xref: /freebsd/sys/kern/uipc_socket.c (revision 574816356834cb99295b124be0ec34bd9e0b9c72)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99  * from a pre-set VNET context.  sopoll_generic() currently does not need a
100  * VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109 
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157 
158 #include <vm/uma.h>
159 
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165 
166 static int	soreceive_generic_locked(struct socket *so,
167 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 		    struct mbuf **controlp, int *flagsp);
169 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
170 		    int flags);
171 static int	soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 		    struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 		    struct mbuf **controlp, int flags);
174 static int	sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 		    struct uio *uio, struct mbuf *top, struct mbuf *control,
176 		    int flags, struct thread *td);
177 static void	so_rdknl_lock(void *);
178 static void	so_rdknl_unlock(void *);
179 static void	so_rdknl_assert_lock(void *, int);
180 static void	so_wrknl_lock(void *);
181 static void	so_wrknl_unlock(void *);
182 static void	so_wrknl_assert_lock(void *, int);
183 
184 static void	filt_sordetach(struct knote *kn);
185 static int	filt_soread(struct knote *kn, long hint);
186 static void	filt_sowdetach(struct knote *kn);
187 static int	filt_sowrite(struct knote *kn, long hint);
188 static int	filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t	soo_kqfilter;
190 
191 static const struct filterops soread_filtops = {
192 	.f_isfd = 1,
193 	.f_detach = filt_sordetach,
194 	.f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 	.f_isfd = 1,
198 	.f_detach = filt_sowdetach,
199 	.f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 	.f_isfd = 1,
203 	.f_detach = filt_sowdetach,
204 	.f_event = filt_soempty,
205 };
206 
207 so_gen_t	so_gencnt;	/* generation count for sockets */
208 
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211 
212 #define	VNET_SO_ASSERT(so)						\
213 	VNET_ASSERT(curvnet != NULL,					\
214 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215 
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define	V_socket_hhh		VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221 
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define	__splice32_packed	__packed
226 #else
227 #define	__splice32_packed
228 #endif
229 struct splice32 {
230 	int32_t	sp_fd;
231 	int64_t sp_max;
232 	struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236 
237 /*
238  * Limit on the number of connections in the listen queue waiting
239  * for accept(2).
240  * NB: The original sysctl somaxconn is still available but hidden
241  * to prevent confusion about the actual purpose of this number.
242  */
243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
244 #define	V_somaxconn	VNET(somaxconn)
245 
246 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
248 {
249 	int error;
250 	u_int val;
251 
252 	val = V_somaxconn;
253 	error = sysctl_handle_int(oidp, &val, 0, req);
254 	if (error || !req->newptr )
255 		return (error);
256 
257 	/*
258 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
259 	 *   3 * sol_qlimit / 2
260 	 * below, will not overflow.
261          */
262 
263 	if (val < 1 || val > UINT_MAX / 3)
264 		return (EINVAL);
265 
266 	V_somaxconn = val;
267 	return (0);
268 }
269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
270     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
271     sysctl_somaxconn, "IU",
272     "Maximum listen socket pending connection accept queue size");
273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
274     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
275     sizeof(u_int), sysctl_somaxconn, "IU",
276     "Maximum listen socket pending connection accept queue size (compat)");
277 
278 static u_int numopensockets;
279 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
281 {
282 	u_int val;
283 
284 #ifdef VIMAGE
285 	if(!IS_DEFAULT_VNET(curvnet))
286 		val = curvnet->vnet_sockcnt;
287 	else
288 #endif
289 		val = numopensockets;
290 	return (sysctl_handle_int(oidp, &val, 0, req));
291 }
292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
293     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
294     sysctl_numopensockets, "IU", "Number of open sockets");
295 
296 /*
297  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
298  * so_gencnt field.
299  */
300 static struct mtx so_global_mtx;
301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
302 
303 /*
304  * General IPC sysctl name space, used by sockets and a variety of other IPC
305  * types.
306  */
307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
308     "IPC");
309 
310 /*
311  * Initialize the socket subsystem and set up the socket
312  * memory allocator.
313  */
314 static uma_zone_t socket_zone;
315 int	maxsockets;
316 
317 static void
socket_zone_change(void * tag)318 socket_zone_change(void *tag)
319 {
320 
321 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
322 }
323 
324 static int splice_init_state;
325 static struct sx splice_init_lock;
326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
327 
328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
329     "Settings relating to the SO_SPLICE socket option");
330 
331 static bool splice_receive_stream = true;
332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
333     &splice_receive_stream, 0,
334     "Use soreceive_stream() for stream splices");
335 
336 static uma_zone_t splice_zone;
337 static struct proc *splice_proc;
338 struct splice_wq {
339 	struct mtx	mtx;
340 	STAILQ_HEAD(, so_splice) head;
341 	bool		running;
342 } __aligned(CACHE_LINE_SIZE);
343 static struct splice_wq *splice_wq;
344 static uint32_t splice_index = 0;
345 
346 static void so_splice_timeout(void *arg, int pending);
347 static void so_splice_xfer(struct so_splice *s);
348 static int so_unsplice(struct socket *so, bool timeout);
349 
350 static void
splice_work_thread(void * ctx)351 splice_work_thread(void *ctx)
352 {
353 	struct splice_wq *wq = ctx;
354 	struct so_splice *s, *s_temp;
355 	STAILQ_HEAD(, so_splice) local_head;
356 	int cpu;
357 
358 	cpu = wq - splice_wq;
359 	if (bootverbose)
360 		printf("starting so_splice worker thread for CPU %d\n", cpu);
361 
362 	for (;;) {
363 		mtx_lock(&wq->mtx);
364 		while (STAILQ_EMPTY(&wq->head)) {
365 			wq->running = false;
366 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
367 			wq->running = true;
368 		}
369 		STAILQ_INIT(&local_head);
370 		STAILQ_CONCAT(&local_head, &wq->head);
371 		STAILQ_INIT(&wq->head);
372 		mtx_unlock(&wq->mtx);
373 		STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
374 			mtx_lock(&s->mtx);
375 			CURVNET_SET(s->src->so_vnet);
376 			so_splice_xfer(s);
377 			CURVNET_RESTORE();
378 		}
379 	}
380 }
381 
382 static void
so_splice_dispatch_async(struct so_splice * sp)383 so_splice_dispatch_async(struct so_splice *sp)
384 {
385 	struct splice_wq *wq;
386 	bool running;
387 
388 	wq = &splice_wq[sp->wq_index];
389 	mtx_lock(&wq->mtx);
390 	STAILQ_INSERT_TAIL(&wq->head, sp, next);
391 	running = wq->running;
392 	mtx_unlock(&wq->mtx);
393 	if (!running)
394 		wakeup(wq);
395 }
396 
397 void
so_splice_dispatch(struct so_splice * sp)398 so_splice_dispatch(struct so_splice *sp)
399 {
400 	mtx_assert(&sp->mtx, MA_OWNED);
401 
402 	if (sp->state != SPLICE_IDLE) {
403 		mtx_unlock(&sp->mtx);
404 	} else {
405 		sp->state = SPLICE_QUEUED;
406 		mtx_unlock(&sp->mtx);
407 		so_splice_dispatch_async(sp);
408 	}
409 }
410 
411 static int
splice_zinit(void * mem,int size __unused,int flags __unused)412 splice_zinit(void *mem, int size __unused, int flags __unused)
413 {
414 	struct so_splice *s;
415 
416 	s = (struct so_splice *)mem;
417 	mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
418 	return (0);
419 }
420 
421 static void
splice_zfini(void * mem,int size)422 splice_zfini(void *mem, int size)
423 {
424 	struct so_splice *s;
425 
426 	s = (struct so_splice *)mem;
427 	mtx_destroy(&s->mtx);
428 }
429 
430 static int
splice_init(void)431 splice_init(void)
432 {
433 	struct thread *td;
434 	int error, i, state;
435 
436 	state = atomic_load_acq_int(&splice_init_state);
437 	if (__predict_true(state > 0))
438 		return (0);
439 	if (state < 0)
440 		return (ENXIO);
441 	sx_xlock(&splice_init_lock);
442 	if (splice_init_state != 0) {
443 		sx_xunlock(&splice_init_lock);
444 		return (0);
445 	}
446 
447 	splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
448 	    NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
449 
450 	splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
451 	    M_WAITOK | M_ZERO);
452 
453 	/*
454 	 * Initialize the workqueues to run the splice work.  We create a
455 	 * work queue for each CPU.
456 	 */
457 	CPU_FOREACH(i) {
458 		STAILQ_INIT(&splice_wq[i].head);
459 		mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
460 	}
461 
462 	/* Start kthreads for each workqueue. */
463 	error = 0;
464 	CPU_FOREACH(i) {
465 		error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
466 		    &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
467 		if (error) {
468 			printf("Can't add so_splice thread %d error %d\n",
469 			    i, error);
470 			break;
471 		}
472 
473 		/*
474 		 * It's possible to create loops with SO_SPLICE; ensure that
475 		 * worker threads aren't able to starve the system too easily.
476 		 */
477 		thread_lock(td);
478 		sched_prio(td, PUSER);
479 		thread_unlock(td);
480 	}
481 
482 	splice_init_state = error != 0 ? -1 : 1;
483 	sx_xunlock(&splice_init_lock);
484 
485 	return (error);
486 }
487 
488 /*
489  * Lock a pair of socket's I/O locks for splicing.  Avoid blocking while holding
490  * one lock in order to avoid potential deadlocks in case there is some other
491  * code path which acquires more than one I/O lock at a time.
492  */
493 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)494 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
495 {
496 	int error;
497 
498 	for (;;) {
499 		error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
500 		KASSERT(error == 0,
501 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
502 		error = SOCK_IO_RECV_LOCK(so_src, 0);
503 		KASSERT(error == 0 || error == EWOULDBLOCK,
504 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
505 		if (error == 0)
506 			break;
507 		SOCK_IO_SEND_UNLOCK(so_dst);
508 
509 		error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
510 		KASSERT(error == 0,
511 		    ("%s: failed to lock recv I/O lock: %d", __func__, error));
512 		error = SOCK_IO_SEND_LOCK(so_dst, 0);
513 		KASSERT(error == 0 || error == EWOULDBLOCK,
514 		    ("%s: failed to lock send I/O lock: %d", __func__, error));
515 		if (error == 0)
516 			break;
517 		SOCK_IO_RECV_UNLOCK(so_src);
518 	}
519 }
520 
521 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
523 {
524 	SOCK_IO_RECV_UNLOCK(so_src);
525 	SOCK_IO_SEND_UNLOCK(so_dst);
526 }
527 
528 /*
529  * Move data from the source to the sink.  Assumes that both of the relevant
530  * socket I/O locks are held.
531  */
532 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
534     ssize_t *lenp)
535 {
536 	struct uio uio;
537 	struct mbuf *m;
538 	struct sockbuf *sb_src, *sb_dst;
539 	ssize_t len;
540 	long space;
541 	int error, flags;
542 
543 	SOCK_IO_RECV_ASSERT_LOCKED(so_src);
544 	SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
545 
546 	error = 0;
547 	m = NULL;
548 	memset(&uio, 0, sizeof(uio));
549 
550 	sb_src = &so_src->so_rcv;
551 	sb_dst = &so_dst->so_snd;
552 
553 	space = sbspace(sb_dst);
554 	if (space < 0)
555 		space = 0;
556 	len = MIN(max, MIN(space, sbavail(sb_src)));
557 	if (len == 0) {
558 		SOCK_RECVBUF_LOCK(so_src);
559 		if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
560 			error = EPIPE;
561 		SOCK_RECVBUF_UNLOCK(so_src);
562 	} else {
563 		flags = MSG_DONTWAIT;
564 		uio.uio_resid = len;
565 		if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
566 			error = soreceive_stream_locked(so_src, sb_src, NULL,
567 			    &uio, &m, NULL, flags);
568 		} else {
569 			error = soreceive_generic_locked(so_src, NULL,
570 			    &uio, &m, NULL, &flags);
571 		}
572 		if (error != 0 && m != NULL) {
573 			m_freem(m);
574 			m = NULL;
575 		}
576 	}
577 	if (m != NULL) {
578 		len -= uio.uio_resid;
579 		error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
580 		    MSG_DONTWAIT, curthread);
581 	} else if (error == 0) {
582 		len = 0;
583 		SOCK_SENDBUF_LOCK(so_dst);
584 		if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
585 			error = EPIPE;
586 		SOCK_SENDBUF_UNLOCK(so_dst);
587 	}
588 	if (error == 0)
589 		*lenp = len;
590 	return (error);
591 }
592 
593 /*
594  * Transfer data from the source to the sink.
595  */
596 static void
so_splice_xfer(struct so_splice * sp)597 so_splice_xfer(struct so_splice *sp)
598 {
599 	struct socket *so_src, *so_dst;
600 	off_t max;
601 	ssize_t len;
602 	int error;
603 
604 	mtx_assert(&sp->mtx, MA_OWNED);
605 	KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
606 	    ("so_splice_xfer: invalid state %d", sp->state));
607 	KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
608 
609 	if (sp->state == SPLICE_CLOSING) {
610 		/* Userspace asked us to close the splice. */
611 		goto closing;
612 	}
613 
614 	sp->state = SPLICE_RUNNING;
615 	so_src = sp->src;
616 	so_dst = sp->dst;
617 	max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
618 	if (max < 0)
619 		max = 0;
620 
621 	/*
622 	 * Lock the sockets in order to block userspace from doing anything
623 	 * sneaky.  If an error occurs or one of the sockets can no longer
624 	 * transfer data, we will automatically unsplice.
625 	 */
626 	mtx_unlock(&sp->mtx);
627 	splice_lock_pair(so_src, so_dst);
628 
629 	error = so_splice_xfer_data(so_src, so_dst, max, &len);
630 
631 	mtx_lock(&sp->mtx);
632 
633 	/*
634 	 * Update our stats while still holding the socket locks.  This
635 	 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
636 	 */
637 	if (error == 0) {
638 		KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
639 		so_src->so_splice_sent += len;
640 	}
641 	splice_unlock_pair(so_src, so_dst);
642 
643 	switch (sp->state) {
644 	case SPLICE_CLOSING:
645 closing:
646 		sp->state = SPLICE_CLOSED;
647 		wakeup(sp);
648 		mtx_unlock(&sp->mtx);
649 		break;
650 	case SPLICE_RUNNING:
651 		if (error != 0 ||
652 		    (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
653 			sp->state = SPLICE_EXCEPTION;
654 			soref(so_src);
655 			mtx_unlock(&sp->mtx);
656 			(void)so_unsplice(so_src, false);
657 			sorele(so_src);
658 		} else {
659 			/*
660 			 * Locklessly check for additional bytes in the source's
661 			 * receive buffer and queue more work if possible.  We
662 			 * may end up queuing needless work, but that's ok, and
663 			 * if we race with a thread inserting more data into the
664 			 * buffer and observe sbavail() == 0, the splice mutex
665 			 * ensures that splice_push() will queue more work for
666 			 * us.
667 			 */
668 			if (sbavail(&so_src->so_rcv) > 0 &&
669 			    sbspace(&so_dst->so_snd) > 0) {
670 				sp->state = SPLICE_QUEUED;
671 				mtx_unlock(&sp->mtx);
672 				so_splice_dispatch_async(sp);
673 			} else {
674 				sp->state = SPLICE_IDLE;
675 				mtx_unlock(&sp->mtx);
676 			}
677 		}
678 		break;
679 	default:
680 		__assert_unreachable();
681 	}
682 }
683 
684 static void
socket_init(void * tag)685 socket_init(void *tag)
686 {
687 
688 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
689 	    NULL, NULL, UMA_ALIGN_PTR, 0);
690 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
691 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
692 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
693 	    EVENTHANDLER_PRI_FIRST);
694 }
695 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
696 
697 #ifdef SOCKET_HHOOK
698 static void
socket_hhook_register(int subtype)699 socket_hhook_register(int subtype)
700 {
701 
702 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
703 	    &V_socket_hhh[subtype],
704 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
705 		printf("%s: WARNING: unable to register hook\n", __func__);
706 }
707 
708 static void
socket_hhook_deregister(int subtype)709 socket_hhook_deregister(int subtype)
710 {
711 
712 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
713 		printf("%s: WARNING: unable to deregister hook\n", __func__);
714 }
715 
716 static void
socket_vnet_init(const void * unused __unused)717 socket_vnet_init(const void *unused __unused)
718 {
719 	int i;
720 
721 	/* We expect a contiguous range */
722 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
723 		socket_hhook_register(i);
724 }
725 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
726     socket_vnet_init, NULL);
727 
728 static void
socket_vnet_uninit(const void * unused __unused)729 socket_vnet_uninit(const void *unused __unused)
730 {
731 	int i;
732 
733 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
734 		socket_hhook_deregister(i);
735 }
736 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
737     socket_vnet_uninit, NULL);
738 #endif	/* SOCKET_HHOOK */
739 
740 /*
741  * Initialise maxsockets.  This SYSINIT must be run after
742  * tunable_mbinit().
743  */
744 static void
init_maxsockets(void * ignored)745 init_maxsockets(void *ignored)
746 {
747 
748 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
749 	maxsockets = imax(maxsockets, maxfiles);
750 }
751 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
752 
753 /*
754  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
755  * of the change so that they can update their dependent limits as required.
756  */
757 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)758 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
759 {
760 	int error, newmaxsockets;
761 
762 	newmaxsockets = maxsockets;
763 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
764 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
765 		if (newmaxsockets > maxsockets &&
766 		    newmaxsockets <= maxfiles) {
767 			maxsockets = newmaxsockets;
768 			EVENTHANDLER_INVOKE(maxsockets_change);
769 		} else
770 			error = EINVAL;
771 	}
772 	return (error);
773 }
774 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
775     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
776     &maxsockets, 0, sysctl_maxsockets, "IU",
777     "Maximum number of sockets available");
778 
779 /*
780  * Socket operation routines.  These routines are called by the routines in
781  * sys_socket.c or from a system process, and implement the semantics of
782  * socket operations by switching out to the protocol specific routines.
783  */
784 
785 /*
786  * Get a socket structure from our zone, and initialize it.  Note that it
787  * would probably be better to allocate socket and PCB at the same time, but
788  * I'm not convinced that all the protocols can be easily modified to do
789  * this.
790  *
791  * soalloc() returns a socket with a ref count of 0.
792  */
793 static struct socket *
soalloc(struct vnet * vnet)794 soalloc(struct vnet *vnet)
795 {
796 	struct socket *so;
797 
798 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
799 	if (so == NULL)
800 		return (NULL);
801 #ifdef MAC
802 	if (mac_socket_init(so, M_NOWAIT) != 0) {
803 		uma_zfree(socket_zone, so);
804 		return (NULL);
805 	}
806 #endif
807 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
808 		uma_zfree(socket_zone, so);
809 		return (NULL);
810 	}
811 
812 	/*
813 	 * The socket locking protocol allows to lock 2 sockets at a time,
814 	 * however, the first one must be a listening socket.  WITNESS lacks
815 	 * a feature to change class of an existing lock, so we use DUPOK.
816 	 */
817 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
818 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
819 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
820 	so->so_rcv.sb_sel = &so->so_rdsel;
821 	so->so_snd.sb_sel = &so->so_wrsel;
822 	sx_init(&so->so_snd_sx, "so_snd_sx");
823 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
824 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
825 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
826 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
827 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
828 #ifdef VIMAGE
829 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
830 	    __func__, __LINE__, so));
831 	so->so_vnet = vnet;
832 #endif
833 #ifdef SOCKET_HHOOK
834 	/* We shouldn't need the so_global_mtx */
835 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
836 		/* Do we need more comprehensive error returns? */
837 		uma_zfree(socket_zone, so);
838 		return (NULL);
839 	}
840 #endif
841 	mtx_lock(&so_global_mtx);
842 	so->so_gencnt = ++so_gencnt;
843 	++numopensockets;
844 #ifdef VIMAGE
845 	vnet->vnet_sockcnt++;
846 #endif
847 	mtx_unlock(&so_global_mtx);
848 
849 	return (so);
850 }
851 
852 /*
853  * Free the storage associated with a socket at the socket layer, tear down
854  * locks, labels, etc.  All protocol state is assumed already to have been
855  * torn down (and possibly never set up) by the caller.
856  */
857 void
sodealloc(struct socket * so)858 sodealloc(struct socket *so)
859 {
860 
861 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
862 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
863 
864 	mtx_lock(&so_global_mtx);
865 	so->so_gencnt = ++so_gencnt;
866 	--numopensockets;	/* Could be below, but faster here. */
867 #ifdef VIMAGE
868 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
869 	    __func__, __LINE__, so));
870 	so->so_vnet->vnet_sockcnt--;
871 #endif
872 	mtx_unlock(&so_global_mtx);
873 #ifdef MAC
874 	mac_socket_destroy(so);
875 #endif
876 #ifdef SOCKET_HHOOK
877 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
878 #endif
879 
880 	khelp_destroy_osd(&so->osd);
881 	if (SOLISTENING(so)) {
882 		if (so->sol_accept_filter != NULL)
883 			accept_filt_setopt(so, NULL);
884 	} else {
885 		if (so->so_rcv.sb_hiwat)
886 			(void)chgsbsize(so->so_cred->cr_uidinfo,
887 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
888 		if (so->so_snd.sb_hiwat)
889 			(void)chgsbsize(so->so_cred->cr_uidinfo,
890 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
891 		sx_destroy(&so->so_snd_sx);
892 		sx_destroy(&so->so_rcv_sx);
893 		mtx_destroy(&so->so_snd_mtx);
894 		mtx_destroy(&so->so_rcv_mtx);
895 	}
896 	crfree(so->so_cred);
897 	mtx_destroy(&so->so_lock);
898 	uma_zfree(socket_zone, so);
899 }
900 
901 /*
902  * socreate returns a socket with a ref count of 1 and a file descriptor
903  * reference.  The socket should be closed with soclose().
904  */
905 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)906 socreate(int dom, struct socket **aso, int type, int proto,
907     struct ucred *cred, struct thread *td)
908 {
909 	struct protosw *prp;
910 	struct socket *so;
911 	int error;
912 
913 	/*
914 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
915 	 * shim until all applications have been updated.
916 	 */
917 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
918 	    proto == IPPROTO_DIVERT)) {
919 		dom = PF_DIVERT;
920 		printf("%s uses obsolete way to create divert(4) socket\n",
921 		    td->td_proc->p_comm);
922 	}
923 
924 	prp = pffindproto(dom, type, proto);
925 	if (prp == NULL) {
926 		/* No support for domain. */
927 		if (pffinddomain(dom) == NULL)
928 			return (EAFNOSUPPORT);
929 		/* No support for socket type. */
930 		if (proto == 0 && type != 0)
931 			return (EPROTOTYPE);
932 		return (EPROTONOSUPPORT);
933 	}
934 
935 	MPASS(prp->pr_attach);
936 
937 	if ((prp->pr_flags & PR_CAPATTACH) == 0) {
938 		if (CAP_TRACING(td))
939 			ktrcapfail(CAPFAIL_PROTO, &proto);
940 		if (IN_CAPABILITY_MODE(td))
941 			return (ECAPMODE);
942 	}
943 
944 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
945 		return (EPROTONOSUPPORT);
946 
947 	so = soalloc(CRED_TO_VNET(cred));
948 	if (so == NULL)
949 		return (ENOBUFS);
950 
951 	so->so_type = type;
952 	so->so_cred = crhold(cred);
953 	if ((prp->pr_domain->dom_family == PF_INET) ||
954 	    (prp->pr_domain->dom_family == PF_INET6) ||
955 	    (prp->pr_domain->dom_family == PF_ROUTE))
956 		so->so_fibnum = td->td_proc->p_fibnum;
957 	else
958 		so->so_fibnum = 0;
959 	so->so_proto = prp;
960 #ifdef MAC
961 	mac_socket_create(cred, so);
962 #endif
963 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
964 	    so_rdknl_assert_lock);
965 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
966 	    so_wrknl_assert_lock);
967 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
968 		so->so_snd.sb_mtx = &so->so_snd_mtx;
969 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
970 	}
971 	/*
972 	 * Auto-sizing of socket buffers is managed by the protocols and
973 	 * the appropriate flags must be set in the pru_attach function.
974 	 */
975 	CURVNET_SET(so->so_vnet);
976 	error = prp->pr_attach(so, proto, td);
977 	CURVNET_RESTORE();
978 	if (error) {
979 		sodealloc(so);
980 		return (error);
981 	}
982 	soref(so);
983 	*aso = so;
984 	return (0);
985 }
986 
987 #ifdef REGRESSION
988 static int regression_sonewconn_earlytest = 1;
989 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
990     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
991 #endif
992 
993 static int sooverprio = LOG_DEBUG;
994 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
995     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
996 
997 static struct timeval overinterval = { 60, 0 };
998 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
999     &overinterval,
1000     "Delay in seconds between warnings for listen socket overflows");
1001 
1002 /*
1003  * When an attempt at a new connection is noted on a socket which supports
1004  * accept(2), the protocol has two options:
1005  * 1) Call legacy sonewconn() function, which would call protocol attach
1006  *    method, same as used for socket(2).
1007  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1008  *    and then call solisten_enqueue().
1009  *
1010  * Note: the ref count on the socket is 0 on return.
1011  */
1012 struct socket *
solisten_clone(struct socket * head)1013 solisten_clone(struct socket *head)
1014 {
1015 	struct sbuf descrsb;
1016 	struct socket *so;
1017 	int len, overcount;
1018 	u_int qlen;
1019 	const char localprefix[] = "local:";
1020 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1021 #if defined(INET6)
1022 	char addrbuf[INET6_ADDRSTRLEN];
1023 #elif defined(INET)
1024 	char addrbuf[INET_ADDRSTRLEN];
1025 #endif
1026 	bool dolog, over;
1027 
1028 	SOLISTEN_LOCK(head);
1029 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1030 #ifdef REGRESSION
1031 	if (regression_sonewconn_earlytest && over) {
1032 #else
1033 	if (over) {
1034 #endif
1035 		head->sol_overcount++;
1036 		dolog = (sooverprio >= 0) &&
1037 			!!ratecheck(&head->sol_lastover, &overinterval);
1038 
1039 		/*
1040 		 * If we're going to log, copy the overflow count and queue
1041 		 * length from the listen socket before dropping the lock.
1042 		 * Also, reset the overflow count.
1043 		 */
1044 		if (dolog) {
1045 			overcount = head->sol_overcount;
1046 			head->sol_overcount = 0;
1047 			qlen = head->sol_qlen;
1048 		}
1049 		SOLISTEN_UNLOCK(head);
1050 
1051 		if (dolog) {
1052 			/*
1053 			 * Try to print something descriptive about the
1054 			 * socket for the error message.
1055 			 */
1056 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1057 			    SBUF_FIXEDLEN);
1058 			switch (head->so_proto->pr_domain->dom_family) {
1059 #if defined(INET) || defined(INET6)
1060 #ifdef INET
1061 			case AF_INET:
1062 #endif
1063 #ifdef INET6
1064 			case AF_INET6:
1065 				if (head->so_proto->pr_domain->dom_family ==
1066 				    AF_INET6 ||
1067 				    (sotoinpcb(head)->inp_inc.inc_flags &
1068 				    INC_ISIPV6)) {
1069 					ip6_sprintf(addrbuf,
1070 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
1071 					sbuf_printf(&descrsb, "[%s]", addrbuf);
1072 				} else
1073 #endif
1074 				{
1075 #ifdef INET
1076 					inet_ntoa_r(
1077 					    sotoinpcb(head)->inp_inc.inc_laddr,
1078 					    addrbuf);
1079 					sbuf_cat(&descrsb, addrbuf);
1080 #endif
1081 				}
1082 				sbuf_printf(&descrsb, ":%hu (proto %u)",
1083 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1084 				    head->so_proto->pr_protocol);
1085 				break;
1086 #endif /* INET || INET6 */
1087 			case AF_UNIX:
1088 				sbuf_cat(&descrsb, localprefix);
1089 				if (sotounpcb(head)->unp_addr != NULL)
1090 					len =
1091 					    sotounpcb(head)->unp_addr->sun_len -
1092 					    offsetof(struct sockaddr_un,
1093 					    sun_path);
1094 				else
1095 					len = 0;
1096 				if (len > 0)
1097 					sbuf_bcat(&descrsb,
1098 					    sotounpcb(head)->unp_addr->sun_path,
1099 					    len);
1100 				else
1101 					sbuf_cat(&descrsb, "(unknown)");
1102 				break;
1103 			}
1104 
1105 			/*
1106 			 * If we can't print something more specific, at least
1107 			 * print the domain name.
1108 			 */
1109 			if (sbuf_finish(&descrsb) != 0 ||
1110 			    sbuf_len(&descrsb) <= 0) {
1111 				sbuf_clear(&descrsb);
1112 				sbuf_cat(&descrsb,
1113 				    head->so_proto->pr_domain->dom_name ?:
1114 				    "unknown");
1115 				sbuf_finish(&descrsb);
1116 			}
1117 			KASSERT(sbuf_len(&descrsb) > 0,
1118 			    ("%s: sbuf creation failed", __func__));
1119 			/*
1120 			 * Preserve the historic listen queue overflow log
1121 			 * message, that starts with "sonewconn:".  It has
1122 			 * been known to sysadmins for years and also test
1123 			 * sys/kern/sonewconn_overflow checks for it.
1124 			 */
1125 			if (head->so_cred == 0) {
1126 				log(LOG_PRI(sooverprio),
1127 				    "sonewconn: pcb %p (%s): "
1128 				    "Listen queue overflow: %i already in "
1129 				    "queue awaiting acceptance (%d "
1130 				    "occurrences)\n", head->so_pcb,
1131 				    sbuf_data(&descrsb),
1132 			    	qlen, overcount);
1133 			} else {
1134 				log(LOG_PRI(sooverprio),
1135 				    "sonewconn: pcb %p (%s): "
1136 				    "Listen queue overflow: "
1137 				    "%i already in queue awaiting acceptance "
1138 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
1139 				    head->so_pcb, sbuf_data(&descrsb), qlen,
1140 				    overcount, head->so_cred->cr_uid,
1141 				    head->so_cred->cr_rgid,
1142 				    head->so_cred->cr_prison ?
1143 					head->so_cred->cr_prison->pr_name :
1144 					"not_jailed");
1145 			}
1146 			sbuf_delete(&descrsb);
1147 
1148 			overcount = 0;
1149 		}
1150 
1151 		return (NULL);
1152 	}
1153 	SOLISTEN_UNLOCK(head);
1154 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1155 	    __func__, head));
1156 	so = soalloc(head->so_vnet);
1157 	if (so == NULL) {
1158 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1159 		    "limit reached or out of memory\n",
1160 		    __func__, head->so_pcb);
1161 		return (NULL);
1162 	}
1163 	so->so_listen = head;
1164 	so->so_type = head->so_type;
1165 	/*
1166 	 * POSIX is ambiguous on what options an accept(2)ed socket should
1167 	 * inherit from the listener.  Words "create a new socket" may be
1168 	 * interpreted as not inheriting anything.  Best programming practice
1169 	 * for application developers is to not rely on such inheritance.
1170 	 * FreeBSD had historically inherited all so_options excluding
1171 	 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1172 	 * including those completely irrelevant to a new born socket.  For
1173 	 * compatibility with older versions we will inherit a list of
1174 	 * meaningful options.
1175 	 * The crucial bit to inherit is SO_ACCEPTFILTER.  We need it present
1176 	 * in the child socket for soisconnected() promoting socket from the
1177 	 * incomplete queue to complete.  It will be cleared before the child
1178 	 * gets available to accept(2).
1179 	 */
1180 	so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1181 	    SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1182 	so->so_linger = head->so_linger;
1183 	so->so_state = head->so_state;
1184 	so->so_fibnum = head->so_fibnum;
1185 	so->so_proto = head->so_proto;
1186 	so->so_cred = crhold(head->so_cred);
1187 #ifdef SOCKET_HHOOK
1188 	if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1189 		if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1190 			sodealloc(so);
1191 			log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1192 			return (NULL);
1193 		}
1194 	}
1195 #endif
1196 #ifdef MAC
1197 	mac_socket_newconn(head, so);
1198 #endif
1199 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1200 	    so_rdknl_assert_lock);
1201 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1202 	    so_wrknl_assert_lock);
1203 	VNET_SO_ASSERT(head);
1204 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1205 		sodealloc(so);
1206 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1207 		    __func__, head->so_pcb);
1208 		return (NULL);
1209 	}
1210 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1211 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1212 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1213 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1214 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1215 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1216 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1217 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1218 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1219 	}
1220 
1221 	return (so);
1222 }
1223 
1224 /* Connstatus may be 0 or SS_ISCONNECTED. */
1225 struct socket *
1226 sonewconn(struct socket *head, int connstatus)
1227 {
1228 	struct socket *so;
1229 
1230 	if ((so = solisten_clone(head)) == NULL)
1231 		return (NULL);
1232 
1233 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1234 		sodealloc(so);
1235 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1236 		    __func__, head->so_pcb);
1237 		return (NULL);
1238 	}
1239 
1240 	(void)solisten_enqueue(so, connstatus);
1241 
1242 	return (so);
1243 }
1244 
1245 /*
1246  * Enqueue socket cloned by solisten_clone() to the listen queue of the
1247  * listener it has been cloned from.
1248  *
1249  * Return 'true' if socket landed on complete queue, otherwise 'false'.
1250  */
1251 bool
1252 solisten_enqueue(struct socket *so, int connstatus)
1253 {
1254 	struct socket *head = so->so_listen;
1255 
1256 	MPASS(refcount_load(&so->so_count) == 0);
1257 	refcount_init(&so->so_count, 1);
1258 
1259 	SOLISTEN_LOCK(head);
1260 	if (head->sol_accept_filter != NULL)
1261 		connstatus = 0;
1262 	so->so_state |= connstatus;
1263 	soref(head); /* A socket on (in)complete queue refs head. */
1264 	if (connstatus) {
1265 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1266 		so->so_qstate = SQ_COMP;
1267 		head->sol_qlen++;
1268 		solisten_wakeup(head);	/* unlocks */
1269 		return (true);
1270 	} else {
1271 		/*
1272 		 * Keep removing sockets from the head until there's room for
1273 		 * us to insert on the tail.  In pre-locking revisions, this
1274 		 * was a simple if(), but as we could be racing with other
1275 		 * threads and soabort() requires dropping locks, we must
1276 		 * loop waiting for the condition to be true.
1277 		 */
1278 		while (head->sol_incqlen > head->sol_qlimit) {
1279 			struct socket *sp;
1280 
1281 			sp = TAILQ_FIRST(&head->sol_incomp);
1282 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1283 			head->sol_incqlen--;
1284 			SOCK_LOCK(sp);
1285 			sp->so_qstate = SQ_NONE;
1286 			sp->so_listen = NULL;
1287 			SOCK_UNLOCK(sp);
1288 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
1289 			soabort(sp);
1290 			SOLISTEN_LOCK(head);
1291 		}
1292 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1293 		so->so_qstate = SQ_INCOMP;
1294 		head->sol_incqlen++;
1295 		SOLISTEN_UNLOCK(head);
1296 		return (false);
1297 	}
1298 }
1299 
1300 #if defined(SCTP) || defined(SCTP_SUPPORT)
1301 /*
1302  * Socket part of sctp_peeloff().  Detach a new socket from an
1303  * association.  The new socket is returned with a reference.
1304  *
1305  * XXXGL: reduce copy-paste with solisten_clone().
1306  */
1307 struct socket *
1308 sopeeloff(struct socket *head)
1309 {
1310 	struct socket *so;
1311 
1312 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1313 	    __func__, __LINE__, head));
1314 	so = soalloc(head->so_vnet);
1315 	if (so == NULL) {
1316 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1317 		    "limit reached or out of memory\n",
1318 		    __func__, head->so_pcb);
1319 		return (NULL);
1320 	}
1321 	so->so_type = head->so_type;
1322 	so->so_options = head->so_options;
1323 	so->so_linger = head->so_linger;
1324 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1325 	so->so_fibnum = head->so_fibnum;
1326 	so->so_proto = head->so_proto;
1327 	so->so_cred = crhold(head->so_cred);
1328 #ifdef MAC
1329 	mac_socket_newconn(head, so);
1330 #endif
1331 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1332 	    so_rdknl_assert_lock);
1333 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1334 	    so_wrknl_assert_lock);
1335 	VNET_SO_ASSERT(head);
1336 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1337 		sodealloc(so);
1338 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1339 		    __func__, head->so_pcb);
1340 		return (NULL);
1341 	}
1342 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1343 		sodealloc(so);
1344 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1345 		    __func__, head->so_pcb);
1346 		return (NULL);
1347 	}
1348 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1355 		so->so_snd.sb_mtx = &so->so_snd_mtx;
1356 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1357 	}
1358 
1359 	soref(so);
1360 
1361 	return (so);
1362 }
1363 #endif	/* SCTP */
1364 
1365 int
1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1367 {
1368 	int error;
1369 
1370 	CURVNET_SET(so->so_vnet);
1371 	error = so->so_proto->pr_bind(so, nam, td);
1372 	CURVNET_RESTORE();
1373 	return (error);
1374 }
1375 
1376 int
1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1378 {
1379 	int error;
1380 
1381 	CURVNET_SET(so->so_vnet);
1382 	error = so->so_proto->pr_bindat(fd, so, nam, td);
1383 	CURVNET_RESTORE();
1384 	return (error);
1385 }
1386 
1387 /*
1388  * solisten() transitions a socket from a non-listening state to a listening
1389  * state, but can also be used to update the listen queue depth on an
1390  * existing listen socket.  The protocol will call back into the sockets
1391  * layer using solisten_proto_check() and solisten_proto() to check and set
1392  * socket-layer listen state.  Call backs are used so that the protocol can
1393  * acquire both protocol and socket layer locks in whatever order is required
1394  * by the protocol.
1395  *
1396  * Protocol implementors are advised to hold the socket lock across the
1397  * socket-layer test and set to avoid races at the socket layer.
1398  */
1399 int
1400 solisten(struct socket *so, int backlog, struct thread *td)
1401 {
1402 	int error;
1403 
1404 	CURVNET_SET(so->so_vnet);
1405 	error = so->so_proto->pr_listen(so, backlog, td);
1406 	CURVNET_RESTORE();
1407 	return (error);
1408 }
1409 
1410 /*
1411  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
1412  * order to interlock with socket I/O.
1413  */
1414 int
1415 solisten_proto_check(struct socket *so)
1416 {
1417 	SOCK_LOCK_ASSERT(so);
1418 
1419 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1420 	    SS_ISDISCONNECTING)) != 0)
1421 		return (EINVAL);
1422 
1423 	/*
1424 	 * Sleeping is not permitted here, so simply fail if userspace is
1425 	 * attempting to transmit or receive on the socket.  This kind of
1426 	 * transient failure is not ideal, but it should occur only if userspace
1427 	 * is misusing the socket interfaces.
1428 	 */
1429 	if (!sx_try_xlock(&so->so_snd_sx))
1430 		return (EAGAIN);
1431 	if (!sx_try_xlock(&so->so_rcv_sx)) {
1432 		sx_xunlock(&so->so_snd_sx);
1433 		return (EAGAIN);
1434 	}
1435 	mtx_lock(&so->so_snd_mtx);
1436 	mtx_lock(&so->so_rcv_mtx);
1437 
1438 	/* Interlock with soo_aio_queue() and KTLS. */
1439 	if (!SOLISTENING(so)) {
1440 		bool ktls;
1441 
1442 #ifdef KERN_TLS
1443 		ktls = so->so_snd.sb_tls_info != NULL ||
1444 		    so->so_rcv.sb_tls_info != NULL;
1445 #else
1446 		ktls = false;
1447 #endif
1448 		if (ktls ||
1449 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1450 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1451 			solisten_proto_abort(so);
1452 			return (EINVAL);
1453 		}
1454 	}
1455 
1456 	return (0);
1457 }
1458 
1459 /*
1460  * Undo the setup done by solisten_proto_check().
1461  */
1462 void
1463 solisten_proto_abort(struct socket *so)
1464 {
1465 	mtx_unlock(&so->so_snd_mtx);
1466 	mtx_unlock(&so->so_rcv_mtx);
1467 	sx_xunlock(&so->so_snd_sx);
1468 	sx_xunlock(&so->so_rcv_sx);
1469 }
1470 
1471 void
1472 solisten_proto(struct socket *so, int backlog)
1473 {
1474 	int sbrcv_lowat, sbsnd_lowat;
1475 	u_int sbrcv_hiwat, sbsnd_hiwat;
1476 	short sbrcv_flags, sbsnd_flags;
1477 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1478 
1479 	SOCK_LOCK_ASSERT(so);
1480 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1481 	    SS_ISDISCONNECTING)) == 0,
1482 	    ("%s: bad socket state %p", __func__, so));
1483 
1484 	if (SOLISTENING(so))
1485 		goto listening;
1486 
1487 	/*
1488 	 * Change this socket to listening state.
1489 	 */
1490 	sbrcv_lowat = so->so_rcv.sb_lowat;
1491 	sbsnd_lowat = so->so_snd.sb_lowat;
1492 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1493 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1494 	sbrcv_flags = so->so_rcv.sb_flags;
1495 	sbsnd_flags = so->so_snd.sb_flags;
1496 	sbrcv_timeo = so->so_rcv.sb_timeo;
1497 	sbsnd_timeo = so->so_snd.sb_timeo;
1498 
1499 #ifdef MAC
1500 	mac_socketpeer_label_free(so->so_peerlabel);
1501 #endif
1502 
1503 	if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1504 		sbdestroy(so, SO_SND);
1505 		sbdestroy(so, SO_RCV);
1506 	}
1507 
1508 #ifdef INVARIANTS
1509 	bzero(&so->so_rcv,
1510 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1511 #endif
1512 
1513 	so->sol_sbrcv_lowat = sbrcv_lowat;
1514 	so->sol_sbsnd_lowat = sbsnd_lowat;
1515 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1516 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1517 	so->sol_sbrcv_flags = sbrcv_flags;
1518 	so->sol_sbsnd_flags = sbsnd_flags;
1519 	so->sol_sbrcv_timeo = sbrcv_timeo;
1520 	so->sol_sbsnd_timeo = sbsnd_timeo;
1521 
1522 	so->sol_qlen = so->sol_incqlen = 0;
1523 	TAILQ_INIT(&so->sol_incomp);
1524 	TAILQ_INIT(&so->sol_comp);
1525 
1526 	so->sol_accept_filter = NULL;
1527 	so->sol_accept_filter_arg = NULL;
1528 	so->sol_accept_filter_str = NULL;
1529 
1530 	so->sol_upcall = NULL;
1531 	so->sol_upcallarg = NULL;
1532 
1533 	so->so_options |= SO_ACCEPTCONN;
1534 
1535 listening:
1536 	if (backlog < 0 || backlog > V_somaxconn)
1537 		backlog = V_somaxconn;
1538 	so->sol_qlimit = backlog;
1539 
1540 	mtx_unlock(&so->so_snd_mtx);
1541 	mtx_unlock(&so->so_rcv_mtx);
1542 	sx_xunlock(&so->so_snd_sx);
1543 	sx_xunlock(&so->so_rcv_sx);
1544 }
1545 
1546 /*
1547  * Wakeup listeners/subsystems once we have a complete connection.
1548  * Enters with lock, returns unlocked.
1549  */
1550 void
1551 solisten_wakeup(struct socket *sol)
1552 {
1553 
1554 	if (sol->sol_upcall != NULL)
1555 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1556 	else {
1557 		selwakeuppri(&sol->so_rdsel, PSOCK);
1558 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1559 	}
1560 	SOLISTEN_UNLOCK(sol);
1561 	wakeup_one(&sol->sol_comp);
1562 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1563 		pgsigio(&sol->so_sigio, SIGIO, 0);
1564 }
1565 
1566 /*
1567  * Return single connection off a listening socket queue.  Main consumer of
1568  * the function is kern_accept4().  Some modules, that do their own accept
1569  * management also use the function.  The socket reference held by the
1570  * listen queue is handed to the caller.
1571  *
1572  * Listening socket must be locked on entry and is returned unlocked on
1573  * return.
1574  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1575  */
1576 int
1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1578 {
1579 	struct socket *so;
1580 	int error;
1581 
1582 	SOLISTEN_LOCK_ASSERT(head);
1583 
1584 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1585 	    head->so_error == 0) {
1586 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1587 		    "accept", 0);
1588 		if (error != 0) {
1589 			SOLISTEN_UNLOCK(head);
1590 			return (error);
1591 		}
1592 	}
1593 	if (head->so_error) {
1594 		error = head->so_error;
1595 		head->so_error = 0;
1596 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1597 		error = EWOULDBLOCK;
1598 	else
1599 		error = 0;
1600 	if (error) {
1601 		SOLISTEN_UNLOCK(head);
1602 		return (error);
1603 	}
1604 	so = TAILQ_FIRST(&head->sol_comp);
1605 	SOCK_LOCK(so);
1606 	KASSERT(so->so_qstate == SQ_COMP,
1607 	    ("%s: so %p not SQ_COMP", __func__, so));
1608 	head->sol_qlen--;
1609 	so->so_qstate = SQ_NONE;
1610 	so->so_listen = NULL;
1611 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1612 	if (flags & ACCEPT4_INHERIT)
1613 		so->so_state |= (head->so_state & SS_NBIO);
1614 	else
1615 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1616 	SOCK_UNLOCK(so);
1617 	sorele_locked(head);
1618 
1619 	*ret = so;
1620 	return (0);
1621 }
1622 
1623 static struct so_splice *
1624 so_splice_alloc(off_t max)
1625 {
1626 	struct so_splice *sp;
1627 
1628 	sp = uma_zalloc(splice_zone, M_WAITOK);
1629 	sp->src = NULL;
1630 	sp->dst = NULL;
1631 	sp->max = max > 0 ? max : -1;
1632 	do {
1633 		sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1634 		    (mp_maxid + 1);
1635 	} while (CPU_ABSENT(sp->wq_index));
1636 	sp->state = SPLICE_INIT;
1637 	TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1638 	    sp);
1639 	return (sp);
1640 }
1641 
1642 static void
1643 so_splice_free(struct so_splice *sp)
1644 {
1645 	KASSERT(sp->state == SPLICE_CLOSED,
1646 	    ("so_splice_free: sp %p not closed", sp));
1647 	uma_zfree(splice_zone, sp);
1648 }
1649 
1650 static void
1651 so_splice_timeout(void *arg, int pending __unused)
1652 {
1653 	struct so_splice *sp;
1654 
1655 	sp = arg;
1656 	(void)so_unsplice(sp->src, true);
1657 }
1658 
1659 /*
1660  * Splice the output from so to the input of so2.
1661  */
1662 static int
1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1664 {
1665 	struct so_splice *sp;
1666 	int error;
1667 
1668 	if (splice->sp_max < 0)
1669 		return (EINVAL);
1670 	/* Handle only TCP for now; TODO: other streaming protos */
1671 	if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1672 	    so2->so_proto->pr_protocol != IPPROTO_TCP)
1673 		return (EPROTONOSUPPORT);
1674 	if (so->so_vnet != so2->so_vnet)
1675 		return (EINVAL);
1676 
1677 	/* so_splice_xfer() assumes that we're using these implementations. */
1678 	KASSERT(so->so_proto->pr_sosend == sosend_generic,
1679 	    ("so_splice: sosend not sosend_generic"));
1680 	KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1681 	    so2->so_proto->pr_soreceive == soreceive_stream,
1682 	    ("so_splice: soreceive not soreceive_generic/stream"));
1683 
1684 	sp = so_splice_alloc(splice->sp_max);
1685 	so->so_splice_sent = 0;
1686 	sp->src = so;
1687 	sp->dst = so2;
1688 
1689 	error = 0;
1690 	SOCK_LOCK(so);
1691 	if (SOLISTENING(so))
1692 		error = EINVAL;
1693 	else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1694 		error = ENOTCONN;
1695 	else if (so->so_splice != NULL)
1696 		error = EBUSY;
1697 	if (error != 0) {
1698 		SOCK_UNLOCK(so);
1699 		uma_zfree(splice_zone, sp);
1700 		return (error);
1701 	}
1702 	soref(so);
1703 	so->so_splice = sp;
1704 	SOCK_RECVBUF_LOCK(so);
1705 	so->so_rcv.sb_flags |= SB_SPLICED;
1706 	SOCK_RECVBUF_UNLOCK(so);
1707 	SOCK_UNLOCK(so);
1708 
1709 	error = 0;
1710 	SOCK_LOCK(so2);
1711 	if (SOLISTENING(so2))
1712 		error = EINVAL;
1713 	else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1714 		error = ENOTCONN;
1715 	else if (so2->so_splice_back != NULL)
1716 		error = EBUSY;
1717 	if (error != 0) {
1718 		SOCK_UNLOCK(so2);
1719 		SOCK_LOCK(so);
1720 		so->so_splice = NULL;
1721 		SOCK_RECVBUF_LOCK(so);
1722 		so->so_rcv.sb_flags &= ~SB_SPLICED;
1723 		SOCK_RECVBUF_UNLOCK(so);
1724 		SOCK_UNLOCK(so);
1725 		sorele(so);
1726 		uma_zfree(splice_zone, sp);
1727 		return (error);
1728 	}
1729 	soref(so2);
1730 	so2->so_splice_back = sp;
1731 	SOCK_SENDBUF_LOCK(so2);
1732 	so2->so_snd.sb_flags |= SB_SPLICED;
1733 	mtx_lock(&sp->mtx);
1734 	SOCK_SENDBUF_UNLOCK(so2);
1735 	SOCK_UNLOCK(so2);
1736 
1737 	if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1738 		taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1739 		    tvtosbt(splice->sp_idle), 0, C_PREL(4));
1740 	}
1741 
1742 	/*
1743 	 * Transfer any data already present in the socket buffer.
1744 	 */
1745 	sp->state = SPLICE_QUEUED;
1746 	so_splice_xfer(sp);
1747 	return (0);
1748 }
1749 
1750 static int
1751 so_unsplice(struct socket *so, bool timeout)
1752 {
1753 	struct socket *so2;
1754 	struct so_splice *sp;
1755 	bool drain;
1756 
1757 	/*
1758 	 * First unset SB_SPLICED and hide the splice structure so that
1759 	 * wakeup routines will stop enqueuing work.  This also ensures that
1760 	 * a only a single thread will proceed with the unsplice.
1761 	 */
1762 	SOCK_LOCK(so);
1763 	if (SOLISTENING(so)) {
1764 		SOCK_UNLOCK(so);
1765 		return (EINVAL);
1766 	}
1767 	SOCK_RECVBUF_LOCK(so);
1768 	if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1769 		SOCK_RECVBUF_UNLOCK(so);
1770 		SOCK_UNLOCK(so);
1771 		return (ENOTCONN);
1772 	}
1773 	so->so_rcv.sb_flags &= ~SB_SPLICED;
1774 	sp = so->so_splice;
1775 	so->so_splice = NULL;
1776 	SOCK_RECVBUF_UNLOCK(so);
1777 	SOCK_UNLOCK(so);
1778 
1779 	so2 = sp->dst;
1780 	SOCK_LOCK(so2);
1781 	KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1782 	SOCK_SENDBUF_LOCK(so2);
1783 	KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1784 	    ("%s: so2 is not spliced", __func__));
1785 	KASSERT(so2->so_splice_back == sp,
1786 	    ("%s: so_splice_back != sp", __func__));
1787 	so2->so_snd.sb_flags &= ~SB_SPLICED;
1788 	so2->so_splice_back = NULL;
1789 	SOCK_SENDBUF_UNLOCK(so2);
1790 	SOCK_UNLOCK(so2);
1791 
1792 	/*
1793 	 * No new work is being enqueued.  The worker thread might be
1794 	 * splicing data right now, in which case we want to wait for it to
1795 	 * finish before proceeding.
1796 	 */
1797 	mtx_lock(&sp->mtx);
1798 	switch (sp->state) {
1799 	case SPLICE_QUEUED:
1800 	case SPLICE_RUNNING:
1801 		sp->state = SPLICE_CLOSING;
1802 		while (sp->state == SPLICE_CLOSING)
1803 			msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1804 		break;
1805 	case SPLICE_IDLE:
1806 	case SPLICE_EXCEPTION:
1807 		sp->state = SPLICE_CLOSED;
1808 		break;
1809 	default:
1810 		__assert_unreachable();
1811 	}
1812 	if (!timeout) {
1813 		drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1814 		    NULL) != 0;
1815 	} else {
1816 		drain = false;
1817 	}
1818 	mtx_unlock(&sp->mtx);
1819 	if (drain)
1820 		taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1821 
1822 	/*
1823 	 * Now we hold the sole reference to the splice structure.
1824 	 * Clean up: signal userspace and release socket references.
1825 	 */
1826 	sorwakeup(so);
1827 	CURVNET_SET(so->so_vnet);
1828 	sorele(so);
1829 	sowwakeup(so2);
1830 	sorele(so2);
1831 	CURVNET_RESTORE();
1832 	so_splice_free(sp);
1833 	return (0);
1834 }
1835 
1836 /*
1837  * Free socket upon release of the very last reference.
1838  */
1839 static void
1840 sofree(struct socket *so)
1841 {
1842 	struct protosw *pr = so->so_proto;
1843 
1844 	SOCK_LOCK_ASSERT(so);
1845 	KASSERT(refcount_load(&so->so_count) == 0,
1846 	    ("%s: so %p has references", __func__, so));
1847 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1848 	    ("%s: so %p is on listen queue", __func__, so));
1849 	KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1850 	    ("%s: so %p rcvbuf is spliced", __func__, so));
1851 	KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1852 	    ("%s: so %p sndbuf is spliced", __func__, so));
1853 	KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1854 	    ("%s: so %p has spliced data", __func__, so));
1855 
1856 	SOCK_UNLOCK(so);
1857 
1858 	if (so->so_dtor != NULL)
1859 		so->so_dtor(so);
1860 
1861 	VNET_SO_ASSERT(so);
1862 	if (pr->pr_detach != NULL)
1863 		pr->pr_detach(so);
1864 
1865 	/*
1866 	 * From this point on, we assume that no other references to this
1867 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1868 	 * to be acquired or held.
1869 	 */
1870 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1871 		sbdestroy(so, SO_SND);
1872 		sbdestroy(so, SO_RCV);
1873 	}
1874 	seldrain(&so->so_rdsel);
1875 	seldrain(&so->so_wrsel);
1876 	knlist_destroy(&so->so_rdsel.si_note);
1877 	knlist_destroy(&so->so_wrsel.si_note);
1878 	sodealloc(so);
1879 }
1880 
1881 /*
1882  * Release a reference on a socket while holding the socket lock.
1883  * Unlocks the socket lock before returning.
1884  */
1885 void
1886 sorele_locked(struct socket *so)
1887 {
1888 	SOCK_LOCK_ASSERT(so);
1889 	if (refcount_release(&so->so_count))
1890 		sofree(so);
1891 	else
1892 		SOCK_UNLOCK(so);
1893 }
1894 
1895 /*
1896  * Close a socket on last file table reference removal.  Initiate disconnect
1897  * if connected.  Free socket when disconnect complete.
1898  *
1899  * This function will sorele() the socket.  Note that soclose() may be called
1900  * prior to the ref count reaching zero.  The actual socket structure will
1901  * not be freed until the ref count reaches zero.
1902  */
1903 int
1904 soclose(struct socket *so)
1905 {
1906 	struct accept_queue lqueue;
1907 	int error = 0;
1908 	bool listening, last __diagused;
1909 
1910 	CURVNET_SET(so->so_vnet);
1911 	funsetown(&so->so_sigio);
1912 	if (so->so_state & SS_ISCONNECTED) {
1913 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1914 			error = sodisconnect(so);
1915 			if (error) {
1916 				if (error == ENOTCONN)
1917 					error = 0;
1918 				goto drop;
1919 			}
1920 		}
1921 
1922 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1923 			if ((so->so_state & SS_ISDISCONNECTING) &&
1924 			    (so->so_state & SS_NBIO))
1925 				goto drop;
1926 			while (so->so_state & SS_ISCONNECTED) {
1927 				error = tsleep(&so->so_timeo,
1928 				    PSOCK | PCATCH, "soclos",
1929 				    so->so_linger * hz);
1930 				if (error)
1931 					break;
1932 			}
1933 		}
1934 	}
1935 
1936 drop:
1937 	if (so->so_proto->pr_close != NULL)
1938 		so->so_proto->pr_close(so);
1939 
1940 	SOCK_LOCK(so);
1941 	if ((listening = SOLISTENING(so))) {
1942 		struct socket *sp;
1943 
1944 		TAILQ_INIT(&lqueue);
1945 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1946 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1947 
1948 		so->sol_qlen = so->sol_incqlen = 0;
1949 
1950 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1951 			SOCK_LOCK(sp);
1952 			sp->so_qstate = SQ_NONE;
1953 			sp->so_listen = NULL;
1954 			SOCK_UNLOCK(sp);
1955 			last = refcount_release(&so->so_count);
1956 			KASSERT(!last, ("%s: released last reference for %p",
1957 			    __func__, so));
1958 		}
1959 	}
1960 	sorele_locked(so);
1961 	if (listening) {
1962 		struct socket *sp, *tsp;
1963 
1964 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1965 			soabort(sp);
1966 	}
1967 	CURVNET_RESTORE();
1968 	return (error);
1969 }
1970 
1971 /*
1972  * soabort() is used to abruptly tear down a connection, such as when a
1973  * resource limit is reached (listen queue depth exceeded), or if a listen
1974  * socket is closed while there are sockets waiting to be accepted.
1975  *
1976  * This interface is tricky, because it is called on an unreferenced socket,
1977  * and must be called only by a thread that has actually removed the socket
1978  * from the listen queue it was on.  Likely this thread holds the last
1979  * reference on the socket and soabort() will proceed with sofree().  But
1980  * it might be not the last, as the sockets on the listen queues are seen
1981  * from the protocol side.
1982  *
1983  * This interface will call into the protocol code, so must not be called
1984  * with any socket locks held.  Protocols do call it while holding their own
1985  * recursible protocol mutexes, but this is something that should be subject
1986  * to review in the future.
1987  *
1988  * Usually socket should have a single reference left, but this is not a
1989  * requirement.  In the past, when we have had named references for file
1990  * descriptor and protocol, we asserted that none of them are being held.
1991  */
1992 void
1993 soabort(struct socket *so)
1994 {
1995 
1996 	VNET_SO_ASSERT(so);
1997 
1998 	if (so->so_proto->pr_abort != NULL)
1999 		so->so_proto->pr_abort(so);
2000 	SOCK_LOCK(so);
2001 	sorele_locked(so);
2002 }
2003 
2004 int
2005 soaccept(struct socket *so, struct sockaddr *sa)
2006 {
2007 #ifdef INVARIANTS
2008 	u_char len = sa->sa_len;
2009 #endif
2010 	int error;
2011 
2012 	CURVNET_SET(so->so_vnet);
2013 	error = so->so_proto->pr_accept(so, sa);
2014 	KASSERT(sa->sa_len <= len,
2015 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2016 	CURVNET_RESTORE();
2017 	return (error);
2018 }
2019 
2020 int
2021 sopeeraddr(struct socket *so, struct sockaddr *sa)
2022 {
2023 #ifdef INVARIANTS
2024 	u_char len = sa->sa_len;
2025 #endif
2026 	int error;
2027 
2028 	CURVNET_ASSERT_SET();
2029 
2030 	error = so->so_proto->pr_peeraddr(so, sa);
2031 	KASSERT(sa->sa_len <= len,
2032 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2033 
2034 	return (error);
2035 }
2036 
2037 int
2038 sosockaddr(struct socket *so, struct sockaddr *sa)
2039 {
2040 #ifdef INVARIANTS
2041 	u_char len = sa->sa_len;
2042 #endif
2043 	int error;
2044 
2045 	CURVNET_SET(so->so_vnet);
2046 	error = so->so_proto->pr_sockaddr(so, sa);
2047 	KASSERT(sa->sa_len <= len,
2048 	    ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2049 	CURVNET_RESTORE();
2050 
2051 	return (error);
2052 }
2053 
2054 int
2055 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2056 {
2057 
2058 	return (soconnectat(AT_FDCWD, so, nam, td));
2059 }
2060 
2061 int
2062 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2063 {
2064 	int error;
2065 
2066 	CURVNET_SET(so->so_vnet);
2067 
2068 	/*
2069 	 * If protocol is connection-based, can only connect once.
2070 	 * Otherwise, if connected, try to disconnect first.  This allows
2071 	 * user to disconnect by connecting to, e.g., a null address.
2072 	 *
2073 	 * Note, this check is racy and may need to be re-evaluated at the
2074 	 * protocol layer.
2075 	 */
2076 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2077 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2078 	    (error = sodisconnect(so)))) {
2079 		error = EISCONN;
2080 	} else {
2081 		/*
2082 		 * Prevent accumulated error from previous connection from
2083 		 * biting us.
2084 		 */
2085 		so->so_error = 0;
2086 		if (fd == AT_FDCWD) {
2087 			error = so->so_proto->pr_connect(so, nam, td);
2088 		} else {
2089 			error = so->so_proto->pr_connectat(fd, so, nam, td);
2090 		}
2091 	}
2092 	CURVNET_RESTORE();
2093 
2094 	return (error);
2095 }
2096 
2097 int
2098 soconnect2(struct socket *so1, struct socket *so2)
2099 {
2100 	int error;
2101 
2102 	CURVNET_SET(so1->so_vnet);
2103 	error = so1->so_proto->pr_connect2(so1, so2);
2104 	CURVNET_RESTORE();
2105 	return (error);
2106 }
2107 
2108 int
2109 sodisconnect(struct socket *so)
2110 {
2111 	int error;
2112 
2113 	if ((so->so_state & SS_ISCONNECTED) == 0)
2114 		return (ENOTCONN);
2115 	if (so->so_state & SS_ISDISCONNECTING)
2116 		return (EALREADY);
2117 	VNET_SO_ASSERT(so);
2118 	error = so->so_proto->pr_disconnect(so);
2119 	return (error);
2120 }
2121 
2122 int
2123 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2124     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2125 {
2126 	long space;
2127 	ssize_t resid;
2128 	int clen = 0, error, dontroute;
2129 
2130 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2131 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2132 	    ("sosend_dgram: !PR_ATOMIC"));
2133 
2134 	if (uio != NULL)
2135 		resid = uio->uio_resid;
2136 	else
2137 		resid = top->m_pkthdr.len;
2138 	/*
2139 	 * In theory resid should be unsigned.  However, space must be
2140 	 * signed, as it might be less than 0 if we over-committed, and we
2141 	 * must use a signed comparison of space and resid.  On the other
2142 	 * hand, a negative resid causes us to loop sending 0-length
2143 	 * segments to the protocol.
2144 	 */
2145 	if (resid < 0) {
2146 		error = EINVAL;
2147 		goto out;
2148 	}
2149 
2150 	dontroute =
2151 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2152 	if (td != NULL)
2153 		td->td_ru.ru_msgsnd++;
2154 	if (control != NULL)
2155 		clen = control->m_len;
2156 
2157 	SOCKBUF_LOCK(&so->so_snd);
2158 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2159 		SOCKBUF_UNLOCK(&so->so_snd);
2160 		error = EPIPE;
2161 		goto out;
2162 	}
2163 	if (so->so_error) {
2164 		error = so->so_error;
2165 		so->so_error = 0;
2166 		SOCKBUF_UNLOCK(&so->so_snd);
2167 		goto out;
2168 	}
2169 	if ((so->so_state & SS_ISCONNECTED) == 0) {
2170 		/*
2171 		 * `sendto' and `sendmsg' is allowed on a connection-based
2172 		 * socket if it supports implied connect.  Return ENOTCONN if
2173 		 * not connected and no address is supplied.
2174 		 */
2175 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2176 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2177 			if (!(resid == 0 && clen != 0)) {
2178 				SOCKBUF_UNLOCK(&so->so_snd);
2179 				error = ENOTCONN;
2180 				goto out;
2181 			}
2182 		} else if (addr == NULL) {
2183 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2184 				error = ENOTCONN;
2185 			else
2186 				error = EDESTADDRREQ;
2187 			SOCKBUF_UNLOCK(&so->so_snd);
2188 			goto out;
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
2194 	 * problem and need fixing.
2195 	 */
2196 	space = sbspace(&so->so_snd);
2197 	if (flags & MSG_OOB)
2198 		space += 1024;
2199 	space -= clen;
2200 	SOCKBUF_UNLOCK(&so->so_snd);
2201 	if (resid > space) {
2202 		error = EMSGSIZE;
2203 		goto out;
2204 	}
2205 	if (uio == NULL) {
2206 		resid = 0;
2207 		if (flags & MSG_EOR)
2208 			top->m_flags |= M_EOR;
2209 	} else {
2210 		/*
2211 		 * Copy the data from userland into a mbuf chain.
2212 		 * If no data is to be copied in, a single empty mbuf
2213 		 * is returned.
2214 		 */
2215 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2216 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2217 		if (top == NULL) {
2218 			error = EFAULT;	/* only possible error */
2219 			goto out;
2220 		}
2221 		space -= resid - uio->uio_resid;
2222 		resid = uio->uio_resid;
2223 	}
2224 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2225 	/*
2226 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2227 	 * than with.
2228 	 */
2229 	if (dontroute) {
2230 		SOCK_LOCK(so);
2231 		so->so_options |= SO_DONTROUTE;
2232 		SOCK_UNLOCK(so);
2233 	}
2234 	/*
2235 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2236 	 * of date.  We could have received a reset packet in an interrupt or
2237 	 * maybe we slept while doing page faults in uiomove() etc.  We could
2238 	 * probably recheck again inside the locking protection here, but
2239 	 * there are probably other places that this also happens.  We must
2240 	 * rethink this.
2241 	 */
2242 	VNET_SO_ASSERT(so);
2243 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2244 	/*
2245 	 * If the user set MSG_EOF, the protocol understands this flag and
2246 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2247 	 */
2248 	    ((flags & MSG_EOF) &&
2249 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2250 	     (resid <= 0)) ?
2251 		PRUS_EOF :
2252 		/* If there is more to send set PRUS_MORETOCOME */
2253 		(flags & MSG_MORETOCOME) ||
2254 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2255 		top, addr, control, td);
2256 	if (dontroute) {
2257 		SOCK_LOCK(so);
2258 		so->so_options &= ~SO_DONTROUTE;
2259 		SOCK_UNLOCK(so);
2260 	}
2261 	clen = 0;
2262 	control = NULL;
2263 	top = NULL;
2264 out:
2265 	if (top != NULL)
2266 		m_freem(top);
2267 	if (control != NULL)
2268 		m_freem(control);
2269 	return (error);
2270 }
2271 
2272 /*
2273  * Send on a socket.  If send must go all at once and message is larger than
2274  * send buffering, then hard error.  Lock against other senders.  If must go
2275  * all at once and not enough room now, then inform user that this would
2276  * block and do nothing.  Otherwise, if nonblocking, send as much as
2277  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
2278  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
2279  * in mbuf chain must be small enough to send all at once.
2280  *
2281  * Returns nonzero on error, timeout or signal; callers must check for short
2282  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
2283  * on return.
2284  */
2285 static int
2286 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2287     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2288 {
2289 	long space;
2290 	ssize_t resid;
2291 	int clen = 0, error, dontroute;
2292 	int atomic = sosendallatonce(so) || top;
2293 	int pr_send_flag;
2294 #ifdef KERN_TLS
2295 	struct ktls_session *tls;
2296 	int tls_enq_cnt, tls_send_flag;
2297 	uint8_t tls_rtype;
2298 
2299 	tls = NULL;
2300 	tls_rtype = TLS_RLTYPE_APP;
2301 #endif
2302 
2303 	SOCK_IO_SEND_ASSERT_LOCKED(so);
2304 
2305 	if (uio != NULL)
2306 		resid = uio->uio_resid;
2307 	else if ((top->m_flags & M_PKTHDR) != 0)
2308 		resid = top->m_pkthdr.len;
2309 	else
2310 		resid = m_length(top, NULL);
2311 	/*
2312 	 * In theory resid should be unsigned.  However, space must be
2313 	 * signed, as it might be less than 0 if we over-committed, and we
2314 	 * must use a signed comparison of space and resid.  On the other
2315 	 * hand, a negative resid causes us to loop sending 0-length
2316 	 * segments to the protocol.
2317 	 *
2318 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2319 	 * type sockets since that's an error.
2320 	 */
2321 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2322 		error = EINVAL;
2323 		goto out;
2324 	}
2325 
2326 	dontroute =
2327 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2328 	    (so->so_proto->pr_flags & PR_ATOMIC);
2329 	if (td != NULL)
2330 		td->td_ru.ru_msgsnd++;
2331 	if (control != NULL)
2332 		clen = control->m_len;
2333 
2334 #ifdef KERN_TLS
2335 	tls_send_flag = 0;
2336 	tls = ktls_hold(so->so_snd.sb_tls_info);
2337 	if (tls != NULL) {
2338 		if (tls->mode == TCP_TLS_MODE_SW)
2339 			tls_send_flag = PRUS_NOTREADY;
2340 
2341 		if (control != NULL) {
2342 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2343 
2344 			if (clen >= sizeof(*cm) &&
2345 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2346 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2347 				clen = 0;
2348 				m_freem(control);
2349 				control = NULL;
2350 				atomic = 1;
2351 			}
2352 		}
2353 
2354 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2355 			error = EINVAL;
2356 			goto out;
2357 		}
2358 	}
2359 #endif
2360 
2361 restart:
2362 	do {
2363 		SOCKBUF_LOCK(&so->so_snd);
2364 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2365 			SOCKBUF_UNLOCK(&so->so_snd);
2366 			error = EPIPE;
2367 			goto out;
2368 		}
2369 		if (so->so_error) {
2370 			error = so->so_error;
2371 			so->so_error = 0;
2372 			SOCKBUF_UNLOCK(&so->so_snd);
2373 			goto out;
2374 		}
2375 		if ((so->so_state & SS_ISCONNECTED) == 0) {
2376 			/*
2377 			 * `sendto' and `sendmsg' is allowed on a connection-
2378 			 * based socket if it supports implied connect.
2379 			 * Return ENOTCONN if not connected and no address is
2380 			 * supplied.
2381 			 */
2382 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2383 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2384 				if (!(resid == 0 && clen != 0)) {
2385 					SOCKBUF_UNLOCK(&so->so_snd);
2386 					error = ENOTCONN;
2387 					goto out;
2388 				}
2389 			} else if (addr == NULL) {
2390 				SOCKBUF_UNLOCK(&so->so_snd);
2391 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2392 					error = ENOTCONN;
2393 				else
2394 					error = EDESTADDRREQ;
2395 				goto out;
2396 			}
2397 		}
2398 		space = sbspace(&so->so_snd);
2399 		if (flags & MSG_OOB)
2400 			space += 1024;
2401 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
2402 		    clen > so->so_snd.sb_hiwat) {
2403 			SOCKBUF_UNLOCK(&so->so_snd);
2404 			error = EMSGSIZE;
2405 			goto out;
2406 		}
2407 		if (space < resid + clen &&
2408 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2409 			if ((so->so_state & SS_NBIO) ||
2410 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2411 				SOCKBUF_UNLOCK(&so->so_snd);
2412 				error = EWOULDBLOCK;
2413 				goto out;
2414 			}
2415 			error = sbwait(so, SO_SND);
2416 			SOCKBUF_UNLOCK(&so->so_snd);
2417 			if (error)
2418 				goto out;
2419 			goto restart;
2420 		}
2421 		SOCKBUF_UNLOCK(&so->so_snd);
2422 		space -= clen;
2423 		do {
2424 			if (uio == NULL) {
2425 				resid = 0;
2426 				if (flags & MSG_EOR)
2427 					top->m_flags |= M_EOR;
2428 #ifdef KERN_TLS
2429 				if (tls != NULL) {
2430 					ktls_frame(top, tls, &tls_enq_cnt,
2431 					    tls_rtype);
2432 					tls_rtype = TLS_RLTYPE_APP;
2433 				}
2434 #endif
2435 			} else {
2436 				/*
2437 				 * Copy the data from userland into a mbuf
2438 				 * chain.  If resid is 0, which can happen
2439 				 * only if we have control to send, then
2440 				 * a single empty mbuf is returned.  This
2441 				 * is a workaround to prevent protocol send
2442 				 * methods to panic.
2443 				 */
2444 #ifdef KERN_TLS
2445 				if (tls != NULL) {
2446 					top = m_uiotombuf(uio, M_WAITOK, space,
2447 					    tls->params.max_frame_len,
2448 					    M_EXTPG |
2449 					    ((flags & MSG_EOR) ? M_EOR : 0));
2450 					if (top != NULL) {
2451 						ktls_frame(top, tls,
2452 						    &tls_enq_cnt, tls_rtype);
2453 					}
2454 					tls_rtype = TLS_RLTYPE_APP;
2455 				} else
2456 #endif
2457 					top = m_uiotombuf(uio, M_WAITOK, space,
2458 					    (atomic ? max_hdr : 0),
2459 					    (atomic ? M_PKTHDR : 0) |
2460 					    ((flags & MSG_EOR) ? M_EOR : 0));
2461 				if (top == NULL) {
2462 					error = EFAULT; /* only possible error */
2463 					goto out;
2464 				}
2465 				space -= resid - uio->uio_resid;
2466 				resid = uio->uio_resid;
2467 			}
2468 			if (dontroute) {
2469 				SOCK_LOCK(so);
2470 				so->so_options |= SO_DONTROUTE;
2471 				SOCK_UNLOCK(so);
2472 			}
2473 			/*
2474 			 * XXX all the SBS_CANTSENDMORE checks previously
2475 			 * done could be out of date.  We could have received
2476 			 * a reset packet in an interrupt or maybe we slept
2477 			 * while doing page faults in uiomove() etc.  We
2478 			 * could probably recheck again inside the locking
2479 			 * protection here, but there are probably other
2480 			 * places that this also happens.  We must rethink
2481 			 * this.
2482 			 */
2483 			VNET_SO_ASSERT(so);
2484 
2485 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2486 			/*
2487 			 * If the user set MSG_EOF, the protocol understands
2488 			 * this flag and nothing left to send then use
2489 			 * PRU_SEND_EOF instead of PRU_SEND.
2490 			 */
2491 			    ((flags & MSG_EOF) &&
2492 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2493 			     (resid <= 0)) ?
2494 				PRUS_EOF :
2495 			/* If there is more to send set PRUS_MORETOCOME. */
2496 			    (flags & MSG_MORETOCOME) ||
2497 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2498 
2499 #ifdef KERN_TLS
2500 			pr_send_flag |= tls_send_flag;
2501 #endif
2502 
2503 			error = so->so_proto->pr_send(so, pr_send_flag, top,
2504 			    addr, control, td);
2505 
2506 			if (dontroute) {
2507 				SOCK_LOCK(so);
2508 				so->so_options &= ~SO_DONTROUTE;
2509 				SOCK_UNLOCK(so);
2510 			}
2511 
2512 #ifdef KERN_TLS
2513 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2514 				if (error != 0) {
2515 					m_freem(top);
2516 					top = NULL;
2517 				} else {
2518 					soref(so);
2519 					ktls_enqueue(top, so, tls_enq_cnt);
2520 				}
2521 			}
2522 #endif
2523 			clen = 0;
2524 			control = NULL;
2525 			top = NULL;
2526 			if (error)
2527 				goto out;
2528 		} while (resid && space > 0);
2529 	} while (resid);
2530 
2531 out:
2532 #ifdef KERN_TLS
2533 	if (tls != NULL)
2534 		ktls_free(tls);
2535 #endif
2536 	if (top != NULL)
2537 		m_freem(top);
2538 	if (control != NULL)
2539 		m_freem(control);
2540 	return (error);
2541 }
2542 
2543 int
2544 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2545     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2546 {
2547 	int error;
2548 
2549 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2550 	if (error)
2551 		return (error);
2552 	error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2553 	SOCK_IO_SEND_UNLOCK(so);
2554 	return (error);
2555 }
2556 
2557 /*
2558  * Send to a socket from a kernel thread.
2559  *
2560  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2561  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
2562  * to be set at all.  This function should just boil down to a static inline
2563  * calling the protocol method.
2564  */
2565 int
2566 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2567     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2568 {
2569 	int error;
2570 
2571 	CURVNET_SET(so->so_vnet);
2572 	error = so->so_proto->pr_sosend(so, addr, uio,
2573 	    top, control, flags, td);
2574 	CURVNET_RESTORE();
2575 	return (error);
2576 }
2577 
2578 /*
2579  * send(2), write(2) or aio_write(2) on a socket.
2580  */
2581 int
2582 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2583     struct mbuf *control, int flags, struct proc *userproc)
2584 {
2585 	struct thread *td;
2586 	ssize_t len;
2587 	int error;
2588 
2589 	td = uio->uio_td;
2590 	len = uio->uio_resid;
2591 	CURVNET_SET(so->so_vnet);
2592 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2593 	    td);
2594 	CURVNET_RESTORE();
2595 	if (error != 0) {
2596 		/*
2597 		 * Clear transient errors for stream protocols if they made
2598 		 * some progress.  Make exclusion for aio(4) that would
2599 		 * schedule a new write in case of EWOULDBLOCK and clear
2600 		 * error itself.  See soaio_process_job().
2601 		 */
2602 		if (uio->uio_resid != len &&
2603 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2604 		    userproc == NULL &&
2605 		    (error == ERESTART || error == EINTR ||
2606 		    error == EWOULDBLOCK))
2607 			error = 0;
2608 		/* Generation of SIGPIPE can be controlled per socket. */
2609 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2610 		    (flags & MSG_NOSIGNAL) == 0) {
2611 			if (userproc != NULL) {
2612 				/* aio(4) job */
2613 				PROC_LOCK(userproc);
2614 				kern_psignal(userproc, SIGPIPE);
2615 				PROC_UNLOCK(userproc);
2616 			} else {
2617 				PROC_LOCK(td->td_proc);
2618 				tdsignal(td, SIGPIPE);
2619 				PROC_UNLOCK(td->td_proc);
2620 			}
2621 		}
2622 	}
2623 	return (error);
2624 }
2625 
2626 /*
2627  * The part of soreceive() that implements reading non-inline out-of-band
2628  * data from a socket.  For more complete comments, see soreceive(), from
2629  * which this code originated.
2630  *
2631  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2632  * unable to return an mbuf chain to the caller.
2633  */
2634 static int
2635 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2636 {
2637 	struct protosw *pr = so->so_proto;
2638 	struct mbuf *m;
2639 	int error;
2640 
2641 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2642 	VNET_SO_ASSERT(so);
2643 
2644 	m = m_get(M_WAITOK, MT_DATA);
2645 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2646 	if (error)
2647 		goto bad;
2648 	do {
2649 		error = uiomove(mtod(m, void *),
2650 		    (int) min(uio->uio_resid, m->m_len), uio);
2651 		m = m_free(m);
2652 	} while (uio->uio_resid && error == 0 && m);
2653 bad:
2654 	if (m != NULL)
2655 		m_freem(m);
2656 	return (error);
2657 }
2658 
2659 /*
2660  * Following replacement or removal of the first mbuf on the first mbuf chain
2661  * of a socket buffer, push necessary state changes back into the socket
2662  * buffer so that other consumers see the values consistently.  'nextrecord'
2663  * is the callers locally stored value of the original value of
2664  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2665  * NOTE: 'nextrecord' may be NULL.
2666  */
2667 static __inline void
2668 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2669 {
2670 
2671 	SOCKBUF_LOCK_ASSERT(sb);
2672 	/*
2673 	 * First, update for the new value of nextrecord.  If necessary, make
2674 	 * it the first record.
2675 	 */
2676 	if (sb->sb_mb != NULL)
2677 		sb->sb_mb->m_nextpkt = nextrecord;
2678 	else
2679 		sb->sb_mb = nextrecord;
2680 
2681 	/*
2682 	 * Now update any dependent socket buffer fields to reflect the new
2683 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
2684 	 * addition of a second clause that takes care of the case where
2685 	 * sb_mb has been updated, but remains the last record.
2686 	 */
2687 	if (sb->sb_mb == NULL) {
2688 		sb->sb_mbtail = NULL;
2689 		sb->sb_lastrecord = NULL;
2690 	} else if (sb->sb_mb->m_nextpkt == NULL)
2691 		sb->sb_lastrecord = sb->sb_mb;
2692 }
2693 
2694 /*
2695  * Implement receive operations on a socket.  We depend on the way that
2696  * records are added to the sockbuf by sbappend.  In particular, each record
2697  * (mbufs linked through m_next) must begin with an address if the protocol
2698  * so specifies, followed by an optional mbuf or mbufs containing ancillary
2699  * data, and then zero or more mbufs of data.  In order to allow parallelism
2700  * between network receive and copying to user space, as well as avoid
2701  * sleeping with a mutex held, we release the socket buffer mutex during the
2702  * user space copy.  Although the sockbuf is locked, new data may still be
2703  * appended, and thus we must maintain consistency of the sockbuf during that
2704  * time.
2705  *
2706  * The caller may receive the data as a single mbuf chain by supplying an
2707  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
2708  * the count in uio_resid.
2709  */
2710 static int
2711 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2712     struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2713 {
2714 	struct mbuf *m;
2715 	int flags, error, offset;
2716 	ssize_t len;
2717 	struct protosw *pr = so->so_proto;
2718 	struct mbuf *nextrecord;
2719 	int moff, type = 0;
2720 	ssize_t orig_resid = uio->uio_resid;
2721 	bool report_real_len = false;
2722 
2723 	SOCK_IO_RECV_ASSERT_LOCKED(so);
2724 
2725 	error = 0;
2726 	if (flagsp != NULL) {
2727 		report_real_len = *flagsp & MSG_TRUNC;
2728 		*flagsp &= ~MSG_TRUNC;
2729 		flags = *flagsp &~ MSG_EOR;
2730 	} else
2731 		flags = 0;
2732 
2733 restart:
2734 	SOCKBUF_LOCK(&so->so_rcv);
2735 	m = so->so_rcv.sb_mb;
2736 	/*
2737 	 * If we have less data than requested, block awaiting more (subject
2738 	 * to any timeout) if:
2739 	 *   1. the current count is less than the low water mark, or
2740 	 *   2. MSG_DONTWAIT is not set
2741 	 */
2742 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2743 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2744 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2745 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2746 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2747 		    ("receive: m == %p sbavail == %u",
2748 		    m, sbavail(&so->so_rcv)));
2749 		if (so->so_error || so->so_rerror) {
2750 			if (m != NULL)
2751 				goto dontblock;
2752 			if (so->so_error)
2753 				error = so->so_error;
2754 			else
2755 				error = so->so_rerror;
2756 			if ((flags & MSG_PEEK) == 0) {
2757 				if (so->so_error)
2758 					so->so_error = 0;
2759 				else
2760 					so->so_rerror = 0;
2761 			}
2762 			SOCKBUF_UNLOCK(&so->so_rcv);
2763 			goto release;
2764 		}
2765 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2766 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2767 			if (m != NULL)
2768 				goto dontblock;
2769 #ifdef KERN_TLS
2770 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2771 			    so->so_rcv.sb_tlscc == 0) {
2772 #else
2773 			else {
2774 #endif
2775 				SOCKBUF_UNLOCK(&so->so_rcv);
2776 				goto release;
2777 			}
2778 		}
2779 		for (; m != NULL; m = m->m_next)
2780 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2781 				m = so->so_rcv.sb_mb;
2782 				goto dontblock;
2783 			}
2784 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2785 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2786 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2787 			SOCKBUF_UNLOCK(&so->so_rcv);
2788 			error = ENOTCONN;
2789 			goto release;
2790 		}
2791 		if (uio->uio_resid == 0 && !report_real_len) {
2792 			SOCKBUF_UNLOCK(&so->so_rcv);
2793 			goto release;
2794 		}
2795 		if ((so->so_state & SS_NBIO) ||
2796 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2797 			SOCKBUF_UNLOCK(&so->so_rcv);
2798 			error = EWOULDBLOCK;
2799 			goto release;
2800 		}
2801 		SBLASTRECORDCHK(&so->so_rcv);
2802 		SBLASTMBUFCHK(&so->so_rcv);
2803 		error = sbwait(so, SO_RCV);
2804 		SOCKBUF_UNLOCK(&so->so_rcv);
2805 		if (error)
2806 			goto release;
2807 		goto restart;
2808 	}
2809 dontblock:
2810 	/*
2811 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2812 	 * pointer to the next record in the socket buffer.  We must keep the
2813 	 * various socket buffer pointers and local stack versions of the
2814 	 * pointers in sync, pushing out modifications before dropping the
2815 	 * socket buffer mutex, and re-reading them when picking it up.
2816 	 *
2817 	 * Otherwise, we will race with the network stack appending new data
2818 	 * or records onto the socket buffer by using inconsistent/stale
2819 	 * versions of the field, possibly resulting in socket buffer
2820 	 * corruption.
2821 	 *
2822 	 * By holding the high-level sblock(), we prevent simultaneous
2823 	 * readers from pulling off the front of the socket buffer.
2824 	 */
2825 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2826 	if (uio->uio_td)
2827 		uio->uio_td->td_ru.ru_msgrcv++;
2828 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2829 	SBLASTRECORDCHK(&so->so_rcv);
2830 	SBLASTMBUFCHK(&so->so_rcv);
2831 	nextrecord = m->m_nextpkt;
2832 	if (pr->pr_flags & PR_ADDR) {
2833 		KASSERT(m->m_type == MT_SONAME,
2834 		    ("m->m_type == %d", m->m_type));
2835 		orig_resid = 0;
2836 		if (psa != NULL)
2837 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2838 			    M_NOWAIT);
2839 		if (flags & MSG_PEEK) {
2840 			m = m->m_next;
2841 		} else {
2842 			sbfree(&so->so_rcv, m);
2843 			so->so_rcv.sb_mb = m_free(m);
2844 			m = so->so_rcv.sb_mb;
2845 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2846 		}
2847 	}
2848 
2849 	/*
2850 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2851 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2852 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2853 	 * perform externalization (or freeing if controlp == NULL).
2854 	 */
2855 	if (m != NULL && m->m_type == MT_CONTROL) {
2856 		struct mbuf *cm = NULL, *cmn;
2857 		struct mbuf **cme = &cm;
2858 #ifdef KERN_TLS
2859 		struct cmsghdr *cmsg;
2860 		struct tls_get_record tgr;
2861 
2862 		/*
2863 		 * For MSG_TLSAPPDATA, check for an alert record.
2864 		 * If found, return ENXIO without removing
2865 		 * it from the receive queue.  This allows a subsequent
2866 		 * call without MSG_TLSAPPDATA to receive it.
2867 		 * Note that, for TLS, there should only be a single
2868 		 * control mbuf with the TLS_GET_RECORD message in it.
2869 		 */
2870 		if (flags & MSG_TLSAPPDATA) {
2871 			cmsg = mtod(m, struct cmsghdr *);
2872 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2873 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2874 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2875 				if (__predict_false(tgr.tls_type ==
2876 				    TLS_RLTYPE_ALERT)) {
2877 					SOCKBUF_UNLOCK(&so->so_rcv);
2878 					error = ENXIO;
2879 					goto release;
2880 				}
2881 			}
2882 		}
2883 #endif
2884 
2885 		do {
2886 			if (flags & MSG_PEEK) {
2887 				if (controlp != NULL) {
2888 					*controlp = m_copym(m, 0, m->m_len,
2889 					    M_NOWAIT);
2890 					controlp = &(*controlp)->m_next;
2891 				}
2892 				m = m->m_next;
2893 			} else {
2894 				sbfree(&so->so_rcv, m);
2895 				so->so_rcv.sb_mb = m->m_next;
2896 				m->m_next = NULL;
2897 				*cme = m;
2898 				cme = &(*cme)->m_next;
2899 				m = so->so_rcv.sb_mb;
2900 			}
2901 		} while (m != NULL && m->m_type == MT_CONTROL);
2902 		if ((flags & MSG_PEEK) == 0)
2903 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2904 		while (cm != NULL) {
2905 			cmn = cm->m_next;
2906 			cm->m_next = NULL;
2907 			if (pr->pr_domain->dom_externalize != NULL) {
2908 				SOCKBUF_UNLOCK(&so->so_rcv);
2909 				VNET_SO_ASSERT(so);
2910 				error = (*pr->pr_domain->dom_externalize)
2911 				    (cm, controlp, flags);
2912 				SOCKBUF_LOCK(&so->so_rcv);
2913 			} else if (controlp != NULL)
2914 				*controlp = cm;
2915 			else
2916 				m_freem(cm);
2917 			if (controlp != NULL) {
2918 				while (*controlp != NULL)
2919 					controlp = &(*controlp)->m_next;
2920 			}
2921 			cm = cmn;
2922 		}
2923 		if (m != NULL)
2924 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2925 		else
2926 			nextrecord = so->so_rcv.sb_mb;
2927 		orig_resid = 0;
2928 	}
2929 	if (m != NULL) {
2930 		if ((flags & MSG_PEEK) == 0) {
2931 			KASSERT(m->m_nextpkt == nextrecord,
2932 			    ("soreceive: post-control, nextrecord !sync"));
2933 			if (nextrecord == NULL) {
2934 				KASSERT(so->so_rcv.sb_mb == m,
2935 				    ("soreceive: post-control, sb_mb!=m"));
2936 				KASSERT(so->so_rcv.sb_lastrecord == m,
2937 				    ("soreceive: post-control, lastrecord!=m"));
2938 			}
2939 		}
2940 		type = m->m_type;
2941 		if (type == MT_OOBDATA)
2942 			flags |= MSG_OOB;
2943 	} else {
2944 		if ((flags & MSG_PEEK) == 0) {
2945 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2946 			    ("soreceive: sb_mb != nextrecord"));
2947 			if (so->so_rcv.sb_mb == NULL) {
2948 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2949 				    ("soreceive: sb_lastercord != NULL"));
2950 			}
2951 		}
2952 	}
2953 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2954 	SBLASTRECORDCHK(&so->so_rcv);
2955 	SBLASTMBUFCHK(&so->so_rcv);
2956 
2957 	/*
2958 	 * Now continue to read any data mbufs off of the head of the socket
2959 	 * buffer until the read request is satisfied.  Note that 'type' is
2960 	 * used to store the type of any mbuf reads that have happened so far
2961 	 * such that soreceive() can stop reading if the type changes, which
2962 	 * causes soreceive() to return only one of regular data and inline
2963 	 * out-of-band data in a single socket receive operation.
2964 	 */
2965 	moff = 0;
2966 	offset = 0;
2967 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2968 	    && error == 0) {
2969 		/*
2970 		 * If the type of mbuf has changed since the last mbuf
2971 		 * examined ('type'), end the receive operation.
2972 		 */
2973 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2974 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2975 			if (type != m->m_type)
2976 				break;
2977 		} else if (type == MT_OOBDATA)
2978 			break;
2979 		else
2980 		    KASSERT(m->m_type == MT_DATA,
2981 			("m->m_type == %d", m->m_type));
2982 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2983 		len = uio->uio_resid;
2984 		if (so->so_oobmark && len > so->so_oobmark - offset)
2985 			len = so->so_oobmark - offset;
2986 		if (len > m->m_len - moff)
2987 			len = m->m_len - moff;
2988 		/*
2989 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2990 		 * them out via the uio, then free.  Sockbuf must be
2991 		 * consistent here (points to current mbuf, it points to next
2992 		 * record) when we drop priority; we must note any additions
2993 		 * to the sockbuf when we block interrupts again.
2994 		 */
2995 		if (mp == NULL) {
2996 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2997 			SBLASTRECORDCHK(&so->so_rcv);
2998 			SBLASTMBUFCHK(&so->so_rcv);
2999 			SOCKBUF_UNLOCK(&so->so_rcv);
3000 			if ((m->m_flags & M_EXTPG) != 0)
3001 				error = m_unmapped_uiomove(m, moff, uio,
3002 				    (int)len);
3003 			else
3004 				error = uiomove(mtod(m, char *) + moff,
3005 				    (int)len, uio);
3006 			SOCKBUF_LOCK(&so->so_rcv);
3007 			if (error) {
3008 				/*
3009 				 * The MT_SONAME mbuf has already been removed
3010 				 * from the record, so it is necessary to
3011 				 * remove the data mbufs, if any, to preserve
3012 				 * the invariant in the case of PR_ADDR that
3013 				 * requires MT_SONAME mbufs at the head of
3014 				 * each record.
3015 				 */
3016 				if (pr->pr_flags & PR_ATOMIC &&
3017 				    ((flags & MSG_PEEK) == 0))
3018 					(void)sbdroprecord_locked(&so->so_rcv);
3019 				SOCKBUF_UNLOCK(&so->so_rcv);
3020 				goto release;
3021 			}
3022 		} else
3023 			uio->uio_resid -= len;
3024 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3025 		if (len == m->m_len - moff) {
3026 			if (m->m_flags & M_EOR)
3027 				flags |= MSG_EOR;
3028 			if (flags & MSG_PEEK) {
3029 				m = m->m_next;
3030 				moff = 0;
3031 			} else {
3032 				nextrecord = m->m_nextpkt;
3033 				sbfree(&so->so_rcv, m);
3034 				if (mp != NULL) {
3035 					m->m_nextpkt = NULL;
3036 					*mp = m;
3037 					mp = &m->m_next;
3038 					so->so_rcv.sb_mb = m = m->m_next;
3039 					*mp = NULL;
3040 				} else {
3041 					so->so_rcv.sb_mb = m_free(m);
3042 					m = so->so_rcv.sb_mb;
3043 				}
3044 				sockbuf_pushsync(&so->so_rcv, nextrecord);
3045 				SBLASTRECORDCHK(&so->so_rcv);
3046 				SBLASTMBUFCHK(&so->so_rcv);
3047 			}
3048 		} else {
3049 			if (flags & MSG_PEEK)
3050 				moff += len;
3051 			else {
3052 				if (mp != NULL) {
3053 					if (flags & MSG_DONTWAIT) {
3054 						*mp = m_copym(m, 0, len,
3055 						    M_NOWAIT);
3056 						if (*mp == NULL) {
3057 							/*
3058 							 * m_copym() couldn't
3059 							 * allocate an mbuf.
3060 							 * Adjust uio_resid back
3061 							 * (it was adjusted
3062 							 * down by len bytes,
3063 							 * which we didn't end
3064 							 * up "copying" over).
3065 							 */
3066 							uio->uio_resid += len;
3067 							break;
3068 						}
3069 					} else {
3070 						SOCKBUF_UNLOCK(&so->so_rcv);
3071 						*mp = m_copym(m, 0, len,
3072 						    M_WAITOK);
3073 						SOCKBUF_LOCK(&so->so_rcv);
3074 					}
3075 				}
3076 				sbcut_locked(&so->so_rcv, len);
3077 			}
3078 		}
3079 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3080 		if (so->so_oobmark) {
3081 			if ((flags & MSG_PEEK) == 0) {
3082 				so->so_oobmark -= len;
3083 				if (so->so_oobmark == 0) {
3084 					so->so_rcv.sb_state |= SBS_RCVATMARK;
3085 					break;
3086 				}
3087 			} else {
3088 				offset += len;
3089 				if (offset == so->so_oobmark)
3090 					break;
3091 			}
3092 		}
3093 		if (flags & MSG_EOR)
3094 			break;
3095 		/*
3096 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3097 		 * must not quit until "uio->uio_resid == 0" or an error
3098 		 * termination.  If a signal/timeout occurs, return with a
3099 		 * short count but without error.  Keep sockbuf locked
3100 		 * against other readers.
3101 		 */
3102 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3103 		    !sosendallatonce(so) && nextrecord == NULL) {
3104 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3105 			if (so->so_error || so->so_rerror ||
3106 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
3107 				break;
3108 			/*
3109 			 * Notify the protocol that some data has been
3110 			 * drained before blocking.
3111 			 */
3112 			if (pr->pr_flags & PR_WANTRCVD) {
3113 				SOCKBUF_UNLOCK(&so->so_rcv);
3114 				VNET_SO_ASSERT(so);
3115 				pr->pr_rcvd(so, flags);
3116 				SOCKBUF_LOCK(&so->so_rcv);
3117 				if (__predict_false(so->so_rcv.sb_mb == NULL &&
3118 				    (so->so_error || so->so_rerror ||
3119 				    so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3120 					break;
3121 			}
3122 			SBLASTRECORDCHK(&so->so_rcv);
3123 			SBLASTMBUFCHK(&so->so_rcv);
3124 			/*
3125 			 * We could receive some data while was notifying
3126 			 * the protocol. Skip blocking in this case.
3127 			 */
3128 			if (so->so_rcv.sb_mb == NULL) {
3129 				error = sbwait(so, SO_RCV);
3130 				if (error) {
3131 					SOCKBUF_UNLOCK(&so->so_rcv);
3132 					goto release;
3133 				}
3134 			}
3135 			m = so->so_rcv.sb_mb;
3136 			if (m != NULL)
3137 				nextrecord = m->m_nextpkt;
3138 		}
3139 	}
3140 
3141 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3142 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3143 		if (report_real_len)
3144 			uio->uio_resid -= m_length(m, NULL) - moff;
3145 		flags |= MSG_TRUNC;
3146 		if ((flags & MSG_PEEK) == 0)
3147 			(void) sbdroprecord_locked(&so->so_rcv);
3148 	}
3149 	if ((flags & MSG_PEEK) == 0) {
3150 		if (m == NULL) {
3151 			/*
3152 			 * First part is an inline SB_EMPTY_FIXUP().  Second
3153 			 * part makes sure sb_lastrecord is up-to-date if
3154 			 * there is still data in the socket buffer.
3155 			 */
3156 			so->so_rcv.sb_mb = nextrecord;
3157 			if (so->so_rcv.sb_mb == NULL) {
3158 				so->so_rcv.sb_mbtail = NULL;
3159 				so->so_rcv.sb_lastrecord = NULL;
3160 			} else if (nextrecord->m_nextpkt == NULL)
3161 				so->so_rcv.sb_lastrecord = nextrecord;
3162 		}
3163 		SBLASTRECORDCHK(&so->so_rcv);
3164 		SBLASTMBUFCHK(&so->so_rcv);
3165 		/*
3166 		 * If soreceive() is being done from the socket callback,
3167 		 * then don't need to generate ACK to peer to update window,
3168 		 * since ACK will be generated on return to TCP.
3169 		 */
3170 		if (!(flags & MSG_SOCALLBCK) &&
3171 		    (pr->pr_flags & PR_WANTRCVD)) {
3172 			SOCKBUF_UNLOCK(&so->so_rcv);
3173 			VNET_SO_ASSERT(so);
3174 			pr->pr_rcvd(so, flags);
3175 			SOCKBUF_LOCK(&so->so_rcv);
3176 		}
3177 	}
3178 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3179 	if (orig_resid == uio->uio_resid && orig_resid &&
3180 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3181 		SOCKBUF_UNLOCK(&so->so_rcv);
3182 		goto restart;
3183 	}
3184 	SOCKBUF_UNLOCK(&so->so_rcv);
3185 
3186 	if (flagsp != NULL)
3187 		*flagsp |= flags;
3188 release:
3189 	return (error);
3190 }
3191 
3192 int
3193 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3194     struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3195 {
3196 	int error, flags;
3197 
3198 	if (psa != NULL)
3199 		*psa = NULL;
3200 	if (controlp != NULL)
3201 		*controlp = NULL;
3202 	if (flagsp != NULL) {
3203 		flags = *flagsp;
3204 		if ((flags & MSG_OOB) != 0)
3205 			return (soreceive_rcvoob(so, uio, flags));
3206 	} else {
3207 		flags = 0;
3208 	}
3209 	if (mp != NULL)
3210 		*mp = NULL;
3211 
3212 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3213 	if (error)
3214 		return (error);
3215 	error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3216 	SOCK_IO_RECV_UNLOCK(so);
3217 	return (error);
3218 }
3219 
3220 /*
3221  * Optimized version of soreceive() for stream (TCP) sockets.
3222  */
3223 static int
3224 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3225     struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3226     struct mbuf **controlp, int flags)
3227 {
3228 	int len = 0, error = 0, oresid;
3229 	struct mbuf *m, *n = NULL;
3230 
3231 	SOCK_IO_RECV_ASSERT_LOCKED(so);
3232 
3233 	/* Easy one, no space to copyout anything. */
3234 	if (uio->uio_resid == 0)
3235 		return (EINVAL);
3236 	oresid = uio->uio_resid;
3237 
3238 	SOCKBUF_LOCK(sb);
3239 	/* We will never ever get anything unless we are or were connected. */
3240 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3241 		error = ENOTCONN;
3242 		goto out;
3243 	}
3244 
3245 restart:
3246 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3247 
3248 	/* Abort if socket has reported problems. */
3249 	if (so->so_error) {
3250 		if (sbavail(sb) > 0)
3251 			goto deliver;
3252 		if (oresid > uio->uio_resid)
3253 			goto out;
3254 		error = so->so_error;
3255 		if (!(flags & MSG_PEEK))
3256 			so->so_error = 0;
3257 		goto out;
3258 	}
3259 
3260 	/* Door is closed.  Deliver what is left, if any. */
3261 	if (sb->sb_state & SBS_CANTRCVMORE) {
3262 		if (sbavail(sb) > 0)
3263 			goto deliver;
3264 		else
3265 			goto out;
3266 	}
3267 
3268 	/* Socket buffer is empty and we shall not block. */
3269 	if (sbavail(sb) == 0 &&
3270 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3271 		error = EAGAIN;
3272 		goto out;
3273 	}
3274 
3275 	/* Socket buffer got some data that we shall deliver now. */
3276 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3277 	    ((so->so_state & SS_NBIO) ||
3278 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3279 	     sbavail(sb) >= sb->sb_lowat ||
3280 	     sbavail(sb) >= uio->uio_resid ||
3281 	     sbavail(sb) >= sb->sb_hiwat) ) {
3282 		goto deliver;
3283 	}
3284 
3285 	/* On MSG_WAITALL we must wait until all data or error arrives. */
3286 	if ((flags & MSG_WAITALL) &&
3287 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3288 		goto deliver;
3289 
3290 	/*
3291 	 * Wait and block until (more) data comes in.
3292 	 * NB: Drops the sockbuf lock during wait.
3293 	 */
3294 	error = sbwait(so, SO_RCV);
3295 	if (error)
3296 		goto out;
3297 	goto restart;
3298 
3299 deliver:
3300 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3301 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3302 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3303 
3304 	/* Statistics. */
3305 	if (uio->uio_td)
3306 		uio->uio_td->td_ru.ru_msgrcv++;
3307 
3308 	/* Fill uio until full or current end of socket buffer is reached. */
3309 	len = min(uio->uio_resid, sbavail(sb));
3310 	if (mp0 != NULL) {
3311 		/* Dequeue as many mbufs as possible. */
3312 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3313 			if (*mp0 == NULL)
3314 				*mp0 = sb->sb_mb;
3315 			else
3316 				m_cat(*mp0, sb->sb_mb);
3317 			for (m = sb->sb_mb;
3318 			     m != NULL && m->m_len <= len;
3319 			     m = m->m_next) {
3320 				KASSERT(!(m->m_flags & M_NOTAVAIL),
3321 				    ("%s: m %p not available", __func__, m));
3322 				len -= m->m_len;
3323 				uio->uio_resid -= m->m_len;
3324 				sbfree(sb, m);
3325 				n = m;
3326 			}
3327 			n->m_next = NULL;
3328 			sb->sb_mb = m;
3329 			sb->sb_lastrecord = sb->sb_mb;
3330 			if (sb->sb_mb == NULL)
3331 				SB_EMPTY_FIXUP(sb);
3332 		}
3333 		/* Copy the remainder. */
3334 		if (len > 0) {
3335 			KASSERT(sb->sb_mb != NULL,
3336 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
3337 
3338 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3339 			if (m == NULL)
3340 				len = 0;	/* Don't flush data from sockbuf. */
3341 			else
3342 				uio->uio_resid -= len;
3343 			if (*mp0 != NULL)
3344 				m_cat(*mp0, m);
3345 			else
3346 				*mp0 = m;
3347 			if (*mp0 == NULL) {
3348 				error = ENOBUFS;
3349 				goto out;
3350 			}
3351 		}
3352 	} else {
3353 		/* NB: Must unlock socket buffer as uiomove may sleep. */
3354 		SOCKBUF_UNLOCK(sb);
3355 		error = m_mbuftouio(uio, sb->sb_mb, len);
3356 		SOCKBUF_LOCK(sb);
3357 		if (error)
3358 			goto out;
3359 	}
3360 	SBLASTRECORDCHK(sb);
3361 	SBLASTMBUFCHK(sb);
3362 
3363 	/*
3364 	 * Remove the delivered data from the socket buffer unless we
3365 	 * were only peeking.
3366 	 */
3367 	if (!(flags & MSG_PEEK)) {
3368 		if (len > 0)
3369 			sbdrop_locked(sb, len);
3370 
3371 		/* Notify protocol that we drained some data. */
3372 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3373 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3374 		     !(flags & MSG_SOCALLBCK))) {
3375 			SOCKBUF_UNLOCK(sb);
3376 			VNET_SO_ASSERT(so);
3377 			so->so_proto->pr_rcvd(so, flags);
3378 			SOCKBUF_LOCK(sb);
3379 		}
3380 	}
3381 
3382 	/*
3383 	 * For MSG_WAITALL we may have to loop again and wait for
3384 	 * more data to come in.
3385 	 */
3386 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3387 		goto restart;
3388 out:
3389 	SBLASTRECORDCHK(sb);
3390 	SBLASTMBUFCHK(sb);
3391 	SOCKBUF_UNLOCK(sb);
3392 	return (error);
3393 }
3394 
3395 int
3396 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3397     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3398 {
3399 	struct sockbuf *sb;
3400 	int error, flags;
3401 
3402 	sb = &so->so_rcv;
3403 
3404 	/* We only do stream sockets. */
3405 	if (so->so_type != SOCK_STREAM)
3406 		return (EINVAL);
3407 	if (psa != NULL)
3408 		*psa = NULL;
3409 	if (flagsp != NULL)
3410 		flags = *flagsp & ~MSG_EOR;
3411 	else
3412 		flags = 0;
3413 	if (controlp != NULL)
3414 		*controlp = NULL;
3415 	if (flags & MSG_OOB)
3416 		return (soreceive_rcvoob(so, uio, flags));
3417 	if (mp0 != NULL)
3418 		*mp0 = NULL;
3419 
3420 #ifdef KERN_TLS
3421 	/*
3422 	 * KTLS store TLS records as records with a control message to
3423 	 * describe the framing.
3424 	 *
3425 	 * We check once here before acquiring locks to optimize the
3426 	 * common case.
3427 	 */
3428 	if (sb->sb_tls_info != NULL)
3429 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3430 		    flagsp));
3431 #endif
3432 
3433 	/*
3434 	 * Prevent other threads from reading from the socket.  This lock may be
3435 	 * dropped in order to sleep waiting for data to arrive.
3436 	 */
3437 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3438 	if (error)
3439 		return (error);
3440 #ifdef KERN_TLS
3441 	if (__predict_false(sb->sb_tls_info != NULL)) {
3442 		SOCK_IO_RECV_UNLOCK(so);
3443 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3444 		    flagsp));
3445 	}
3446 #endif
3447 	error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3448 	SOCK_IO_RECV_UNLOCK(so);
3449 	return (error);
3450 }
3451 
3452 /*
3453  * Optimized version of soreceive() for simple datagram cases from userspace.
3454  * Unlike in the stream case, we're able to drop a datagram if copyout()
3455  * fails, and because we handle datagrams atomically, we don't need to use a
3456  * sleep lock to prevent I/O interlacing.
3457  */
3458 int
3459 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3460     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3461 {
3462 	struct mbuf *m, *m2;
3463 	int flags, error;
3464 	ssize_t len;
3465 	struct protosw *pr = so->so_proto;
3466 	struct mbuf *nextrecord;
3467 
3468 	if (psa != NULL)
3469 		*psa = NULL;
3470 	if (controlp != NULL)
3471 		*controlp = NULL;
3472 	if (flagsp != NULL)
3473 		flags = *flagsp &~ MSG_EOR;
3474 	else
3475 		flags = 0;
3476 
3477 	/*
3478 	 * For any complicated cases, fall back to the full
3479 	 * soreceive_generic().
3480 	 */
3481 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3482 		return (soreceive_generic(so, psa, uio, mp0, controlp,
3483 		    flagsp));
3484 
3485 	/*
3486 	 * Enforce restrictions on use.
3487 	 */
3488 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3489 	    ("soreceive_dgram: wantrcvd"));
3490 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3491 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3492 	    ("soreceive_dgram: SBS_RCVATMARK"));
3493 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3494 	    ("soreceive_dgram: P_CONNREQUIRED"));
3495 
3496 	/*
3497 	 * Loop blocking while waiting for a datagram.
3498 	 */
3499 	SOCKBUF_LOCK(&so->so_rcv);
3500 	while ((m = so->so_rcv.sb_mb) == NULL) {
3501 		KASSERT(sbavail(&so->so_rcv) == 0,
3502 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
3503 		    sbavail(&so->so_rcv)));
3504 		if (so->so_error) {
3505 			error = so->so_error;
3506 			so->so_error = 0;
3507 			SOCKBUF_UNLOCK(&so->so_rcv);
3508 			return (error);
3509 		}
3510 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3511 		    uio->uio_resid == 0) {
3512 			SOCKBUF_UNLOCK(&so->so_rcv);
3513 			return (0);
3514 		}
3515 		if ((so->so_state & SS_NBIO) ||
3516 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3517 			SOCKBUF_UNLOCK(&so->so_rcv);
3518 			return (EWOULDBLOCK);
3519 		}
3520 		SBLASTRECORDCHK(&so->so_rcv);
3521 		SBLASTMBUFCHK(&so->so_rcv);
3522 		error = sbwait(so, SO_RCV);
3523 		if (error) {
3524 			SOCKBUF_UNLOCK(&so->so_rcv);
3525 			return (error);
3526 		}
3527 	}
3528 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3529 
3530 	if (uio->uio_td)
3531 		uio->uio_td->td_ru.ru_msgrcv++;
3532 	SBLASTRECORDCHK(&so->so_rcv);
3533 	SBLASTMBUFCHK(&so->so_rcv);
3534 	nextrecord = m->m_nextpkt;
3535 	if (nextrecord == NULL) {
3536 		KASSERT(so->so_rcv.sb_lastrecord == m,
3537 		    ("soreceive_dgram: lastrecord != m"));
3538 	}
3539 
3540 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3541 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
3542 
3543 	/*
3544 	 * Pull 'm' and its chain off the front of the packet queue.
3545 	 */
3546 	so->so_rcv.sb_mb = NULL;
3547 	sockbuf_pushsync(&so->so_rcv, nextrecord);
3548 
3549 	/*
3550 	 * Walk 'm's chain and free that many bytes from the socket buffer.
3551 	 */
3552 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
3553 		sbfree(&so->so_rcv, m2);
3554 
3555 	/*
3556 	 * Do a few last checks before we let go of the lock.
3557 	 */
3558 	SBLASTRECORDCHK(&so->so_rcv);
3559 	SBLASTMBUFCHK(&so->so_rcv);
3560 	SOCKBUF_UNLOCK(&so->so_rcv);
3561 
3562 	if (pr->pr_flags & PR_ADDR) {
3563 		KASSERT(m->m_type == MT_SONAME,
3564 		    ("m->m_type == %d", m->m_type));
3565 		if (psa != NULL)
3566 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
3567 			    M_WAITOK);
3568 		m = m_free(m);
3569 	}
3570 	KASSERT(m, ("%s: no data or control after soname", __func__));
3571 
3572 	/*
3573 	 * Packet to copyout() is now in 'm' and it is disconnected from the
3574 	 * queue.
3575 	 *
3576 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
3577 	 * in the first mbuf chain on the socket buffer.  We call into the
3578 	 * protocol to perform externalization (or freeing if controlp ==
3579 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
3580 	 * MT_DATA mbufs.
3581 	 */
3582 	if (m->m_type == MT_CONTROL) {
3583 		struct mbuf *cm = NULL, *cmn;
3584 		struct mbuf **cme = &cm;
3585 
3586 		do {
3587 			m2 = m->m_next;
3588 			m->m_next = NULL;
3589 			*cme = m;
3590 			cme = &(*cme)->m_next;
3591 			m = m2;
3592 		} while (m != NULL && m->m_type == MT_CONTROL);
3593 		while (cm != NULL) {
3594 			cmn = cm->m_next;
3595 			cm->m_next = NULL;
3596 			if (pr->pr_domain->dom_externalize != NULL) {
3597 				error = (*pr->pr_domain->dom_externalize)
3598 				    (cm, controlp, flags);
3599 			} else if (controlp != NULL)
3600 				*controlp = cm;
3601 			else
3602 				m_freem(cm);
3603 			if (controlp != NULL) {
3604 				while (*controlp != NULL)
3605 					controlp = &(*controlp)->m_next;
3606 			}
3607 			cm = cmn;
3608 		}
3609 	}
3610 	KASSERT(m == NULL || m->m_type == MT_DATA,
3611 	    ("soreceive_dgram: !data"));
3612 	while (m != NULL && uio->uio_resid > 0) {
3613 		len = uio->uio_resid;
3614 		if (len > m->m_len)
3615 			len = m->m_len;
3616 		error = uiomove(mtod(m, char *), (int)len, uio);
3617 		if (error) {
3618 			m_freem(m);
3619 			return (error);
3620 		}
3621 		if (len == m->m_len)
3622 			m = m_free(m);
3623 		else {
3624 			m->m_data += len;
3625 			m->m_len -= len;
3626 		}
3627 	}
3628 	if (m != NULL) {
3629 		flags |= MSG_TRUNC;
3630 		m_freem(m);
3631 	}
3632 	if (flagsp != NULL)
3633 		*flagsp |= flags;
3634 	return (0);
3635 }
3636 
3637 int
3638 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3639     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3640 {
3641 	int error;
3642 
3643 	CURVNET_SET(so->so_vnet);
3644 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3645 	CURVNET_RESTORE();
3646 	return (error);
3647 }
3648 
3649 int
3650 soshutdown(struct socket *so, enum shutdown_how how)
3651 {
3652 	int error;
3653 
3654 	CURVNET_SET(so->so_vnet);
3655 	error = so->so_proto->pr_shutdown(so, how);
3656 	CURVNET_RESTORE();
3657 
3658 	return (error);
3659 }
3660 
3661 /*
3662  * Used by several pr_shutdown implementations that use generic socket buffers.
3663  */
3664 void
3665 sorflush(struct socket *so)
3666 {
3667 	int error;
3668 
3669 	VNET_SO_ASSERT(so);
3670 
3671 	/*
3672 	 * Dislodge threads currently blocked in receive and wait to acquire
3673 	 * a lock against other simultaneous readers before clearing the
3674 	 * socket buffer.  Don't let our acquire be interrupted by a signal
3675 	 * despite any existing socket disposition on interruptable waiting.
3676 	 *
3677 	 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3678 	 * methods that read the top of the socket buffer without acquisition
3679 	 * of the socket buffer mutex, assuming that top of the buffer
3680 	 * exclusively belongs to the read(2) syscall.  This is handy when
3681 	 * performing MSG_PEEK.
3682 	 */
3683 	socantrcvmore(so);
3684 
3685 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3686 	if (error != 0) {
3687 		KASSERT(SOLISTENING(so),
3688 		    ("%s: soiolock(%p) failed", __func__, so));
3689 		return;
3690 	}
3691 
3692 	sbrelease(so, SO_RCV);
3693 	SOCK_IO_RECV_UNLOCK(so);
3694 
3695 }
3696 
3697 int
3698 sosetfib(struct socket *so, int fibnum)
3699 {
3700 	if (fibnum < 0 || fibnum >= rt_numfibs)
3701 		return (EINVAL);
3702 
3703 	SOCK_LOCK(so);
3704 	so->so_fibnum = fibnum;
3705 	SOCK_UNLOCK(so);
3706 
3707 	return (0);
3708 }
3709 
3710 #ifdef SOCKET_HHOOK
3711 /*
3712  * Wrapper for Socket established helper hook.
3713  * Parameters: socket, context of the hook point, hook id.
3714  */
3715 static inline int
3716 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3717 {
3718 	struct socket_hhook_data hhook_data = {
3719 		.so = so,
3720 		.hctx = hctx,
3721 		.m = NULL,
3722 		.status = 0
3723 	};
3724 
3725 	CURVNET_SET(so->so_vnet);
3726 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3727 	CURVNET_RESTORE();
3728 
3729 	/* Ugly but needed, since hhooks return void for now */
3730 	return (hhook_data.status);
3731 }
3732 #endif
3733 
3734 /*
3735  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3736  * additional variant to handle the case where the option value needs to be
3737  * some kind of integer, but not a specific size.  In addition to their use
3738  * here, these functions are also called by the protocol-level pr_ctloutput()
3739  * routines.
3740  */
3741 int
3742 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3743 {
3744 	size_t	valsize;
3745 
3746 	/*
3747 	 * If the user gives us more than we wanted, we ignore it, but if we
3748 	 * don't get the minimum length the caller wants, we return EINVAL.
3749 	 * On success, sopt->sopt_valsize is set to however much we actually
3750 	 * retrieved.
3751 	 */
3752 	if ((valsize = sopt->sopt_valsize) < minlen)
3753 		return EINVAL;
3754 	if (valsize > len)
3755 		sopt->sopt_valsize = valsize = len;
3756 
3757 	if (sopt->sopt_td != NULL)
3758 		return (copyin(sopt->sopt_val, buf, valsize));
3759 
3760 	bcopy(sopt->sopt_val, buf, valsize);
3761 	return (0);
3762 }
3763 
3764 /*
3765  * Kernel version of setsockopt(2).
3766  *
3767  * XXX: optlen is size_t, not socklen_t
3768  */
3769 int
3770 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3771     size_t optlen)
3772 {
3773 	struct sockopt sopt;
3774 
3775 	sopt.sopt_level = level;
3776 	sopt.sopt_name = optname;
3777 	sopt.sopt_dir = SOPT_SET;
3778 	sopt.sopt_val = optval;
3779 	sopt.sopt_valsize = optlen;
3780 	sopt.sopt_td = NULL;
3781 	return (sosetopt(so, &sopt));
3782 }
3783 
3784 int
3785 sosetopt(struct socket *so, struct sockopt *sopt)
3786 {
3787 	int	error, optval;
3788 	struct	linger l;
3789 	struct	timeval tv;
3790 	sbintime_t val, *valp;
3791 	uint32_t val32;
3792 #ifdef MAC
3793 	struct mac extmac;
3794 #endif
3795 
3796 	CURVNET_SET(so->so_vnet);
3797 	error = 0;
3798 	if (sopt->sopt_level != SOL_SOCKET) {
3799 		if (so->so_proto->pr_ctloutput != NULL)
3800 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3801 		else
3802 			error = ENOPROTOOPT;
3803 	} else {
3804 		switch (sopt->sopt_name) {
3805 		case SO_ACCEPTFILTER:
3806 			error = accept_filt_setopt(so, sopt);
3807 			if (error)
3808 				goto bad;
3809 			break;
3810 
3811 		case SO_LINGER:
3812 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3813 			if (error)
3814 				goto bad;
3815 			if (l.l_linger < 0 ||
3816 			    l.l_linger > USHRT_MAX ||
3817 			    l.l_linger > (INT_MAX / hz)) {
3818 				error = EDOM;
3819 				goto bad;
3820 			}
3821 			SOCK_LOCK(so);
3822 			so->so_linger = l.l_linger;
3823 			if (l.l_onoff)
3824 				so->so_options |= SO_LINGER;
3825 			else
3826 				so->so_options &= ~SO_LINGER;
3827 			SOCK_UNLOCK(so);
3828 			break;
3829 
3830 		case SO_DEBUG:
3831 		case SO_KEEPALIVE:
3832 		case SO_DONTROUTE:
3833 		case SO_USELOOPBACK:
3834 		case SO_BROADCAST:
3835 		case SO_REUSEADDR:
3836 		case SO_REUSEPORT:
3837 		case SO_REUSEPORT_LB:
3838 		case SO_OOBINLINE:
3839 		case SO_TIMESTAMP:
3840 		case SO_BINTIME:
3841 		case SO_NOSIGPIPE:
3842 		case SO_NO_DDP:
3843 		case SO_NO_OFFLOAD:
3844 		case SO_RERROR:
3845 			error = sooptcopyin(sopt, &optval, sizeof optval,
3846 			    sizeof optval);
3847 			if (error)
3848 				goto bad;
3849 			SOCK_LOCK(so);
3850 			if (optval)
3851 				so->so_options |= sopt->sopt_name;
3852 			else
3853 				so->so_options &= ~sopt->sopt_name;
3854 			SOCK_UNLOCK(so);
3855 			break;
3856 
3857 		case SO_SETFIB:
3858 			error = so->so_proto->pr_ctloutput(so, sopt);
3859 			break;
3860 
3861 		case SO_USER_COOKIE:
3862 			error = sooptcopyin(sopt, &val32, sizeof val32,
3863 			    sizeof val32);
3864 			if (error)
3865 				goto bad;
3866 			so->so_user_cookie = val32;
3867 			break;
3868 
3869 		case SO_SNDBUF:
3870 		case SO_RCVBUF:
3871 		case SO_SNDLOWAT:
3872 		case SO_RCVLOWAT:
3873 			error = so->so_proto->pr_setsbopt(so, sopt);
3874 			if (error)
3875 				goto bad;
3876 			break;
3877 
3878 		case SO_SNDTIMEO:
3879 		case SO_RCVTIMEO:
3880 #ifdef COMPAT_FREEBSD32
3881 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3882 				struct timeval32 tv32;
3883 
3884 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3885 				    sizeof tv32);
3886 				CP(tv32, tv, tv_sec);
3887 				CP(tv32, tv, tv_usec);
3888 			} else
3889 #endif
3890 				error = sooptcopyin(sopt, &tv, sizeof tv,
3891 				    sizeof tv);
3892 			if (error)
3893 				goto bad;
3894 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3895 			    tv.tv_usec >= 1000000) {
3896 				error = EDOM;
3897 				goto bad;
3898 			}
3899 			if (tv.tv_sec > INT32_MAX)
3900 				val = SBT_MAX;
3901 			else
3902 				val = tvtosbt(tv);
3903 			SOCK_LOCK(so);
3904 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3905 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3906 			    &so->so_snd.sb_timeo) :
3907 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3908 			    &so->so_rcv.sb_timeo);
3909 			*valp = val;
3910 			SOCK_UNLOCK(so);
3911 			break;
3912 
3913 		case SO_LABEL:
3914 #ifdef MAC
3915 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3916 			    sizeof extmac);
3917 			if (error)
3918 				goto bad;
3919 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3920 			    so, &extmac);
3921 #else
3922 			error = EOPNOTSUPP;
3923 #endif
3924 			break;
3925 
3926 		case SO_TS_CLOCK:
3927 			error = sooptcopyin(sopt, &optval, sizeof optval,
3928 			    sizeof optval);
3929 			if (error)
3930 				goto bad;
3931 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3932 				error = EINVAL;
3933 				goto bad;
3934 			}
3935 			so->so_ts_clock = optval;
3936 			break;
3937 
3938 		case SO_MAX_PACING_RATE:
3939 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3940 			    sizeof(val32));
3941 			if (error)
3942 				goto bad;
3943 			so->so_max_pacing_rate = val32;
3944 			break;
3945 
3946 		case SO_SPLICE: {
3947 			struct splice splice;
3948 
3949 #ifdef COMPAT_FREEBSD32
3950 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3951 				struct splice32 splice32;
3952 
3953 				error = sooptcopyin(sopt, &splice32,
3954 				    sizeof(splice32), sizeof(splice32));
3955 				if (error == 0) {
3956 					splice.sp_fd = splice32.sp_fd;
3957 					splice.sp_max = splice32.sp_max;
3958 					CP(splice32.sp_idle, splice.sp_idle,
3959 					    tv_sec);
3960 					CP(splice32.sp_idle, splice.sp_idle,
3961 					    tv_usec);
3962 				}
3963 			} else
3964 #endif
3965 			{
3966 				error = sooptcopyin(sopt, &splice,
3967 				    sizeof(splice), sizeof(splice));
3968 			}
3969 			if (error)
3970 				goto bad;
3971 #ifdef KTRACE
3972 			if (KTRPOINT(curthread, KTR_STRUCT))
3973 				ktrsplice(&splice);
3974 #endif
3975 
3976 			error = splice_init();
3977 			if (error != 0)
3978 				goto bad;
3979 
3980 			if (splice.sp_fd >= 0) {
3981 				struct file *fp;
3982 				struct socket *so2;
3983 
3984 				if (!cap_rights_contains(sopt->sopt_rights,
3985 				    &cap_recv_rights)) {
3986 					error = ENOTCAPABLE;
3987 					goto bad;
3988 				}
3989 				error = getsock(sopt->sopt_td, splice.sp_fd,
3990 				    &cap_send_rights, &fp);
3991 				if (error != 0)
3992 					goto bad;
3993 				so2 = fp->f_data;
3994 
3995 				error = so_splice(so, so2, &splice);
3996 				fdrop(fp, sopt->sopt_td);
3997 			} else {
3998 				error = so_unsplice(so, false);
3999 			}
4000 			break;
4001 		}
4002 		default:
4003 #ifdef SOCKET_HHOOK
4004 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4005 				error = hhook_run_socket(so, sopt,
4006 				    HHOOK_SOCKET_OPT);
4007 			else
4008 #endif
4009 				error = ENOPROTOOPT;
4010 			break;
4011 		}
4012 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4013 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
4014 	}
4015 bad:
4016 	CURVNET_RESTORE();
4017 	return (error);
4018 }
4019 
4020 /*
4021  * Helper routine for getsockopt.
4022  */
4023 int
4024 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4025 {
4026 	int	error;
4027 	size_t	valsize;
4028 
4029 	error = 0;
4030 
4031 	/*
4032 	 * Documented get behavior is that we always return a value, possibly
4033 	 * truncated to fit in the user's buffer.  Traditional behavior is
4034 	 * that we always tell the user precisely how much we copied, rather
4035 	 * than something useful like the total amount we had available for
4036 	 * her.  Note that this interface is not idempotent; the entire
4037 	 * answer must be generated ahead of time.
4038 	 */
4039 	valsize = min(len, sopt->sopt_valsize);
4040 	sopt->sopt_valsize = valsize;
4041 	if (sopt->sopt_val != NULL) {
4042 		if (sopt->sopt_td != NULL)
4043 			error = copyout(buf, sopt->sopt_val, valsize);
4044 		else
4045 			bcopy(buf, sopt->sopt_val, valsize);
4046 	}
4047 	return (error);
4048 }
4049 
4050 int
4051 sogetopt(struct socket *so, struct sockopt *sopt)
4052 {
4053 	int	error, optval;
4054 	struct	linger l;
4055 	struct	timeval tv;
4056 #ifdef MAC
4057 	struct mac extmac;
4058 #endif
4059 
4060 	CURVNET_SET(so->so_vnet);
4061 	error = 0;
4062 	if (sopt->sopt_level != SOL_SOCKET) {
4063 		if (so->so_proto->pr_ctloutput != NULL)
4064 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
4065 		else
4066 			error = ENOPROTOOPT;
4067 		CURVNET_RESTORE();
4068 		return (error);
4069 	} else {
4070 		switch (sopt->sopt_name) {
4071 		case SO_ACCEPTFILTER:
4072 			error = accept_filt_getopt(so, sopt);
4073 			break;
4074 
4075 		case SO_LINGER:
4076 			SOCK_LOCK(so);
4077 			l.l_onoff = so->so_options & SO_LINGER;
4078 			l.l_linger = so->so_linger;
4079 			SOCK_UNLOCK(so);
4080 			error = sooptcopyout(sopt, &l, sizeof l);
4081 			break;
4082 
4083 		case SO_USELOOPBACK:
4084 		case SO_DONTROUTE:
4085 		case SO_DEBUG:
4086 		case SO_KEEPALIVE:
4087 		case SO_REUSEADDR:
4088 		case SO_REUSEPORT:
4089 		case SO_REUSEPORT_LB:
4090 		case SO_BROADCAST:
4091 		case SO_OOBINLINE:
4092 		case SO_ACCEPTCONN:
4093 		case SO_TIMESTAMP:
4094 		case SO_BINTIME:
4095 		case SO_NOSIGPIPE:
4096 		case SO_NO_DDP:
4097 		case SO_NO_OFFLOAD:
4098 		case SO_RERROR:
4099 			optval = so->so_options & sopt->sopt_name;
4100 integer:
4101 			error = sooptcopyout(sopt, &optval, sizeof optval);
4102 			break;
4103 
4104 		case SO_FIB:
4105 			SOCK_LOCK(so);
4106 			optval = so->so_fibnum;
4107 			SOCK_UNLOCK(so);
4108 			goto integer;
4109 
4110 		case SO_DOMAIN:
4111 			optval = so->so_proto->pr_domain->dom_family;
4112 			goto integer;
4113 
4114 		case SO_TYPE:
4115 			optval = so->so_type;
4116 			goto integer;
4117 
4118 		case SO_PROTOCOL:
4119 			optval = so->so_proto->pr_protocol;
4120 			goto integer;
4121 
4122 		case SO_ERROR:
4123 			SOCK_LOCK(so);
4124 			if (so->so_error) {
4125 				optval = so->so_error;
4126 				so->so_error = 0;
4127 			} else {
4128 				optval = so->so_rerror;
4129 				so->so_rerror = 0;
4130 			}
4131 			SOCK_UNLOCK(so);
4132 			goto integer;
4133 
4134 		case SO_SNDBUF:
4135 			SOCK_LOCK(so);
4136 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4137 			    so->so_snd.sb_hiwat;
4138 			SOCK_UNLOCK(so);
4139 			goto integer;
4140 
4141 		case SO_RCVBUF:
4142 			SOCK_LOCK(so);
4143 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4144 			    so->so_rcv.sb_hiwat;
4145 			SOCK_UNLOCK(so);
4146 			goto integer;
4147 
4148 		case SO_SNDLOWAT:
4149 			SOCK_LOCK(so);
4150 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4151 			    so->so_snd.sb_lowat;
4152 			SOCK_UNLOCK(so);
4153 			goto integer;
4154 
4155 		case SO_RCVLOWAT:
4156 			SOCK_LOCK(so);
4157 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4158 			    so->so_rcv.sb_lowat;
4159 			SOCK_UNLOCK(so);
4160 			goto integer;
4161 
4162 		case SO_SNDTIMEO:
4163 		case SO_RCVTIMEO:
4164 			SOCK_LOCK(so);
4165 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4166 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4167 			    so->so_snd.sb_timeo) :
4168 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4169 			    so->so_rcv.sb_timeo));
4170 			SOCK_UNLOCK(so);
4171 #ifdef COMPAT_FREEBSD32
4172 			if (SV_CURPROC_FLAG(SV_ILP32)) {
4173 				struct timeval32 tv32;
4174 
4175 				CP(tv, tv32, tv_sec);
4176 				CP(tv, tv32, tv_usec);
4177 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
4178 			} else
4179 #endif
4180 				error = sooptcopyout(sopt, &tv, sizeof tv);
4181 			break;
4182 
4183 		case SO_LABEL:
4184 #ifdef MAC
4185 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4186 			    sizeof(extmac));
4187 			if (error)
4188 				goto bad;
4189 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4190 			    so, &extmac);
4191 			if (error)
4192 				goto bad;
4193 			/* Don't copy out extmac, it is unchanged. */
4194 #else
4195 			error = EOPNOTSUPP;
4196 #endif
4197 			break;
4198 
4199 		case SO_PEERLABEL:
4200 #ifdef MAC
4201 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4202 			    sizeof(extmac));
4203 			if (error)
4204 				goto bad;
4205 			error = mac_getsockopt_peerlabel(
4206 			    sopt->sopt_td->td_ucred, so, &extmac);
4207 			if (error)
4208 				goto bad;
4209 			/* Don't copy out extmac, it is unchanged. */
4210 #else
4211 			error = EOPNOTSUPP;
4212 #endif
4213 			break;
4214 
4215 		case SO_LISTENQLIMIT:
4216 			SOCK_LOCK(so);
4217 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4218 			SOCK_UNLOCK(so);
4219 			goto integer;
4220 
4221 		case SO_LISTENQLEN:
4222 			SOCK_LOCK(so);
4223 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
4224 			SOCK_UNLOCK(so);
4225 			goto integer;
4226 
4227 		case SO_LISTENINCQLEN:
4228 			SOCK_LOCK(so);
4229 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4230 			SOCK_UNLOCK(so);
4231 			goto integer;
4232 
4233 		case SO_TS_CLOCK:
4234 			optval = so->so_ts_clock;
4235 			goto integer;
4236 
4237 		case SO_MAX_PACING_RATE:
4238 			optval = so->so_max_pacing_rate;
4239 			goto integer;
4240 
4241 		case SO_SPLICE: {
4242 			off_t n;
4243 
4244 			/*
4245 			 * Acquire the I/O lock to serialize with
4246 			 * so_splice_xfer().  This is not required for
4247 			 * correctness, but makes testing simpler: once a byte
4248 			 * has been transmitted to the sink and observed (e.g.,
4249 			 * by reading from the socket to which the sink is
4250 			 * connected), a subsequent getsockopt(SO_SPLICE) will
4251 			 * return an up-to-date value.
4252 			 */
4253 			error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4254 			if (error != 0)
4255 				goto bad;
4256 			SOCK_LOCK(so);
4257 			if (SOLISTENING(so)) {
4258 				n = 0;
4259 			} else {
4260 				n = so->so_splice_sent;
4261 			}
4262 			SOCK_UNLOCK(so);
4263 			SOCK_IO_RECV_UNLOCK(so);
4264 			error = sooptcopyout(sopt, &n, sizeof(n));
4265 			break;
4266 		}
4267 
4268 		default:
4269 #ifdef SOCKET_HHOOK
4270 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4271 				error = hhook_run_socket(so, sopt,
4272 				    HHOOK_SOCKET_OPT);
4273 			else
4274 #endif
4275 				error = ENOPROTOOPT;
4276 			break;
4277 		}
4278 	}
4279 bad:
4280 	CURVNET_RESTORE();
4281 	return (error);
4282 }
4283 
4284 int
4285 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4286 {
4287 	struct mbuf *m, *m_prev;
4288 	int sopt_size = sopt->sopt_valsize;
4289 
4290 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4291 	if (m == NULL)
4292 		return ENOBUFS;
4293 	if (sopt_size > MLEN) {
4294 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4295 		if ((m->m_flags & M_EXT) == 0) {
4296 			m_free(m);
4297 			return ENOBUFS;
4298 		}
4299 		m->m_len = min(MCLBYTES, sopt_size);
4300 	} else {
4301 		m->m_len = min(MLEN, sopt_size);
4302 	}
4303 	sopt_size -= m->m_len;
4304 	*mp = m;
4305 	m_prev = m;
4306 
4307 	while (sopt_size) {
4308 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4309 		if (m == NULL) {
4310 			m_freem(*mp);
4311 			return ENOBUFS;
4312 		}
4313 		if (sopt_size > MLEN) {
4314 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4315 			    M_NOWAIT);
4316 			if ((m->m_flags & M_EXT) == 0) {
4317 				m_freem(m);
4318 				m_freem(*mp);
4319 				return ENOBUFS;
4320 			}
4321 			m->m_len = min(MCLBYTES, sopt_size);
4322 		} else {
4323 			m->m_len = min(MLEN, sopt_size);
4324 		}
4325 		sopt_size -= m->m_len;
4326 		m_prev->m_next = m;
4327 		m_prev = m;
4328 	}
4329 	return (0);
4330 }
4331 
4332 int
4333 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4334 {
4335 	struct mbuf *m0 = m;
4336 
4337 	if (sopt->sopt_val == NULL)
4338 		return (0);
4339 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4340 		if (sopt->sopt_td != NULL) {
4341 			int error;
4342 
4343 			error = copyin(sopt->sopt_val, mtod(m, char *),
4344 			    m->m_len);
4345 			if (error != 0) {
4346 				m_freem(m0);
4347 				return(error);
4348 			}
4349 		} else
4350 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4351 		sopt->sopt_valsize -= m->m_len;
4352 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4353 		m = m->m_next;
4354 	}
4355 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4356 		panic("ip6_sooptmcopyin");
4357 	return (0);
4358 }
4359 
4360 int
4361 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4362 {
4363 	struct mbuf *m0 = m;
4364 	size_t valsize = 0;
4365 
4366 	if (sopt->sopt_val == NULL)
4367 		return (0);
4368 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4369 		if (sopt->sopt_td != NULL) {
4370 			int error;
4371 
4372 			error = copyout(mtod(m, char *), sopt->sopt_val,
4373 			    m->m_len);
4374 			if (error != 0) {
4375 				m_freem(m0);
4376 				return(error);
4377 			}
4378 		} else
4379 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4380 		sopt->sopt_valsize -= m->m_len;
4381 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4382 		valsize += m->m_len;
4383 		m = m->m_next;
4384 	}
4385 	if (m != NULL) {
4386 		/* enough soopt buffer should be given from user-land */
4387 		m_freem(m0);
4388 		return(EINVAL);
4389 	}
4390 	sopt->sopt_valsize = valsize;
4391 	return (0);
4392 }
4393 
4394 /*
4395  * sohasoutofband(): protocol notifies socket layer of the arrival of new
4396  * out-of-band data, which will then notify socket consumers.
4397  */
4398 void
4399 sohasoutofband(struct socket *so)
4400 {
4401 
4402 	if (so->so_sigio != NULL)
4403 		pgsigio(&so->so_sigio, SIGURG, 0);
4404 	selwakeuppri(&so->so_rdsel, PSOCK);
4405 }
4406 
4407 int
4408 sopoll_generic(struct socket *so, int events, struct thread *td)
4409 {
4410 	int revents;
4411 
4412 	SOCK_LOCK(so);
4413 	if (SOLISTENING(so)) {
4414 		if (!(events & (POLLIN | POLLRDNORM)))
4415 			revents = 0;
4416 		else if (!TAILQ_EMPTY(&so->sol_comp))
4417 			revents = events & (POLLIN | POLLRDNORM);
4418 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4419 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4420 		else {
4421 			selrecord(td, &so->so_rdsel);
4422 			revents = 0;
4423 		}
4424 	} else {
4425 		revents = 0;
4426 		SOCK_SENDBUF_LOCK(so);
4427 		SOCK_RECVBUF_LOCK(so);
4428 		if (events & (POLLIN | POLLRDNORM))
4429 			if (soreadabledata(so) && !isspliced(so))
4430 				revents |= events & (POLLIN | POLLRDNORM);
4431 		if (events & (POLLOUT | POLLWRNORM))
4432 			if (sowriteable(so) && !issplicedback(so))
4433 				revents |= events & (POLLOUT | POLLWRNORM);
4434 		if (events & (POLLPRI | POLLRDBAND))
4435 			if (so->so_oobmark ||
4436 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
4437 				revents |= events & (POLLPRI | POLLRDBAND);
4438 		if ((events & POLLINIGNEOF) == 0) {
4439 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4440 				revents |= events & (POLLIN | POLLRDNORM);
4441 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4442 					revents |= POLLHUP;
4443 			}
4444 		}
4445 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4446 			revents |= events & POLLRDHUP;
4447 		if (revents == 0) {
4448 			if (events &
4449 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4450 				selrecord(td, &so->so_rdsel);
4451 				so->so_rcv.sb_flags |= SB_SEL;
4452 			}
4453 			if (events & (POLLOUT | POLLWRNORM)) {
4454 				selrecord(td, &so->so_wrsel);
4455 				so->so_snd.sb_flags |= SB_SEL;
4456 			}
4457 		}
4458 		SOCK_RECVBUF_UNLOCK(so);
4459 		SOCK_SENDBUF_UNLOCK(so);
4460 	}
4461 	SOCK_UNLOCK(so);
4462 	return (revents);
4463 }
4464 
4465 int
4466 soo_kqfilter(struct file *fp, struct knote *kn)
4467 {
4468 	struct socket *so = kn->kn_fp->f_data;
4469 	struct sockbuf *sb;
4470 	sb_which which;
4471 	struct knlist *knl;
4472 
4473 	switch (kn->kn_filter) {
4474 	case EVFILT_READ:
4475 		kn->kn_fop = &soread_filtops;
4476 		knl = &so->so_rdsel.si_note;
4477 		sb = &so->so_rcv;
4478 		which = SO_RCV;
4479 		break;
4480 	case EVFILT_WRITE:
4481 		kn->kn_fop = &sowrite_filtops;
4482 		knl = &so->so_wrsel.si_note;
4483 		sb = &so->so_snd;
4484 		which = SO_SND;
4485 		break;
4486 	case EVFILT_EMPTY:
4487 		kn->kn_fop = &soempty_filtops;
4488 		knl = &so->so_wrsel.si_note;
4489 		sb = &so->so_snd;
4490 		which = SO_SND;
4491 		break;
4492 	default:
4493 		return (EINVAL);
4494 	}
4495 
4496 	SOCK_LOCK(so);
4497 	if (SOLISTENING(so)) {
4498 		knlist_add(knl, kn, 1);
4499 	} else {
4500 		SOCK_BUF_LOCK(so, which);
4501 		knlist_add(knl, kn, 1);
4502 		sb->sb_flags |= SB_KNOTE;
4503 		SOCK_BUF_UNLOCK(so, which);
4504 	}
4505 	SOCK_UNLOCK(so);
4506 	return (0);
4507 }
4508 
4509 static void
4510 filt_sordetach(struct knote *kn)
4511 {
4512 	struct socket *so = kn->kn_fp->f_data;
4513 
4514 	so_rdknl_lock(so);
4515 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
4516 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4517 		so->so_rcv.sb_flags &= ~SB_KNOTE;
4518 	so_rdknl_unlock(so);
4519 }
4520 
4521 /*ARGSUSED*/
4522 static int
4523 filt_soread(struct knote *kn, long hint)
4524 {
4525 	struct socket *so;
4526 
4527 	so = kn->kn_fp->f_data;
4528 
4529 	if (SOLISTENING(so)) {
4530 		SOCK_LOCK_ASSERT(so);
4531 		kn->kn_data = so->sol_qlen;
4532 		if (so->so_error) {
4533 			kn->kn_flags |= EV_EOF;
4534 			kn->kn_fflags = so->so_error;
4535 			return (1);
4536 		}
4537 		return (!TAILQ_EMPTY(&so->sol_comp));
4538 	}
4539 
4540 	if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4541 		return (0);
4542 
4543 	SOCK_RECVBUF_LOCK_ASSERT(so);
4544 
4545 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4546 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4547 		kn->kn_flags |= EV_EOF;
4548 		kn->kn_fflags = so->so_error;
4549 		return (1);
4550 	} else if (so->so_error || so->so_rerror)
4551 		return (1);
4552 
4553 	if (kn->kn_sfflags & NOTE_LOWAT) {
4554 		if (kn->kn_data >= kn->kn_sdata)
4555 			return (1);
4556 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4557 		return (1);
4558 
4559 #ifdef SOCKET_HHOOK
4560 	/* This hook returning non-zero indicates an event, not error */
4561 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4562 #else
4563 	return (0);
4564 #endif
4565 }
4566 
4567 static void
4568 filt_sowdetach(struct knote *kn)
4569 {
4570 	struct socket *so = kn->kn_fp->f_data;
4571 
4572 	so_wrknl_lock(so);
4573 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
4574 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4575 		so->so_snd.sb_flags &= ~SB_KNOTE;
4576 	so_wrknl_unlock(so);
4577 }
4578 
4579 /*ARGSUSED*/
4580 static int
4581 filt_sowrite(struct knote *kn, long hint)
4582 {
4583 	struct socket *so;
4584 
4585 	so = kn->kn_fp->f_data;
4586 
4587 	if (SOLISTENING(so))
4588 		return (0);
4589 
4590 	SOCK_SENDBUF_LOCK_ASSERT(so);
4591 	kn->kn_data = sbspace(&so->so_snd);
4592 
4593 #ifdef SOCKET_HHOOK
4594 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4595 #endif
4596 
4597 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4598 		kn->kn_flags |= EV_EOF;
4599 		kn->kn_fflags = so->so_error;
4600 		return (1);
4601 	} else if (so->so_error)	/* temporary udp error */
4602 		return (1);
4603 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4604 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
4605 		return (0);
4606 	else if (kn->kn_sfflags & NOTE_LOWAT)
4607 		return (kn->kn_data >= kn->kn_sdata);
4608 	else
4609 		return (kn->kn_data >= so->so_snd.sb_lowat);
4610 }
4611 
4612 static int
4613 filt_soempty(struct knote *kn, long hint)
4614 {
4615 	struct socket *so;
4616 
4617 	so = kn->kn_fp->f_data;
4618 
4619 	if (SOLISTENING(so))
4620 		return (1);
4621 
4622 	SOCK_SENDBUF_LOCK_ASSERT(so);
4623 	kn->kn_data = sbused(&so->so_snd);
4624 
4625 	if (kn->kn_data == 0)
4626 		return (1);
4627 	else
4628 		return (0);
4629 }
4630 
4631 int
4632 socheckuid(struct socket *so, uid_t uid)
4633 {
4634 
4635 	if (so == NULL)
4636 		return (EPERM);
4637 	if (so->so_cred->cr_uid != uid)
4638 		return (EPERM);
4639 	return (0);
4640 }
4641 
4642 /*
4643  * These functions are used by protocols to notify the socket layer (and its
4644  * consumers) of state changes in the sockets driven by protocol-side events.
4645  */
4646 
4647 /*
4648  * Procedures to manipulate state flags of socket and do appropriate wakeups.
4649  *
4650  * Normal sequence from the active (originating) side is that
4651  * soisconnecting() is called during processing of connect() call, resulting
4652  * in an eventual call to soisconnected() if/when the connection is
4653  * established.  When the connection is torn down soisdisconnecting() is
4654  * called during processing of disconnect() call, and soisdisconnected() is
4655  * called when the connection to the peer is totally severed.  The semantics
4656  * of these routines are such that connectionless protocols can call
4657  * soisconnected() and soisdisconnected() only, bypassing the in-progress
4658  * calls when setting up a ``connection'' takes no time.
4659  *
4660  * From the passive side, a socket is created with two queues of sockets:
4661  * so_incomp for connections in progress and so_comp for connections already
4662  * made and awaiting user acceptance.  As a protocol is preparing incoming
4663  * connections, it creates a socket structure queued on so_incomp by calling
4664  * sonewconn().  When the connection is established, soisconnected() is
4665  * called, and transfers the socket structure to so_comp, making it available
4666  * to accept().
4667  *
4668  * If a socket is closed with sockets on either so_incomp or so_comp, these
4669  * sockets are dropped.
4670  *
4671  * If higher-level protocols are implemented in the kernel, the wakeups done
4672  * here will sometimes cause software-interrupt process scheduling.
4673  */
4674 void
4675 soisconnecting(struct socket *so)
4676 {
4677 
4678 	SOCK_LOCK(so);
4679 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4680 	so->so_state |= SS_ISCONNECTING;
4681 	SOCK_UNLOCK(so);
4682 }
4683 
4684 void
4685 soisconnected(struct socket *so)
4686 {
4687 	bool last __diagused;
4688 
4689 	SOCK_LOCK(so);
4690 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4691 	so->so_state |= SS_ISCONNECTED;
4692 
4693 	if (so->so_qstate == SQ_INCOMP) {
4694 		struct socket *head = so->so_listen;
4695 		int ret;
4696 
4697 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4698 		/*
4699 		 * Promoting a socket from incomplete queue to complete, we
4700 		 * need to go through reverse order of locking.  We first do
4701 		 * trylock, and if that doesn't succeed, we go the hard way
4702 		 * leaving a reference and rechecking consistency after proper
4703 		 * locking.
4704 		 */
4705 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4706 			soref(head);
4707 			SOCK_UNLOCK(so);
4708 			SOLISTEN_LOCK(head);
4709 			SOCK_LOCK(so);
4710 			if (__predict_false(head != so->so_listen)) {
4711 				/*
4712 				 * The socket went off the listen queue,
4713 				 * should be lost race to close(2) of sol.
4714 				 * The socket is about to soabort().
4715 				 */
4716 				SOCK_UNLOCK(so);
4717 				sorele_locked(head);
4718 				return;
4719 			}
4720 			last = refcount_release(&head->so_count);
4721 			KASSERT(!last, ("%s: released last reference for %p",
4722 			    __func__, head));
4723 		}
4724 again:
4725 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4726 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4727 			head->sol_incqlen--;
4728 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4729 			head->sol_qlen++;
4730 			so->so_qstate = SQ_COMP;
4731 			SOCK_UNLOCK(so);
4732 			solisten_wakeup(head);	/* unlocks */
4733 		} else {
4734 			SOCK_RECVBUF_LOCK(so);
4735 			soupcall_set(so, SO_RCV,
4736 			    head->sol_accept_filter->accf_callback,
4737 			    head->sol_accept_filter_arg);
4738 			so->so_options &= ~SO_ACCEPTFILTER;
4739 			ret = head->sol_accept_filter->accf_callback(so,
4740 			    head->sol_accept_filter_arg, M_NOWAIT);
4741 			if (ret == SU_ISCONNECTED) {
4742 				soupcall_clear(so, SO_RCV);
4743 				SOCK_RECVBUF_UNLOCK(so);
4744 				goto again;
4745 			}
4746 			SOCK_RECVBUF_UNLOCK(so);
4747 			SOCK_UNLOCK(so);
4748 			SOLISTEN_UNLOCK(head);
4749 		}
4750 		return;
4751 	}
4752 	SOCK_UNLOCK(so);
4753 	wakeup(&so->so_timeo);
4754 	sorwakeup(so);
4755 	sowwakeup(so);
4756 }
4757 
4758 void
4759 soisdisconnecting(struct socket *so)
4760 {
4761 
4762 	SOCK_LOCK(so);
4763 	so->so_state &= ~SS_ISCONNECTING;
4764 	so->so_state |= SS_ISDISCONNECTING;
4765 
4766 	if (!SOLISTENING(so)) {
4767 		SOCK_RECVBUF_LOCK(so);
4768 		socantrcvmore_locked(so);
4769 		SOCK_SENDBUF_LOCK(so);
4770 		socantsendmore_locked(so);
4771 	}
4772 	SOCK_UNLOCK(so);
4773 	wakeup(&so->so_timeo);
4774 }
4775 
4776 void
4777 soisdisconnected(struct socket *so)
4778 {
4779 
4780 	SOCK_LOCK(so);
4781 
4782 	/*
4783 	 * There is at least one reader of so_state that does not
4784 	 * acquire socket lock, namely soreceive_generic().  Ensure
4785 	 * that it never sees all flags that track connection status
4786 	 * cleared, by ordering the update with a barrier semantic of
4787 	 * our release thread fence.
4788 	 */
4789 	so->so_state |= SS_ISDISCONNECTED;
4790 	atomic_thread_fence_rel();
4791 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4792 
4793 	if (!SOLISTENING(so)) {
4794 		SOCK_UNLOCK(so);
4795 		SOCK_RECVBUF_LOCK(so);
4796 		socantrcvmore_locked(so);
4797 		SOCK_SENDBUF_LOCK(so);
4798 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4799 		socantsendmore_locked(so);
4800 	} else
4801 		SOCK_UNLOCK(so);
4802 	wakeup(&so->so_timeo);
4803 }
4804 
4805 int
4806 soiolock(struct socket *so, struct sx *sx, int flags)
4807 {
4808 	int error;
4809 
4810 	KASSERT((flags & SBL_VALID) == flags,
4811 	    ("soiolock: invalid flags %#x", flags));
4812 
4813 	if ((flags & SBL_WAIT) != 0) {
4814 		if ((flags & SBL_NOINTR) != 0) {
4815 			sx_xlock(sx);
4816 		} else {
4817 			error = sx_xlock_sig(sx);
4818 			if (error != 0)
4819 				return (error);
4820 		}
4821 	} else if (!sx_try_xlock(sx)) {
4822 		return (EWOULDBLOCK);
4823 	}
4824 
4825 	if (__predict_false(SOLISTENING(so))) {
4826 		sx_xunlock(sx);
4827 		return (ENOTCONN);
4828 	}
4829 	return (0);
4830 }
4831 
4832 void
4833 soiounlock(struct sx *sx)
4834 {
4835 	sx_xunlock(sx);
4836 }
4837 
4838 /*
4839  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4840  */
4841 struct sockaddr *
4842 sodupsockaddr(const struct sockaddr *sa, int mflags)
4843 {
4844 	struct sockaddr *sa2;
4845 
4846 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4847 	if (sa2)
4848 		bcopy(sa, sa2, sa->sa_len);
4849 	return sa2;
4850 }
4851 
4852 /*
4853  * Register per-socket destructor.
4854  */
4855 void
4856 sodtor_set(struct socket *so, so_dtor_t *func)
4857 {
4858 
4859 	SOCK_LOCK_ASSERT(so);
4860 	so->so_dtor = func;
4861 }
4862 
4863 /*
4864  * Register per-socket buffer upcalls.
4865  */
4866 void
4867 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4868 {
4869 	struct sockbuf *sb;
4870 
4871 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4872 
4873 	switch (which) {
4874 	case SO_RCV:
4875 		sb = &so->so_rcv;
4876 		break;
4877 	case SO_SND:
4878 		sb = &so->so_snd;
4879 		break;
4880 	}
4881 	SOCK_BUF_LOCK_ASSERT(so, which);
4882 	sb->sb_upcall = func;
4883 	sb->sb_upcallarg = arg;
4884 	sb->sb_flags |= SB_UPCALL;
4885 }
4886 
4887 void
4888 soupcall_clear(struct socket *so, sb_which which)
4889 {
4890 	struct sockbuf *sb;
4891 
4892 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4893 
4894 	switch (which) {
4895 	case SO_RCV:
4896 		sb = &so->so_rcv;
4897 		break;
4898 	case SO_SND:
4899 		sb = &so->so_snd;
4900 		break;
4901 	}
4902 	SOCK_BUF_LOCK_ASSERT(so, which);
4903 	KASSERT(sb->sb_upcall != NULL,
4904 	    ("%s: so %p no upcall to clear", __func__, so));
4905 	sb->sb_upcall = NULL;
4906 	sb->sb_upcallarg = NULL;
4907 	sb->sb_flags &= ~SB_UPCALL;
4908 }
4909 
4910 void
4911 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4912 {
4913 
4914 	SOLISTEN_LOCK_ASSERT(so);
4915 	so->sol_upcall = func;
4916 	so->sol_upcallarg = arg;
4917 }
4918 
4919 static void
4920 so_rdknl_lock(void *arg)
4921 {
4922 	struct socket *so = arg;
4923 
4924 retry:
4925 	if (SOLISTENING(so)) {
4926 		SOLISTEN_LOCK(so);
4927 	} else {
4928 		SOCK_RECVBUF_LOCK(so);
4929 		if (__predict_false(SOLISTENING(so))) {
4930 			SOCK_RECVBUF_UNLOCK(so);
4931 			goto retry;
4932 		}
4933 	}
4934 }
4935 
4936 static void
4937 so_rdknl_unlock(void *arg)
4938 {
4939 	struct socket *so = arg;
4940 
4941 	if (SOLISTENING(so))
4942 		SOLISTEN_UNLOCK(so);
4943 	else
4944 		SOCK_RECVBUF_UNLOCK(so);
4945 }
4946 
4947 static void
4948 so_rdknl_assert_lock(void *arg, int what)
4949 {
4950 	struct socket *so = arg;
4951 
4952 	if (what == LA_LOCKED) {
4953 		if (SOLISTENING(so))
4954 			SOLISTEN_LOCK_ASSERT(so);
4955 		else
4956 			SOCK_RECVBUF_LOCK_ASSERT(so);
4957 	} else {
4958 		if (SOLISTENING(so))
4959 			SOLISTEN_UNLOCK_ASSERT(so);
4960 		else
4961 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4962 	}
4963 }
4964 
4965 static void
4966 so_wrknl_lock(void *arg)
4967 {
4968 	struct socket *so = arg;
4969 
4970 retry:
4971 	if (SOLISTENING(so)) {
4972 		SOLISTEN_LOCK(so);
4973 	} else {
4974 		SOCK_SENDBUF_LOCK(so);
4975 		if (__predict_false(SOLISTENING(so))) {
4976 			SOCK_SENDBUF_UNLOCK(so);
4977 			goto retry;
4978 		}
4979 	}
4980 }
4981 
4982 static void
4983 so_wrknl_unlock(void *arg)
4984 {
4985 	struct socket *so = arg;
4986 
4987 	if (SOLISTENING(so))
4988 		SOLISTEN_UNLOCK(so);
4989 	else
4990 		SOCK_SENDBUF_UNLOCK(so);
4991 }
4992 
4993 static void
4994 so_wrknl_assert_lock(void *arg, int what)
4995 {
4996 	struct socket *so = arg;
4997 
4998 	if (what == LA_LOCKED) {
4999 		if (SOLISTENING(so))
5000 			SOLISTEN_LOCK_ASSERT(so);
5001 		else
5002 			SOCK_SENDBUF_LOCK_ASSERT(so);
5003 	} else {
5004 		if (SOLISTENING(so))
5005 			SOLISTEN_UNLOCK_ASSERT(so);
5006 		else
5007 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
5008 	}
5009 }
5010 
5011 /*
5012  * Create an external-format (``xsocket'') structure using the information in
5013  * the kernel-format socket structure pointed to by so.  This is done to
5014  * reduce the spew of irrelevant information over this interface, to isolate
5015  * user code from changes in the kernel structure, and potentially to provide
5016  * information-hiding if we decide that some of this information should be
5017  * hidden from users.
5018  */
5019 void
5020 sotoxsocket(struct socket *so, struct xsocket *xso)
5021 {
5022 
5023 	bzero(xso, sizeof(*xso));
5024 	xso->xso_len = sizeof *xso;
5025 	xso->xso_so = (uintptr_t)so;
5026 	xso->so_type = so->so_type;
5027 	xso->so_options = so->so_options;
5028 	xso->so_linger = so->so_linger;
5029 	xso->so_state = so->so_state;
5030 	xso->so_pcb = (uintptr_t)so->so_pcb;
5031 	xso->xso_protocol = so->so_proto->pr_protocol;
5032 	xso->xso_family = so->so_proto->pr_domain->dom_family;
5033 	xso->so_timeo = so->so_timeo;
5034 	xso->so_error = so->so_error;
5035 	xso->so_uid = so->so_cred->cr_uid;
5036 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5037 	SOCK_LOCK(so);
5038 	xso->so_fibnum = so->so_fibnum;
5039 	if (SOLISTENING(so)) {
5040 		xso->so_qlen = so->sol_qlen;
5041 		xso->so_incqlen = so->sol_incqlen;
5042 		xso->so_qlimit = so->sol_qlimit;
5043 		xso->so_oobmark = 0;
5044 	} else {
5045 		xso->so_state |= so->so_qstate;
5046 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5047 		xso->so_oobmark = so->so_oobmark;
5048 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5049 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5050 		if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5051 			xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5052 	}
5053 	SOCK_UNLOCK(so);
5054 }
5055 
5056 int
5057 so_options_get(const struct socket *so)
5058 {
5059 
5060 	return (so->so_options);
5061 }
5062 
5063 void
5064 so_options_set(struct socket *so, int val)
5065 {
5066 
5067 	so->so_options = val;
5068 }
5069 
5070 int
5071 so_error_get(const struct socket *so)
5072 {
5073 
5074 	return (so->so_error);
5075 }
5076 
5077 void
5078 so_error_set(struct socket *so, int val)
5079 {
5080 
5081 	so->so_error = val;
5082 }
5083