnt = -1;
1457     }
1458   }else{
1459     rc = SQLITE_BUSY;
1460   }
1461   sqliteOsLeaveMutex();
1462   return rc;
1463 #endif
1464 #if OS_WIN
1465   int rc;
1466   if( id->locked<0 ){
1467     rc = SQLITE_OK;
1468   }else{
1469     int res;
1470     int cnt = 100;
1471     while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
1472       Sleep(1);
1473     }
1474     if( res ){
1475       if( id->locked>0 ){
1476         if( isNT() ){
1477           UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
1478         }else{
1479           res = UnlockFile(id->h, FIRST_LOCKBYTE + id->locked, 0, 1, 0);
1480         }
1481       }
1482       if( res ){
1483         res = LockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
1484       }else{
1485         res = 0;
1486       }
1487       UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
1488     }
1489     if( res ){
1490       id->locked = -1;
1491       rc = SQLITE_OK;
1492     }else{
1493       rc = SQLITE_BUSY;
1494     }
1495   }
1496   return rc;
1497 #endif
1498 #if OS_MAC
1499   int rc;
1500   if( id->locked<0 || id->refNumRF == -1 ){
1501     rc = SQLITE_OK;
1502   }else{
1503     OSErr res;
1504     int cnt = 5;
1505     ParamBlockRec params;
1506     memset(&params, 0, sizeof(params));
1507     params.ioParam.ioRefNum = id->refNumRF;
1508     params.ioParam.ioPosMode = fsFromStart;
1509     params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
1510     params.ioParam.ioReqCount = 1;
1511     while( cnt-->0 && (res = PBLockRangeSync(&params))!=noErr ){
1512       UInt32 finalTicks;
1513       Delay(1, &finalTicks); /* 1/60 sec */
1514     }
1515     if( res == noErr ){
1516       params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked;
1517       params.ioParam.ioReqCount = 1;
1518       if( id->locked==0
1519             || PBUnlockRangeSync(&params)==noErr ){
1520         params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
1521         params.ioParam.ioReqCount = N_LOCKBYTE;
1522         res = PBLockRangeSync(&params);
1523       }else{
1524         res = afpRangeNotLocked;
1525       }
1526       params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
1527       params.ioParam.ioReqCount = 1;
1528       PBUnlockRangeSync(&params);
1529     }
1530     if( res == noErr ){
1531       id->locked = -1;
1532       rc = SQLITE_OK;
1533     }else{
1534       rc = SQLITE_BUSY;
1535     }
1536   }
1537   return rc;
1538 #endif
1539 }
1540 
1541 /*
1542 ** Unlock the given file descriptor.  If the file descriptor was
1543 ** not previously locked, then this routine is a no-op.  If this
1544 ** library was compiled with large file support (LFS) but LFS is not
1545 ** available on the host, then an SQLITE_NOLFS is returned.
1546 */
1547 int sqliteOsUnlock(OsFile *id){
1548 #if OS_UNIX
1549   int rc;
1550   if( !id->locked ) return SQLITE_OK;
1551   sqliteOsEnterMutex();
1552   assert( id->pLock->cnt!=0 );
1553   if( id->pLock->cnt>1 ){
1554     id->pLock->cnt--;
1555     rc = SQLITE_OK;
1556   }else{
1557     struct flock lock;
1558     int s;
1559     lock.l_type = F_UNLCK;
1560     lock.l_whence = SEEK_SET;
1561     lock.l_start = lock.l_len = 0L;
1562     s = fcntl(id->fd, F_SETLK, &lock);
1563     if( s!=0 ){
1564       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1565     }else{
1566       rc = SQLITE_OK;
1567       id->pLock->cnt = 0;
1568     }
1569   }
1570   if( rc==SQLITE_OK ){
1571     /* Decrement the count of locks against this same file.  When the
1572     ** count reaches zero, close any other file descriptors whose close
1573     ** was deferred because of outstanding locks.
1574     */
1575     struct openCnt *pOpen = id->pOpen;
1576     pOpen->nLock--;
1577     assert( pOpen->nLock>=0 );
1578     if( pOpen->nLock==0 && pOpen->nPending>0 ){
1579       int i;
1580       for(i=0; i<pOpen->nPending; i++){
1581         close(pOpen->aPending[i]);
1582       }
1583       sqliteFree(pOpen->aPending);
1584       pOpen->nPending = 0;
1585       pOpen->aPending = 0;
1586     }
1587   }
1588   sqliteOsLeaveMutex();
1589   id->locked = 0;
1590   return rc;
1591 #endif
1592 #if OS_WIN
1593   int rc;
1594   if( id->locked==0 ){
1595     rc = SQLITE_OK;
1596   }else if( isNT() || id->locked<0 ){
1597     UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
1598     rc = SQLITE_OK;
1599     id->locked = 0;
1600   }else{
1601     UnlockFile(id->h, FIRST_LOCKBYTE+id->locked, 0, 1, 0);
1602     rc = SQLITE_OK;
1603     id->locked = 0;
1604   }
1605   return rc;
1606 #endif
1607 #if OS_MAC
1608   int rc;
1609   ParamBlockRec params;
1610   memset(&params, 0, sizeof(params));
1611   params.ioParam.ioRefNum = id->refNumRF;
1612   params.ioParam.ioPosMode = fsFromStart;
1613   if( id->locked==0 || id->refNumRF == -1 ){
1614     rc = SQLITE_OK;
1615   }else if( id->locked<0 ){
1616     params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
1617     params.ioParam.ioReqCount = N_LOCKBYTE;
1618     PBUnlockRangeSync(&params);
1619     rc = SQLITE_OK;
1620     id->locked = 0;
1621   }else{
1622     params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked;
1623     params.ioParam.ioReqCount = 1;
1624     PBUnlockRangeSync(&params);
1625     rc = SQLITE_OK;
1626     id->locked = 0;
1627   }
1628   return rc;
1629 #endif
1630 }
1631 
1632 /*
1633 ** Get information to seed the random number generator.  The seed
1634 ** is written into the buffer zBuf[256].  The calling function must
1635 ** supply a sufficiently large buffer.
1636 */
1637 int sqliteOsRandomSeed(char *zBuf){
1638   /* We have to initialize zBuf to prevent valgrind from reporting
1639   ** errors.  The reports issued by valgrind are incorrect - we would
1640   ** prefer that the randomness be increased by making use of the
1641   ** uninitialized space in zBuf - but valgrind errors tend to worry
1642   ** some users.  Rather than argue, it seems easier just to initialize
1643   ** the whole array and silence valgrind, even if that means less randomness
1644   ** in the random seed.
1645   **
1646   ** When testing, initializing zBuf[] to zero is all we do.  That means
1647   ** that we always use the same random number sequence.* This makes the
1648   ** tests repeatable.
1649   */
1650   memset(zBuf, 0, 256);
1651 #if OS_UNIX && !defined(SQLITE_TEST)
1652   {
1653     int pid;
1654     time((time_t*)zBuf);
1655     pid = getpid();
1656     memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
1657   }
1658 #endif
1659 #if OS_WIN && !defined(SQLITE_TEST)
1660   GetSystemTime((LPSYSTEMTIME)zBuf);
1661 #endif
1662 #if OS_MAC
1663   {
1664     int pid;
1665     Microseconds((UnsignedWide*)zBuf);
1666     pid = getpid();
1667     memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid));
1668   }
1669 #endif
1670   return SQLITE_OK;
1671 }
1672 
1673 /*
1674 ** Sleep for a little while.  Return the amount of time slept.
1675 */
1676 int sqliteOsSleep(int ms){
1677 #if OS_UNIX
1678 #if defined(HAVE_USLEEP) && HAVE_USLEEP
1679   usleep(ms*1000);
1680   return ms;
1681 #else
1682   sleep((ms+999)/1000);
1683   return 1000*((ms+999)/1000);
1684 #endif
1685 #endif
1686 #if OS_WIN
1687   Sleep(ms);
1688   return ms;
1689 #endif
1690 #if OS_MAC
1691   UInt32 finalTicks;
1692   UInt32 ticks = (((UInt32)ms+16)*3)/50;  /* 1/60 sec per tick */
1693   Delay(ticks, &finalTicks);
1694   return (int)((ticks*50)/3);
1695 #endif
1696 }
1697 
1698 /*
1699 ** Static variables used for thread synchronization
1700 */
1701 static int inMutex = 0;
1702 #ifdef SQLITE_UNIX_THREADS
1703   static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
1704 #endif
1705 #ifdef SQLITE_W32_THREADS
1706   static CRITICAL_SECTION cs;
1707 #endif
1708 #ifdef SQLITE_MACOS_MULTITASKING
1709   static MPCriticalRegionID criticalRegion;
1710 #endif
1711 
1712 /*
1713 ** The following pair of routine implement mutual exclusion for
1714 ** multi-threaded processes.  Only a single thread is allowed to
1715 ** executed code that is surrounded by EnterMutex() and LeaveMutex().
1716 **
1717 ** SQLite uses only a single Mutex.  There is not much critical
1718 ** code and what little there is executes quickly and without blocking.
1719 */
1720 void sqliteOsEnterMutex(){
1721 #ifdef SQLITE_UNIX_THREADS
1722   pthread_mutex_lock(&mutex);
1723 #endif
1724 #ifdef SQLITE_W32_THREADS
1725   static int isInit = 0;
1726   while( !isInit ){
1727     static long lock = 0;
1728     if( InterlockedIncrement(&lock)==1 ){
1729       InitializeCriticalSection(&cs);
1730       isInit = 1;
1731     }else{
1732       Sleep(1);
1733     }
1734   }
1735   EnterCriticalSection(&cs);
1736 #endif
1737 #ifdef SQLITE_MACOS_MULTITASKING
1738   static volatile int notInit = 1;
1739   if( notInit ){
1740     if( notInit == 2 ) /* as close as you can get to thread safe init */
1741       MPYield();
1742     else{
1743       notInit = 2;
1744       MPCreateCriticalRegion(&criticalRegion);
1745       notInit = 0;
1746     }
1747   }
1748   MPEnterCriticalRegion(criticalRegion, kDurationForever);
1749 #endif
1750   assert( !inMutex );
1751   inMutex = 1;
1752 }
1753 void sqliteOsLeaveMutex(){
1754   assert( inMutex );
1755   inMutex = 0;
1756 #ifdef SQLITE_UNIX_THREADS
1757   pthread_mutex_unlock(&mutex);
1758 #endif
1759 #ifdef SQLITE_W32_THREADS
1760   LeaveCriticalSection(&cs);
1761 #endif
1762 #ifdef SQLITE_MACOS_MULTITASKING
1763   MPExitCriticalRegion(criticalRegion);
1764 #endif
1765 }
1766 
1767 /*
1768 ** Turn a relative pathname into a full pathname.  Return a pointer
1769 ** to the full pathname stored in space obtained from sqliteMalloc().
1770 ** The calling function is responsible for freeing this space once it
1771 ** is no longer needed.
1772 */
1773 char *sqliteOsFullPathname(const char *zRelative){
1774 #if OS_UNIX
1775   char *zFull = 0;
1776   if( zRelative[0]=='/' ){
1777     sqliteSetString(&zFull, zRelative, (char*)0);
1778   }else{
1779     char zBuf[5000];
1780     sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
1781                     (char*)0);
1782   }
1783   return zFull;
1784 #endif
1785 #if OS_WIN
1786   char *zNotUsed;
1787   char *zFull;
1788   int nByte;
1789   nByte = GetFullPathName(zRelative, 0, 0, &zNotUsed) + 1;
1790   zFull = sqliteMalloc( nByte );
1791   if( zFull==0 ) return 0;
1792   GetFullPathName(zRelative, nByte, zFull, &zNotUsed);
1793   return zFull;
1794 #endif
1795 #if OS_MAC
1796   char *zFull = 0;
1797   if( zRelative[0]==':' ){
1798     char zBuf[_MAX_PATH+1];
1799     sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]),
1800                     (char*)0);
1801   }else{
1802     if( strchr(zRelative, ':') ){
1803       sqliteSetString(&zFull, zRelative, (char*)0);
1804     }else{
1805     char zBuf[_MAX_PATH+1];
1806       sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, (char*)0);
1807     }
1808   }
1809   return zFull;
1810 #endif
1811 }
1812 
1813 /*
1814 ** The following variable, if set to a non-zero value, becomes the result
1815 ** returned from sqliteOsCurrentTime().  This is used for testing.
1816 */
1817 #ifdef SQLITE_TEST
1818 int sqlite_current_time = 0;
1819 #endif
1820 
1821 /*
1822 ** Find the current time (in Universal Coordinated Time).  Write the
1823 ** current time and date as a Julian Day number into *prNow and
1824 ** return 0.  Return 1 if the time and date cannot be found.
1825 */
1826 int sqliteOsCurrentTime(double *prNow){
1827 #if OS_UNIX
1828   time_t t;
1829   time(&t);
1830   *prNow = t/86400.0 + 2440587.5;
1831 #endif
1832 #if OS_WIN
1833   FILETIME ft;
1834   /* FILETIME structure is a 64-bit value representing the number of
1835      100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
1836   */
1837   double now;
1838   GetSystemTimeAsFileTime( &ft );
1839   now = ((double)ft.dwHighDateTime) * 4294967296.0;
1840   *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
1841 #endif
1842 #ifdef SQLITE_TEST
1843   if( sqlite_current_time ){
1844     *prNow = sqlite_current_time/86400.0 + 2440587.5;
1845   }
1846 #endif
1847   return 0;
1848 }
1849