1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 #include "md-cluster.h"
28
29 /*
30 * RAID10 provides a combination of RAID0 and RAID1 functionality.
31 * The layout of data is defined by
32 * chunk_size
33 * raid_disks
34 * near_copies (stored in low byte of layout)
35 * far_copies (stored in second byte of layout)
36 * far_offset (stored in bit 16 of layout )
37 * use_far_sets (stored in bit 17 of layout )
38 * use_far_sets_bugfixed (stored in bit 18 of layout )
39 *
40 * The data to be stored is divided into chunks using chunksize. Each device
41 * is divided into far_copies sections. In each section, chunks are laid out
42 * in a style similar to raid0, but near_copies copies of each chunk is stored
43 * (each on a different drive). The starting device for each section is offset
44 * near_copies from the starting device of the previous section. Thus there
45 * are (near_copies * far_copies) of each chunk, and each is on a different
46 * drive. near_copies and far_copies must be at least one, and their product
47 * is at most raid_disks.
48 *
49 * If far_offset is true, then the far_copies are handled a bit differently.
50 * The copies are still in different stripes, but instead of being very far
51 * apart on disk, there are adjacent stripes.
52 *
53 * The far and offset algorithms are handled slightly differently if
54 * 'use_far_sets' is true. In this case, the array's devices are grouped into
55 * sets that are (near_copies * far_copies) in size. The far copied stripes
56 * are still shifted by 'near_copies' devices, but this shifting stays confined
57 * to the set rather than the entire array. This is done to improve the number
58 * of device combinations that can fail without causing the array to fail.
59 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
60 * on a device):
61 * A B C D A B C D E
62 * ... ...
63 * D A B C E A B C D
64 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
65 * [A B] [C D] [A B] [C D E]
66 * |...| |...| |...| | ... |
67 * [B A] [D C] [B A] [E C D]
68 */
69
70 static void allow_barrier(struct r10conf *conf);
71 static void lower_barrier(struct r10conf *conf);
72 static int _enough(struct r10conf *conf, int previous, int ignore);
73 static int enough(struct r10conf *conf, int ignore);
74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75 int *skipped);
76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
77 static void end_reshape_write(struct bio *bio);
78 static void end_reshape(struct r10conf *conf);
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 do { \
85 write_sequnlock_irq(&(conf)->resync_lock); \
86 cmd; \
87 } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
get_resync_r10bio(struct bio * bio)101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 return get_resync_pages(bio)->raid_bio;
104 }
105
r10bio_pool_alloc(gfp_t gfp_flags,void * data)106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 struct r10conf *conf = data;
109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111 /* allocate a r10bio with room for raid_disks entries in the
112 * bios array */
113 return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 struct r10bio *r10_bio;
135 struct bio *bio;
136 int j;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
139
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 if (!r10_bio)
142 return NULL;
143
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 nalloc = conf->copies; /* resync */
147 else
148 nalloc = 2; /* recovery */
149
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
152 nalloc_rp = nalloc;
153 else
154 nalloc_rp = nalloc * 2;
155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 if (!rps)
157 goto out_free_r10bio;
158
159 /*
160 * Allocate bios.
161 */
162 for (j = nalloc ; j-- ; ) {
163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 if (!bio)
165 goto out_free_bio;
166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 r10_bio->devs[j].bio = bio;
168 if (!conf->have_replacement)
169 continue;
170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 if (!bio)
172 goto out_free_bio;
173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 r10_bio->devs[j].repl_bio = bio;
175 }
176 /*
177 * Allocate RESYNC_PAGES data pages and attach them
178 * where needed.
179 */
180 for (j = 0; j < nalloc; j++) {
181 struct bio *rbio = r10_bio->devs[j].repl_bio;
182 struct resync_pages *rp, *rp_repl;
183
184 rp = &rps[j];
185 if (rbio)
186 rp_repl = &rps[nalloc + j];
187
188 bio = r10_bio->devs[j].bio;
189
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
193 goto out_free_pages;
194 } else {
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
197 }
198
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
201 if (rbio) {
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
204 }
205 }
206
207 return r10_bio;
208
209 out_free_pages:
210 while (--j >= 0)
211 resync_free_pages(&rps[j]);
212
213 j = 0;
214 out_free_bio:
215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
219 if (r10_bio->devs[j].repl_bio)
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
222 }
223 kfree(rps);
224 out_free_r10bio:
225 rbio_pool_free(r10_bio, conf);
226 return NULL;
227 }
228
r10buf_pool_free(void * __r10_bio,void * data)229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 struct r10conf *conf = data;
232 struct r10bio *r10bio = __r10_bio;
233 int j;
234 struct resync_pages *rp = NULL;
235
236 for (j = conf->copies; j--; ) {
237 struct bio *bio = r10bio->devs[j].bio;
238
239 if (bio) {
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
242 bio_uninit(bio);
243 kfree(bio);
244 }
245
246 bio = r10bio->devs[j].repl_bio;
247 if (bio) {
248 bio_uninit(bio);
249 kfree(bio);
250 }
251 }
252
253 /* resync pages array stored in the 1st bio's .bi_private */
254 kfree(rp);
255
256 rbio_pool_free(r10bio, conf);
257 }
258
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 int i;
262
263 for (i = 0; i < conf->geo.raid_disks; i++) {
264 struct bio **bio = & r10_bio->devs[i].bio;
265 if (!BIO_SPECIAL(*bio))
266 bio_put(*bio);
267 *bio = NULL;
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 bio_put(*bio);
271 *bio = NULL;
272 }
273 }
274
free_r10bio(struct r10bio * r10_bio)275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 struct r10conf *conf = r10_bio->mddev->private;
278
279 put_all_bios(conf, r10_bio);
280 mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
put_buf(struct r10bio * r10_bio)283 static void put_buf(struct r10bio *r10_bio)
284 {
285 struct r10conf *conf = r10_bio->mddev->private;
286
287 mempool_free(r10_bio, &conf->r10buf_pool);
288
289 lower_barrier(conf);
290 }
291
wake_up_barrier(struct r10conf * conf)292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
296 }
297
reschedule_retry(struct r10bio * r10_bio)298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 unsigned long flags;
301 struct mddev *mddev = r10_bio->mddev;
302 struct r10conf *conf = mddev->private;
303
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
306 conf->nr_queued ++;
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
311
312 md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
raid_end_bio_io(struct r10bio * r10_bio)320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 struct bio *bio = r10_bio->master_bio;
323 struct r10conf *conf = r10_bio->mddev->private;
324
325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 bio->bi_status = BLK_STS_IOERR;
327
328 bio_endio(bio);
329 /*
330 * Wake up any possible resync thread that waits for the device
331 * to go idle.
332 */
333 allow_barrier(conf);
334
335 free_r10bio(r10_bio);
336 }
337
338 /*
339 * Update disk head position estimator based on IRQ completion info.
340 */
update_head_pos(int slot,struct r10bio * r10_bio)341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343 struct r10conf *conf = r10_bio->mddev->private;
344
345 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348
349 /*
350 * Find the disk number which triggered given bio
351 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 struct bio *bio, int *slotp, int *replp)
354 {
355 int slot;
356 int repl = 0;
357
358 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 if (r10_bio->devs[slot].bio == bio)
360 break;
361 if (r10_bio->devs[slot].repl_bio == bio) {
362 repl = 1;
363 break;
364 }
365 }
366
367 update_head_pos(slot, r10_bio);
368
369 if (slotp)
370 *slotp = slot;
371 if (replp)
372 *replp = repl;
373 return r10_bio->devs[slot].devnum;
374 }
375
raid10_end_read_request(struct bio * bio)376 static void raid10_end_read_request(struct bio *bio)
377 {
378 int uptodate = !bio->bi_status;
379 struct r10bio *r10_bio = bio->bi_private;
380 int slot;
381 struct md_rdev *rdev;
382 struct r10conf *conf = r10_bio->mddev->private;
383
384 slot = r10_bio->read_slot;
385 rdev = r10_bio->devs[slot].rdev;
386 /*
387 * this branch is our 'one mirror IO has finished' event handler:
388 */
389 update_head_pos(slot, r10_bio);
390
391 if (uptodate) {
392 /*
393 * Set R10BIO_Uptodate in our master bio, so that
394 * we will return a good error code to the higher
395 * levels even if IO on some other mirrored buffer fails.
396 *
397 * The 'master' represents the composite IO operation to
398 * user-side. So if something waits for IO, then it will
399 * wait for the 'master' bio.
400 */
401 set_bit(R10BIO_Uptodate, &r10_bio->state);
402 } else {
403 /* If all other devices that store this block have
404 * failed, we want to return the error upwards rather
405 * than fail the last device. Here we redefine
406 * "uptodate" to mean "Don't want to retry"
407 */
408 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409 rdev->raid_disk))
410 uptodate = 1;
411 }
412 if (uptodate) {
413 raid_end_bio_io(r10_bio);
414 rdev_dec_pending(rdev, conf->mddev);
415 } else {
416 /*
417 * oops, read error - keep the refcount on the rdev
418 */
419 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420 mdname(conf->mddev),
421 rdev->bdev,
422 (unsigned long long)r10_bio->sector);
423 set_bit(R10BIO_ReadError, &r10_bio->state);
424 reschedule_retry(r10_bio);
425 }
426 }
427
close_write(struct r10bio * r10_bio)428 static void close_write(struct r10bio *r10_bio)
429 {
430 struct mddev *mddev = r10_bio->mddev;
431
432 md_write_end(mddev);
433 }
434
one_write_done(struct r10bio * r10_bio)435 static void one_write_done(struct r10bio *r10_bio)
436 {
437 if (atomic_dec_and_test(&r10_bio->remaining)) {
438 if (test_bit(R10BIO_WriteError, &r10_bio->state))
439 reschedule_retry(r10_bio);
440 else {
441 close_write(r10_bio);
442 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
443 reschedule_retry(r10_bio);
444 else
445 raid_end_bio_io(r10_bio);
446 }
447 }
448 }
449
raid10_end_write_request(struct bio * bio)450 static void raid10_end_write_request(struct bio *bio)
451 {
452 struct r10bio *r10_bio = bio->bi_private;
453 int dev;
454 int dec_rdev = 1;
455 struct r10conf *conf = r10_bio->mddev->private;
456 int slot, repl;
457 struct md_rdev *rdev = NULL;
458 struct bio *to_put = NULL;
459 bool discard_error;
460
461 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
462
463 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
464
465 if (repl)
466 rdev = conf->mirrors[dev].replacement;
467 if (!rdev) {
468 smp_rmb();
469 repl = 0;
470 rdev = conf->mirrors[dev].rdev;
471 }
472 /*
473 * this branch is our 'one mirror IO has finished' event handler:
474 */
475 if (bio->bi_status && !discard_error) {
476 if (repl)
477 /* Never record new bad blocks to replacement,
478 * just fail it.
479 */
480 md_error(rdev->mddev, rdev);
481 else {
482 set_bit(WriteErrorSeen, &rdev->flags);
483 if (!test_and_set_bit(WantReplacement, &rdev->flags))
484 set_bit(MD_RECOVERY_NEEDED,
485 &rdev->mddev->recovery);
486
487 dec_rdev = 0;
488 if (test_bit(FailFast, &rdev->flags) &&
489 (bio->bi_opf & MD_FAILFAST)) {
490 md_error(rdev->mddev, rdev);
491 }
492
493 /*
494 * When the device is faulty, it is not necessary to
495 * handle write error.
496 */
497 if (!test_bit(Faulty, &rdev->flags))
498 set_bit(R10BIO_WriteError, &r10_bio->state);
499 else {
500 /* Fail the request */
501 r10_bio->devs[slot].bio = NULL;
502 to_put = bio;
503 dec_rdev = 1;
504 }
505 }
506 } else {
507 /*
508 * Set R10BIO_Uptodate in our master bio, so that
509 * we will return a good error code for to the higher
510 * levels even if IO on some other mirrored buffer fails.
511 *
512 * The 'master' represents the composite IO operation to
513 * user-side. So if something waits for IO, then it will
514 * wait for the 'master' bio.
515 *
516 * Do not set R10BIO_Uptodate if the current device is
517 * rebuilding or Faulty. This is because we cannot use
518 * such device for properly reading the data back (we could
519 * potentially use it, if the current write would have felt
520 * before rdev->recovery_offset, but for simplicity we don't
521 * check this here.
522 */
523 if (test_bit(In_sync, &rdev->flags) &&
524 !test_bit(Faulty, &rdev->flags))
525 set_bit(R10BIO_Uptodate, &r10_bio->state);
526
527 /* Maybe we can clear some bad blocks. */
528 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
529 r10_bio->sectors) &&
530 !discard_error) {
531 bio_put(bio);
532 if (repl)
533 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534 else
535 r10_bio->devs[slot].bio = IO_MADE_GOOD;
536 dec_rdev = 0;
537 set_bit(R10BIO_MadeGood, &r10_bio->state);
538 }
539 }
540
541 /*
542 *
543 * Let's see if all mirrored write operations have finished
544 * already.
545 */
546 one_write_done(r10_bio);
547 if (dec_rdev)
548 rdev_dec_pending(rdev, conf->mddev);
549 if (to_put)
550 bio_put(to_put);
551 }
552
553 /*
554 * RAID10 layout manager
555 * As well as the chunksize and raid_disks count, there are two
556 * parameters: near_copies and far_copies.
557 * near_copies * far_copies must be <= raid_disks.
558 * Normally one of these will be 1.
559 * If both are 1, we get raid0.
560 * If near_copies == raid_disks, we get raid1.
561 *
562 * Chunks are laid out in raid0 style with near_copies copies of the
563 * first chunk, followed by near_copies copies of the next chunk and
564 * so on.
565 * If far_copies > 1, then after 1/far_copies of the array has been assigned
566 * as described above, we start again with a device offset of near_copies.
567 * So we effectively have another copy of the whole array further down all
568 * the drives, but with blocks on different drives.
569 * With this layout, and block is never stored twice on the one device.
570 *
571 * raid10_find_phys finds the sector offset of a given virtual sector
572 * on each device that it is on.
573 *
574 * raid10_find_virt does the reverse mapping, from a device and a
575 * sector offset to a virtual address
576 */
577
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
579 {
580 int n,f;
581 sector_t sector;
582 sector_t chunk;
583 sector_t stripe;
584 int dev;
585 int slot = 0;
586 int last_far_set_start, last_far_set_size;
587
588 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589 last_far_set_start *= geo->far_set_size;
590
591 last_far_set_size = geo->far_set_size;
592 last_far_set_size += (geo->raid_disks % geo->far_set_size);
593
594 /* now calculate first sector/dev */
595 chunk = r10bio->sector >> geo->chunk_shift;
596 sector = r10bio->sector & geo->chunk_mask;
597
598 chunk *= geo->near_copies;
599 stripe = chunk;
600 dev = sector_div(stripe, geo->raid_disks);
601 if (geo->far_offset)
602 stripe *= geo->far_copies;
603
604 sector += stripe << geo->chunk_shift;
605
606 /* and calculate all the others */
607 for (n = 0; n < geo->near_copies; n++) {
608 int d = dev;
609 int set;
610 sector_t s = sector;
611 r10bio->devs[slot].devnum = d;
612 r10bio->devs[slot].addr = s;
613 slot++;
614
615 for (f = 1; f < geo->far_copies; f++) {
616 set = d / geo->far_set_size;
617 d += geo->near_copies;
618
619 if ((geo->raid_disks % geo->far_set_size) &&
620 (d > last_far_set_start)) {
621 d -= last_far_set_start;
622 d %= last_far_set_size;
623 d += last_far_set_start;
624 } else {
625 d %= geo->far_set_size;
626 d += geo->far_set_size * set;
627 }
628 s += geo->stride;
629 r10bio->devs[slot].devnum = d;
630 r10bio->devs[slot].addr = s;
631 slot++;
632 }
633 dev++;
634 if (dev >= geo->raid_disks) {
635 dev = 0;
636 sector += (geo->chunk_mask + 1);
637 }
638 }
639 }
640
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
642 {
643 struct geom *geo = &conf->geo;
644
645 if (conf->reshape_progress != MaxSector &&
646 ((r10bio->sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards)) {
648 set_bit(R10BIO_Previous, &r10bio->state);
649 geo = &conf->prev;
650 } else
651 clear_bit(R10BIO_Previous, &r10bio->state);
652
653 __raid10_find_phys(geo, r10bio);
654 }
655
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
657 {
658 sector_t offset, chunk, vchunk;
659 /* Never use conf->prev as this is only called during resync
660 * or recovery, so reshape isn't happening
661 */
662 struct geom *geo = &conf->geo;
663 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664 int far_set_size = geo->far_set_size;
665 int last_far_set_start;
666
667 if (geo->raid_disks % geo->far_set_size) {
668 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669 last_far_set_start *= geo->far_set_size;
670
671 if (dev >= last_far_set_start) {
672 far_set_size = geo->far_set_size;
673 far_set_size += (geo->raid_disks % geo->far_set_size);
674 far_set_start = last_far_set_start;
675 }
676 }
677
678 offset = sector & geo->chunk_mask;
679 if (geo->far_offset) {
680 int fc;
681 chunk = sector >> geo->chunk_shift;
682 fc = sector_div(chunk, geo->far_copies);
683 dev -= fc * geo->near_copies;
684 if (dev < far_set_start)
685 dev += far_set_size;
686 } else {
687 while (sector >= geo->stride) {
688 sector -= geo->stride;
689 if (dev < (geo->near_copies + far_set_start))
690 dev += far_set_size - geo->near_copies;
691 else
692 dev -= geo->near_copies;
693 }
694 chunk = sector >> geo->chunk_shift;
695 }
696 vchunk = chunk * geo->raid_disks + dev;
697 sector_div(vchunk, geo->near_copies);
698 return (vchunk << geo->chunk_shift) + offset;
699 }
700
701 /*
702 * This routine returns the disk from which the requested read should
703 * be done. There is a per-array 'next expected sequential IO' sector
704 * number - if this matches on the next IO then we use the last disk.
705 * There is also a per-disk 'last know head position' sector that is
706 * maintained from IRQ contexts, both the normal and the resync IO
707 * completion handlers update this position correctly. If there is no
708 * perfect sequential match then we pick the disk whose head is closest.
709 *
710 * If there are 2 mirrors in the same 2 devices, performance degrades
711 * because position is mirror, not device based.
712 *
713 * The rdev for the device selected will have nr_pending incremented.
714 */
715
716 /*
717 * FIXME: possibly should rethink readbalancing and do it differently
718 * depending on near_copies / far_copies geometry.
719 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)720 static struct md_rdev *read_balance(struct r10conf *conf,
721 struct r10bio *r10_bio,
722 int *max_sectors)
723 {
724 const sector_t this_sector = r10_bio->sector;
725 int disk, slot;
726 int sectors = r10_bio->sectors;
727 int best_good_sectors;
728 sector_t new_distance, best_dist;
729 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
730 int do_balance;
731 int best_dist_slot, best_pending_slot;
732 bool has_nonrot_disk = false;
733 unsigned int min_pending;
734 struct geom *geo = &conf->geo;
735
736 raid10_find_phys(conf, r10_bio);
737 best_dist_slot = -1;
738 min_pending = UINT_MAX;
739 best_dist_rdev = NULL;
740 best_pending_rdev = NULL;
741 best_dist = MaxSector;
742 best_good_sectors = 0;
743 do_balance = 1;
744 clear_bit(R10BIO_FailFast, &r10_bio->state);
745
746 if (raid1_should_read_first(conf->mddev, this_sector, sectors))
747 do_balance = 0;
748
749 for (slot = 0; slot < conf->copies ; slot++) {
750 sector_t first_bad;
751 sector_t bad_sectors;
752 sector_t dev_sector;
753 unsigned int pending;
754 bool nonrot;
755
756 if (r10_bio->devs[slot].bio == IO_BLOCKED)
757 continue;
758 disk = r10_bio->devs[slot].devnum;
759 rdev = conf->mirrors[disk].replacement;
760 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761 r10_bio->devs[slot].addr + sectors >
762 rdev->recovery_offset)
763 rdev = conf->mirrors[disk].rdev;
764 if (rdev == NULL ||
765 test_bit(Faulty, &rdev->flags))
766 continue;
767 if (!test_bit(In_sync, &rdev->flags) &&
768 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
769 continue;
770
771 dev_sector = r10_bio->devs[slot].addr;
772 if (is_badblock(rdev, dev_sector, sectors,
773 &first_bad, &bad_sectors)) {
774 if (best_dist < MaxSector)
775 /* Already have a better slot */
776 continue;
777 if (first_bad <= dev_sector) {
778 /* Cannot read here. If this is the
779 * 'primary' device, then we must not read
780 * beyond 'bad_sectors' from another device.
781 */
782 bad_sectors -= (dev_sector - first_bad);
783 if (!do_balance && sectors > bad_sectors)
784 sectors = bad_sectors;
785 if (best_good_sectors > sectors)
786 best_good_sectors = sectors;
787 } else {
788 sector_t good_sectors =
789 first_bad - dev_sector;
790 if (good_sectors > best_good_sectors) {
791 best_good_sectors = good_sectors;
792 best_dist_slot = slot;
793 best_dist_rdev = rdev;
794 }
795 if (!do_balance)
796 /* Must read from here */
797 break;
798 }
799 continue;
800 } else
801 best_good_sectors = sectors;
802
803 if (!do_balance)
804 break;
805
806 nonrot = bdev_nonrot(rdev->bdev);
807 has_nonrot_disk |= nonrot;
808 pending = atomic_read(&rdev->nr_pending);
809 if (min_pending > pending && nonrot) {
810 min_pending = pending;
811 best_pending_slot = slot;
812 best_pending_rdev = rdev;
813 }
814
815 if (best_dist_slot >= 0)
816 /* At least 2 disks to choose from so failfast is OK */
817 set_bit(R10BIO_FailFast, &r10_bio->state);
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
821 */
822 if (geo->near_copies > 1 && !pending)
823 new_distance = 0;
824
825 /* for far > 1 always use the lowest address */
826 else if (geo->far_copies > 1)
827 new_distance = r10_bio->devs[slot].addr;
828 else
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831
832 if (new_distance < best_dist) {
833 best_dist = new_distance;
834 best_dist_slot = slot;
835 best_dist_rdev = rdev;
836 }
837 }
838 if (slot >= conf->copies) {
839 if (has_nonrot_disk) {
840 slot = best_pending_slot;
841 rdev = best_pending_rdev;
842 } else {
843 slot = best_dist_slot;
844 rdev = best_dist_rdev;
845 }
846 }
847
848 if (slot >= 0) {
849 atomic_inc(&rdev->nr_pending);
850 r10_bio->read_slot = slot;
851 } else
852 rdev = NULL;
853 *max_sectors = best_good_sectors;
854
855 return rdev;
856 }
857
flush_pending_writes(struct r10conf * conf)858 static void flush_pending_writes(struct r10conf *conf)
859 {
860 /* Any writes that have been queued but are awaiting
861 * bitmap updates get flushed here.
862 */
863 spin_lock_irq(&conf->device_lock);
864
865 if (conf->pending_bio_list.head) {
866 struct blk_plug plug;
867 struct bio *bio;
868
869 bio = bio_list_get(&conf->pending_bio_list);
870 spin_unlock_irq(&conf->device_lock);
871
872 /*
873 * As this is called in a wait_event() loop (see freeze_array),
874 * current->state might be TASK_UNINTERRUPTIBLE which will
875 * cause a warning when we prepare to wait again. As it is
876 * rare that this path is taken, it is perfectly safe to force
877 * us to go around the wait_event() loop again, so the warning
878 * is a false-positive. Silence the warning by resetting
879 * thread state
880 */
881 __set_current_state(TASK_RUNNING);
882
883 blk_start_plug(&plug);
884 raid1_prepare_flush_writes(conf->mddev);
885 wake_up(&conf->wait_barrier);
886
887 while (bio) { /* submit pending writes */
888 struct bio *next = bio->bi_next;
889
890 raid1_submit_write(bio);
891 bio = next;
892 cond_resched();
893 }
894 blk_finish_plug(&plug);
895 } else
896 spin_unlock_irq(&conf->device_lock);
897 }
898
899 /* Barriers....
900 * Sometimes we need to suspend IO while we do something else,
901 * either some resync/recovery, or reconfigure the array.
902 * To do this we raise a 'barrier'.
903 * The 'barrier' is a counter that can be raised multiple times
904 * to count how many activities are happening which preclude
905 * normal IO.
906 * We can only raise the barrier if there is no pending IO.
907 * i.e. if nr_pending == 0.
908 * We choose only to raise the barrier if no-one is waiting for the
909 * barrier to go down. This means that as soon as an IO request
910 * is ready, no other operations which require a barrier will start
911 * until the IO request has had a chance.
912 *
913 * So: regular IO calls 'wait_barrier'. When that returns there
914 * is no backgroup IO happening, It must arrange to call
915 * allow_barrier when it has finished its IO.
916 * backgroup IO calls must call raise_barrier. Once that returns
917 * there is no normal IO happeing. It must arrange to call
918 * lower_barrier when the particular background IO completes.
919 */
920
raise_barrier(struct r10conf * conf,int force)921 static void raise_barrier(struct r10conf *conf, int force)
922 {
923 write_seqlock_irq(&conf->resync_lock);
924
925 if (WARN_ON_ONCE(force && !conf->barrier))
926 force = false;
927
928 /* Wait until no block IO is waiting (unless 'force') */
929 wait_event_barrier(conf, force || !conf->nr_waiting);
930
931 /* block any new IO from starting */
932 WRITE_ONCE(conf->barrier, conf->barrier + 1);
933
934 /* Now wait for all pending IO to complete */
935 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
936 conf->barrier < RESYNC_DEPTH);
937
938 write_sequnlock_irq(&conf->resync_lock);
939 }
940
lower_barrier(struct r10conf * conf)941 static void lower_barrier(struct r10conf *conf)
942 {
943 unsigned long flags;
944
945 write_seqlock_irqsave(&conf->resync_lock, flags);
946 WRITE_ONCE(conf->barrier, conf->barrier - 1);
947 write_sequnlock_irqrestore(&conf->resync_lock, flags);
948 wake_up(&conf->wait_barrier);
949 }
950
stop_waiting_barrier(struct r10conf * conf)951 static bool stop_waiting_barrier(struct r10conf *conf)
952 {
953 struct bio_list *bio_list = current->bio_list;
954 struct md_thread *thread;
955
956 /* barrier is dropped */
957 if (!conf->barrier)
958 return true;
959
960 /*
961 * If there are already pending requests (preventing the barrier from
962 * rising completely), and the pre-process bio queue isn't empty, then
963 * don't wait, as we need to empty that queue to get the nr_pending
964 * count down.
965 */
966 if (atomic_read(&conf->nr_pending) && bio_list &&
967 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
968 return true;
969
970 /* daemon thread must exist while handling io */
971 thread = rcu_dereference_protected(conf->mddev->thread, true);
972 /*
973 * move on if io is issued from raid10d(), nr_pending is not released
974 * from original io(see handle_read_error()). All raise barrier is
975 * blocked until this io is done.
976 */
977 if (thread->tsk == current) {
978 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
979 return true;
980 }
981
982 return false;
983 }
984
wait_barrier_nolock(struct r10conf * conf)985 static bool wait_barrier_nolock(struct r10conf *conf)
986 {
987 unsigned int seq = read_seqbegin(&conf->resync_lock);
988
989 if (READ_ONCE(conf->barrier))
990 return false;
991
992 atomic_inc(&conf->nr_pending);
993 if (!read_seqretry(&conf->resync_lock, seq))
994 return true;
995
996 if (atomic_dec_and_test(&conf->nr_pending))
997 wake_up_barrier(conf);
998
999 return false;
1000 }
1001
wait_barrier(struct r10conf * conf,bool nowait)1002 static bool wait_barrier(struct r10conf *conf, bool nowait)
1003 {
1004 bool ret = true;
1005
1006 if (wait_barrier_nolock(conf))
1007 return true;
1008
1009 write_seqlock_irq(&conf->resync_lock);
1010 if (conf->barrier) {
1011 /* Return false when nowait flag is set */
1012 if (nowait) {
1013 ret = false;
1014 } else {
1015 conf->nr_waiting++;
1016 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1017 wait_event_barrier(conf, stop_waiting_barrier(conf));
1018 conf->nr_waiting--;
1019 }
1020 if (!conf->nr_waiting)
1021 wake_up(&conf->wait_barrier);
1022 }
1023 /* Only increment nr_pending when we wait */
1024 if (ret)
1025 atomic_inc(&conf->nr_pending);
1026 write_sequnlock_irq(&conf->resync_lock);
1027 return ret;
1028 }
1029
allow_barrier(struct r10conf * conf)1030 static void allow_barrier(struct r10conf *conf)
1031 {
1032 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1033 (conf->array_freeze_pending))
1034 wake_up_barrier(conf);
1035 }
1036
freeze_array(struct r10conf * conf,int extra)1037 static void freeze_array(struct r10conf *conf, int extra)
1038 {
1039 /* stop syncio and normal IO and wait for everything to
1040 * go quiet.
1041 * We increment barrier and nr_waiting, and then
1042 * wait until nr_pending match nr_queued+extra
1043 * This is called in the context of one normal IO request
1044 * that has failed. Thus any sync request that might be pending
1045 * will be blocked by nr_pending, and we need to wait for
1046 * pending IO requests to complete or be queued for re-try.
1047 * Thus the number queued (nr_queued) plus this request (extra)
1048 * must match the number of pending IOs (nr_pending) before
1049 * we continue.
1050 */
1051 write_seqlock_irq(&conf->resync_lock);
1052 conf->array_freeze_pending++;
1053 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1054 conf->nr_waiting++;
1055 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1056 conf->nr_queued + extra, flush_pending_writes(conf));
1057 conf->array_freeze_pending--;
1058 write_sequnlock_irq(&conf->resync_lock);
1059 }
1060
unfreeze_array(struct r10conf * conf)1061 static void unfreeze_array(struct r10conf *conf)
1062 {
1063 /* reverse the effect of the freeze */
1064 write_seqlock_irq(&conf->resync_lock);
1065 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1066 conf->nr_waiting--;
1067 wake_up(&conf->wait_barrier);
1068 write_sequnlock_irq(&conf->resync_lock);
1069 }
1070
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1071 static sector_t choose_data_offset(struct r10bio *r10_bio,
1072 struct md_rdev *rdev)
1073 {
1074 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1075 test_bit(R10BIO_Previous, &r10_bio->state))
1076 return rdev->data_offset;
1077 else
1078 return rdev->new_data_offset;
1079 }
1080
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1081 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1082 {
1083 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1084 struct mddev *mddev = plug->cb.data;
1085 struct r10conf *conf = mddev->private;
1086 struct bio *bio;
1087
1088 if (from_schedule) {
1089 spin_lock_irq(&conf->device_lock);
1090 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1091 spin_unlock_irq(&conf->device_lock);
1092 wake_up_barrier(conf);
1093 md_wakeup_thread(mddev->thread);
1094 kfree(plug);
1095 return;
1096 }
1097
1098 /* we aren't scheduling, so we can do the write-out directly. */
1099 bio = bio_list_get(&plug->pending);
1100 raid1_prepare_flush_writes(mddev);
1101 wake_up_barrier(conf);
1102
1103 while (bio) { /* submit pending writes */
1104 struct bio *next = bio->bi_next;
1105
1106 raid1_submit_write(bio);
1107 bio = next;
1108 cond_resched();
1109 }
1110 kfree(plug);
1111 }
1112
1113 /*
1114 * 1. Register the new request and wait if the reconstruction thread has put
1115 * up a bar for new requests. Continue immediately if no resync is active
1116 * currently.
1117 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1118 */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1119 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1120 struct bio *bio, sector_t sectors)
1121 {
1122 /* Bail out if REQ_NOWAIT is set for the bio */
1123 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1124 bio_wouldblock_error(bio);
1125 return false;
1126 }
1127 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1128 bio->bi_iter.bi_sector < conf->reshape_progress &&
1129 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1130 allow_barrier(conf);
1131 if (bio->bi_opf & REQ_NOWAIT) {
1132 bio_wouldblock_error(bio);
1133 return false;
1134 }
1135 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1136 wait_event(conf->wait_barrier,
1137 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1138 conf->reshape_progress >= bio->bi_iter.bi_sector +
1139 sectors);
1140 wait_barrier(conf, false);
1141 }
1142 return true;
1143 }
1144
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio,bool io_accounting)1145 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1146 struct r10bio *r10_bio, bool io_accounting)
1147 {
1148 struct r10conf *conf = mddev->private;
1149 struct bio *read_bio;
1150 int max_sectors;
1151 struct md_rdev *rdev;
1152 char b[BDEVNAME_SIZE];
1153 int slot = r10_bio->read_slot;
1154 struct md_rdev *err_rdev = NULL;
1155 gfp_t gfp = GFP_NOIO;
1156 int error;
1157
1158 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1159 /*
1160 * This is an error retry, but we cannot
1161 * safely dereference the rdev in the r10_bio,
1162 * we must use the one in conf.
1163 * If it has already been disconnected (unlikely)
1164 * we lose the device name in error messages.
1165 */
1166 int disk;
1167 /*
1168 * As we are blocking raid10, it is a little safer to
1169 * use __GFP_HIGH.
1170 */
1171 gfp = GFP_NOIO | __GFP_HIGH;
1172
1173 disk = r10_bio->devs[slot].devnum;
1174 err_rdev = conf->mirrors[disk].rdev;
1175 if (err_rdev)
1176 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1177 else {
1178 strcpy(b, "???");
1179 /* This never gets dereferenced */
1180 err_rdev = r10_bio->devs[slot].rdev;
1181 }
1182 }
1183
1184 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1185 return;
1186 rdev = read_balance(conf, r10_bio, &max_sectors);
1187 if (!rdev) {
1188 if (err_rdev) {
1189 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1190 mdname(mddev), b,
1191 (unsigned long long)r10_bio->sector);
1192 }
1193 raid_end_bio_io(r10_bio);
1194 return;
1195 }
1196 if (err_rdev)
1197 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1198 mdname(mddev),
1199 rdev->bdev,
1200 (unsigned long long)r10_bio->sector);
1201 if (max_sectors < bio_sectors(bio)) {
1202 struct bio *split = bio_split(bio, max_sectors,
1203 gfp, &conf->bio_split);
1204 if (IS_ERR(split)) {
1205 error = PTR_ERR(split);
1206 goto err_handle;
1207 }
1208 bio_chain(split, bio);
1209 allow_barrier(conf);
1210 submit_bio_noacct(bio);
1211 wait_barrier(conf, false);
1212 bio = split;
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = max_sectors;
1215 }
1216 slot = r10_bio->read_slot;
1217
1218 if (io_accounting) {
1219 md_account_bio(mddev, &bio);
1220 r10_bio->master_bio = bio;
1221 }
1222 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223
1224 r10_bio->devs[slot].bio = read_bio;
1225 r10_bio->devs[slot].rdev = rdev;
1226
1227 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228 choose_data_offset(r10_bio, rdev);
1229 read_bio->bi_end_io = raid10_end_read_request;
1230 if (test_bit(FailFast, &rdev->flags) &&
1231 test_bit(R10BIO_FailFast, &r10_bio->state))
1232 read_bio->bi_opf |= MD_FAILFAST;
1233 read_bio->bi_private = r10_bio;
1234 mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1235 submit_bio_noacct(read_bio);
1236 return;
1237 err_handle:
1238 atomic_dec(&rdev->nr_pending);
1239 bio->bi_status = errno_to_blk_status(error);
1240 set_bit(R10BIO_Uptodate, &r10_bio->state);
1241 raid_end_bio_io(r10_bio);
1242 }
1243
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1244 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1245 struct bio *bio, bool replacement,
1246 int n_copy)
1247 {
1248 unsigned long flags;
1249 struct r10conf *conf = mddev->private;
1250 struct md_rdev *rdev;
1251 int devnum = r10_bio->devs[n_copy].devnum;
1252 struct bio *mbio;
1253
1254 rdev = replacement ? conf->mirrors[devnum].replacement :
1255 conf->mirrors[devnum].rdev;
1256
1257 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1258 if (replacement)
1259 r10_bio->devs[n_copy].repl_bio = mbio;
1260 else
1261 r10_bio->devs[n_copy].bio = mbio;
1262
1263 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1264 choose_data_offset(r10_bio, rdev));
1265 mbio->bi_end_io = raid10_end_write_request;
1266 if (!replacement && test_bit(FailFast,
1267 &conf->mirrors[devnum].rdev->flags)
1268 && enough(conf, devnum))
1269 mbio->bi_opf |= MD_FAILFAST;
1270 mbio->bi_private = r10_bio;
1271 mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272 /* flush_pending_writes() needs access to the rdev so...*/
1273 mbio->bi_bdev = (void *)rdev;
1274
1275 atomic_inc(&r10_bio->remaining);
1276
1277 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278 spin_lock_irqsave(&conf->device_lock, flags);
1279 bio_list_add(&conf->pending_bio_list, mbio);
1280 spin_unlock_irqrestore(&conf->device_lock, flags);
1281 md_wakeup_thread(mddev->thread);
1282 }
1283 }
1284
wait_blocked_dev(struct mddev * mddev,struct r10bio * r10_bio)1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286 {
1287 struct r10conf *conf = mddev->private;
1288 struct md_rdev *blocked_rdev;
1289 int i;
1290
1291 retry_wait:
1292 blocked_rdev = NULL;
1293 for (i = 0; i < conf->copies; i++) {
1294 struct md_rdev *rdev, *rrdev;
1295
1296 rdev = conf->mirrors[i].rdev;
1297 if (rdev) {
1298 sector_t dev_sector = r10_bio->devs[i].addr;
1299
1300 /*
1301 * Discard request doesn't care the write result
1302 * so it doesn't need to wait blocked disk here.
1303 */
1304 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1305 r10_bio->sectors &&
1306 rdev_has_badblock(rdev, dev_sector,
1307 r10_bio->sectors) < 0)
1308 /*
1309 * Mustn't write here until the bad
1310 * block is acknowledged
1311 */
1312 set_bit(BlockedBadBlocks, &rdev->flags);
1313
1314 if (rdev_blocked(rdev)) {
1315 blocked_rdev = rdev;
1316 atomic_inc(&rdev->nr_pending);
1317 break;
1318 }
1319 }
1320
1321 rrdev = conf->mirrors[i].replacement;
1322 if (rrdev && rdev_blocked(rrdev)) {
1323 atomic_inc(&rrdev->nr_pending);
1324 blocked_rdev = rrdev;
1325 break;
1326 }
1327 }
1328
1329 if (unlikely(blocked_rdev)) {
1330 /* Have to wait for this device to get unblocked, then retry */
1331 allow_barrier(conf);
1332 mddev_add_trace_msg(conf->mddev,
1333 "raid10 %s wait rdev %d blocked",
1334 __func__, blocked_rdev->raid_disk);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 wait_barrier(conf, false);
1337 goto retry_wait;
1338 }
1339 }
1340
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1341 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1342 struct r10bio *r10_bio)
1343 {
1344 struct r10conf *conf = mddev->private;
1345 int i, k;
1346 sector_t sectors;
1347 int max_sectors;
1348 int error;
1349
1350 if ((mddev_is_clustered(mddev) &&
1351 mddev->cluster_ops->area_resyncing(mddev, WRITE,
1352 bio->bi_iter.bi_sector,
1353 bio_end_sector(bio)))) {
1354 DEFINE_WAIT(w);
1355 /* Bail out if REQ_NOWAIT is set for the bio */
1356 if (bio->bi_opf & REQ_NOWAIT) {
1357 bio_wouldblock_error(bio);
1358 return;
1359 }
1360 for (;;) {
1361 prepare_to_wait(&conf->wait_barrier,
1362 &w, TASK_IDLE);
1363 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1364 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1365 break;
1366 schedule();
1367 }
1368 finish_wait(&conf->wait_barrier, &w);
1369 }
1370
1371 sectors = r10_bio->sectors;
1372 if (!regular_request_wait(mddev, conf, bio, sectors))
1373 return;
1374 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1375 (mddev->reshape_backwards
1376 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1377 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1378 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1379 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1380 /* Need to update reshape_position in metadata */
1381 mddev->reshape_position = conf->reshape_progress;
1382 set_mask_bits(&mddev->sb_flags, 0,
1383 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1384 md_wakeup_thread(mddev->thread);
1385 if (bio->bi_opf & REQ_NOWAIT) {
1386 allow_barrier(conf);
1387 bio_wouldblock_error(bio);
1388 return;
1389 }
1390 mddev_add_trace_msg(conf->mddev,
1391 "raid10 wait reshape metadata");
1392 wait_event(mddev->sb_wait,
1393 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1394
1395 conf->reshape_safe = mddev->reshape_position;
1396 }
1397
1398 /* first select target devices under rcu_lock and
1399 * inc refcount on their rdev. Record them by setting
1400 * bios[x] to bio
1401 * If there are known/acknowledged bad blocks on any device
1402 * on which we have seen a write error, we want to avoid
1403 * writing to those blocks. This potentially requires several
1404 * writes to write around the bad blocks. Each set of writes
1405 * gets its own r10_bio with a set of bios attached.
1406 */
1407
1408 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1409 raid10_find_phys(conf, r10_bio);
1410
1411 wait_blocked_dev(mddev, r10_bio);
1412
1413 max_sectors = r10_bio->sectors;
1414
1415 for (i = 0; i < conf->copies; i++) {
1416 int d = r10_bio->devs[i].devnum;
1417 struct md_rdev *rdev, *rrdev;
1418
1419 rdev = conf->mirrors[d].rdev;
1420 rrdev = conf->mirrors[d].replacement;
1421 if (rdev && (test_bit(Faulty, &rdev->flags)))
1422 rdev = NULL;
1423 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424 rrdev = NULL;
1425
1426 r10_bio->devs[i].bio = NULL;
1427 r10_bio->devs[i].repl_bio = NULL;
1428
1429 if (!rdev && !rrdev)
1430 continue;
1431 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1432 sector_t first_bad;
1433 sector_t dev_sector = r10_bio->devs[i].addr;
1434 sector_t bad_sectors;
1435 int is_bad;
1436
1437 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1438 &first_bad, &bad_sectors);
1439 if (is_bad && first_bad <= dev_sector) {
1440 /* Cannot write here at all */
1441 bad_sectors -= (dev_sector - first_bad);
1442 if (bad_sectors < max_sectors)
1443 /* Mustn't write more than bad_sectors
1444 * to other devices yet
1445 */
1446 max_sectors = bad_sectors;
1447 continue;
1448 }
1449 if (is_bad) {
1450 int good_sectors;
1451
1452 /*
1453 * We cannot atomically write this, so just
1454 * error in that case. It could be possible to
1455 * atomically write other mirrors, but the
1456 * complexity of supporting that is not worth
1457 * the benefit.
1458 */
1459 if (bio->bi_opf & REQ_ATOMIC) {
1460 error = -EIO;
1461 goto err_handle;
1462 }
1463
1464 good_sectors = first_bad - dev_sector;
1465 if (good_sectors < max_sectors)
1466 max_sectors = good_sectors;
1467 }
1468 }
1469 if (rdev) {
1470 r10_bio->devs[i].bio = bio;
1471 atomic_inc(&rdev->nr_pending);
1472 }
1473 if (rrdev) {
1474 r10_bio->devs[i].repl_bio = bio;
1475 atomic_inc(&rrdev->nr_pending);
1476 }
1477 }
1478
1479 if (max_sectors < r10_bio->sectors)
1480 r10_bio->sectors = max_sectors;
1481
1482 if (r10_bio->sectors < bio_sectors(bio)) {
1483 struct bio *split = bio_split(bio, r10_bio->sectors,
1484 GFP_NOIO, &conf->bio_split);
1485 if (IS_ERR(split)) {
1486 error = PTR_ERR(split);
1487 goto err_handle;
1488 }
1489 bio_chain(split, bio);
1490 allow_barrier(conf);
1491 submit_bio_noacct(bio);
1492 wait_barrier(conf, false);
1493 bio = split;
1494 r10_bio->master_bio = bio;
1495 }
1496
1497 md_account_bio(mddev, &bio);
1498 r10_bio->master_bio = bio;
1499 atomic_set(&r10_bio->remaining, 1);
1500
1501 for (i = 0; i < conf->copies; i++) {
1502 if (r10_bio->devs[i].bio)
1503 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1504 if (r10_bio->devs[i].repl_bio)
1505 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1506 }
1507 one_write_done(r10_bio);
1508 return;
1509 err_handle:
1510 for (k = 0; k < i; k++) {
1511 int d = r10_bio->devs[k].devnum;
1512 struct md_rdev *rdev = conf->mirrors[d].rdev;
1513 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1514
1515 if (r10_bio->devs[k].bio) {
1516 rdev_dec_pending(rdev, mddev);
1517 r10_bio->devs[k].bio = NULL;
1518 }
1519 if (r10_bio->devs[k].repl_bio) {
1520 rdev_dec_pending(rrdev, mddev);
1521 r10_bio->devs[k].repl_bio = NULL;
1522 }
1523 }
1524
1525 bio->bi_status = errno_to_blk_status(error);
1526 set_bit(R10BIO_Uptodate, &r10_bio->state);
1527 raid_end_bio_io(r10_bio);
1528 }
1529
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1530 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1531 {
1532 struct r10conf *conf = mddev->private;
1533 struct r10bio *r10_bio;
1534
1535 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1536
1537 r10_bio->master_bio = bio;
1538 r10_bio->sectors = sectors;
1539
1540 r10_bio->mddev = mddev;
1541 r10_bio->sector = bio->bi_iter.bi_sector;
1542 r10_bio->state = 0;
1543 r10_bio->read_slot = -1;
1544 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1545 conf->geo.raid_disks);
1546
1547 if (bio_data_dir(bio) == READ)
1548 raid10_read_request(mddev, bio, r10_bio, true);
1549 else
1550 raid10_write_request(mddev, bio, r10_bio);
1551 }
1552
raid_end_discard_bio(struct r10bio * r10bio)1553 static void raid_end_discard_bio(struct r10bio *r10bio)
1554 {
1555 struct r10conf *conf = r10bio->mddev->private;
1556 struct r10bio *first_r10bio;
1557
1558 while (atomic_dec_and_test(&r10bio->remaining)) {
1559
1560 allow_barrier(conf);
1561
1562 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1563 first_r10bio = (struct r10bio *)r10bio->master_bio;
1564 free_r10bio(r10bio);
1565 r10bio = first_r10bio;
1566 } else {
1567 md_write_end(r10bio->mddev);
1568 bio_endio(r10bio->master_bio);
1569 free_r10bio(r10bio);
1570 break;
1571 }
1572 }
1573 }
1574
raid10_end_discard_request(struct bio * bio)1575 static void raid10_end_discard_request(struct bio *bio)
1576 {
1577 struct r10bio *r10_bio = bio->bi_private;
1578 struct r10conf *conf = r10_bio->mddev->private;
1579 struct md_rdev *rdev = NULL;
1580 int dev;
1581 int slot, repl;
1582
1583 /*
1584 * We don't care the return value of discard bio
1585 */
1586 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1587 set_bit(R10BIO_Uptodate, &r10_bio->state);
1588
1589 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1590 rdev = repl ? conf->mirrors[dev].replacement :
1591 conf->mirrors[dev].rdev;
1592
1593 raid_end_discard_bio(r10_bio);
1594 rdev_dec_pending(rdev, conf->mddev);
1595 }
1596
1597 /*
1598 * There are some limitations to handle discard bio
1599 * 1st, the discard size is bigger than stripe_size*2.
1600 * 2st, if the discard bio spans reshape progress, we use the old way to
1601 * handle discard bio
1602 */
raid10_handle_discard(struct mddev * mddev,struct bio * bio)1603 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1604 {
1605 struct r10conf *conf = mddev->private;
1606 struct geom *geo = &conf->geo;
1607 int far_copies = geo->far_copies;
1608 bool first_copy = true;
1609 struct r10bio *r10_bio, *first_r10bio;
1610 struct bio *split;
1611 int disk;
1612 sector_t chunk;
1613 unsigned int stripe_size;
1614 unsigned int stripe_data_disks;
1615 sector_t split_size;
1616 sector_t bio_start, bio_end;
1617 sector_t first_stripe_index, last_stripe_index;
1618 sector_t start_disk_offset;
1619 unsigned int start_disk_index;
1620 sector_t end_disk_offset;
1621 unsigned int end_disk_index;
1622 unsigned int remainder;
1623
1624 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1625 return -EAGAIN;
1626
1627 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1628 bio_wouldblock_error(bio);
1629 return 0;
1630 }
1631
1632 /*
1633 * Check reshape again to avoid reshape happens after checking
1634 * MD_RECOVERY_RESHAPE and before wait_barrier
1635 */
1636 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1637 goto out;
1638
1639 if (geo->near_copies)
1640 stripe_data_disks = geo->raid_disks / geo->near_copies +
1641 geo->raid_disks % geo->near_copies;
1642 else
1643 stripe_data_disks = geo->raid_disks;
1644
1645 stripe_size = stripe_data_disks << geo->chunk_shift;
1646
1647 bio_start = bio->bi_iter.bi_sector;
1648 bio_end = bio_end_sector(bio);
1649
1650 /*
1651 * Maybe one discard bio is smaller than strip size or across one
1652 * stripe and discard region is larger than one stripe size. For far
1653 * offset layout, if the discard region is not aligned with stripe
1654 * size, there is hole when we submit discard bio to member disk.
1655 * For simplicity, we only handle discard bio which discard region
1656 * is bigger than stripe_size * 2
1657 */
1658 if (bio_sectors(bio) < stripe_size*2)
1659 goto out;
1660
1661 /*
1662 * Keep bio aligned with strip size.
1663 */
1664 div_u64_rem(bio_start, stripe_size, &remainder);
1665 if (remainder) {
1666 split_size = stripe_size - remainder;
1667 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1668 if (IS_ERR(split)) {
1669 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1670 bio_endio(bio);
1671 return 0;
1672 }
1673 bio_chain(split, bio);
1674 allow_barrier(conf);
1675 /* Resend the fist split part */
1676 submit_bio_noacct(split);
1677 wait_barrier(conf, false);
1678 }
1679 div_u64_rem(bio_end, stripe_size, &remainder);
1680 if (remainder) {
1681 split_size = bio_sectors(bio) - remainder;
1682 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1683 if (IS_ERR(split)) {
1684 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1685 bio_endio(bio);
1686 return 0;
1687 }
1688 bio_chain(split, bio);
1689 allow_barrier(conf);
1690 /* Resend the second split part */
1691 submit_bio_noacct(bio);
1692 bio = split;
1693 wait_barrier(conf, false);
1694 }
1695
1696 bio_start = bio->bi_iter.bi_sector;
1697 bio_end = bio_end_sector(bio);
1698
1699 /*
1700 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1701 * One stripe contains the chunks from all member disk (one chunk from
1702 * one disk at the same HBA address). For layout detail, see 'man md 4'
1703 */
1704 chunk = bio_start >> geo->chunk_shift;
1705 chunk *= geo->near_copies;
1706 first_stripe_index = chunk;
1707 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1708 if (geo->far_offset)
1709 first_stripe_index *= geo->far_copies;
1710 start_disk_offset = (bio_start & geo->chunk_mask) +
1711 (first_stripe_index << geo->chunk_shift);
1712
1713 chunk = bio_end >> geo->chunk_shift;
1714 chunk *= geo->near_copies;
1715 last_stripe_index = chunk;
1716 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1717 if (geo->far_offset)
1718 last_stripe_index *= geo->far_copies;
1719 end_disk_offset = (bio_end & geo->chunk_mask) +
1720 (last_stripe_index << geo->chunk_shift);
1721
1722 retry_discard:
1723 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1724 r10_bio->mddev = mddev;
1725 r10_bio->state = 0;
1726 r10_bio->sectors = 0;
1727 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1728 wait_blocked_dev(mddev, r10_bio);
1729
1730 /*
1731 * For far layout it needs more than one r10bio to cover all regions.
1732 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1733 * to record the discard bio. Other r10bio->master_bio record the first
1734 * r10bio. The first r10bio only release after all other r10bios finish.
1735 * The discard bio returns only first r10bio finishes
1736 */
1737 if (first_copy) {
1738 r10_bio->master_bio = bio;
1739 set_bit(R10BIO_Discard, &r10_bio->state);
1740 first_copy = false;
1741 first_r10bio = r10_bio;
1742 } else
1743 r10_bio->master_bio = (struct bio *)first_r10bio;
1744
1745 /*
1746 * first select target devices under rcu_lock and
1747 * inc refcount on their rdev. Record them by setting
1748 * bios[x] to bio
1749 */
1750 for (disk = 0; disk < geo->raid_disks; disk++) {
1751 struct md_rdev *rdev, *rrdev;
1752
1753 rdev = conf->mirrors[disk].rdev;
1754 rrdev = conf->mirrors[disk].replacement;
1755 r10_bio->devs[disk].bio = NULL;
1756 r10_bio->devs[disk].repl_bio = NULL;
1757
1758 if (rdev && (test_bit(Faulty, &rdev->flags)))
1759 rdev = NULL;
1760 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1761 rrdev = NULL;
1762 if (!rdev && !rrdev)
1763 continue;
1764
1765 if (rdev) {
1766 r10_bio->devs[disk].bio = bio;
1767 atomic_inc(&rdev->nr_pending);
1768 }
1769 if (rrdev) {
1770 r10_bio->devs[disk].repl_bio = bio;
1771 atomic_inc(&rrdev->nr_pending);
1772 }
1773 }
1774
1775 atomic_set(&r10_bio->remaining, 1);
1776 for (disk = 0; disk < geo->raid_disks; disk++) {
1777 sector_t dev_start, dev_end;
1778 struct bio *mbio, *rbio = NULL;
1779
1780 /*
1781 * Now start to calculate the start and end address for each disk.
1782 * The space between dev_start and dev_end is the discard region.
1783 *
1784 * For dev_start, it needs to consider three conditions:
1785 * 1st, the disk is before start_disk, you can imagine the disk in
1786 * the next stripe. So the dev_start is the start address of next
1787 * stripe.
1788 * 2st, the disk is after start_disk, it means the disk is at the
1789 * same stripe of first disk
1790 * 3st, the first disk itself, we can use start_disk_offset directly
1791 */
1792 if (disk < start_disk_index)
1793 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1794 else if (disk > start_disk_index)
1795 dev_start = first_stripe_index * mddev->chunk_sectors;
1796 else
1797 dev_start = start_disk_offset;
1798
1799 if (disk < end_disk_index)
1800 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1801 else if (disk > end_disk_index)
1802 dev_end = last_stripe_index * mddev->chunk_sectors;
1803 else
1804 dev_end = end_disk_offset;
1805
1806 /*
1807 * It only handles discard bio which size is >= stripe size, so
1808 * dev_end > dev_start all the time.
1809 * It doesn't need to use rcu lock to get rdev here. We already
1810 * add rdev->nr_pending in the first loop.
1811 */
1812 if (r10_bio->devs[disk].bio) {
1813 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1814 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1815 &mddev->bio_set);
1816 mbio->bi_end_io = raid10_end_discard_request;
1817 mbio->bi_private = r10_bio;
1818 r10_bio->devs[disk].bio = mbio;
1819 r10_bio->devs[disk].devnum = disk;
1820 atomic_inc(&r10_bio->remaining);
1821 md_submit_discard_bio(mddev, rdev, mbio,
1822 dev_start + choose_data_offset(r10_bio, rdev),
1823 dev_end - dev_start);
1824 bio_endio(mbio);
1825 }
1826 if (r10_bio->devs[disk].repl_bio) {
1827 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1828 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1829 &mddev->bio_set);
1830 rbio->bi_end_io = raid10_end_discard_request;
1831 rbio->bi_private = r10_bio;
1832 r10_bio->devs[disk].repl_bio = rbio;
1833 r10_bio->devs[disk].devnum = disk;
1834 atomic_inc(&r10_bio->remaining);
1835 md_submit_discard_bio(mddev, rrdev, rbio,
1836 dev_start + choose_data_offset(r10_bio, rrdev),
1837 dev_end - dev_start);
1838 bio_endio(rbio);
1839 }
1840 }
1841
1842 if (!geo->far_offset && --far_copies) {
1843 first_stripe_index += geo->stride >> geo->chunk_shift;
1844 start_disk_offset += geo->stride;
1845 last_stripe_index += geo->stride >> geo->chunk_shift;
1846 end_disk_offset += geo->stride;
1847 atomic_inc(&first_r10bio->remaining);
1848 raid_end_discard_bio(r10_bio);
1849 wait_barrier(conf, false);
1850 goto retry_discard;
1851 }
1852
1853 raid_end_discard_bio(r10_bio);
1854
1855 return 0;
1856 out:
1857 allow_barrier(conf);
1858 return -EAGAIN;
1859 }
1860
raid10_make_request(struct mddev * mddev,struct bio * bio)1861 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1862 {
1863 struct r10conf *conf = mddev->private;
1864 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1865 int chunk_sects = chunk_mask + 1;
1866 int sectors = bio_sectors(bio);
1867
1868 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1869 && md_flush_request(mddev, bio))
1870 return true;
1871
1872 md_write_start(mddev, bio);
1873
1874 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1875 if (!raid10_handle_discard(mddev, bio))
1876 return true;
1877
1878 /*
1879 * If this request crosses a chunk boundary, we need to split
1880 * it.
1881 */
1882 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1883 sectors > chunk_sects
1884 && (conf->geo.near_copies < conf->geo.raid_disks
1885 || conf->prev.near_copies <
1886 conf->prev.raid_disks)))
1887 sectors = chunk_sects -
1888 (bio->bi_iter.bi_sector &
1889 (chunk_sects - 1));
1890 __make_request(mddev, bio, sectors);
1891
1892 /* In case raid10d snuck in to freeze_array */
1893 wake_up_barrier(conf);
1894 return true;
1895 }
1896
raid10_status(struct seq_file * seq,struct mddev * mddev)1897 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1898 {
1899 struct r10conf *conf = mddev->private;
1900 int i;
1901
1902 lockdep_assert_held(&mddev->lock);
1903
1904 if (conf->geo.near_copies < conf->geo.raid_disks)
1905 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1906 if (conf->geo.near_copies > 1)
1907 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1908 if (conf->geo.far_copies > 1) {
1909 if (conf->geo.far_offset)
1910 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1911 else
1912 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1913 if (conf->geo.far_set_size != conf->geo.raid_disks)
1914 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1915 }
1916 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1917 conf->geo.raid_disks - mddev->degraded);
1918 for (i = 0; i < conf->geo.raid_disks; i++) {
1919 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1920
1921 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1922 }
1923 seq_printf(seq, "]");
1924 }
1925
1926 /* check if there are enough drives for
1927 * every block to appear on atleast one.
1928 * Don't consider the device numbered 'ignore'
1929 * as we might be about to remove it.
1930 */
_enough(struct r10conf * conf,int previous,int ignore)1931 static int _enough(struct r10conf *conf, int previous, int ignore)
1932 {
1933 int first = 0;
1934 int has_enough = 0;
1935 int disks, ncopies;
1936 if (previous) {
1937 disks = conf->prev.raid_disks;
1938 ncopies = conf->prev.near_copies;
1939 } else {
1940 disks = conf->geo.raid_disks;
1941 ncopies = conf->geo.near_copies;
1942 }
1943
1944 do {
1945 int n = conf->copies;
1946 int cnt = 0;
1947 int this = first;
1948 while (n--) {
1949 struct md_rdev *rdev;
1950 if (this != ignore &&
1951 (rdev = conf->mirrors[this].rdev) &&
1952 test_bit(In_sync, &rdev->flags))
1953 cnt++;
1954 this = (this+1) % disks;
1955 }
1956 if (cnt == 0)
1957 goto out;
1958 first = (first + ncopies) % disks;
1959 } while (first != 0);
1960 has_enough = 1;
1961 out:
1962 return has_enough;
1963 }
1964
enough(struct r10conf * conf,int ignore)1965 static int enough(struct r10conf *conf, int ignore)
1966 {
1967 /* when calling 'enough', both 'prev' and 'geo' must
1968 * be stable.
1969 * This is ensured if ->reconfig_mutex or ->device_lock
1970 * is held.
1971 */
1972 return _enough(conf, 0, ignore) &&
1973 _enough(conf, 1, ignore);
1974 }
1975
1976 /**
1977 * raid10_error() - RAID10 error handler.
1978 * @mddev: affected md device.
1979 * @rdev: member device to fail.
1980 *
1981 * The routine acknowledges &rdev failure and determines new @mddev state.
1982 * If it failed, then:
1983 * - &MD_BROKEN flag is set in &mddev->flags.
1984 * Otherwise, it must be degraded:
1985 * - recovery is interrupted.
1986 * - &mddev->degraded is bumped.
1987 *
1988 * @rdev is marked as &Faulty excluding case when array is failed and
1989 * &mddev->fail_last_dev is off.
1990 */
raid10_error(struct mddev * mddev,struct md_rdev * rdev)1991 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1992 {
1993 struct r10conf *conf = mddev->private;
1994 unsigned long flags;
1995
1996 spin_lock_irqsave(&conf->device_lock, flags);
1997
1998 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1999 set_bit(MD_BROKEN, &mddev->flags);
2000
2001 if (!mddev->fail_last_dev) {
2002 spin_unlock_irqrestore(&conf->device_lock, flags);
2003 return;
2004 }
2005 }
2006 if (test_and_clear_bit(In_sync, &rdev->flags))
2007 mddev->degraded++;
2008
2009 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2010 set_bit(Blocked, &rdev->flags);
2011 set_bit(Faulty, &rdev->flags);
2012 set_mask_bits(&mddev->sb_flags, 0,
2013 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2014 spin_unlock_irqrestore(&conf->device_lock, flags);
2015 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2016 "md/raid10:%s: Operation continuing on %d devices.\n",
2017 mdname(mddev), rdev->bdev,
2018 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2019 }
2020
print_conf(struct r10conf * conf)2021 static void print_conf(struct r10conf *conf)
2022 {
2023 int i;
2024 struct md_rdev *rdev;
2025
2026 pr_debug("RAID10 conf printout:\n");
2027 if (!conf) {
2028 pr_debug("(!conf)\n");
2029 return;
2030 }
2031 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2032 conf->geo.raid_disks);
2033
2034 lockdep_assert_held(&conf->mddev->reconfig_mutex);
2035 for (i = 0; i < conf->geo.raid_disks; i++) {
2036 rdev = conf->mirrors[i].rdev;
2037 if (rdev)
2038 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2039 i, !test_bit(In_sync, &rdev->flags),
2040 !test_bit(Faulty, &rdev->flags),
2041 rdev->bdev);
2042 }
2043 }
2044
close_sync(struct r10conf * conf)2045 static void close_sync(struct r10conf *conf)
2046 {
2047 wait_barrier(conf, false);
2048 allow_barrier(conf);
2049
2050 mempool_exit(&conf->r10buf_pool);
2051 }
2052
raid10_spare_active(struct mddev * mddev)2053 static int raid10_spare_active(struct mddev *mddev)
2054 {
2055 int i;
2056 struct r10conf *conf = mddev->private;
2057 struct raid10_info *tmp;
2058 int count = 0;
2059 unsigned long flags;
2060
2061 /*
2062 * Find all non-in_sync disks within the RAID10 configuration
2063 * and mark them in_sync
2064 */
2065 for (i = 0; i < conf->geo.raid_disks; i++) {
2066 tmp = conf->mirrors + i;
2067 if (tmp->replacement
2068 && tmp->replacement->recovery_offset == MaxSector
2069 && !test_bit(Faulty, &tmp->replacement->flags)
2070 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2071 /* Replacement has just become active */
2072 if (!tmp->rdev
2073 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2074 count++;
2075 if (tmp->rdev) {
2076 /* Replaced device not technically faulty,
2077 * but we need to be sure it gets removed
2078 * and never re-added.
2079 */
2080 set_bit(Faulty, &tmp->rdev->flags);
2081 sysfs_notify_dirent_safe(
2082 tmp->rdev->sysfs_state);
2083 }
2084 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2085 } else if (tmp->rdev
2086 && tmp->rdev->recovery_offset == MaxSector
2087 && !test_bit(Faulty, &tmp->rdev->flags)
2088 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2089 count++;
2090 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2091 }
2092 }
2093 spin_lock_irqsave(&conf->device_lock, flags);
2094 mddev->degraded -= count;
2095 spin_unlock_irqrestore(&conf->device_lock, flags);
2096
2097 print_conf(conf);
2098 return count;
2099 }
2100
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)2101 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2102 {
2103 struct r10conf *conf = mddev->private;
2104 int err = -EEXIST;
2105 int mirror, repl_slot = -1;
2106 int first = 0;
2107 int last = conf->geo.raid_disks - 1;
2108 struct raid10_info *p;
2109
2110 if (mddev->recovery_cp < MaxSector)
2111 /* only hot-add to in-sync arrays, as recovery is
2112 * very different from resync
2113 */
2114 return -EBUSY;
2115 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2116 return -EINVAL;
2117
2118 if (rdev->raid_disk >= 0)
2119 first = last = rdev->raid_disk;
2120
2121 if (rdev->saved_raid_disk >= first &&
2122 rdev->saved_raid_disk < conf->geo.raid_disks &&
2123 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2124 mirror = rdev->saved_raid_disk;
2125 else
2126 mirror = first;
2127 for ( ; mirror <= last ; mirror++) {
2128 p = &conf->mirrors[mirror];
2129 if (p->recovery_disabled == mddev->recovery_disabled)
2130 continue;
2131 if (p->rdev) {
2132 if (test_bit(WantReplacement, &p->rdev->flags) &&
2133 p->replacement == NULL && repl_slot < 0)
2134 repl_slot = mirror;
2135 continue;
2136 }
2137
2138 err = mddev_stack_new_rdev(mddev, rdev);
2139 if (err)
2140 return err;
2141 p->head_position = 0;
2142 p->recovery_disabled = mddev->recovery_disabled - 1;
2143 rdev->raid_disk = mirror;
2144 err = 0;
2145 if (rdev->saved_raid_disk != mirror)
2146 conf->fullsync = 1;
2147 WRITE_ONCE(p->rdev, rdev);
2148 break;
2149 }
2150
2151 if (err && repl_slot >= 0) {
2152 p = &conf->mirrors[repl_slot];
2153 clear_bit(In_sync, &rdev->flags);
2154 set_bit(Replacement, &rdev->flags);
2155 rdev->raid_disk = repl_slot;
2156 err = mddev_stack_new_rdev(mddev, rdev);
2157 if (err)
2158 return err;
2159 conf->fullsync = 1;
2160 WRITE_ONCE(p->replacement, rdev);
2161 }
2162
2163 print_conf(conf);
2164 return err;
2165 }
2166
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)2167 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2168 {
2169 struct r10conf *conf = mddev->private;
2170 int err = 0;
2171 int number = rdev->raid_disk;
2172 struct md_rdev **rdevp;
2173 struct raid10_info *p;
2174
2175 print_conf(conf);
2176 if (unlikely(number >= mddev->raid_disks))
2177 return 0;
2178 p = conf->mirrors + number;
2179 if (rdev == p->rdev)
2180 rdevp = &p->rdev;
2181 else if (rdev == p->replacement)
2182 rdevp = &p->replacement;
2183 else
2184 return 0;
2185
2186 if (test_bit(In_sync, &rdev->flags) ||
2187 atomic_read(&rdev->nr_pending)) {
2188 err = -EBUSY;
2189 goto abort;
2190 }
2191 /* Only remove non-faulty devices if recovery
2192 * is not possible.
2193 */
2194 if (!test_bit(Faulty, &rdev->flags) &&
2195 mddev->recovery_disabled != p->recovery_disabled &&
2196 (!p->replacement || p->replacement == rdev) &&
2197 number < conf->geo.raid_disks &&
2198 enough(conf, -1)) {
2199 err = -EBUSY;
2200 goto abort;
2201 }
2202 WRITE_ONCE(*rdevp, NULL);
2203 if (p->replacement) {
2204 /* We must have just cleared 'rdev' */
2205 WRITE_ONCE(p->rdev, p->replacement);
2206 clear_bit(Replacement, &p->replacement->flags);
2207 WRITE_ONCE(p->replacement, NULL);
2208 }
2209
2210 clear_bit(WantReplacement, &rdev->flags);
2211 err = md_integrity_register(mddev);
2212
2213 abort:
2214
2215 print_conf(conf);
2216 return err;
2217 }
2218
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)2219 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2220 {
2221 struct r10conf *conf = r10_bio->mddev->private;
2222
2223 if (!bio->bi_status)
2224 set_bit(R10BIO_Uptodate, &r10_bio->state);
2225 else
2226 /* The write handler will notice the lack of
2227 * R10BIO_Uptodate and record any errors etc
2228 */
2229 atomic_add(r10_bio->sectors,
2230 &conf->mirrors[d].rdev->corrected_errors);
2231
2232 /* for reconstruct, we always reschedule after a read.
2233 * for resync, only after all reads
2234 */
2235 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2236 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2237 atomic_dec_and_test(&r10_bio->remaining)) {
2238 /* we have read all the blocks,
2239 * do the comparison in process context in raid10d
2240 */
2241 reschedule_retry(r10_bio);
2242 }
2243 }
2244
end_sync_read(struct bio * bio)2245 static void end_sync_read(struct bio *bio)
2246 {
2247 struct r10bio *r10_bio = get_resync_r10bio(bio);
2248 struct r10conf *conf = r10_bio->mddev->private;
2249 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2250
2251 __end_sync_read(r10_bio, bio, d);
2252 }
2253
end_reshape_read(struct bio * bio)2254 static void end_reshape_read(struct bio *bio)
2255 {
2256 /* reshape read bio isn't allocated from r10buf_pool */
2257 struct r10bio *r10_bio = bio->bi_private;
2258
2259 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2260 }
2261
end_sync_request(struct r10bio * r10_bio)2262 static void end_sync_request(struct r10bio *r10_bio)
2263 {
2264 struct mddev *mddev = r10_bio->mddev;
2265
2266 while (atomic_dec_and_test(&r10_bio->remaining)) {
2267 if (r10_bio->master_bio == NULL) {
2268 /* the primary of several recovery bios */
2269 sector_t s = r10_bio->sectors;
2270 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2271 test_bit(R10BIO_WriteError, &r10_bio->state))
2272 reschedule_retry(r10_bio);
2273 else
2274 put_buf(r10_bio);
2275 md_done_sync(mddev, s, 1);
2276 break;
2277 } else {
2278 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2279 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2280 test_bit(R10BIO_WriteError, &r10_bio->state))
2281 reschedule_retry(r10_bio);
2282 else
2283 put_buf(r10_bio);
2284 r10_bio = r10_bio2;
2285 }
2286 }
2287 }
2288
end_sync_write(struct bio * bio)2289 static void end_sync_write(struct bio *bio)
2290 {
2291 struct r10bio *r10_bio = get_resync_r10bio(bio);
2292 struct mddev *mddev = r10_bio->mddev;
2293 struct r10conf *conf = mddev->private;
2294 int d;
2295 int slot;
2296 int repl;
2297 struct md_rdev *rdev = NULL;
2298
2299 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2300 if (repl)
2301 rdev = conf->mirrors[d].replacement;
2302 else
2303 rdev = conf->mirrors[d].rdev;
2304
2305 if (bio->bi_status) {
2306 if (repl)
2307 md_error(mddev, rdev);
2308 else {
2309 set_bit(WriteErrorSeen, &rdev->flags);
2310 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2311 set_bit(MD_RECOVERY_NEEDED,
2312 &rdev->mddev->recovery);
2313 set_bit(R10BIO_WriteError, &r10_bio->state);
2314 }
2315 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2316 r10_bio->sectors)) {
2317 set_bit(R10BIO_MadeGood, &r10_bio->state);
2318 }
2319
2320 rdev_dec_pending(rdev, mddev);
2321
2322 end_sync_request(r10_bio);
2323 }
2324
2325 /*
2326 * Note: sync and recover and handled very differently for raid10
2327 * This code is for resync.
2328 * For resync, we read through virtual addresses and read all blocks.
2329 * If there is any error, we schedule a write. The lowest numbered
2330 * drive is authoritative.
2331 * However requests come for physical address, so we need to map.
2332 * For every physical address there are raid_disks/copies virtual addresses,
2333 * which is always are least one, but is not necessarly an integer.
2334 * This means that a physical address can span multiple chunks, so we may
2335 * have to submit multiple io requests for a single sync request.
2336 */
2337 /*
2338 * We check if all blocks are in-sync and only write to blocks that
2339 * aren't in sync
2340 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2341 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2342 {
2343 struct r10conf *conf = mddev->private;
2344 int i, first;
2345 struct bio *tbio, *fbio;
2346 int vcnt;
2347 struct page **tpages, **fpages;
2348
2349 atomic_set(&r10_bio->remaining, 1);
2350
2351 /* find the first device with a block */
2352 for (i=0; i<conf->copies; i++)
2353 if (!r10_bio->devs[i].bio->bi_status)
2354 break;
2355
2356 if (i == conf->copies)
2357 goto done;
2358
2359 first = i;
2360 fbio = r10_bio->devs[i].bio;
2361 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2362 fbio->bi_iter.bi_idx = 0;
2363 fpages = get_resync_pages(fbio)->pages;
2364
2365 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2366 /* now find blocks with errors */
2367 for (i=0 ; i < conf->copies ; i++) {
2368 int j, d;
2369 struct md_rdev *rdev;
2370 struct resync_pages *rp;
2371
2372 tbio = r10_bio->devs[i].bio;
2373
2374 if (tbio->bi_end_io != end_sync_read)
2375 continue;
2376 if (i == first)
2377 continue;
2378
2379 tpages = get_resync_pages(tbio)->pages;
2380 d = r10_bio->devs[i].devnum;
2381 rdev = conf->mirrors[d].rdev;
2382 if (!r10_bio->devs[i].bio->bi_status) {
2383 /* We know that the bi_io_vec layout is the same for
2384 * both 'first' and 'i', so we just compare them.
2385 * All vec entries are PAGE_SIZE;
2386 */
2387 int sectors = r10_bio->sectors;
2388 for (j = 0; j < vcnt; j++) {
2389 int len = PAGE_SIZE;
2390 if (sectors < (len / 512))
2391 len = sectors * 512;
2392 if (memcmp(page_address(fpages[j]),
2393 page_address(tpages[j]),
2394 len))
2395 break;
2396 sectors -= len/512;
2397 }
2398 if (j == vcnt)
2399 continue;
2400 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2401 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2402 /* Don't fix anything. */
2403 continue;
2404 } else if (test_bit(FailFast, &rdev->flags)) {
2405 /* Just give up on this device */
2406 md_error(rdev->mddev, rdev);
2407 continue;
2408 }
2409 /* Ok, we need to write this bio, either to correct an
2410 * inconsistency or to correct an unreadable block.
2411 * First we need to fixup bv_offset, bv_len and
2412 * bi_vecs, as the read request might have corrupted these
2413 */
2414 rp = get_resync_pages(tbio);
2415 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2416
2417 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2418
2419 rp->raid_bio = r10_bio;
2420 tbio->bi_private = rp;
2421 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2422 tbio->bi_end_io = end_sync_write;
2423
2424 bio_copy_data(tbio, fbio);
2425
2426 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2427 atomic_inc(&r10_bio->remaining);
2428 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2429
2430 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2431 tbio->bi_opf |= MD_FAILFAST;
2432 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2433 submit_bio_noacct(tbio);
2434 }
2435
2436 /* Now write out to any replacement devices
2437 * that are active
2438 */
2439 for (i = 0; i < conf->copies; i++) {
2440 int d;
2441
2442 tbio = r10_bio->devs[i].repl_bio;
2443 if (!tbio || !tbio->bi_end_io)
2444 continue;
2445 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2446 && r10_bio->devs[i].bio != fbio)
2447 bio_copy_data(tbio, fbio);
2448 d = r10_bio->devs[i].devnum;
2449 atomic_inc(&r10_bio->remaining);
2450 md_sync_acct(conf->mirrors[d].replacement->bdev,
2451 bio_sectors(tbio));
2452 submit_bio_noacct(tbio);
2453 }
2454
2455 done:
2456 if (atomic_dec_and_test(&r10_bio->remaining)) {
2457 md_done_sync(mddev, r10_bio->sectors, 1);
2458 put_buf(r10_bio);
2459 }
2460 }
2461
2462 /*
2463 * Now for the recovery code.
2464 * Recovery happens across physical sectors.
2465 * We recover all non-is_sync drives by finding the virtual address of
2466 * each, and then choose a working drive that also has that virt address.
2467 * There is a separate r10_bio for each non-in_sync drive.
2468 * Only the first two slots are in use. The first for reading,
2469 * The second for writing.
2470 *
2471 */
fix_recovery_read_error(struct r10bio * r10_bio)2472 static void fix_recovery_read_error(struct r10bio *r10_bio)
2473 {
2474 /* We got a read error during recovery.
2475 * We repeat the read in smaller page-sized sections.
2476 * If a read succeeds, write it to the new device or record
2477 * a bad block if we cannot.
2478 * If a read fails, record a bad block on both old and
2479 * new devices.
2480 */
2481 struct mddev *mddev = r10_bio->mddev;
2482 struct r10conf *conf = mddev->private;
2483 struct bio *bio = r10_bio->devs[0].bio;
2484 sector_t sect = 0;
2485 int sectors = r10_bio->sectors;
2486 int idx = 0;
2487 int dr = r10_bio->devs[0].devnum;
2488 int dw = r10_bio->devs[1].devnum;
2489 struct page **pages = get_resync_pages(bio)->pages;
2490
2491 while (sectors) {
2492 int s = sectors;
2493 struct md_rdev *rdev;
2494 sector_t addr;
2495 int ok;
2496
2497 if (s > (PAGE_SIZE>>9))
2498 s = PAGE_SIZE >> 9;
2499
2500 rdev = conf->mirrors[dr].rdev;
2501 addr = r10_bio->devs[0].addr + sect;
2502 ok = sync_page_io(rdev,
2503 addr,
2504 s << 9,
2505 pages[idx],
2506 REQ_OP_READ, false);
2507 if (ok) {
2508 rdev = conf->mirrors[dw].rdev;
2509 addr = r10_bio->devs[1].addr + sect;
2510 ok = sync_page_io(rdev,
2511 addr,
2512 s << 9,
2513 pages[idx],
2514 REQ_OP_WRITE, false);
2515 if (!ok) {
2516 set_bit(WriteErrorSeen, &rdev->flags);
2517 if (!test_and_set_bit(WantReplacement,
2518 &rdev->flags))
2519 set_bit(MD_RECOVERY_NEEDED,
2520 &rdev->mddev->recovery);
2521 }
2522 }
2523 if (!ok) {
2524 /* We don't worry if we cannot set a bad block -
2525 * it really is bad so there is no loss in not
2526 * recording it yet
2527 */
2528 rdev_set_badblocks(rdev, addr, s, 0);
2529
2530 if (rdev != conf->mirrors[dw].rdev) {
2531 /* need bad block on destination too */
2532 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2533 addr = r10_bio->devs[1].addr + sect;
2534 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2535 if (!ok) {
2536 /* just abort the recovery */
2537 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2538 mdname(mddev));
2539
2540 conf->mirrors[dw].recovery_disabled
2541 = mddev->recovery_disabled;
2542 set_bit(MD_RECOVERY_INTR,
2543 &mddev->recovery);
2544 break;
2545 }
2546 }
2547 }
2548
2549 sectors -= s;
2550 sect += s;
2551 idx++;
2552 }
2553 }
2554
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2555 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2556 {
2557 struct r10conf *conf = mddev->private;
2558 int d;
2559 struct bio *wbio = r10_bio->devs[1].bio;
2560 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2561
2562 /* Need to test wbio2->bi_end_io before we call
2563 * submit_bio_noacct as if the former is NULL,
2564 * the latter is free to free wbio2.
2565 */
2566 if (wbio2 && !wbio2->bi_end_io)
2567 wbio2 = NULL;
2568
2569 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2570 fix_recovery_read_error(r10_bio);
2571 if (wbio->bi_end_io)
2572 end_sync_request(r10_bio);
2573 if (wbio2)
2574 end_sync_request(r10_bio);
2575 return;
2576 }
2577
2578 /*
2579 * share the pages with the first bio
2580 * and submit the write request
2581 */
2582 d = r10_bio->devs[1].devnum;
2583 if (wbio->bi_end_io) {
2584 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2585 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2586 submit_bio_noacct(wbio);
2587 }
2588 if (wbio2) {
2589 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2590 md_sync_acct(conf->mirrors[d].replacement->bdev,
2591 bio_sectors(wbio2));
2592 submit_bio_noacct(wbio2);
2593 }
2594 }
2595
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,enum req_op op)2596 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2597 int sectors, struct page *page, enum req_op op)
2598 {
2599 if (rdev_has_badblock(rdev, sector, sectors) &&
2600 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2601 return -1;
2602 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2603 /* success */
2604 return 1;
2605 if (op == REQ_OP_WRITE) {
2606 set_bit(WriteErrorSeen, &rdev->flags);
2607 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2608 set_bit(MD_RECOVERY_NEEDED,
2609 &rdev->mddev->recovery);
2610 }
2611 /* need to record an error - either for the block or the device */
2612 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2613 md_error(rdev->mddev, rdev);
2614 return 0;
2615 }
2616
2617 /*
2618 * This is a kernel thread which:
2619 *
2620 * 1. Retries failed read operations on working mirrors.
2621 * 2. Updates the raid superblock when problems encounter.
2622 * 3. Performs writes following reads for array synchronising.
2623 */
2624
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2625 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2626 {
2627 int sect = 0; /* Offset from r10_bio->sector */
2628 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2629 struct md_rdev *rdev;
2630 int d = r10_bio->devs[slot].devnum;
2631
2632 /* still own a reference to this rdev, so it cannot
2633 * have been cleared recently.
2634 */
2635 rdev = conf->mirrors[d].rdev;
2636
2637 if (test_bit(Faulty, &rdev->flags))
2638 /* drive has already been failed, just ignore any
2639 more fix_read_error() attempts */
2640 return;
2641
2642 if (exceed_read_errors(mddev, rdev)) {
2643 r10_bio->devs[slot].bio = IO_BLOCKED;
2644 return;
2645 }
2646
2647 while(sectors) {
2648 int s = sectors;
2649 int sl = slot;
2650 int success = 0;
2651 int start;
2652
2653 if (s > (PAGE_SIZE>>9))
2654 s = PAGE_SIZE >> 9;
2655
2656 do {
2657 d = r10_bio->devs[sl].devnum;
2658 rdev = conf->mirrors[d].rdev;
2659 if (rdev &&
2660 test_bit(In_sync, &rdev->flags) &&
2661 !test_bit(Faulty, &rdev->flags) &&
2662 rdev_has_badblock(rdev,
2663 r10_bio->devs[sl].addr + sect,
2664 s) == 0) {
2665 atomic_inc(&rdev->nr_pending);
2666 success = sync_page_io(rdev,
2667 r10_bio->devs[sl].addr +
2668 sect,
2669 s<<9,
2670 conf->tmppage,
2671 REQ_OP_READ, false);
2672 rdev_dec_pending(rdev, mddev);
2673 if (success)
2674 break;
2675 }
2676 sl++;
2677 if (sl == conf->copies)
2678 sl = 0;
2679 } while (sl != slot);
2680
2681 if (!success) {
2682 /* Cannot read from anywhere, just mark the block
2683 * as bad on the first device to discourage future
2684 * reads.
2685 */
2686 int dn = r10_bio->devs[slot].devnum;
2687 rdev = conf->mirrors[dn].rdev;
2688
2689 if (!rdev_set_badblocks(
2690 rdev,
2691 r10_bio->devs[slot].addr
2692 + sect,
2693 s, 0)) {
2694 md_error(mddev, rdev);
2695 r10_bio->devs[slot].bio
2696 = IO_BLOCKED;
2697 }
2698 break;
2699 }
2700
2701 start = sl;
2702 /* write it back and re-read */
2703 while (sl != slot) {
2704 if (sl==0)
2705 sl = conf->copies;
2706 sl--;
2707 d = r10_bio->devs[sl].devnum;
2708 rdev = conf->mirrors[d].rdev;
2709 if (!rdev ||
2710 test_bit(Faulty, &rdev->flags) ||
2711 !test_bit(In_sync, &rdev->flags))
2712 continue;
2713
2714 atomic_inc(&rdev->nr_pending);
2715 if (r10_sync_page_io(rdev,
2716 r10_bio->devs[sl].addr +
2717 sect,
2718 s, conf->tmppage, REQ_OP_WRITE)
2719 == 0) {
2720 /* Well, this device is dead */
2721 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2722 mdname(mddev), s,
2723 (unsigned long long)(
2724 sect +
2725 choose_data_offset(r10_bio,
2726 rdev)),
2727 rdev->bdev);
2728 pr_notice("md/raid10:%s: %pg: failing drive\n",
2729 mdname(mddev),
2730 rdev->bdev);
2731 }
2732 rdev_dec_pending(rdev, mddev);
2733 }
2734 sl = start;
2735 while (sl != slot) {
2736 if (sl==0)
2737 sl = conf->copies;
2738 sl--;
2739 d = r10_bio->devs[sl].devnum;
2740 rdev = conf->mirrors[d].rdev;
2741 if (!rdev ||
2742 test_bit(Faulty, &rdev->flags) ||
2743 !test_bit(In_sync, &rdev->flags))
2744 continue;
2745
2746 atomic_inc(&rdev->nr_pending);
2747 switch (r10_sync_page_io(rdev,
2748 r10_bio->devs[sl].addr +
2749 sect,
2750 s, conf->tmppage, REQ_OP_READ)) {
2751 case 0:
2752 /* Well, this device is dead */
2753 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2754 mdname(mddev), s,
2755 (unsigned long long)(
2756 sect +
2757 choose_data_offset(r10_bio, rdev)),
2758 rdev->bdev);
2759 pr_notice("md/raid10:%s: %pg: failing drive\n",
2760 mdname(mddev),
2761 rdev->bdev);
2762 break;
2763 case 1:
2764 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2765 mdname(mddev), s,
2766 (unsigned long long)(
2767 sect +
2768 choose_data_offset(r10_bio, rdev)),
2769 rdev->bdev);
2770 atomic_add(s, &rdev->corrected_errors);
2771 }
2772
2773 rdev_dec_pending(rdev, mddev);
2774 }
2775
2776 sectors -= s;
2777 sect += s;
2778 }
2779 }
2780
narrow_write_error(struct r10bio * r10_bio,int i)2781 static bool narrow_write_error(struct r10bio *r10_bio, int i)
2782 {
2783 struct bio *bio = r10_bio->master_bio;
2784 struct mddev *mddev = r10_bio->mddev;
2785 struct r10conf *conf = mddev->private;
2786 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2787 /* bio has the data to be written to slot 'i' where
2788 * we just recently had a write error.
2789 * We repeatedly clone the bio and trim down to one block,
2790 * then try the write. Where the write fails we record
2791 * a bad block.
2792 * It is conceivable that the bio doesn't exactly align with
2793 * blocks. We must handle this.
2794 *
2795 * We currently own a reference to the rdev.
2796 */
2797
2798 int block_sectors;
2799 sector_t sector;
2800 int sectors;
2801 int sect_to_write = r10_bio->sectors;
2802 bool ok = true;
2803
2804 if (rdev->badblocks.shift < 0)
2805 return false;
2806
2807 block_sectors = roundup(1 << rdev->badblocks.shift,
2808 bdev_logical_block_size(rdev->bdev) >> 9);
2809 sector = r10_bio->sector;
2810 sectors = ((r10_bio->sector + block_sectors)
2811 & ~(sector_t)(block_sectors - 1))
2812 - sector;
2813
2814 while (sect_to_write) {
2815 struct bio *wbio;
2816 sector_t wsector;
2817 if (sectors > sect_to_write)
2818 sectors = sect_to_write;
2819 /* Write at 'sector' for 'sectors' */
2820 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2821 &mddev->bio_set);
2822 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2823 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2824 wbio->bi_iter.bi_sector = wsector +
2825 choose_data_offset(r10_bio, rdev);
2826 wbio->bi_opf = REQ_OP_WRITE;
2827
2828 if (submit_bio_wait(wbio) < 0)
2829 /* Failure! */
2830 ok = rdev_set_badblocks(rdev, wsector,
2831 sectors, 0)
2832 && ok;
2833
2834 bio_put(wbio);
2835 sect_to_write -= sectors;
2836 sector += sectors;
2837 sectors = block_sectors;
2838 }
2839 return ok;
2840 }
2841
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2842 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2843 {
2844 int slot = r10_bio->read_slot;
2845 struct bio *bio;
2846 struct r10conf *conf = mddev->private;
2847 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2848
2849 /* we got a read error. Maybe the drive is bad. Maybe just
2850 * the block and we can fix it.
2851 * We freeze all other IO, and try reading the block from
2852 * other devices. When we find one, we re-write
2853 * and check it that fixes the read error.
2854 * This is all done synchronously while the array is
2855 * frozen.
2856 */
2857 bio = r10_bio->devs[slot].bio;
2858 bio_put(bio);
2859 r10_bio->devs[slot].bio = NULL;
2860
2861 if (mddev->ro)
2862 r10_bio->devs[slot].bio = IO_BLOCKED;
2863 else if (!test_bit(FailFast, &rdev->flags)) {
2864 freeze_array(conf, 1);
2865 fix_read_error(conf, mddev, r10_bio);
2866 unfreeze_array(conf);
2867 } else
2868 md_error(mddev, rdev);
2869
2870 rdev_dec_pending(rdev, mddev);
2871 r10_bio->state = 0;
2872 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2873 /*
2874 * allow_barrier after re-submit to ensure no sync io
2875 * can be issued while regular io pending.
2876 */
2877 allow_barrier(conf);
2878 }
2879
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2880 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2881 {
2882 /* Some sort of write request has finished and it
2883 * succeeded in writing where we thought there was a
2884 * bad block. So forget the bad block.
2885 * Or possibly if failed and we need to record
2886 * a bad block.
2887 */
2888 int m;
2889 struct md_rdev *rdev;
2890
2891 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2892 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2893 for (m = 0; m < conf->copies; m++) {
2894 int dev = r10_bio->devs[m].devnum;
2895 rdev = conf->mirrors[dev].rdev;
2896 if (r10_bio->devs[m].bio == NULL ||
2897 r10_bio->devs[m].bio->bi_end_io == NULL)
2898 continue;
2899 if (!r10_bio->devs[m].bio->bi_status) {
2900 rdev_clear_badblocks(
2901 rdev,
2902 r10_bio->devs[m].addr,
2903 r10_bio->sectors, 0);
2904 } else {
2905 if (!rdev_set_badblocks(
2906 rdev,
2907 r10_bio->devs[m].addr,
2908 r10_bio->sectors, 0))
2909 md_error(conf->mddev, rdev);
2910 }
2911 rdev = conf->mirrors[dev].replacement;
2912 if (r10_bio->devs[m].repl_bio == NULL ||
2913 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2914 continue;
2915
2916 if (!r10_bio->devs[m].repl_bio->bi_status) {
2917 rdev_clear_badblocks(
2918 rdev,
2919 r10_bio->devs[m].addr,
2920 r10_bio->sectors, 0);
2921 } else {
2922 if (!rdev_set_badblocks(
2923 rdev,
2924 r10_bio->devs[m].addr,
2925 r10_bio->sectors, 0))
2926 md_error(conf->mddev, rdev);
2927 }
2928 }
2929 put_buf(r10_bio);
2930 } else {
2931 bool fail = false;
2932 for (m = 0; m < conf->copies; m++) {
2933 int dev = r10_bio->devs[m].devnum;
2934 struct bio *bio = r10_bio->devs[m].bio;
2935 rdev = conf->mirrors[dev].rdev;
2936 if (bio == IO_MADE_GOOD) {
2937 rdev_clear_badblocks(
2938 rdev,
2939 r10_bio->devs[m].addr,
2940 r10_bio->sectors, 0);
2941 rdev_dec_pending(rdev, conf->mddev);
2942 } else if (bio != NULL && bio->bi_status) {
2943 fail = true;
2944 if (!narrow_write_error(r10_bio, m))
2945 md_error(conf->mddev, rdev);
2946 rdev_dec_pending(rdev, conf->mddev);
2947 }
2948 bio = r10_bio->devs[m].repl_bio;
2949 rdev = conf->mirrors[dev].replacement;
2950 if (rdev && bio == IO_MADE_GOOD) {
2951 rdev_clear_badblocks(
2952 rdev,
2953 r10_bio->devs[m].addr,
2954 r10_bio->sectors, 0);
2955 rdev_dec_pending(rdev, conf->mddev);
2956 }
2957 }
2958 if (fail) {
2959 spin_lock_irq(&conf->device_lock);
2960 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2961 conf->nr_queued++;
2962 spin_unlock_irq(&conf->device_lock);
2963 /*
2964 * In case freeze_array() is waiting for condition
2965 * nr_pending == nr_queued + extra to be true.
2966 */
2967 wake_up(&conf->wait_barrier);
2968 md_wakeup_thread(conf->mddev->thread);
2969 } else {
2970 if (test_bit(R10BIO_WriteError,
2971 &r10_bio->state))
2972 close_write(r10_bio);
2973 raid_end_bio_io(r10_bio);
2974 }
2975 }
2976 }
2977
raid10d(struct md_thread * thread)2978 static void raid10d(struct md_thread *thread)
2979 {
2980 struct mddev *mddev = thread->mddev;
2981 struct r10bio *r10_bio;
2982 unsigned long flags;
2983 struct r10conf *conf = mddev->private;
2984 struct list_head *head = &conf->retry_list;
2985 struct blk_plug plug;
2986
2987 md_check_recovery(mddev);
2988
2989 if (!list_empty_careful(&conf->bio_end_io_list) &&
2990 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2991 LIST_HEAD(tmp);
2992 spin_lock_irqsave(&conf->device_lock, flags);
2993 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2994 while (!list_empty(&conf->bio_end_io_list)) {
2995 list_move(conf->bio_end_io_list.prev, &tmp);
2996 conf->nr_queued--;
2997 }
2998 }
2999 spin_unlock_irqrestore(&conf->device_lock, flags);
3000 while (!list_empty(&tmp)) {
3001 r10_bio = list_first_entry(&tmp, struct r10bio,
3002 retry_list);
3003 list_del(&r10_bio->retry_list);
3004
3005 if (test_bit(R10BIO_WriteError,
3006 &r10_bio->state))
3007 close_write(r10_bio);
3008 raid_end_bio_io(r10_bio);
3009 }
3010 }
3011
3012 blk_start_plug(&plug);
3013 for (;;) {
3014
3015 flush_pending_writes(conf);
3016
3017 spin_lock_irqsave(&conf->device_lock, flags);
3018 if (list_empty(head)) {
3019 spin_unlock_irqrestore(&conf->device_lock, flags);
3020 break;
3021 }
3022 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3023 list_del(head->prev);
3024 conf->nr_queued--;
3025 spin_unlock_irqrestore(&conf->device_lock, flags);
3026
3027 mddev = r10_bio->mddev;
3028 conf = mddev->private;
3029 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3030 test_bit(R10BIO_WriteError, &r10_bio->state))
3031 handle_write_completed(conf, r10_bio);
3032 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3033 reshape_request_write(mddev, r10_bio);
3034 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3035 sync_request_write(mddev, r10_bio);
3036 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3037 recovery_request_write(mddev, r10_bio);
3038 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3039 handle_read_error(mddev, r10_bio);
3040 else
3041 WARN_ON_ONCE(1);
3042
3043 cond_resched();
3044 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3045 md_check_recovery(mddev);
3046 }
3047 blk_finish_plug(&plug);
3048 }
3049
init_resync(struct r10conf * conf)3050 static int init_resync(struct r10conf *conf)
3051 {
3052 int ret, buffs, i;
3053
3054 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3055 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3056 conf->have_replacement = 0;
3057 for (i = 0; i < conf->geo.raid_disks; i++)
3058 if (conf->mirrors[i].replacement)
3059 conf->have_replacement = 1;
3060 ret = mempool_init(&conf->r10buf_pool, buffs,
3061 r10buf_pool_alloc, r10buf_pool_free, conf);
3062 if (ret)
3063 return ret;
3064 conf->next_resync = 0;
3065 return 0;
3066 }
3067
raid10_alloc_init_r10buf(struct r10conf * conf)3068 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3069 {
3070 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3071 struct rsync_pages *rp;
3072 struct bio *bio;
3073 int nalloc;
3074 int i;
3075
3076 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3077 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3078 nalloc = conf->copies; /* resync */
3079 else
3080 nalloc = 2; /* recovery */
3081
3082 for (i = 0; i < nalloc; i++) {
3083 bio = r10bio->devs[i].bio;
3084 rp = bio->bi_private;
3085 bio_reset(bio, NULL, 0);
3086 bio->bi_private = rp;
3087 bio = r10bio->devs[i].repl_bio;
3088 if (bio) {
3089 rp = bio->bi_private;
3090 bio_reset(bio, NULL, 0);
3091 bio->bi_private = rp;
3092 }
3093 }
3094 return r10bio;
3095 }
3096
3097 /*
3098 * Set cluster_sync_high since we need other nodes to add the
3099 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3100 */
raid10_set_cluster_sync_high(struct r10conf * conf)3101 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3102 {
3103 sector_t window_size;
3104 int extra_chunk, chunks;
3105
3106 /*
3107 * First, here we define "stripe" as a unit which across
3108 * all member devices one time, so we get chunks by use
3109 * raid_disks / near_copies. Otherwise, if near_copies is
3110 * close to raid_disks, then resync window could increases
3111 * linearly with the increase of raid_disks, which means
3112 * we will suspend a really large IO window while it is not
3113 * necessary. If raid_disks is not divisible by near_copies,
3114 * an extra chunk is needed to ensure the whole "stripe" is
3115 * covered.
3116 */
3117
3118 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3119 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3120 extra_chunk = 0;
3121 else
3122 extra_chunk = 1;
3123 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3124
3125 /*
3126 * At least use a 32M window to align with raid1's resync window
3127 */
3128 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3129 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3130
3131 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3132 }
3133
3134 /*
3135 * perform a "sync" on one "block"
3136 *
3137 * We need to make sure that no normal I/O request - particularly write
3138 * requests - conflict with active sync requests.
3139 *
3140 * This is achieved by tracking pending requests and a 'barrier' concept
3141 * that can be installed to exclude normal IO requests.
3142 *
3143 * Resync and recovery are handled very differently.
3144 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3145 *
3146 * For resync, we iterate over virtual addresses, read all copies,
3147 * and update if there are differences. If only one copy is live,
3148 * skip it.
3149 * For recovery, we iterate over physical addresses, read a good
3150 * value for each non-in_sync drive, and over-write.
3151 *
3152 * So, for recovery we may have several outstanding complex requests for a
3153 * given address, one for each out-of-sync device. We model this by allocating
3154 * a number of r10_bio structures, one for each out-of-sync device.
3155 * As we setup these structures, we collect all bio's together into a list
3156 * which we then process collectively to add pages, and then process again
3157 * to pass to submit_bio_noacct.
3158 *
3159 * The r10_bio structures are linked using a borrowed master_bio pointer.
3160 * This link is counted in ->remaining. When the r10_bio that points to NULL
3161 * has its remaining count decremented to 0, the whole complex operation
3162 * is complete.
3163 *
3164 */
3165
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)3166 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3167 sector_t max_sector, int *skipped)
3168 {
3169 struct r10conf *conf = mddev->private;
3170 struct r10bio *r10_bio;
3171 struct bio *biolist = NULL, *bio;
3172 sector_t nr_sectors;
3173 int i;
3174 int max_sync;
3175 sector_t sync_blocks;
3176 sector_t sectors_skipped = 0;
3177 int chunks_skipped = 0;
3178 sector_t chunk_mask = conf->geo.chunk_mask;
3179 int page_idx = 0;
3180 int error_disk = -1;
3181
3182 /*
3183 * Allow skipping a full rebuild for incremental assembly
3184 * of a clean array, like RAID1 does.
3185 */
3186 if (mddev->bitmap == NULL &&
3187 mddev->recovery_cp == MaxSector &&
3188 mddev->reshape_position == MaxSector &&
3189 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3190 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3191 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3192 conf->fullsync == 0) {
3193 *skipped = 1;
3194 return mddev->dev_sectors - sector_nr;
3195 }
3196
3197 if (!mempool_initialized(&conf->r10buf_pool))
3198 if (init_resync(conf))
3199 return 0;
3200
3201 skipped:
3202 if (sector_nr >= max_sector) {
3203 conf->cluster_sync_low = 0;
3204 conf->cluster_sync_high = 0;
3205
3206 /* If we aborted, we need to abort the
3207 * sync on the 'current' bitmap chucks (there can
3208 * be several when recovering multiple devices).
3209 * as we may have started syncing it but not finished.
3210 * We can find the current address in
3211 * mddev->curr_resync, but for recovery,
3212 * we need to convert that to several
3213 * virtual addresses.
3214 */
3215 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3216 end_reshape(conf);
3217 close_sync(conf);
3218 return 0;
3219 }
3220
3221 if (mddev->curr_resync < max_sector) { /* aborted */
3222 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3223 mddev->bitmap_ops->end_sync(mddev,
3224 mddev->curr_resync,
3225 &sync_blocks);
3226 else for (i = 0; i < conf->geo.raid_disks; i++) {
3227 sector_t sect =
3228 raid10_find_virt(conf, mddev->curr_resync, i);
3229
3230 mddev->bitmap_ops->end_sync(mddev, sect,
3231 &sync_blocks);
3232 }
3233 } else {
3234 /* completed sync */
3235 if ((!mddev->bitmap || conf->fullsync)
3236 && conf->have_replacement
3237 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3238 /* Completed a full sync so the replacements
3239 * are now fully recovered.
3240 */
3241 for (i = 0; i < conf->geo.raid_disks; i++) {
3242 struct md_rdev *rdev =
3243 conf->mirrors[i].replacement;
3244
3245 if (rdev)
3246 rdev->recovery_offset = MaxSector;
3247 }
3248 }
3249 conf->fullsync = 0;
3250 }
3251 mddev->bitmap_ops->close_sync(mddev);
3252 close_sync(conf);
3253 *skipped = 1;
3254 return sectors_skipped;
3255 }
3256
3257 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3258 return reshape_request(mddev, sector_nr, skipped);
3259
3260 if (chunks_skipped >= conf->geo.raid_disks) {
3261 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3262 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3263 if (error_disk >= 0 &&
3264 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3265 /*
3266 * recovery fails, set mirrors.recovery_disabled,
3267 * device shouldn't be added to there.
3268 */
3269 conf->mirrors[error_disk].recovery_disabled =
3270 mddev->recovery_disabled;
3271 return 0;
3272 }
3273 /*
3274 * if there has been nothing to do on any drive,
3275 * then there is nothing to do at all.
3276 */
3277 *skipped = 1;
3278 return (max_sector - sector_nr) + sectors_skipped;
3279 }
3280
3281 if (max_sector > mddev->resync_max)
3282 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3283
3284 /* make sure whole request will fit in a chunk - if chunks
3285 * are meaningful
3286 */
3287 if (conf->geo.near_copies < conf->geo.raid_disks &&
3288 max_sector > (sector_nr | chunk_mask))
3289 max_sector = (sector_nr | chunk_mask) + 1;
3290
3291 /*
3292 * If there is non-resync activity waiting for a turn, then let it
3293 * though before starting on this new sync request.
3294 */
3295 if (conf->nr_waiting)
3296 schedule_timeout_uninterruptible(1);
3297
3298 /* Again, very different code for resync and recovery.
3299 * Both must result in an r10bio with a list of bios that
3300 * have bi_end_io, bi_sector, bi_bdev set,
3301 * and bi_private set to the r10bio.
3302 * For recovery, we may actually create several r10bios
3303 * with 2 bios in each, that correspond to the bios in the main one.
3304 * In this case, the subordinate r10bios link back through a
3305 * borrowed master_bio pointer, and the counter in the master
3306 * includes a ref from each subordinate.
3307 */
3308 /* First, we decide what to do and set ->bi_end_io
3309 * To end_sync_read if we want to read, and
3310 * end_sync_write if we will want to write.
3311 */
3312
3313 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3314 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3315 /* recovery... the complicated one */
3316 int j;
3317 r10_bio = NULL;
3318
3319 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3320 bool still_degraded;
3321 struct r10bio *rb2;
3322 sector_t sect;
3323 bool must_sync;
3324 int any_working;
3325 struct raid10_info *mirror = &conf->mirrors[i];
3326 struct md_rdev *mrdev, *mreplace;
3327
3328 mrdev = mirror->rdev;
3329 mreplace = mirror->replacement;
3330
3331 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3332 test_bit(In_sync, &mrdev->flags)))
3333 mrdev = NULL;
3334 if (mreplace && test_bit(Faulty, &mreplace->flags))
3335 mreplace = NULL;
3336
3337 if (!mrdev && !mreplace)
3338 continue;
3339
3340 still_degraded = false;
3341 /* want to reconstruct this device */
3342 rb2 = r10_bio;
3343 sect = raid10_find_virt(conf, sector_nr, i);
3344 if (sect >= mddev->resync_max_sectors)
3345 /* last stripe is not complete - don't
3346 * try to recover this sector.
3347 */
3348 continue;
3349 /* Unless we are doing a full sync, or a replacement
3350 * we only need to recover the block if it is set in
3351 * the bitmap
3352 */
3353 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3354 &sync_blocks,
3355 true);
3356 if (sync_blocks < max_sync)
3357 max_sync = sync_blocks;
3358 if (!must_sync &&
3359 mreplace == NULL &&
3360 !conf->fullsync) {
3361 /* yep, skip the sync_blocks here, but don't assume
3362 * that there will never be anything to do here
3363 */
3364 chunks_skipped = -1;
3365 continue;
3366 }
3367 if (mrdev)
3368 atomic_inc(&mrdev->nr_pending);
3369 if (mreplace)
3370 atomic_inc(&mreplace->nr_pending);
3371
3372 r10_bio = raid10_alloc_init_r10buf(conf);
3373 r10_bio->state = 0;
3374 raise_barrier(conf, rb2 != NULL);
3375 atomic_set(&r10_bio->remaining, 0);
3376
3377 r10_bio->master_bio = (struct bio*)rb2;
3378 if (rb2)
3379 atomic_inc(&rb2->remaining);
3380 r10_bio->mddev = mddev;
3381 set_bit(R10BIO_IsRecover, &r10_bio->state);
3382 r10_bio->sector = sect;
3383
3384 raid10_find_phys(conf, r10_bio);
3385
3386 /* Need to check if the array will still be
3387 * degraded
3388 */
3389 for (j = 0; j < conf->geo.raid_disks; j++) {
3390 struct md_rdev *rdev = conf->mirrors[j].rdev;
3391
3392 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3393 still_degraded = false;
3394 break;
3395 }
3396 }
3397
3398 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3399 &sync_blocks, still_degraded);
3400
3401 any_working = 0;
3402 for (j=0; j<conf->copies;j++) {
3403 int k;
3404 int d = r10_bio->devs[j].devnum;
3405 sector_t from_addr, to_addr;
3406 struct md_rdev *rdev = conf->mirrors[d].rdev;
3407 sector_t sector, first_bad;
3408 sector_t bad_sectors;
3409 if (!rdev ||
3410 !test_bit(In_sync, &rdev->flags))
3411 continue;
3412 /* This is where we read from */
3413 any_working = 1;
3414 sector = r10_bio->devs[j].addr;
3415
3416 if (is_badblock(rdev, sector, max_sync,
3417 &first_bad, &bad_sectors)) {
3418 if (first_bad > sector)
3419 max_sync = first_bad - sector;
3420 else {
3421 bad_sectors -= (sector
3422 - first_bad);
3423 if (max_sync > bad_sectors)
3424 max_sync = bad_sectors;
3425 continue;
3426 }
3427 }
3428 bio = r10_bio->devs[0].bio;
3429 bio->bi_next = biolist;
3430 biolist = bio;
3431 bio->bi_end_io = end_sync_read;
3432 bio->bi_opf = REQ_OP_READ;
3433 if (test_bit(FailFast, &rdev->flags))
3434 bio->bi_opf |= MD_FAILFAST;
3435 from_addr = r10_bio->devs[j].addr;
3436 bio->bi_iter.bi_sector = from_addr +
3437 rdev->data_offset;
3438 bio_set_dev(bio, rdev->bdev);
3439 atomic_inc(&rdev->nr_pending);
3440 /* and we write to 'i' (if not in_sync) */
3441
3442 for (k=0; k<conf->copies; k++)
3443 if (r10_bio->devs[k].devnum == i)
3444 break;
3445 BUG_ON(k == conf->copies);
3446 to_addr = r10_bio->devs[k].addr;
3447 r10_bio->devs[0].devnum = d;
3448 r10_bio->devs[0].addr = from_addr;
3449 r10_bio->devs[1].devnum = i;
3450 r10_bio->devs[1].addr = to_addr;
3451
3452 if (mrdev) {
3453 bio = r10_bio->devs[1].bio;
3454 bio->bi_next = biolist;
3455 biolist = bio;
3456 bio->bi_end_io = end_sync_write;
3457 bio->bi_opf = REQ_OP_WRITE;
3458 bio->bi_iter.bi_sector = to_addr
3459 + mrdev->data_offset;
3460 bio_set_dev(bio, mrdev->bdev);
3461 atomic_inc(&r10_bio->remaining);
3462 } else
3463 r10_bio->devs[1].bio->bi_end_io = NULL;
3464
3465 /* and maybe write to replacement */
3466 bio = r10_bio->devs[1].repl_bio;
3467 if (bio)
3468 bio->bi_end_io = NULL;
3469 /* Note: if replace is not NULL, then bio
3470 * cannot be NULL as r10buf_pool_alloc will
3471 * have allocated it.
3472 */
3473 if (!mreplace)
3474 break;
3475 bio->bi_next = biolist;
3476 biolist = bio;
3477 bio->bi_end_io = end_sync_write;
3478 bio->bi_opf = REQ_OP_WRITE;
3479 bio->bi_iter.bi_sector = to_addr +
3480 mreplace->data_offset;
3481 bio_set_dev(bio, mreplace->bdev);
3482 atomic_inc(&r10_bio->remaining);
3483 break;
3484 }
3485 if (j == conf->copies) {
3486 /* Cannot recover, so abort the recovery or
3487 * record a bad block */
3488 if (any_working) {
3489 /* problem is that there are bad blocks
3490 * on other device(s)
3491 */
3492 int k;
3493 for (k = 0; k < conf->copies; k++)
3494 if (r10_bio->devs[k].devnum == i)
3495 break;
3496 if (mrdev && !test_bit(In_sync,
3497 &mrdev->flags)
3498 && !rdev_set_badblocks(
3499 mrdev,
3500 r10_bio->devs[k].addr,
3501 max_sync, 0))
3502 any_working = 0;
3503 if (mreplace &&
3504 !rdev_set_badblocks(
3505 mreplace,
3506 r10_bio->devs[k].addr,
3507 max_sync, 0))
3508 any_working = 0;
3509 }
3510 if (!any_working) {
3511 if (!test_and_set_bit(MD_RECOVERY_INTR,
3512 &mddev->recovery))
3513 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3514 mdname(mddev));
3515 mirror->recovery_disabled
3516 = mddev->recovery_disabled;
3517 } else {
3518 error_disk = i;
3519 }
3520 put_buf(r10_bio);
3521 if (rb2)
3522 atomic_dec(&rb2->remaining);
3523 r10_bio = rb2;
3524 if (mrdev)
3525 rdev_dec_pending(mrdev, mddev);
3526 if (mreplace)
3527 rdev_dec_pending(mreplace, mddev);
3528 break;
3529 }
3530 if (mrdev)
3531 rdev_dec_pending(mrdev, mddev);
3532 if (mreplace)
3533 rdev_dec_pending(mreplace, mddev);
3534 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3535 /* Only want this if there is elsewhere to
3536 * read from. 'j' is currently the first
3537 * readable copy.
3538 */
3539 int targets = 1;
3540 for (; j < conf->copies; j++) {
3541 int d = r10_bio->devs[j].devnum;
3542 if (conf->mirrors[d].rdev &&
3543 test_bit(In_sync,
3544 &conf->mirrors[d].rdev->flags))
3545 targets++;
3546 }
3547 if (targets == 1)
3548 r10_bio->devs[0].bio->bi_opf
3549 &= ~MD_FAILFAST;
3550 }
3551 }
3552 if (biolist == NULL) {
3553 while (r10_bio) {
3554 struct r10bio *rb2 = r10_bio;
3555 r10_bio = (struct r10bio*) rb2->master_bio;
3556 rb2->master_bio = NULL;
3557 put_buf(rb2);
3558 }
3559 goto giveup;
3560 }
3561 } else {
3562 /* resync. Schedule a read for every block at this virt offset */
3563 int count = 0;
3564
3565 /*
3566 * Since curr_resync_completed could probably not update in
3567 * time, and we will set cluster_sync_low based on it.
3568 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3569 * safety reason, which ensures curr_resync_completed is
3570 * updated in bitmap_cond_end_sync.
3571 */
3572 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3573 mddev_is_clustered(mddev) &&
3574 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3575
3576 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3577 &sync_blocks,
3578 mddev->degraded) &&
3579 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3580 &mddev->recovery)) {
3581 /* We can skip this block */
3582 *skipped = 1;
3583 return sync_blocks + sectors_skipped;
3584 }
3585 if (sync_blocks < max_sync)
3586 max_sync = sync_blocks;
3587 r10_bio = raid10_alloc_init_r10buf(conf);
3588 r10_bio->state = 0;
3589
3590 r10_bio->mddev = mddev;
3591 atomic_set(&r10_bio->remaining, 0);
3592 raise_barrier(conf, 0);
3593 conf->next_resync = sector_nr;
3594
3595 r10_bio->master_bio = NULL;
3596 r10_bio->sector = sector_nr;
3597 set_bit(R10BIO_IsSync, &r10_bio->state);
3598 raid10_find_phys(conf, r10_bio);
3599 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3600
3601 for (i = 0; i < conf->copies; i++) {
3602 int d = r10_bio->devs[i].devnum;
3603 sector_t first_bad, sector;
3604 sector_t bad_sectors;
3605 struct md_rdev *rdev;
3606
3607 if (r10_bio->devs[i].repl_bio)
3608 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3609
3610 bio = r10_bio->devs[i].bio;
3611 bio->bi_status = BLK_STS_IOERR;
3612 rdev = conf->mirrors[d].rdev;
3613 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3614 continue;
3615
3616 sector = r10_bio->devs[i].addr;
3617 if (is_badblock(rdev, sector, max_sync,
3618 &first_bad, &bad_sectors)) {
3619 if (first_bad > sector)
3620 max_sync = first_bad - sector;
3621 else {
3622 bad_sectors -= (sector - first_bad);
3623 if (max_sync > bad_sectors)
3624 max_sync = bad_sectors;
3625 continue;
3626 }
3627 }
3628 atomic_inc(&rdev->nr_pending);
3629 atomic_inc(&r10_bio->remaining);
3630 bio->bi_next = biolist;
3631 biolist = bio;
3632 bio->bi_end_io = end_sync_read;
3633 bio->bi_opf = REQ_OP_READ;
3634 if (test_bit(FailFast, &rdev->flags))
3635 bio->bi_opf |= MD_FAILFAST;
3636 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3637 bio_set_dev(bio, rdev->bdev);
3638 count++;
3639
3640 rdev = conf->mirrors[d].replacement;
3641 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3642 continue;
3643
3644 atomic_inc(&rdev->nr_pending);
3645
3646 /* Need to set up for writing to the replacement */
3647 bio = r10_bio->devs[i].repl_bio;
3648 bio->bi_status = BLK_STS_IOERR;
3649
3650 sector = r10_bio->devs[i].addr;
3651 bio->bi_next = biolist;
3652 biolist = bio;
3653 bio->bi_end_io = end_sync_write;
3654 bio->bi_opf = REQ_OP_WRITE;
3655 if (test_bit(FailFast, &rdev->flags))
3656 bio->bi_opf |= MD_FAILFAST;
3657 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3658 bio_set_dev(bio, rdev->bdev);
3659 count++;
3660 }
3661
3662 if (count < 2) {
3663 for (i=0; i<conf->copies; i++) {
3664 int d = r10_bio->devs[i].devnum;
3665 if (r10_bio->devs[i].bio->bi_end_io)
3666 rdev_dec_pending(conf->mirrors[d].rdev,
3667 mddev);
3668 if (r10_bio->devs[i].repl_bio &&
3669 r10_bio->devs[i].repl_bio->bi_end_io)
3670 rdev_dec_pending(
3671 conf->mirrors[d].replacement,
3672 mddev);
3673 }
3674 put_buf(r10_bio);
3675 biolist = NULL;
3676 goto giveup;
3677 }
3678 }
3679
3680 nr_sectors = 0;
3681 if (sector_nr + max_sync < max_sector)
3682 max_sector = sector_nr + max_sync;
3683 do {
3684 struct page *page;
3685 int len = PAGE_SIZE;
3686 if (sector_nr + (len>>9) > max_sector)
3687 len = (max_sector - sector_nr) << 9;
3688 if (len == 0)
3689 break;
3690 for (bio= biolist ; bio ; bio=bio->bi_next) {
3691 struct resync_pages *rp = get_resync_pages(bio);
3692 page = resync_fetch_page(rp, page_idx);
3693 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3694 bio->bi_status = BLK_STS_RESOURCE;
3695 bio_endio(bio);
3696 goto giveup;
3697 }
3698 }
3699 nr_sectors += len>>9;
3700 sector_nr += len>>9;
3701 } while (++page_idx < RESYNC_PAGES);
3702 r10_bio->sectors = nr_sectors;
3703
3704 if (mddev_is_clustered(mddev) &&
3705 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3706 /* It is resync not recovery */
3707 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3708 conf->cluster_sync_low = mddev->curr_resync_completed;
3709 raid10_set_cluster_sync_high(conf);
3710 /* Send resync message */
3711 mddev->cluster_ops->resync_info_update(mddev,
3712 conf->cluster_sync_low,
3713 conf->cluster_sync_high);
3714 }
3715 } else if (mddev_is_clustered(mddev)) {
3716 /* This is recovery not resync */
3717 sector_t sect_va1, sect_va2;
3718 bool broadcast_msg = false;
3719
3720 for (i = 0; i < conf->geo.raid_disks; i++) {
3721 /*
3722 * sector_nr is a device address for recovery, so we
3723 * need translate it to array address before compare
3724 * with cluster_sync_high.
3725 */
3726 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3727
3728 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3729 broadcast_msg = true;
3730 /*
3731 * curr_resync_completed is similar as
3732 * sector_nr, so make the translation too.
3733 */
3734 sect_va2 = raid10_find_virt(conf,
3735 mddev->curr_resync_completed, i);
3736
3737 if (conf->cluster_sync_low == 0 ||
3738 conf->cluster_sync_low > sect_va2)
3739 conf->cluster_sync_low = sect_va2;
3740 }
3741 }
3742 if (broadcast_msg) {
3743 raid10_set_cluster_sync_high(conf);
3744 mddev->cluster_ops->resync_info_update(mddev,
3745 conf->cluster_sync_low,
3746 conf->cluster_sync_high);
3747 }
3748 }
3749
3750 while (biolist) {
3751 bio = biolist;
3752 biolist = biolist->bi_next;
3753
3754 bio->bi_next = NULL;
3755 r10_bio = get_resync_r10bio(bio);
3756 r10_bio->sectors = nr_sectors;
3757
3758 if (bio->bi_end_io == end_sync_read) {
3759 md_sync_acct_bio(bio, nr_sectors);
3760 bio->bi_status = 0;
3761 submit_bio_noacct(bio);
3762 }
3763 }
3764
3765 if (sectors_skipped)
3766 /* pretend they weren't skipped, it makes
3767 * no important difference in this case
3768 */
3769 md_done_sync(mddev, sectors_skipped, 1);
3770
3771 return sectors_skipped + nr_sectors;
3772 giveup:
3773 /* There is nowhere to write, so all non-sync
3774 * drives must be failed or in resync, all drives
3775 * have a bad block, so try the next chunk...
3776 */
3777 if (sector_nr + max_sync < max_sector)
3778 max_sector = sector_nr + max_sync;
3779
3780 sectors_skipped += (max_sector - sector_nr);
3781 chunks_skipped ++;
3782 sector_nr = max_sector;
3783 goto skipped;
3784 }
3785
3786 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3787 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3788 {
3789 sector_t size;
3790 struct r10conf *conf = mddev->private;
3791
3792 if (!raid_disks)
3793 raid_disks = min(conf->geo.raid_disks,
3794 conf->prev.raid_disks);
3795 if (!sectors)
3796 sectors = conf->dev_sectors;
3797
3798 size = sectors >> conf->geo.chunk_shift;
3799 sector_div(size, conf->geo.far_copies);
3800 size = size * raid_disks;
3801 sector_div(size, conf->geo.near_copies);
3802
3803 return size << conf->geo.chunk_shift;
3804 }
3805
calc_sectors(struct r10conf * conf,sector_t size)3806 static void calc_sectors(struct r10conf *conf, sector_t size)
3807 {
3808 /* Calculate the number of sectors-per-device that will
3809 * actually be used, and set conf->dev_sectors and
3810 * conf->stride
3811 */
3812
3813 size = size >> conf->geo.chunk_shift;
3814 sector_div(size, conf->geo.far_copies);
3815 size = size * conf->geo.raid_disks;
3816 sector_div(size, conf->geo.near_copies);
3817 /* 'size' is now the number of chunks in the array */
3818 /* calculate "used chunks per device" */
3819 size = size * conf->copies;
3820
3821 /* We need to round up when dividing by raid_disks to
3822 * get the stride size.
3823 */
3824 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3825
3826 conf->dev_sectors = size << conf->geo.chunk_shift;
3827
3828 if (conf->geo.far_offset)
3829 conf->geo.stride = 1 << conf->geo.chunk_shift;
3830 else {
3831 sector_div(size, conf->geo.far_copies);
3832 conf->geo.stride = size << conf->geo.chunk_shift;
3833 }
3834 }
3835
3836 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3837 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3838 {
3839 int nc, fc, fo;
3840 int layout, chunk, disks;
3841 switch (new) {
3842 case geo_old:
3843 layout = mddev->layout;
3844 chunk = mddev->chunk_sectors;
3845 disks = mddev->raid_disks - mddev->delta_disks;
3846 break;
3847 case geo_new:
3848 layout = mddev->new_layout;
3849 chunk = mddev->new_chunk_sectors;
3850 disks = mddev->raid_disks;
3851 break;
3852 default: /* avoid 'may be unused' warnings */
3853 case geo_start: /* new when starting reshape - raid_disks not
3854 * updated yet. */
3855 layout = mddev->new_layout;
3856 chunk = mddev->new_chunk_sectors;
3857 disks = mddev->raid_disks + mddev->delta_disks;
3858 break;
3859 }
3860 if (layout >> 19)
3861 return -1;
3862 if (chunk < (PAGE_SIZE >> 9) ||
3863 !is_power_of_2(chunk))
3864 return -2;
3865 nc = layout & 255;
3866 fc = (layout >> 8) & 255;
3867 fo = layout & (1<<16);
3868 geo->raid_disks = disks;
3869 geo->near_copies = nc;
3870 geo->far_copies = fc;
3871 geo->far_offset = fo;
3872 switch (layout >> 17) {
3873 case 0: /* original layout. simple but not always optimal */
3874 geo->far_set_size = disks;
3875 break;
3876 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3877 * actually using this, but leave code here just in case.*/
3878 geo->far_set_size = disks/fc;
3879 WARN(geo->far_set_size < fc,
3880 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3881 break;
3882 case 2: /* "improved" layout fixed to match documentation */
3883 geo->far_set_size = fc * nc;
3884 break;
3885 default: /* Not a valid layout */
3886 return -1;
3887 }
3888 geo->chunk_mask = chunk - 1;
3889 geo->chunk_shift = ffz(~chunk);
3890 return nc*fc;
3891 }
3892
raid10_free_conf(struct r10conf * conf)3893 static void raid10_free_conf(struct r10conf *conf)
3894 {
3895 if (!conf)
3896 return;
3897
3898 mempool_exit(&conf->r10bio_pool);
3899 kfree(conf->mirrors);
3900 kfree(conf->mirrors_old);
3901 kfree(conf->mirrors_new);
3902 safe_put_page(conf->tmppage);
3903 bioset_exit(&conf->bio_split);
3904 kfree(conf);
3905 }
3906
setup_conf(struct mddev * mddev)3907 static struct r10conf *setup_conf(struct mddev *mddev)
3908 {
3909 struct r10conf *conf = NULL;
3910 int err = -EINVAL;
3911 struct geom geo;
3912 int copies;
3913
3914 copies = setup_geo(&geo, mddev, geo_new);
3915
3916 if (copies == -2) {
3917 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3918 mdname(mddev), PAGE_SIZE);
3919 goto out;
3920 }
3921
3922 if (copies < 2 || copies > mddev->raid_disks) {
3923 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3924 mdname(mddev), mddev->new_layout);
3925 goto out;
3926 }
3927
3928 err = -ENOMEM;
3929 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3930 if (!conf)
3931 goto out;
3932
3933 /* FIXME calc properly */
3934 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3935 sizeof(struct raid10_info),
3936 GFP_KERNEL);
3937 if (!conf->mirrors)
3938 goto out;
3939
3940 conf->tmppage = alloc_page(GFP_KERNEL);
3941 if (!conf->tmppage)
3942 goto out;
3943
3944 conf->geo = geo;
3945 conf->copies = copies;
3946 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3947 rbio_pool_free, conf);
3948 if (err)
3949 goto out;
3950
3951 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3952 if (err)
3953 goto out;
3954
3955 calc_sectors(conf, mddev->dev_sectors);
3956 if (mddev->reshape_position == MaxSector) {
3957 conf->prev = conf->geo;
3958 conf->reshape_progress = MaxSector;
3959 } else {
3960 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3961 err = -EINVAL;
3962 goto out;
3963 }
3964 conf->reshape_progress = mddev->reshape_position;
3965 if (conf->prev.far_offset)
3966 conf->prev.stride = 1 << conf->prev.chunk_shift;
3967 else
3968 /* far_copies must be 1 */
3969 conf->prev.stride = conf->dev_sectors;
3970 }
3971 conf->reshape_safe = conf->reshape_progress;
3972 spin_lock_init(&conf->device_lock);
3973 INIT_LIST_HEAD(&conf->retry_list);
3974 INIT_LIST_HEAD(&conf->bio_end_io_list);
3975
3976 seqlock_init(&conf->resync_lock);
3977 init_waitqueue_head(&conf->wait_barrier);
3978 atomic_set(&conf->nr_pending, 0);
3979
3980 err = -ENOMEM;
3981 rcu_assign_pointer(conf->thread,
3982 md_register_thread(raid10d, mddev, "raid10"));
3983 if (!conf->thread)
3984 goto out;
3985
3986 conf->mddev = mddev;
3987 return conf;
3988
3989 out:
3990 raid10_free_conf(conf);
3991 return ERR_PTR(err);
3992 }
3993
raid10_nr_stripes(struct r10conf * conf)3994 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3995 {
3996 unsigned int raid_disks = conf->geo.raid_disks;
3997
3998 if (conf->geo.raid_disks % conf->geo.near_copies)
3999 return raid_disks;
4000 return raid_disks / conf->geo.near_copies;
4001 }
4002
raid10_set_queue_limits(struct mddev * mddev)4003 static int raid10_set_queue_limits(struct mddev *mddev)
4004 {
4005 struct r10conf *conf = mddev->private;
4006 struct queue_limits lim;
4007 int err;
4008
4009 md_init_stacking_limits(&lim);
4010 lim.max_write_zeroes_sectors = 0;
4011 lim.io_min = mddev->chunk_sectors << 9;
4012 lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4013 lim.features |= BLK_FEAT_ATOMIC_WRITES;
4014 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4015 if (err)
4016 return err;
4017 return queue_limits_set(mddev->gendisk->queue, &lim);
4018 }
4019
raid10_run(struct mddev * mddev)4020 static int raid10_run(struct mddev *mddev)
4021 {
4022 struct r10conf *conf;
4023 int i, disk_idx;
4024 struct raid10_info *disk;
4025 struct md_rdev *rdev;
4026 sector_t size;
4027 sector_t min_offset_diff = 0;
4028 int first = 1;
4029 int ret = -EIO;
4030
4031 if (mddev->private == NULL) {
4032 conf = setup_conf(mddev);
4033 if (IS_ERR(conf))
4034 return PTR_ERR(conf);
4035 mddev->private = conf;
4036 }
4037 conf = mddev->private;
4038 if (!conf)
4039 goto out;
4040
4041 rcu_assign_pointer(mddev->thread, conf->thread);
4042 rcu_assign_pointer(conf->thread, NULL);
4043
4044 if (mddev_is_clustered(conf->mddev)) {
4045 int fc, fo;
4046
4047 fc = (mddev->layout >> 8) & 255;
4048 fo = mddev->layout & (1<<16);
4049 if (fc > 1 || fo > 0) {
4050 pr_err("only near layout is supported by clustered"
4051 " raid10\n");
4052 goto out_free_conf;
4053 }
4054 }
4055
4056 rdev_for_each(rdev, mddev) {
4057 long long diff;
4058
4059 disk_idx = rdev->raid_disk;
4060 if (disk_idx < 0)
4061 continue;
4062 if (disk_idx >= conf->geo.raid_disks &&
4063 disk_idx >= conf->prev.raid_disks)
4064 continue;
4065 disk = conf->mirrors + disk_idx;
4066
4067 if (test_bit(Replacement, &rdev->flags)) {
4068 if (disk->replacement)
4069 goto out_free_conf;
4070 disk->replacement = rdev;
4071 } else {
4072 if (disk->rdev)
4073 goto out_free_conf;
4074 disk->rdev = rdev;
4075 }
4076 diff = (rdev->new_data_offset - rdev->data_offset);
4077 if (!mddev->reshape_backwards)
4078 diff = -diff;
4079 if (diff < 0)
4080 diff = 0;
4081 if (first || diff < min_offset_diff)
4082 min_offset_diff = diff;
4083
4084 disk->head_position = 0;
4085 first = 0;
4086 }
4087
4088 if (!mddev_is_dm(conf->mddev)) {
4089 int err = raid10_set_queue_limits(mddev);
4090
4091 if (err) {
4092 ret = err;
4093 goto out_free_conf;
4094 }
4095 }
4096
4097 /* need to check that every block has at least one working mirror */
4098 if (!enough(conf, -1)) {
4099 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4100 mdname(mddev));
4101 goto out_free_conf;
4102 }
4103
4104 if (conf->reshape_progress != MaxSector) {
4105 /* must ensure that shape change is supported */
4106 if (conf->geo.far_copies != 1 &&
4107 conf->geo.far_offset == 0)
4108 goto out_free_conf;
4109 if (conf->prev.far_copies != 1 &&
4110 conf->prev.far_offset == 0)
4111 goto out_free_conf;
4112 }
4113
4114 mddev->degraded = 0;
4115 for (i = 0;
4116 i < conf->geo.raid_disks
4117 || i < conf->prev.raid_disks;
4118 i++) {
4119
4120 disk = conf->mirrors + i;
4121
4122 if (!disk->rdev && disk->replacement) {
4123 /* The replacement is all we have - use it */
4124 disk->rdev = disk->replacement;
4125 disk->replacement = NULL;
4126 clear_bit(Replacement, &disk->rdev->flags);
4127 }
4128
4129 if (!disk->rdev ||
4130 !test_bit(In_sync, &disk->rdev->flags)) {
4131 disk->head_position = 0;
4132 mddev->degraded++;
4133 if (disk->rdev &&
4134 disk->rdev->saved_raid_disk < 0)
4135 conf->fullsync = 1;
4136 }
4137
4138 if (disk->replacement &&
4139 !test_bit(In_sync, &disk->replacement->flags) &&
4140 disk->replacement->saved_raid_disk < 0) {
4141 conf->fullsync = 1;
4142 }
4143
4144 disk->recovery_disabled = mddev->recovery_disabled - 1;
4145 }
4146
4147 if (mddev->recovery_cp != MaxSector)
4148 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4149 mdname(mddev));
4150 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4151 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4152 conf->geo.raid_disks);
4153 /*
4154 * Ok, everything is just fine now
4155 */
4156 mddev->dev_sectors = conf->dev_sectors;
4157 size = raid10_size(mddev, 0, 0);
4158 md_set_array_sectors(mddev, size);
4159 mddev->resync_max_sectors = size;
4160 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4161
4162 if (md_integrity_register(mddev))
4163 goto out_free_conf;
4164
4165 if (conf->reshape_progress != MaxSector) {
4166 unsigned long before_length, after_length;
4167
4168 before_length = ((1 << conf->prev.chunk_shift) *
4169 conf->prev.far_copies);
4170 after_length = ((1 << conf->geo.chunk_shift) *
4171 conf->geo.far_copies);
4172
4173 if (max(before_length, after_length) > min_offset_diff) {
4174 /* This cannot work */
4175 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4176 goto out_free_conf;
4177 }
4178 conf->offset_diff = min_offset_diff;
4179
4180 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4181 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4182 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4184 }
4185
4186 return 0;
4187
4188 out_free_conf:
4189 md_unregister_thread(mddev, &mddev->thread);
4190 raid10_free_conf(conf);
4191 mddev->private = NULL;
4192 out:
4193 return ret;
4194 }
4195
raid10_free(struct mddev * mddev,void * priv)4196 static void raid10_free(struct mddev *mddev, void *priv)
4197 {
4198 raid10_free_conf(priv);
4199 }
4200
raid10_quiesce(struct mddev * mddev,int quiesce)4201 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4202 {
4203 struct r10conf *conf = mddev->private;
4204
4205 if (quiesce)
4206 raise_barrier(conf, 0);
4207 else
4208 lower_barrier(conf);
4209 }
4210
raid10_resize(struct mddev * mddev,sector_t sectors)4211 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4212 {
4213 /* Resize of 'far' arrays is not supported.
4214 * For 'near' and 'offset' arrays we can set the
4215 * number of sectors used to be an appropriate multiple
4216 * of the chunk size.
4217 * For 'offset', this is far_copies*chunksize.
4218 * For 'near' the multiplier is the LCM of
4219 * near_copies and raid_disks.
4220 * So if far_copies > 1 && !far_offset, fail.
4221 * Else find LCM(raid_disks, near_copy)*far_copies and
4222 * multiply by chunk_size. Then round to this number.
4223 * This is mostly done by raid10_size()
4224 */
4225 struct r10conf *conf = mddev->private;
4226 sector_t oldsize, size;
4227 int ret;
4228
4229 if (mddev->reshape_position != MaxSector)
4230 return -EBUSY;
4231
4232 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4233 return -EINVAL;
4234
4235 oldsize = raid10_size(mddev, 0, 0);
4236 size = raid10_size(mddev, sectors, 0);
4237 if (mddev->external_size &&
4238 mddev->array_sectors > size)
4239 return -EINVAL;
4240
4241 ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4242 if (ret)
4243 return ret;
4244
4245 md_set_array_sectors(mddev, size);
4246 if (sectors > mddev->dev_sectors &&
4247 mddev->recovery_cp > oldsize) {
4248 mddev->recovery_cp = oldsize;
4249 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4250 }
4251 calc_sectors(conf, sectors);
4252 mddev->dev_sectors = conf->dev_sectors;
4253 mddev->resync_max_sectors = size;
4254 return 0;
4255 }
4256
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)4257 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4258 {
4259 struct md_rdev *rdev;
4260 struct r10conf *conf;
4261
4262 if (mddev->degraded > 0) {
4263 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4264 mdname(mddev));
4265 return ERR_PTR(-EINVAL);
4266 }
4267 sector_div(size, devs);
4268
4269 /* Set new parameters */
4270 mddev->new_level = 10;
4271 /* new layout: far_copies = 1, near_copies = 2 */
4272 mddev->new_layout = (1<<8) + 2;
4273 mddev->new_chunk_sectors = mddev->chunk_sectors;
4274 mddev->delta_disks = mddev->raid_disks;
4275 mddev->raid_disks *= 2;
4276 /* make sure it will be not marked as dirty */
4277 mddev->recovery_cp = MaxSector;
4278 mddev->dev_sectors = size;
4279
4280 conf = setup_conf(mddev);
4281 if (!IS_ERR(conf)) {
4282 rdev_for_each(rdev, mddev)
4283 if (rdev->raid_disk >= 0) {
4284 rdev->new_raid_disk = rdev->raid_disk * 2;
4285 rdev->sectors = size;
4286 }
4287 }
4288
4289 return conf;
4290 }
4291
raid10_takeover(struct mddev * mddev)4292 static void *raid10_takeover(struct mddev *mddev)
4293 {
4294 struct r0conf *raid0_conf;
4295
4296 /* raid10 can take over:
4297 * raid0 - providing it has only two drives
4298 */
4299 if (mddev->level == 0) {
4300 /* for raid0 takeover only one zone is supported */
4301 raid0_conf = mddev->private;
4302 if (raid0_conf->nr_strip_zones > 1) {
4303 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4304 mdname(mddev));
4305 return ERR_PTR(-EINVAL);
4306 }
4307 return raid10_takeover_raid0(mddev,
4308 raid0_conf->strip_zone->zone_end,
4309 raid0_conf->strip_zone->nb_dev);
4310 }
4311 return ERR_PTR(-EINVAL);
4312 }
4313
raid10_check_reshape(struct mddev * mddev)4314 static int raid10_check_reshape(struct mddev *mddev)
4315 {
4316 /* Called when there is a request to change
4317 * - layout (to ->new_layout)
4318 * - chunk size (to ->new_chunk_sectors)
4319 * - raid_disks (by delta_disks)
4320 * or when trying to restart a reshape that was ongoing.
4321 *
4322 * We need to validate the request and possibly allocate
4323 * space if that might be an issue later.
4324 *
4325 * Currently we reject any reshape of a 'far' mode array,
4326 * allow chunk size to change if new is generally acceptable,
4327 * allow raid_disks to increase, and allow
4328 * a switch between 'near' mode and 'offset' mode.
4329 */
4330 struct r10conf *conf = mddev->private;
4331 struct geom geo;
4332
4333 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4334 return -EINVAL;
4335
4336 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4337 /* mustn't change number of copies */
4338 return -EINVAL;
4339 if (geo.far_copies > 1 && !geo.far_offset)
4340 /* Cannot switch to 'far' mode */
4341 return -EINVAL;
4342
4343 if (mddev->array_sectors & geo.chunk_mask)
4344 /* not factor of array size */
4345 return -EINVAL;
4346
4347 if (!enough(conf, -1))
4348 return -EINVAL;
4349
4350 kfree(conf->mirrors_new);
4351 conf->mirrors_new = NULL;
4352 if (mddev->delta_disks > 0) {
4353 /* allocate new 'mirrors' list */
4354 conf->mirrors_new =
4355 kcalloc(mddev->raid_disks + mddev->delta_disks,
4356 sizeof(struct raid10_info),
4357 GFP_KERNEL);
4358 if (!conf->mirrors_new)
4359 return -ENOMEM;
4360 }
4361 return 0;
4362 }
4363
4364 /*
4365 * Need to check if array has failed when deciding whether to:
4366 * - start an array
4367 * - remove non-faulty devices
4368 * - add a spare
4369 * - allow a reshape
4370 * This determination is simple when no reshape is happening.
4371 * However if there is a reshape, we need to carefully check
4372 * both the before and after sections.
4373 * This is because some failed devices may only affect one
4374 * of the two sections, and some non-in_sync devices may
4375 * be insync in the section most affected by failed devices.
4376 */
calc_degraded(struct r10conf * conf)4377 static int calc_degraded(struct r10conf *conf)
4378 {
4379 int degraded, degraded2;
4380 int i;
4381
4382 degraded = 0;
4383 /* 'prev' section first */
4384 for (i = 0; i < conf->prev.raid_disks; i++) {
4385 struct md_rdev *rdev = conf->mirrors[i].rdev;
4386
4387 if (!rdev || test_bit(Faulty, &rdev->flags))
4388 degraded++;
4389 else if (!test_bit(In_sync, &rdev->flags))
4390 /* When we can reduce the number of devices in
4391 * an array, this might not contribute to
4392 * 'degraded'. It does now.
4393 */
4394 degraded++;
4395 }
4396 if (conf->geo.raid_disks == conf->prev.raid_disks)
4397 return degraded;
4398 degraded2 = 0;
4399 for (i = 0; i < conf->geo.raid_disks; i++) {
4400 struct md_rdev *rdev = conf->mirrors[i].rdev;
4401
4402 if (!rdev || test_bit(Faulty, &rdev->flags))
4403 degraded2++;
4404 else if (!test_bit(In_sync, &rdev->flags)) {
4405 /* If reshape is increasing the number of devices,
4406 * this section has already been recovered, so
4407 * it doesn't contribute to degraded.
4408 * else it does.
4409 */
4410 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4411 degraded2++;
4412 }
4413 }
4414 if (degraded2 > degraded)
4415 return degraded2;
4416 return degraded;
4417 }
4418
raid10_start_reshape(struct mddev * mddev)4419 static int raid10_start_reshape(struct mddev *mddev)
4420 {
4421 /* A 'reshape' has been requested. This commits
4422 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4423 * This also checks if there are enough spares and adds them
4424 * to the array.
4425 * We currently require enough spares to make the final
4426 * array non-degraded. We also require that the difference
4427 * between old and new data_offset - on each device - is
4428 * enough that we never risk over-writing.
4429 */
4430
4431 unsigned long before_length, after_length;
4432 sector_t min_offset_diff = 0;
4433 int first = 1;
4434 struct geom new;
4435 struct r10conf *conf = mddev->private;
4436 struct md_rdev *rdev;
4437 int spares = 0;
4438 int ret;
4439
4440 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 return -EBUSY;
4442
4443 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4444 return -EINVAL;
4445
4446 before_length = ((1 << conf->prev.chunk_shift) *
4447 conf->prev.far_copies);
4448 after_length = ((1 << conf->geo.chunk_shift) *
4449 conf->geo.far_copies);
4450
4451 rdev_for_each(rdev, mddev) {
4452 if (!test_bit(In_sync, &rdev->flags)
4453 && !test_bit(Faulty, &rdev->flags))
4454 spares++;
4455 if (rdev->raid_disk >= 0) {
4456 long long diff = (rdev->new_data_offset
4457 - rdev->data_offset);
4458 if (!mddev->reshape_backwards)
4459 diff = -diff;
4460 if (diff < 0)
4461 diff = 0;
4462 if (first || diff < min_offset_diff)
4463 min_offset_diff = diff;
4464 first = 0;
4465 }
4466 }
4467
4468 if (max(before_length, after_length) > min_offset_diff)
4469 return -EINVAL;
4470
4471 if (spares < mddev->delta_disks)
4472 return -EINVAL;
4473
4474 conf->offset_diff = min_offset_diff;
4475 spin_lock_irq(&conf->device_lock);
4476 if (conf->mirrors_new) {
4477 memcpy(conf->mirrors_new, conf->mirrors,
4478 sizeof(struct raid10_info)*conf->prev.raid_disks);
4479 smp_mb();
4480 kfree(conf->mirrors_old);
4481 conf->mirrors_old = conf->mirrors;
4482 conf->mirrors = conf->mirrors_new;
4483 conf->mirrors_new = NULL;
4484 }
4485 setup_geo(&conf->geo, mddev, geo_start);
4486 smp_mb();
4487 if (mddev->reshape_backwards) {
4488 sector_t size = raid10_size(mddev, 0, 0);
4489 if (size < mddev->array_sectors) {
4490 spin_unlock_irq(&conf->device_lock);
4491 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4492 mdname(mddev));
4493 return -EINVAL;
4494 }
4495 mddev->resync_max_sectors = size;
4496 conf->reshape_progress = size;
4497 } else
4498 conf->reshape_progress = 0;
4499 conf->reshape_safe = conf->reshape_progress;
4500 spin_unlock_irq(&conf->device_lock);
4501
4502 if (mddev->delta_disks && mddev->bitmap) {
4503 struct mdp_superblock_1 *sb = NULL;
4504 sector_t oldsize, newsize;
4505
4506 oldsize = raid10_size(mddev, 0, 0);
4507 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4508
4509 if (!mddev_is_clustered(mddev)) {
4510 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4511 if (ret)
4512 goto abort;
4513 else
4514 goto out;
4515 }
4516
4517 rdev_for_each(rdev, mddev) {
4518 if (rdev->raid_disk > -1 &&
4519 !test_bit(Faulty, &rdev->flags))
4520 sb = page_address(rdev->sb_page);
4521 }
4522
4523 /*
4524 * some node is already performing reshape, and no need to
4525 * call bitmap_ops->resize again since it should be called when
4526 * receiving BITMAP_RESIZE msg
4527 */
4528 if ((sb && (le32_to_cpu(sb->feature_map) &
4529 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4530 goto out;
4531
4532 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4533 if (ret)
4534 goto abort;
4535
4536 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4537 if (ret) {
4538 mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4539 goto abort;
4540 }
4541 }
4542 out:
4543 if (mddev->delta_disks > 0) {
4544 rdev_for_each(rdev, mddev)
4545 if (rdev->raid_disk < 0 &&
4546 !test_bit(Faulty, &rdev->flags)) {
4547 if (raid10_add_disk(mddev, rdev) == 0) {
4548 if (rdev->raid_disk >=
4549 conf->prev.raid_disks)
4550 set_bit(In_sync, &rdev->flags);
4551 else
4552 rdev->recovery_offset = 0;
4553
4554 /* Failure here is OK */
4555 sysfs_link_rdev(mddev, rdev);
4556 }
4557 } else if (rdev->raid_disk >= conf->prev.raid_disks
4558 && !test_bit(Faulty, &rdev->flags)) {
4559 /* This is a spare that was manually added */
4560 set_bit(In_sync, &rdev->flags);
4561 }
4562 }
4563 /* When a reshape changes the number of devices,
4564 * ->degraded is measured against the larger of the
4565 * pre and post numbers.
4566 */
4567 spin_lock_irq(&conf->device_lock);
4568 mddev->degraded = calc_degraded(conf);
4569 spin_unlock_irq(&conf->device_lock);
4570 mddev->raid_disks = conf->geo.raid_disks;
4571 mddev->reshape_position = conf->reshape_progress;
4572 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4573
4574 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4575 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4576 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4577 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4578 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4579 conf->reshape_checkpoint = jiffies;
4580 md_new_event();
4581 return 0;
4582
4583 abort:
4584 mddev->recovery = 0;
4585 spin_lock_irq(&conf->device_lock);
4586 conf->geo = conf->prev;
4587 mddev->raid_disks = conf->geo.raid_disks;
4588 rdev_for_each(rdev, mddev)
4589 rdev->new_data_offset = rdev->data_offset;
4590 smp_wmb();
4591 conf->reshape_progress = MaxSector;
4592 conf->reshape_safe = MaxSector;
4593 mddev->reshape_position = MaxSector;
4594 spin_unlock_irq(&conf->device_lock);
4595 return ret;
4596 }
4597
4598 /* Calculate the last device-address that could contain
4599 * any block from the chunk that includes the array-address 's'
4600 * and report the next address.
4601 * i.e. the address returned will be chunk-aligned and after
4602 * any data that is in the chunk containing 's'.
4603 */
last_dev_address(sector_t s,struct geom * geo)4604 static sector_t last_dev_address(sector_t s, struct geom *geo)
4605 {
4606 s = (s | geo->chunk_mask) + 1;
4607 s >>= geo->chunk_shift;
4608 s *= geo->near_copies;
4609 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4610 s *= geo->far_copies;
4611 s <<= geo->chunk_shift;
4612 return s;
4613 }
4614
4615 /* Calculate the first device-address that could contain
4616 * any block from the chunk that includes the array-address 's'.
4617 * This too will be the start of a chunk
4618 */
first_dev_address(sector_t s,struct geom * geo)4619 static sector_t first_dev_address(sector_t s, struct geom *geo)
4620 {
4621 s >>= geo->chunk_shift;
4622 s *= geo->near_copies;
4623 sector_div(s, geo->raid_disks);
4624 s *= geo->far_copies;
4625 s <<= geo->chunk_shift;
4626 return s;
4627 }
4628
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4629 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4630 int *skipped)
4631 {
4632 /* We simply copy at most one chunk (smallest of old and new)
4633 * at a time, possibly less if that exceeds RESYNC_PAGES,
4634 * or we hit a bad block or something.
4635 * This might mean we pause for normal IO in the middle of
4636 * a chunk, but that is not a problem as mddev->reshape_position
4637 * can record any location.
4638 *
4639 * If we will want to write to a location that isn't
4640 * yet recorded as 'safe' (i.e. in metadata on disk) then
4641 * we need to flush all reshape requests and update the metadata.
4642 *
4643 * When reshaping forwards (e.g. to more devices), we interpret
4644 * 'safe' as the earliest block which might not have been copied
4645 * down yet. We divide this by previous stripe size and multiply
4646 * by previous stripe length to get lowest device offset that we
4647 * cannot write to yet.
4648 * We interpret 'sector_nr' as an address that we want to write to.
4649 * From this we use last_device_address() to find where we might
4650 * write to, and first_device_address on the 'safe' position.
4651 * If this 'next' write position is after the 'safe' position,
4652 * we must update the metadata to increase the 'safe' position.
4653 *
4654 * When reshaping backwards, we round in the opposite direction
4655 * and perform the reverse test: next write position must not be
4656 * less than current safe position.
4657 *
4658 * In all this the minimum difference in data offsets
4659 * (conf->offset_diff - always positive) allows a bit of slack,
4660 * so next can be after 'safe', but not by more than offset_diff
4661 *
4662 * We need to prepare all the bios here before we start any IO
4663 * to ensure the size we choose is acceptable to all devices.
4664 * The means one for each copy for write-out and an extra one for
4665 * read-in.
4666 * We store the read-in bio in ->master_bio and the others in
4667 * ->devs[x].bio and ->devs[x].repl_bio.
4668 */
4669 struct r10conf *conf = mddev->private;
4670 struct r10bio *r10_bio;
4671 sector_t next, safe, last;
4672 int max_sectors;
4673 int nr_sectors;
4674 int s;
4675 struct md_rdev *rdev;
4676 int need_flush = 0;
4677 struct bio *blist;
4678 struct bio *bio, *read_bio;
4679 int sectors_done = 0;
4680 struct page **pages;
4681
4682 if (sector_nr == 0) {
4683 /* If restarting in the middle, skip the initial sectors */
4684 if (mddev->reshape_backwards &&
4685 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4686 sector_nr = (raid10_size(mddev, 0, 0)
4687 - conf->reshape_progress);
4688 } else if (!mddev->reshape_backwards &&
4689 conf->reshape_progress > 0)
4690 sector_nr = conf->reshape_progress;
4691 if (sector_nr) {
4692 mddev->curr_resync_completed = sector_nr;
4693 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4694 *skipped = 1;
4695 return sector_nr;
4696 }
4697 }
4698
4699 /* We don't use sector_nr to track where we are up to
4700 * as that doesn't work well for ->reshape_backwards.
4701 * So just use ->reshape_progress.
4702 */
4703 if (mddev->reshape_backwards) {
4704 /* 'next' is the earliest device address that we might
4705 * write to for this chunk in the new layout
4706 */
4707 next = first_dev_address(conf->reshape_progress - 1,
4708 &conf->geo);
4709
4710 /* 'safe' is the last device address that we might read from
4711 * in the old layout after a restart
4712 */
4713 safe = last_dev_address(conf->reshape_safe - 1,
4714 &conf->prev);
4715
4716 if (next + conf->offset_diff < safe)
4717 need_flush = 1;
4718
4719 last = conf->reshape_progress - 1;
4720 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4721 & conf->prev.chunk_mask);
4722 if (sector_nr + RESYNC_SECTORS < last)
4723 sector_nr = last + 1 - RESYNC_SECTORS;
4724 } else {
4725 /* 'next' is after the last device address that we
4726 * might write to for this chunk in the new layout
4727 */
4728 next = last_dev_address(conf->reshape_progress, &conf->geo);
4729
4730 /* 'safe' is the earliest device address that we might
4731 * read from in the old layout after a restart
4732 */
4733 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4734
4735 /* Need to update metadata if 'next' might be beyond 'safe'
4736 * as that would possibly corrupt data
4737 */
4738 if (next > safe + conf->offset_diff)
4739 need_flush = 1;
4740
4741 sector_nr = conf->reshape_progress;
4742 last = sector_nr | (conf->geo.chunk_mask
4743 & conf->prev.chunk_mask);
4744
4745 if (sector_nr + RESYNC_SECTORS <= last)
4746 last = sector_nr + RESYNC_SECTORS - 1;
4747 }
4748
4749 if (need_flush ||
4750 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4751 /* Need to update reshape_position in metadata */
4752 wait_barrier(conf, false);
4753 mddev->reshape_position = conf->reshape_progress;
4754 if (mddev->reshape_backwards)
4755 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4756 - conf->reshape_progress;
4757 else
4758 mddev->curr_resync_completed = conf->reshape_progress;
4759 conf->reshape_checkpoint = jiffies;
4760 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4761 md_wakeup_thread(mddev->thread);
4762 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4763 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4764 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4765 allow_barrier(conf);
4766 return sectors_done;
4767 }
4768 conf->reshape_safe = mddev->reshape_position;
4769 allow_barrier(conf);
4770 }
4771
4772 raise_barrier(conf, 0);
4773 read_more:
4774 /* Now schedule reads for blocks from sector_nr to last */
4775 r10_bio = raid10_alloc_init_r10buf(conf);
4776 r10_bio->state = 0;
4777 raise_barrier(conf, 1);
4778 atomic_set(&r10_bio->remaining, 0);
4779 r10_bio->mddev = mddev;
4780 r10_bio->sector = sector_nr;
4781 set_bit(R10BIO_IsReshape, &r10_bio->state);
4782 r10_bio->sectors = last - sector_nr + 1;
4783 rdev = read_balance(conf, r10_bio, &max_sectors);
4784 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4785
4786 if (!rdev) {
4787 /* Cannot read from here, so need to record bad blocks
4788 * on all the target devices.
4789 */
4790 // FIXME
4791 mempool_free(r10_bio, &conf->r10buf_pool);
4792 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4793 return sectors_done;
4794 }
4795
4796 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4797 GFP_KERNEL, &mddev->bio_set);
4798 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4799 + rdev->data_offset);
4800 read_bio->bi_private = r10_bio;
4801 read_bio->bi_end_io = end_reshape_read;
4802 r10_bio->master_bio = read_bio;
4803 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4804
4805 /*
4806 * Broadcast RESYNC message to other nodes, so all nodes would not
4807 * write to the region to avoid conflict.
4808 */
4809 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4810 struct mdp_superblock_1 *sb = NULL;
4811 int sb_reshape_pos = 0;
4812
4813 conf->cluster_sync_low = sector_nr;
4814 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4815 sb = page_address(rdev->sb_page);
4816 if (sb) {
4817 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4818 /*
4819 * Set cluster_sync_low again if next address for array
4820 * reshape is less than cluster_sync_low. Since we can't
4821 * update cluster_sync_low until it has finished reshape.
4822 */
4823 if (sb_reshape_pos < conf->cluster_sync_low)
4824 conf->cluster_sync_low = sb_reshape_pos;
4825 }
4826
4827 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4828 conf->cluster_sync_high);
4829 }
4830
4831 /* Now find the locations in the new layout */
4832 __raid10_find_phys(&conf->geo, r10_bio);
4833
4834 blist = read_bio;
4835 read_bio->bi_next = NULL;
4836
4837 for (s = 0; s < conf->copies*2; s++) {
4838 struct bio *b;
4839 int d = r10_bio->devs[s/2].devnum;
4840 struct md_rdev *rdev2;
4841 if (s&1) {
4842 rdev2 = conf->mirrors[d].replacement;
4843 b = r10_bio->devs[s/2].repl_bio;
4844 } else {
4845 rdev2 = conf->mirrors[d].rdev;
4846 b = r10_bio->devs[s/2].bio;
4847 }
4848 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4849 continue;
4850
4851 bio_set_dev(b, rdev2->bdev);
4852 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4853 rdev2->new_data_offset;
4854 b->bi_end_io = end_reshape_write;
4855 b->bi_opf = REQ_OP_WRITE;
4856 b->bi_next = blist;
4857 blist = b;
4858 }
4859
4860 /* Now add as many pages as possible to all of these bios. */
4861
4862 nr_sectors = 0;
4863 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4864 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4865 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4866 int len = (max_sectors - s) << 9;
4867 if (len > PAGE_SIZE)
4868 len = PAGE_SIZE;
4869 for (bio = blist; bio ; bio = bio->bi_next) {
4870 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4871 bio->bi_status = BLK_STS_RESOURCE;
4872 bio_endio(bio);
4873 return sectors_done;
4874 }
4875 }
4876 sector_nr += len >> 9;
4877 nr_sectors += len >> 9;
4878 }
4879 r10_bio->sectors = nr_sectors;
4880
4881 /* Now submit the read */
4882 md_sync_acct_bio(read_bio, r10_bio->sectors);
4883 atomic_inc(&r10_bio->remaining);
4884 read_bio->bi_next = NULL;
4885 submit_bio_noacct(read_bio);
4886 sectors_done += nr_sectors;
4887 if (sector_nr <= last)
4888 goto read_more;
4889
4890 lower_barrier(conf);
4891
4892 /* Now that we have done the whole section we can
4893 * update reshape_progress
4894 */
4895 if (mddev->reshape_backwards)
4896 conf->reshape_progress -= sectors_done;
4897 else
4898 conf->reshape_progress += sectors_done;
4899
4900 return sectors_done;
4901 }
4902
4903 static void end_reshape_request(struct r10bio *r10_bio);
4904 static int handle_reshape_read_error(struct mddev *mddev,
4905 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4906 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4907 {
4908 /* Reshape read completed. Hopefully we have a block
4909 * to write out.
4910 * If we got a read error then we do sync 1-page reads from
4911 * elsewhere until we find the data - or give up.
4912 */
4913 struct r10conf *conf = mddev->private;
4914 int s;
4915
4916 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4917 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4918 /* Reshape has been aborted */
4919 md_done_sync(mddev, r10_bio->sectors, 0);
4920 return;
4921 }
4922
4923 /* We definitely have the data in the pages, schedule the
4924 * writes.
4925 */
4926 atomic_set(&r10_bio->remaining, 1);
4927 for (s = 0; s < conf->copies*2; s++) {
4928 struct bio *b;
4929 int d = r10_bio->devs[s/2].devnum;
4930 struct md_rdev *rdev;
4931 if (s&1) {
4932 rdev = conf->mirrors[d].replacement;
4933 b = r10_bio->devs[s/2].repl_bio;
4934 } else {
4935 rdev = conf->mirrors[d].rdev;
4936 b = r10_bio->devs[s/2].bio;
4937 }
4938 if (!rdev || test_bit(Faulty, &rdev->flags))
4939 continue;
4940
4941 atomic_inc(&rdev->nr_pending);
4942 md_sync_acct_bio(b, r10_bio->sectors);
4943 atomic_inc(&r10_bio->remaining);
4944 b->bi_next = NULL;
4945 submit_bio_noacct(b);
4946 }
4947 end_reshape_request(r10_bio);
4948 }
4949
end_reshape(struct r10conf * conf)4950 static void end_reshape(struct r10conf *conf)
4951 {
4952 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4953 return;
4954
4955 spin_lock_irq(&conf->device_lock);
4956 conf->prev = conf->geo;
4957 md_finish_reshape(conf->mddev);
4958 smp_wmb();
4959 conf->reshape_progress = MaxSector;
4960 conf->reshape_safe = MaxSector;
4961 spin_unlock_irq(&conf->device_lock);
4962
4963 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4964 conf->fullsync = 0;
4965 }
4966
raid10_update_reshape_pos(struct mddev * mddev)4967 static void raid10_update_reshape_pos(struct mddev *mddev)
4968 {
4969 struct r10conf *conf = mddev->private;
4970 sector_t lo, hi;
4971
4972 mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
4973 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4974 || mddev->reshape_position == MaxSector)
4975 conf->reshape_progress = mddev->reshape_position;
4976 else
4977 WARN_ON_ONCE(1);
4978 }
4979
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4980 static int handle_reshape_read_error(struct mddev *mddev,
4981 struct r10bio *r10_bio)
4982 {
4983 /* Use sync reads to get the blocks from somewhere else */
4984 int sectors = r10_bio->sectors;
4985 struct r10conf *conf = mddev->private;
4986 struct r10bio *r10b;
4987 int slot = 0;
4988 int idx = 0;
4989 struct page **pages;
4990
4991 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4992 if (!r10b) {
4993 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4994 return -ENOMEM;
4995 }
4996
4997 /* reshape IOs share pages from .devs[0].bio */
4998 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4999
5000 r10b->sector = r10_bio->sector;
5001 __raid10_find_phys(&conf->prev, r10b);
5002
5003 while (sectors) {
5004 int s = sectors;
5005 int success = 0;
5006 int first_slot = slot;
5007
5008 if (s > (PAGE_SIZE >> 9))
5009 s = PAGE_SIZE >> 9;
5010
5011 while (!success) {
5012 int d = r10b->devs[slot].devnum;
5013 struct md_rdev *rdev = conf->mirrors[d].rdev;
5014 sector_t addr;
5015 if (rdev == NULL ||
5016 test_bit(Faulty, &rdev->flags) ||
5017 !test_bit(In_sync, &rdev->flags))
5018 goto failed;
5019
5020 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5021 atomic_inc(&rdev->nr_pending);
5022 success = sync_page_io(rdev,
5023 addr,
5024 s << 9,
5025 pages[idx],
5026 REQ_OP_READ, false);
5027 rdev_dec_pending(rdev, mddev);
5028 if (success)
5029 break;
5030 failed:
5031 slot++;
5032 if (slot >= conf->copies)
5033 slot = 0;
5034 if (slot == first_slot)
5035 break;
5036 }
5037 if (!success) {
5038 /* couldn't read this block, must give up */
5039 set_bit(MD_RECOVERY_INTR,
5040 &mddev->recovery);
5041 kfree(r10b);
5042 return -EIO;
5043 }
5044 sectors -= s;
5045 idx++;
5046 }
5047 kfree(r10b);
5048 return 0;
5049 }
5050
end_reshape_write(struct bio * bio)5051 static void end_reshape_write(struct bio *bio)
5052 {
5053 struct r10bio *r10_bio = get_resync_r10bio(bio);
5054 struct mddev *mddev = r10_bio->mddev;
5055 struct r10conf *conf = mddev->private;
5056 int d;
5057 int slot;
5058 int repl;
5059 struct md_rdev *rdev = NULL;
5060
5061 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5062 rdev = repl ? conf->mirrors[d].replacement :
5063 conf->mirrors[d].rdev;
5064
5065 if (bio->bi_status) {
5066 /* FIXME should record badblock */
5067 md_error(mddev, rdev);
5068 }
5069
5070 rdev_dec_pending(rdev, mddev);
5071 end_reshape_request(r10_bio);
5072 }
5073
end_reshape_request(struct r10bio * r10_bio)5074 static void end_reshape_request(struct r10bio *r10_bio)
5075 {
5076 if (!atomic_dec_and_test(&r10_bio->remaining))
5077 return;
5078 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5079 bio_put(r10_bio->master_bio);
5080 put_buf(r10_bio);
5081 }
5082
raid10_finish_reshape(struct mddev * mddev)5083 static void raid10_finish_reshape(struct mddev *mddev)
5084 {
5085 struct r10conf *conf = mddev->private;
5086
5087 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5088 return;
5089
5090 if (mddev->delta_disks > 0) {
5091 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5092 mddev->recovery_cp = mddev->resync_max_sectors;
5093 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5094 }
5095 mddev->resync_max_sectors = mddev->array_sectors;
5096 } else {
5097 int d;
5098 for (d = conf->geo.raid_disks ;
5099 d < conf->geo.raid_disks - mddev->delta_disks;
5100 d++) {
5101 struct md_rdev *rdev = conf->mirrors[d].rdev;
5102 if (rdev)
5103 clear_bit(In_sync, &rdev->flags);
5104 rdev = conf->mirrors[d].replacement;
5105 if (rdev)
5106 clear_bit(In_sync, &rdev->flags);
5107 }
5108 }
5109 mddev->layout = mddev->new_layout;
5110 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5111 mddev->reshape_position = MaxSector;
5112 mddev->delta_disks = 0;
5113 mddev->reshape_backwards = 0;
5114 }
5115
5116 static struct md_personality raid10_personality =
5117 {
5118 .head = {
5119 .type = MD_PERSONALITY,
5120 .id = ID_RAID10,
5121 .name = "raid10",
5122 .owner = THIS_MODULE,
5123 },
5124
5125 .make_request = raid10_make_request,
5126 .run = raid10_run,
5127 .free = raid10_free,
5128 .status = raid10_status,
5129 .error_handler = raid10_error,
5130 .hot_add_disk = raid10_add_disk,
5131 .hot_remove_disk= raid10_remove_disk,
5132 .spare_active = raid10_spare_active,
5133 .sync_request = raid10_sync_request,
5134 .quiesce = raid10_quiesce,
5135 .size = raid10_size,
5136 .resize = raid10_resize,
5137 .takeover = raid10_takeover,
5138 .check_reshape = raid10_check_reshape,
5139 .start_reshape = raid10_start_reshape,
5140 .finish_reshape = raid10_finish_reshape,
5141 .update_reshape_pos = raid10_update_reshape_pos,
5142 };
5143
raid10_init(void)5144 static int __init raid10_init(void)
5145 {
5146 return register_md_submodule(&raid10_personality.head);
5147 }
5148
raid10_exit(void)5149 static void __exit raid10_exit(void)
5150 {
5151 unregister_md_submodule(&raid10_personality.head);
5152 }
5153
5154 module_init(raid10_init);
5155 module_exit(raid10_exit);
5156 MODULE_LICENSE("GPL");
5157 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5158 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5159 MODULE_ALIAS("md-raid10");
5160 MODULE_ALIAS("md-level-10");
5161