xref: /linux/mm/truncate.c (revision df02351331671abb26788bc13f6d276e26ae068f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
clear_shadow_entries(struct address_space * mapping,unsigned long start,unsigned long max)26 static void clear_shadow_entries(struct address_space *mapping,
27 				 unsigned long start, unsigned long max)
28 {
29 	XA_STATE(xas, &mapping->i_pages, start);
30 	struct folio *folio;
31 
32 	/* Handled by shmem itself, or for DAX we do nothing. */
33 	if (shmem_mapping(mapping) || dax_mapping(mapping))
34 		return;
35 
36 	xas_set_update(&xas, workingset_update_node);
37 
38 	spin_lock(&mapping->host->i_lock);
39 	xas_lock_irq(&xas);
40 
41 	/* Clear all shadow entries from start to max */
42 	xas_for_each(&xas, folio, max) {
43 		if (xa_is_value(folio))
44 			xas_store(&xas, NULL);
45 	}
46 
47 	xas_unlock_irq(&xas);
48 	if (mapping_shrinkable(mapping))
49 		inode_add_lru(mapping->host);
50 	spin_unlock(&mapping->host->i_lock);
51 }
52 
53 /*
54  * Unconditionally remove exceptional entries. Usually called from truncate
55  * path. Note that the folio_batch may be altered by this function by removing
56  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
57  * Please note that indices[] has entries in ascending order as guaranteed by
58  * either find_get_entries() or find_lock_entries().
59  */
truncate_folio_batch_exceptionals(struct address_space * mapping,struct folio_batch * fbatch,pgoff_t * indices)60 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 				struct folio_batch *fbatch, pgoff_t *indices)
62 {
63 	XA_STATE(xas, &mapping->i_pages, indices[0]);
64 	int nr = folio_batch_count(fbatch);
65 	struct folio *folio;
66 	int i, j;
67 
68 	/* Handled by shmem itself */
69 	if (shmem_mapping(mapping))
70 		return;
71 
72 	for (j = 0; j < nr; j++)
73 		if (xa_is_value(fbatch->folios[j]))
74 			break;
75 
76 	if (j == nr)
77 		return;
78 
79 	if (dax_mapping(mapping)) {
80 		for (i = j; i < nr; i++) {
81 			if (xa_is_value(fbatch->folios[i])) {
82 				/*
83 				 * File systems should already have called
84 				 * dax_break_layout_entry() to remove all DAX
85 				 * entries while holding a lock to prevent
86 				 * establishing new entries. Therefore we
87 				 * shouldn't find any here.
88 				 */
89 				WARN_ON_ONCE(1);
90 
91 				/*
92 				 * Delete the mapping so truncate_pagecache()
93 				 * doesn't loop forever.
94 				 */
95 				dax_delete_mapping_entry(mapping, indices[i]);
96 			}
97 		}
98 		goto out;
99 	}
100 
101 	xas_set(&xas, indices[j]);
102 	xas_set_update(&xas, workingset_update_node);
103 
104 	spin_lock(&mapping->host->i_lock);
105 	xas_lock_irq(&xas);
106 
107 	xas_for_each(&xas, folio, indices[nr-1]) {
108 		if (xa_is_value(folio))
109 			xas_store(&xas, NULL);
110 	}
111 
112 	xas_unlock_irq(&xas);
113 	if (mapping_shrinkable(mapping))
114 		inode_add_lru(mapping->host);
115 	spin_unlock(&mapping->host->i_lock);
116 out:
117 	folio_batch_remove_exceptionals(fbatch);
118 }
119 
120 /**
121  * folio_invalidate - Invalidate part or all of a folio.
122  * @folio: The folio which is affected.
123  * @offset: start of the range to invalidate
124  * @length: length of the range to invalidate
125  *
126  * folio_invalidate() is called when all or part of the folio has become
127  * invalidated by a truncate operation.
128  *
129  * folio_invalidate() does not have to release all buffers, but it must
130  * ensure that no dirty buffer is left outside @offset and that no I/O
131  * is underway against any of the blocks which are outside the truncation
132  * point.  Because the caller is about to free (and possibly reuse) those
133  * blocks on-disk.
134  */
folio_invalidate(struct folio * folio,size_t offset,size_t length)135 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
136 {
137 	const struct address_space_operations *aops = folio->mapping->a_ops;
138 
139 	if (aops->invalidate_folio)
140 		aops->invalidate_folio(folio, offset, length);
141 }
142 EXPORT_SYMBOL_GPL(folio_invalidate);
143 
144 /*
145  * If truncate cannot remove the fs-private metadata from the page, the page
146  * becomes orphaned.  It will be left on the LRU and may even be mapped into
147  * user pagetables if we're racing with filemap_fault().
148  *
149  * We need to bail out if page->mapping is no longer equal to the original
150  * mapping.  This happens a) when the VM reclaimed the page while we waited on
151  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
152  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
153  */
truncate_cleanup_folio(struct folio * folio)154 static void truncate_cleanup_folio(struct folio *folio)
155 {
156 	if (folio_mapped(folio))
157 		unmap_mapping_folio(folio);
158 
159 	if (folio_needs_release(folio))
160 		folio_invalidate(folio, 0, folio_size(folio));
161 
162 	/*
163 	 * Some filesystems seem to re-dirty the page even after
164 	 * the VM has canceled the dirty bit (eg ext3 journaling).
165 	 * Hence dirty accounting check is placed after invalidation.
166 	 */
167 	folio_cancel_dirty(folio);
168 }
169 
truncate_inode_folio(struct address_space * mapping,struct folio * folio)170 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
171 {
172 	if (folio->mapping != mapping)
173 		return -EIO;
174 
175 	truncate_cleanup_folio(folio);
176 	filemap_remove_folio(folio);
177 	return 0;
178 }
179 
180 /*
181  * Handle partial folios.  The folio may be entirely within the
182  * range if a split has raced with us.  If not, we zero the part of the
183  * folio that's within the [start, end] range, and then split the folio if
184  * it's large.  split_page_range() will discard pages which now lie beyond
185  * i_size, and we rely on the caller to discard pages which lie within a
186  * newly created hole.
187  *
188  * Returns false if splitting failed so the caller can avoid
189  * discarding the entire folio which is stubbornly unsplit.
190  */
truncate_inode_partial_folio(struct folio * folio,loff_t start,loff_t end)191 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
192 {
193 	loff_t pos = folio_pos(folio);
194 	unsigned int offset, length;
195 	struct page *split_at, *split_at2;
196 
197 	if (pos < start)
198 		offset = start - pos;
199 	else
200 		offset = 0;
201 	length = folio_size(folio);
202 	if (pos + length <= (u64)end)
203 		length = length - offset;
204 	else
205 		length = end + 1 - pos - offset;
206 
207 	folio_wait_writeback(folio);
208 	if (length == folio_size(folio)) {
209 		truncate_inode_folio(folio->mapping, folio);
210 		return true;
211 	}
212 
213 	/*
214 	 * We may be zeroing pages we're about to discard, but it avoids
215 	 * doing a complex calculation here, and then doing the zeroing
216 	 * anyway if the page split fails.
217 	 */
218 	if (!mapping_inaccessible(folio->mapping))
219 		folio_zero_range(folio, offset, length);
220 
221 	if (folio_needs_release(folio))
222 		folio_invalidate(folio, offset, length);
223 	if (!folio_test_large(folio))
224 		return true;
225 
226 	split_at = folio_page(folio, PAGE_ALIGN_DOWN(offset) / PAGE_SIZE);
227 	split_at2 = folio_page(folio,
228 			PAGE_ALIGN_DOWN(offset + length) / PAGE_SIZE);
229 
230 	if (!try_folio_split(folio, split_at, NULL)) {
231 		/*
232 		 * try to split at offset + length to make sure folios within
233 		 * the range can be dropped, especially to avoid memory waste
234 		 * for shmem truncate
235 		 */
236 		struct folio *folio2 = page_folio(split_at2);
237 
238 		if (!folio_try_get(folio2))
239 			goto no_split;
240 
241 		if (!folio_test_large(folio2))
242 			goto out;
243 
244 		if (!folio_trylock(folio2))
245 			goto out;
246 
247 		/*
248 		 * make sure folio2 is large and does not change its mapping.
249 		 * Its split result does not matter here.
250 		 */
251 		if (folio_test_large(folio2) &&
252 		    folio2->mapping == folio->mapping)
253 			try_folio_split(folio2, split_at2, NULL);
254 
255 		folio_unlock(folio2);
256 out:
257 		folio_put(folio2);
258 no_split:
259 		return true;
260 	}
261 	if (folio_test_dirty(folio))
262 		return false;
263 	truncate_inode_folio(folio->mapping, folio);
264 	return true;
265 }
266 
267 /*
268  * Used to get rid of pages on hardware memory corruption.
269  */
generic_error_remove_folio(struct address_space * mapping,struct folio * folio)270 int generic_error_remove_folio(struct address_space *mapping,
271 		struct folio *folio)
272 {
273 	if (!mapping)
274 		return -EINVAL;
275 	/*
276 	 * Only punch for normal data pages for now.
277 	 * Handling other types like directories would need more auditing.
278 	 */
279 	if (!S_ISREG(mapping->host->i_mode))
280 		return -EIO;
281 	return truncate_inode_folio(mapping, folio);
282 }
283 EXPORT_SYMBOL(generic_error_remove_folio);
284 
285 /**
286  * mapping_evict_folio() - Remove an unused folio from the page-cache.
287  * @mapping: The mapping this folio belongs to.
288  * @folio: The folio to remove.
289  *
290  * Safely remove one folio from the page cache.
291  * It only drops clean, unused folios.
292  *
293  * Context: Folio must be locked.
294  * Return: The number of pages successfully removed.
295  */
mapping_evict_folio(struct address_space * mapping,struct folio * folio)296 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
297 {
298 	/* The page may have been truncated before it was locked */
299 	if (!mapping)
300 		return 0;
301 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
302 		return 0;
303 	/* The refcount will be elevated if any page in the folio is mapped */
304 	if (folio_ref_count(folio) >
305 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
306 		return 0;
307 	if (!filemap_release_folio(folio, 0))
308 		return 0;
309 
310 	return remove_mapping(mapping, folio);
311 }
312 
313 /**
314  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
315  * @mapping: mapping to truncate
316  * @lstart: offset from which to truncate
317  * @lend: offset to which to truncate (inclusive)
318  *
319  * Truncate the page cache, removing the pages that are between
320  * specified offsets (and zeroing out partial pages
321  * if lstart or lend + 1 is not page aligned).
322  *
323  * Truncate takes two passes - the first pass is nonblocking.  It will not
324  * block on page locks and it will not block on writeback.  The second pass
325  * will wait.  This is to prevent as much IO as possible in the affected region.
326  * The first pass will remove most pages, so the search cost of the second pass
327  * is low.
328  *
329  * We pass down the cache-hot hint to the page freeing code.  Even if the
330  * mapping is large, it is probably the case that the final pages are the most
331  * recently touched, and freeing happens in ascending file offset order.
332  *
333  * Note that since ->invalidate_folio() accepts range to invalidate
334  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
335  * page aligned properly.
336  */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)337 void truncate_inode_pages_range(struct address_space *mapping,
338 				loff_t lstart, loff_t lend)
339 {
340 	pgoff_t		start;		/* inclusive */
341 	pgoff_t		end;		/* exclusive */
342 	struct folio_batch fbatch;
343 	pgoff_t		indices[PAGEVEC_SIZE];
344 	pgoff_t		index;
345 	int		i;
346 	struct folio	*folio;
347 	bool		same_folio;
348 
349 	if (mapping_empty(mapping))
350 		return;
351 
352 	/*
353 	 * 'start' and 'end' always covers the range of pages to be fully
354 	 * truncated. Partial pages are covered with 'partial_start' at the
355 	 * start of the range and 'partial_end' at the end of the range.
356 	 * Note that 'end' is exclusive while 'lend' is inclusive.
357 	 */
358 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
359 	if (lend == -1)
360 		/*
361 		 * lend == -1 indicates end-of-file so we have to set 'end'
362 		 * to the highest possible pgoff_t and since the type is
363 		 * unsigned we're using -1.
364 		 */
365 		end = -1;
366 	else
367 		end = (lend + 1) >> PAGE_SHIFT;
368 
369 	folio_batch_init(&fbatch);
370 	index = start;
371 	while (index < end && find_lock_entries(mapping, &index, end - 1,
372 			&fbatch, indices)) {
373 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
374 		for (i = 0; i < folio_batch_count(&fbatch); i++)
375 			truncate_cleanup_folio(fbatch.folios[i]);
376 		delete_from_page_cache_batch(mapping, &fbatch);
377 		for (i = 0; i < folio_batch_count(&fbatch); i++)
378 			folio_unlock(fbatch.folios[i]);
379 		folio_batch_release(&fbatch);
380 		cond_resched();
381 	}
382 
383 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
384 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
385 	if (!IS_ERR(folio)) {
386 		same_folio = lend < folio_pos(folio) + folio_size(folio);
387 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
388 			start = folio_next_index(folio);
389 			if (same_folio)
390 				end = folio->index;
391 		}
392 		folio_unlock(folio);
393 		folio_put(folio);
394 		folio = NULL;
395 	}
396 
397 	if (!same_folio) {
398 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
399 						FGP_LOCK, 0);
400 		if (!IS_ERR(folio)) {
401 			if (!truncate_inode_partial_folio(folio, lstart, lend))
402 				end = folio->index;
403 			folio_unlock(folio);
404 			folio_put(folio);
405 		}
406 	}
407 
408 	index = start;
409 	while (index < end) {
410 		cond_resched();
411 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
412 				indices)) {
413 			/* If all gone from start onwards, we're done */
414 			if (index == start)
415 				break;
416 			/* Otherwise restart to make sure all gone */
417 			index = start;
418 			continue;
419 		}
420 
421 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
422 			struct folio *folio = fbatch.folios[i];
423 
424 			/* We rely upon deletion not changing page->index */
425 
426 			if (xa_is_value(folio))
427 				continue;
428 
429 			folio_lock(folio);
430 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
431 			folio_wait_writeback(folio);
432 			truncate_inode_folio(mapping, folio);
433 			folio_unlock(folio);
434 		}
435 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
436 		folio_batch_release(&fbatch);
437 	}
438 }
439 EXPORT_SYMBOL(truncate_inode_pages_range);
440 
441 /**
442  * truncate_inode_pages - truncate *all* the pages from an offset
443  * @mapping: mapping to truncate
444  * @lstart: offset from which to truncate
445  *
446  * Called under (and serialised by) inode->i_rwsem and
447  * mapping->invalidate_lock.
448  *
449  * Note: When this function returns, there can be a page in the process of
450  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
451  * mapping->nrpages can be non-zero when this function returns even after
452  * truncation of the whole mapping.
453  */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)454 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
455 {
456 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
457 }
458 EXPORT_SYMBOL(truncate_inode_pages);
459 
460 /**
461  * truncate_inode_pages_final - truncate *all* pages before inode dies
462  * @mapping: mapping to truncate
463  *
464  * Called under (and serialized by) inode->i_rwsem.
465  *
466  * Filesystems have to use this in the .evict_inode path to inform the
467  * VM that this is the final truncate and the inode is going away.
468  */
truncate_inode_pages_final(struct address_space * mapping)469 void truncate_inode_pages_final(struct address_space *mapping)
470 {
471 	/*
472 	 * Page reclaim can not participate in regular inode lifetime
473 	 * management (can't call iput()) and thus can race with the
474 	 * inode teardown.  Tell it when the address space is exiting,
475 	 * so that it does not install eviction information after the
476 	 * final truncate has begun.
477 	 */
478 	mapping_set_exiting(mapping);
479 
480 	if (!mapping_empty(mapping)) {
481 		/*
482 		 * As truncation uses a lockless tree lookup, cycle
483 		 * the tree lock to make sure any ongoing tree
484 		 * modification that does not see AS_EXITING is
485 		 * completed before starting the final truncate.
486 		 */
487 		xa_lock_irq(&mapping->i_pages);
488 		xa_unlock_irq(&mapping->i_pages);
489 	}
490 
491 	truncate_inode_pages(mapping, 0);
492 }
493 EXPORT_SYMBOL(truncate_inode_pages_final);
494 
495 /**
496  * mapping_try_invalidate - Invalidate all the evictable folios of one inode
497  * @mapping: the address_space which holds the folios to invalidate
498  * @start: the offset 'from' which to invalidate
499  * @end: the offset 'to' which to invalidate (inclusive)
500  * @nr_failed: How many folio invalidations failed
501  *
502  * This function is similar to invalidate_mapping_pages(), except that it
503  * returns the number of folios which could not be evicted in @nr_failed.
504  */
mapping_try_invalidate(struct address_space * mapping,pgoff_t start,pgoff_t end,unsigned long * nr_failed)505 unsigned long mapping_try_invalidate(struct address_space *mapping,
506 		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
507 {
508 	pgoff_t indices[PAGEVEC_SIZE];
509 	struct folio_batch fbatch;
510 	pgoff_t index = start;
511 	unsigned long ret;
512 	unsigned long count = 0;
513 	int i;
514 
515 	folio_batch_init(&fbatch);
516 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
517 		bool xa_has_values = false;
518 		int nr = folio_batch_count(&fbatch);
519 
520 		for (i = 0; i < nr; i++) {
521 			struct folio *folio = fbatch.folios[i];
522 
523 			/* We rely upon deletion not changing folio->index */
524 
525 			if (xa_is_value(folio)) {
526 				xa_has_values = true;
527 				count++;
528 				continue;
529 			}
530 
531 			ret = mapping_evict_folio(mapping, folio);
532 			folio_unlock(folio);
533 			/*
534 			 * Invalidation is a hint that the folio is no longer
535 			 * of interest and try to speed up its reclaim.
536 			 */
537 			if (!ret) {
538 				deactivate_file_folio(folio);
539 				/* Likely in the lru cache of a remote CPU */
540 				if (nr_failed)
541 					(*nr_failed)++;
542 			}
543 			count += ret;
544 		}
545 
546 		if (xa_has_values)
547 			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
548 
549 		folio_batch_remove_exceptionals(&fbatch);
550 		folio_batch_release(&fbatch);
551 		cond_resched();
552 	}
553 	return count;
554 }
555 
556 /**
557  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
558  * @mapping: the address_space which holds the cache to invalidate
559  * @start: the offset 'from' which to invalidate
560  * @end: the offset 'to' which to invalidate (inclusive)
561  *
562  * This function removes pages that are clean, unmapped and unlocked,
563  * as well as shadow entries. It will not block on IO activity.
564  *
565  * If you want to remove all the pages of one inode, regardless of
566  * their use and writeback state, use truncate_inode_pages().
567  *
568  * Return: The number of indices that had their contents invalidated
569  */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)570 unsigned long invalidate_mapping_pages(struct address_space *mapping,
571 		pgoff_t start, pgoff_t end)
572 {
573 	return mapping_try_invalidate(mapping, start, end, NULL);
574 }
575 EXPORT_SYMBOL(invalidate_mapping_pages);
576 
folio_launder(struct address_space * mapping,struct folio * folio)577 static int folio_launder(struct address_space *mapping, struct folio *folio)
578 {
579 	if (!folio_test_dirty(folio))
580 		return 0;
581 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
582 		return 0;
583 	return mapping->a_ops->launder_folio(folio);
584 }
585 
586 /*
587  * This is like mapping_evict_folio(), except it ignores the folio's
588  * refcount.  We do this because invalidate_inode_pages2() needs stronger
589  * invalidation guarantees, and cannot afford to leave folios behind because
590  * shrink_folio_list() has a temp ref on them, or because they're transiently
591  * sitting in the folio_add_lru() caches.
592  */
folio_unmap_invalidate(struct address_space * mapping,struct folio * folio,gfp_t gfp)593 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
594 			   gfp_t gfp)
595 {
596 	int ret;
597 
598 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
599 
600 	if (folio_mapped(folio))
601 		unmap_mapping_folio(folio);
602 	BUG_ON(folio_mapped(folio));
603 
604 	ret = folio_launder(mapping, folio);
605 	if (ret)
606 		return ret;
607 	if (folio->mapping != mapping)
608 		return -EBUSY;
609 	if (!filemap_release_folio(folio, gfp))
610 		return -EBUSY;
611 
612 	spin_lock(&mapping->host->i_lock);
613 	xa_lock_irq(&mapping->i_pages);
614 	if (folio_test_dirty(folio))
615 		goto failed;
616 
617 	BUG_ON(folio_has_private(folio));
618 	__filemap_remove_folio(folio, NULL);
619 	xa_unlock_irq(&mapping->i_pages);
620 	if (mapping_shrinkable(mapping))
621 		inode_add_lru(mapping->host);
622 	spin_unlock(&mapping->host->i_lock);
623 
624 	filemap_free_folio(mapping, folio);
625 	return 1;
626 failed:
627 	xa_unlock_irq(&mapping->i_pages);
628 	spin_unlock(&mapping->host->i_lock);
629 	return -EBUSY;
630 }
631 
632 /**
633  * invalidate_inode_pages2_range - remove range of pages from an address_space
634  * @mapping: the address_space
635  * @start: the page offset 'from' which to invalidate
636  * @end: the page offset 'to' which to invalidate (inclusive)
637  *
638  * Any pages which are found to be mapped into pagetables are unmapped prior to
639  * invalidation.
640  *
641  * Return: -EBUSY if any pages could not be invalidated.
642  */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)643 int invalidate_inode_pages2_range(struct address_space *mapping,
644 				  pgoff_t start, pgoff_t end)
645 {
646 	pgoff_t indices[PAGEVEC_SIZE];
647 	struct folio_batch fbatch;
648 	pgoff_t index;
649 	int i;
650 	int ret = 0;
651 	int ret2 = 0;
652 	int did_range_unmap = 0;
653 
654 	if (mapping_empty(mapping))
655 		return 0;
656 
657 	folio_batch_init(&fbatch);
658 	index = start;
659 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
660 		bool xa_has_values = false;
661 		int nr = folio_batch_count(&fbatch);
662 
663 		for (i = 0; i < nr; i++) {
664 			struct folio *folio = fbatch.folios[i];
665 
666 			/* We rely upon deletion not changing folio->index */
667 
668 			if (xa_is_value(folio)) {
669 				xa_has_values = true;
670 				if (dax_mapping(mapping) &&
671 				    !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
672 					ret = -EBUSY;
673 				continue;
674 			}
675 
676 			if (!did_range_unmap && folio_mapped(folio)) {
677 				/*
678 				 * If folio is mapped, before taking its lock,
679 				 * zap the rest of the file in one hit.
680 				 */
681 				unmap_mapping_pages(mapping, indices[i],
682 						(1 + end - indices[i]), false);
683 				did_range_unmap = 1;
684 			}
685 
686 			folio_lock(folio);
687 			if (unlikely(folio->mapping != mapping)) {
688 				folio_unlock(folio);
689 				continue;
690 			}
691 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
692 			folio_wait_writeback(folio);
693 			ret2 = folio_unmap_invalidate(mapping, folio, GFP_KERNEL);
694 			if (ret2 < 0)
695 				ret = ret2;
696 			folio_unlock(folio);
697 		}
698 
699 		if (xa_has_values)
700 			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
701 
702 		folio_batch_remove_exceptionals(&fbatch);
703 		folio_batch_release(&fbatch);
704 		cond_resched();
705 	}
706 	/*
707 	 * For DAX we invalidate page tables after invalidating page cache.  We
708 	 * could invalidate page tables while invalidating each entry however
709 	 * that would be expensive. And doing range unmapping before doesn't
710 	 * work as we have no cheap way to find whether page cache entry didn't
711 	 * get remapped later.
712 	 */
713 	if (dax_mapping(mapping)) {
714 		unmap_mapping_pages(mapping, start, end - start + 1, false);
715 	}
716 	return ret;
717 }
718 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
719 
720 /**
721  * invalidate_inode_pages2 - remove all pages from an address_space
722  * @mapping: the address_space
723  *
724  * Any pages which are found to be mapped into pagetables are unmapped prior to
725  * invalidation.
726  *
727  * Return: -EBUSY if any pages could not be invalidated.
728  */
invalidate_inode_pages2(struct address_space * mapping)729 int invalidate_inode_pages2(struct address_space *mapping)
730 {
731 	return invalidate_inode_pages2_range(mapping, 0, -1);
732 }
733 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
734 
735 /**
736  * truncate_pagecache - unmap and remove pagecache that has been truncated
737  * @inode: inode
738  * @newsize: new file size
739  *
740  * inode's new i_size must already be written before truncate_pagecache
741  * is called.
742  *
743  * This function should typically be called before the filesystem
744  * releases resources associated with the freed range (eg. deallocates
745  * blocks). This way, pagecache will always stay logically coherent
746  * with on-disk format, and the filesystem would not have to deal with
747  * situations such as writepage being called for a page that has already
748  * had its underlying blocks deallocated.
749  */
truncate_pagecache(struct inode * inode,loff_t newsize)750 void truncate_pagecache(struct inode *inode, loff_t newsize)
751 {
752 	struct address_space *mapping = inode->i_mapping;
753 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
754 
755 	/*
756 	 * unmap_mapping_range is called twice, first simply for
757 	 * efficiency so that truncate_inode_pages does fewer
758 	 * single-page unmaps.  However after this first call, and
759 	 * before truncate_inode_pages finishes, it is possible for
760 	 * private pages to be COWed, which remain after
761 	 * truncate_inode_pages finishes, hence the second
762 	 * unmap_mapping_range call must be made for correctness.
763 	 */
764 	unmap_mapping_range(mapping, holebegin, 0, 1);
765 	truncate_inode_pages(mapping, newsize);
766 	unmap_mapping_range(mapping, holebegin, 0, 1);
767 }
768 EXPORT_SYMBOL(truncate_pagecache);
769 
770 /**
771  * truncate_setsize - update inode and pagecache for a new file size
772  * @inode: inode
773  * @newsize: new file size
774  *
775  * truncate_setsize updates i_size and performs pagecache truncation (if
776  * necessary) to @newsize. It will be typically be called from the filesystem's
777  * setattr function when ATTR_SIZE is passed in.
778  *
779  * Must be called with a lock serializing truncates and writes (generally
780  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
781  * specific block truncation has been performed.
782  */
truncate_setsize(struct inode * inode,loff_t newsize)783 void truncate_setsize(struct inode *inode, loff_t newsize)
784 {
785 	loff_t oldsize = inode->i_size;
786 
787 	i_size_write(inode, newsize);
788 	if (newsize > oldsize)
789 		pagecache_isize_extended(inode, oldsize, newsize);
790 	truncate_pagecache(inode, newsize);
791 }
792 EXPORT_SYMBOL(truncate_setsize);
793 
794 /**
795  * pagecache_isize_extended - update pagecache after extension of i_size
796  * @inode:	inode for which i_size was extended
797  * @from:	original inode size
798  * @to:		new inode size
799  *
800  * Handle extension of inode size either caused by extending truncate or
801  * by write starting after current i_size.  We mark the page straddling
802  * current i_size RO so that page_mkwrite() is called on the first
803  * write access to the page.  The filesystem will update its per-block
804  * information before user writes to the page via mmap after the i_size
805  * has been changed.
806  *
807  * The function must be called after i_size is updated so that page fault
808  * coming after we unlock the folio will already see the new i_size.
809  * The function must be called while we still hold i_rwsem - this not only
810  * makes sure i_size is stable but also that userspace cannot observe new
811  * i_size value before we are prepared to store mmap writes at new inode size.
812  */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)813 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
814 {
815 	int bsize = i_blocksize(inode);
816 	loff_t rounded_from;
817 	struct folio *folio;
818 
819 	WARN_ON(to > inode->i_size);
820 
821 	if (from >= to || bsize >= PAGE_SIZE)
822 		return;
823 	/* Page straddling @from will not have any hole block created? */
824 	rounded_from = round_up(from, bsize);
825 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
826 		return;
827 
828 	folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
829 	/* Folio not cached? Nothing to do */
830 	if (IS_ERR(folio))
831 		return;
832 	/*
833 	 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
834 	 * is needed.
835 	 */
836 	if (folio_mkclean(folio))
837 		folio_mark_dirty(folio);
838 
839 	/*
840 	 * The post-eof range of the folio must be zeroed before it is exposed
841 	 * to the file. Writeback normally does this, but since i_size has been
842 	 * increased we handle it here.
843 	 */
844 	if (folio_test_dirty(folio)) {
845 		unsigned int offset, end;
846 
847 		offset = from - folio_pos(folio);
848 		end = min_t(unsigned int, to - folio_pos(folio),
849 			    folio_size(folio));
850 		folio_zero_segment(folio, offset, end);
851 	}
852 
853 	folio_unlock(folio);
854 	folio_put(folio);
855 }
856 EXPORT_SYMBOL(pagecache_isize_extended);
857 
858 /**
859  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
860  * @inode: inode
861  * @lstart: offset of beginning of hole
862  * @lend: offset of last byte of hole
863  *
864  * This function should typically be called before the filesystem
865  * releases resources associated with the freed range (eg. deallocates
866  * blocks). This way, pagecache will always stay logically coherent
867  * with on-disk format, and the filesystem would not have to deal with
868  * situations such as writepage being called for a page that has already
869  * had its underlying blocks deallocated.
870  */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)871 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
872 {
873 	struct address_space *mapping = inode->i_mapping;
874 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
875 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
876 	/*
877 	 * This rounding is currently just for example: unmap_mapping_range
878 	 * expands its hole outwards, whereas we want it to contract the hole
879 	 * inwards.  However, existing callers of truncate_pagecache_range are
880 	 * doing their own page rounding first.  Note that unmap_mapping_range
881 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
882 	 */
883 
884 	/*
885 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
886 	 * once (before truncating pagecache), and without "even_cows" flag:
887 	 * hole-punching should not remove private COWed pages from the hole.
888 	 */
889 	if ((u64)unmap_end > (u64)unmap_start)
890 		unmap_mapping_range(mapping, unmap_start,
891 				    1 + unmap_end - unmap_start, 0);
892 	truncate_inode_pages_range(mapping, lstart, lend);
893 }
894 EXPORT_SYMBOL(truncate_pagecache_range);
895