1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #ifndef _SYS_IB_ADAPTERS_HERMON_H 27 #define _SYS_IB_ADAPTERS_HERMON_H 28 29 /* 30 * hermon.h 31 * Contains the #defines and typedefs necessary for the Hermon softstate 32 * structure and for proper attach() and detach() processing. Also 33 * includes all the other Hermon header files (and so is the only header 34 * file that is directly included by the Hermon source files). 35 * Lastly, this file includes everything necessary for implementing the 36 * devmap interface and for maintaining the "mapped resource database". 37 */ 38 39 #include <sys/types.h> 40 #include <sys/conf.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/taskq.h> 44 #include <sys/atomic.h> 45 #ifdef FMA_TEST 46 #include <sys/modhash.h> 47 #endif 48 49 #include <sys/ib/ibtl/ibci.h> 50 #include <sys/ib/ibtl/impl/ibtl_util.h> 51 #include <sys/ib/adapters/mlnx_umap.h> 52 53 /* 54 * First include all the Hermon typedefs, then include all the other Hermon 55 * specific headers (many of which depend on the typedefs having already 56 * been defined). 57 */ 58 #include <sys/ib/adapters/hermon/hermon_typedef.h> 59 #include <sys/ib/adapters/hermon/hermon_hw.h> 60 61 #include <sys/ib/adapters/hermon/hermon_agents.h> 62 #include <sys/ib/adapters/hermon/hermon_cfg.h> 63 #include <sys/ib/adapters/hermon/hermon_cmd.h> 64 #include <sys/ib/adapters/hermon/hermon_cq.h> 65 #include <sys/ib/adapters/hermon/hermon_event.h> 66 #include <sys/ib/adapters/hermon/hermon_fcoib.h> 67 #include <sys/ib/adapters/hermon/hermon_ioctl.h> 68 #include <sys/ib/adapters/hermon/hermon_misc.h> 69 #include <sys/ib/adapters/hermon/hermon_mr.h> 70 #include <sys/ib/adapters/hermon/hermon_wr.h> 71 #include <sys/ib/adapters/hermon/hermon_qp.h> 72 #include <sys/ib/adapters/hermon/hermon_srq.h> 73 #include <sys/ib/adapters/hermon/hermon_rsrc.h> 74 #include <sys/ib/adapters/hermon/hermon_fm.h> 75 76 #ifdef __cplusplus 77 extern "C" { 78 #endif 79 80 /* 81 * Number of initial states to setup. Used in call to ddi_soft_state_init() 82 */ 83 #define HERMON_INITIAL_STATES 3 84 85 /* 86 * Macro and defines used to calculate device instance number from minor 87 * number (and vice versa). 88 */ 89 #define HERMON_MINORNUM_SHIFT 3 90 #define HERMON_DEV_INSTANCE(dev) (getminor((dev)) & \ 91 ((1 << HERMON_MINORNUM_SHIFT) - 1)) 92 93 /* 94 * Locations for the various Hermon hardware CMD,UAR & MSIx PCIe BARs 95 */ 96 #define HERMON_CMD_BAR 1 /* device config space */ 97 #define HERMON_UAR_BAR 2 /* UAR Region */ 98 #define HERMON_MSIX_BAR 3 /* MSI-X Table */ 99 100 #define HERMON_ONCLOSE_FLASH_INPROGRESS (1 << 0) 101 102 #define HERMON_MSIX_MAX 256 /* max # of interrupt vectors */ 103 104 /* 105 * VPD header size - or more rightfully, the area of interest for fwflash 106 * There's more, but we don't need it for our use so we don't read it 107 */ 108 #define HERMON_VPD_HDR_DWSIZE 0x10 /* 16 Dwords */ 109 #define HERMON_VPD_HDR_BSIZE 0x40 /* 64 Bytes */ 110 111 /* 112 * Offsets to be used w/ reset to save/restore PCI capability stuff 113 */ 114 #define HERMON_PCI_CAP_DEV_OFFS 0x08 115 #define HERMON_PCI_CAP_LNK_OFFS 0x10 116 117 118 /* 119 * Some defines for the software reset. These define the value that should 120 * be written to begin the reset (HERMON_SW_RESET_START), the delay before 121 * beginning to poll for completion (HERMON_SW_RESET_DELAY), the in-between 122 * polling delay (HERMON_SW_RESET_POLL_DELAY), and the value that indicates 123 * that the reset has not completed (HERMON_SW_RESET_NOTDONE). 124 */ 125 #define HERMON_SW_RESET_START 0x00000001 126 #define HERMON_SW_RESET_DELAY 1000000 /* 1000 ms, per 0.36 PRM */ 127 #define HERMON_SW_RESET_POLL_DELAY 100 /* 100 us */ 128 #define HERMON_SW_RESET_NOTDONE 0xFFFFFFFF 129 130 /* 131 * These defines are used in the Hermon software reset operation. They define 132 * the total number PCI registers to read/restore during the reset. And they 133 * also specify two config registers which should not be read or restored. 134 */ 135 #define HERMON_SW_RESET_NUMREGS 0x40 136 #define HERMON_SW_RESET_REG22_RSVD 0x16 /* 22 dec */ 137 #define HERMON_SW_RESET_REG23_RSVD 0x17 /* 23 dec */ 138 139 /* 140 * Macro used to output HCA warning messages. Note: HCA warning messages 141 * are only generated when an unexpected condition has been detected. This 142 * can be the result of a software bug or some other problem. Previously 143 * this was used for hardware errors, but those now use HERMON_FMANOTE 144 * instead, indicating that the driver state is more likely in an 145 * unpredictable state, and that shutdown/restart is suggested. 146 * 147 * HERMON_WARNING messages are not considered important enough to print 148 * to the console, just to the message log. 149 */ 150 #define HERMON_WARNING(state, string) \ 151 cmn_err(CE_CONT, "!hermon%d: %s\n", (state)->hs_instance, string) 152 153 /* 154 * Macro used to set attach failure messages. Also, the attach message buf 155 * size is set here. 156 */ 157 #define HERMON_ATTACH_MSGSIZE 80 158 #define HERMON_ATTACH_MSG(attach_buf, attach_msg) \ 159 (void) snprintf((attach_buf), HERMON_ATTACH_MSGSIZE, (attach_msg)); 160 #define HERMON_ATTACH_MSG_INIT(attach_buf) \ 161 (attach_buf)[0] = '\0'; 162 163 /* 164 * Macros used for controlling whether or not event callbacks will be forwarded 165 * to the IBTF. This is necessary because there are certain race conditions 166 * that can occur (e.g. calling IBTF with an asynch event before the IBTF 167 * registration has successfully completed or handling an event after we've 168 * detached from the IBTF.) 169 * 170 * HERMON_ENABLE_IBTF_CALLB() initializes the "hs_ibtfpriv" field in the Hermon 171 * softstate. When "hs_ibtfpriv" is non-NULL, it is OK to forward asynch 172 * and CQ events to the IBTF. 173 * 174 * HERMON_DO_IBTF_ASYNC_CALLB() and HERMON_DO_IBTF_CQ_CALLB() both set and clear 175 * the "hs_in_evcallb" flag, as necessary, to indicate that an IBTF 176 * callback is currently in progress. This is necessary so that we can 177 * block on this condition in hermon_detach(). 178 * 179 * HERMON_QUIESCE_IBTF_CALLB() is used in hermon_detach() to set the 180 * "hs_ibtfpriv" to NULL (thereby disabling any further IBTF callbacks) 181 * and to poll on the "hs_in_evcallb" flag. When this flag is zero, all 182 * IBTF callbacks have quiesced and it is safe to continue with detach 183 * (i.e. continue detaching from IBTF). 184 */ 185 #define HERMON_ENABLE_IBTF_CALLB(state, tmp_ibtfpriv) \ 186 (state)->hs_ibtfpriv = (tmp_ibtfpriv); 187 188 #define HERMON_DO_IBTF_ASYNC_CALLB(state, type, event) \ 189 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS((state)->hs_in_evcallb)) \ 190 (state)->hs_in_evcallb = 1; \ 191 ibc_async_handler((state)->hs_ibtfpriv, (type), (event)); \ 192 (state)->hs_in_evcallb = 0; 193 194 #define HERMON_DO_IBTF_CQ_CALLB(state, cq) \ 195 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS((state)->hs_in_evcallb)) \ 196 (state)->hs_in_evcallb = 1; \ 197 ibc_cq_handler((state)->hs_ibtfpriv, (cq)->cq_hdlrarg); \ 198 (state)->hs_in_evcallb = 0; 199 200 #define HERMON_QUIESCE_IBTF_CALLB(state) \ 201 { \ 202 uint_t count = 0; \ 203 \ 204 state->hs_ibtfpriv = NULL; \ 205 while (((state)->hs_in_evcallb != 0) && \ 206 (count++ < HERMON_QUIESCE_IBTF_CALLB_POLL_MAX)) { \ 207 drv_usecwait(HERMON_QUIESCE_IBTF_CALLB_POLL_DELAY); \ 208 } \ 209 } 210 211 /* 212 * Defines used by the HERMON_QUIESCE_IBTF_CALLB() macro to determine the 213 * duration and number of times (at maximum) to poll while waiting for IBTF 214 * callbacks to quiesce. 215 */ 216 #define HERMON_QUIESCE_IBTF_CALLB_POLL_DELAY 1 217 #define HERMON_QUIESCE_IBTF_CALLB_POLL_MAX 1000000 218 219 /* 220 * Macros to retrieve PCI id's of the device 221 */ 222 #define HERMON_DDI_PROP_GET(dip, property) \ 223 (ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, \ 224 property, -1)) 225 226 #define HERMON_GET_VENDOR_ID(dip) HERMON_DDI_PROP_GET(dip, "vendor-id") 227 #define HERMON_GET_DEVICE_ID(dip) HERMON_DDI_PROP_GET(dip, "device-id") 228 #define HERMON_GET_REVISION_ID(dip) HERMON_DDI_PROP_GET(dip, "revision-id") 229 230 /* 231 * Defines used to record the device mode to which Hermon driver has been 232 * attached. HERMON_MAINTENANCE_MODE is used when the device has 233 * come up in the "maintenance mode". In this mode, no InfiniBand interfaces 234 * are enabled, but the device's firmware can be updated/flashed (and 235 * test/debug interfaces should be useable). 236 * HERMON_HCA_MODE isused when the device has come up in the 237 * normal HCA mode. In this mode, all necessary InfiniBand interfaces are 238 * enabled (and, if necessary, HERMON firmware can be updated/flashed). 239 */ 240 #define HERMON_MAINTENANCE_MODE 1 241 #define HERMON_HCA_MODE 2 242 243 /* 244 * Used to determine if the device is operational, or not in maintenance mode. 245 * This means either the driver has attached successfully against an hermon 246 * device in hermon compatibility mode, or against a hermon device in full HCA 247 * mode. 248 */ 249 #define HERMON_IS_OPERATIONAL(mode) \ 250 (mode == HERMON_HCA_MODE) 251 252 /* 253 * The following define is used (in hermon_umap_db_set_onclose_cb()) to 254 * indicate that a cleanup callback is needed to undo initialization done 255 * by the firmware flash burn code. 256 */ 257 #define HERMON_ONCLOSE_FLASH_INPROGRESS (1 << 0) 258 259 /* 260 * The following enumerated type and structures are used during driver 261 * initialization. Note: The HERMON_DRV_CLEANUP_ALL type is used as a marker 262 * for end of the cleanup steps. No cleanup steps should be added after 263 * HERMON_DRV_CLEANUP_ALL. Any addition steps should be added before it. 264 */ 265 typedef enum { 266 HERMON_DRV_CLEANUP_LEVEL0, 267 HERMON_DRV_CLEANUP_LEVEL1, 268 HERMON_DRV_CLEANUP_LEVEL2, 269 HERMON_DRV_CLEANUP_LEVEL3, 270 HERMON_DRV_CLEANUP_LEVEL4, 271 HERMON_DRV_CLEANUP_LEVEL5, 272 HERMON_DRV_CLEANUP_LEVEL6, 273 HERMON_DRV_CLEANUP_LEVEL7, 274 HERMON_DRV_CLEANUP_LEVEL8, 275 HERMON_DRV_CLEANUP_LEVEL9, 276 HERMON_DRV_CLEANUP_LEVEL10, 277 HERMON_DRV_CLEANUP_LEVEL11, 278 HERMON_DRV_CLEANUP_LEVEL12, 279 HERMON_DRV_CLEANUP_LEVEL13, 280 HERMON_DRV_CLEANUP_LEVEL14, 281 HERMON_DRV_CLEANUP_LEVEL15, 282 HERMON_DRV_CLEANUP_LEVEL16, 283 HERMON_DRV_CLEANUP_LEVEL17, 284 HERMON_DRV_CLEANUP_LEVEL18, 285 HERMON_DRV_CLEANUP_LEVEL19, 286 /* No more driver cleanup steps below this point! */ 287 HERMON_DRV_CLEANUP_ALL 288 } hermon_drv_cleanup_level_t; 289 290 /* 291 * The hermon_dma_info_t structure is used to store information related to 292 * the various ICM resources' DMA allocations. The related ICM table and 293 * virtual address are stored here. The DMA and Access handles are stored 294 * here. Also, the allocation length and virtual (host) address. 295 */ 296 struct hermon_dma_info_s { 297 ddi_dma_handle_t dma_hdl; 298 ddi_acc_handle_t acc_hdl; 299 uint64_t icmaddr; /* ICM virtual address */ 300 uint64_t vaddr; /* host virtual address */ 301 uint_t length; /* length requested */ 302 uint_t icm_refcnt; /* refcnt */ 303 }; 304 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", 305 hermon_dma_info_s::icm_refcnt)) 306 307 308 /* 309 * The hermon_cmd_reg_t structure is used to hold the address of the each of 310 * the most frequently accessed hardware registers. Specifically, it holds 311 * the HCA Command Registers (HCR, used to pass command and mailbox 312 * information back and forth to Hermon firmware) and the lock used to guarantee 313 * mutually exclusive access to the registers. 314 * Related to this, is the "clr_int" register which is used to clear the 315 * interrupt once all EQs have been serviced. 316 * Finally, there is the software reset register which is used to reinitialize 317 * the Hermon device and to put it into a known state at driver startup time. 318 * Below we also have the offsets (into the CMD register space) for each of 319 * the various registers. 320 */ 321 typedef struct hermon_cmd_reg_s { 322 hermon_hw_hcr_t *hcr; 323 kmutex_t hcr_lock; 324 uint64_t *clr_intr; 325 uint64_t *eq_arm; 326 uint64_t *eq_set_ci; 327 uint32_t *sw_reset; 328 uint32_t *sw_semaphore; 329 uint32_t *fw_err_buf; 330 } hermon_cmd_reg_t; 331 _NOTE(MUTEX_PROTECTS_DATA(hermon_cmd_reg_t::hcr_lock, 332 hermon_cmd_reg_t::hcr)) 333 334 /* SOME TEMPORARY PRINTING THINGS */ 335 #define HERMON_PRINT_CI (0x01 << 0) 336 #define HERMON_PRINT_MEM (0x01 << 1) 337 #define HERMON_PRINT_CQ (0x01 << 2) 338 339 340 #define HD_PRINT(state, mask) \ 341 if (state->hs_debug_lev & mask) 342 343 /* END PRINTING THINGS */ 344 345 /* 346 * The hermon_state_t structure is the HCA software state structure. It 347 * contains all the pointers and placeholder for everything that the HCA 348 * driver needs to properly operate. One of these structures exists for 349 * every instance of the HCA driver. 350 */ 351 struct hermon_state_s { 352 dev_info_t *hs_dip; 353 int hs_instance; 354 355 /* PCI device, vendor, and revision IDs */ 356 uint16_t hs_vendor_id; 357 uint16_t hs_device_id; 358 uint8_t hs_revision_id; 359 360 /* 361 * DMA information for the InfiniHost Context Memory (ICM), 362 * ICM Auxiliary allocation and the firmware. Also, record 363 * of ICM and ICMA sizes, in bytes. 364 */ 365 366 uint64_t hs_icm_sz; 367 hermon_icm_table_t *hs_icm; 368 uint64_t hs_icma_sz; 369 hermon_dma_info_t hs_icma_dma; 370 hermon_dma_info_t hs_fw_dma; 371 372 /* Hermon interrupt/MSI information */ 373 int hs_intr_types_avail; 374 uint_t hs_intr_type_chosen; 375 int hs_intrmsi_count; 376 int hs_intrmsi_avail; 377 int hs_intrmsi_allocd; 378 ddi_intr_handle_t hs_intrmsi_hdl[HERMON_MSIX_MAX]; 379 uint_t hs_intrmsi_pri; 380 int hs_intrmsi_cap; 381 ddi_cb_handle_t hs_intr_cb_hdl; 382 383 /* Do not use reserved EQs */ 384 uint_t hs_rsvd_eqs; 385 uint_t hs_cq_erreqnum; 386 387 /* cq_sched data */ 388 kmutex_t hs_cq_sched_lock; 389 hermon_cq_sched_t *hs_cq_sched_array; 390 hermon_cq_sched_t hs_cq_sched_default; 391 uint_t hs_cq_sched_array_size; 392 393 /* hermon HCA name and HCA part number */ 394 char hs_hca_name[64]; 395 char hs_hca_pn[64]; 396 int hs_hca_pn_len; 397 398 /* Hermon device operational mode */ 399 int hs_operational_mode; 400 401 /* Attach buffer saved per state to store detailed attach errors */ 402 char hs_attach_buf[HERMON_ATTACH_MSGSIZE]; 403 404 /* Hermon NodeGUID, SystemImageGUID, and NodeDescription */ 405 uint64_t hs_nodeguid; 406 uint64_t hs_sysimgguid; 407 char hs_nodedesc[64]; 408 409 /* Info passed to IBTF during registration */ 410 ibc_hca_info_t hs_ibtfinfo; 411 ibc_clnt_hdl_t hs_ibtfpriv; 412 413 /* 414 * Hermon register mapping. Holds the device access attributes, 415 * kernel mapped addresses, and DDI access handles for both 416 * Hermon's CMD and UAR BARs. 417 */ 418 ddi_device_acc_attr_t hs_reg_accattr; 419 caddr_t hs_reg_cmd_baseaddr; /* Hermon CMD BAR */ 420 ddi_acc_handle_t hs_reg_cmdhdl; 421 caddr_t hs_reg_uar_baseaddr; /* Hermon UAR BAR */ 422 ddi_acc_handle_t hs_reg_uarhdl; 423 caddr_t hs_reg_msi_baseaddr; /* Hermon MSIx BAR */ 424 ddi_acc_handle_t hs_reg_msihdl; 425 426 /* 427 * Some additional things for UAR Pages 428 */ 429 uint64_t hs_kernel_uar_index; /* kernel UAR index */ 430 uint64_t hs_bf_offset; /* offset from UAR */ 431 /* Bar to Blueflame */ 432 caddr_t hs_reg_bf_baseaddr; /* blueflame base */ 433 ddi_acc_handle_t hs_reg_bfhdl; /* blueflame handle */ 434 435 436 /* 437 * Hermon PCI config space registers. This array is used to 438 * save and restore the PCI config registers before and after a 439 * software reset. 440 */ 441 uint32_t hs_cfg_data[HERMON_SW_RESET_NUMREGS]; 442 /* for reset per Linux driver */ 443 uint32_t hs_pci_cap_offset; 444 uint32_t hs_pci_cap_devctl; 445 uint32_t hs_pci_cap_lnkctl; 446 447 /* 448 * Hermon UAR page resources. Holds the resource pointers for 449 * UAR page #0 (reserved) and for UAR page #1 (used for kernel 450 * driver doorbells). In addition, we save a pointer to the 451 * UAR page #1 doorbells which will be used throughout the driver 452 * whenever it is necessary to ring one of them. And, in case we 453 * are unable to do 64-bit writes to the page (because of system 454 * architecture), we include a lock (to ensure atomic 64-bit access). 455 */ 456 hermon_rsrc_t *hs_uarpg0_rsrc_rsrvd; 457 hermon_rsrc_t *hs_uarkpg_rsrc; 458 hermon_hw_uar_t *hs_uar; 459 kmutex_t hs_uar_lock; 460 461 /* 462 * Used during a call to open() if we are in maintenance mode, this 463 * field serves as a semi-unique rolling count index value, used only 464 * in the setup of umap_db entries. This is primarily needed to 465 * firmware device access ioctl operations can still be guaranteed to 466 * close in the event of an unplanned process exit, even in maintenance 467 * mode. 468 */ 469 uint_t hs_open_ar_indx; 470 471 /* 472 * Hermon command registers. This structure contains the addresses 473 * for each of the most frequently accessed CMD registers. Since 474 * almost all accesses to the Hermon hardware are through the Hermon 475 * command interface (i.e. the HCR), we save away the pointer to 476 * the HCR, as well as pointers to the ECR and INT registers (as 477 * well as their corresponding "clear" registers) for interrupt 478 * processing. And we also save away a pointer to the software 479 * reset register (see above). 480 */ 481 hermon_cmd_reg_t hs_cmd_regs; 482 uint32_t hs_cmd_toggle; 483 484 /* 485 * Hermon resource pointers. The following are pointers to the 486 * kmem cache (from which the Hermon resource handles are allocated), 487 * and the array of "resource pools" (which store all the pertinent 488 * information necessary to manage each of the various types of 489 * resources that are used by the driver. See hermon_rsrc.h for 490 * more detail. 491 */ 492 kmem_cache_t *hs_rsrc_cache; 493 hermon_rsrc_pool_info_t *hs_rsrc_hdl; 494 495 /* 496 * Hermon mailbox lists. These hold the information necessary to 497 * manage the pools of pre-allocated Hermon mailboxes (both "In" and 498 * "Out" type). See hermon_cmd.h for more detail. 499 */ 500 hermon_mboxlist_t hs_in_mblist; 501 hermon_mboxlist_t hs_out_mblist; 502 503 /* 504 * Hermon interrupt mailbox lists. We allocate both an "In" mailbox 505 * and an "Out" type mailbox for the interrupt context. This is in 506 * order to guarantee that a mailbox entry will always be available in 507 * the interrupt context, and we can NOSLEEP without having to worry 508 * about possible failure allocating the mbox. We create this as an 509 * mboxlist so that we have the potential for having multiple mboxes 510 * available based on the number of interrupts we can receive at once. 511 */ 512 hermon_mboxlist_t hs_in_intr_mblist; 513 hermon_mboxlist_t hs_out_intr_mblist; 514 515 /* 516 * Hermon outstanding command list. Used to hold all the information 517 * necessary to manage the Hermon "outstanding command list". See 518 * hermon_cmd.h for more detail. 519 */ 520 hermon_cmdlist_t hs_cmd_list; 521 522 /* 523 * This structure contains the Hermon driver's "configuration profile". 524 * This is the collected set of configuration information, such as 525 * number of QPs, CQs, mailboxes and other resources, sizes of 526 * individual resources, other system level configuration information, 527 * etc. See hermon_cfg.h for more detail. 528 */ 529 hermon_cfg_profile_t *hs_cfg_profile; 530 531 /* 532 * This flag contains the profile setting, selecting which profile the 533 * driver would use. This is needed in the case where we have to 534 * fallback to a smaller profile based on some DDR conditions. If we 535 * don't fallback, then it is set to the size of DDR in the system. 536 */ 537 uint32_t hs_cfg_profile_setting; 538 539 /* 540 * The following are a collection of resource handles used by the 541 * Hermon driver (internally). First is the protection domain (PD) 542 * handle that is used when mapping all kernel memory (work queues, 543 * completion queues, etc). Next is an array of EQ handles. This 544 * array is indexed by EQ number and allows the Hermon driver to quickly 545 * convert an EQ number into the software structure associated with the 546 * given EQ. Likewise, we have three arrays for CQ, QP and SRQ 547 * handles. These arrays are also indexed by CQ, QP or SRQ number and 548 * allow the driver to quickly find the corresponding CQ, QP or SRQ 549 * software structure. Note: while the EQ table is of fixed size 550 * (because there are a maximum of 64 EQs), each of the CQ, QP and SRQ 551 * handle lists must be allocated at driver startup. 552 */ 553 hermon_pdhdl_t hs_pdhdl_internal; 554 hermon_eqhdl_t hs_eqhdl[HERMON_NUM_EQ]; 555 kmutex_t hs_dbr_lock; /* lock for dbr mgmt */ 556 557 /* linked list of kernel dbr resources */ 558 hermon_dbr_info_t *hs_kern_dbr; 559 560 /* linked list of non-kernel dbr resources */ 561 hermon_user_dbr_t *hs_user_dbr; 562 563 /* 564 * The AVL tree is used to store information regarding QP number 565 * allocations. The lock protects access to the AVL tree. 566 */ 567 avl_tree_t hs_qpn_avl; 568 kmutex_t hs_qpn_avl_lock; 569 570 /* 571 * This field is used to indicate whether or not the Hermon driver is 572 * currently in an IBTF event callback elsewhere in the system. Note: 573 * It is "volatile" because we intend to poll on this value - in 574 * hermon_detach() - until we are assured that no further IBTF callbacks 575 * are currently being processed. 576 */ 577 volatile uint32_t hs_in_evcallb; 578 579 /* 580 * The following structures are used to store the results of several 581 * device query commands passed to the Hermon hardware at startup. 582 * Specifically, we have hung onto the results of QUERY_DDR (which 583 * gives information about how much DDR memory is present and where 584 * it is located), QUERY_FW (which gives information about firmware 585 * version numbers and the location and extent of firmware's footprint 586 * in DDR, QUERY_DEVLIM (which gives the device limitations/resource 587 * maximums) and QUERY_PORT (where some of the specs from DEVLIM moved), 588 * QUERY_ADAPTER (which gives additional miscellaneous 589 * information), and INIT/QUERY_HCA (which serves the purpose of 590 * recording what configuration information was passed to the firmware 591 * when the HCA was initialized). 592 */ 593 struct hermon_hw_queryfw_s hs_fw; 594 struct hermon_hw_querydevlim_s hs_devlim; 595 struct hermon_hw_query_port_s hs_queryport; 596 struct hermon_hw_set_port_s *hs_initport; 597 struct hermon_hw_queryadapter_s hs_adapter; 598 struct hermon_hw_initqueryhca_s hs_hcaparams; 599 600 /* 601 * The following are used for managing special QP resources. 602 * Specifically, we have a lock, a set of flags (in "hs_spec_qpflags") 603 * used to track the special QP resources, and two Hermon resource 604 * handle pointers. Each resource handle actually corresponds to two 605 * consecutive QP contexts (one per port) for each special QP type. 606 */ 607 kmutex_t hs_spec_qplock; 608 uint_t hs_spec_qpflags; 609 hermon_rsrc_t *hs_spec_qp0; 610 hermon_rsrc_t *hs_spec_qp1; 611 /* 612 * For Hermon, you have to alloc 8 qp's total, but the last 4 are 613 * unused/reserved. The following represents the handle for those 614 * last 4 qp's 615 */ 616 hermon_rsrc_t *hs_spec_qp_unused; 617 618 /* 619 * Related in some ways to the special QP handling above are these 620 * resources which are used specifically for implementing the Hermon 621 * agents (SMA, PMA, and BMA). Although, each of these agents does 622 * little more that intercept the appropriate incoming MAD and forward 623 * it along to the firmware (see hermon_agents.c for more details), we 624 * do still use a task queue to queue them up. We can also configure 625 * the driver to force firmware handling for certain classes of MAD, 626 * and, therefore, we require the agent list and number of agents 627 * in order to know what needs to be torn down at detach() time. 628 */ 629 hermon_agent_list_t *hs_agents; 630 ddi_taskq_t *hs_taskq_agents; 631 uint_t hs_num_agents; 632 633 /* 634 * Multicast group lists. These are used to track the "shadow" MCG 635 * lists that speed up the processing of attach and detach multicast 636 * group operations. See hermon_misc.h for more details. Note: we 637 * need the pointer to the "temporary" MCG entry here primarily 638 * because the size of a given MCG entry is configurable. Therefore, 639 * it is impossible to put this variable on the stack. And rather 640 * than allocate and deallocate the entry multiple times, we choose 641 * instead to preallocate it once and reuse it over and over again. 642 */ 643 kmutex_t hs_mcglock; 644 hermon_mcghdl_t hs_mcghdl; 645 hermon_hw_mcg_t *hs_mcgtmp; 646 647 /* 648 * Cache of the pkey table, sgid (guid-only) tables, and 649 * sgid (subnet) prefix. These arrays are set 650 * during port_query, and mainly used for generating MLX GSI wqes. 651 */ 652 ib_pkey_t *hs_pkey[HERMON_MAX_PORTS]; 653 ib_sn_prefix_t hs_sn_prefix[HERMON_MAX_PORTS]; 654 ib_guid_t *hs_guid[HERMON_MAX_PORTS]; 655 656 /* 657 * Used for tracking Hermon kstat information 658 */ 659 hermon_ks_info_t *hs_ks_info; 660 661 /* 662 * Used for Hermon info ioctl used by VTS 663 */ 664 kmutex_t hs_info_lock; 665 666 /* 667 * Used for Hermon FW flash burning. They are used exclusively 668 * within the ioctl calls for use when accessing the hermon 669 * flash device. 670 */ 671 kmutex_t hs_fw_flashlock; 672 int hs_fw_flashstarted; 673 dev_t hs_fw_flashdev; 674 uint32_t hs_fw_log_sector_sz; 675 uint32_t hs_fw_device_sz; 676 uint32_t hs_fw_flashbank; 677 uint32_t *hs_fw_sector; 678 uint32_t hs_fw_gpio[4]; 679 int hs_fw_cmdset; 680 681 /* 682 * Used for Hermon FM. They are basically used to manage 683 * the toggle switch to enable/disable Hermon FM. 684 * Please see the comment in hermon_fm.c. 685 */ 686 int hs_fm_capabilities; /* FM capabilities */ 687 int hs_fm_disable; /* Hermon FM disable flag */ 688 int hs_fm_state; /* Hermon FM state */ 689 boolean_t hs_fm_async_fatal; /* async internal error */ 690 uint32_t hs_fm_async_errcnt; /* async error count */ 691 boolean_t hs_fm_poll_suspend; /* poll thread suspend */ 692 kmutex_t hs_fm_lock; /* mutex for state */ 693 hermon_hca_fm_t *hs_fm_hca_fm; /* HCA FM pointer */ 694 ddi_acc_handle_t hs_fm_cmdhdl; /* fm-protected CMD hdl */ 695 ddi_acc_handle_t hs_fm_uarhdl; /* fm-protected UAR hdl */ 696 ddi_device_acc_attr_t hs_fm_accattr; /* fm-protected acc attr */ 697 ddi_periodic_t hs_fm_poll_thread; /* fma poll thread */ 698 int32_t hs_fm_degraded_reason; /* degradation cause */ 699 #ifdef FMA_TEST 700 mod_hash_t *hs_fm_test_hash; /* testset */ 701 mod_hash_t *hs_fm_id_hash; /* testid */ 702 #endif 703 /* FCoIB data */ 704 hermon_fcoib_t hs_fcoib; 705 boolean_t hs_fcoib_may_be_running; /* cq_poll test */ 706 707 /* 708 * Hermon fastreboot support. To sw-reset Hermon HCA, the driver 709 * needs to save/restore MSI-X tables and PBA. Those members are 710 * used for the purpose. 711 */ 712 /* Access handle for PCI config space */ 713 ddi_acc_handle_t hs_reg_pcihdl; /* PCI cfg handle */ 714 ddi_acc_handle_t hs_fm_pcihdl; /* fm handle */ 715 ushort_t hs_caps_ptr; /* MSI-X caps */ 716 ushort_t hs_msix_ctrl; /* MSI-X ctrl */ 717 718 /* members to handle MSI-X tables */ 719 ddi_acc_handle_t hs_reg_msix_tblhdl; /* MSI-X table handle */ 720 ddi_acc_handle_t hs_fm_msix_tblhdl; /* fm handle */ 721 char *hs_msix_tbl_addr; /* MSI-X table addr */ 722 char *hs_msix_tbl_entries; /* MSI-X table entry */ 723 size_t hs_msix_tbl_size; /* MSI-X table size */ 724 uint32_t hs_msix_tbl_offset; /* MSI-X table offset */ 725 uint32_t hs_msix_tbl_rnumber; /* MSI-X table reg# */ 726 727 /* members to handle MSI-X PBA */ 728 ddi_acc_handle_t hs_reg_msix_pbahdl; /* MSI-X PBA handle */ 729 ddi_acc_handle_t hs_fm_msix_pbahdl; /* fm handle */ 730 char *hs_msix_pba_addr; /* MSI-X PBA addr */ 731 char *hs_msix_pba_entries; /* MSI-X PBA entry */ 732 size_t hs_msix_pba_size; /* MSI-X PBA size */ 733 uint32_t hs_msix_pba_offset; /* MSI-X PBA offset */ 734 uint32_t hs_msix_pba_rnumber; /* MSI-X PBA reg# */ 735 736 boolean_t hs_quiescing; /* in fastreboot */ 737 }; 738 _NOTE(MUTEX_PROTECTS_DATA(hermon_state_s::hs_fw_flashlock, 739 hermon_state_s::hs_fw_flashstarted 740 hermon_state_s::hs_fw_flashdev 741 hermon_state_s::hs_fw_log_sector_sz 742 hermon_state_s::hs_fw_device_sz)) 743 _NOTE(MUTEX_PROTECTS_DATA(hermon_state_s::hs_spec_qplock, 744 hermon_state_s::hs_spec_qpflags 745 hermon_state_s::hs_spec_qp0 746 hermon_state_s::hs_spec_qp1)) 747 _NOTE(MUTEX_PROTECTS_DATA(hermon_state_s::hs_mcglock, 748 hermon_state_s::hs_mcghdl 749 hermon_state_s::hs_mcgtmp)) 750 _NOTE(DATA_READABLE_WITHOUT_LOCK(hermon_state_s::hs_in_evcallb 751 hermon_state_s::hs_fw_log_sector_sz 752 hermon_state_s::hs_fw_device_sz 753 hermon_state_s::hs_spec_qpflags 754 hermon_state_s::hs_spec_qp0 755 hermon_state_s::hs_spec_qp1)) 756 _NOTE(MUTEX_PROTECTS_DATA(hermon_state_s::hs_qpn_avl_lock, 757 hermon_state_s::hs_qpn_avl)) 758 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", 759 hermon_state_s::hs_fm_async_fatal 760 hermon_state_s::hs_fw_sector)) 761 762 /* 763 * HERMON_IN_FASTREBOOT() shows if Hermon driver is at fastreboot. 764 * This macro should be used to check if the mutex lock can be used 765 * since the lock cannot be used if the driver is in the quiesce mode. 766 */ 767 #define HERMON_IN_FASTREBOOT(state) (state->hs_quiescing == B_TRUE) 768 769 /* 770 * Bit positions in the "hs_spec_qpflags" field above. The flags are (from 771 * least significant to most): (QP0,Port1), (QP0,Port2), (QP1,Port1), and 772 * (QP1,Port2). The masks are there to help with some specific allocation 773 * and freeing operations 774 */ 775 #define HERMON_SPECIAL_QP0_RSRC 0 776 #define HERMON_SPECIAL_QP0_RSRC_MASK 0x3 777 #define HERMON_SPECIAL_QP1_RSRC 2 778 #define HERMON_SPECIAL_QP1_RSRC_MASK 0xC 779 780 781 /* 782 * These flags specifies additional behaviors on database access. 783 * HERMON_UMAP_DB_REMOVE, for example, specifies that (if found) the database 784 * entry should be removed from the database. HERMON_UMAP_DB_IGNORE_INSTANCE 785 * specifies that a particular database query should ignore value in the 786 * "tdb_instance" field as a criterion for the search. 787 */ 788 #define HERMON_UMAP_DB_REMOVE (1 << 0) 789 #define HERMON_UMAP_DB_IGNORE_INSTANCE (1 << 1) 790 791 /* 792 * The hermon_umap_db_t structure contains what is referred to throughout the 793 * driver code as the "userland resources database". This structure contains 794 * all the necessary information to track resources that have been prepared 795 * for direct-from-userland access. There is an AVL tree ("hdl_umapdb_avl") 796 * which consists of the "hermon_umap_db_entry_t" (below) and a lock to ensure 797 * atomic access when adding or removing entries from the database. 798 */ 799 typedef struct hermon_umap_db_s { 800 kmutex_t hdl_umapdb_lock; 801 avl_tree_t hdl_umapdb_avl; 802 } hermon_umap_db_t; 803 804 /* 805 * The hermon_umap_db_priv_t structure currently contains information necessary 806 * to provide the "on close" callback to the firmware flash interfaces. It 807 * is intended that this structure could be extended to enable other "on 808 * close" callbacks as well. 809 */ 810 typedef struct hermon_umap_db_priv_s { 811 int (*hdp_cb)(void *); 812 void *hdp_arg; 813 } hermon_umap_db_priv_t; 814 815 /* 816 * The hermon_umap_db_common_t structure contains fields which are common 817 * between the database entries ("hermon_umap_db_entry_t") and the structure 818 * used to contain the search criteria ("hermon_umap_db_query_t"). This 819 * structure contains a key, a resource type (described above), an instance 820 * (corresponding to the driver instance which inserted the database entry), 821 * and a "value" field. Typically, "hdb_value" is a pointer to a Hermon 822 * resource object. Although for memory regions, the value field corresponds 823 * to the ddi_umem_cookie_t for the pinned userland memory. 824 * The structure also includes a placeholder for private data ("hdb_priv"). 825 * Currently this data is being used for holding "on close" callback 826 * information to allow certain kinds of cleanup even if a userland process 827 * prematurely exits. 828 */ 829 typedef struct hermon_umap_db_common_s { 830 uint64_t hdb_key; 831 uint64_t hdb_value; 832 uint_t hdb_type; 833 uint_t hdb_instance; 834 void *hdb_priv; 835 } hermon_umap_db_common_t; 836 837 /* 838 * The hermon_umap_db_entry_t structure is the entry in "userland resources 839 * database". As required by the AVL framework, each entry contains an 840 * "avl_node_t". Then, as required to implement the database, each entry 841 * contains a "hermon_umap_db_common_t" structure used to contain all of the 842 * relevant entries. 843 */ 844 typedef struct hermon_umap_db_entry_s { 845 avl_node_t hdbe_avlnode; 846 hermon_umap_db_common_t hdbe_common; 847 } hermon_umap_db_entry_t; 848 849 /* 850 * The hermon_umap_db_query_t structure is used in queries to the "userland 851 * resources database". In addition to the "hermon_umap_db_common_t" structure 852 * used to contain the various search criteria, this structure also contains 853 * a flags field "hqdb_flags" which can be used to specify additional behaviors 854 * (as described above). Specifically, the flags field can be used to specify 855 * that an entry should be removed from the database, if found, and to 856 * specify whether the database lookup should consider "tdb_instance" in the 857 * search. 858 */ 859 typedef struct hermon_umap_db_query_s { 860 uint_t hqdb_flags; 861 hermon_umap_db_common_t hqdb_common; 862 } hermon_umap_db_query_t; 863 _NOTE(MUTEX_PROTECTS_DATA(hermon_umap_db_s::hdl_umapdb_lock, 864 hermon_umap_db_entry_s::hdbe_avlnode 865 hermon_umap_db_entry_s::hdbe_common.hdb_key 866 hermon_umap_db_entry_s::hdbe_common.hdb_value 867 hermon_umap_db_entry_s::hdbe_common.hdb_type 868 hermon_umap_db_entry_s::hdbe_common.hdb_instance)) 869 870 /* 871 * The hermon_devmap_track_t structure contains all the necessary information 872 * to track resources that have been mapped through devmap. There is a 873 * back-pointer to the Hermon softstate, the logical offset corresponding with 874 * the mapped resource, the size of the mapped resource (zero indicates an 875 * "invalid mapping"), and a reference count and lock used to determine when 876 * to free the structure (specifically, this is necessary to handle partial 877 * unmappings). 878 */ 879 typedef struct hermon_devmap_track_s { 880 hermon_state_t *hdt_state; 881 uint64_t hdt_offset; 882 uint_t hdt_size; 883 int hdt_refcnt; 884 kmutex_t hdt_lock; 885 } hermon_devmap_track_t; 886 887 #define HERMON_ICM_SPLIT 64 888 #define HERMON_ICM_SPAN 4096 889 890 #define hermon_bitmap(bitmap, dma_info, icm_table, split_index, num_to_hdl) \ 891 bitmap = (icm_table)->icm_bitmap[split_index]; \ 892 if (bitmap == NULL) { \ 893 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*(icm_table))) \ 894 int num_spans = (icm_table)->num_spans; \ 895 bitmap = \ 896 (icm_table)->icm_bitmap[split_index] = \ 897 kmem_zalloc((num_spans + 7) / 8, KM_SLEEP); \ 898 ASSERT((icm_table)->icm_dma[split_index] == NULL); \ 899 (icm_table)->icm_dma[split_index] = \ 900 kmem_zalloc(num_spans * sizeof (hermon_dma_info_t), \ 901 KM_SLEEP); \ 902 if (num_to_hdl) { \ 903 ASSERT((icm_table)->num_to_hdl[split_index] == NULL); \ 904 (icm_table)->num_to_hdl[split_index] = \ 905 kmem_zalloc(num_spans * \ 906 sizeof (void **), KM_SLEEP); \ 907 } \ 908 } \ 909 dma_info = (icm_table)->icm_dma[split_index] 910 911 /* 912 * The hermon_icm_table_t encodes data pertaining to a given ICM table, and 913 * holds an array of hermon_dma_info_t's related to its backing memory. Each 914 * ICM table is sized during initialization, but real memory is allocated 915 * and mapped into and out of ICM in the device throughout the life of the 916 * instance. We use a bitmap to determine whether or not a given ICM object 917 * has memory backing it or not, and an array of hermon_dma_info_t's to house 918 * the actual allocations. Memory is allocated in chunks of span_size, stored 919 * in the icm_dma array, and can later be looked up by using the bitmap index. 920 * The total number of ICM spans is equal to table_size / span_size. We also 921 * keep track of the ICM characteristics, such as ICM object size and the 922 * number of entries in the ICM area. 923 */ 924 struct hermon_icm_table_s { 925 kmutex_t icm_table_lock; 926 kcondvar_t icm_table_cv; 927 uint8_t icm_busy; 928 hermon_rsrc_type_t icm_type; 929 uint64_t icm_baseaddr; 930 uint64_t table_size; 931 uint64_t num_entries; /* maximum #entries */ 932 uint32_t object_size; 933 uint32_t span; /* #rsrc's per span */ 934 uint32_t num_spans; /* #dmainfos in icm_dma */ 935 uint32_t split_shift; 936 uint32_t span_mask; 937 uint32_t span_shift; 938 uint32_t rsrc_mask; 939 uint16_t log_num_entries; 940 uint16_t log_object_size; 941 /* three arrays of pointers, each pointer points to arrays */ 942 uint8_t *icm_bitmap[HERMON_ICM_SPLIT]; 943 hermon_dma_info_t *icm_dma[HERMON_ICM_SPLIT]; 944 void ***num_to_hdl[HERMON_ICM_SPLIT]; /* qp/cq/srq */ 945 }; 946 /* 947 * Split the rsrc index into three pieces: 948 * 949 * index1 - icm_bitmap[HERMON_ICM_SPLIT], icm_dma[HERMON_ICM_SPLIT] 950 * index2 - bitmap[], dma[] 951 * offset - rsrc within the icm mapping 952 */ 953 #define hermon_index(index1, index2, rindx, table, offset) \ 954 index1 = (rindx) >> table->split_shift; \ 955 index2 = ((rindx) & table->span_mask) >> table->span_shift; \ 956 offset = (rindx) & table->rsrc_mask 957 958 /* Defined in hermon.c */ 959 int hermon_dma_alloc(hermon_state_t *state, hermon_dma_info_t *dma_info, 960 uint16_t opcode); 961 void hermon_dma_attr_init(hermon_state_t *state, ddi_dma_attr_t *dma_attr); 962 void hermon_dma_free(hermon_dma_info_t *info); 963 int hermon_icm_alloc(hermon_state_t *state, hermon_rsrc_type_t type, 964 uint32_t icm_index1, uint32_t icm_index2); 965 void hermon_icm_free(hermon_state_t *state, hermon_rsrc_type_t type, 966 uint32_t icm_index1, uint32_t icm_index2); 967 void *hermon_icm_num_to_hdl(hermon_state_t *state, hermon_rsrc_type_t type, 968 uint32_t idx); 969 void hermon_icm_set_num_to_hdl(hermon_state_t *state, hermon_rsrc_type_t type, 970 uint32_t idx, void *hdl); 971 int hermon_device_mode(hermon_state_t *state); 972 973 /* Defined in hermon_umap.c */ 974 int hermon_devmap(dev_t dev, devmap_cookie_t dhp, offset_t off, size_t len, 975 size_t *maplen, uint_t model); 976 ibt_status_t hermon_umap_ci_data_in(hermon_state_t *state, 977 ibt_ci_data_flags_t flags, ibt_object_type_t object, void *hdl, 978 void *data_p, size_t data_sz); 979 ibt_status_t hermon_umap_ci_data_out(hermon_state_t *state, 980 ibt_ci_data_flags_t flags, ibt_object_type_t object, void *hdl, 981 void *data_p, size_t data_sz); 982 void hermon_umap_db_init(void); 983 void hermon_umap_db_fini(void); 984 hermon_umap_db_entry_t *hermon_umap_db_alloc(uint_t instance, uint64_t key, 985 uint_t type, uint64_t value); 986 void hermon_umap_db_free(hermon_umap_db_entry_t *umapdb); 987 void hermon_umap_db_add(hermon_umap_db_entry_t *umapdb); 988 void hermon_umap_db_add_nolock(hermon_umap_db_entry_t *umapdb); 989 int hermon_umap_db_find(uint_t instance, uint64_t key, uint_t type, 990 uint64_t *value, uint_t flags, hermon_umap_db_entry_t **umapdb); 991 int hermon_umap_db_find_nolock(uint_t instance, uint64_t key, uint_t type, 992 uint64_t *value, uint_t flags, hermon_umap_db_entry_t **umapdb); 993 void hermon_umap_umemlock_cb(ddi_umem_cookie_t *umem_cookie); 994 int hermon_umap_db_set_onclose_cb(dev_t dev, uint64_t flag, 995 int (*callback)(void *), void *arg); 996 int hermon_umap_db_clear_onclose_cb(dev_t dev, uint64_t flag); 997 int hermon_umap_db_handle_onclose_cb(hermon_umap_db_priv_t *priv); 998 int hermon_rsrc_hw_entries_init(hermon_state_t *state, 999 hermon_rsrc_hw_entry_info_t *info); 1000 void hermon_rsrc_hw_entries_fini(hermon_state_t *state, 1001 hermon_rsrc_hw_entry_info_t *info); 1002 1003 #ifdef __cplusplus 1004 } 1005 #endif 1006 1007 #endif /* _SYS_IB_ADAPTERS_HERMON_H */ 1008