1 2 #pragma ident "%Z%%M% %I% %E% SMI" 3 4 /* 5 ** The "printf" code that follows dates from the 1980's. It is in 6 ** the public domain. The original comments are included here for 7 ** completeness. They are very out-of-date but might be useful as 8 ** an historical reference. Most of the "enhancements" have been backed 9 ** out so that the functionality is now the same as standard printf(). 10 ** 11 ************************************************************************** 12 ** 13 ** The following modules is an enhanced replacement for the "printf" subroutines 14 ** found in the standard C library. The following enhancements are 15 ** supported: 16 ** 17 ** + Additional functions. The standard set of "printf" functions 18 ** includes printf, fprintf, sprintf, vprintf, vfprintf, and 19 ** vsprintf. This module adds the following: 20 ** 21 ** * snprintf -- Works like sprintf, but has an extra argument 22 ** which is the size of the buffer written to. 23 ** 24 ** * mprintf -- Similar to sprintf. Writes output to memory 25 ** obtained from malloc. 26 ** 27 ** * xprintf -- Calls a function to dispose of output. 28 ** 29 ** * nprintf -- No output, but returns the number of characters 30 ** that would have been output by printf. 31 ** 32 ** * A v- version (ex: vsnprintf) of every function is also 33 ** supplied. 34 ** 35 ** + A few extensions to the formatting notation are supported: 36 ** 37 ** * The "=" flag (similar to "-") causes the output to be 38 ** be centered in the appropriately sized field. 39 ** 40 ** * The %b field outputs an integer in binary notation. 41 ** 42 ** * The %c field now accepts a precision. The character output 43 ** is repeated by the number of times the precision specifies. 44 ** 45 ** * The %' field works like %c, but takes as its character the 46 ** next character of the format string, instead of the next 47 ** argument. For example, printf("%.78'-") prints 78 minus 48 ** signs, the same as printf("%.78c",'-'). 49 ** 50 ** + When compiled using GCC on a SPARC, this version of printf is 51 ** faster than the library printf for SUN OS 4.1. 52 ** 53 ** + All functions are fully reentrant. 54 ** 55 */ 56 #include "sqliteInt.h" 57 58 /* 59 ** Conversion types fall into various categories as defined by the 60 ** following enumeration. 61 */ 62 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ 63 #define etFLOAT 2 /* Floating point. %f */ 64 #define etEXP 3 /* Exponentional notation. %e and %E */ 65 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ 66 #define etSIZE 5 /* Return number of characters processed so far. %n */ 67 #define etSTRING 6 /* Strings. %s */ 68 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ 69 #define etPERCENT 8 /* Percent symbol. %% */ 70 #define etCHARX 9 /* Characters. %c */ 71 #define etERROR 10 /* Used to indicate no such conversion type */ 72 /* The rest are extensions, not normally found in printf() */ 73 #define etCHARLIT 11 /* Literal characters. %' */ 74 #define etSQLESCAPE 12 /* Strings with '\'' doubled. %q */ 75 #define etSQLESCAPE2 13 /* Strings with '\'' doubled and enclosed in '', 76 NULL pointers replaced by SQL NULL. %Q */ 77 #define etTOKEN 14 /* a pointer to a Token structure */ 78 #define etSRCLIST 15 /* a pointer to a SrcList */ 79 80 81 /* 82 ** An "etByte" is an 8-bit unsigned value. 83 */ 84 typedef unsigned char etByte; 85 86 /* 87 ** Each builtin conversion character (ex: the 'd' in "%d") is described 88 ** by an instance of the following structure 89 */ 90 typedef struct et_info { /* Information about each format field */ 91 char fmttype; /* The format field code letter */ 92 etByte base; /* The base for radix conversion */ 93 etByte flags; /* One or more of FLAG_ constants below */ 94 etByte type; /* Conversion paradigm */ 95 char *charset; /* The character set for conversion */ 96 char *prefix; /* Prefix on non-zero values in alt format */ 97 } et_info; 98 99 /* 100 ** Allowed values for et_info.flags 101 */ 102 #define FLAG_SIGNED 1 /* True if the value to convert is signed */ 103 #define FLAG_INTERN 2 /* True if for internal use only */ 104 105 106 /* 107 ** The following table is searched linearly, so it is good to put the 108 ** most frequently used conversion types first. 109 */ 110 static et_info fmtinfo[] = { 111 { 'd', 10, 1, etRADIX, "0123456789", 0 }, 112 { 's', 0, 0, etSTRING, 0, 0 }, 113 { 'z', 0, 2, etDYNSTRING, 0, 0 }, 114 { 'q', 0, 0, etSQLESCAPE, 0, 0 }, 115 { 'Q', 0, 0, etSQLESCAPE2, 0, 0 }, 116 { 'c', 0, 0, etCHARX, 0, 0 }, 117 { 'o', 8, 0, etRADIX, "01234567", "0" }, 118 { 'u', 10, 0, etRADIX, "0123456789", 0 }, 119 { 'x', 16, 0, etRADIX, "0123456789abcdef", "x0" }, 120 { 'X', 16, 0, etRADIX, "0123456789ABCDEF", "X0" }, 121 { 'f', 0, 1, etFLOAT, 0, 0 }, 122 { 'e', 0, 1, etEXP, "e", 0 }, 123 { 'E', 0, 1, etEXP, "E", 0 }, 124 { 'g', 0, 1, etGENERIC, "e", 0 }, 125 { 'G', 0, 1, etGENERIC, "E", 0 }, 126 { 'i', 10, 1, etRADIX, "0123456789", 0 }, 127 { 'n', 0, 0, etSIZE, 0, 0 }, 128 { '%', 0, 0, etPERCENT, 0, 0 }, 129 { 'p', 10, 0, etRADIX, "0123456789", 0 }, 130 { 'T', 0, 2, etTOKEN, 0, 0 }, 131 { 'S', 0, 2, etSRCLIST, 0, 0 }, 132 }; 133 #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) 134 135 /* 136 ** If NOFLOATINGPOINT is defined, then none of the floating point 137 ** conversions will work. 138 */ 139 #ifndef etNOFLOATINGPOINT 140 /* 141 ** "*val" is a double such that 0.1 <= *val < 10.0 142 ** Return the ascii code for the leading digit of *val, then 143 ** multiply "*val" by 10.0 to renormalize. 144 ** 145 ** Example: 146 ** input: *val = 3.14159 147 ** output: *val = 1.4159 function return = '3' 148 ** 149 ** The counter *cnt is incremented each time. After counter exceeds 150 ** 16 (the number of significant digits in a 64-bit float) '0' is 151 ** always returned. 152 */ 153 static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ 154 int digit; 155 LONGDOUBLE_TYPE d; 156 if( (*cnt)++ >= 16 ) return '0'; 157 digit = (int)*val; 158 d = digit; 159 digit += '0'; 160 *val = (*val - d)*10.0; 161 return digit; 162 } 163 #endif 164 165 #define etBUFSIZE 1000 /* Size of the output buffer */ 166 167 /* 168 ** The root program. All variations call this core. 169 ** 170 ** INPUTS: 171 ** func This is a pointer to a function taking three arguments 172 ** 1. A pointer to anything. Same as the "arg" parameter. 173 ** 2. A pointer to the list of characters to be output 174 ** (Note, this list is NOT null terminated.) 175 ** 3. An integer number of characters to be output. 176 ** (Note: This number might be zero.) 177 ** 178 ** arg This is the pointer to anything which will be passed as the 179 ** first argument to "func". Use it for whatever you like. 180 ** 181 ** fmt This is the format string, as in the usual print. 182 ** 183 ** ap This is a pointer to a list of arguments. Same as in 184 ** vfprint. 185 ** 186 ** OUTPUTS: 187 ** The return value is the total number of characters sent to 188 ** the function "func". Returns -1 on a error. 189 ** 190 ** Note that the order in which automatic variables are declared below 191 ** seems to make a big difference in determining how fast this beast 192 ** will run. 193 */ 194 static int vxprintf( 195 void (*func)(void*,const char*,int), /* Consumer of text */ 196 void *arg, /* First argument to the consumer */ 197 int useExtended, /* Allow extended %-conversions */ 198 const char *fmt, /* Format string */ 199 va_list ap /* arguments */ 200 ){ 201 int c; /* Next character in the format string */ 202 char *bufpt; /* Pointer to the conversion buffer */ 203 int precision; /* Precision of the current field */ 204 int length; /* Length of the field */ 205 int idx; /* A general purpose loop counter */ 206 int count; /* Total number of characters output */ 207 int width; /* Width of the current field */ 208 etByte flag_leftjustify; /* True if "-" flag is present */ 209 etByte flag_plussign; /* True if "+" flag is present */ 210 etByte flag_blanksign; /* True if " " flag is present */ 211 etByte flag_alternateform; /* True if "#" flag is present */ 212 etByte flag_zeropad; /* True if field width constant starts with zero */ 213 etByte flag_long; /* True if "l" flag is present */ 214 unsigned long longvalue; /* Value for integer types */ 215 LONGDOUBLE_TYPE realvalue; /* Value for real types */ 216 et_info *infop; /* Pointer to the appropriate info structure */ 217 char buf[etBUFSIZE]; /* Conversion buffer */ 218 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ 219 etByte errorflag = 0; /* True if an error is encountered */ 220 etByte xtype; /* Conversion paradigm */ 221 char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ 222 static char spaces[] = " "; 223 #define etSPACESIZE (sizeof(spaces)-1) 224 #ifndef etNOFLOATINGPOINT 225 int exp; /* exponent of real numbers */ 226 double rounder; /* Used for rounding floating point values */ 227 etByte flag_dp; /* True if decimal point should be shown */ 228 etByte flag_rtz; /* True if trailing zeros should be removed */ 229 etByte flag_exp; /* True to force display of the exponent */ 230 int nsd; /* Number of significant digits returned */ 231 #endif 232 233 func(arg,"",0); 234 count = length = 0; 235 bufpt = 0; 236 for(; (c=(*fmt))!=0; ++fmt){ 237 if( c!='%' ){ 238 int amt; 239 bufpt = (char *)fmt; 240 amt = 1; 241 while( (c=(*++fmt))!='%' && c!=0 ) amt++; 242 (*func)(arg,bufpt,amt); 243 count += amt; 244 if( c==0 ) break; 245 } 246 if( (c=(*++fmt))==0 ){ 247 errorflag = 1; 248 (*func)(arg,"%",1); 249 count++; 250 break; 251 } 252 /* Find out what flags are present */ 253 flag_leftjustify = flag_plussign = flag_blanksign = 254 flag_alternateform = flag_zeropad = 0; 255 do{ 256 switch( c ){ 257 case '-': flag_leftjustify = 1; c = 0; break; 258 case '+': flag_plussign = 1; c = 0; break; 259 case ' ': flag_blanksign = 1; c = 0; break; 260 case '#': flag_alternateform = 1; c = 0; break; 261 case '0': flag_zeropad = 1; c = 0; break; 262 default: break; 263 } 264 }while( c==0 && (c=(*++fmt))!=0 ); 265 /* Get the field width */ 266 width = 0; 267 if( c=='*' ){ 268 width = va_arg(ap,int); 269 if( width<0 ){ 270 flag_leftjustify = 1; 271 width = -width; 272 } 273 c = *++fmt; 274 }else{ 275 while( c>='0' && c<='9' ){ 276 width = width*10 + c - '0'; 277 c = *++fmt; 278 } 279 } 280 if( width > etBUFSIZE-10 ){ 281 width = etBUFSIZE-10; 282 } 283 /* Get the precision */ 284 if( c=='.' ){ 285 precision = 0; 286 c = *++fmt; 287 if( c=='*' ){ 288 precision = va_arg(ap,int); 289 if( precision<0 ) precision = -precision; 290 c = *++fmt; 291 }else{ 292 while( c>='0' && c<='9' ){ 293 precision = precision*10 + c - '0'; 294 c = *++fmt; 295 } 296 } 297 /* Limit the precision to prevent overflowing buf[] during conversion */ 298 if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40; 299 }else{ 300 precision = -1; 301 } 302 /* Get the conversion type modifier */ 303 if( c=='l' ){ 304 flag_long = 1; 305 c = *++fmt; 306 }else{ 307 flag_long = 0; 308 } 309 /* Fetch the info entry for the field */ 310 infop = 0; 311 xtype = etERROR; 312 for(idx=0; idx<etNINFO; idx++){ 313 if( c==fmtinfo[idx].fmttype ){ 314 infop = &fmtinfo[idx]; 315 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ 316 xtype = infop->type; 317 } 318 break; 319 } 320 } 321 zExtra = 0; 322 323 /* 324 ** At this point, variables are initialized as follows: 325 ** 326 ** flag_alternateform TRUE if a '#' is present. 327 ** flag_plussign TRUE if a '+' is present. 328 ** flag_leftjustify TRUE if a '-' is present or if the 329 ** field width was negative. 330 ** flag_zeropad TRUE if the width began with 0. 331 ** flag_long TRUE if the letter 'l' (ell) prefixed 332 ** the conversion character. 333 ** flag_blanksign TRUE if a ' ' is present. 334 ** width The specified field width. This is 335 ** always non-negative. Zero is the default. 336 ** precision The specified precision. The default 337 ** is -1. 338 ** xtype The class of the conversion. 339 ** infop Pointer to the appropriate info struct. 340 */ 341 switch( xtype ){ 342 case etRADIX: 343 if( flag_long ) longvalue = va_arg(ap,long); 344 else longvalue = va_arg(ap,int); 345 #if 1 346 /* For the format %#x, the value zero is printed "0" not "0x0". 347 ** I think this is stupid. */ 348 if( longvalue==0 ) flag_alternateform = 0; 349 #else 350 /* More sensible: turn off the prefix for octal (to prevent "00"), 351 ** but leave the prefix for hex. */ 352 if( longvalue==0 && infop->base==8 ) flag_alternateform = 0; 353 #endif 354 if( infop->flags & FLAG_SIGNED ){ 355 if( *(long*)&longvalue<0 ){ 356 longvalue = -*(long*)&longvalue; 357 prefix = '-'; 358 }else if( flag_plussign ) prefix = '+'; 359 else if( flag_blanksign ) prefix = ' '; 360 else prefix = 0; 361 }else prefix = 0; 362 if( flag_zeropad && precision<width-(prefix!=0) ){ 363 precision = width-(prefix!=0); 364 } 365 bufpt = &buf[etBUFSIZE-1]; 366 { 367 register char *cset; /* Use registers for speed */ 368 register int base; 369 cset = infop->charset; 370 base = infop->base; 371 do{ /* Convert to ascii */ 372 *(--bufpt) = cset[longvalue%base]; 373 longvalue = longvalue/base; 374 }while( longvalue>0 ); 375 } 376 length = &buf[etBUFSIZE-1]-bufpt; 377 for(idx=precision-length; idx>0; idx--){ 378 *(--bufpt) = '0'; /* Zero pad */ 379 } 380 if( prefix ) *(--bufpt) = prefix; /* Add sign */ 381 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ 382 char *pre, x; 383 pre = infop->prefix; 384 if( *bufpt!=pre[0] ){ 385 for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x; 386 } 387 } 388 length = &buf[etBUFSIZE-1]-bufpt; 389 break; 390 case etFLOAT: 391 case etEXP: 392 case etGENERIC: 393 realvalue = va_arg(ap,double); 394 #ifndef etNOFLOATINGPOINT 395 if( precision<0 ) precision = 6; /* Set default precision */ 396 if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10; 397 if( realvalue<0.0 ){ 398 realvalue = -realvalue; 399 prefix = '-'; 400 }else{ 401 if( flag_plussign ) prefix = '+'; 402 else if( flag_blanksign ) prefix = ' '; 403 else prefix = 0; 404 } 405 if( infop->type==etGENERIC && precision>0 ) precision--; 406 rounder = 0.0; 407 #if 0 408 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ 409 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); 410 #else 411 /* It makes more sense to use 0.5 */ 412 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1); 413 #endif 414 if( infop->type==etFLOAT ) realvalue += rounder; 415 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ 416 exp = 0; 417 if( realvalue>0.0 ){ 418 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } 419 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } 420 while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; } 421 while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; } 422 if( exp>350 || exp<-350 ){ 423 bufpt = "NaN"; 424 length = 3; 425 break; 426 } 427 } 428 bufpt = buf; 429 /* 430 ** If the field type is etGENERIC, then convert to either etEXP 431 ** or etFLOAT, as appropriate. 432 */ 433 flag_exp = xtype==etEXP; 434 if( xtype!=etFLOAT ){ 435 realvalue += rounder; 436 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } 437 } 438 if( xtype==etGENERIC ){ 439 flag_rtz = !flag_alternateform; 440 if( exp<-4 || exp>precision ){ 441 xtype = etEXP; 442 }else{ 443 precision = precision - exp; 444 xtype = etFLOAT; 445 } 446 }else{ 447 flag_rtz = 0; 448 } 449 /* 450 ** The "exp+precision" test causes output to be of type etEXP if 451 ** the precision is too large to fit in buf[]. 452 */ 453 nsd = 0; 454 if( xtype==etFLOAT && exp+precision<etBUFSIZE-30 ){ 455 flag_dp = (precision>0 || flag_alternateform); 456 if( prefix ) *(bufpt++) = prefix; /* Sign */ 457 if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */ 458 else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd); 459 if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */ 460 for(exp++; exp<0 && precision>0; precision--, exp++){ 461 *(bufpt++) = '0'; 462 } 463 while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd); 464 *(bufpt--) = 0; /* Null terminate */ 465 if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */ 466 while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; 467 if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; 468 } 469 bufpt++; /* point to next free slot */ 470 }else{ /* etEXP or etGENERIC */ 471 flag_dp = (precision>0 || flag_alternateform); 472 if( prefix ) *(bufpt++) = prefix; /* Sign */ 473 *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */ 474 if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */ 475 while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd); 476 bufpt--; /* point to last digit */ 477 if( flag_rtz && flag_dp ){ /* Remove tail zeros */ 478 while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0; 479 if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0; 480 } 481 bufpt++; /* point to next free slot */ 482 if( exp || flag_exp ){ 483 *(bufpt++) = infop->charset[0]; 484 if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */ 485 else { *(bufpt++) = '+'; } 486 if( exp>=100 ){ 487 *(bufpt++) = (exp/100)+'0'; /* 100's digit */ 488 exp %= 100; 489 } 490 *(bufpt++) = exp/10+'0'; /* 10's digit */ 491 *(bufpt++) = exp%10+'0'; /* 1's digit */ 492 } 493 } 494 /* The converted number is in buf[] and zero terminated. Output it. 495 ** Note that the number is in the usual order, not reversed as with 496 ** integer conversions. */ 497 length = bufpt-buf; 498 bufpt = buf; 499 500 /* Special case: Add leading zeros if the flag_zeropad flag is 501 ** set and we are not left justified */ 502 if( flag_zeropad && !flag_leftjustify && length < width){ 503 int i; 504 int nPad = width - length; 505 for(i=width; i>=nPad; i--){ 506 bufpt[i] = bufpt[i-nPad]; 507 } 508 i = prefix!=0; 509 while( nPad-- ) bufpt[i++] = '0'; 510 length = width; 511 } 512 #endif 513 break; 514 case etSIZE: 515 *(va_arg(ap,int*)) = count; 516 length = width = 0; 517 break; 518 case etPERCENT: 519 buf[0] = '%'; 520 bufpt = buf; 521 length = 1; 522 break; 523 case etCHARLIT: 524 case etCHARX: 525 c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt); 526 if( precision>=0 ){ 527 for(idx=1; idx<precision; idx++) buf[idx] = c; 528 length = precision; 529 }else{ 530 length =1; 531 } 532 bufpt = buf; 533 break; 534 case etSTRING: 535 case etDYNSTRING: 536 bufpt = va_arg(ap,char*); 537 if( bufpt==0 ){ 538 bufpt = ""; 539 }else if( xtype==etDYNSTRING ){ 540 zExtra = bufpt; 541 } 542 length = strlen(bufpt); 543 if( precision>=0 && precision<length ) length = precision; 544 break; 545 case etSQLESCAPE: 546 case etSQLESCAPE2: 547 { 548 int i, j, n, c, isnull; 549 char *arg = va_arg(ap,char*); 550 isnull = arg==0; 551 if( isnull ) arg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); 552 for(i=n=0; (c=arg[i])!=0; i++){ 553 if( c=='\'' ) n++; 554 } 555 n += i + 1 + ((!isnull && xtype==etSQLESCAPE2) ? 2 : 0); 556 if( n>etBUFSIZE ){ 557 bufpt = zExtra = sqliteMalloc( n ); 558 if( bufpt==0 ) return -1; 559 }else{ 560 bufpt = buf; 561 } 562 j = 0; 563 if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\''; 564 for(i=0; (c=arg[i])!=0; i++){ 565 bufpt[j++] = c; 566 if( c=='\'' ) bufpt[j++] = c; 567 } 568 if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\''; 569 bufpt[j] = 0; 570 length = j; 571 if( precision>=0 && precision<length ) length = precision; 572 } 573 break; 574 case etTOKEN: { 575 Token *pToken = va_arg(ap, Token*); 576 (*func)(arg, pToken->z, pToken->n); 577 length = width = 0; 578 break; 579 } 580 case etSRCLIST: { 581 SrcList *pSrc = va_arg(ap, SrcList*); 582 int k = va_arg(ap, int); 583 struct SrcList_item *pItem = &pSrc->a[k]; 584 assert( k>=0 && k<pSrc->nSrc ); 585 if( pItem->zDatabase && pItem->zDatabase[0] ){ 586 (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase)); 587 (*func)(arg, ".", 1); 588 } 589 (*func)(arg, pItem->zName, strlen(pItem->zName)); 590 length = width = 0; 591 break; 592 } 593 case etERROR: 594 buf[0] = '%'; 595 buf[1] = c; 596 errorflag = 0; 597 idx = 1+(c!=0); 598 (*func)(arg,"%",idx); 599 count += idx; 600 if( c==0 ) fmt--; 601 break; 602 }/* End switch over the format type */ 603 /* 604 ** The text of the conversion is pointed to by "bufpt" and is 605 ** "length" characters long. The field width is "width". Do 606 ** the output. 607 */ 608 if( !flag_leftjustify ){ 609 register int nspace; 610 nspace = width-length; 611 if( nspace>0 ){ 612 count += nspace; 613 while( nspace>=etSPACESIZE ){ 614 (*func)(arg,spaces,etSPACESIZE); 615 nspace -= etSPACESIZE; 616 } 617 if( nspace>0 ) (*func)(arg,spaces,nspace); 618 } 619 } 620 if( length>0 ){ 621 (*func)(arg,bufpt,length); 622 count += length; 623 } 624 if( flag_leftjustify ){ 625 register int nspace; 626 nspace = width-length; 627 if( nspace>0 ){ 628 count += nspace; 629 while( nspace>=etSPACESIZE ){ 630 (*func)(arg,spaces,etSPACESIZE); 631 nspace -= etSPACESIZE; 632 } 633 if( nspace>0 ) (*func)(arg,spaces,nspace); 634 } 635 } 636 if( zExtra ){ 637 sqliteFree(zExtra); 638 } 639 }/* End for loop over the format string */ 640 return errorflag ? -1 : count; 641 } /* End of function */ 642 643 644 /* This structure is used to store state information about the 645 ** write to memory that is currently in progress. 646 */ 647 struct sgMprintf { 648 char *zBase; /* A base allocation */ 649 char *zText; /* The string collected so far */ 650 int nChar; /* Length of the string so far */ 651 int nTotal; /* Output size if unconstrained */ 652 int nAlloc; /* Amount of space allocated in zText */ 653 void *(*xRealloc)(void*,int); /* Function used to realloc memory */ 654 }; 655 656 /* 657 ** This function implements the callback from vxprintf. 658 ** 659 ** This routine add nNewChar characters of text in zNewText to 660 ** the sgMprintf structure pointed to by "arg". 661 */ 662 static void mout(void *arg, const char *zNewText, int nNewChar){ 663 struct sgMprintf *pM = (struct sgMprintf*)arg; 664 pM->nTotal += nNewChar; 665 if( pM->nChar + nNewChar + 1 > pM->nAlloc ){ 666 if( pM->xRealloc==0 ){ 667 nNewChar = pM->nAlloc - pM->nChar - 1; 668 }else{ 669 pM->nAlloc = pM->nChar + nNewChar*2 + 1; 670 if( pM->zText==pM->zBase ){ 671 pM->zText = pM->xRealloc(0, pM->nAlloc); 672 if( pM->zText && pM->nChar ){ 673 memcpy(pM->zText, pM->zBase, pM->nChar); 674 } 675 }else{ 676 pM->zText = pM->xRealloc(pM->zText, pM->nAlloc); 677 } 678 } 679 } 680 if( pM->zText ){ 681 if( nNewChar>0 ){ 682 memcpy(&pM->zText[pM->nChar], zNewText, nNewChar); 683 pM->nChar += nNewChar; 684 } 685 pM->zText[pM->nChar] = 0; 686 } 687 } 688 689 /* 690 ** This routine is a wrapper around xprintf() that invokes mout() as 691 ** the consumer. 692 */ 693 static char *base_vprintf( 694 void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */ 695 int useInternal, /* Use internal %-conversions if true */ 696 char *zInitBuf, /* Initially write here, before mallocing */ 697 int nInitBuf, /* Size of zInitBuf[] */ 698 const char *zFormat, /* format string */ 699 va_list ap /* arguments */ 700 ){ 701 struct sgMprintf sM; 702 sM.zBase = sM.zText = zInitBuf; 703 sM.nChar = sM.nTotal = 0; 704 sM.nAlloc = nInitBuf; 705 sM.xRealloc = xRealloc; 706 vxprintf(mout, &sM, useInternal, zFormat, ap); 707 if( xRealloc ){ 708 if( sM.zText==sM.zBase ){ 709 sM.zText = xRealloc(0, sM.nChar+1); 710 memcpy(sM.zText, sM.zBase, sM.nChar+1); 711 }else if( sM.nAlloc>sM.nChar+10 ){ 712 sM.zText = xRealloc(sM.zText, sM.nChar+1); 713 } 714 } 715 return sM.zText; 716 } 717 718 /* 719 ** Realloc that is a real function, not a macro. 720 */ 721 static void *printf_realloc(void *old, int size){ 722 return sqliteRealloc(old,size); 723 } 724 725 /* 726 ** Print into memory obtained from sqliteMalloc(). Use the internal 727 ** %-conversion extensions. 728 */ 729 char *sqliteVMPrintf(const char *zFormat, va_list ap){ 730 char zBase[1000]; 731 return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); 732 } 733 734 /* 735 ** Print into memory obtained from sqliteMalloc(). Use the internal 736 ** %-conversion extensions. 737 */ 738 char *sqliteMPrintf(const char *zFormat, ...){ 739 va_list ap; 740 char *z; 741 char zBase[1000]; 742 va_start(ap, zFormat); 743 z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); 744 va_end(ap); 745 return z; 746 } 747 748 /* 749 ** Print into memory obtained from malloc(). Do not use the internal 750 ** %-conversion extensions. This routine is for use by external users. 751 */ 752 char *sqlite_mprintf(const char *zFormat, ...){ 753 va_list ap; 754 char *z; 755 char zBuf[200]; 756 757 va_start(ap,zFormat); 758 z = base_vprintf((void*(*)(void*,int))realloc, 0, 759 zBuf, sizeof(zBuf), zFormat, ap); 760 va_end(ap); 761 return z; 762 } 763 764 /* This is the varargs version of sqlite_mprintf. 765 */ 766 char *sqlite_vmprintf(const char *zFormat, va_list ap){ 767 char zBuf[200]; 768 return base_vprintf((void*(*)(void*,int))realloc, 0, 769 zBuf, sizeof(zBuf), zFormat, ap); 770 } 771 772 /* 773 ** sqlite_snprintf() works like snprintf() except that it ignores the 774 ** current locale settings. This is important for SQLite because we 775 ** are not able to use a "," as the decimal point in place of "." as 776 ** specified by some locales. 777 */ 778 char *sqlite_snprintf(int n, char *zBuf, const char *zFormat, ...){ 779 char *z; 780 va_list ap; 781 782 va_start(ap,zFormat); 783 z = base_vprintf(0, 0, zBuf, n, zFormat, ap); 784 va_end(ap); 785 return z; 786 } 787 788 /* 789 ** The following four routines implement the varargs versions of the 790 ** sqlite_exec() and sqlite_get_table() interfaces. See the sqlite.h 791 ** header files for a more detailed description of how these interfaces 792 ** work. 793 ** 794 ** These routines are all just simple wrappers. 795 */ 796 int sqlite_exec_printf( 797 sqlite *db, /* An open database */ 798 const char *sqlFormat, /* printf-style format string for the SQL */ 799 sqlite_callback xCallback, /* Callback function */ 800 void *pArg, /* 1st argument to callback function */ 801 char **errmsg, /* Error msg written here */ 802 ... /* Arguments to the format string. */ 803 ){ 804 va_list ap; 805 int rc; 806 807 va_start(ap, errmsg); 808 rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap); 809 va_end(ap); 810 return rc; 811 } 812 int sqlite_exec_vprintf( 813 sqlite *db, /* An open database */ 814 const char *sqlFormat, /* printf-style format string for the SQL */ 815 sqlite_callback xCallback, /* Callback function */ 816 void *pArg, /* 1st argument to callback function */ 817 char **errmsg, /* Error msg written here */ 818 va_list ap /* Arguments to the format string. */ 819 ){ 820 char *zSql; 821 int rc; 822 823 zSql = sqlite_vmprintf(sqlFormat, ap); 824 rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg); 825 free(zSql); 826 return rc; 827 } 828 int sqlite_get_table_printf( 829 sqlite *db, /* An open database */ 830 const char *sqlFormat, /* printf-style format string for the SQL */ 831 char ***resultp, /* Result written to a char *[] that this points to */ 832 int *nrow, /* Number of result rows written here */ 833 int *ncol, /* Number of result columns written here */ 834 char **errmsg, /* Error msg written here */ 835 ... /* Arguments to the format string */ 836 ){ 837 va_list ap; 838 int rc; 839 840 va_start(ap, errmsg); 841 rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap); 842 va_end(ap); 843 return rc; 844 } 845 int sqlite_get_table_vprintf( 846 sqlite *db, /* An open database */ 847 const char *sqlFormat, /* printf-style format string for the SQL */ 848 char ***resultp, /* Result written to a char *[] that this points to */ 849 int *nrow, /* Number of result rows written here */ 850 int *ncolumn, /* Number of result columns written here */ 851 char **errmsg, /* Error msg written here */ 852 va_list ap /* Arguments to the format string */ 853 ){ 854 char *zSql; 855 int rc; 856 857 zSql = sqlite_vmprintf(sqlFormat, ap); 858 rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg); 859 free(zSql); 860 return rc; 861 } 862