1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called. If pru_attach() returned an error,
51 * pru_detach() will not be called. Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll_generic() currently does not need a
100 * VNET context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t soo_kqfilter;
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 .f_isfd = 1,
198 .f_detach = filt_sowdetach,
199 .f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 .f_isfd = 1,
203 .f_detach = filt_sowdetach,
204 .f_event = filt_soempty,
205 };
206
207 so_gen_t so_gencnt; /* generation count for sockets */
208
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211
212 #define VNET_SO_ASSERT(so) \
213 VNET_ASSERT(curvnet != NULL, \
214 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define V_socket_hhh VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define __splice32_packed __packed
226 #else
227 #define __splice32_packed
228 #endif
229 struct splice32 {
230 int32_t sp_fd;
231 int64_t sp_max;
232 struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236
237 /*
238 * Limit on the number of connections in the listen queue waiting
239 * for accept(2).
240 * NB: The original sysctl somaxconn is still available but hidden
241 * to prevent confusion about the actual purpose of this number.
242 */
243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
244 #define V_somaxconn VNET(somaxconn)
245
246 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
248 {
249 int error;
250 u_int val;
251
252 val = V_somaxconn;
253 error = sysctl_handle_int(oidp, &val, 0, req);
254 if (error || !req->newptr )
255 return (error);
256
257 /*
258 * The purpose of the UINT_MAX / 3 limit, is so that the formula
259 * 3 * sol_qlimit / 2
260 * below, will not overflow.
261 */
262
263 if (val < 1 || val > UINT_MAX / 3)
264 return (EINVAL);
265
266 V_somaxconn = val;
267 return (0);
268 }
269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
270 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
271 sysctl_somaxconn, "IU",
272 "Maximum listen socket pending connection accept queue size");
273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
274 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
275 sizeof(u_int), sysctl_somaxconn, "IU",
276 "Maximum listen socket pending connection accept queue size (compat)");
277
278 static u_int numopensockets;
279 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
281 {
282 u_int val;
283
284 #ifdef VIMAGE
285 if(!IS_DEFAULT_VNET(curvnet))
286 val = curvnet->vnet_sockcnt;
287 else
288 #endif
289 val = numopensockets;
290 return (sysctl_handle_int(oidp, &val, 0, req));
291 }
292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
293 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
294 sysctl_numopensockets, "IU", "Number of open sockets");
295
296 /*
297 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
298 * so_gencnt field.
299 */
300 static struct mtx so_global_mtx;
301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
302
303 /*
304 * General IPC sysctl name space, used by sockets and a variety of other IPC
305 * types.
306 */
307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
308 "IPC");
309
310 /*
311 * Initialize the socket subsystem and set up the socket
312 * memory allocator.
313 */
314 static uma_zone_t socket_zone;
315 int maxsockets;
316
317 static void
socket_zone_change(void * tag)318 socket_zone_change(void *tag)
319 {
320
321 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
322 }
323
324 static int splice_init_state;
325 static struct sx splice_init_lock;
326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
327
328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
329 "Settings relating to the SO_SPLICE socket option");
330
331 static bool splice_receive_stream = true;
332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
333 &splice_receive_stream, 0,
334 "Use soreceive_stream() for stream splices");
335
336 static uma_zone_t splice_zone;
337 static struct proc *splice_proc;
338 struct splice_wq {
339 struct mtx mtx;
340 STAILQ_HEAD(, so_splice) head;
341 bool running;
342 } __aligned(CACHE_LINE_SIZE);
343 static struct splice_wq *splice_wq;
344 static uint32_t splice_index = 0;
345
346 static void so_splice_timeout(void *arg, int pending);
347 static void so_splice_xfer(struct so_splice *s);
348 static int so_unsplice(struct socket *so, bool timeout);
349
350 static void
splice_work_thread(void * ctx)351 splice_work_thread(void *ctx)
352 {
353 struct splice_wq *wq = ctx;
354 struct so_splice *s, *s_temp;
355 STAILQ_HEAD(, so_splice) local_head;
356 int cpu;
357
358 cpu = wq - splice_wq;
359 if (bootverbose)
360 printf("starting so_splice worker thread for CPU %d\n", cpu);
361
362 for (;;) {
363 mtx_lock(&wq->mtx);
364 while (STAILQ_EMPTY(&wq->head)) {
365 wq->running = false;
366 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
367 wq->running = true;
368 }
369 STAILQ_INIT(&local_head);
370 STAILQ_CONCAT(&local_head, &wq->head);
371 STAILQ_INIT(&wq->head);
372 mtx_unlock(&wq->mtx);
373 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
374 mtx_lock(&s->mtx);
375 CURVNET_SET(s->src->so_vnet);
376 so_splice_xfer(s);
377 CURVNET_RESTORE();
378 }
379 }
380 }
381
382 static void
so_splice_dispatch_async(struct so_splice * sp)383 so_splice_dispatch_async(struct so_splice *sp)
384 {
385 struct splice_wq *wq;
386 bool running;
387
388 wq = &splice_wq[sp->wq_index];
389 mtx_lock(&wq->mtx);
390 STAILQ_INSERT_TAIL(&wq->head, sp, next);
391 running = wq->running;
392 mtx_unlock(&wq->mtx);
393 if (!running)
394 wakeup(wq);
395 }
396
397 void
so_splice_dispatch(struct so_splice * sp)398 so_splice_dispatch(struct so_splice *sp)
399 {
400 mtx_assert(&sp->mtx, MA_OWNED);
401
402 if (sp->state != SPLICE_IDLE) {
403 mtx_unlock(&sp->mtx);
404 } else {
405 sp->state = SPLICE_QUEUED;
406 mtx_unlock(&sp->mtx);
407 so_splice_dispatch_async(sp);
408 }
409 }
410
411 static int
splice_zinit(void * mem,int size __unused,int flags __unused)412 splice_zinit(void *mem, int size __unused, int flags __unused)
413 {
414 struct so_splice *s;
415
416 s = (struct so_splice *)mem;
417 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
418 return (0);
419 }
420
421 static void
splice_zfini(void * mem,int size)422 splice_zfini(void *mem, int size)
423 {
424 struct so_splice *s;
425
426 s = (struct so_splice *)mem;
427 mtx_destroy(&s->mtx);
428 }
429
430 static int
splice_init(void)431 splice_init(void)
432 {
433 struct thread *td;
434 int error, i, state;
435
436 state = atomic_load_acq_int(&splice_init_state);
437 if (__predict_true(state > 0))
438 return (0);
439 if (state < 0)
440 return (ENXIO);
441 sx_xlock(&splice_init_lock);
442 if (splice_init_state != 0) {
443 sx_xunlock(&splice_init_lock);
444 return (0);
445 }
446
447 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
448 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
449
450 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
451 M_WAITOK | M_ZERO);
452
453 /*
454 * Initialize the workqueues to run the splice work. We create a
455 * work queue for each CPU.
456 */
457 CPU_FOREACH(i) {
458 STAILQ_INIT(&splice_wq[i].head);
459 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
460 }
461
462 /* Start kthreads for each workqueue. */
463 error = 0;
464 CPU_FOREACH(i) {
465 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
466 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
467 if (error) {
468 printf("Can't add so_splice thread %d error %d\n",
469 i, error);
470 break;
471 }
472
473 /*
474 * It's possible to create loops with SO_SPLICE; ensure that
475 * worker threads aren't able to starve the system too easily.
476 */
477 thread_lock(td);
478 sched_prio(td, PUSER);
479 thread_unlock(td);
480 }
481
482 splice_init_state = error != 0 ? -1 : 1;
483 sx_xunlock(&splice_init_lock);
484
485 return (error);
486 }
487
488 /*
489 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
490 * one lock in order to avoid potential deadlocks in case there is some other
491 * code path which acquires more than one I/O lock at a time.
492 */
493 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)494 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
495 {
496 int error;
497
498 for (;;) {
499 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
500 KASSERT(error == 0,
501 ("%s: failed to lock send I/O lock: %d", __func__, error));
502 error = SOCK_IO_RECV_LOCK(so_src, 0);
503 KASSERT(error == 0 || error == EWOULDBLOCK,
504 ("%s: failed to lock recv I/O lock: %d", __func__, error));
505 if (error == 0)
506 break;
507 SOCK_IO_SEND_UNLOCK(so_dst);
508
509 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
510 KASSERT(error == 0,
511 ("%s: failed to lock recv I/O lock: %d", __func__, error));
512 error = SOCK_IO_SEND_LOCK(so_dst, 0);
513 KASSERT(error == 0 || error == EWOULDBLOCK,
514 ("%s: failed to lock send I/O lock: %d", __func__, error));
515 if (error == 0)
516 break;
517 SOCK_IO_RECV_UNLOCK(so_src);
518 }
519 }
520
521 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
523 {
524 SOCK_IO_RECV_UNLOCK(so_src);
525 SOCK_IO_SEND_UNLOCK(so_dst);
526 }
527
528 /*
529 * Move data from the source to the sink. Assumes that both of the relevant
530 * socket I/O locks are held.
531 */
532 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
534 ssize_t *lenp)
535 {
536 struct uio uio;
537 struct mbuf *m;
538 struct sockbuf *sb_src, *sb_dst;
539 ssize_t len;
540 long space;
541 int error, flags;
542
543 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
544 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
545
546 error = 0;
547 m = NULL;
548 memset(&uio, 0, sizeof(uio));
549
550 sb_src = &so_src->so_rcv;
551 sb_dst = &so_dst->so_snd;
552
553 space = sbspace(sb_dst);
554 if (space < 0)
555 space = 0;
556 len = MIN(max, MIN(space, sbavail(sb_src)));
557 if (len == 0) {
558 SOCK_RECVBUF_LOCK(so_src);
559 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
560 error = EPIPE;
561 SOCK_RECVBUF_UNLOCK(so_src);
562 } else {
563 flags = MSG_DONTWAIT;
564 uio.uio_resid = len;
565 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
566 error = soreceive_stream_locked(so_src, sb_src, NULL,
567 &uio, &m, NULL, flags);
568 } else {
569 error = soreceive_generic_locked(so_src, NULL,
570 &uio, &m, NULL, &flags);
571 }
572 if (error != 0 && m != NULL) {
573 m_freem(m);
574 m = NULL;
575 }
576 }
577 if (m != NULL) {
578 len -= uio.uio_resid;
579 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
580 MSG_DONTWAIT, curthread);
581 } else if (error == 0) {
582 len = 0;
583 SOCK_SENDBUF_LOCK(so_dst);
584 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
585 error = EPIPE;
586 SOCK_SENDBUF_UNLOCK(so_dst);
587 }
588 if (error == 0)
589 *lenp = len;
590 return (error);
591 }
592
593 /*
594 * Transfer data from the source to the sink.
595 */
596 static void
so_splice_xfer(struct so_splice * sp)597 so_splice_xfer(struct so_splice *sp)
598 {
599 struct socket *so_src, *so_dst;
600 off_t max;
601 ssize_t len;
602 int error;
603
604 mtx_assert(&sp->mtx, MA_OWNED);
605 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
606 ("so_splice_xfer: invalid state %d", sp->state));
607 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
608
609 if (sp->state == SPLICE_CLOSING) {
610 /* Userspace asked us to close the splice. */
611 goto closing;
612 }
613
614 sp->state = SPLICE_RUNNING;
615 so_src = sp->src;
616 so_dst = sp->dst;
617 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
618 if (max < 0)
619 max = 0;
620
621 /*
622 * Lock the sockets in order to block userspace from doing anything
623 * sneaky. If an error occurs or one of the sockets can no longer
624 * transfer data, we will automatically unsplice.
625 */
626 mtx_unlock(&sp->mtx);
627 splice_lock_pair(so_src, so_dst);
628
629 error = so_splice_xfer_data(so_src, so_dst, max, &len);
630
631 mtx_lock(&sp->mtx);
632
633 /*
634 * Update our stats while still holding the socket locks. This
635 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
636 */
637 if (error == 0) {
638 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
639 so_src->so_splice_sent += len;
640 }
641 splice_unlock_pair(so_src, so_dst);
642
643 switch (sp->state) {
644 case SPLICE_CLOSING:
645 closing:
646 sp->state = SPLICE_CLOSED;
647 wakeup(sp);
648 mtx_unlock(&sp->mtx);
649 break;
650 case SPLICE_RUNNING:
651 if (error != 0 ||
652 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
653 sp->state = SPLICE_EXCEPTION;
654 soref(so_src);
655 mtx_unlock(&sp->mtx);
656 (void)so_unsplice(so_src, false);
657 sorele(so_src);
658 } else {
659 /*
660 * Locklessly check for additional bytes in the source's
661 * receive buffer and queue more work if possible. We
662 * may end up queuing needless work, but that's ok, and
663 * if we race with a thread inserting more data into the
664 * buffer and observe sbavail() == 0, the splice mutex
665 * ensures that splice_push() will queue more work for
666 * us.
667 */
668 if (sbavail(&so_src->so_rcv) > 0 &&
669 sbspace(&so_dst->so_snd) > 0) {
670 sp->state = SPLICE_QUEUED;
671 mtx_unlock(&sp->mtx);
672 so_splice_dispatch_async(sp);
673 } else {
674 sp->state = SPLICE_IDLE;
675 mtx_unlock(&sp->mtx);
676 }
677 }
678 break;
679 default:
680 __assert_unreachable();
681 }
682 }
683
684 static void
socket_init(void * tag)685 socket_init(void *tag)
686 {
687
688 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
689 NULL, NULL, UMA_ALIGN_PTR, 0);
690 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
691 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
692 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
693 EVENTHANDLER_PRI_FIRST);
694 }
695 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
696
697 #ifdef SOCKET_HHOOK
698 static void
socket_hhook_register(int subtype)699 socket_hhook_register(int subtype)
700 {
701
702 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
703 &V_socket_hhh[subtype],
704 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
705 printf("%s: WARNING: unable to register hook\n", __func__);
706 }
707
708 static void
socket_hhook_deregister(int subtype)709 socket_hhook_deregister(int subtype)
710 {
711
712 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
713 printf("%s: WARNING: unable to deregister hook\n", __func__);
714 }
715
716 static void
socket_vnet_init(const void * unused __unused)717 socket_vnet_init(const void *unused __unused)
718 {
719 int i;
720
721 /* We expect a contiguous range */
722 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
723 socket_hhook_register(i);
724 }
725 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
726 socket_vnet_init, NULL);
727
728 static void
socket_vnet_uninit(const void * unused __unused)729 socket_vnet_uninit(const void *unused __unused)
730 {
731 int i;
732
733 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
734 socket_hhook_deregister(i);
735 }
736 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
737 socket_vnet_uninit, NULL);
738 #endif /* SOCKET_HHOOK */
739
740 /*
741 * Initialise maxsockets. This SYSINIT must be run after
742 * tunable_mbinit().
743 */
744 static void
init_maxsockets(void * ignored)745 init_maxsockets(void *ignored)
746 {
747
748 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
749 maxsockets = imax(maxsockets, maxfiles);
750 }
751 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
752
753 /*
754 * Sysctl to get and set the maximum global sockets limit. Notify protocols
755 * of the change so that they can update their dependent limits as required.
756 */
757 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)758 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
759 {
760 int error, newmaxsockets;
761
762 newmaxsockets = maxsockets;
763 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
764 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
765 if (newmaxsockets > maxsockets &&
766 newmaxsockets <= maxfiles) {
767 maxsockets = newmaxsockets;
768 EVENTHANDLER_INVOKE(maxsockets_change);
769 } else
770 error = EINVAL;
771 }
772 return (error);
773 }
774 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
775 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
776 &maxsockets, 0, sysctl_maxsockets, "IU",
777 "Maximum number of sockets available");
778
779 /*
780 * Socket operation routines. These routines are called by the routines in
781 * sys_socket.c or from a system process, and implement the semantics of
782 * socket operations by switching out to the protocol specific routines.
783 */
784
785 /*
786 * Get a socket structure from our zone, and initialize it. Note that it
787 * would probably be better to allocate socket and PCB at the same time, but
788 * I'm not convinced that all the protocols can be easily modified to do
789 * this.
790 *
791 * soalloc() returns a socket with a ref count of 0.
792 */
793 static struct socket *
soalloc(struct vnet * vnet)794 soalloc(struct vnet *vnet)
795 {
796 struct socket *so;
797
798 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
799 if (so == NULL)
800 return (NULL);
801 #ifdef MAC
802 if (mac_socket_init(so, M_NOWAIT) != 0) {
803 uma_zfree(socket_zone, so);
804 return (NULL);
805 }
806 #endif
807 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
808 uma_zfree(socket_zone, so);
809 return (NULL);
810 }
811
812 /*
813 * The socket locking protocol allows to lock 2 sockets at a time,
814 * however, the first one must be a listening socket. WITNESS lacks
815 * a feature to change class of an existing lock, so we use DUPOK.
816 */
817 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
818 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
819 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
820 so->so_rcv.sb_sel = &so->so_rdsel;
821 so->so_snd.sb_sel = &so->so_wrsel;
822 sx_init(&so->so_snd_sx, "so_snd_sx");
823 sx_init(&so->so_rcv_sx, "so_rcv_sx");
824 TAILQ_INIT(&so->so_snd.sb_aiojobq);
825 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
826 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
827 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
828 #ifdef VIMAGE
829 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
830 __func__, __LINE__, so));
831 so->so_vnet = vnet;
832 #endif
833 #ifdef SOCKET_HHOOK
834 /* We shouldn't need the so_global_mtx */
835 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
836 /* Do we need more comprehensive error returns? */
837 uma_zfree(socket_zone, so);
838 return (NULL);
839 }
840 #endif
841 mtx_lock(&so_global_mtx);
842 so->so_gencnt = ++so_gencnt;
843 ++numopensockets;
844 #ifdef VIMAGE
845 vnet->vnet_sockcnt++;
846 #endif
847 mtx_unlock(&so_global_mtx);
848
849 return (so);
850 }
851
852 /*
853 * Free the storage associated with a socket at the socket layer, tear down
854 * locks, labels, etc. All protocol state is assumed already to have been
855 * torn down (and possibly never set up) by the caller.
856 */
857 void
sodealloc(struct socket * so)858 sodealloc(struct socket *so)
859 {
860
861 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
862 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
863
864 mtx_lock(&so_global_mtx);
865 so->so_gencnt = ++so_gencnt;
866 --numopensockets; /* Could be below, but faster here. */
867 #ifdef VIMAGE
868 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
869 __func__, __LINE__, so));
870 so->so_vnet->vnet_sockcnt--;
871 #endif
872 mtx_unlock(&so_global_mtx);
873 #ifdef MAC
874 mac_socket_destroy(so);
875 #endif
876 #ifdef SOCKET_HHOOK
877 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
878 #endif
879
880 khelp_destroy_osd(&so->osd);
881 if (SOLISTENING(so)) {
882 if (so->sol_accept_filter != NULL)
883 accept_filt_setopt(so, NULL);
884 } else {
885 if (so->so_rcv.sb_hiwat)
886 (void)chgsbsize(so->so_cred->cr_uidinfo,
887 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
888 if (so->so_snd.sb_hiwat)
889 (void)chgsbsize(so->so_cred->cr_uidinfo,
890 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
891 sx_destroy(&so->so_snd_sx);
892 sx_destroy(&so->so_rcv_sx);
893 mtx_destroy(&so->so_snd_mtx);
894 mtx_destroy(&so->so_rcv_mtx);
895 }
896 crfree(so->so_cred);
897 mtx_destroy(&so->so_lock);
898 uma_zfree(socket_zone, so);
899 }
900
901 /*
902 * socreate returns a socket with a ref count of 1 and a file descriptor
903 * reference. The socket should be closed with soclose().
904 */
905 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)906 socreate(int dom, struct socket **aso, int type, int proto,
907 struct ucred *cred, struct thread *td)
908 {
909 struct protosw *prp;
910 struct socket *so;
911 int error;
912
913 /*
914 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
915 * shim until all applications have been updated.
916 */
917 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
918 proto == IPPROTO_DIVERT)) {
919 dom = PF_DIVERT;
920 printf("%s uses obsolete way to create divert(4) socket\n",
921 td->td_proc->p_comm);
922 }
923
924 prp = pffindproto(dom, type, proto);
925 if (prp == NULL) {
926 /* No support for domain. */
927 if (pffinddomain(dom) == NULL)
928 return (EAFNOSUPPORT);
929 /* No support for socket type. */
930 if (proto == 0 && type != 0)
931 return (EPROTOTYPE);
932 return (EPROTONOSUPPORT);
933 }
934
935 MPASS(prp->pr_attach);
936
937 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
938 if (CAP_TRACING(td))
939 ktrcapfail(CAPFAIL_PROTO, &proto);
940 if (IN_CAPABILITY_MODE(td))
941 return (ECAPMODE);
942 }
943
944 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
945 return (EPROTONOSUPPORT);
946
947 so = soalloc(CRED_TO_VNET(cred));
948 if (so == NULL)
949 return (ENOBUFS);
950
951 so->so_type = type;
952 so->so_cred = crhold(cred);
953 if ((prp->pr_domain->dom_family == PF_INET) ||
954 (prp->pr_domain->dom_family == PF_INET6) ||
955 (prp->pr_domain->dom_family == PF_ROUTE))
956 so->so_fibnum = td->td_proc->p_fibnum;
957 else
958 so->so_fibnum = 0;
959 so->so_proto = prp;
960 #ifdef MAC
961 mac_socket_create(cred, so);
962 #endif
963 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
964 so_rdknl_assert_lock);
965 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
966 so_wrknl_assert_lock);
967 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
968 so->so_snd.sb_mtx = &so->so_snd_mtx;
969 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
970 }
971 /*
972 * Auto-sizing of socket buffers is managed by the protocols and
973 * the appropriate flags must be set in the pru_attach function.
974 */
975 CURVNET_SET(so->so_vnet);
976 error = prp->pr_attach(so, proto, td);
977 CURVNET_RESTORE();
978 if (error) {
979 sodealloc(so);
980 return (error);
981 }
982 soref(so);
983 *aso = so;
984 return (0);
985 }
986
987 #ifdef REGRESSION
988 static int regression_sonewconn_earlytest = 1;
989 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
990 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
991 #endif
992
993 static int sooverprio = LOG_DEBUG;
994 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
995 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
996
997 static struct timeval overinterval = { 60, 0 };
998 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
999 &overinterval,
1000 "Delay in seconds between warnings for listen socket overflows");
1001
1002 /*
1003 * When an attempt at a new connection is noted on a socket which supports
1004 * accept(2), the protocol has two options:
1005 * 1) Call legacy sonewconn() function, which would call protocol attach
1006 * method, same as used for socket(2).
1007 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1008 * and then call solisten_enqueue().
1009 *
1010 * Note: the ref count on the socket is 0 on return.
1011 */
1012 struct socket *
solisten_clone(struct socket * head)1013 solisten_clone(struct socket *head)
1014 {
1015 struct sbuf descrsb;
1016 struct socket *so;
1017 int len, overcount;
1018 u_int qlen;
1019 const char localprefix[] = "local:";
1020 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1021 #if defined(INET6)
1022 char addrbuf[INET6_ADDRSTRLEN];
1023 #elif defined(INET)
1024 char addrbuf[INET_ADDRSTRLEN];
1025 #endif
1026 bool dolog, over;
1027
1028 SOLISTEN_LOCK(head);
1029 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1030 #ifdef REGRESSION
1031 if (regression_sonewconn_earlytest && over) {
1032 #else
1033 if (over) {
1034 #endif
1035 head->sol_overcount++;
1036 dolog = (sooverprio >= 0) &&
1037 !!ratecheck(&head->sol_lastover, &overinterval);
1038
1039 /*
1040 * If we're going to log, copy the overflow count and queue
1041 * length from the listen socket before dropping the lock.
1042 * Also, reset the overflow count.
1043 */
1044 if (dolog) {
1045 overcount = head->sol_overcount;
1046 head->sol_overcount = 0;
1047 qlen = head->sol_qlen;
1048 }
1049 SOLISTEN_UNLOCK(head);
1050
1051 if (dolog) {
1052 /*
1053 * Try to print something descriptive about the
1054 * socket for the error message.
1055 */
1056 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1057 SBUF_FIXEDLEN);
1058 switch (head->so_proto->pr_domain->dom_family) {
1059 #if defined(INET) || defined(INET6)
1060 #ifdef INET
1061 case AF_INET:
1062 #endif
1063 #ifdef INET6
1064 case AF_INET6:
1065 if (head->so_proto->pr_domain->dom_family ==
1066 AF_INET6 ||
1067 (sotoinpcb(head)->inp_inc.inc_flags &
1068 INC_ISIPV6)) {
1069 ip6_sprintf(addrbuf,
1070 &sotoinpcb(head)->inp_inc.inc6_laddr);
1071 sbuf_printf(&descrsb, "[%s]", addrbuf);
1072 } else
1073 #endif
1074 {
1075 #ifdef INET
1076 inet_ntoa_r(
1077 sotoinpcb(head)->inp_inc.inc_laddr,
1078 addrbuf);
1079 sbuf_cat(&descrsb, addrbuf);
1080 #endif
1081 }
1082 sbuf_printf(&descrsb, ":%hu (proto %u)",
1083 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1084 head->so_proto->pr_protocol);
1085 break;
1086 #endif /* INET || INET6 */
1087 case AF_UNIX:
1088 sbuf_cat(&descrsb, localprefix);
1089 if (sotounpcb(head)->unp_addr != NULL)
1090 len =
1091 sotounpcb(head)->unp_addr->sun_len -
1092 offsetof(struct sockaddr_un,
1093 sun_path);
1094 else
1095 len = 0;
1096 if (len > 0)
1097 sbuf_bcat(&descrsb,
1098 sotounpcb(head)->unp_addr->sun_path,
1099 len);
1100 else
1101 sbuf_cat(&descrsb, "(unknown)");
1102 break;
1103 }
1104
1105 /*
1106 * If we can't print something more specific, at least
1107 * print the domain name.
1108 */
1109 if (sbuf_finish(&descrsb) != 0 ||
1110 sbuf_len(&descrsb) <= 0) {
1111 sbuf_clear(&descrsb);
1112 sbuf_cat(&descrsb,
1113 head->so_proto->pr_domain->dom_name ?:
1114 "unknown");
1115 sbuf_finish(&descrsb);
1116 }
1117 KASSERT(sbuf_len(&descrsb) > 0,
1118 ("%s: sbuf creation failed", __func__));
1119 /*
1120 * Preserve the historic listen queue overflow log
1121 * message, that starts with "sonewconn:". It has
1122 * been known to sysadmins for years and also test
1123 * sys/kern/sonewconn_overflow checks for it.
1124 */
1125 if (head->so_cred == 0) {
1126 log(LOG_PRI(sooverprio),
1127 "sonewconn: pcb %p (%s): "
1128 "Listen queue overflow: %i already in "
1129 "queue awaiting acceptance (%d "
1130 "occurrences)\n", head->so_pcb,
1131 sbuf_data(&descrsb),
1132 qlen, overcount);
1133 } else {
1134 log(LOG_PRI(sooverprio),
1135 "sonewconn: pcb %p (%s): "
1136 "Listen queue overflow: "
1137 "%i already in queue awaiting acceptance "
1138 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1139 head->so_pcb, sbuf_data(&descrsb), qlen,
1140 overcount, head->so_cred->cr_uid,
1141 head->so_cred->cr_rgid,
1142 head->so_cred->cr_prison ?
1143 head->so_cred->cr_prison->pr_name :
1144 "not_jailed");
1145 }
1146 sbuf_delete(&descrsb);
1147
1148 overcount = 0;
1149 }
1150
1151 return (NULL);
1152 }
1153 SOLISTEN_UNLOCK(head);
1154 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1155 __func__, head));
1156 so = soalloc(head->so_vnet);
1157 if (so == NULL) {
1158 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1159 "limit reached or out of memory\n",
1160 __func__, head->so_pcb);
1161 return (NULL);
1162 }
1163 so->so_listen = head;
1164 so->so_type = head->so_type;
1165 /*
1166 * POSIX is ambiguous on what options an accept(2)ed socket should
1167 * inherit from the listener. Words "create a new socket" may be
1168 * interpreted as not inheriting anything. Best programming practice
1169 * for application developers is to not rely on such inheritance.
1170 * FreeBSD had historically inherited all so_options excluding
1171 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1172 * including those completely irrelevant to a new born socket. For
1173 * compatibility with older versions we will inherit a list of
1174 * meaningful options.
1175 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1176 * in the child socket for soisconnected() promoting socket from the
1177 * incomplete queue to complete. It will be cleared before the child
1178 * gets available to accept(2).
1179 */
1180 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1181 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1182 so->so_linger = head->so_linger;
1183 so->so_state = head->so_state;
1184 so->so_fibnum = head->so_fibnum;
1185 so->so_proto = head->so_proto;
1186 so->so_cred = crhold(head->so_cred);
1187 #ifdef SOCKET_HHOOK
1188 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1189 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1190 sodealloc(so);
1191 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1192 return (NULL);
1193 }
1194 }
1195 #endif
1196 #ifdef MAC
1197 mac_socket_newconn(head, so);
1198 #endif
1199 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1200 so_rdknl_assert_lock);
1201 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1202 so_wrknl_assert_lock);
1203 VNET_SO_ASSERT(head);
1204 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1205 sodealloc(so);
1206 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1207 __func__, head->so_pcb);
1208 return (NULL);
1209 }
1210 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1211 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1212 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1213 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1214 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1215 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1216 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1217 so->so_snd.sb_mtx = &so->so_snd_mtx;
1218 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1219 }
1220
1221 return (so);
1222 }
1223
1224 /* Connstatus may be 0 or SS_ISCONNECTED. */
1225 struct socket *
1226 sonewconn(struct socket *head, int connstatus)
1227 {
1228 struct socket *so;
1229
1230 if ((so = solisten_clone(head)) == NULL)
1231 return (NULL);
1232
1233 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1234 sodealloc(so);
1235 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1236 __func__, head->so_pcb);
1237 return (NULL);
1238 }
1239
1240 (void)solisten_enqueue(so, connstatus);
1241
1242 return (so);
1243 }
1244
1245 /*
1246 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1247 * listener it has been cloned from.
1248 *
1249 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1250 */
1251 bool
1252 solisten_enqueue(struct socket *so, int connstatus)
1253 {
1254 struct socket *head = so->so_listen;
1255
1256 MPASS(refcount_load(&so->so_count) == 0);
1257 refcount_init(&so->so_count, 1);
1258
1259 SOLISTEN_LOCK(head);
1260 if (head->sol_accept_filter != NULL)
1261 connstatus = 0;
1262 so->so_state |= connstatus;
1263 soref(head); /* A socket on (in)complete queue refs head. */
1264 if (connstatus) {
1265 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1266 so->so_qstate = SQ_COMP;
1267 head->sol_qlen++;
1268 solisten_wakeup(head); /* unlocks */
1269 return (true);
1270 } else {
1271 /*
1272 * Keep removing sockets from the head until there's room for
1273 * us to insert on the tail. In pre-locking revisions, this
1274 * was a simple if(), but as we could be racing with other
1275 * threads and soabort() requires dropping locks, we must
1276 * loop waiting for the condition to be true.
1277 */
1278 while (head->sol_incqlen > head->sol_qlimit) {
1279 struct socket *sp;
1280
1281 sp = TAILQ_FIRST(&head->sol_incomp);
1282 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1283 head->sol_incqlen--;
1284 SOCK_LOCK(sp);
1285 sp->so_qstate = SQ_NONE;
1286 sp->so_listen = NULL;
1287 SOCK_UNLOCK(sp);
1288 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1289 soabort(sp);
1290 SOLISTEN_LOCK(head);
1291 }
1292 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1293 so->so_qstate = SQ_INCOMP;
1294 head->sol_incqlen++;
1295 SOLISTEN_UNLOCK(head);
1296 return (false);
1297 }
1298 }
1299
1300 #if defined(SCTP) || defined(SCTP_SUPPORT)
1301 /*
1302 * Socket part of sctp_peeloff(). Detach a new socket from an
1303 * association. The new socket is returned with a reference.
1304 *
1305 * XXXGL: reduce copy-paste with solisten_clone().
1306 */
1307 struct socket *
1308 sopeeloff(struct socket *head)
1309 {
1310 struct socket *so;
1311
1312 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1313 __func__, __LINE__, head));
1314 so = soalloc(head->so_vnet);
1315 if (so == NULL) {
1316 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1317 "limit reached or out of memory\n",
1318 __func__, head->so_pcb);
1319 return (NULL);
1320 }
1321 so->so_type = head->so_type;
1322 so->so_options = head->so_options;
1323 so->so_linger = head->so_linger;
1324 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1325 so->so_fibnum = head->so_fibnum;
1326 so->so_proto = head->so_proto;
1327 so->so_cred = crhold(head->so_cred);
1328 #ifdef MAC
1329 mac_socket_newconn(head, so);
1330 #endif
1331 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1332 so_rdknl_assert_lock);
1333 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1334 so_wrknl_assert_lock);
1335 VNET_SO_ASSERT(head);
1336 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1337 sodealloc(so);
1338 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1339 __func__, head->so_pcb);
1340 return (NULL);
1341 }
1342 if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1343 sodealloc(so);
1344 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1345 __func__, head->so_pcb);
1346 return (NULL);
1347 }
1348 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1355 so->so_snd.sb_mtx = &so->so_snd_mtx;
1356 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1357 }
1358
1359 soref(so);
1360
1361 return (so);
1362 }
1363 #endif /* SCTP */
1364
1365 int
1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1367 {
1368 int error;
1369
1370 CURVNET_SET(so->so_vnet);
1371 error = so->so_proto->pr_bind(so, nam, td);
1372 CURVNET_RESTORE();
1373 return (error);
1374 }
1375
1376 int
1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1378 {
1379 int error;
1380
1381 CURVNET_SET(so->so_vnet);
1382 error = so->so_proto->pr_bindat(fd, so, nam, td);
1383 CURVNET_RESTORE();
1384 return (error);
1385 }
1386
1387 /*
1388 * solisten() transitions a socket from a non-listening state to a listening
1389 * state, but can also be used to update the listen queue depth on an
1390 * existing listen socket. The protocol will call back into the sockets
1391 * layer using solisten_proto_check() and solisten_proto() to check and set
1392 * socket-layer listen state. Call backs are used so that the protocol can
1393 * acquire both protocol and socket layer locks in whatever order is required
1394 * by the protocol.
1395 *
1396 * Protocol implementors are advised to hold the socket lock across the
1397 * socket-layer test and set to avoid races at the socket layer.
1398 */
1399 int
1400 solisten(struct socket *so, int backlog, struct thread *td)
1401 {
1402 int error;
1403
1404 CURVNET_SET(so->so_vnet);
1405 error = so->so_proto->pr_listen(so, backlog, td);
1406 CURVNET_RESTORE();
1407 return (error);
1408 }
1409
1410 /*
1411 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1412 * order to interlock with socket I/O.
1413 */
1414 int
1415 solisten_proto_check(struct socket *so)
1416 {
1417 SOCK_LOCK_ASSERT(so);
1418
1419 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1420 SS_ISDISCONNECTING)) != 0)
1421 return (EINVAL);
1422
1423 /*
1424 * Sleeping is not permitted here, so simply fail if userspace is
1425 * attempting to transmit or receive on the socket. This kind of
1426 * transient failure is not ideal, but it should occur only if userspace
1427 * is misusing the socket interfaces.
1428 */
1429 if (!sx_try_xlock(&so->so_snd_sx))
1430 return (EAGAIN);
1431 if (!sx_try_xlock(&so->so_rcv_sx)) {
1432 sx_xunlock(&so->so_snd_sx);
1433 return (EAGAIN);
1434 }
1435 mtx_lock(&so->so_snd_mtx);
1436 mtx_lock(&so->so_rcv_mtx);
1437
1438 /* Interlock with soo_aio_queue() and KTLS. */
1439 if (!SOLISTENING(so)) {
1440 bool ktls;
1441
1442 #ifdef KERN_TLS
1443 ktls = so->so_snd.sb_tls_info != NULL ||
1444 so->so_rcv.sb_tls_info != NULL;
1445 #else
1446 ktls = false;
1447 #endif
1448 if (ktls ||
1449 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1450 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1451 solisten_proto_abort(so);
1452 return (EINVAL);
1453 }
1454 }
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * Undo the setup done by solisten_proto_check().
1461 */
1462 void
1463 solisten_proto_abort(struct socket *so)
1464 {
1465 mtx_unlock(&so->so_snd_mtx);
1466 mtx_unlock(&so->so_rcv_mtx);
1467 sx_xunlock(&so->so_snd_sx);
1468 sx_xunlock(&so->so_rcv_sx);
1469 }
1470
1471 void
1472 solisten_proto(struct socket *so, int backlog)
1473 {
1474 int sbrcv_lowat, sbsnd_lowat;
1475 u_int sbrcv_hiwat, sbsnd_hiwat;
1476 short sbrcv_flags, sbsnd_flags;
1477 sbintime_t sbrcv_timeo, sbsnd_timeo;
1478
1479 SOCK_LOCK_ASSERT(so);
1480 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1481 SS_ISDISCONNECTING)) == 0,
1482 ("%s: bad socket state %p", __func__, so));
1483
1484 if (SOLISTENING(so))
1485 goto listening;
1486
1487 /*
1488 * Change this socket to listening state.
1489 */
1490 sbrcv_lowat = so->so_rcv.sb_lowat;
1491 sbsnd_lowat = so->so_snd.sb_lowat;
1492 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1493 sbsnd_hiwat = so->so_snd.sb_hiwat;
1494 sbrcv_flags = so->so_rcv.sb_flags;
1495 sbsnd_flags = so->so_snd.sb_flags;
1496 sbrcv_timeo = so->so_rcv.sb_timeo;
1497 sbsnd_timeo = so->so_snd.sb_timeo;
1498
1499 #ifdef MAC
1500 mac_socketpeer_label_free(so->so_peerlabel);
1501 #endif
1502
1503 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1504 sbdestroy(so, SO_SND);
1505 sbdestroy(so, SO_RCV);
1506 }
1507
1508 #ifdef INVARIANTS
1509 bzero(&so->so_rcv,
1510 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1511 #endif
1512
1513 so->sol_sbrcv_lowat = sbrcv_lowat;
1514 so->sol_sbsnd_lowat = sbsnd_lowat;
1515 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1516 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1517 so->sol_sbrcv_flags = sbrcv_flags;
1518 so->sol_sbsnd_flags = sbsnd_flags;
1519 so->sol_sbrcv_timeo = sbrcv_timeo;
1520 so->sol_sbsnd_timeo = sbsnd_timeo;
1521
1522 so->sol_qlen = so->sol_incqlen = 0;
1523 TAILQ_INIT(&so->sol_incomp);
1524 TAILQ_INIT(&so->sol_comp);
1525
1526 so->sol_accept_filter = NULL;
1527 so->sol_accept_filter_arg = NULL;
1528 so->sol_accept_filter_str = NULL;
1529
1530 so->sol_upcall = NULL;
1531 so->sol_upcallarg = NULL;
1532
1533 so->so_options |= SO_ACCEPTCONN;
1534
1535 listening:
1536 if (backlog < 0 || backlog > V_somaxconn)
1537 backlog = V_somaxconn;
1538 so->sol_qlimit = backlog;
1539
1540 mtx_unlock(&so->so_snd_mtx);
1541 mtx_unlock(&so->so_rcv_mtx);
1542 sx_xunlock(&so->so_snd_sx);
1543 sx_xunlock(&so->so_rcv_sx);
1544 }
1545
1546 /*
1547 * Wakeup listeners/subsystems once we have a complete connection.
1548 * Enters with lock, returns unlocked.
1549 */
1550 void
1551 solisten_wakeup(struct socket *sol)
1552 {
1553
1554 if (sol->sol_upcall != NULL)
1555 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1556 else {
1557 selwakeuppri(&sol->so_rdsel, PSOCK);
1558 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1559 }
1560 SOLISTEN_UNLOCK(sol);
1561 wakeup_one(&sol->sol_comp);
1562 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1563 pgsigio(&sol->so_sigio, SIGIO, 0);
1564 }
1565
1566 /*
1567 * Return single connection off a listening socket queue. Main consumer of
1568 * the function is kern_accept4(). Some modules, that do their own accept
1569 * management also use the function. The socket reference held by the
1570 * listen queue is handed to the caller.
1571 *
1572 * Listening socket must be locked on entry and is returned unlocked on
1573 * return.
1574 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1575 */
1576 int
1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1578 {
1579 struct socket *so;
1580 int error;
1581
1582 SOLISTEN_LOCK_ASSERT(head);
1583
1584 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1585 head->so_error == 0) {
1586 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1587 "accept", 0);
1588 if (error != 0) {
1589 SOLISTEN_UNLOCK(head);
1590 return (error);
1591 }
1592 }
1593 if (head->so_error) {
1594 error = head->so_error;
1595 head->so_error = 0;
1596 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1597 error = EWOULDBLOCK;
1598 else
1599 error = 0;
1600 if (error) {
1601 SOLISTEN_UNLOCK(head);
1602 return (error);
1603 }
1604 so = TAILQ_FIRST(&head->sol_comp);
1605 SOCK_LOCK(so);
1606 KASSERT(so->so_qstate == SQ_COMP,
1607 ("%s: so %p not SQ_COMP", __func__, so));
1608 head->sol_qlen--;
1609 so->so_qstate = SQ_NONE;
1610 so->so_listen = NULL;
1611 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1612 if (flags & ACCEPT4_INHERIT)
1613 so->so_state |= (head->so_state & SS_NBIO);
1614 else
1615 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1616 SOCK_UNLOCK(so);
1617 sorele_locked(head);
1618
1619 *ret = so;
1620 return (0);
1621 }
1622
1623 static struct so_splice *
1624 so_splice_alloc(off_t max)
1625 {
1626 struct so_splice *sp;
1627
1628 sp = uma_zalloc(splice_zone, M_WAITOK);
1629 sp->src = NULL;
1630 sp->dst = NULL;
1631 sp->max = max > 0 ? max : -1;
1632 do {
1633 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1634 (mp_maxid + 1);
1635 } while (CPU_ABSENT(sp->wq_index));
1636 sp->state = SPLICE_INIT;
1637 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1638 sp);
1639 return (sp);
1640 }
1641
1642 static void
1643 so_splice_free(struct so_splice *sp)
1644 {
1645 KASSERT(sp->state == SPLICE_CLOSED,
1646 ("so_splice_free: sp %p not closed", sp));
1647 uma_zfree(splice_zone, sp);
1648 }
1649
1650 static void
1651 so_splice_timeout(void *arg, int pending __unused)
1652 {
1653 struct so_splice *sp;
1654
1655 sp = arg;
1656 (void)so_unsplice(sp->src, true);
1657 }
1658
1659 /*
1660 * Splice the output from so to the input of so2.
1661 */
1662 static int
1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1664 {
1665 struct so_splice *sp;
1666 int error;
1667
1668 if (splice->sp_max < 0)
1669 return (EINVAL);
1670 /* Handle only TCP for now; TODO: other streaming protos */
1671 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1672 so2->so_proto->pr_protocol != IPPROTO_TCP)
1673 return (EPROTONOSUPPORT);
1674 if (so->so_vnet != so2->so_vnet)
1675 return (EINVAL);
1676
1677 /* so_splice_xfer() assumes that we're using these implementations. */
1678 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1679 ("so_splice: sosend not sosend_generic"));
1680 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1681 so2->so_proto->pr_soreceive == soreceive_stream,
1682 ("so_splice: soreceive not soreceive_generic/stream"));
1683
1684 sp = so_splice_alloc(splice->sp_max);
1685 so->so_splice_sent = 0;
1686 sp->src = so;
1687 sp->dst = so2;
1688
1689 error = 0;
1690 SOCK_LOCK(so);
1691 if (SOLISTENING(so))
1692 error = EINVAL;
1693 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1694 error = ENOTCONN;
1695 else if (so->so_splice != NULL)
1696 error = EBUSY;
1697 if (error != 0) {
1698 SOCK_UNLOCK(so);
1699 uma_zfree(splice_zone, sp);
1700 return (error);
1701 }
1702 soref(so);
1703 so->so_splice = sp;
1704 SOCK_RECVBUF_LOCK(so);
1705 so->so_rcv.sb_flags |= SB_SPLICED;
1706 SOCK_RECVBUF_UNLOCK(so);
1707 SOCK_UNLOCK(so);
1708
1709 error = 0;
1710 SOCK_LOCK(so2);
1711 if (SOLISTENING(so2))
1712 error = EINVAL;
1713 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1714 error = ENOTCONN;
1715 else if (so2->so_splice_back != NULL)
1716 error = EBUSY;
1717 if (error != 0) {
1718 SOCK_UNLOCK(so2);
1719 SOCK_LOCK(so);
1720 so->so_splice = NULL;
1721 SOCK_RECVBUF_LOCK(so);
1722 so->so_rcv.sb_flags &= ~SB_SPLICED;
1723 SOCK_RECVBUF_UNLOCK(so);
1724 SOCK_UNLOCK(so);
1725 sorele(so);
1726 uma_zfree(splice_zone, sp);
1727 return (error);
1728 }
1729 soref(so2);
1730 so2->so_splice_back = sp;
1731 SOCK_SENDBUF_LOCK(so2);
1732 so2->so_snd.sb_flags |= SB_SPLICED;
1733 mtx_lock(&sp->mtx);
1734 SOCK_SENDBUF_UNLOCK(so2);
1735 SOCK_UNLOCK(so2);
1736
1737 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1738 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1739 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1740 }
1741
1742 /*
1743 * Transfer any data already present in the socket buffer.
1744 */
1745 sp->state = SPLICE_QUEUED;
1746 so_splice_xfer(sp);
1747 return (0);
1748 }
1749
1750 static int
1751 so_unsplice(struct socket *so, bool timeout)
1752 {
1753 struct socket *so2;
1754 struct so_splice *sp;
1755 bool drain;
1756
1757 /*
1758 * First unset SB_SPLICED and hide the splice structure so that
1759 * wakeup routines will stop enqueuing work. This also ensures that
1760 * a only a single thread will proceed with the unsplice.
1761 */
1762 SOCK_LOCK(so);
1763 if (SOLISTENING(so)) {
1764 SOCK_UNLOCK(so);
1765 return (EINVAL);
1766 }
1767 SOCK_RECVBUF_LOCK(so);
1768 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1769 SOCK_RECVBUF_UNLOCK(so);
1770 SOCK_UNLOCK(so);
1771 return (ENOTCONN);
1772 }
1773 so->so_rcv.sb_flags &= ~SB_SPLICED;
1774 sp = so->so_splice;
1775 so->so_splice = NULL;
1776 SOCK_RECVBUF_UNLOCK(so);
1777 SOCK_UNLOCK(so);
1778
1779 so2 = sp->dst;
1780 SOCK_LOCK(so2);
1781 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1782 SOCK_SENDBUF_LOCK(so2);
1783 KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1784 ("%s: so2 is not spliced", __func__));
1785 KASSERT(so2->so_splice_back == sp,
1786 ("%s: so_splice_back != sp", __func__));
1787 so2->so_snd.sb_flags &= ~SB_SPLICED;
1788 so2->so_splice_back = NULL;
1789 SOCK_SENDBUF_UNLOCK(so2);
1790 SOCK_UNLOCK(so2);
1791
1792 /*
1793 * No new work is being enqueued. The worker thread might be
1794 * splicing data right now, in which case we want to wait for it to
1795 * finish before proceeding.
1796 */
1797 mtx_lock(&sp->mtx);
1798 switch (sp->state) {
1799 case SPLICE_QUEUED:
1800 case SPLICE_RUNNING:
1801 sp->state = SPLICE_CLOSING;
1802 while (sp->state == SPLICE_CLOSING)
1803 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1804 break;
1805 case SPLICE_IDLE:
1806 case SPLICE_EXCEPTION:
1807 sp->state = SPLICE_CLOSED;
1808 break;
1809 default:
1810 __assert_unreachable();
1811 }
1812 if (!timeout) {
1813 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1814 NULL) != 0;
1815 } else {
1816 drain = false;
1817 }
1818 mtx_unlock(&sp->mtx);
1819 if (drain)
1820 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1821
1822 /*
1823 * Now we hold the sole reference to the splice structure.
1824 * Clean up: signal userspace and release socket references.
1825 */
1826 sorwakeup(so);
1827 CURVNET_SET(so->so_vnet);
1828 sorele(so);
1829 sowwakeup(so2);
1830 sorele(so2);
1831 CURVNET_RESTORE();
1832 so_splice_free(sp);
1833 return (0);
1834 }
1835
1836 /*
1837 * Free socket upon release of the very last reference.
1838 */
1839 static void
1840 sofree(struct socket *so)
1841 {
1842 struct protosw *pr = so->so_proto;
1843
1844 SOCK_LOCK_ASSERT(so);
1845 KASSERT(refcount_load(&so->so_count) == 0,
1846 ("%s: so %p has references", __func__, so));
1847 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1848 ("%s: so %p is on listen queue", __func__, so));
1849 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1850 ("%s: so %p rcvbuf is spliced", __func__, so));
1851 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1852 ("%s: so %p sndbuf is spliced", __func__, so));
1853 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1854 ("%s: so %p has spliced data", __func__, so));
1855
1856 SOCK_UNLOCK(so);
1857
1858 if (so->so_dtor != NULL)
1859 so->so_dtor(so);
1860
1861 VNET_SO_ASSERT(so);
1862 if (pr->pr_detach != NULL)
1863 pr->pr_detach(so);
1864
1865 /*
1866 * From this point on, we assume that no other references to this
1867 * socket exist anywhere else in the stack. Therefore, no locks need
1868 * to be acquired or held.
1869 */
1870 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1871 sbdestroy(so, SO_SND);
1872 sbdestroy(so, SO_RCV);
1873 }
1874 seldrain(&so->so_rdsel);
1875 seldrain(&so->so_wrsel);
1876 knlist_destroy(&so->so_rdsel.si_note);
1877 knlist_destroy(&so->so_wrsel.si_note);
1878 sodealloc(so);
1879 }
1880
1881 /*
1882 * Release a reference on a socket while holding the socket lock.
1883 * Unlocks the socket lock before returning.
1884 */
1885 void
1886 sorele_locked(struct socket *so)
1887 {
1888 SOCK_LOCK_ASSERT(so);
1889 if (refcount_release(&so->so_count))
1890 sofree(so);
1891 else
1892 SOCK_UNLOCK(so);
1893 }
1894
1895 /*
1896 * Close a socket on last file table reference removal. Initiate disconnect
1897 * if connected. Free socket when disconnect complete.
1898 *
1899 * This function will sorele() the socket. Note that soclose() may be called
1900 * prior to the ref count reaching zero. The actual socket structure will
1901 * not be freed until the ref count reaches zero.
1902 */
1903 int
1904 soclose(struct socket *so)
1905 {
1906 struct accept_queue lqueue;
1907 int error = 0;
1908 bool listening, last __diagused;
1909
1910 CURVNET_SET(so->so_vnet);
1911 funsetown(&so->so_sigio);
1912 if (so->so_state & SS_ISCONNECTED) {
1913 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1914 error = sodisconnect(so);
1915 if (error) {
1916 if (error == ENOTCONN)
1917 error = 0;
1918 goto drop;
1919 }
1920 }
1921
1922 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1923 if ((so->so_state & SS_ISDISCONNECTING) &&
1924 (so->so_state & SS_NBIO))
1925 goto drop;
1926 while (so->so_state & SS_ISCONNECTED) {
1927 error = tsleep(&so->so_timeo,
1928 PSOCK | PCATCH, "soclos",
1929 so->so_linger * hz);
1930 if (error)
1931 break;
1932 }
1933 }
1934 }
1935
1936 drop:
1937 if (so->so_proto->pr_close != NULL)
1938 so->so_proto->pr_close(so);
1939
1940 SOCK_LOCK(so);
1941 if ((listening = SOLISTENING(so))) {
1942 struct socket *sp;
1943
1944 TAILQ_INIT(&lqueue);
1945 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1946 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1947
1948 so->sol_qlen = so->sol_incqlen = 0;
1949
1950 TAILQ_FOREACH(sp, &lqueue, so_list) {
1951 SOCK_LOCK(sp);
1952 sp->so_qstate = SQ_NONE;
1953 sp->so_listen = NULL;
1954 SOCK_UNLOCK(sp);
1955 last = refcount_release(&so->so_count);
1956 KASSERT(!last, ("%s: released last reference for %p",
1957 __func__, so));
1958 }
1959 }
1960 sorele_locked(so);
1961 if (listening) {
1962 struct socket *sp, *tsp;
1963
1964 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1965 soabort(sp);
1966 }
1967 CURVNET_RESTORE();
1968 return (error);
1969 }
1970
1971 /*
1972 * soabort() is used to abruptly tear down a connection, such as when a
1973 * resource limit is reached (listen queue depth exceeded), or if a listen
1974 * socket is closed while there are sockets waiting to be accepted.
1975 *
1976 * This interface is tricky, because it is called on an unreferenced socket,
1977 * and must be called only by a thread that has actually removed the socket
1978 * from the listen queue it was on. Likely this thread holds the last
1979 * reference on the socket and soabort() will proceed with sofree(). But
1980 * it might be not the last, as the sockets on the listen queues are seen
1981 * from the protocol side.
1982 *
1983 * This interface will call into the protocol code, so must not be called
1984 * with any socket locks held. Protocols do call it while holding their own
1985 * recursible protocol mutexes, but this is something that should be subject
1986 * to review in the future.
1987 *
1988 * Usually socket should have a single reference left, but this is not a
1989 * requirement. In the past, when we have had named references for file
1990 * descriptor and protocol, we asserted that none of them are being held.
1991 */
1992 void
1993 soabort(struct socket *so)
1994 {
1995
1996 VNET_SO_ASSERT(so);
1997
1998 if (so->so_proto->pr_abort != NULL)
1999 so->so_proto->pr_abort(so);
2000 SOCK_LOCK(so);
2001 sorele_locked(so);
2002 }
2003
2004 int
2005 soaccept(struct socket *so, struct sockaddr *sa)
2006 {
2007 #ifdef INVARIANTS
2008 u_char len = sa->sa_len;
2009 #endif
2010 int error;
2011
2012 CURVNET_SET(so->so_vnet);
2013 error = so->so_proto->pr_accept(so, sa);
2014 KASSERT(sa->sa_len <= len,
2015 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2016 CURVNET_RESTORE();
2017 return (error);
2018 }
2019
2020 int
2021 sopeeraddr(struct socket *so, struct sockaddr *sa)
2022 {
2023 #ifdef INVARIANTS
2024 u_char len = sa->sa_len;
2025 #endif
2026 int error;
2027
2028 CURVNET_ASSERT_SET();
2029
2030 error = so->so_proto->pr_peeraddr(so, sa);
2031 KASSERT(sa->sa_len <= len,
2032 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2033
2034 return (error);
2035 }
2036
2037 int
2038 sosockaddr(struct socket *so, struct sockaddr *sa)
2039 {
2040 #ifdef INVARIANTS
2041 u_char len = sa->sa_len;
2042 #endif
2043 int error;
2044
2045 CURVNET_SET(so->so_vnet);
2046 error = so->so_proto->pr_sockaddr(so, sa);
2047 KASSERT(sa->sa_len <= len,
2048 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2049 CURVNET_RESTORE();
2050
2051 return (error);
2052 }
2053
2054 int
2055 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2056 {
2057
2058 return (soconnectat(AT_FDCWD, so, nam, td));
2059 }
2060
2061 int
2062 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2063 {
2064 int error;
2065
2066 CURVNET_SET(so->so_vnet);
2067
2068 /*
2069 * If protocol is connection-based, can only connect once.
2070 * Otherwise, if connected, try to disconnect first. This allows
2071 * user to disconnect by connecting to, e.g., a null address.
2072 *
2073 * Note, this check is racy and may need to be re-evaluated at the
2074 * protocol layer.
2075 */
2076 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2077 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2078 (error = sodisconnect(so)))) {
2079 error = EISCONN;
2080 } else {
2081 /*
2082 * Prevent accumulated error from previous connection from
2083 * biting us.
2084 */
2085 so->so_error = 0;
2086 if (fd == AT_FDCWD) {
2087 error = so->so_proto->pr_connect(so, nam, td);
2088 } else {
2089 error = so->so_proto->pr_connectat(fd, so, nam, td);
2090 }
2091 }
2092 CURVNET_RESTORE();
2093
2094 return (error);
2095 }
2096
2097 int
2098 soconnect2(struct socket *so1, struct socket *so2)
2099 {
2100 int error;
2101
2102 CURVNET_SET(so1->so_vnet);
2103 error = so1->so_proto->pr_connect2(so1, so2);
2104 CURVNET_RESTORE();
2105 return (error);
2106 }
2107
2108 int
2109 sodisconnect(struct socket *so)
2110 {
2111 int error;
2112
2113 if ((so->so_state & SS_ISCONNECTED) == 0)
2114 return (ENOTCONN);
2115 if (so->so_state & SS_ISDISCONNECTING)
2116 return (EALREADY);
2117 VNET_SO_ASSERT(so);
2118 error = so->so_proto->pr_disconnect(so);
2119 return (error);
2120 }
2121
2122 int
2123 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2124 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2125 {
2126 long space;
2127 ssize_t resid;
2128 int clen = 0, error, dontroute;
2129
2130 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2131 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2132 ("sosend_dgram: !PR_ATOMIC"));
2133
2134 if (uio != NULL)
2135 resid = uio->uio_resid;
2136 else
2137 resid = top->m_pkthdr.len;
2138 /*
2139 * In theory resid should be unsigned. However, space must be
2140 * signed, as it might be less than 0 if we over-committed, and we
2141 * must use a signed comparison of space and resid. On the other
2142 * hand, a negative resid causes us to loop sending 0-length
2143 * segments to the protocol.
2144 */
2145 if (resid < 0) {
2146 error = EINVAL;
2147 goto out;
2148 }
2149
2150 dontroute =
2151 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2152 if (td != NULL)
2153 td->td_ru.ru_msgsnd++;
2154 if (control != NULL)
2155 clen = control->m_len;
2156
2157 SOCKBUF_LOCK(&so->so_snd);
2158 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2159 SOCKBUF_UNLOCK(&so->so_snd);
2160 error = EPIPE;
2161 goto out;
2162 }
2163 if (so->so_error) {
2164 error = so->so_error;
2165 so->so_error = 0;
2166 SOCKBUF_UNLOCK(&so->so_snd);
2167 goto out;
2168 }
2169 if ((so->so_state & SS_ISCONNECTED) == 0) {
2170 /*
2171 * `sendto' and `sendmsg' is allowed on a connection-based
2172 * socket if it supports implied connect. Return ENOTCONN if
2173 * not connected and no address is supplied.
2174 */
2175 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2176 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2177 if (!(resid == 0 && clen != 0)) {
2178 SOCKBUF_UNLOCK(&so->so_snd);
2179 error = ENOTCONN;
2180 goto out;
2181 }
2182 } else if (addr == NULL) {
2183 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2184 error = ENOTCONN;
2185 else
2186 error = EDESTADDRREQ;
2187 SOCKBUF_UNLOCK(&so->so_snd);
2188 goto out;
2189 }
2190 }
2191
2192 /*
2193 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2194 * problem and need fixing.
2195 */
2196 space = sbspace(&so->so_snd);
2197 if (flags & MSG_OOB)
2198 space += 1024;
2199 space -= clen;
2200 SOCKBUF_UNLOCK(&so->so_snd);
2201 if (resid > space) {
2202 error = EMSGSIZE;
2203 goto out;
2204 }
2205 if (uio == NULL) {
2206 resid = 0;
2207 if (flags & MSG_EOR)
2208 top->m_flags |= M_EOR;
2209 } else {
2210 /*
2211 * Copy the data from userland into a mbuf chain.
2212 * If no data is to be copied in, a single empty mbuf
2213 * is returned.
2214 */
2215 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2216 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2217 if (top == NULL) {
2218 error = EFAULT; /* only possible error */
2219 goto out;
2220 }
2221 space -= resid - uio->uio_resid;
2222 resid = uio->uio_resid;
2223 }
2224 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2225 /*
2226 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2227 * than with.
2228 */
2229 if (dontroute) {
2230 SOCK_LOCK(so);
2231 so->so_options |= SO_DONTROUTE;
2232 SOCK_UNLOCK(so);
2233 }
2234 /*
2235 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2236 * of date. We could have received a reset packet in an interrupt or
2237 * maybe we slept while doing page faults in uiomove() etc. We could
2238 * probably recheck again inside the locking protection here, but
2239 * there are probably other places that this also happens. We must
2240 * rethink this.
2241 */
2242 VNET_SO_ASSERT(so);
2243 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2244 /*
2245 * If the user set MSG_EOF, the protocol understands this flag and
2246 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2247 */
2248 ((flags & MSG_EOF) &&
2249 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2250 (resid <= 0)) ?
2251 PRUS_EOF :
2252 /* If there is more to send set PRUS_MORETOCOME */
2253 (flags & MSG_MORETOCOME) ||
2254 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2255 top, addr, control, td);
2256 if (dontroute) {
2257 SOCK_LOCK(so);
2258 so->so_options &= ~SO_DONTROUTE;
2259 SOCK_UNLOCK(so);
2260 }
2261 clen = 0;
2262 control = NULL;
2263 top = NULL;
2264 out:
2265 if (top != NULL)
2266 m_freem(top);
2267 if (control != NULL)
2268 m_freem(control);
2269 return (error);
2270 }
2271
2272 /*
2273 * Send on a socket. If send must go all at once and message is larger than
2274 * send buffering, then hard error. Lock against other senders. If must go
2275 * all at once and not enough room now, then inform user that this would
2276 * block and do nothing. Otherwise, if nonblocking, send as much as
2277 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2278 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2279 * in mbuf chain must be small enough to send all at once.
2280 *
2281 * Returns nonzero on error, timeout or signal; callers must check for short
2282 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2283 * on return.
2284 */
2285 static int
2286 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2287 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2288 {
2289 long space;
2290 ssize_t resid;
2291 int clen = 0, error, dontroute;
2292 int atomic = sosendallatonce(so) || top;
2293 int pr_send_flag;
2294 #ifdef KERN_TLS
2295 struct ktls_session *tls;
2296 int tls_enq_cnt, tls_send_flag;
2297 uint8_t tls_rtype;
2298
2299 tls = NULL;
2300 tls_rtype = TLS_RLTYPE_APP;
2301 #endif
2302
2303 SOCK_IO_SEND_ASSERT_LOCKED(so);
2304
2305 if (uio != NULL)
2306 resid = uio->uio_resid;
2307 else if ((top->m_flags & M_PKTHDR) != 0)
2308 resid = top->m_pkthdr.len;
2309 else
2310 resid = m_length(top, NULL);
2311 /*
2312 * In theory resid should be unsigned. However, space must be
2313 * signed, as it might be less than 0 if we over-committed, and we
2314 * must use a signed comparison of space and resid. On the other
2315 * hand, a negative resid causes us to loop sending 0-length
2316 * segments to the protocol.
2317 *
2318 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2319 * type sockets since that's an error.
2320 */
2321 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2322 error = EINVAL;
2323 goto out;
2324 }
2325
2326 dontroute =
2327 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2328 (so->so_proto->pr_flags & PR_ATOMIC);
2329 if (td != NULL)
2330 td->td_ru.ru_msgsnd++;
2331 if (control != NULL)
2332 clen = control->m_len;
2333
2334 #ifdef KERN_TLS
2335 tls_send_flag = 0;
2336 tls = ktls_hold(so->so_snd.sb_tls_info);
2337 if (tls != NULL) {
2338 if (tls->mode == TCP_TLS_MODE_SW)
2339 tls_send_flag = PRUS_NOTREADY;
2340
2341 if (control != NULL) {
2342 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2343
2344 if (clen >= sizeof(*cm) &&
2345 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2346 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2347 clen = 0;
2348 m_freem(control);
2349 control = NULL;
2350 atomic = 1;
2351 }
2352 }
2353
2354 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2355 error = EINVAL;
2356 goto out;
2357 }
2358 }
2359 #endif
2360
2361 restart:
2362 do {
2363 SOCKBUF_LOCK(&so->so_snd);
2364 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2365 SOCKBUF_UNLOCK(&so->so_snd);
2366 error = EPIPE;
2367 goto out;
2368 }
2369 if (so->so_error) {
2370 error = so->so_error;
2371 so->so_error = 0;
2372 SOCKBUF_UNLOCK(&so->so_snd);
2373 goto out;
2374 }
2375 if ((so->so_state & SS_ISCONNECTED) == 0) {
2376 /*
2377 * `sendto' and `sendmsg' is allowed on a connection-
2378 * based socket if it supports implied connect.
2379 * Return ENOTCONN if not connected and no address is
2380 * supplied.
2381 */
2382 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2383 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2384 if (!(resid == 0 && clen != 0)) {
2385 SOCKBUF_UNLOCK(&so->so_snd);
2386 error = ENOTCONN;
2387 goto out;
2388 }
2389 } else if (addr == NULL) {
2390 SOCKBUF_UNLOCK(&so->so_snd);
2391 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2392 error = ENOTCONN;
2393 else
2394 error = EDESTADDRREQ;
2395 goto out;
2396 }
2397 }
2398 space = sbspace(&so->so_snd);
2399 if (flags & MSG_OOB)
2400 space += 1024;
2401 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2402 clen > so->so_snd.sb_hiwat) {
2403 SOCKBUF_UNLOCK(&so->so_snd);
2404 error = EMSGSIZE;
2405 goto out;
2406 }
2407 if (space < resid + clen &&
2408 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2409 if ((so->so_state & SS_NBIO) ||
2410 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2411 SOCKBUF_UNLOCK(&so->so_snd);
2412 error = EWOULDBLOCK;
2413 goto out;
2414 }
2415 error = sbwait(so, SO_SND);
2416 SOCKBUF_UNLOCK(&so->so_snd);
2417 if (error)
2418 goto out;
2419 goto restart;
2420 }
2421 SOCKBUF_UNLOCK(&so->so_snd);
2422 space -= clen;
2423 do {
2424 if (uio == NULL) {
2425 resid = 0;
2426 if (flags & MSG_EOR)
2427 top->m_flags |= M_EOR;
2428 #ifdef KERN_TLS
2429 if (tls != NULL) {
2430 ktls_frame(top, tls, &tls_enq_cnt,
2431 tls_rtype);
2432 tls_rtype = TLS_RLTYPE_APP;
2433 }
2434 #endif
2435 } else {
2436 /*
2437 * Copy the data from userland into a mbuf
2438 * chain. If resid is 0, which can happen
2439 * only if we have control to send, then
2440 * a single empty mbuf is returned. This
2441 * is a workaround to prevent protocol send
2442 * methods to panic.
2443 */
2444 #ifdef KERN_TLS
2445 if (tls != NULL) {
2446 top = m_uiotombuf(uio, M_WAITOK, space,
2447 tls->params.max_frame_len,
2448 M_EXTPG |
2449 ((flags & MSG_EOR) ? M_EOR : 0));
2450 if (top != NULL) {
2451 ktls_frame(top, tls,
2452 &tls_enq_cnt, tls_rtype);
2453 }
2454 tls_rtype = TLS_RLTYPE_APP;
2455 } else
2456 #endif
2457 top = m_uiotombuf(uio, M_WAITOK, space,
2458 (atomic ? max_hdr : 0),
2459 (atomic ? M_PKTHDR : 0) |
2460 ((flags & MSG_EOR) ? M_EOR : 0));
2461 if (top == NULL) {
2462 error = EFAULT; /* only possible error */
2463 goto out;
2464 }
2465 space -= resid - uio->uio_resid;
2466 resid = uio->uio_resid;
2467 }
2468 if (dontroute) {
2469 SOCK_LOCK(so);
2470 so->so_options |= SO_DONTROUTE;
2471 SOCK_UNLOCK(so);
2472 }
2473 /*
2474 * XXX all the SBS_CANTSENDMORE checks previously
2475 * done could be out of date. We could have received
2476 * a reset packet in an interrupt or maybe we slept
2477 * while doing page faults in uiomove() etc. We
2478 * could probably recheck again inside the locking
2479 * protection here, but there are probably other
2480 * places that this also happens. We must rethink
2481 * this.
2482 */
2483 VNET_SO_ASSERT(so);
2484
2485 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2486 /*
2487 * If the user set MSG_EOF, the protocol understands
2488 * this flag and nothing left to send then use
2489 * PRU_SEND_EOF instead of PRU_SEND.
2490 */
2491 ((flags & MSG_EOF) &&
2492 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2493 (resid <= 0)) ?
2494 PRUS_EOF :
2495 /* If there is more to send set PRUS_MORETOCOME. */
2496 (flags & MSG_MORETOCOME) ||
2497 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2498
2499 #ifdef KERN_TLS
2500 pr_send_flag |= tls_send_flag;
2501 #endif
2502
2503 error = so->so_proto->pr_send(so, pr_send_flag, top,
2504 addr, control, td);
2505
2506 if (dontroute) {
2507 SOCK_LOCK(so);
2508 so->so_options &= ~SO_DONTROUTE;
2509 SOCK_UNLOCK(so);
2510 }
2511
2512 #ifdef KERN_TLS
2513 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2514 if (error != 0) {
2515 m_freem(top);
2516 top = NULL;
2517 } else {
2518 soref(so);
2519 ktls_enqueue(top, so, tls_enq_cnt);
2520 }
2521 }
2522 #endif
2523 clen = 0;
2524 control = NULL;
2525 top = NULL;
2526 if (error)
2527 goto out;
2528 } while (resid && space > 0);
2529 } while (resid);
2530
2531 out:
2532 #ifdef KERN_TLS
2533 if (tls != NULL)
2534 ktls_free(tls);
2535 #endif
2536 if (top != NULL)
2537 m_freem(top);
2538 if (control != NULL)
2539 m_freem(control);
2540 return (error);
2541 }
2542
2543 int
2544 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2545 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2546 {
2547 int error;
2548
2549 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2550 if (error)
2551 return (error);
2552 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2553 SOCK_IO_SEND_UNLOCK(so);
2554 return (error);
2555 }
2556
2557 /*
2558 * Send to a socket from a kernel thread.
2559 *
2560 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2561 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2562 * to be set at all. This function should just boil down to a static inline
2563 * calling the protocol method.
2564 */
2565 int
2566 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2567 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2568 {
2569 int error;
2570
2571 CURVNET_SET(so->so_vnet);
2572 error = so->so_proto->pr_sosend(so, addr, uio,
2573 top, control, flags, td);
2574 CURVNET_RESTORE();
2575 return (error);
2576 }
2577
2578 /*
2579 * send(2), write(2) or aio_write(2) on a socket.
2580 */
2581 int
2582 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2583 struct mbuf *control, int flags, struct proc *userproc)
2584 {
2585 struct thread *td;
2586 ssize_t len;
2587 int error;
2588
2589 td = uio->uio_td;
2590 len = uio->uio_resid;
2591 CURVNET_SET(so->so_vnet);
2592 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2593 td);
2594 CURVNET_RESTORE();
2595 if (error != 0) {
2596 /*
2597 * Clear transient errors for stream protocols if they made
2598 * some progress. Make exclusion for aio(4) that would
2599 * schedule a new write in case of EWOULDBLOCK and clear
2600 * error itself. See soaio_process_job().
2601 */
2602 if (uio->uio_resid != len &&
2603 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2604 userproc == NULL &&
2605 (error == ERESTART || error == EINTR ||
2606 error == EWOULDBLOCK))
2607 error = 0;
2608 /* Generation of SIGPIPE can be controlled per socket. */
2609 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2610 (flags & MSG_NOSIGNAL) == 0) {
2611 if (userproc != NULL) {
2612 /* aio(4) job */
2613 PROC_LOCK(userproc);
2614 kern_psignal(userproc, SIGPIPE);
2615 PROC_UNLOCK(userproc);
2616 } else {
2617 PROC_LOCK(td->td_proc);
2618 tdsignal(td, SIGPIPE);
2619 PROC_UNLOCK(td->td_proc);
2620 }
2621 }
2622 }
2623 return (error);
2624 }
2625
2626 /*
2627 * The part of soreceive() that implements reading non-inline out-of-band
2628 * data from a socket. For more complete comments, see soreceive(), from
2629 * which this code originated.
2630 *
2631 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2632 * unable to return an mbuf chain to the caller.
2633 */
2634 static int
2635 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2636 {
2637 struct protosw *pr = so->so_proto;
2638 struct mbuf *m;
2639 int error;
2640
2641 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2642 VNET_SO_ASSERT(so);
2643
2644 m = m_get(M_WAITOK, MT_DATA);
2645 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2646 if (error)
2647 goto bad;
2648 do {
2649 error = uiomove(mtod(m, void *),
2650 (int) min(uio->uio_resid, m->m_len), uio);
2651 m = m_free(m);
2652 } while (uio->uio_resid && error == 0 && m);
2653 bad:
2654 if (m != NULL)
2655 m_freem(m);
2656 return (error);
2657 }
2658
2659 /*
2660 * Following replacement or removal of the first mbuf on the first mbuf chain
2661 * of a socket buffer, push necessary state changes back into the socket
2662 * buffer so that other consumers see the values consistently. 'nextrecord'
2663 * is the callers locally stored value of the original value of
2664 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2665 * NOTE: 'nextrecord' may be NULL.
2666 */
2667 static __inline void
2668 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2669 {
2670
2671 SOCKBUF_LOCK_ASSERT(sb);
2672 /*
2673 * First, update for the new value of nextrecord. If necessary, make
2674 * it the first record.
2675 */
2676 if (sb->sb_mb != NULL)
2677 sb->sb_mb->m_nextpkt = nextrecord;
2678 else
2679 sb->sb_mb = nextrecord;
2680
2681 /*
2682 * Now update any dependent socket buffer fields to reflect the new
2683 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2684 * addition of a second clause that takes care of the case where
2685 * sb_mb has been updated, but remains the last record.
2686 */
2687 if (sb->sb_mb == NULL) {
2688 sb->sb_mbtail = NULL;
2689 sb->sb_lastrecord = NULL;
2690 } else if (sb->sb_mb->m_nextpkt == NULL)
2691 sb->sb_lastrecord = sb->sb_mb;
2692 }
2693
2694 /*
2695 * Implement receive operations on a socket. We depend on the way that
2696 * records are added to the sockbuf by sbappend. In particular, each record
2697 * (mbufs linked through m_next) must begin with an address if the protocol
2698 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2699 * data, and then zero or more mbufs of data. In order to allow parallelism
2700 * between network receive and copying to user space, as well as avoid
2701 * sleeping with a mutex held, we release the socket buffer mutex during the
2702 * user space copy. Although the sockbuf is locked, new data may still be
2703 * appended, and thus we must maintain consistency of the sockbuf during that
2704 * time.
2705 *
2706 * The caller may receive the data as a single mbuf chain by supplying an
2707 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2708 * the count in uio_resid.
2709 */
2710 static int
2711 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2712 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2713 {
2714 struct mbuf *m;
2715 int flags, error, offset;
2716 ssize_t len;
2717 struct protosw *pr = so->so_proto;
2718 struct mbuf *nextrecord;
2719 int moff, type = 0;
2720 ssize_t orig_resid = uio->uio_resid;
2721 bool report_real_len = false;
2722
2723 SOCK_IO_RECV_ASSERT_LOCKED(so);
2724
2725 error = 0;
2726 if (flagsp != NULL) {
2727 report_real_len = *flagsp & MSG_TRUNC;
2728 *flagsp &= ~MSG_TRUNC;
2729 flags = *flagsp &~ MSG_EOR;
2730 } else
2731 flags = 0;
2732
2733 restart:
2734 SOCKBUF_LOCK(&so->so_rcv);
2735 m = so->so_rcv.sb_mb;
2736 /*
2737 * If we have less data than requested, block awaiting more (subject
2738 * to any timeout) if:
2739 * 1. the current count is less than the low water mark, or
2740 * 2. MSG_DONTWAIT is not set
2741 */
2742 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2743 sbavail(&so->so_rcv) < uio->uio_resid) &&
2744 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2745 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2746 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2747 ("receive: m == %p sbavail == %u",
2748 m, sbavail(&so->so_rcv)));
2749 if (so->so_error || so->so_rerror) {
2750 if (m != NULL)
2751 goto dontblock;
2752 if (so->so_error)
2753 error = so->so_error;
2754 else
2755 error = so->so_rerror;
2756 if ((flags & MSG_PEEK) == 0) {
2757 if (so->so_error)
2758 so->so_error = 0;
2759 else
2760 so->so_rerror = 0;
2761 }
2762 SOCKBUF_UNLOCK(&so->so_rcv);
2763 goto release;
2764 }
2765 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2766 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2767 if (m != NULL)
2768 goto dontblock;
2769 #ifdef KERN_TLS
2770 else if (so->so_rcv.sb_tlsdcc == 0 &&
2771 so->so_rcv.sb_tlscc == 0) {
2772 #else
2773 else {
2774 #endif
2775 SOCKBUF_UNLOCK(&so->so_rcv);
2776 goto release;
2777 }
2778 }
2779 for (; m != NULL; m = m->m_next)
2780 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2781 m = so->so_rcv.sb_mb;
2782 goto dontblock;
2783 }
2784 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2785 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2786 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2787 SOCKBUF_UNLOCK(&so->so_rcv);
2788 error = ENOTCONN;
2789 goto release;
2790 }
2791 if (uio->uio_resid == 0 && !report_real_len) {
2792 SOCKBUF_UNLOCK(&so->so_rcv);
2793 goto release;
2794 }
2795 if ((so->so_state & SS_NBIO) ||
2796 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2797 SOCKBUF_UNLOCK(&so->so_rcv);
2798 error = EWOULDBLOCK;
2799 goto release;
2800 }
2801 SBLASTRECORDCHK(&so->so_rcv);
2802 SBLASTMBUFCHK(&so->so_rcv);
2803 error = sbwait(so, SO_RCV);
2804 SOCKBUF_UNLOCK(&so->so_rcv);
2805 if (error)
2806 goto release;
2807 goto restart;
2808 }
2809 dontblock:
2810 /*
2811 * From this point onward, we maintain 'nextrecord' as a cache of the
2812 * pointer to the next record in the socket buffer. We must keep the
2813 * various socket buffer pointers and local stack versions of the
2814 * pointers in sync, pushing out modifications before dropping the
2815 * socket buffer mutex, and re-reading them when picking it up.
2816 *
2817 * Otherwise, we will race with the network stack appending new data
2818 * or records onto the socket buffer by using inconsistent/stale
2819 * versions of the field, possibly resulting in socket buffer
2820 * corruption.
2821 *
2822 * By holding the high-level sblock(), we prevent simultaneous
2823 * readers from pulling off the front of the socket buffer.
2824 */
2825 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2826 if (uio->uio_td)
2827 uio->uio_td->td_ru.ru_msgrcv++;
2828 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2829 SBLASTRECORDCHK(&so->so_rcv);
2830 SBLASTMBUFCHK(&so->so_rcv);
2831 nextrecord = m->m_nextpkt;
2832 if (pr->pr_flags & PR_ADDR) {
2833 KASSERT(m->m_type == MT_SONAME,
2834 ("m->m_type == %d", m->m_type));
2835 orig_resid = 0;
2836 if (psa != NULL)
2837 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2838 M_NOWAIT);
2839 if (flags & MSG_PEEK) {
2840 m = m->m_next;
2841 } else {
2842 sbfree(&so->so_rcv, m);
2843 so->so_rcv.sb_mb = m_free(m);
2844 m = so->so_rcv.sb_mb;
2845 sockbuf_pushsync(&so->so_rcv, nextrecord);
2846 }
2847 }
2848
2849 /*
2850 * Process one or more MT_CONTROL mbufs present before any data mbufs
2851 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2852 * just copy the data; if !MSG_PEEK, we call into the protocol to
2853 * perform externalization (or freeing if controlp == NULL).
2854 */
2855 if (m != NULL && m->m_type == MT_CONTROL) {
2856 struct mbuf *cm = NULL, *cmn;
2857 struct mbuf **cme = &cm;
2858 #ifdef KERN_TLS
2859 struct cmsghdr *cmsg;
2860 struct tls_get_record tgr;
2861
2862 /*
2863 * For MSG_TLSAPPDATA, check for an alert record.
2864 * If found, return ENXIO without removing
2865 * it from the receive queue. This allows a subsequent
2866 * call without MSG_TLSAPPDATA to receive it.
2867 * Note that, for TLS, there should only be a single
2868 * control mbuf with the TLS_GET_RECORD message in it.
2869 */
2870 if (flags & MSG_TLSAPPDATA) {
2871 cmsg = mtod(m, struct cmsghdr *);
2872 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2873 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2874 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2875 if (__predict_false(tgr.tls_type ==
2876 TLS_RLTYPE_ALERT)) {
2877 SOCKBUF_UNLOCK(&so->so_rcv);
2878 error = ENXIO;
2879 goto release;
2880 }
2881 }
2882 }
2883 #endif
2884
2885 do {
2886 if (flags & MSG_PEEK) {
2887 if (controlp != NULL) {
2888 *controlp = m_copym(m, 0, m->m_len,
2889 M_NOWAIT);
2890 controlp = &(*controlp)->m_next;
2891 }
2892 m = m->m_next;
2893 } else {
2894 sbfree(&so->so_rcv, m);
2895 so->so_rcv.sb_mb = m->m_next;
2896 m->m_next = NULL;
2897 *cme = m;
2898 cme = &(*cme)->m_next;
2899 m = so->so_rcv.sb_mb;
2900 }
2901 } while (m != NULL && m->m_type == MT_CONTROL);
2902 if ((flags & MSG_PEEK) == 0)
2903 sockbuf_pushsync(&so->so_rcv, nextrecord);
2904 while (cm != NULL) {
2905 cmn = cm->m_next;
2906 cm->m_next = NULL;
2907 if (pr->pr_domain->dom_externalize != NULL) {
2908 SOCKBUF_UNLOCK(&so->so_rcv);
2909 VNET_SO_ASSERT(so);
2910 error = (*pr->pr_domain->dom_externalize)
2911 (cm, controlp, flags);
2912 SOCKBUF_LOCK(&so->so_rcv);
2913 } else if (controlp != NULL)
2914 *controlp = cm;
2915 else
2916 m_freem(cm);
2917 if (controlp != NULL) {
2918 while (*controlp != NULL)
2919 controlp = &(*controlp)->m_next;
2920 }
2921 cm = cmn;
2922 }
2923 if (m != NULL)
2924 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2925 else
2926 nextrecord = so->so_rcv.sb_mb;
2927 orig_resid = 0;
2928 }
2929 if (m != NULL) {
2930 if ((flags & MSG_PEEK) == 0) {
2931 KASSERT(m->m_nextpkt == nextrecord,
2932 ("soreceive: post-control, nextrecord !sync"));
2933 if (nextrecord == NULL) {
2934 KASSERT(so->so_rcv.sb_mb == m,
2935 ("soreceive: post-control, sb_mb!=m"));
2936 KASSERT(so->so_rcv.sb_lastrecord == m,
2937 ("soreceive: post-control, lastrecord!=m"));
2938 }
2939 }
2940 type = m->m_type;
2941 if (type == MT_OOBDATA)
2942 flags |= MSG_OOB;
2943 } else {
2944 if ((flags & MSG_PEEK) == 0) {
2945 KASSERT(so->so_rcv.sb_mb == nextrecord,
2946 ("soreceive: sb_mb != nextrecord"));
2947 if (so->so_rcv.sb_mb == NULL) {
2948 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2949 ("soreceive: sb_lastercord != NULL"));
2950 }
2951 }
2952 }
2953 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2954 SBLASTRECORDCHK(&so->so_rcv);
2955 SBLASTMBUFCHK(&so->so_rcv);
2956
2957 /*
2958 * Now continue to read any data mbufs off of the head of the socket
2959 * buffer until the read request is satisfied. Note that 'type' is
2960 * used to store the type of any mbuf reads that have happened so far
2961 * such that soreceive() can stop reading if the type changes, which
2962 * causes soreceive() to return only one of regular data and inline
2963 * out-of-band data in a single socket receive operation.
2964 */
2965 moff = 0;
2966 offset = 0;
2967 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2968 && error == 0) {
2969 /*
2970 * If the type of mbuf has changed since the last mbuf
2971 * examined ('type'), end the receive operation.
2972 */
2973 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2974 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2975 if (type != m->m_type)
2976 break;
2977 } else if (type == MT_OOBDATA)
2978 break;
2979 else
2980 KASSERT(m->m_type == MT_DATA,
2981 ("m->m_type == %d", m->m_type));
2982 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2983 len = uio->uio_resid;
2984 if (so->so_oobmark && len > so->so_oobmark - offset)
2985 len = so->so_oobmark - offset;
2986 if (len > m->m_len - moff)
2987 len = m->m_len - moff;
2988 /*
2989 * If mp is set, just pass back the mbufs. Otherwise copy
2990 * them out via the uio, then free. Sockbuf must be
2991 * consistent here (points to current mbuf, it points to next
2992 * record) when we drop priority; we must note any additions
2993 * to the sockbuf when we block interrupts again.
2994 */
2995 if (mp == NULL) {
2996 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2997 SBLASTRECORDCHK(&so->so_rcv);
2998 SBLASTMBUFCHK(&so->so_rcv);
2999 SOCKBUF_UNLOCK(&so->so_rcv);
3000 if ((m->m_flags & M_EXTPG) != 0)
3001 error = m_unmapped_uiomove(m, moff, uio,
3002 (int)len);
3003 else
3004 error = uiomove(mtod(m, char *) + moff,
3005 (int)len, uio);
3006 SOCKBUF_LOCK(&so->so_rcv);
3007 if (error) {
3008 /*
3009 * The MT_SONAME mbuf has already been removed
3010 * from the record, so it is necessary to
3011 * remove the data mbufs, if any, to preserve
3012 * the invariant in the case of PR_ADDR that
3013 * requires MT_SONAME mbufs at the head of
3014 * each record.
3015 */
3016 if (pr->pr_flags & PR_ATOMIC &&
3017 ((flags & MSG_PEEK) == 0))
3018 (void)sbdroprecord_locked(&so->so_rcv);
3019 SOCKBUF_UNLOCK(&so->so_rcv);
3020 goto release;
3021 }
3022 } else
3023 uio->uio_resid -= len;
3024 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3025 if (len == m->m_len - moff) {
3026 if (m->m_flags & M_EOR)
3027 flags |= MSG_EOR;
3028 if (flags & MSG_PEEK) {
3029 m = m->m_next;
3030 moff = 0;
3031 } else {
3032 nextrecord = m->m_nextpkt;
3033 sbfree(&so->so_rcv, m);
3034 if (mp != NULL) {
3035 m->m_nextpkt = NULL;
3036 *mp = m;
3037 mp = &m->m_next;
3038 so->so_rcv.sb_mb = m = m->m_next;
3039 *mp = NULL;
3040 } else {
3041 so->so_rcv.sb_mb = m_free(m);
3042 m = so->so_rcv.sb_mb;
3043 }
3044 sockbuf_pushsync(&so->so_rcv, nextrecord);
3045 SBLASTRECORDCHK(&so->so_rcv);
3046 SBLASTMBUFCHK(&so->so_rcv);
3047 }
3048 } else {
3049 if (flags & MSG_PEEK)
3050 moff += len;
3051 else {
3052 if (mp != NULL) {
3053 if (flags & MSG_DONTWAIT) {
3054 *mp = m_copym(m, 0, len,
3055 M_NOWAIT);
3056 if (*mp == NULL) {
3057 /*
3058 * m_copym() couldn't
3059 * allocate an mbuf.
3060 * Adjust uio_resid back
3061 * (it was adjusted
3062 * down by len bytes,
3063 * which we didn't end
3064 * up "copying" over).
3065 */
3066 uio->uio_resid += len;
3067 break;
3068 }
3069 } else {
3070 SOCKBUF_UNLOCK(&so->so_rcv);
3071 *mp = m_copym(m, 0, len,
3072 M_WAITOK);
3073 SOCKBUF_LOCK(&so->so_rcv);
3074 }
3075 }
3076 sbcut_locked(&so->so_rcv, len);
3077 }
3078 }
3079 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3080 if (so->so_oobmark) {
3081 if ((flags & MSG_PEEK) == 0) {
3082 so->so_oobmark -= len;
3083 if (so->so_oobmark == 0) {
3084 so->so_rcv.sb_state |= SBS_RCVATMARK;
3085 break;
3086 }
3087 } else {
3088 offset += len;
3089 if (offset == so->so_oobmark)
3090 break;
3091 }
3092 }
3093 if (flags & MSG_EOR)
3094 break;
3095 /*
3096 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3097 * must not quit until "uio->uio_resid == 0" or an error
3098 * termination. If a signal/timeout occurs, return with a
3099 * short count but without error. Keep sockbuf locked
3100 * against other readers.
3101 */
3102 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3103 !sosendallatonce(so) && nextrecord == NULL) {
3104 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3105 if (so->so_error || so->so_rerror ||
3106 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3107 break;
3108 /*
3109 * Notify the protocol that some data has been
3110 * drained before blocking.
3111 */
3112 if (pr->pr_flags & PR_WANTRCVD) {
3113 SOCKBUF_UNLOCK(&so->so_rcv);
3114 VNET_SO_ASSERT(so);
3115 pr->pr_rcvd(so, flags);
3116 SOCKBUF_LOCK(&so->so_rcv);
3117 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3118 (so->so_error || so->so_rerror ||
3119 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3120 break;
3121 }
3122 SBLASTRECORDCHK(&so->so_rcv);
3123 SBLASTMBUFCHK(&so->so_rcv);
3124 /*
3125 * We could receive some data while was notifying
3126 * the protocol. Skip blocking in this case.
3127 */
3128 if (so->so_rcv.sb_mb == NULL) {
3129 error = sbwait(so, SO_RCV);
3130 if (error) {
3131 SOCKBUF_UNLOCK(&so->so_rcv);
3132 goto release;
3133 }
3134 }
3135 m = so->so_rcv.sb_mb;
3136 if (m != NULL)
3137 nextrecord = m->m_nextpkt;
3138 }
3139 }
3140
3141 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3142 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3143 if (report_real_len)
3144 uio->uio_resid -= m_length(m, NULL) - moff;
3145 flags |= MSG_TRUNC;
3146 if ((flags & MSG_PEEK) == 0)
3147 (void) sbdroprecord_locked(&so->so_rcv);
3148 }
3149 if ((flags & MSG_PEEK) == 0) {
3150 if (m == NULL) {
3151 /*
3152 * First part is an inline SB_EMPTY_FIXUP(). Second
3153 * part makes sure sb_lastrecord is up-to-date if
3154 * there is still data in the socket buffer.
3155 */
3156 so->so_rcv.sb_mb = nextrecord;
3157 if (so->so_rcv.sb_mb == NULL) {
3158 so->so_rcv.sb_mbtail = NULL;
3159 so->so_rcv.sb_lastrecord = NULL;
3160 } else if (nextrecord->m_nextpkt == NULL)
3161 so->so_rcv.sb_lastrecord = nextrecord;
3162 }
3163 SBLASTRECORDCHK(&so->so_rcv);
3164 SBLASTMBUFCHK(&so->so_rcv);
3165 /*
3166 * If soreceive() is being done from the socket callback,
3167 * then don't need to generate ACK to peer to update window,
3168 * since ACK will be generated on return to TCP.
3169 */
3170 if (!(flags & MSG_SOCALLBCK) &&
3171 (pr->pr_flags & PR_WANTRCVD)) {
3172 SOCKBUF_UNLOCK(&so->so_rcv);
3173 VNET_SO_ASSERT(so);
3174 pr->pr_rcvd(so, flags);
3175 SOCKBUF_LOCK(&so->so_rcv);
3176 }
3177 }
3178 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3179 if (orig_resid == uio->uio_resid && orig_resid &&
3180 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3181 SOCKBUF_UNLOCK(&so->so_rcv);
3182 goto restart;
3183 }
3184 SOCKBUF_UNLOCK(&so->so_rcv);
3185
3186 if (flagsp != NULL)
3187 *flagsp |= flags;
3188 release:
3189 return (error);
3190 }
3191
3192 int
3193 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3194 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3195 {
3196 int error, flags;
3197
3198 if (psa != NULL)
3199 *psa = NULL;
3200 if (controlp != NULL)
3201 *controlp = NULL;
3202 if (flagsp != NULL) {
3203 flags = *flagsp;
3204 if ((flags & MSG_OOB) != 0)
3205 return (soreceive_rcvoob(so, uio, flags));
3206 } else {
3207 flags = 0;
3208 }
3209 if (mp != NULL)
3210 *mp = NULL;
3211
3212 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3213 if (error)
3214 return (error);
3215 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3216 SOCK_IO_RECV_UNLOCK(so);
3217 return (error);
3218 }
3219
3220 /*
3221 * Optimized version of soreceive() for stream (TCP) sockets.
3222 */
3223 static int
3224 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3225 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3226 struct mbuf **controlp, int flags)
3227 {
3228 int len = 0, error = 0, oresid;
3229 struct mbuf *m, *n = NULL;
3230
3231 SOCK_IO_RECV_ASSERT_LOCKED(so);
3232
3233 /* Easy one, no space to copyout anything. */
3234 if (uio->uio_resid == 0)
3235 return (EINVAL);
3236 oresid = uio->uio_resid;
3237
3238 SOCKBUF_LOCK(sb);
3239 /* We will never ever get anything unless we are or were connected. */
3240 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3241 error = ENOTCONN;
3242 goto out;
3243 }
3244
3245 restart:
3246 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3247
3248 /* Abort if socket has reported problems. */
3249 if (so->so_error) {
3250 if (sbavail(sb) > 0)
3251 goto deliver;
3252 if (oresid > uio->uio_resid)
3253 goto out;
3254 error = so->so_error;
3255 if (!(flags & MSG_PEEK))
3256 so->so_error = 0;
3257 goto out;
3258 }
3259
3260 /* Door is closed. Deliver what is left, if any. */
3261 if (sb->sb_state & SBS_CANTRCVMORE) {
3262 if (sbavail(sb) > 0)
3263 goto deliver;
3264 else
3265 goto out;
3266 }
3267
3268 /* Socket buffer is empty and we shall not block. */
3269 if (sbavail(sb) == 0 &&
3270 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3271 error = EAGAIN;
3272 goto out;
3273 }
3274
3275 /* Socket buffer got some data that we shall deliver now. */
3276 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3277 ((so->so_state & SS_NBIO) ||
3278 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3279 sbavail(sb) >= sb->sb_lowat ||
3280 sbavail(sb) >= uio->uio_resid ||
3281 sbavail(sb) >= sb->sb_hiwat) ) {
3282 goto deliver;
3283 }
3284
3285 /* On MSG_WAITALL we must wait until all data or error arrives. */
3286 if ((flags & MSG_WAITALL) &&
3287 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3288 goto deliver;
3289
3290 /*
3291 * Wait and block until (more) data comes in.
3292 * NB: Drops the sockbuf lock during wait.
3293 */
3294 error = sbwait(so, SO_RCV);
3295 if (error)
3296 goto out;
3297 goto restart;
3298
3299 deliver:
3300 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3301 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3302 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3303
3304 /* Statistics. */
3305 if (uio->uio_td)
3306 uio->uio_td->td_ru.ru_msgrcv++;
3307
3308 /* Fill uio until full or current end of socket buffer is reached. */
3309 len = min(uio->uio_resid, sbavail(sb));
3310 if (mp0 != NULL) {
3311 /* Dequeue as many mbufs as possible. */
3312 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3313 if (*mp0 == NULL)
3314 *mp0 = sb->sb_mb;
3315 else
3316 m_cat(*mp0, sb->sb_mb);
3317 for (m = sb->sb_mb;
3318 m != NULL && m->m_len <= len;
3319 m = m->m_next) {
3320 KASSERT(!(m->m_flags & M_NOTAVAIL),
3321 ("%s: m %p not available", __func__, m));
3322 len -= m->m_len;
3323 uio->uio_resid -= m->m_len;
3324 sbfree(sb, m);
3325 n = m;
3326 }
3327 n->m_next = NULL;
3328 sb->sb_mb = m;
3329 sb->sb_lastrecord = sb->sb_mb;
3330 if (sb->sb_mb == NULL)
3331 SB_EMPTY_FIXUP(sb);
3332 }
3333 /* Copy the remainder. */
3334 if (len > 0) {
3335 KASSERT(sb->sb_mb != NULL,
3336 ("%s: len > 0 && sb->sb_mb empty", __func__));
3337
3338 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3339 if (m == NULL)
3340 len = 0; /* Don't flush data from sockbuf. */
3341 else
3342 uio->uio_resid -= len;
3343 if (*mp0 != NULL)
3344 m_cat(*mp0, m);
3345 else
3346 *mp0 = m;
3347 if (*mp0 == NULL) {
3348 error = ENOBUFS;
3349 goto out;
3350 }
3351 }
3352 } else {
3353 /* NB: Must unlock socket buffer as uiomove may sleep. */
3354 SOCKBUF_UNLOCK(sb);
3355 error = m_mbuftouio(uio, sb->sb_mb, len);
3356 SOCKBUF_LOCK(sb);
3357 if (error)
3358 goto out;
3359 }
3360 SBLASTRECORDCHK(sb);
3361 SBLASTMBUFCHK(sb);
3362
3363 /*
3364 * Remove the delivered data from the socket buffer unless we
3365 * were only peeking.
3366 */
3367 if (!(flags & MSG_PEEK)) {
3368 if (len > 0)
3369 sbdrop_locked(sb, len);
3370
3371 /* Notify protocol that we drained some data. */
3372 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3373 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3374 !(flags & MSG_SOCALLBCK))) {
3375 SOCKBUF_UNLOCK(sb);
3376 VNET_SO_ASSERT(so);
3377 so->so_proto->pr_rcvd(so, flags);
3378 SOCKBUF_LOCK(sb);
3379 }
3380 }
3381
3382 /*
3383 * For MSG_WAITALL we may have to loop again and wait for
3384 * more data to come in.
3385 */
3386 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3387 goto restart;
3388 out:
3389 SBLASTRECORDCHK(sb);
3390 SBLASTMBUFCHK(sb);
3391 SOCKBUF_UNLOCK(sb);
3392 return (error);
3393 }
3394
3395 int
3396 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3397 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3398 {
3399 struct sockbuf *sb;
3400 int error, flags;
3401
3402 sb = &so->so_rcv;
3403
3404 /* We only do stream sockets. */
3405 if (so->so_type != SOCK_STREAM)
3406 return (EINVAL);
3407 if (psa != NULL)
3408 *psa = NULL;
3409 if (flagsp != NULL)
3410 flags = *flagsp & ~MSG_EOR;
3411 else
3412 flags = 0;
3413 if (controlp != NULL)
3414 *controlp = NULL;
3415 if (flags & MSG_OOB)
3416 return (soreceive_rcvoob(so, uio, flags));
3417 if (mp0 != NULL)
3418 *mp0 = NULL;
3419
3420 #ifdef KERN_TLS
3421 /*
3422 * KTLS store TLS records as records with a control message to
3423 * describe the framing.
3424 *
3425 * We check once here before acquiring locks to optimize the
3426 * common case.
3427 */
3428 if (sb->sb_tls_info != NULL)
3429 return (soreceive_generic(so, psa, uio, mp0, controlp,
3430 flagsp));
3431 #endif
3432
3433 /*
3434 * Prevent other threads from reading from the socket. This lock may be
3435 * dropped in order to sleep waiting for data to arrive.
3436 */
3437 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3438 if (error)
3439 return (error);
3440 #ifdef KERN_TLS
3441 if (__predict_false(sb->sb_tls_info != NULL)) {
3442 SOCK_IO_RECV_UNLOCK(so);
3443 return (soreceive_generic(so, psa, uio, mp0, controlp,
3444 flagsp));
3445 }
3446 #endif
3447 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3448 SOCK_IO_RECV_UNLOCK(so);
3449 return (error);
3450 }
3451
3452 /*
3453 * Optimized version of soreceive() for simple datagram cases from userspace.
3454 * Unlike in the stream case, we're able to drop a datagram if copyout()
3455 * fails, and because we handle datagrams atomically, we don't need to use a
3456 * sleep lock to prevent I/O interlacing.
3457 */
3458 int
3459 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3460 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3461 {
3462 struct mbuf *m, *m2;
3463 int flags, error;
3464 ssize_t len;
3465 struct protosw *pr = so->so_proto;
3466 struct mbuf *nextrecord;
3467
3468 if (psa != NULL)
3469 *psa = NULL;
3470 if (controlp != NULL)
3471 *controlp = NULL;
3472 if (flagsp != NULL)
3473 flags = *flagsp &~ MSG_EOR;
3474 else
3475 flags = 0;
3476
3477 /*
3478 * For any complicated cases, fall back to the full
3479 * soreceive_generic().
3480 */
3481 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3482 return (soreceive_generic(so, psa, uio, mp0, controlp,
3483 flagsp));
3484
3485 /*
3486 * Enforce restrictions on use.
3487 */
3488 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3489 ("soreceive_dgram: wantrcvd"));
3490 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3491 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3492 ("soreceive_dgram: SBS_RCVATMARK"));
3493 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3494 ("soreceive_dgram: P_CONNREQUIRED"));
3495
3496 /*
3497 * Loop blocking while waiting for a datagram.
3498 */
3499 SOCKBUF_LOCK(&so->so_rcv);
3500 while ((m = so->so_rcv.sb_mb) == NULL) {
3501 KASSERT(sbavail(&so->so_rcv) == 0,
3502 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3503 sbavail(&so->so_rcv)));
3504 if (so->so_error) {
3505 error = so->so_error;
3506 so->so_error = 0;
3507 SOCKBUF_UNLOCK(&so->so_rcv);
3508 return (error);
3509 }
3510 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3511 uio->uio_resid == 0) {
3512 SOCKBUF_UNLOCK(&so->so_rcv);
3513 return (0);
3514 }
3515 if ((so->so_state & SS_NBIO) ||
3516 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3517 SOCKBUF_UNLOCK(&so->so_rcv);
3518 return (EWOULDBLOCK);
3519 }
3520 SBLASTRECORDCHK(&so->so_rcv);
3521 SBLASTMBUFCHK(&so->so_rcv);
3522 error = sbwait(so, SO_RCV);
3523 if (error) {
3524 SOCKBUF_UNLOCK(&so->so_rcv);
3525 return (error);
3526 }
3527 }
3528 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3529
3530 if (uio->uio_td)
3531 uio->uio_td->td_ru.ru_msgrcv++;
3532 SBLASTRECORDCHK(&so->so_rcv);
3533 SBLASTMBUFCHK(&so->so_rcv);
3534 nextrecord = m->m_nextpkt;
3535 if (nextrecord == NULL) {
3536 KASSERT(so->so_rcv.sb_lastrecord == m,
3537 ("soreceive_dgram: lastrecord != m"));
3538 }
3539
3540 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3541 ("soreceive_dgram: m_nextpkt != nextrecord"));
3542
3543 /*
3544 * Pull 'm' and its chain off the front of the packet queue.
3545 */
3546 so->so_rcv.sb_mb = NULL;
3547 sockbuf_pushsync(&so->so_rcv, nextrecord);
3548
3549 /*
3550 * Walk 'm's chain and free that many bytes from the socket buffer.
3551 */
3552 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3553 sbfree(&so->so_rcv, m2);
3554
3555 /*
3556 * Do a few last checks before we let go of the lock.
3557 */
3558 SBLASTRECORDCHK(&so->so_rcv);
3559 SBLASTMBUFCHK(&so->so_rcv);
3560 SOCKBUF_UNLOCK(&so->so_rcv);
3561
3562 if (pr->pr_flags & PR_ADDR) {
3563 KASSERT(m->m_type == MT_SONAME,
3564 ("m->m_type == %d", m->m_type));
3565 if (psa != NULL)
3566 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3567 M_WAITOK);
3568 m = m_free(m);
3569 }
3570 KASSERT(m, ("%s: no data or control after soname", __func__));
3571
3572 /*
3573 * Packet to copyout() is now in 'm' and it is disconnected from the
3574 * queue.
3575 *
3576 * Process one or more MT_CONTROL mbufs present before any data mbufs
3577 * in the first mbuf chain on the socket buffer. We call into the
3578 * protocol to perform externalization (or freeing if controlp ==
3579 * NULL). In some cases there can be only MT_CONTROL mbufs without
3580 * MT_DATA mbufs.
3581 */
3582 if (m->m_type == MT_CONTROL) {
3583 struct mbuf *cm = NULL, *cmn;
3584 struct mbuf **cme = &cm;
3585
3586 do {
3587 m2 = m->m_next;
3588 m->m_next = NULL;
3589 *cme = m;
3590 cme = &(*cme)->m_next;
3591 m = m2;
3592 } while (m != NULL && m->m_type == MT_CONTROL);
3593 while (cm != NULL) {
3594 cmn = cm->m_next;
3595 cm->m_next = NULL;
3596 if (pr->pr_domain->dom_externalize != NULL) {
3597 error = (*pr->pr_domain->dom_externalize)
3598 (cm, controlp, flags);
3599 } else if (controlp != NULL)
3600 *controlp = cm;
3601 else
3602 m_freem(cm);
3603 if (controlp != NULL) {
3604 while (*controlp != NULL)
3605 controlp = &(*controlp)->m_next;
3606 }
3607 cm = cmn;
3608 }
3609 }
3610 KASSERT(m == NULL || m->m_type == MT_DATA,
3611 ("soreceive_dgram: !data"));
3612 while (m != NULL && uio->uio_resid > 0) {
3613 len = uio->uio_resid;
3614 if (len > m->m_len)
3615 len = m->m_len;
3616 error = uiomove(mtod(m, char *), (int)len, uio);
3617 if (error) {
3618 m_freem(m);
3619 return (error);
3620 }
3621 if (len == m->m_len)
3622 m = m_free(m);
3623 else {
3624 m->m_data += len;
3625 m->m_len -= len;
3626 }
3627 }
3628 if (m != NULL) {
3629 flags |= MSG_TRUNC;
3630 m_freem(m);
3631 }
3632 if (flagsp != NULL)
3633 *flagsp |= flags;
3634 return (0);
3635 }
3636
3637 int
3638 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3639 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3640 {
3641 int error;
3642
3643 CURVNET_SET(so->so_vnet);
3644 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3645 CURVNET_RESTORE();
3646 return (error);
3647 }
3648
3649 int
3650 soshutdown(struct socket *so, enum shutdown_how how)
3651 {
3652 int error;
3653
3654 CURVNET_SET(so->so_vnet);
3655 error = so->so_proto->pr_shutdown(so, how);
3656 CURVNET_RESTORE();
3657
3658 return (error);
3659 }
3660
3661 /*
3662 * Used by several pr_shutdown implementations that use generic socket buffers.
3663 */
3664 void
3665 sorflush(struct socket *so)
3666 {
3667 int error;
3668
3669 VNET_SO_ASSERT(so);
3670
3671 /*
3672 * Dislodge threads currently blocked in receive and wait to acquire
3673 * a lock against other simultaneous readers before clearing the
3674 * socket buffer. Don't let our acquire be interrupted by a signal
3675 * despite any existing socket disposition on interruptable waiting.
3676 *
3677 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3678 * methods that read the top of the socket buffer without acquisition
3679 * of the socket buffer mutex, assuming that top of the buffer
3680 * exclusively belongs to the read(2) syscall. This is handy when
3681 * performing MSG_PEEK.
3682 */
3683 socantrcvmore(so);
3684
3685 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3686 if (error != 0) {
3687 KASSERT(SOLISTENING(so),
3688 ("%s: soiolock(%p) failed", __func__, so));
3689 return;
3690 }
3691
3692 sbrelease(so, SO_RCV);
3693 SOCK_IO_RECV_UNLOCK(so);
3694
3695 }
3696
3697 int
3698 sosetfib(struct socket *so, int fibnum)
3699 {
3700 if (fibnum < 0 || fibnum >= rt_numfibs)
3701 return (EINVAL);
3702
3703 SOCK_LOCK(so);
3704 so->so_fibnum = fibnum;
3705 SOCK_UNLOCK(so);
3706
3707 return (0);
3708 }
3709
3710 #ifdef SOCKET_HHOOK
3711 /*
3712 * Wrapper for Socket established helper hook.
3713 * Parameters: socket, context of the hook point, hook id.
3714 */
3715 static inline int
3716 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3717 {
3718 struct socket_hhook_data hhook_data = {
3719 .so = so,
3720 .hctx = hctx,
3721 .m = NULL,
3722 .status = 0
3723 };
3724
3725 CURVNET_SET(so->so_vnet);
3726 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3727 CURVNET_RESTORE();
3728
3729 /* Ugly but needed, since hhooks return void for now */
3730 return (hhook_data.status);
3731 }
3732 #endif
3733
3734 /*
3735 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3736 * additional variant to handle the case where the option value needs to be
3737 * some kind of integer, but not a specific size. In addition to their use
3738 * here, these functions are also called by the protocol-level pr_ctloutput()
3739 * routines.
3740 */
3741 int
3742 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3743 {
3744 size_t valsize;
3745
3746 /*
3747 * If the user gives us more than we wanted, we ignore it, but if we
3748 * don't get the minimum length the caller wants, we return EINVAL.
3749 * On success, sopt->sopt_valsize is set to however much we actually
3750 * retrieved.
3751 */
3752 if ((valsize = sopt->sopt_valsize) < minlen)
3753 return EINVAL;
3754 if (valsize > len)
3755 sopt->sopt_valsize = valsize = len;
3756
3757 if (sopt->sopt_td != NULL)
3758 return (copyin(sopt->sopt_val, buf, valsize));
3759
3760 bcopy(sopt->sopt_val, buf, valsize);
3761 return (0);
3762 }
3763
3764 /*
3765 * Kernel version of setsockopt(2).
3766 *
3767 * XXX: optlen is size_t, not socklen_t
3768 */
3769 int
3770 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3771 size_t optlen)
3772 {
3773 struct sockopt sopt;
3774
3775 sopt.sopt_level = level;
3776 sopt.sopt_name = optname;
3777 sopt.sopt_dir = SOPT_SET;
3778 sopt.sopt_val = optval;
3779 sopt.sopt_valsize = optlen;
3780 sopt.sopt_td = NULL;
3781 return (sosetopt(so, &sopt));
3782 }
3783
3784 int
3785 sosetopt(struct socket *so, struct sockopt *sopt)
3786 {
3787 int error, optval;
3788 struct linger l;
3789 struct timeval tv;
3790 sbintime_t val, *valp;
3791 uint32_t val32;
3792 #ifdef MAC
3793 struct mac extmac;
3794 #endif
3795
3796 CURVNET_SET(so->so_vnet);
3797 error = 0;
3798 if (sopt->sopt_level != SOL_SOCKET) {
3799 if (so->so_proto->pr_ctloutput != NULL)
3800 error = (*so->so_proto->pr_ctloutput)(so, sopt);
3801 else
3802 error = ENOPROTOOPT;
3803 } else {
3804 switch (sopt->sopt_name) {
3805 case SO_ACCEPTFILTER:
3806 error = accept_filt_setopt(so, sopt);
3807 if (error)
3808 goto bad;
3809 break;
3810
3811 case SO_LINGER:
3812 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3813 if (error)
3814 goto bad;
3815 if (l.l_linger < 0 ||
3816 l.l_linger > USHRT_MAX ||
3817 l.l_linger > (INT_MAX / hz)) {
3818 error = EDOM;
3819 goto bad;
3820 }
3821 SOCK_LOCK(so);
3822 so->so_linger = l.l_linger;
3823 if (l.l_onoff)
3824 so->so_options |= SO_LINGER;
3825 else
3826 so->so_options &= ~SO_LINGER;
3827 SOCK_UNLOCK(so);
3828 break;
3829
3830 case SO_DEBUG:
3831 case SO_KEEPALIVE:
3832 case SO_DONTROUTE:
3833 case SO_USELOOPBACK:
3834 case SO_BROADCAST:
3835 case SO_REUSEADDR:
3836 case SO_REUSEPORT:
3837 case SO_REUSEPORT_LB:
3838 case SO_OOBINLINE:
3839 case SO_TIMESTAMP:
3840 case SO_BINTIME:
3841 case SO_NOSIGPIPE:
3842 case SO_NO_DDP:
3843 case SO_NO_OFFLOAD:
3844 case SO_RERROR:
3845 error = sooptcopyin(sopt, &optval, sizeof optval,
3846 sizeof optval);
3847 if (error)
3848 goto bad;
3849 SOCK_LOCK(so);
3850 if (optval)
3851 so->so_options |= sopt->sopt_name;
3852 else
3853 so->so_options &= ~sopt->sopt_name;
3854 SOCK_UNLOCK(so);
3855 break;
3856
3857 case SO_SETFIB:
3858 error = so->so_proto->pr_ctloutput(so, sopt);
3859 break;
3860
3861 case SO_USER_COOKIE:
3862 error = sooptcopyin(sopt, &val32, sizeof val32,
3863 sizeof val32);
3864 if (error)
3865 goto bad;
3866 so->so_user_cookie = val32;
3867 break;
3868
3869 case SO_SNDBUF:
3870 case SO_RCVBUF:
3871 case SO_SNDLOWAT:
3872 case SO_RCVLOWAT:
3873 error = so->so_proto->pr_setsbopt(so, sopt);
3874 if (error)
3875 goto bad;
3876 break;
3877
3878 case SO_SNDTIMEO:
3879 case SO_RCVTIMEO:
3880 #ifdef COMPAT_FREEBSD32
3881 if (SV_CURPROC_FLAG(SV_ILP32)) {
3882 struct timeval32 tv32;
3883
3884 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3885 sizeof tv32);
3886 CP(tv32, tv, tv_sec);
3887 CP(tv32, tv, tv_usec);
3888 } else
3889 #endif
3890 error = sooptcopyin(sopt, &tv, sizeof tv,
3891 sizeof tv);
3892 if (error)
3893 goto bad;
3894 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3895 tv.tv_usec >= 1000000) {
3896 error = EDOM;
3897 goto bad;
3898 }
3899 if (tv.tv_sec > INT32_MAX)
3900 val = SBT_MAX;
3901 else
3902 val = tvtosbt(tv);
3903 SOCK_LOCK(so);
3904 valp = sopt->sopt_name == SO_SNDTIMEO ?
3905 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3906 &so->so_snd.sb_timeo) :
3907 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3908 &so->so_rcv.sb_timeo);
3909 *valp = val;
3910 SOCK_UNLOCK(so);
3911 break;
3912
3913 case SO_LABEL:
3914 #ifdef MAC
3915 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3916 sizeof extmac);
3917 if (error)
3918 goto bad;
3919 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3920 so, &extmac);
3921 #else
3922 error = EOPNOTSUPP;
3923 #endif
3924 break;
3925
3926 case SO_TS_CLOCK:
3927 error = sooptcopyin(sopt, &optval, sizeof optval,
3928 sizeof optval);
3929 if (error)
3930 goto bad;
3931 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3932 error = EINVAL;
3933 goto bad;
3934 }
3935 so->so_ts_clock = optval;
3936 break;
3937
3938 case SO_MAX_PACING_RATE:
3939 error = sooptcopyin(sopt, &val32, sizeof(val32),
3940 sizeof(val32));
3941 if (error)
3942 goto bad;
3943 so->so_max_pacing_rate = val32;
3944 break;
3945
3946 case SO_SPLICE: {
3947 struct splice splice;
3948
3949 #ifdef COMPAT_FREEBSD32
3950 if (SV_CURPROC_FLAG(SV_ILP32)) {
3951 struct splice32 splice32;
3952
3953 error = sooptcopyin(sopt, &splice32,
3954 sizeof(splice32), sizeof(splice32));
3955 if (error == 0) {
3956 splice.sp_fd = splice32.sp_fd;
3957 splice.sp_max = splice32.sp_max;
3958 CP(splice32.sp_idle, splice.sp_idle,
3959 tv_sec);
3960 CP(splice32.sp_idle, splice.sp_idle,
3961 tv_usec);
3962 }
3963 } else
3964 #endif
3965 {
3966 error = sooptcopyin(sopt, &splice,
3967 sizeof(splice), sizeof(splice));
3968 }
3969 if (error)
3970 goto bad;
3971 #ifdef KTRACE
3972 if (KTRPOINT(curthread, KTR_STRUCT))
3973 ktrsplice(&splice);
3974 #endif
3975
3976 error = splice_init();
3977 if (error != 0)
3978 goto bad;
3979
3980 if (splice.sp_fd >= 0) {
3981 struct file *fp;
3982 struct socket *so2;
3983
3984 if (!cap_rights_contains(sopt->sopt_rights,
3985 &cap_recv_rights)) {
3986 error = ENOTCAPABLE;
3987 goto bad;
3988 }
3989 error = getsock(sopt->sopt_td, splice.sp_fd,
3990 &cap_send_rights, &fp);
3991 if (error != 0)
3992 goto bad;
3993 so2 = fp->f_data;
3994
3995 error = so_splice(so, so2, &splice);
3996 fdrop(fp, sopt->sopt_td);
3997 } else {
3998 error = so_unsplice(so, false);
3999 }
4000 break;
4001 }
4002 default:
4003 #ifdef SOCKET_HHOOK
4004 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4005 error = hhook_run_socket(so, sopt,
4006 HHOOK_SOCKET_OPT);
4007 else
4008 #endif
4009 error = ENOPROTOOPT;
4010 break;
4011 }
4012 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
4013 (void)(*so->so_proto->pr_ctloutput)(so, sopt);
4014 }
4015 bad:
4016 CURVNET_RESTORE();
4017 return (error);
4018 }
4019
4020 /*
4021 * Helper routine for getsockopt.
4022 */
4023 int
4024 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4025 {
4026 int error;
4027 size_t valsize;
4028
4029 error = 0;
4030
4031 /*
4032 * Documented get behavior is that we always return a value, possibly
4033 * truncated to fit in the user's buffer. Traditional behavior is
4034 * that we always tell the user precisely how much we copied, rather
4035 * than something useful like the total amount we had available for
4036 * her. Note that this interface is not idempotent; the entire
4037 * answer must be generated ahead of time.
4038 */
4039 valsize = min(len, sopt->sopt_valsize);
4040 sopt->sopt_valsize = valsize;
4041 if (sopt->sopt_val != NULL) {
4042 if (sopt->sopt_td != NULL)
4043 error = copyout(buf, sopt->sopt_val, valsize);
4044 else
4045 bcopy(buf, sopt->sopt_val, valsize);
4046 }
4047 return (error);
4048 }
4049
4050 int
4051 sogetopt(struct socket *so, struct sockopt *sopt)
4052 {
4053 int error, optval;
4054 struct linger l;
4055 struct timeval tv;
4056 #ifdef MAC
4057 struct mac extmac;
4058 #endif
4059
4060 CURVNET_SET(so->so_vnet);
4061 error = 0;
4062 if (sopt->sopt_level != SOL_SOCKET) {
4063 if (so->so_proto->pr_ctloutput != NULL)
4064 error = (*so->so_proto->pr_ctloutput)(so, sopt);
4065 else
4066 error = ENOPROTOOPT;
4067 CURVNET_RESTORE();
4068 return (error);
4069 } else {
4070 switch (sopt->sopt_name) {
4071 case SO_ACCEPTFILTER:
4072 error = accept_filt_getopt(so, sopt);
4073 break;
4074
4075 case SO_LINGER:
4076 SOCK_LOCK(so);
4077 l.l_onoff = so->so_options & SO_LINGER;
4078 l.l_linger = so->so_linger;
4079 SOCK_UNLOCK(so);
4080 error = sooptcopyout(sopt, &l, sizeof l);
4081 break;
4082
4083 case SO_USELOOPBACK:
4084 case SO_DONTROUTE:
4085 case SO_DEBUG:
4086 case SO_KEEPALIVE:
4087 case SO_REUSEADDR:
4088 case SO_REUSEPORT:
4089 case SO_REUSEPORT_LB:
4090 case SO_BROADCAST:
4091 case SO_OOBINLINE:
4092 case SO_ACCEPTCONN:
4093 case SO_TIMESTAMP:
4094 case SO_BINTIME:
4095 case SO_NOSIGPIPE:
4096 case SO_NO_DDP:
4097 case SO_NO_OFFLOAD:
4098 case SO_RERROR:
4099 optval = so->so_options & sopt->sopt_name;
4100 integer:
4101 error = sooptcopyout(sopt, &optval, sizeof optval);
4102 break;
4103
4104 case SO_FIB:
4105 SOCK_LOCK(so);
4106 optval = so->so_fibnum;
4107 SOCK_UNLOCK(so);
4108 goto integer;
4109
4110 case SO_DOMAIN:
4111 optval = so->so_proto->pr_domain->dom_family;
4112 goto integer;
4113
4114 case SO_TYPE:
4115 optval = so->so_type;
4116 goto integer;
4117
4118 case SO_PROTOCOL:
4119 optval = so->so_proto->pr_protocol;
4120 goto integer;
4121
4122 case SO_ERROR:
4123 SOCK_LOCK(so);
4124 if (so->so_error) {
4125 optval = so->so_error;
4126 so->so_error = 0;
4127 } else {
4128 optval = so->so_rerror;
4129 so->so_rerror = 0;
4130 }
4131 SOCK_UNLOCK(so);
4132 goto integer;
4133
4134 case SO_SNDBUF:
4135 SOCK_LOCK(so);
4136 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4137 so->so_snd.sb_hiwat;
4138 SOCK_UNLOCK(so);
4139 goto integer;
4140
4141 case SO_RCVBUF:
4142 SOCK_LOCK(so);
4143 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4144 so->so_rcv.sb_hiwat;
4145 SOCK_UNLOCK(so);
4146 goto integer;
4147
4148 case SO_SNDLOWAT:
4149 SOCK_LOCK(so);
4150 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4151 so->so_snd.sb_lowat;
4152 SOCK_UNLOCK(so);
4153 goto integer;
4154
4155 case SO_RCVLOWAT:
4156 SOCK_LOCK(so);
4157 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4158 so->so_rcv.sb_lowat;
4159 SOCK_UNLOCK(so);
4160 goto integer;
4161
4162 case SO_SNDTIMEO:
4163 case SO_RCVTIMEO:
4164 SOCK_LOCK(so);
4165 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4166 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4167 so->so_snd.sb_timeo) :
4168 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4169 so->so_rcv.sb_timeo));
4170 SOCK_UNLOCK(so);
4171 #ifdef COMPAT_FREEBSD32
4172 if (SV_CURPROC_FLAG(SV_ILP32)) {
4173 struct timeval32 tv32;
4174
4175 CP(tv, tv32, tv_sec);
4176 CP(tv, tv32, tv_usec);
4177 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4178 } else
4179 #endif
4180 error = sooptcopyout(sopt, &tv, sizeof tv);
4181 break;
4182
4183 case SO_LABEL:
4184 #ifdef MAC
4185 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4186 sizeof(extmac));
4187 if (error)
4188 goto bad;
4189 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4190 so, &extmac);
4191 if (error)
4192 goto bad;
4193 /* Don't copy out extmac, it is unchanged. */
4194 #else
4195 error = EOPNOTSUPP;
4196 #endif
4197 break;
4198
4199 case SO_PEERLABEL:
4200 #ifdef MAC
4201 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4202 sizeof(extmac));
4203 if (error)
4204 goto bad;
4205 error = mac_getsockopt_peerlabel(
4206 sopt->sopt_td->td_ucred, so, &extmac);
4207 if (error)
4208 goto bad;
4209 /* Don't copy out extmac, it is unchanged. */
4210 #else
4211 error = EOPNOTSUPP;
4212 #endif
4213 break;
4214
4215 case SO_LISTENQLIMIT:
4216 SOCK_LOCK(so);
4217 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4218 SOCK_UNLOCK(so);
4219 goto integer;
4220
4221 case SO_LISTENQLEN:
4222 SOCK_LOCK(so);
4223 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4224 SOCK_UNLOCK(so);
4225 goto integer;
4226
4227 case SO_LISTENINCQLEN:
4228 SOCK_LOCK(so);
4229 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4230 SOCK_UNLOCK(so);
4231 goto integer;
4232
4233 case SO_TS_CLOCK:
4234 optval = so->so_ts_clock;
4235 goto integer;
4236
4237 case SO_MAX_PACING_RATE:
4238 optval = so->so_max_pacing_rate;
4239 goto integer;
4240
4241 case SO_SPLICE: {
4242 off_t n;
4243
4244 /*
4245 * Acquire the I/O lock to serialize with
4246 * so_splice_xfer(). This is not required for
4247 * correctness, but makes testing simpler: once a byte
4248 * has been transmitted to the sink and observed (e.g.,
4249 * by reading from the socket to which the sink is
4250 * connected), a subsequent getsockopt(SO_SPLICE) will
4251 * return an up-to-date value.
4252 */
4253 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4254 if (error != 0)
4255 goto bad;
4256 SOCK_LOCK(so);
4257 if (SOLISTENING(so)) {
4258 n = 0;
4259 } else {
4260 n = so->so_splice_sent;
4261 }
4262 SOCK_UNLOCK(so);
4263 SOCK_IO_RECV_UNLOCK(so);
4264 error = sooptcopyout(sopt, &n, sizeof(n));
4265 break;
4266 }
4267
4268 default:
4269 #ifdef SOCKET_HHOOK
4270 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4271 error = hhook_run_socket(so, sopt,
4272 HHOOK_SOCKET_OPT);
4273 else
4274 #endif
4275 error = ENOPROTOOPT;
4276 break;
4277 }
4278 }
4279 bad:
4280 CURVNET_RESTORE();
4281 return (error);
4282 }
4283
4284 int
4285 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4286 {
4287 struct mbuf *m, *m_prev;
4288 int sopt_size = sopt->sopt_valsize;
4289
4290 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4291 if (m == NULL)
4292 return ENOBUFS;
4293 if (sopt_size > MLEN) {
4294 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4295 if ((m->m_flags & M_EXT) == 0) {
4296 m_free(m);
4297 return ENOBUFS;
4298 }
4299 m->m_len = min(MCLBYTES, sopt_size);
4300 } else {
4301 m->m_len = min(MLEN, sopt_size);
4302 }
4303 sopt_size -= m->m_len;
4304 *mp = m;
4305 m_prev = m;
4306
4307 while (sopt_size) {
4308 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4309 if (m == NULL) {
4310 m_freem(*mp);
4311 return ENOBUFS;
4312 }
4313 if (sopt_size > MLEN) {
4314 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4315 M_NOWAIT);
4316 if ((m->m_flags & M_EXT) == 0) {
4317 m_freem(m);
4318 m_freem(*mp);
4319 return ENOBUFS;
4320 }
4321 m->m_len = min(MCLBYTES, sopt_size);
4322 } else {
4323 m->m_len = min(MLEN, sopt_size);
4324 }
4325 sopt_size -= m->m_len;
4326 m_prev->m_next = m;
4327 m_prev = m;
4328 }
4329 return (0);
4330 }
4331
4332 int
4333 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4334 {
4335 struct mbuf *m0 = m;
4336
4337 if (sopt->sopt_val == NULL)
4338 return (0);
4339 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4340 if (sopt->sopt_td != NULL) {
4341 int error;
4342
4343 error = copyin(sopt->sopt_val, mtod(m, char *),
4344 m->m_len);
4345 if (error != 0) {
4346 m_freem(m0);
4347 return(error);
4348 }
4349 } else
4350 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4351 sopt->sopt_valsize -= m->m_len;
4352 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4353 m = m->m_next;
4354 }
4355 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4356 panic("ip6_sooptmcopyin");
4357 return (0);
4358 }
4359
4360 int
4361 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4362 {
4363 struct mbuf *m0 = m;
4364 size_t valsize = 0;
4365
4366 if (sopt->sopt_val == NULL)
4367 return (0);
4368 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4369 if (sopt->sopt_td != NULL) {
4370 int error;
4371
4372 error = copyout(mtod(m, char *), sopt->sopt_val,
4373 m->m_len);
4374 if (error != 0) {
4375 m_freem(m0);
4376 return(error);
4377 }
4378 } else
4379 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4380 sopt->sopt_valsize -= m->m_len;
4381 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4382 valsize += m->m_len;
4383 m = m->m_next;
4384 }
4385 if (m != NULL) {
4386 /* enough soopt buffer should be given from user-land */
4387 m_freem(m0);
4388 return(EINVAL);
4389 }
4390 sopt->sopt_valsize = valsize;
4391 return (0);
4392 }
4393
4394 /*
4395 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4396 * out-of-band data, which will then notify socket consumers.
4397 */
4398 void
4399 sohasoutofband(struct socket *so)
4400 {
4401
4402 if (so->so_sigio != NULL)
4403 pgsigio(&so->so_sigio, SIGURG, 0);
4404 selwakeuppri(&so->so_rdsel, PSOCK);
4405 }
4406
4407 int
4408 sopoll_generic(struct socket *so, int events, struct thread *td)
4409 {
4410 int revents;
4411
4412 SOCK_LOCK(so);
4413 if (SOLISTENING(so)) {
4414 if (!(events & (POLLIN | POLLRDNORM)))
4415 revents = 0;
4416 else if (!TAILQ_EMPTY(&so->sol_comp))
4417 revents = events & (POLLIN | POLLRDNORM);
4418 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4419 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4420 else {
4421 selrecord(td, &so->so_rdsel);
4422 revents = 0;
4423 }
4424 } else {
4425 revents = 0;
4426 SOCK_SENDBUF_LOCK(so);
4427 SOCK_RECVBUF_LOCK(so);
4428 if (events & (POLLIN | POLLRDNORM))
4429 if (soreadabledata(so) && !isspliced(so))
4430 revents |= events & (POLLIN | POLLRDNORM);
4431 if (events & (POLLOUT | POLLWRNORM))
4432 if (sowriteable(so) && !issplicedback(so))
4433 revents |= events & (POLLOUT | POLLWRNORM);
4434 if (events & (POLLPRI | POLLRDBAND))
4435 if (so->so_oobmark ||
4436 (so->so_rcv.sb_state & SBS_RCVATMARK))
4437 revents |= events & (POLLPRI | POLLRDBAND);
4438 if ((events & POLLINIGNEOF) == 0) {
4439 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4440 revents |= events & (POLLIN | POLLRDNORM);
4441 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4442 revents |= POLLHUP;
4443 }
4444 }
4445 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4446 revents |= events & POLLRDHUP;
4447 if (revents == 0) {
4448 if (events &
4449 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4450 selrecord(td, &so->so_rdsel);
4451 so->so_rcv.sb_flags |= SB_SEL;
4452 }
4453 if (events & (POLLOUT | POLLWRNORM)) {
4454 selrecord(td, &so->so_wrsel);
4455 so->so_snd.sb_flags |= SB_SEL;
4456 }
4457 }
4458 SOCK_RECVBUF_UNLOCK(so);
4459 SOCK_SENDBUF_UNLOCK(so);
4460 }
4461 SOCK_UNLOCK(so);
4462 return (revents);
4463 }
4464
4465 int
4466 soo_kqfilter(struct file *fp, struct knote *kn)
4467 {
4468 struct socket *so = kn->kn_fp->f_data;
4469 struct sockbuf *sb;
4470 sb_which which;
4471 struct knlist *knl;
4472
4473 switch (kn->kn_filter) {
4474 case EVFILT_READ:
4475 kn->kn_fop = &soread_filtops;
4476 knl = &so->so_rdsel.si_note;
4477 sb = &so->so_rcv;
4478 which = SO_RCV;
4479 break;
4480 case EVFILT_WRITE:
4481 kn->kn_fop = &sowrite_filtops;
4482 knl = &so->so_wrsel.si_note;
4483 sb = &so->so_snd;
4484 which = SO_SND;
4485 break;
4486 case EVFILT_EMPTY:
4487 kn->kn_fop = &soempty_filtops;
4488 knl = &so->so_wrsel.si_note;
4489 sb = &so->so_snd;
4490 which = SO_SND;
4491 break;
4492 default:
4493 return (EINVAL);
4494 }
4495
4496 SOCK_LOCK(so);
4497 if (SOLISTENING(so)) {
4498 knlist_add(knl, kn, 1);
4499 } else {
4500 SOCK_BUF_LOCK(so, which);
4501 knlist_add(knl, kn, 1);
4502 sb->sb_flags |= SB_KNOTE;
4503 SOCK_BUF_UNLOCK(so, which);
4504 }
4505 SOCK_UNLOCK(so);
4506 return (0);
4507 }
4508
4509 static void
4510 filt_sordetach(struct knote *kn)
4511 {
4512 struct socket *so = kn->kn_fp->f_data;
4513
4514 so_rdknl_lock(so);
4515 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4516 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4517 so->so_rcv.sb_flags &= ~SB_KNOTE;
4518 so_rdknl_unlock(so);
4519 }
4520
4521 /*ARGSUSED*/
4522 static int
4523 filt_soread(struct knote *kn, long hint)
4524 {
4525 struct socket *so;
4526
4527 so = kn->kn_fp->f_data;
4528
4529 if (SOLISTENING(so)) {
4530 SOCK_LOCK_ASSERT(so);
4531 kn->kn_data = so->sol_qlen;
4532 if (so->so_error) {
4533 kn->kn_flags |= EV_EOF;
4534 kn->kn_fflags = so->so_error;
4535 return (1);
4536 }
4537 return (!TAILQ_EMPTY(&so->sol_comp));
4538 }
4539
4540 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4541 return (0);
4542
4543 SOCK_RECVBUF_LOCK_ASSERT(so);
4544
4545 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4546 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4547 kn->kn_flags |= EV_EOF;
4548 kn->kn_fflags = so->so_error;
4549 return (1);
4550 } else if (so->so_error || so->so_rerror)
4551 return (1);
4552
4553 if (kn->kn_sfflags & NOTE_LOWAT) {
4554 if (kn->kn_data >= kn->kn_sdata)
4555 return (1);
4556 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4557 return (1);
4558
4559 #ifdef SOCKET_HHOOK
4560 /* This hook returning non-zero indicates an event, not error */
4561 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4562 #else
4563 return (0);
4564 #endif
4565 }
4566
4567 static void
4568 filt_sowdetach(struct knote *kn)
4569 {
4570 struct socket *so = kn->kn_fp->f_data;
4571
4572 so_wrknl_lock(so);
4573 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4574 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4575 so->so_snd.sb_flags &= ~SB_KNOTE;
4576 so_wrknl_unlock(so);
4577 }
4578
4579 /*ARGSUSED*/
4580 static int
4581 filt_sowrite(struct knote *kn, long hint)
4582 {
4583 struct socket *so;
4584
4585 so = kn->kn_fp->f_data;
4586
4587 if (SOLISTENING(so))
4588 return (0);
4589
4590 SOCK_SENDBUF_LOCK_ASSERT(so);
4591 kn->kn_data = sbspace(&so->so_snd);
4592
4593 #ifdef SOCKET_HHOOK
4594 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4595 #endif
4596
4597 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4598 kn->kn_flags |= EV_EOF;
4599 kn->kn_fflags = so->so_error;
4600 return (1);
4601 } else if (so->so_error) /* temporary udp error */
4602 return (1);
4603 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4604 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4605 return (0);
4606 else if (kn->kn_sfflags & NOTE_LOWAT)
4607 return (kn->kn_data >= kn->kn_sdata);
4608 else
4609 return (kn->kn_data >= so->so_snd.sb_lowat);
4610 }
4611
4612 static int
4613 filt_soempty(struct knote *kn, long hint)
4614 {
4615 struct socket *so;
4616
4617 so = kn->kn_fp->f_data;
4618
4619 if (SOLISTENING(so))
4620 return (1);
4621
4622 SOCK_SENDBUF_LOCK_ASSERT(so);
4623 kn->kn_data = sbused(&so->so_snd);
4624
4625 if (kn->kn_data == 0)
4626 return (1);
4627 else
4628 return (0);
4629 }
4630
4631 int
4632 socheckuid(struct socket *so, uid_t uid)
4633 {
4634
4635 if (so == NULL)
4636 return (EPERM);
4637 if (so->so_cred->cr_uid != uid)
4638 return (EPERM);
4639 return (0);
4640 }
4641
4642 /*
4643 * These functions are used by protocols to notify the socket layer (and its
4644 * consumers) of state changes in the sockets driven by protocol-side events.
4645 */
4646
4647 /*
4648 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4649 *
4650 * Normal sequence from the active (originating) side is that
4651 * soisconnecting() is called during processing of connect() call, resulting
4652 * in an eventual call to soisconnected() if/when the connection is
4653 * established. When the connection is torn down soisdisconnecting() is
4654 * called during processing of disconnect() call, and soisdisconnected() is
4655 * called when the connection to the peer is totally severed. The semantics
4656 * of these routines are such that connectionless protocols can call
4657 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4658 * calls when setting up a ``connection'' takes no time.
4659 *
4660 * From the passive side, a socket is created with two queues of sockets:
4661 * so_incomp for connections in progress and so_comp for connections already
4662 * made and awaiting user acceptance. As a protocol is preparing incoming
4663 * connections, it creates a socket structure queued on so_incomp by calling
4664 * sonewconn(). When the connection is established, soisconnected() is
4665 * called, and transfers the socket structure to so_comp, making it available
4666 * to accept().
4667 *
4668 * If a socket is closed with sockets on either so_incomp or so_comp, these
4669 * sockets are dropped.
4670 *
4671 * If higher-level protocols are implemented in the kernel, the wakeups done
4672 * here will sometimes cause software-interrupt process scheduling.
4673 */
4674 void
4675 soisconnecting(struct socket *so)
4676 {
4677
4678 SOCK_LOCK(so);
4679 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4680 so->so_state |= SS_ISCONNECTING;
4681 SOCK_UNLOCK(so);
4682 }
4683
4684 void
4685 soisconnected(struct socket *so)
4686 {
4687 bool last __diagused;
4688
4689 SOCK_LOCK(so);
4690 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4691 so->so_state |= SS_ISCONNECTED;
4692
4693 if (so->so_qstate == SQ_INCOMP) {
4694 struct socket *head = so->so_listen;
4695 int ret;
4696
4697 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4698 /*
4699 * Promoting a socket from incomplete queue to complete, we
4700 * need to go through reverse order of locking. We first do
4701 * trylock, and if that doesn't succeed, we go the hard way
4702 * leaving a reference and rechecking consistency after proper
4703 * locking.
4704 */
4705 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4706 soref(head);
4707 SOCK_UNLOCK(so);
4708 SOLISTEN_LOCK(head);
4709 SOCK_LOCK(so);
4710 if (__predict_false(head != so->so_listen)) {
4711 /*
4712 * The socket went off the listen queue,
4713 * should be lost race to close(2) of sol.
4714 * The socket is about to soabort().
4715 */
4716 SOCK_UNLOCK(so);
4717 sorele_locked(head);
4718 return;
4719 }
4720 last = refcount_release(&head->so_count);
4721 KASSERT(!last, ("%s: released last reference for %p",
4722 __func__, head));
4723 }
4724 again:
4725 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4726 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4727 head->sol_incqlen--;
4728 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4729 head->sol_qlen++;
4730 so->so_qstate = SQ_COMP;
4731 SOCK_UNLOCK(so);
4732 solisten_wakeup(head); /* unlocks */
4733 } else {
4734 SOCK_RECVBUF_LOCK(so);
4735 soupcall_set(so, SO_RCV,
4736 head->sol_accept_filter->accf_callback,
4737 head->sol_accept_filter_arg);
4738 so->so_options &= ~SO_ACCEPTFILTER;
4739 ret = head->sol_accept_filter->accf_callback(so,
4740 head->sol_accept_filter_arg, M_NOWAIT);
4741 if (ret == SU_ISCONNECTED) {
4742 soupcall_clear(so, SO_RCV);
4743 SOCK_RECVBUF_UNLOCK(so);
4744 goto again;
4745 }
4746 SOCK_RECVBUF_UNLOCK(so);
4747 SOCK_UNLOCK(so);
4748 SOLISTEN_UNLOCK(head);
4749 }
4750 return;
4751 }
4752 SOCK_UNLOCK(so);
4753 wakeup(&so->so_timeo);
4754 sorwakeup(so);
4755 sowwakeup(so);
4756 }
4757
4758 void
4759 soisdisconnecting(struct socket *so)
4760 {
4761
4762 SOCK_LOCK(so);
4763 so->so_state &= ~SS_ISCONNECTING;
4764 so->so_state |= SS_ISDISCONNECTING;
4765
4766 if (!SOLISTENING(so)) {
4767 SOCK_RECVBUF_LOCK(so);
4768 socantrcvmore_locked(so);
4769 SOCK_SENDBUF_LOCK(so);
4770 socantsendmore_locked(so);
4771 }
4772 SOCK_UNLOCK(so);
4773 wakeup(&so->so_timeo);
4774 }
4775
4776 void
4777 soisdisconnected(struct socket *so)
4778 {
4779
4780 SOCK_LOCK(so);
4781
4782 /*
4783 * There is at least one reader of so_state that does not
4784 * acquire socket lock, namely soreceive_generic(). Ensure
4785 * that it never sees all flags that track connection status
4786 * cleared, by ordering the update with a barrier semantic of
4787 * our release thread fence.
4788 */
4789 so->so_state |= SS_ISDISCONNECTED;
4790 atomic_thread_fence_rel();
4791 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4792
4793 if (!SOLISTENING(so)) {
4794 SOCK_UNLOCK(so);
4795 SOCK_RECVBUF_LOCK(so);
4796 socantrcvmore_locked(so);
4797 SOCK_SENDBUF_LOCK(so);
4798 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4799 socantsendmore_locked(so);
4800 } else
4801 SOCK_UNLOCK(so);
4802 wakeup(&so->so_timeo);
4803 }
4804
4805 int
4806 soiolock(struct socket *so, struct sx *sx, int flags)
4807 {
4808 int error;
4809
4810 KASSERT((flags & SBL_VALID) == flags,
4811 ("soiolock: invalid flags %#x", flags));
4812
4813 if ((flags & SBL_WAIT) != 0) {
4814 if ((flags & SBL_NOINTR) != 0) {
4815 sx_xlock(sx);
4816 } else {
4817 error = sx_xlock_sig(sx);
4818 if (error != 0)
4819 return (error);
4820 }
4821 } else if (!sx_try_xlock(sx)) {
4822 return (EWOULDBLOCK);
4823 }
4824
4825 if (__predict_false(SOLISTENING(so))) {
4826 sx_xunlock(sx);
4827 return (ENOTCONN);
4828 }
4829 return (0);
4830 }
4831
4832 void
4833 soiounlock(struct sx *sx)
4834 {
4835 sx_xunlock(sx);
4836 }
4837
4838 /*
4839 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4840 */
4841 struct sockaddr *
4842 sodupsockaddr(const struct sockaddr *sa, int mflags)
4843 {
4844 struct sockaddr *sa2;
4845
4846 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4847 if (sa2)
4848 bcopy(sa, sa2, sa->sa_len);
4849 return sa2;
4850 }
4851
4852 /*
4853 * Register per-socket destructor.
4854 */
4855 void
4856 sodtor_set(struct socket *so, so_dtor_t *func)
4857 {
4858
4859 SOCK_LOCK_ASSERT(so);
4860 so->so_dtor = func;
4861 }
4862
4863 /*
4864 * Register per-socket buffer upcalls.
4865 */
4866 void
4867 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4868 {
4869 struct sockbuf *sb;
4870
4871 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4872
4873 switch (which) {
4874 case SO_RCV:
4875 sb = &so->so_rcv;
4876 break;
4877 case SO_SND:
4878 sb = &so->so_snd;
4879 break;
4880 }
4881 SOCK_BUF_LOCK_ASSERT(so, which);
4882 sb->sb_upcall = func;
4883 sb->sb_upcallarg = arg;
4884 sb->sb_flags |= SB_UPCALL;
4885 }
4886
4887 void
4888 soupcall_clear(struct socket *so, sb_which which)
4889 {
4890 struct sockbuf *sb;
4891
4892 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4893
4894 switch (which) {
4895 case SO_RCV:
4896 sb = &so->so_rcv;
4897 break;
4898 case SO_SND:
4899 sb = &so->so_snd;
4900 break;
4901 }
4902 SOCK_BUF_LOCK_ASSERT(so, which);
4903 KASSERT(sb->sb_upcall != NULL,
4904 ("%s: so %p no upcall to clear", __func__, so));
4905 sb->sb_upcall = NULL;
4906 sb->sb_upcallarg = NULL;
4907 sb->sb_flags &= ~SB_UPCALL;
4908 }
4909
4910 void
4911 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4912 {
4913
4914 SOLISTEN_LOCK_ASSERT(so);
4915 so->sol_upcall = func;
4916 so->sol_upcallarg = arg;
4917 }
4918
4919 static void
4920 so_rdknl_lock(void *arg)
4921 {
4922 struct socket *so = arg;
4923
4924 retry:
4925 if (SOLISTENING(so)) {
4926 SOLISTEN_LOCK(so);
4927 } else {
4928 SOCK_RECVBUF_LOCK(so);
4929 if (__predict_false(SOLISTENING(so))) {
4930 SOCK_RECVBUF_UNLOCK(so);
4931 goto retry;
4932 }
4933 }
4934 }
4935
4936 static void
4937 so_rdknl_unlock(void *arg)
4938 {
4939 struct socket *so = arg;
4940
4941 if (SOLISTENING(so))
4942 SOLISTEN_UNLOCK(so);
4943 else
4944 SOCK_RECVBUF_UNLOCK(so);
4945 }
4946
4947 static void
4948 so_rdknl_assert_lock(void *arg, int what)
4949 {
4950 struct socket *so = arg;
4951
4952 if (what == LA_LOCKED) {
4953 if (SOLISTENING(so))
4954 SOLISTEN_LOCK_ASSERT(so);
4955 else
4956 SOCK_RECVBUF_LOCK_ASSERT(so);
4957 } else {
4958 if (SOLISTENING(so))
4959 SOLISTEN_UNLOCK_ASSERT(so);
4960 else
4961 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4962 }
4963 }
4964
4965 static void
4966 so_wrknl_lock(void *arg)
4967 {
4968 struct socket *so = arg;
4969
4970 retry:
4971 if (SOLISTENING(so)) {
4972 SOLISTEN_LOCK(so);
4973 } else {
4974 SOCK_SENDBUF_LOCK(so);
4975 if (__predict_false(SOLISTENING(so))) {
4976 SOCK_SENDBUF_UNLOCK(so);
4977 goto retry;
4978 }
4979 }
4980 }
4981
4982 static void
4983 so_wrknl_unlock(void *arg)
4984 {
4985 struct socket *so = arg;
4986
4987 if (SOLISTENING(so))
4988 SOLISTEN_UNLOCK(so);
4989 else
4990 SOCK_SENDBUF_UNLOCK(so);
4991 }
4992
4993 static void
4994 so_wrknl_assert_lock(void *arg, int what)
4995 {
4996 struct socket *so = arg;
4997
4998 if (what == LA_LOCKED) {
4999 if (SOLISTENING(so))
5000 SOLISTEN_LOCK_ASSERT(so);
5001 else
5002 SOCK_SENDBUF_LOCK_ASSERT(so);
5003 } else {
5004 if (SOLISTENING(so))
5005 SOLISTEN_UNLOCK_ASSERT(so);
5006 else
5007 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5008 }
5009 }
5010
5011 /*
5012 * Create an external-format (``xsocket'') structure using the information in
5013 * the kernel-format socket structure pointed to by so. This is done to
5014 * reduce the spew of irrelevant information over this interface, to isolate
5015 * user code from changes in the kernel structure, and potentially to provide
5016 * information-hiding if we decide that some of this information should be
5017 * hidden from users.
5018 */
5019 void
5020 sotoxsocket(struct socket *so, struct xsocket *xso)
5021 {
5022
5023 bzero(xso, sizeof(*xso));
5024 xso->xso_len = sizeof *xso;
5025 xso->xso_so = (uintptr_t)so;
5026 xso->so_type = so->so_type;
5027 xso->so_options = so->so_options;
5028 xso->so_linger = so->so_linger;
5029 xso->so_state = so->so_state;
5030 xso->so_pcb = (uintptr_t)so->so_pcb;
5031 xso->xso_protocol = so->so_proto->pr_protocol;
5032 xso->xso_family = so->so_proto->pr_domain->dom_family;
5033 xso->so_timeo = so->so_timeo;
5034 xso->so_error = so->so_error;
5035 xso->so_uid = so->so_cred->cr_uid;
5036 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5037 SOCK_LOCK(so);
5038 xso->so_fibnum = so->so_fibnum;
5039 if (SOLISTENING(so)) {
5040 xso->so_qlen = so->sol_qlen;
5041 xso->so_incqlen = so->sol_incqlen;
5042 xso->so_qlimit = so->sol_qlimit;
5043 xso->so_oobmark = 0;
5044 } else {
5045 xso->so_state |= so->so_qstate;
5046 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5047 xso->so_oobmark = so->so_oobmark;
5048 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5049 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5050 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5051 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5052 }
5053 SOCK_UNLOCK(so);
5054 }
5055
5056 int
5057 so_options_get(const struct socket *so)
5058 {
5059
5060 return (so->so_options);
5061 }
5062
5063 void
5064 so_options_set(struct socket *so, int val)
5065 {
5066
5067 so->so_options = val;
5068 }
5069
5070 int
5071 so_error_get(const struct socket *so)
5072 {
5073
5074 return (so->so_error);
5075 }
5076
5077 void
5078 so_error_set(struct socket *so, int val)
5079 {
5080
5081 so->so_error = val;
5082 }
5083