1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
24 ** PRAGMA
25 **
26 ** $Id: build.c,v 1.176.2.2 2004/07/20 00:50:30 drh Exp $
27 */
28 #include "sqliteInt.h"
29 #include <ctype.h>
30
31 /*
32 ** This routine is called when a new SQL statement is beginning to
33 ** be parsed. Check to see if the schema for the database needs
34 ** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
35 ** If it does, then read it.
36 */
sqliteBeginParse(Parse * pParse,int explainFlag)37 void sqliteBeginParse(Parse *pParse, int explainFlag){
38 sqlite *db = pParse->db;
39 int i;
40 pParse->explain = explainFlag;
41 if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
42 int rc = sqliteInit(db, &pParse->zErrMsg);
43 if( rc!=SQLITE_OK ){
44 pParse->rc = rc;
45 pParse->nErr++;
46 }
47 }
48 for(i=0; i<db->nDb; i++){
49 DbClearProperty(db, i, DB_Locked);
50 if( !db->aDb[i].inTrans ){
51 DbClearProperty(db, i, DB_Cookie);
52 }
53 }
54 pParse->nVar = 0;
55 }
56
57 /*
58 ** This routine is called after a single SQL statement has been
59 ** parsed and we want to execute the VDBE code to implement
60 ** that statement. Prior action routines should have already
61 ** constructed VDBE code to do the work of the SQL statement.
62 ** This routine just has to execute the VDBE code.
63 **
64 ** Note that if an error occurred, it might be the case that
65 ** no VDBE code was generated.
66 */
sqliteExec(Parse * pParse)67 void sqliteExec(Parse *pParse){
68 sqlite *db = pParse->db;
69 Vdbe *v = pParse->pVdbe;
70
71 if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
72 sqliteVdbeAddOp(v, OP_Halt, 0, 0);
73 }
74 if( sqlite_malloc_failed ) return;
75 if( v && pParse->nErr==0 ){
76 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
77 sqliteVdbeTrace(v, trace);
78 sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
79 pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
80 pParse->colNamesSet = 0;
81 }else if( pParse->rc==SQLITE_OK ){
82 pParse->rc = SQLITE_ERROR;
83 }
84 pParse->nTab = 0;
85 pParse->nMem = 0;
86 pParse->nSet = 0;
87 pParse->nAgg = 0;
88 pParse->nVar = 0;
89 }
90
91 /*
92 ** Locate the in-memory structure that describes
93 ** a particular database table given the name
94 ** of that table and (optionally) the name of the database
95 ** containing the table. Return NULL if not found.
96 **
97 ** If zDatabase is 0, all databases are searched for the
98 ** table and the first matching table is returned. (No checking
99 ** for duplicate table names is done.) The search order is
100 ** TEMP first, then MAIN, then any auxiliary databases added
101 ** using the ATTACH command.
102 **
103 ** See also sqliteLocateTable().
104 */
sqliteFindTable(sqlite * db,const char * zName,const char * zDatabase)105 Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
106 Table *p = 0;
107 int i;
108 for(i=0; i<db->nDb; i++){
109 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
110 if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
111 p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
112 if( p ) break;
113 }
114 return p;
115 }
116
117 /*
118 ** Locate the in-memory structure that describes
119 ** a particular database table given the name
120 ** of that table and (optionally) the name of the database
121 ** containing the table. Return NULL if not found.
122 ** Also leave an error message in pParse->zErrMsg.
123 **
124 ** The difference between this routine and sqliteFindTable()
125 ** is that this routine leaves an error message in pParse->zErrMsg
126 ** where sqliteFindTable() does not.
127 */
sqliteLocateTable(Parse * pParse,const char * zName,const char * zDbase)128 Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
129 Table *p;
130
131 p = sqliteFindTable(pParse->db, zName, zDbase);
132 if( p==0 ){
133 if( zDbase ){
134 sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
135 }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
136 sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
137 zName, zDbase);
138 }else{
139 sqliteErrorMsg(pParse, "no such table: %s", zName);
140 }
141 }
142 return p;
143 }
144
145 /*
146 ** Locate the in-memory structure that describes
147 ** a particular index given the name of that index
148 ** and the name of the database that contains the index.
149 ** Return NULL if not found.
150 **
151 ** If zDatabase is 0, all databases are searched for the
152 ** table and the first matching index is returned. (No checking
153 ** for duplicate index names is done.) The search order is
154 ** TEMP first, then MAIN, then any auxiliary databases added
155 ** using the ATTACH command.
156 */
sqliteFindIndex(sqlite * db,const char * zName,const char * zDb)157 Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
158 Index *p = 0;
159 int i;
160 for(i=0; i<db->nDb; i++){
161 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
162 if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
163 p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
164 if( p ) break;
165 }
166 return p;
167 }
168
169 /*
170 ** Remove the given index from the index hash table, and free
171 ** its memory structures.
172 **
173 ** The index is removed from the database hash tables but
174 ** it is not unlinked from the Table that it indexes.
175 ** Unlinking from the Table must be done by the calling function.
176 */
sqliteDeleteIndex(sqlite * db,Index * p)177 static void sqliteDeleteIndex(sqlite *db, Index *p){
178 Index *pOld;
179
180 assert( db!=0 && p->zName!=0 );
181 pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
182 strlen(p->zName)+1, 0);
183 if( pOld!=0 && pOld!=p ){
184 sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
185 strlen(pOld->zName)+1, pOld);
186 }
187 sqliteFree(p);
188 }
189
190 /*
191 ** Unlink the given index from its table, then remove
192 ** the index from the index hash table and free its memory
193 ** structures.
194 */
sqliteUnlinkAndDeleteIndex(sqlite * db,Index * pIndex)195 void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
196 if( pIndex->pTable->pIndex==pIndex ){
197 pIndex->pTable->pIndex = pIndex->pNext;
198 }else{
199 Index *p;
200 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
201 if( p && p->pNext==pIndex ){
202 p->pNext = pIndex->pNext;
203 }
204 }
205 sqliteDeleteIndex(db, pIndex);
206 }
207
208 /*
209 ** Erase all schema information from the in-memory hash tables of
210 ** database connection. This routine is called to reclaim memory
211 ** before the connection closes. It is also called during a rollback
212 ** if there were schema changes during the transaction.
213 **
214 ** If iDb<=0 then reset the internal schema tables for all database
215 ** files. If iDb>=2 then reset the internal schema for only the
216 ** single file indicated.
217 */
sqliteResetInternalSchema(sqlite * db,int iDb)218 void sqliteResetInternalSchema(sqlite *db, int iDb){
219 HashElem *pElem;
220 Hash temp1;
221 Hash temp2;
222 int i, j;
223
224 assert( iDb>=0 && iDb<db->nDb );
225 db->flags &= ~SQLITE_Initialized;
226 for(i=iDb; i<db->nDb; i++){
227 Db *pDb = &db->aDb[i];
228 temp1 = pDb->tblHash;
229 temp2 = pDb->trigHash;
230 sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
231 sqliteHashClear(&pDb->aFKey);
232 sqliteHashClear(&pDb->idxHash);
233 for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
234 Trigger *pTrigger = sqliteHashData(pElem);
235 sqliteDeleteTrigger(pTrigger);
236 }
237 sqliteHashClear(&temp2);
238 sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
239 for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
240 Table *pTab = sqliteHashData(pElem);
241 sqliteDeleteTable(db, pTab);
242 }
243 sqliteHashClear(&temp1);
244 DbClearProperty(db, i, DB_SchemaLoaded);
245 if( iDb>0 ) return;
246 }
247 assert( iDb==0 );
248 db->flags &= ~SQLITE_InternChanges;
249
250 /* If one or more of the auxiliary database files has been closed,
251 ** then remove then from the auxiliary database list. We take the
252 ** opportunity to do this here since we have just deleted all of the
253 ** schema hash tables and therefore do not have to make any changes
254 ** to any of those tables.
255 */
256 for(i=0; i<db->nDb; i++){
257 struct Db *pDb = &db->aDb[i];
258 if( pDb->pBt==0 ){
259 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
260 pDb->pAux = 0;
261 }
262 }
263 for(i=j=2; i<db->nDb; i++){
264 struct Db *pDb = &db->aDb[i];
265 if( pDb->pBt==0 ){
266 sqliteFree(pDb->zName);
267 pDb->zName = 0;
268 continue;
269 }
270 if( j<i ){
271 db->aDb[j] = db->aDb[i];
272 }
273 j++;
274 }
275 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
276 db->nDb = j;
277 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
278 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
279 sqliteFree(db->aDb);
280 db->aDb = db->aDbStatic;
281 }
282 }
283
284 /*
285 ** This routine is called whenever a rollback occurs. If there were
286 ** schema changes during the transaction, then we have to reset the
287 ** internal hash tables and reload them from disk.
288 */
sqliteRollbackInternalChanges(sqlite * db)289 void sqliteRollbackInternalChanges(sqlite *db){
290 if( db->flags & SQLITE_InternChanges ){
291 sqliteResetInternalSchema(db, 0);
292 }
293 }
294
295 /*
296 ** This routine is called when a commit occurs.
297 */
sqliteCommitInternalChanges(sqlite * db)298 void sqliteCommitInternalChanges(sqlite *db){
299 db->aDb[0].schema_cookie = db->next_cookie;
300 db->flags &= ~SQLITE_InternChanges;
301 }
302
303 /*
304 ** Remove the memory data structures associated with the given
305 ** Table. No changes are made to disk by this routine.
306 **
307 ** This routine just deletes the data structure. It does not unlink
308 ** the table data structure from the hash table. Nor does it remove
309 ** foreign keys from the sqlite.aFKey hash table. But it does destroy
310 ** memory structures of the indices and foreign keys associated with
311 ** the table.
312 **
313 ** Indices associated with the table are unlinked from the "db"
314 ** data structure if db!=NULL. If db==NULL, indices attached to
315 ** the table are deleted, but it is assumed they have already been
316 ** unlinked.
317 */
sqliteDeleteTable(sqlite * db,Table * pTable)318 void sqliteDeleteTable(sqlite *db, Table *pTable){
319 int i;
320 Index *pIndex, *pNext;
321 FKey *pFKey, *pNextFKey;
322
323 if( pTable==0 ) return;
324
325 /* Delete all indices associated with this table
326 */
327 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
328 pNext = pIndex->pNext;
329 assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
330 sqliteDeleteIndex(db, pIndex);
331 }
332
333 /* Delete all foreign keys associated with this table. The keys
334 ** should have already been unlinked from the db->aFKey hash table
335 */
336 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
337 pNextFKey = pFKey->pNextFrom;
338 assert( pTable->iDb<db->nDb );
339 assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
340 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
341 sqliteFree(pFKey);
342 }
343
344 /* Delete the Table structure itself.
345 */
346 for(i=0; i<pTable->nCol; i++){
347 sqliteFree(pTable->aCol[i].zName);
348 sqliteFree(pTable->aCol[i].zDflt);
349 sqliteFree(pTable->aCol[i].zType);
350 }
351 sqliteFree(pTable->zName);
352 sqliteFree(pTable->aCol);
353 sqliteSelectDelete(pTable->pSelect);
354 sqliteFree(pTable);
355 }
356
357 /*
358 ** Unlink the given table from the hash tables and the delete the
359 ** table structure with all its indices and foreign keys.
360 */
sqliteUnlinkAndDeleteTable(sqlite * db,Table * p)361 static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
362 Table *pOld;
363 FKey *pF1, *pF2;
364 int i = p->iDb;
365 assert( db!=0 );
366 pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
367 assert( pOld==0 || pOld==p );
368 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
369 int nTo = strlen(pF1->zTo) + 1;
370 pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
371 if( pF2==pF1 ){
372 sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
373 }else{
374 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
375 if( pF2 ){
376 pF2->pNextTo = pF1->pNextTo;
377 }
378 }
379 }
380 sqliteDeleteTable(db, p);
381 }
382
383 /*
384 ** Construct the name of a user table or index from a token.
385 **
386 ** Space to hold the name is obtained from sqliteMalloc() and must
387 ** be freed by the calling function.
388 */
sqliteTableNameFromToken(Token * pName)389 char *sqliteTableNameFromToken(Token *pName){
390 char *zName = sqliteStrNDup(pName->z, pName->n);
391 sqliteDequote(zName);
392 return zName;
393 }
394
395 /*
396 ** Generate code to open the appropriate master table. The table
397 ** opened will be SQLITE_MASTER for persistent tables and
398 ** SQLITE_TEMP_MASTER for temporary tables. The table is opened
399 ** on cursor 0.
400 */
sqliteOpenMasterTable(Vdbe * v,int isTemp)401 void sqliteOpenMasterTable(Vdbe *v, int isTemp){
402 sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
403 sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
404 }
405
406 /*
407 ** Begin constructing a new table representation in memory. This is
408 ** the first of several action routines that get called in response
409 ** to a CREATE TABLE statement. In particular, this routine is called
410 ** after seeing tokens "CREATE" and "TABLE" and the table name. The
411 ** pStart token is the CREATE and pName is the table name. The isTemp
412 ** flag is true if the table should be stored in the auxiliary database
413 ** file instead of in the main database file. This is normally the case
414 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
415 ** CREATE and TABLE.
416 **
417 ** The new table record is initialized and put in pParse->pNewTable.
418 ** As more of the CREATE TABLE statement is parsed, additional action
419 ** routines will be called to add more information to this record.
420 ** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
421 ** is called to complete the construction of the new table record.
422 */
sqliteStartTable(Parse * pParse,Token * pStart,Token * pName,int isTemp,int isView)423 void sqliteStartTable(
424 Parse *pParse, /* Parser context */
425 Token *pStart, /* The "CREATE" token */
426 Token *pName, /* Name of table or view to create */
427 int isTemp, /* True if this is a TEMP table */
428 int isView /* True if this is a VIEW */
429 ){
430 Table *pTable;
431 Index *pIdx;
432 char *zName;
433 sqlite *db = pParse->db;
434 Vdbe *v;
435 int iDb;
436
437 pParse->sFirstToken = *pStart;
438 zName = sqliteTableNameFromToken(pName);
439 if( zName==0 ) return;
440 if( db->init.iDb==1 ) isTemp = 1;
441 #ifndef SQLITE_OMIT_AUTHORIZATION
442 assert( (isTemp & 1)==isTemp );
443 {
444 int code;
445 char *zDb = isTemp ? "temp" : "main";
446 if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
447 sqliteFree(zName);
448 return;
449 }
450 if( isView ){
451 if( isTemp ){
452 code = SQLITE_CREATE_TEMP_VIEW;
453 }else{
454 code = SQLITE_CREATE_VIEW;
455 }
456 }else{
457 if( isTemp ){
458 code = SQLITE_CREATE_TEMP_TABLE;
459 }else{
460 code = SQLITE_CREATE_TABLE;
461 }
462 }
463 if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
464 sqliteFree(zName);
465 return;
466 }
467 }
468 #endif
469
470
471 /* Before trying to create a temporary table, make sure the Btree for
472 ** holding temporary tables is open.
473 */
474 if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
475 int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
476 if( rc!=SQLITE_OK ){
477 sqliteErrorMsg(pParse, "unable to open a temporary database "
478 "file for storing temporary tables");
479 pParse->nErr++;
480 return;
481 }
482 if( db->flags & SQLITE_InTrans ){
483 rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
484 if( rc!=SQLITE_OK ){
485 sqliteErrorMsg(pParse, "unable to get a write lock on "
486 "the temporary database file");
487 return;
488 }
489 }
490 }
491
492 /* Make sure the new table name does not collide with an existing
493 ** index or table name. Issue an error message if it does.
494 **
495 ** If we are re-reading the sqlite_master table because of a schema
496 ** change and a new permanent table is found whose name collides with
497 ** an existing temporary table, that is not an error.
498 */
499 pTable = sqliteFindTable(db, zName, 0);
500 iDb = isTemp ? 1 : db->init.iDb;
501 if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
502 sqliteErrorMsg(pParse, "table %T already exists", pName);
503 sqliteFree(zName);
504 return;
505 }
506 if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
507 (pIdx->iDb==0 || !db->init.busy) ){
508 sqliteErrorMsg(pParse, "there is already an index named %s", zName);
509 sqliteFree(zName);
510 return;
511 }
512 pTable = sqliteMalloc( sizeof(Table) );
513 if( pTable==0 ){
514 sqliteFree(zName);
515 return;
516 }
517 pTable->zName = zName;
518 pTable->nCol = 0;
519 pTable->aCol = 0;
520 pTable->iPKey = -1;
521 pTable->pIndex = 0;
522 pTable->iDb = iDb;
523 if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
524 pParse->pNewTable = pTable;
525
526 /* Begin generating the code that will insert the table record into
527 ** the SQLITE_MASTER table. Note in particular that we must go ahead
528 ** and allocate the record number for the table entry now. Before any
529 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
530 ** indices to be created and the table record must come before the
531 ** indices. Hence, the record number for the table must be allocated
532 ** now.
533 */
534 if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
535 sqliteBeginWriteOperation(pParse, 0, isTemp);
536 if( !isTemp ){
537 sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
538 sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
539 }
540 sqliteOpenMasterTable(v, isTemp);
541 sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
542 sqliteVdbeAddOp(v, OP_Dup, 0, 0);
543 sqliteVdbeAddOp(v, OP_String, 0, 0);
544 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
545 }
546 }
547
548 /*
549 ** Add a new column to the table currently being constructed.
550 **
551 ** The parser calls this routine once for each column declaration
552 ** in a CREATE TABLE statement. sqliteStartTable() gets called
553 ** first to get things going. Then this routine is called for each
554 ** column.
555 */
sqliteAddColumn(Parse * pParse,Token * pName)556 void sqliteAddColumn(Parse *pParse, Token *pName){
557 Table *p;
558 int i;
559 char *z = 0;
560 Column *pCol;
561 if( (p = pParse->pNewTable)==0 ) return;
562 sqliteSetNString(&z, pName->z, pName->n, 0);
563 if( z==0 ) return;
564 sqliteDequote(z);
565 for(i=0; i<p->nCol; i++){
566 if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
567 sqliteErrorMsg(pParse, "duplicate column name: %s", z);
568 sqliteFree(z);
569 return;
570 }
571 }
572 if( (p->nCol & 0x7)==0 ){
573 Column *aNew;
574 aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
575 if( aNew==0 ) return;
576 p->aCol = aNew;
577 }
578 pCol = &p->aCol[p->nCol];
579 memset(pCol, 0, sizeof(p->aCol[0]));
580 pCol->zName = z;
581 pCol->sortOrder = SQLITE_SO_NUM;
582 p->nCol++;
583 }
584
585 /*
586 ** This routine is called by the parser while in the middle of
587 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
588 ** been seen on a column. This routine sets the notNull flag on
589 ** the column currently under construction.
590 */
sqliteAddNotNull(Parse * pParse,int onError)591 void sqliteAddNotNull(Parse *pParse, int onError){
592 Table *p;
593 int i;
594 if( (p = pParse->pNewTable)==0 ) return;
595 i = p->nCol-1;
596 if( i>=0 ) p->aCol[i].notNull = onError;
597 }
598
599 /*
600 ** This routine is called by the parser while in the middle of
601 ** parsing a CREATE TABLE statement. The pFirst token is the first
602 ** token in the sequence of tokens that describe the type of the
603 ** column currently under construction. pLast is the last token
604 ** in the sequence. Use this information to construct a string
605 ** that contains the typename of the column and store that string
606 ** in zType.
607 */
sqliteAddColumnType(Parse * pParse,Token * pFirst,Token * pLast)608 void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
609 Table *p;
610 int i, j;
611 int n;
612 char *z, **pz;
613 Column *pCol;
614 if( (p = pParse->pNewTable)==0 ) return;
615 i = p->nCol-1;
616 if( i<0 ) return;
617 pCol = &p->aCol[i];
618 pz = &pCol->zType;
619 n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
620 sqliteSetNString(pz, pFirst->z, n, 0);
621 z = *pz;
622 if( z==0 ) return;
623 for(i=j=0; z[i]; i++){
624 int c = z[i];
625 if( isspace(c) ) continue;
626 z[j++] = c;
627 }
628 z[j] = 0;
629 if( pParse->db->file_format>=4 ){
630 pCol->sortOrder = sqliteCollateType(z, n);
631 }else{
632 pCol->sortOrder = SQLITE_SO_NUM;
633 }
634 }
635
636 /*
637 ** The given token is the default value for the last column added to
638 ** the table currently under construction. If "minusFlag" is true, it
639 ** means the value token was preceded by a minus sign.
640 **
641 ** This routine is called by the parser while in the middle of
642 ** parsing a CREATE TABLE statement.
643 */
sqliteAddDefaultValue(Parse * pParse,Token * pVal,int minusFlag)644 void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
645 Table *p;
646 int i;
647 char **pz;
648 if( (p = pParse->pNewTable)==0 ) return;
649 i = p->nCol-1;
650 if( i<0 ) return;
651 pz = &p->aCol[i].zDflt;
652 if( minusFlag ){
653 sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
654 }else{
655 sqliteSetNString(pz, pVal->z, pVal->n, 0);
656 }
657 sqliteDequote(*pz);
658 }
659
660 /*
661 ** Designate the PRIMARY KEY for the table. pList is a list of names
662 ** of columns that form the primary key. If pList is NULL, then the
663 ** most recently added column of the table is the primary key.
664 **
665 ** A table can have at most one primary key. If the table already has
666 ** a primary key (and this is the second primary key) then create an
667 ** error.
668 **
669 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
670 ** then we will try to use that column as the row id. (Exception:
671 ** For backwards compatibility with older databases, do not do this
672 ** if the file format version number is less than 1.) Set the Table.iPKey
673 ** field of the table under construction to be the index of the
674 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
675 ** no INTEGER PRIMARY KEY.
676 **
677 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
678 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
679 */
sqliteAddPrimaryKey(Parse * pParse,IdList * pList,int onError)680 void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
681 Table *pTab = pParse->pNewTable;
682 char *zType = 0;
683 int iCol = -1, i;
684 if( pTab==0 ) goto primary_key_exit;
685 if( pTab->hasPrimKey ){
686 sqliteErrorMsg(pParse,
687 "table \"%s\" has more than one primary key", pTab->zName);
688 goto primary_key_exit;
689 }
690 pTab->hasPrimKey = 1;
691 if( pList==0 ){
692 iCol = pTab->nCol - 1;
693 pTab->aCol[iCol].isPrimKey = 1;
694 }else{
695 for(i=0; i<pList->nId; i++){
696 for(iCol=0; iCol<pTab->nCol; iCol++){
697 if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
698 }
699 if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
700 }
701 if( pList->nId>1 ) iCol = -1;
702 }
703 if( iCol>=0 && iCol<pTab->nCol ){
704 zType = pTab->aCol[iCol].zType;
705 }
706 if( pParse->db->file_format>=1 &&
707 zType && sqliteStrICmp(zType, "INTEGER")==0 ){
708 pTab->iPKey = iCol;
709 pTab->keyConf = onError;
710 }else{
711 sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
712 pList = 0;
713 }
714
715 primary_key_exit:
716 sqliteIdListDelete(pList);
717 return;
718 }
719
720 /*
721 ** Return the appropriate collating type given a type name.
722 **
723 ** The collation type is text (SQLITE_SO_TEXT) if the type
724 ** name contains the character stream "text" or "blob" or
725 ** "clob". Any other type name is collated as numeric
726 ** (SQLITE_SO_NUM).
727 */
sqliteCollateType(const char * zType,int nType)728 int sqliteCollateType(const char *zType, int nType){
729 int i;
730 for(i=0; i<nType-3; i++){
731 int c = *(zType++) | 0x60;
732 if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
733 return SQLITE_SO_TEXT;
734 }
735 if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
736 return SQLITE_SO_TEXT;
737 }
738 if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
739 return SQLITE_SO_TEXT;
740 }
741 }
742 return SQLITE_SO_NUM;
743 }
744
745 /*
746 ** This routine is called by the parser while in the middle of
747 ** parsing a CREATE TABLE statement. A "COLLATE" clause has
748 ** been seen on a column. This routine sets the Column.sortOrder on
749 ** the column currently under construction.
750 */
sqliteAddCollateType(Parse * pParse,int collType)751 void sqliteAddCollateType(Parse *pParse, int collType){
752 Table *p;
753 int i;
754 if( (p = pParse->pNewTable)==0 ) return;
755 i = p->nCol-1;
756 if( i>=0 ) p->aCol[i].sortOrder = collType;
757 }
758
759 /*
760 ** Come up with a new random value for the schema cookie. Make sure
761 ** the new value is different from the old.
762 **
763 ** The schema cookie is used to determine when the schema for the
764 ** database changes. After each schema change, the cookie value
765 ** changes. When a process first reads the schema it records the
766 ** cookie. Thereafter, whenever it goes to access the database,
767 ** it checks the cookie to make sure the schema has not changed
768 ** since it was last read.
769 **
770 ** This plan is not completely bullet-proof. It is possible for
771 ** the schema to change multiple times and for the cookie to be
772 ** set back to prior value. But schema changes are infrequent
773 ** and the probability of hitting the same cookie value is only
774 ** 1 chance in 2^32. So we're safe enough.
775 */
sqliteChangeCookie(sqlite * db,Vdbe * v)776 void sqliteChangeCookie(sqlite *db, Vdbe *v){
777 if( db->next_cookie==db->aDb[0].schema_cookie ){
778 unsigned char r;
779 sqliteRandomness(1, &r);
780 db->next_cookie = db->aDb[0].schema_cookie + r + 1;
781 db->flags |= SQLITE_InternChanges;
782 sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
783 sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
784 }
785 }
786
787 /*
788 ** Measure the number of characters needed to output the given
789 ** identifier. The number returned includes any quotes used
790 ** but does not include the null terminator.
791 */
identLength(const char * z)792 static int identLength(const char *z){
793 int n;
794 int needQuote = 0;
795 for(n=0; *z; n++, z++){
796 if( *z=='\'' ){ n++; needQuote=1; }
797 }
798 return n + needQuote*2;
799 }
800
801 /*
802 ** Write an identifier onto the end of the given string. Add
803 ** quote characters as needed.
804 */
identPut(char * z,int * pIdx,char * zIdent)805 static void identPut(char *z, int *pIdx, char *zIdent){
806 int i, j, needQuote;
807 i = *pIdx;
808 for(j=0; zIdent[j]; j++){
809 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
810 }
811 needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
812 || sqliteKeywordCode(zIdent, j)!=TK_ID;
813 if( needQuote ) z[i++] = '\'';
814 for(j=0; zIdent[j]; j++){
815 z[i++] = zIdent[j];
816 if( zIdent[j]=='\'' ) z[i++] = '\'';
817 }
818 if( needQuote ) z[i++] = '\'';
819 z[i] = 0;
820 *pIdx = i;
821 }
822
823 /*
824 ** Generate a CREATE TABLE statement appropriate for the given
825 ** table. Memory to hold the text of the statement is obtained
826 ** from sqliteMalloc() and must be freed by the calling function.
827 */
createTableStmt(Table * p)828 static char *createTableStmt(Table *p){
829 int i, k, n;
830 char *zStmt;
831 char *zSep, *zSep2, *zEnd;
832 n = 0;
833 for(i=0; i<p->nCol; i++){
834 n += identLength(p->aCol[i].zName);
835 }
836 n += identLength(p->zName);
837 if( n<40 ){
838 zSep = "";
839 zSep2 = ",";
840 zEnd = ")";
841 }else{
842 zSep = "\n ";
843 zSep2 = ",\n ";
844 zEnd = "\n)";
845 }
846 n += 35 + 6*p->nCol;
847 zStmt = sqliteMallocRaw( n );
848 if( zStmt==0 ) return 0;
849 strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
850 k = strlen(zStmt);
851 identPut(zStmt, &k, p->zName);
852 zStmt[k++] = '(';
853 for(i=0; i<p->nCol; i++){
854 strcpy(&zStmt[k], zSep);
855 k += strlen(&zStmt[k]);
856 zSep = zSep2;
857 identPut(zStmt, &k, p->aCol[i].zName);
858 }
859 strcpy(&zStmt[k], zEnd);
860 return zStmt;
861 }
862
863 /*
864 ** This routine is called to report the final ")" that terminates
865 ** a CREATE TABLE statement.
866 **
867 ** The table structure that other action routines have been building
868 ** is added to the internal hash tables, assuming no errors have
869 ** occurred.
870 **
871 ** An entry for the table is made in the master table on disk, unless
872 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
873 ** it means we are reading the sqlite_master table because we just
874 ** connected to the database or because the sqlite_master table has
875 ** recently changes, so the entry for this table already exists in
876 ** the sqlite_master table. We do not want to create it again.
877 **
878 ** If the pSelect argument is not NULL, it means that this routine
879 ** was called to create a table generated from a
880 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
881 ** the new table will match the result set of the SELECT.
882 */
sqliteEndTable(Parse * pParse,Token * pEnd,Select * pSelect)883 void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
884 Table *p;
885 sqlite *db = pParse->db;
886
887 if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
888 p = pParse->pNewTable;
889 if( p==0 ) return;
890
891 /* If the table is generated from a SELECT, then construct the
892 ** list of columns and the text of the table.
893 */
894 if( pSelect ){
895 Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
896 if( pSelTab==0 ) return;
897 assert( p->aCol==0 );
898 p->nCol = pSelTab->nCol;
899 p->aCol = pSelTab->aCol;
900 pSelTab->nCol = 0;
901 pSelTab->aCol = 0;
902 sqliteDeleteTable(0, pSelTab);
903 }
904
905 /* If the db->init.busy is 1 it means we are reading the SQL off the
906 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
907 ** So do not write to the disk again. Extract the root page number
908 ** for the table from the db->init.newTnum field. (The page number
909 ** should have been put there by the sqliteOpenCb routine.)
910 */
911 if( db->init.busy ){
912 p->tnum = db->init.newTnum;
913 }
914
915 /* If not initializing, then create a record for the new table
916 ** in the SQLITE_MASTER table of the database. The record number
917 ** for the new table entry should already be on the stack.
918 **
919 ** If this is a TEMPORARY table, write the entry into the auxiliary
920 ** file instead of into the main database file.
921 */
922 if( !db->init.busy ){
923 int n;
924 Vdbe *v;
925
926 v = sqliteGetVdbe(pParse);
927 if( v==0 ) return;
928 if( p->pSelect==0 ){
929 /* A regular table */
930 sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
931 }else{
932 /* A view */
933 sqliteVdbeAddOp(v, OP_Integer, 0, 0);
934 }
935 p->tnum = 0;
936 sqliteVdbeAddOp(v, OP_Pull, 1, 0);
937 sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
938 sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
939 sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
940 sqliteVdbeAddOp(v, OP_Dup, 4, 0);
941 sqliteVdbeAddOp(v, OP_String, 0, 0);
942 if( pSelect ){
943 char *z = createTableStmt(p);
944 n = z ? strlen(z) : 0;
945 sqliteVdbeChangeP3(v, -1, z, n);
946 sqliteFree(z);
947 }else{
948 assert( pEnd!=0 );
949 n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
950 sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
951 }
952 sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
953 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
954 if( !p->iDb ){
955 sqliteChangeCookie(db, v);
956 }
957 sqliteVdbeAddOp(v, OP_Close, 0, 0);
958 if( pSelect ){
959 sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
960 sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
961 pParse->nTab = 2;
962 sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
963 }
964 sqliteEndWriteOperation(pParse);
965 }
966
967 /* Add the table to the in-memory representation of the database.
968 */
969 if( pParse->explain==0 && pParse->nErr==0 ){
970 Table *pOld;
971 FKey *pFKey;
972 pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
973 p->zName, strlen(p->zName)+1, p);
974 if( pOld ){
975 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
976 return;
977 }
978 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
979 int nTo = strlen(pFKey->zTo) + 1;
980 pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
981 sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
982 }
983 pParse->pNewTable = 0;
984 db->nTable++;
985 db->flags |= SQLITE_InternChanges;
986 }
987 }
988
989 /*
990 ** The parser calls this routine in order to create a new VIEW
991 */
sqliteCreateView(Parse * pParse,Token * pBegin,Token * pName,Select * pSelect,int isTemp)992 void sqliteCreateView(
993 Parse *pParse, /* The parsing context */
994 Token *pBegin, /* The CREATE token that begins the statement */
995 Token *pName, /* The token that holds the name of the view */
996 Select *pSelect, /* A SELECT statement that will become the new view */
997 int isTemp /* TRUE for a TEMPORARY view */
998 ){
999 Table *p;
1000 int n;
1001 const char *z;
1002 Token sEnd;
1003 DbFixer sFix;
1004
1005 sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
1006 p = pParse->pNewTable;
1007 if( p==0 || pParse->nErr ){
1008 sqliteSelectDelete(pSelect);
1009 return;
1010 }
1011 if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
1012 && sqliteFixSelect(&sFix, pSelect)
1013 ){
1014 sqliteSelectDelete(pSelect);
1015 return;
1016 }
1017
1018 /* Make a copy of the entire SELECT statement that defines the view.
1019 ** This will force all the Expr.token.z values to be dynamically
1020 ** allocated rather than point to the input string - which means that
1021 ** they will persist after the current sqlite_exec() call returns.
1022 */
1023 p->pSelect = sqliteSelectDup(pSelect);
1024 sqliteSelectDelete(pSelect);
1025 if( !pParse->db->init.busy ){
1026 sqliteViewGetColumnNames(pParse, p);
1027 }
1028
1029 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1030 ** the end.
1031 */
1032 sEnd = pParse->sLastToken;
1033 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
1034 sEnd.z += sEnd.n;
1035 }
1036 sEnd.n = 0;
1037 n = sEnd.z - pBegin->z;
1038 z = pBegin->z;
1039 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
1040 sEnd.z = &z[n-1];
1041 sEnd.n = 1;
1042
1043 /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
1044 sqliteEndTable(pParse, &sEnd, 0);
1045 return;
1046 }
1047
1048 /*
1049 ** The Table structure pTable is really a VIEW. Fill in the names of
1050 ** the columns of the view in the pTable structure. Return the number
1051 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1052 */
sqliteViewGetColumnNames(Parse * pParse,Table * pTable)1053 int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
1054 ExprList *pEList;
1055 Select *pSel;
1056 Table *pSelTab;
1057 int nErr = 0;
1058
1059 assert( pTable );
1060
1061 /* A positive nCol means the columns names for this view are
1062 ** already known.
1063 */
1064 if( pTable->nCol>0 ) return 0;
1065
1066 /* A negative nCol is a special marker meaning that we are currently
1067 ** trying to compute the column names. If we enter this routine with
1068 ** a negative nCol, it means two or more views form a loop, like this:
1069 **
1070 ** CREATE VIEW one AS SELECT * FROM two;
1071 ** CREATE VIEW two AS SELECT * FROM one;
1072 **
1073 ** Actually, this error is caught previously and so the following test
1074 ** should always fail. But we will leave it in place just to be safe.
1075 */
1076 if( pTable->nCol<0 ){
1077 sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1078 return 1;
1079 }
1080
1081 /* If we get this far, it means we need to compute the table names.
1082 */
1083 assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
1084 pSel = pTable->pSelect;
1085
1086 /* Note that the call to sqliteResultSetOfSelect() will expand any
1087 ** "*" elements in this list. But we will need to restore the list
1088 ** back to its original configuration afterwards, so we save a copy of
1089 ** the original in pEList.
1090 */
1091 pEList = pSel->pEList;
1092 pSel->pEList = sqliteExprListDup(pEList);
1093 if( pSel->pEList==0 ){
1094 pSel->pEList = pEList;
1095 return 1; /* Malloc failed */
1096 }
1097 pTable->nCol = -1;
1098 pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
1099 if( pSelTab ){
1100 assert( pTable->aCol==0 );
1101 pTable->nCol = pSelTab->nCol;
1102 pTable->aCol = pSelTab->aCol;
1103 pSelTab->nCol = 0;
1104 pSelTab->aCol = 0;
1105 sqliteDeleteTable(0, pSelTab);
1106 DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
1107 }else{
1108 pTable->nCol = 0;
1109 nErr++;
1110 }
1111 sqliteSelectUnbind(pSel);
1112 sqliteExprListDelete(pSel->pEList);
1113 pSel->pEList = pEList;
1114 return nErr;
1115 }
1116
1117 /*
1118 ** Clear the column names from the VIEW pTable.
1119 **
1120 ** This routine is called whenever any other table or view is modified.
1121 ** The view passed into this routine might depend directly or indirectly
1122 ** on the modified or deleted table so we need to clear the old column
1123 ** names so that they will be recomputed.
1124 */
sqliteViewResetColumnNames(Table * pTable)1125 static void sqliteViewResetColumnNames(Table *pTable){
1126 int i;
1127 Column *pCol;
1128 assert( pTable!=0 && pTable->pSelect!=0 );
1129 for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
1130 sqliteFree(pCol->zName);
1131 sqliteFree(pCol->zDflt);
1132 sqliteFree(pCol->zType);
1133 }
1134 sqliteFree(pTable->aCol);
1135 pTable->aCol = 0;
1136 pTable->nCol = 0;
1137 }
1138
1139 /*
1140 ** Clear the column names from every VIEW in database idx.
1141 */
sqliteViewResetAll(sqlite * db,int idx)1142 static void sqliteViewResetAll(sqlite *db, int idx){
1143 HashElem *i;
1144 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1145 for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
1146 Table *pTab = sqliteHashData(i);
1147 if( pTab->pSelect ){
1148 sqliteViewResetColumnNames(pTab);
1149 }
1150 }
1151 DbClearProperty(db, idx, DB_UnresetViews);
1152 }
1153
1154 /*
1155 ** Given a token, look up a table with that name. If not found, leave
1156 ** an error for the parser to find and return NULL.
1157 */
sqliteTableFromToken(Parse * pParse,Token * pTok)1158 Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
1159 char *zName;
1160 Table *pTab;
1161 zName = sqliteTableNameFromToken(pTok);
1162 if( zName==0 ) return 0;
1163 pTab = sqliteFindTable(pParse->db, zName, 0);
1164 sqliteFree(zName);
1165 if( pTab==0 ){
1166 sqliteErrorMsg(pParse, "no such table: %T", pTok);
1167 }
1168 return pTab;
1169 }
1170
1171 /*
1172 ** This routine is called to do the work of a DROP TABLE statement.
1173 ** pName is the name of the table to be dropped.
1174 */
sqliteDropTable(Parse * pParse,Token * pName,int isView)1175 void sqliteDropTable(Parse *pParse, Token *pName, int isView){
1176 Table *pTable;
1177 Vdbe *v;
1178 int base;
1179 sqlite *db = pParse->db;
1180 int iDb;
1181
1182 if( pParse->nErr || sqlite_malloc_failed ) return;
1183 pTable = sqliteTableFromToken(pParse, pName);
1184 if( pTable==0 ) return;
1185 iDb = pTable->iDb;
1186 assert( iDb>=0 && iDb<db->nDb );
1187 #ifndef SQLITE_OMIT_AUTHORIZATION
1188 {
1189 int code;
1190 const char *zTab = SCHEMA_TABLE(pTable->iDb);
1191 const char *zDb = db->aDb[pTable->iDb].zName;
1192 if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1193 return;
1194 }
1195 if( isView ){
1196 if( iDb==1 ){
1197 code = SQLITE_DROP_TEMP_VIEW;
1198 }else{
1199 code = SQLITE_DROP_VIEW;
1200 }
1201 }else{
1202 if( iDb==1 ){
1203 code = SQLITE_DROP_TEMP_TABLE;
1204 }else{
1205 code = SQLITE_DROP_TABLE;
1206 }
1207 }
1208 if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
1209 return;
1210 }
1211 if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
1212 return;
1213 }
1214 }
1215 #endif
1216 if( pTable->readOnly ){
1217 sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
1218 pParse->nErr++;
1219 return;
1220 }
1221 if( isView && pTable->pSelect==0 ){
1222 sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
1223 return;
1224 }
1225 if( !isView && pTable->pSelect ){
1226 sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
1227 return;
1228 }
1229
1230 /* Generate code to remove the table from the master table
1231 ** on disk.
1232 */
1233 v = sqliteGetVdbe(pParse);
1234 if( v ){
1235 static VdbeOpList dropTable[] = {
1236 { OP_Rewind, 0, ADDR(8), 0},
1237 { OP_String, 0, 0, 0}, /* 1 */
1238 { OP_MemStore, 1, 1, 0},
1239 { OP_MemLoad, 1, 0, 0}, /* 3 */
1240 { OP_Column, 0, 2, 0},
1241 { OP_Ne, 0, ADDR(7), 0},
1242 { OP_Delete, 0, 0, 0},
1243 { OP_Next, 0, ADDR(3), 0}, /* 7 */
1244 };
1245 Index *pIdx;
1246 Trigger *pTrigger;
1247 sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
1248
1249 /* Drop all triggers associated with the table being dropped */
1250 pTrigger = pTable->pTrigger;
1251 while( pTrigger ){
1252 assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
1253 sqliteDropTriggerPtr(pParse, pTrigger, 1);
1254 if( pParse->explain ){
1255 pTrigger = pTrigger->pNext;
1256 }else{
1257 pTrigger = pTable->pTrigger;
1258 }
1259 }
1260
1261 /* Drop all SQLITE_MASTER entries that refer to the table */
1262 sqliteOpenMasterTable(v, pTable->iDb);
1263 base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
1264 sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
1265
1266 /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
1267 if( pTable->iDb!=1 ){
1268 sqliteOpenMasterTable(v, 1);
1269 base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
1270 sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
1271 }
1272
1273 if( pTable->iDb==0 ){
1274 sqliteChangeCookie(db, v);
1275 }
1276 sqliteVdbeAddOp(v, OP_Close, 0, 0);
1277 if( !isView ){
1278 sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
1279 for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
1280 sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
1281 }
1282 }
1283 sqliteEndWriteOperation(pParse);
1284 }
1285
1286 /* Delete the in-memory description of the table.
1287 **
1288 ** Exception: if the SQL statement began with the EXPLAIN keyword,
1289 ** then no changes should be made.
1290 */
1291 if( !pParse->explain ){
1292 sqliteUnlinkAndDeleteTable(db, pTable);
1293 db->flags |= SQLITE_InternChanges;
1294 }
1295 sqliteViewResetAll(db, iDb);
1296 }
1297
1298 /*
1299 ** This routine constructs a P3 string suitable for an OP_MakeIdxKey
1300 ** opcode and adds that P3 string to the most recently inserted instruction
1301 ** in the virtual machine. The P3 string consists of a single character
1302 ** for each column in the index pIdx of table pTab. If the column uses
1303 ** a numeric sort order, then the P3 string character corresponding to
1304 ** that column is 'n'. If the column uses a text sort order, then the
1305 ** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
1306 ** additional information. See also the sqliteAddKeyType() routine.
1307 */
sqliteAddIdxKeyType(Vdbe * v,Index * pIdx)1308 void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
1309 char *zType;
1310 Table *pTab;
1311 int i, n;
1312 assert( pIdx!=0 && pIdx->pTable!=0 );
1313 pTab = pIdx->pTable;
1314 n = pIdx->nColumn;
1315 zType = sqliteMallocRaw( n+1 );
1316 if( zType==0 ) return;
1317 for(i=0; i<n; i++){
1318 int iCol = pIdx->aiColumn[i];
1319 assert( iCol>=0 && iCol<pTab->nCol );
1320 if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
1321 zType[i] = 't';
1322 }else{
1323 zType[i] = 'n';
1324 }
1325 }
1326 zType[n] = 0;
1327 sqliteVdbeChangeP3(v, -1, zType, n);
1328 sqliteFree(zType);
1329 }
1330
1331 /*
1332 ** This routine is called to create a new foreign key on the table
1333 ** currently under construction. pFromCol determines which columns
1334 ** in the current table point to the foreign key. If pFromCol==0 then
1335 ** connect the key to the last column inserted. pTo is the name of
1336 ** the table referred to. pToCol is a list of tables in the other
1337 ** pTo table that the foreign key points to. flags contains all
1338 ** information about the conflict resolution algorithms specified
1339 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
1340 **
1341 ** An FKey structure is created and added to the table currently
1342 ** under construction in the pParse->pNewTable field. The new FKey
1343 ** is not linked into db->aFKey at this point - that does not happen
1344 ** until sqliteEndTable().
1345 **
1346 ** The foreign key is set for IMMEDIATE processing. A subsequent call
1347 ** to sqliteDeferForeignKey() might change this to DEFERRED.
1348 */
sqliteCreateForeignKey(Parse * pParse,IdList * pFromCol,Token * pTo,IdList * pToCol,int flags)1349 void sqliteCreateForeignKey(
1350 Parse *pParse, /* Parsing context */
1351 IdList *pFromCol, /* Columns in this table that point to other table */
1352 Token *pTo, /* Name of the other table */
1353 IdList *pToCol, /* Columns in the other table */
1354 int flags /* Conflict resolution algorithms. */
1355 ){
1356 Table *p = pParse->pNewTable;
1357 int nByte;
1358 int i;
1359 int nCol;
1360 char *z;
1361 FKey *pFKey = 0;
1362
1363 assert( pTo!=0 );
1364 if( p==0 || pParse->nErr ) goto fk_end;
1365 if( pFromCol==0 ){
1366 int iCol = p->nCol-1;
1367 if( iCol<0 ) goto fk_end;
1368 if( pToCol && pToCol->nId!=1 ){
1369 sqliteErrorMsg(pParse, "foreign key on %s"
1370 " should reference only one column of table %T",
1371 p->aCol[iCol].zName, pTo);
1372 goto fk_end;
1373 }
1374 nCol = 1;
1375 }else if( pToCol && pToCol->nId!=pFromCol->nId ){
1376 sqliteErrorMsg(pParse,
1377 "number of columns in foreign key does not match the number of "
1378 "columns in the referenced table");
1379 goto fk_end;
1380 }else{
1381 nCol = pFromCol->nId;
1382 }
1383 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
1384 if( pToCol ){
1385 for(i=0; i<pToCol->nId; i++){
1386 nByte += strlen(pToCol->a[i].zName) + 1;
1387 }
1388 }
1389 pFKey = sqliteMalloc( nByte );
1390 if( pFKey==0 ) goto fk_end;
1391 pFKey->pFrom = p;
1392 pFKey->pNextFrom = p->pFKey;
1393 z = (char*)&pFKey[1];
1394 pFKey->aCol = (struct sColMap*)z;
1395 z += sizeof(struct sColMap)*nCol;
1396 pFKey->zTo = z;
1397 memcpy(z, pTo->z, pTo->n);
1398 z[pTo->n] = 0;
1399 z += pTo->n+1;
1400 pFKey->pNextTo = 0;
1401 pFKey->nCol = nCol;
1402 if( pFromCol==0 ){
1403 pFKey->aCol[0].iFrom = p->nCol-1;
1404 }else{
1405 for(i=0; i<nCol; i++){
1406 int j;
1407 for(j=0; j<p->nCol; j++){
1408 if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
1409 pFKey->aCol[i].iFrom = j;
1410 break;
1411 }
1412 }
1413 if( j>=p->nCol ){
1414 sqliteErrorMsg(pParse,
1415 "unknown column \"%s\" in foreign key definition",
1416 pFromCol->a[i].zName);
1417 goto fk_end;
1418 }
1419 }
1420 }
1421 if( pToCol ){
1422 for(i=0; i<nCol; i++){
1423 int n = strlen(pToCol->a[i].zName);
1424 pFKey->aCol[i].zCol = z;
1425 memcpy(z, pToCol->a[i].zName, n);
1426 z[n] = 0;
1427 z += n+1;
1428 }
1429 }
1430 pFKey->isDeferred = 0;
1431 pFKey->deleteConf = flags & 0xff;
1432 pFKey->updateConf = (flags >> 8 ) & 0xff;
1433 pFKey->insertConf = (flags >> 16 ) & 0xff;
1434
1435 /* Link the foreign key to the table as the last step.
1436 */
1437 p->pFKey = pFKey;
1438 pFKey = 0;
1439
1440 fk_end:
1441 sqliteFree(pFKey);
1442 sqliteIdListDelete(pFromCol);
1443 sqliteIdListDelete(pToCol);
1444 }
1445
1446 /*
1447 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
1448 ** clause is seen as part of a foreign key definition. The isDeferred
1449 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
1450 ** The behavior of the most recently created foreign key is adjusted
1451 ** accordingly.
1452 */
sqliteDeferForeignKey(Parse * pParse,int isDeferred)1453 void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
1454 Table *pTab;
1455 FKey *pFKey;
1456 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
1457 pFKey->isDeferred = isDeferred;
1458 }
1459
1460 /*
1461 ** Create a new index for an SQL table. pIndex is the name of the index
1462 ** and pTable is the name of the table that is to be indexed. Both will
1463 ** be NULL for a primary key or an index that is created to satisfy a
1464 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
1465 ** as the table to be indexed. pParse->pNewTable is a table that is
1466 ** currently being constructed by a CREATE TABLE statement.
1467 **
1468 ** pList is a list of columns to be indexed. pList will be NULL if this
1469 ** is a primary key or unique-constraint on the most recent column added
1470 ** to the table currently under construction.
1471 */
sqliteCreateIndex(Parse * pParse,Token * pName,SrcList * pTable,IdList * pList,int onError,Token * pStart,Token * pEnd)1472 void sqliteCreateIndex(
1473 Parse *pParse, /* All information about this parse */
1474 Token *pName, /* Name of the index. May be NULL */
1475 SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
1476 IdList *pList, /* A list of columns to be indexed */
1477 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1478 Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
1479 Token *pEnd /* The ")" that closes the CREATE INDEX statement */
1480 ){
1481 Table *pTab; /* Table to be indexed */
1482 Index *pIndex; /* The index to be created */
1483 char *zName = 0;
1484 int i, j;
1485 Token nullId; /* Fake token for an empty ID list */
1486 DbFixer sFix; /* For assigning database names to pTable */
1487 int isTemp; /* True for a temporary index */
1488 sqlite *db = pParse->db;
1489
1490 if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
1491 if( db->init.busy
1492 && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
1493 && sqliteFixSrcList(&sFix, pTable)
1494 ){
1495 goto exit_create_index;
1496 }
1497
1498 /*
1499 ** Find the table that is to be indexed. Return early if not found.
1500 */
1501 if( pTable!=0 ){
1502 assert( pName!=0 );
1503 assert( pTable->nSrc==1 );
1504 pTab = sqliteSrcListLookup(pParse, pTable);
1505 }else{
1506 assert( pName==0 );
1507 pTab = pParse->pNewTable;
1508 }
1509 if( pTab==0 || pParse->nErr ) goto exit_create_index;
1510 if( pTab->readOnly ){
1511 sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
1512 goto exit_create_index;
1513 }
1514 if( pTab->iDb>=2 && db->init.busy==0 ){
1515 sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
1516 goto exit_create_index;
1517 }
1518 if( pTab->pSelect ){
1519 sqliteErrorMsg(pParse, "views may not be indexed");
1520 goto exit_create_index;
1521 }
1522 isTemp = pTab->iDb==1;
1523
1524 /*
1525 ** Find the name of the index. Make sure there is not already another
1526 ** index or table with the same name.
1527 **
1528 ** Exception: If we are reading the names of permanent indices from the
1529 ** sqlite_master table (because some other process changed the schema) and
1530 ** one of the index names collides with the name of a temporary table or
1531 ** index, then we will continue to process this index.
1532 **
1533 ** If pName==0 it means that we are
1534 ** dealing with a primary key or UNIQUE constraint. We have to invent our
1535 ** own name.
1536 */
1537 if( pName && !db->init.busy ){
1538 Index *pISameName; /* Another index with the same name */
1539 Table *pTSameName; /* A table with same name as the index */
1540 zName = sqliteTableNameFromToken(pName);
1541 if( zName==0 ) goto exit_create_index;
1542 if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
1543 sqliteErrorMsg(pParse, "index %s already exists", zName);
1544 goto exit_create_index;
1545 }
1546 if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
1547 sqliteErrorMsg(pParse, "there is already a table named %s", zName);
1548 goto exit_create_index;
1549 }
1550 }else if( pName==0 ){
1551 char zBuf[30];
1552 int n;
1553 Index *pLoop;
1554 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
1555 sprintf(zBuf,"%d)",n);
1556 zName = 0;
1557 sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
1558 if( zName==0 ) goto exit_create_index;
1559 }else{
1560 zName = sqliteStrNDup(pName->z, pName->n);
1561 }
1562
1563 /* Check for authorization to create an index.
1564 */
1565 #ifndef SQLITE_OMIT_AUTHORIZATION
1566 {
1567 const char *zDb = db->aDb[pTab->iDb].zName;
1568
1569 assert( pTab->iDb==db->init.iDb || isTemp );
1570 if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1571 goto exit_create_index;
1572 }
1573 i = SQLITE_CREATE_INDEX;
1574 if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
1575 if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
1576 goto exit_create_index;
1577 }
1578 }
1579 #endif
1580
1581 /* If pList==0, it means this routine was called to make a primary
1582 ** key out of the last column added to the table under construction.
1583 ** So create a fake list to simulate this.
1584 */
1585 if( pList==0 ){
1586 nullId.z = pTab->aCol[pTab->nCol-1].zName;
1587 nullId.n = strlen(nullId.z);
1588 pList = sqliteIdListAppend(0, &nullId);
1589 if( pList==0 ) goto exit_create_index;
1590 }
1591
1592 /*
1593 ** Allocate the index structure.
1594 */
1595 pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
1596 sizeof(int)*pList->nId );
1597 if( pIndex==0 ) goto exit_create_index;
1598 pIndex->aiColumn = (int*)&pIndex[1];
1599 pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
1600 strcpy(pIndex->zName, zName);
1601 pIndex->pTable = pTab;
1602 pIndex->nColumn = pList->nId;
1603 pIndex->onError = onError;
1604 pIndex->autoIndex = pName==0;
1605 pIndex->iDb = isTemp ? 1 : db->init.iDb;
1606
1607 /* Scan the names of the columns of the table to be indexed and
1608 ** load the column indices into the Index structure. Report an error
1609 ** if any column is not found.
1610 */
1611 for(i=0; i<pList->nId; i++){
1612 for(j=0; j<pTab->nCol; j++){
1613 if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
1614 }
1615 if( j>=pTab->nCol ){
1616 sqliteErrorMsg(pParse, "table %s has no column named %s",
1617 pTab->zName, pList->a[i].zName);
1618 sqliteFree(pIndex);
1619 goto exit_create_index;
1620 }
1621 pIndex->aiColumn[i] = j;
1622 }
1623
1624 /* Link the new Index structure to its table and to the other
1625 ** in-memory database structures.
1626 */
1627 if( !pParse->explain ){
1628 Index *p;
1629 p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
1630 pIndex->zName, strlen(pIndex->zName)+1, pIndex);
1631 if( p ){
1632 assert( p==pIndex ); /* Malloc must have failed */
1633 sqliteFree(pIndex);
1634 goto exit_create_index;
1635 }
1636 db->flags |= SQLITE_InternChanges;
1637 }
1638
1639 /* When adding an index to the list of indices for a table, make
1640 ** sure all indices labeled OE_Replace come after all those labeled
1641 ** OE_Ignore. This is necessary for the correct operation of UPDATE
1642 ** and INSERT.
1643 */
1644 if( onError!=OE_Replace || pTab->pIndex==0
1645 || pTab->pIndex->onError==OE_Replace){
1646 pIndex->pNext = pTab->pIndex;
1647 pTab->pIndex = pIndex;
1648 }else{
1649 Index *pOther = pTab->pIndex;
1650 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
1651 pOther = pOther->pNext;
1652 }
1653 pIndex->pNext = pOther->pNext;
1654 pOther->pNext = pIndex;
1655 }
1656
1657 /* If the db->init.busy is 1 it means we are reading the SQL off the
1658 ** "sqlite_master" table on the disk. So do not write to the disk
1659 ** again. Extract the table number from the db->init.newTnum field.
1660 */
1661 if( db->init.busy && pTable!=0 ){
1662 pIndex->tnum = db->init.newTnum;
1663 }
1664
1665 /* If the db->init.busy is 0 then create the index on disk. This
1666 ** involves writing the index into the master table and filling in the
1667 ** index with the current table contents.
1668 **
1669 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
1670 ** command. db->init.busy is 1 when a database is opened and
1671 ** CREATE INDEX statements are read out of the master table. In
1672 ** the latter case the index already exists on disk, which is why
1673 ** we don't want to recreate it.
1674 **
1675 ** If pTable==0 it means this index is generated as a primary key
1676 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
1677 ** has just been created, it contains no data and the index initialization
1678 ** step can be skipped.
1679 */
1680 else if( db->init.busy==0 ){
1681 int n;
1682 Vdbe *v;
1683 int lbl1, lbl2;
1684 int i;
1685 int addr;
1686
1687 v = sqliteGetVdbe(pParse);
1688 if( v==0 ) goto exit_create_index;
1689 if( pTable!=0 ){
1690 sqliteBeginWriteOperation(pParse, 0, isTemp);
1691 sqliteOpenMasterTable(v, isTemp);
1692 }
1693 sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
1694 sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
1695 sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
1696 sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
1697 sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
1698 pIndex->tnum = 0;
1699 if( pTable ){
1700 sqliteVdbeCode(v,
1701 OP_Dup, 0, 0,
1702 OP_Integer, isTemp, 0,
1703 OP_OpenWrite, 1, 0,
1704 0);
1705 }
1706 addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
1707 if( pStart && pEnd ){
1708 n = Addr(pEnd->z) - Addr(pStart->z) + 1;
1709 sqliteVdbeChangeP3(v, addr, pStart->z, n);
1710 }
1711 sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
1712 sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
1713 if( pTable ){
1714 sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
1715 sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
1716 lbl2 = sqliteVdbeMakeLabel(v);
1717 sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
1718 lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
1719 for(i=0; i<pIndex->nColumn; i++){
1720 int iCol = pIndex->aiColumn[i];
1721 if( pTab->iPKey==iCol ){
1722 sqliteVdbeAddOp(v, OP_Dup, i, 0);
1723 }else{
1724 sqliteVdbeAddOp(v, OP_Column, 2, iCol);
1725 }
1726 }
1727 sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
1728 if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
1729 sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
1730 "indexed columns are not unique", P3_STATIC);
1731 sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
1732 sqliteVdbeResolveLabel(v, lbl2);
1733 sqliteVdbeAddOp(v, OP_Close, 2, 0);
1734 sqliteVdbeAddOp(v, OP_Close, 1, 0);
1735 }
1736 if( pTable!=0 ){
1737 if( !isTemp ){
1738 sqliteChangeCookie(db, v);
1739 }
1740 sqliteVdbeAddOp(v, OP_Close, 0, 0);
1741 sqliteEndWriteOperation(pParse);
1742 }
1743 }
1744
1745 /* Clean up before exiting */
1746 exit_create_index:
1747 sqliteIdListDelete(pList);
1748 sqliteSrcListDelete(pTable);
1749 sqliteFree(zName);
1750 return;
1751 }
1752
1753 /*
1754 ** This routine will drop an existing named index. This routine
1755 ** implements the DROP INDEX statement.
1756 */
sqliteDropIndex(Parse * pParse,SrcList * pName)1757 void sqliteDropIndex(Parse *pParse, SrcList *pName){
1758 Index *pIndex;
1759 Vdbe *v;
1760 sqlite *db = pParse->db;
1761
1762 if( pParse->nErr || sqlite_malloc_failed ) return;
1763 assert( pName->nSrc==1 );
1764 pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
1765 if( pIndex==0 ){
1766 sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
1767 goto exit_drop_index;
1768 }
1769 if( pIndex->autoIndex ){
1770 sqliteErrorMsg(pParse, "index associated with UNIQUE "
1771 "or PRIMARY KEY constraint cannot be dropped", 0);
1772 goto exit_drop_index;
1773 }
1774 if( pIndex->iDb>1 ){
1775 sqliteErrorMsg(pParse, "cannot alter schema of attached "
1776 "databases", 0);
1777 goto exit_drop_index;
1778 }
1779 #ifndef SQLITE_OMIT_AUTHORIZATION
1780 {
1781 int code = SQLITE_DROP_INDEX;
1782 Table *pTab = pIndex->pTable;
1783 const char *zDb = db->aDb[pIndex->iDb].zName;
1784 const char *zTab = SCHEMA_TABLE(pIndex->iDb);
1785 if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
1786 goto exit_drop_index;
1787 }
1788 if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
1789 if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
1790 goto exit_drop_index;
1791 }
1792 }
1793 #endif
1794
1795 /* Generate code to remove the index and from the master table */
1796 v = sqliteGetVdbe(pParse);
1797 if( v ){
1798 static VdbeOpList dropIndex[] = {
1799 { OP_Rewind, 0, ADDR(9), 0},
1800 { OP_String, 0, 0, 0}, /* 1 */
1801 { OP_MemStore, 1, 1, 0},
1802 { OP_MemLoad, 1, 0, 0}, /* 3 */
1803 { OP_Column, 0, 1, 0},
1804 { OP_Eq, 0, ADDR(8), 0},
1805 { OP_Next, 0, ADDR(3), 0},
1806 { OP_Goto, 0, ADDR(9), 0},
1807 { OP_Delete, 0, 0, 0}, /* 8 */
1808 };
1809 int base;
1810
1811 sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
1812 sqliteOpenMasterTable(v, pIndex->iDb);
1813 base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
1814 sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
1815 if( pIndex->iDb==0 ){
1816 sqliteChangeCookie(db, v);
1817 }
1818 sqliteVdbeAddOp(v, OP_Close, 0, 0);
1819 sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
1820 sqliteEndWriteOperation(pParse);
1821 }
1822
1823 /* Delete the in-memory description of this index.
1824 */
1825 if( !pParse->explain ){
1826 sqliteUnlinkAndDeleteIndex(db, pIndex);
1827 db->flags |= SQLITE_InternChanges;
1828 }
1829
1830 exit_drop_index:
1831 sqliteSrcListDelete(pName);
1832 }
1833
1834 /*
1835 ** Append a new element to the given IdList. Create a new IdList if
1836 ** need be.
1837 **
1838 ** A new IdList is returned, or NULL if malloc() fails.
1839 */
sqliteIdListAppend(IdList * pList,Token * pToken)1840 IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
1841 if( pList==0 ){
1842 pList = sqliteMalloc( sizeof(IdList) );
1843 if( pList==0 ) return 0;
1844 pList->nAlloc = 0;
1845 }
1846 if( pList->nId>=pList->nAlloc ){
1847 struct IdList_item *a;
1848 pList->nAlloc = pList->nAlloc*2 + 5;
1849 a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
1850 if( a==0 ){
1851 sqliteIdListDelete(pList);
1852 return 0;
1853 }
1854 pList->a = a;
1855 }
1856 memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
1857 if( pToken ){
1858 char **pz = &pList->a[pList->nId].zName;
1859 sqliteSetNString(pz, pToken->z, pToken->n, 0);
1860 if( *pz==0 ){
1861 sqliteIdListDelete(pList);
1862 return 0;
1863 }else{
1864 sqliteDequote(*pz);
1865 }
1866 }
1867 pList->nId++;
1868 return pList;
1869 }
1870
1871 /*
1872 ** Append a new table name to the given SrcList. Create a new SrcList if
1873 ** need be. A new entry is created in the SrcList even if pToken is NULL.
1874 **
1875 ** A new SrcList is returned, or NULL if malloc() fails.
1876 **
1877 ** If pDatabase is not null, it means that the table has an optional
1878 ** database name prefix. Like this: "database.table". The pDatabase
1879 ** points to the table name and the pTable points to the database name.
1880 ** The SrcList.a[].zName field is filled with the table name which might
1881 ** come from pTable (if pDatabase is NULL) or from pDatabase.
1882 ** SrcList.a[].zDatabase is filled with the database name from pTable,
1883 ** or with NULL if no database is specified.
1884 **
1885 ** In other words, if call like this:
1886 **
1887 ** sqliteSrcListAppend(A,B,0);
1888 **
1889 ** Then B is a table name and the database name is unspecified. If called
1890 ** like this:
1891 **
1892 ** sqliteSrcListAppend(A,B,C);
1893 **
1894 ** Then C is the table name and B is the database name.
1895 */
sqliteSrcListAppend(SrcList * pList,Token * pTable,Token * pDatabase)1896 SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
1897 if( pList==0 ){
1898 pList = sqliteMalloc( sizeof(SrcList) );
1899 if( pList==0 ) return 0;
1900 pList->nAlloc = 1;
1901 }
1902 if( pList->nSrc>=pList->nAlloc ){
1903 SrcList *pNew;
1904 pList->nAlloc *= 2;
1905 pNew = sqliteRealloc(pList,
1906 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
1907 if( pNew==0 ){
1908 sqliteSrcListDelete(pList);
1909 return 0;
1910 }
1911 pList = pNew;
1912 }
1913 memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
1914 if( pDatabase && pDatabase->z==0 ){
1915 pDatabase = 0;
1916 }
1917 if( pDatabase && pTable ){
1918 Token *pTemp = pDatabase;
1919 pDatabase = pTable;
1920 pTable = pTemp;
1921 }
1922 if( pTable ){
1923 char **pz = &pList->a[pList->nSrc].zName;
1924 sqliteSetNString(pz, pTable->z, pTable->n, 0);
1925 if( *pz==0 ){
1926 sqliteSrcListDelete(pList);
1927 return 0;
1928 }else{
1929 sqliteDequote(*pz);
1930 }
1931 }
1932 if( pDatabase ){
1933 char **pz = &pList->a[pList->nSrc].zDatabase;
1934 sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
1935 if( *pz==0 ){
1936 sqliteSrcListDelete(pList);
1937 return 0;
1938 }else{
1939 sqliteDequote(*pz);
1940 }
1941 }
1942 pList->a[pList->nSrc].iCursor = -1;
1943 pList->nSrc++;
1944 return pList;
1945 }
1946
1947 /*
1948 ** Assign cursors to all tables in a SrcList
1949 */
sqliteSrcListAssignCursors(Parse * pParse,SrcList * pList)1950 void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
1951 int i;
1952 for(i=0; i<pList->nSrc; i++){
1953 if( pList->a[i].iCursor<0 ){
1954 pList->a[i].iCursor = pParse->nTab++;
1955 }
1956 }
1957 }
1958
1959 /*
1960 ** Add an alias to the last identifier on the given identifier list.
1961 */
sqliteSrcListAddAlias(SrcList * pList,Token * pToken)1962 void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
1963 if( pList && pList->nSrc>0 ){
1964 int i = pList->nSrc - 1;
1965 sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
1966 sqliteDequote(pList->a[i].zAlias);
1967 }
1968 }
1969
1970 /*
1971 ** Delete an IdList.
1972 */
sqliteIdListDelete(IdList * pList)1973 void sqliteIdListDelete(IdList *pList){
1974 int i;
1975 if( pList==0 ) return;
1976 for(i=0; i<pList->nId; i++){
1977 sqliteFree(pList->a[i].zName);
1978 }
1979 sqliteFree(pList->a);
1980 sqliteFree(pList);
1981 }
1982
1983 /*
1984 ** Return the index in pList of the identifier named zId. Return -1
1985 ** if not found.
1986 */
sqliteIdListIndex(IdList * pList,const char * zName)1987 int sqliteIdListIndex(IdList *pList, const char *zName){
1988 int i;
1989 if( pList==0 ) return -1;
1990 for(i=0; i<pList->nId; i++){
1991 if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
1992 }
1993 return -1;
1994 }
1995
1996 /*
1997 ** Delete an entire SrcList including all its substructure.
1998 */
sqliteSrcListDelete(SrcList * pList)1999 void sqliteSrcListDelete(SrcList *pList){
2000 int i;
2001 if( pList==0 ) return;
2002 for(i=0; i<pList->nSrc; i++){
2003 sqliteFree(pList->a[i].zDatabase);
2004 sqliteFree(pList->a[i].zName);
2005 sqliteFree(pList->a[i].zAlias);
2006 if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
2007 sqliteDeleteTable(0, pList->a[i].pTab);
2008 }
2009 sqliteSelectDelete(pList->a[i].pSelect);
2010 sqliteExprDelete(pList->a[i].pOn);
2011 sqliteIdListDelete(pList->a[i].pUsing);
2012 }
2013 sqliteFree(pList);
2014 }
2015
2016 /*
2017 ** Begin a transaction
2018 */
sqliteBeginTransaction(Parse * pParse,int onError)2019 void sqliteBeginTransaction(Parse *pParse, int onError){
2020 sqlite *db;
2021
2022 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2023 if( pParse->nErr || sqlite_malloc_failed ) return;
2024 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
2025 if( db->flags & SQLITE_InTrans ){
2026 sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
2027 return;
2028 }
2029 sqliteBeginWriteOperation(pParse, 0, 0);
2030 if( !pParse->explain ){
2031 db->flags |= SQLITE_InTrans;
2032 db->onError = onError;
2033 }
2034 }
2035
2036 /*
2037 ** Commit a transaction
2038 */
sqliteCommitTransaction(Parse * pParse)2039 void sqliteCommitTransaction(Parse *pParse){
2040 sqlite *db;
2041
2042 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2043 if( pParse->nErr || sqlite_malloc_failed ) return;
2044 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
2045 if( (db->flags & SQLITE_InTrans)==0 ){
2046 sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
2047 return;
2048 }
2049 if( !pParse->explain ){
2050 db->flags &= ~SQLITE_InTrans;
2051 }
2052 sqliteEndWriteOperation(pParse);
2053 if( !pParse->explain ){
2054 db->onError = OE_Default;
2055 }
2056 }
2057
2058 /*
2059 ** Rollback a transaction
2060 */
sqliteRollbackTransaction(Parse * pParse)2061 void sqliteRollbackTransaction(Parse *pParse){
2062 sqlite *db;
2063 Vdbe *v;
2064
2065 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
2066 if( pParse->nErr || sqlite_malloc_failed ) return;
2067 if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
2068 if( (db->flags & SQLITE_InTrans)==0 ){
2069 sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
2070 return;
2071 }
2072 v = sqliteGetVdbe(pParse);
2073 if( v ){
2074 sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
2075 }
2076 if( !pParse->explain ){
2077 db->flags &= ~SQLITE_InTrans;
2078 db->onError = OE_Default;
2079 }
2080 }
2081
2082 /*
2083 ** Generate VDBE code that will verify the schema cookie for all
2084 ** named database files.
2085 */
sqliteCodeVerifySchema(Parse * pParse,int iDb)2086 void sqliteCodeVerifySchema(Parse *pParse, int iDb){
2087 sqlite *db = pParse->db;
2088 Vdbe *v = sqliteGetVdbe(pParse);
2089 assert( iDb>=0 && iDb<db->nDb );
2090 assert( db->aDb[iDb].pBt!=0 );
2091 if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
2092 sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
2093 DbSetProperty(db, iDb, DB_Cookie);
2094 }
2095 }
2096
2097 /*
2098 ** Generate VDBE code that prepares for doing an operation that
2099 ** might change the database.
2100 **
2101 ** This routine starts a new transaction if we are not already within
2102 ** a transaction. If we are already within a transaction, then a checkpoint
2103 ** is set if the setCheckpoint parameter is true. A checkpoint should
2104 ** be set for operations that might fail (due to a constraint) part of
2105 ** the way through and which will need to undo some writes without having to
2106 ** rollback the whole transaction. For operations where all constraints
2107 ** can be checked before any changes are made to the database, it is never
2108 ** necessary to undo a write and the checkpoint should not be set.
2109 **
2110 ** Only database iDb and the temp database are made writable by this call.
2111 ** If iDb==0, then the main and temp databases are made writable. If
2112 ** iDb==1 then only the temp database is made writable. If iDb>1 then the
2113 ** specified auxiliary database and the temp database are made writable.
2114 */
sqliteBeginWriteOperation(Parse * pParse,int setCheckpoint,int iDb)2115 void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
2116 Vdbe *v;
2117 sqlite *db = pParse->db;
2118 if( DbHasProperty(db, iDb, DB_Locked) ) return;
2119 v = sqliteGetVdbe(pParse);
2120 if( v==0 ) return;
2121 if( !db->aDb[iDb].inTrans ){
2122 sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
2123 DbSetProperty(db, iDb, DB_Locked);
2124 sqliteCodeVerifySchema(pParse, iDb);
2125 if( iDb!=1 ){
2126 sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
2127 }
2128 }else if( setCheckpoint ){
2129 sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
2130 DbSetProperty(db, iDb, DB_Locked);
2131 }
2132 }
2133
2134 /*
2135 ** Generate code that concludes an operation that may have changed
2136 ** the database. If a statement transaction was started, then emit
2137 ** an OP_Commit that will cause the changes to be committed to disk.
2138 **
2139 ** Note that checkpoints are automatically committed at the end of
2140 ** a statement. Note also that there can be multiple calls to
2141 ** sqliteBeginWriteOperation() but there should only be a single
2142 ** call to sqliteEndWriteOperation() at the conclusion of the statement.
2143 */
sqliteEndWriteOperation(Parse * pParse)2144 void sqliteEndWriteOperation(Parse *pParse){
2145 Vdbe *v;
2146 sqlite *db = pParse->db;
2147 if( pParse->trigStack ) return; /* if this is in a trigger */
2148 v = sqliteGetVdbe(pParse);
2149 if( v==0 ) return;
2150 if( db->flags & SQLITE_InTrans ){
2151 /* A BEGIN has executed. Do not commit until we see an explicit
2152 ** COMMIT statement. */
2153 }else{
2154 sqliteVdbeAddOp(v, OP_Commit, 0, 0);
2155 }
2156 }
2157